WorldWideScience

Sample records for atom probe characterization

  1. Characterization of Akiyama probe applied to dual-probes atomic force microscope

    Science.gov (United States)

    Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi; Zhu, Zhendong

    2016-10-01

    The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation's patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.

  2. Atom-probe for FinFET dopant characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kambham, A.K., E-mail: kambham@imec.be [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W. [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2011-05-15

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10{sup o} and 45{sup o}) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: {yields} This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). {yields} Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. {yields} The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions

  3. Atom-probe for FinFET dopant characterization.

    Science.gov (United States)

    Kambham, A K; Mody, J; Gilbert, M; Koelling, S; Vandervorst, W

    2011-05-01

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10° and 45°) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values.

  4. Atom probe tomography today

    Directory of Open Access Journals (Sweden)

    Alfred Cerezo

    2007-12-01

    Full Text Available This review aims to describe and illustrate the advances in the application of atom probe tomography that have been made possible by recent developments, particularly in specimen preparation techniques (using dual-beam focused-ion beam instruments but also of the more routine use of laser pulsing. The combination of these two developments now permits atomic-scale investigation of site-specific regions within engineering alloys (e.g. at grain boundaries and in the vicinity of cracks and also the atomic-level characterization of interfaces in multilayers, oxide films, and semiconductor materials and devices.

  5. Characterization of grain boundaries in Cu(In,Ga)Se{sub 2} by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Torsten; Cojocaru-Miredin, Oana; Choi, Pyuck-Pa; Raabe, Dierk [Max-Planck Institute for Iron Research GmbH, Duesseldorf (Germany); Wuerz, Roland [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2012-07-01

    Solar cells based on the compound semiconductor Cu(In,Ga)Se{sub 2} (CIGS) as absorber material exhibit the highest efficiency among all thin-film solar cells. This is surprising high in view of the polycrystalline defect-rich structure of the CIGS absorber films. The high efficiency has been commonly ascribed to the diffusion of alkali metal atoms from the soda-lime glass substrate into the CIGS layer, which can render the grain boundaries (GB) electrically inactive. However, the exact mechanisms of how these impurities enhance the cell efficiency are yet to be clarified. As a step towards a better understanding of CIGS solar cells, we have analyzed the composition of solar-grade CIGS layers at the atomic-scale by using pulsed laser Atom Probe Tomography (APT). To perform APT analyses on selected GBs site-specific sample preparation was carried out using the Focused Ion Beam lift-out technique. In addition, Electron Back Scattered Diffraction was performed to characterize the structure and misorientation of selected GBs. Using APT, segregation of impurities at the GBs was directly observed. APT data of various types of GBs are presented and discussed with respect to the possible effects on the cell efficiency.

  6. Atom Probe Tomography 2012

    Science.gov (United States)

    Kelly, Thomas F.; Larson, David J.

    2012-08-01

    In the world of tomographic imaging, atom probe tomography (APT) occupies the high-spatial-resolution end of the spectrum. It is highly complementary to electron tomography and is applicable to a wide range of materials. The current state of APT is reviewed. Emphasis is placed on applications and data analysis as they apply to many fields of research and development including metals, semiconductors, ceramics, and organic materials. We also provide a brief review of the history and the instrumentation associated with APT and an assessment of the existing challenges in the field.

  7. Characterization of nano-sized precipitates in a Mn-based lean maraging steel by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Millan, J.; Ponge, D.; Raabe, D.; Choi, P.; Dmitrieva, O. [Max-Planck-Institut fuer Eisenforschung, Duesseldorf (Germany)

    2011-02-15

    We present atom probe tomography results of a precipitation-hardened Mn-based maraging steel (9 Mn, 1.9 Ni, 0.6 Mo, 1.1 Ti, 0.33 Al; in at.%). The alloy is characterized by the surprising effect that both, strength and total elongation increase upon aging. The material reveals a high ultimate tensile strength (UTS) up to 1 GPa and good ductility (total elongation (TE) of up to 15% in a tensile test) depending on aging conditions. We map the evolution of the precipitates after 450 C aging treatment using atom probe tomography in terms of chemical composition and size distribution. (Copyright copyright 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences

    Science.gov (United States)

    Miller, M. K.; Powers, K. A.; Nanstad, R. K.; Efsing, P.

    2013-06-01

    The Ringhals Units 3 and 4 reactors in Sweden are pressurized water reactors (PWRs) designed and supplied by Westinghouse Electric Company, with commercial operation in 1981 and 1983, respectively. The reactor pressure vessels (RPVs) for both reactors were fabricated with ring forgings of SA 508 class 2 steel. Surveillance blocks for both units were fabricated using the same weld wire heat, welding procedures, and base metals used for the RPVs. The primary interest in these weld metals is because they have very high nickel contents, with 1.58 and 1.66 wt.% for Unit 3 and Unit 4, respectively. The nickel content in Unit 4 is the highest reported nickel content for any Westinghouse PWR. Although both welds contain less than 0.10 wt.% copper, the weld metals have exhibited high irradiation-induced Charpy 41-J transition temperature shifts in surveillance testing. The Charpy impact 41-J shifts and corresponding fluences are 192 °C at 5.0 × 1023 n/m2 (>1 MeV) for Unit 3 and 162 °C at 6.0 × 1023 n/m2 (>1 MeV) for Unit 4. These relatively low-copper, high-nickel, radiation-sensitive welds relate to the issue of so-called late-blooming nickel-manganese-silicon phases. Atom probe tomography measurements have revealed ˜2 nm-diameter irradiation-induced precipitates containing manganese, nickel, and silicon, with phosphorus evident in some of the precipitates. However, only a relatively few number of copper atoms are contained within the precipitates. The larger increase in the transition temperature shift in the higher copper weld metal from the Ringhals R3 Unit is associated with copper-enriched regions within the manganese-nickel-silicon-enriched precipitates rather than changes in their size or number density.

  9. Microstructural characterization of an Al-li-mg-cu alloy by correlative electron tomography and atom probe tomography.

    Science.gov (United States)

    Xiong, Xiangyuan; Weyland, Matthew

    2014-08-01

    Correlative electron tomography and atom probe tomography have been carried out successfully on the same region of a commercial 8090 aluminum alloy (Al-Li-Mg-Cu). The combination of the two techniques allows accurate geometric reconstruction of the atom probe tomography data verified by crystallographic information retrieved from the reconstruction. Quantitative analysis of the precipitate phase compositions and volume fractions of each phase have been obtained from the atom probe tomography and electron tomography at various scales, showing strong agreement between both techniques.

  10. Characterization of local hydrophobicity on sapphire (0001) surfaces in aqueous environment by colloidal probe atomic force microscopy

    Science.gov (United States)

    Wada, Tomoya; Yamazaki, Kenji; Isono, Toshinari; Ogino, Toshio

    2017-02-01

    Sapphire (0001) surfaces exhibit a phase-separation into hydrophobic and hydrophilic domains upon high-temperature annealing, which were previously distinguished by the thickness of adsorbed water layers in air using atomic force microscopy (AFM). To characterize their local surface hydrophobicity in aqueous environment, we used AFM equipped with a colloidal probe and measured the local adhesive force between each sapphire domain and a hydrophilic SiO2 probe surface, or a hydrophobic polystyrene one. Two data acquisition modes for statistical analyses were used: one is force measurements at different positions of the surface and the other repeated measurement at a fixed position. We found that adhesive force measurements using the polystyrene probe allow us to distinctly separate the hydrophilic and hydrophobic domains. The dispersion in the force measurement data at different positions of the surface is larger than that in the repeated measurements at a fixed position. It indicates that the adhesive force measurement is repeatable although their data dispersion for the measurement positions is relatively large. From these results, we can conclude that the hydrophilic and hydrophobic domains on the sapphire (0001) surfaces are distinguished by a difference in their hydration degrees.

  11. In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.

    Science.gov (United States)

    Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten

    2017-01-30

    Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.

  12. Influence of the Electronic Structure and Optical Properties of CeO2 and UO2 for Characterization with UV-Laser Assisted Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Billy Valderrama; H.B. Henderson; C. Yablinsky; J. Gan; T.R. Allen; M.V. Manuel

    2015-09-01

    Oxide materials are used in numerous applications such as thermal barrier coatings, nuclear fuels, and electrical conductors and sensors, all applications where nanometer-scale stoichiometric changes can affect functional properties. Atom probe tomography can be used to characterize the precise chemical distribution of individual species and spatially quantify the oxygen to metal ratio at the nanometer scale. However, atom probe analysis of oxides can be accompanied by measurement artifacts caused by laser-material interactions. In this investigation, two technologically relevant oxide materials with the same crystal structure and an anion to cation ratio of 2.00, pure cerium oxide (CeO2) and uranium oxide (UO2) are studied. It was determined that electronic structure, optical properties, heat transfer properties, and oxide stability strongly affect their evaporation behavior, thus altering their measured stoichiometry, with thermal conductance and thermodynamic stability being strong factors.

  13. Atom Probe Tomography Characterization of the Solute Distributions in a Neutron-Irradiated and Annealed Pressure Vessel Steel Weld

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K.

    2001-01-30

    A combined atom probe tomography and atom probe field ion microscopy study has been performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical stress relief treatment of 40 h at 607 C, after neutron irradiation to a fluence of 2 x 10{sup 23} n m{sup {minus}2} (E > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454 C. This report describes the matrix composition and the size, composition, and number density of the ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in these parameters with post-irradiation annealing treatments.

  14. Characterization of Precipitation in Al-Li Alloy AA2195 by means of Atom Probe Tomography and Transmission Electron Microscopy

    KAUST Repository

    Khushaim, Muna

    2015-05-19

    The microstructure of the commercial alloy AA2195 was investigated on the nanoscale after conducting T8 tempering. This particular thermomechanical treatment of the specimen resulted in the formation of platelet-shaped T 1 Al 2 CuLi / θ ′ Al 2 Cu precipitates within the Al matrix. The electrochemically prepared samples were analyzed by scanning transmission electron microscopy and atom probe tomography for chemical mapping. The θ ′ platelets, which are less than 2 nm thick, have the stoichiometric composition consistent with the expected Al 2 Cu equilibrium composition. Additionally, the Li distribution inside the θ ′ platelets was found to equal the same value as in the matrix. The equally thin T 1 platelet deviates from the formula (Al 2 CuLi) in its stoichiometry and shows Mg enrichment inside the platelet without any indication of a higher segregation level at the precipitate/matrix interface. The deviation from the (Al 2 CuLi) stoichiometry cannot be simply interpreted as a consequence of artifacts when measuring the Cu and Li concentrations inside the T 1 platelet. The results show rather a strong hint for a true lower Li and Cu contents, hence supporting reasonably the hypothesis that the real chemical composition for the thin T 1 platelet in the T8 tempering condition differs from the equilibrium composition of the thermodynamic stable bulk phase.

  15. The future of atom probe tomography

    Directory of Open Access Journals (Sweden)

    Michael K. Miller

    2012-04-01

    Full Text Available The dream of the microscopy and materials science communities is to see, identify, accurately locate, and determine the fundamental physical properties of every atom in a specimen. With this knowledge together with modern computer models and simulations, a full understanding of the properties of a material can be determined. This fundamental knowledge leads to the design and development of more advanced materials for solving the needs of society. The technique of atom probe tomography is the closest to fulfilling this dream but is still significantly short of the goal. The future of atom probe tomography, and the prospects for achieving this ultimate goal are outlined.

  16. Characterization of electrical properties in axial Si-Ge nanowire heterojunctions using off-axis electron holography and atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Zhaofeng [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA; Perea, Daniel E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Yoo, Jinkyoung [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; He, Yang [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pennsylvania 15261, USA; Colby, Robert J. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Barker, Josh E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Gu, Meng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Mao, Scott X. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pennsylvania 15261, USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Picraux, S. T. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Smith, David J. [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA; McCartney, Martha R. [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

    2016-09-13

    Doped Si-Ge nanowire (NW) heterojunctions were grown using the vapor-liquid-solid method with AuGa and Au catalyst particles. Transmission electron microscopy and off-axis electron holography (EH) were used to characterize the nanostructure and to measure the electrostatic potential profile across the junction resulting from electrically active dopants, while atom-probe tomography (APT) was used to determine the Si, Ge and total (active and inactive) dopant concentration profiles. A comparison of the measured potential profile with simulations indicated that Ga dopants unintentionally introduced during AuGa catalyst growth were electronically inactive despite APT results that showed considerable amounts of Ga in the Si region. 10% P in Ge and 100% B in Si were estimated to be activated, which was corroborated by in situ electron-holography biasing experiments. This combination of EH, APT, in situ biasing and simulations allows a better knowledge and understanding of the electrically active dopant distributions in NWs.

  17. Atom Probe Tomography of Nanoscale Electronic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Larson, David J.; Prosa, Ty J.; Perea, Daniel E.; Inoue, Hidekazu; Mangelinck, D.

    2016-01-01

    Atom probe tomography (APT) is a mass spectrometry based on time-of-flight measurements which also concurrently produces 3D spatial information. The reader is referred to any of the other papers in this volume or to the following references for further information 4–8. The current capabilities of APT, such as detecting a low number of dopant atoms in nanoscale devices or segregation at a nanoparticle interface, make this technique an important component in the nanoscale metrology toolbox. In this manuscript, we review some of the applications of APT to nanoscale electronic materials, including transistors and finFETs, silicide contact microstructures, nanowires, and nanoparticles.

  18. Toward atom probe tomography of microelectronic devices

    Science.gov (United States)

    Larson, D. J.; Lawrence, D.; Lefebvre, W.; Olson, D.; Prosa, T. J.; Reinhard, D. A.; Ulfig, R. M.; Clifton, P. H.; Bunton, J. H.; Lenz, D.; Olson, J. D.; Renaud, L.; Martin, I.; Kelly, T. F.

    2011-11-01

    Atom probe tomography and scanning transmission electron microscopy has been used to analyze a commercial microelectronics device prepared by depackaging and focused ion beam milling. Chemical and morphological data are presented from the source, drain and channel regions, and part of the gate oxide region of an Intel® i5-650 p-FET device demonstrating feasibility in using these techniques to investigate commercial chips.

  19. Mining information from atom probe data.

    Science.gov (United States)

    Cairney, Julie M; Rajan, Krishna; Haley, Daniel; Gault, Baptiste; Bagot, Paul A J; Choi, Pyuck-Pa; Felfer, Peter J; Ringer, Simon P; Marceau, Ross K W; Moody, Michael P

    2015-12-01

    Whilst atom probe tomography (APT) is a powerful technique with the capacity to gather information containing hundreds of millions of atoms from a single specimen, the ability to effectively use this information creates significant challenges. The main technological bottleneck lies in handling the extremely large amounts of data on spatial-chemical correlations, as well as developing new quantitative computational foundations for image reconstruction that target critical and transformative problems in materials science. The power to explore materials at the atomic scale with the extraordinary level of sensitivity of detection offered by atom probe tomography has not been not fully harnessed due to the challenges of dealing with missing, sparse and often noisy data. Hence there is a profound need to couple the analytical tools to deal with the data challenges with the experimental issues associated with this instrument. In this paper we provide a summary of some key issues associated with the challenges, and solutions to extract or "mine" fundamental materials science information from that data.

  20. Spatial resolution in atom probe tomography

    CERN Document Server

    Gault, Baptiste; de Geuser, Frederic; La Fontaine, Alex; Stephenson, Leigh T; Haley, Daniel; Ringer, Simon P

    2015-01-01

    This article addresses gaps in definitions and a lack of standard measurement techniques to assess the spatial resolution in atom probe tomography. This resolution is known to be anisotropic, being better in the depth than laterally. Generally the presence of atomic planes in the tomographic reconstruction is considered as being a sufficient proof of the quality of the spatial resolution of the instrument. Based on advanced spatial distribution maps, an analysis methodology that interrogates the local neighborhood of the atoms within the tomographic reconstruction, it is shown how both the in-depth and the lateral resolution can be quantified. The influences of the crystallography and the temperature are investigated, and models are proposed to explain the observed results. We demonstrate that the absolute value of resolution is specimenspecific.

  1. Atom probe analysis of titanium hydride precipitates.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Otsuka, H; Fujii, H

    2009-04-01

    It is expected that the three-dimensional atom probe (3DAP) will be used as a tool to visualize the atomic scale of hydrogen atoms in steel is expected, due to its high spatial resolution and very low detection limit. In this paper, the first 3DAP analysis of titanium hydride precipitates in metal titanium is reported in terms of the quantitative detection of hydrogen. FIB fabrication techniques using the lift-out method have enabled the production of needle tips of hydride precipitates, of several tens of microns in size, within a titanium matrix. The hydrogen concentration estimated from 3DAP analysis was slightly smaller than that of the hydride phase predicted from the phase diagram. We discuss the origin of the difference between the experimental and predicted values and the performance of 3DAP for the quantitative detection of hydrogen.

  2. Optic probe for semiconductor characterization

    Science.gov (United States)

    Sopori, Bhushan L.; Hambarian, Artak

    2008-09-02

    Described herein is an optical probe (120) for use in characterizing surface defects in wafers, such as semiconductor wafers. The optical probe (120) detects laser light reflected from the surface (124) of the wafer (106) within various ranges of angles. Characteristics of defects in the surface (124) of the wafer (106) are determined based on the amount of reflected laser light detected in each of the ranges of angles. Additionally, a wafer characterization system (100) is described that includes the described optical probe (120).

  3. Mapping interfacial excess in atom probe data

    Energy Technology Data Exchange (ETDEWEB)

    Felfer, Peter, E-mail: peter.felfer@sydney.edu.au [School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney (Australia); Scherrer, Barbara [Australian Centre for Microscopy and Microanalysis, The University of Sydney (Australia); Eidgenossische Technische Hochschule Zürich (Switzerland); Demeulemeester, Jelle [Imec vzw, Kapeldreef 75, Heverlee 3001 (Belgium); Vandervorst, Wilfried [Imec vzw, Kapeldreef 75, Heverlee 3001 (Belgium); Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Cairney, Julie M. [School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney (Australia)

    2015-12-15

    Using modern wide-angle atom probes, it is possible to acquire atomic scale 3D data containing 1000 s of nm{sup 2} of interfaces. It is therefore possible to probe the distribution of segregated species across these interfaces. Here, we present techniques that allow the production of models for interfacial excess (IE) mapping and discuss the underlying considerations and sampling statistics. We also show, how the same principles can be used to achieve thickness mapping of thin films. We demonstrate the effectiveness on example applications, including the analysis of segregation to a phase boundary in stainless steel, segregation to a metal–ceramic interface and the assessment of thickness variations of the gate oxide in a fin-FET. - Highlights: • Using computational geometry, interfacial excess can be mapped for various features in APT. • Suitable analysis models can be created by combining manual modelling and mesh generation algorithms. • Thin film thickness can be mapped with high accuracy using this technique.

  4. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography.

  5. Contact resonances of U-shaped atomic force microscope probes

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, E.; Turner, J. A., E-mail: jaturner@unl.edu [Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, Nebraska 68588 (United States)

    2016-01-21

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFM research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes.

  6. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Raabe, D

    2017-01-31

    The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions.

  7. Fabrication of an all-metal atomic force microscope probe

    DEFF Research Database (Denmark)

    Rasmussen, Jan Pihl; Tang, Peter Torben; Hansen, Ole

    1997-01-01

    This paper presents a method for fabrication of an all-metal atomic force microscope probe (tip, cantilever and support) for optical read-out, using a combination of silicon micro-machining and electroforming. The paper describes the entire fabrication process for a nickel AFM-probe. In addition...

  8. Two-dimensional atom localization via probe absorption in a four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Ping; Ge Qiang; Ruan Yu-Hua; Yu Ben-Li

    2013-01-01

    We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven fourlevel atomic system by means of a radio-frequency field driving a hyperfine transition.It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters.As a result,our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization.

  9. Atom probe tomography of a commercial light emitting diode

    Science.gov (United States)

    Larson, D. J.; Prosa, T. J.; Olson, D.; Lefebvre, W.; Lawrence, D.; Clifton, P. H.; Kelly, T. F.

    2013-11-01

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device.

  10. Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.

    Science.gov (United States)

    La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M

    2017-01-30

    The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.

  11. Characterization of near-field optical probes

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    Radiation and collection characteristics of four different near-field optical-fiber probes, namely, three uncoated probes and an aluminium-coated small-aperture probe, are investigated and compared. Their radiation properties are characterized by observation of light-induced topography changes...... in a photo-sensitive film illuminated with the probes, and it is confirmed that the radiated optical field is unambigiously confined only for the coated probe. Near-field optical imaging of a standing evanescent-wave pattern is used to compare the detection characteristics of the probes, and it is concluded...... that, for the imaging of optical-field intensity distributions containing predominantly evanescent-wave components, a sharp uncoated tip is the probe of choice. Complementary results obtained with optical phase-conjugation experiments with he uncoated probes are discussed in relation to the probe...

  12. Probing Dark Energy with Atom Interferometry

    CERN Document Server

    Burrage, Clare; Hinds, E A

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  13. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    Science.gov (United States)

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-03-14

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  14. Hollow-atom probing of surfaces

    NARCIS (Netherlands)

    Limburg, J.

    1997-01-01

    This paper discusses the mechanisms governing the formation and decay of hollow atoms in front of (semi) conducting and insulating surfaces. First, the primary neutralization of the highly charged ions is treated in terms of the classical overbarrier model. Different views are presented. Then the mo

  15. Atom probe tomography of lithium-doped network glasses

    Energy Technology Data Exchange (ETDEWEB)

    Greiwe, Gerd-Hendrik, E-mail: g_grei01@uni-muenster.de [Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster (Germany); Balogh, Zoltan; Schmitz, Guido [Institute of Material Science, University of Stuttgart, Heisenberg Straße 3, D-70569 Stuttgart (Germany)

    2014-06-01

    Li-doped silicate and borate glasses are electronically insulating, but provide considerable ionic conductivity. Under measurement conditions of laser-assisted atom probe tomography, mobile Li ions are redistributed in response to high electric fields. In consequence, the direct interpretation of measured composition profiles is prevented. It is demonstrated that composition profiles are nevertheless well understood by a complex model taking into account the electronic structure of dielectric materials, ionic mobility and field screening. Quantitative data on band bending and field penetration during measurement are derived which are important in understanding laser-assisted atom probe tomography of dielectric materials. - Highlights: • Atom probe tomography is performed on ion conducting glasses. • Redistribution of ions during the measurement is observed. • An electrostatic model is applied to describe the electric field and ion diffusion. • Measurement is conducted of the absolute temperature during laser pulses.

  16. Probing atomic and molecular dynamics from within

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, N. E-mail: berrah@wmich.edu; Bilodeau, R.C.; Ackerman, G.; Bozek, J.D.; Turri, G.; Kukk, E.; Cheng, W.T.; Snell, G

    2004-08-01

    We have investigated with unprecedented levels of detail photodetachment of negative ions and photoionization of molecules using the brightness, spectral resolution, and tunability of the Advanced Light Source at Lawrence Berkeley National Laboratory. In particular, we report here on investigations carried out in K-shell photodetachment of atomic Li{sup -} and He{sup -}. We also report on angular distribution of core-level iodine 4d photoelectrons from the HI molecule. In both cases comparison with calculations is discussed.

  17. Nanoscale Probe of Magnetism Based on Artificial Atoms in Diamond

    Science.gov (United States)

    2014-07-18

    AFRL-OSR-VA-TR-2014-0165 ( YIP 11) Nanoscale probe of magnetism based on artificial atoms in diamond Ania Bleszynski Jayich UNIVERSITY OF CALIFORNIA...center Ania Bleszynski Jayihc (805) 893 8089 AFOSR   YIP  Report     Ania  Bleszynski  Jayich   Nanoscale probe of magnetism based on...dramatically affected by proximal Gd ions. Gd ions are commonly used spin labels for biological imaging. AFOSR   YIP  Report     Ania

  18. Reflections on the projection of ions in atom probe tomography

    OpenAIRE

    De Geuser, Frédéric; Gault, Baptiste

    2016-01-01

    There are two main projections used to transform, and reconstruct, field ion micrographs or atom probe tomography data into atomic coordinates at the specimen surface and, subsequently, in three-dimensions. In this article, we present a perspective on the strength of the azimuthal equidistant projection in comparison to the more widely used and well-established point-projection(or pseudo-stereographic projection), which underpins data reconstruction in most software packages currently in use ...

  19. Atom probe tomography study of GaMnN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Robert; Kane, Matthew [School of Electrical and Computer Engineering, University of Oklahoma, 110 W Boyd St Rm 150, Norman, OK 73019 (United States); Diercks, David [Center for Advanced Research and Technology, University of North Texas, Denton, TX 76203 (United States)

    2012-03-15

    Determining the nanoscale atomic distribution of transition metals is essential for understanding the magnetic behavior of III-nitride semiconductors. Atom probe tomography is a characterization technique that can provide direct physical detection of the location of atoms and thus is ideal for investigating nanoscale atomic ordering in these materials. This work presents a study of GaMnN thin films grown bymetalorganic chemical vapor deposition that are characterized utilizing the state of the art local electrode atom probe (LEAP trademark) to determine the atomic ordering of Mn in an effort to help understand the nanoclustering behaviour which leads to observed room-temperature ferromagnetic behaviour in GaMnN. The distribution of Mn on the atomic scale was found to be random in nature in the bulk of the thin film where the analysis was performed with no evidence for the predisposition of Mn to form dimers, trimers or clusters. Other sources of clustering must lead to the room-temperature ferromagnetic behaviour that has been observed in these samples, such as surface segregation of Mn during the growth process. This work proves consistent with prior magnetic analysis in that most atoms in the crystal are isolated Mn atoms which result in a paramagnetic signal. This work is a first step towards the ultimate goal of understanding the structure-property-growth condition relationships for the tailoring of specific MOCVD processes in nitride semiconductors. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Manipulating collective quantum states of ultracold atoms by probing

    DEFF Research Database (Denmark)

    Wade, Andrew Christopher James

    2015-01-01

    nature of the measurement interaction and backaction is yet to be realised. This dissertation is concerned with ultracold atoms and their control via fully quantum mechanical probes. Nonclassical, squeezed and entangled states of matter and single photon sources are important for fundamental studies...

  1. Atom-Probe Measurements of Meteoritic Nanodiamonds and Terrestrial Standards

    Science.gov (United States)

    Lewis, J. B.; Isheim, D.; Floss, C.; Daulton, T. L.; Seidman, D. N.; Heck, P. R.; Davis, A. M.; Pellin, M. J.; Savina, M. R.; Hiller, J.; Mane, A.; Elam, J. W.; Stephan, T.

    2013-09-01

    We present new data from the novel application of atom-probe tomography to the study of nanodiamonds from the meteorite Allende. The mean meteoritic ^12C/^13C peak ratio is higher than that of our standards, but there are instrumental artifacts.

  2. Encapsulation method for atom probe tomography analysis of nanoparticles

    NARCIS (Netherlands)

    Larson, D.J.; Giddings, A.D.; Wub, Y.; Verheijen, M.A.; Prosa, T.J.; Roozeboom, F.; Rice, K.P.; Kessels, W.M.M.; Geiser, B.P.; Kelly, T.F.

    2015-01-01

    Open-space nanomaterials are a widespread class of technologically important materials that are generally incompatible with analysis by atom probe tomography (APT) due to issues with specimen preparation, field evaporation and data reconstruction. The feasibility of encapsulating such non-compact ma

  3. New approaches to nanoparticle sample fabrication for atom probe tomography.

    Science.gov (United States)

    Felfer, P; Li, T; Eder, K; Galinski, H; Magyar, A P; Bell, D C; Smith, G D W; Kruse, N; Ringer, S P; Cairney, J M

    2015-12-01

    Due to their unique properties, nano-sized materials such as nanoparticles and nanowires are receiving considerable attention. However, little data is available about their chemical makeup at the atomic scale, especially in three dimensions (3D). Atom probe tomography is able to answer many important questions about these materials if the challenge of producing a suitable sample can be overcome. In order to achieve this, the nanomaterial needs to be positioned within the end of a tip and fixed there so the sample possesses sufficient structural integrity for analysis. Here we provide a detailed description of various techniques that have been used to position nanoparticles on substrates for atom probe analysis. In some of the approaches, this is combined with deposition techniques to incorporate the particles into a solid matrix, and focused ion beam processing is then used to fabricate atom probe samples from this composite. Using these approaches, data has been achieved from 10-20 nm core-shell nanoparticles that were extracted directly from suspension (i.e. with no chemical modification) with a resolution of better than ± 1 nm.

  4. Atom-probe investigations of TiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Menand, A.; Zapolsky-Tatarenko, H.; Nerac-Partaix, A. [Rouen Univ., Mont-Saint-Aignan (France). Fac. des Sci.

    1998-07-15

    Atom probe field ion microscopy (APFIM) and tomographic atom probe (TAP) have been used to study TiAl-based alloys. The element concentrations, the influence of additional elements such as Cr or Nb as well as the solubility of oxygen in {alpha}{sub 2} (Ti{sub 3}Al) and {gamma} (TiAl) phases in compounds with nominal concentration Ti{sub 54}Al{sub 46} and Ti{sub 58}Al{sub 42} have been determined. By using the detection of oxygen atoms as a very local probe, the present investigation revealed the existence of some intermediate phases during the phase transformation {alpha}{yields}{gamma}. The presence of the oxygen atoms during this transformation gives some peculiarities on the transformation path. The appearance of some metastable phases may be explained by the existence of the homologous series Ti{sub 2n-1}Al{sub n} where n is an integer varying from 1 (stoichiometry TiAl) to {infinity} (phase {alpha}{sub 3} Ti{sub 2}Al). (orig.) 35 refs.

  5. Visualization of deuterium dead layer by atom probe tomography

    KAUST Repository

    Gemma, Ryota

    2012-12-01

    The first direct observation, by atom probe tomography, of a deuterium dead layer is reported for Fe/V multilayered film loaded with D solute atoms. The thickness of the dead layers was measured to be 0.4-0.5 nm. The dead layers could be distinguished from chemically intermixed layers. The results suggest that the dead layer effect occurs even near the interface of the mixing layers, supporting an interpretation that the dead layer effect cannot be explained solely by electronic charge transfer but also involves a modulation of rigidity. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    Science.gov (United States)

    Nishikawa, Osamu; Taniguchi, Masahiro

    2016-12-22

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  7. Probing stem cell differentiation using atomic force microscopy

    Science.gov (United States)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  8. Characterization of qubit chains by Feynman probes

    Science.gov (United States)

    Tamascelli, Dario; Benedetti, Claudia; Olivares, Stefano; Paris, Matteo G. A.

    2016-10-01

    We address the characterization of qubit chains and assess the performances of local measurements compared to those provided by Feynman probes, i.e., nonlocal measurements realized by coupling a single-qubit register to the chain. We show that local measurements are suitable to estimate small values of the coupling and that a Bayesian strategy may be successfully exploited to achieve optimal precision. For larger values of the coupling Bayesian local strategies do not lead to a consistent estimate. In this regime, Feynman probes may be exploited to build a consistent Bayesian estimator that saturates the Cramér-Rao bound, thus providing an effective characterization of the chain. Finally, we show that ultimate bounds to precision, i.e., saturation of the quantum Cramér-Rao bound, may be achieved by a two-step scheme employing Feynman probes followed by local measurements.

  9. Advanced fabrication process for combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes.

    Science.gov (United States)

    Eifert, Alexander; Mizaikoff, Boris; Kranz, Christine

    2015-01-01

    An advanced software-controlled focused ion beam (FIB) patterning process for the fabrication of combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes is reported. FIB milling is a standard process in scanning probe microscopy (SPM) for specialized SPM probe fabrication. For AFM-SECM, milling of bifunctional probes usually requires several milling steps. Milling such complex multi-layer/multi-material structures using a single milling routine leads to significantly reduced fabrication times and costs. Based on an advanced patterning routine, a semi-automated FIB milling routine for fabricating combined AFM-SECM probes with high reproducibility is presented with future potential for processing at a wafer level. The fabricated bifunctional probes were electrochemically characterized using cyclic voltammetry, and their performance for AFM-SECM imaging experiments was tested. Different insulation materials (Parylene-C and SixNy) have been evaluated with respect to facilitating the overall milling process, the influence on the electrochemical behavior and the long-term stability of the obtained probes. Furthermore, the influence of material composition and layer sequence to the overall shape and properties of the combined probes were evaluated.

  10. Atom-probe tomography of tribological boundary films resulting from boron-based oil additives

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon-Jun; Baik, Sung-Il; Bertolucci-Coelho, Leonardo; Mazzaferro, Lucca; Ramirez, Giovanni; Erdemir, Ali; Seidman, D K

    2016-01-15

    Correlative characterization using atom-probe tomography (APT) and transmission electron microscopy (TEM) was performed on a tribofilm formed during sliding frictional testing with a fully formulated engine oil, which also contains a boron-based additive. The tribofilm formed is ~15 nm thick and consists of oxides of iron and compounds of B, Ca, P, and S, which are present in the additive. This study provides strong evidence for boron being embedded in the tribofilm, which effectively reduces friction and wear losses.

  11. New atom probe approaches to studying segregation in nanocrystalline materials.

    Science.gov (United States)

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping.

  12. New atom probe approaches to studying segregation in nanocrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Cao, Y.; Liao, X.Z. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); Cairney, J.M., E-mail: julie.cairney@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2013-09-15

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess.

  13. Multifunctional hydrogel nano-probes for atomic force microscopy

    Science.gov (United States)

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe--the key actuating element--has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  14. Atom probe field ion microscopy of high resistivity materials

    Energy Technology Data Exchange (ETDEWEB)

    Sibrandij, S.J.; Larson, D.J.; Miller, M.K.

    1998-02-01

    Over the last 30 years the atom probe has proved to be a powerful tool for studying nanometer-sized compositional fluctuations in a wide range of metallic alloys but has had only limited applications to semiconductors and ceramics. One of the primary reasons for this difference is the higher resistivity of semiconducting and ceramic specimens. Because of this high resistivity, the high voltage field evaporation pulse is attenuated before it reaches the apex of the specimen thereby making the pulse ineffective for field evaporation. Experiments have demonstrated that both variants of the voltage-pulsed atom probe (i.e., those instruments in which the field evaporation pulse is applied directly to the specimen and those in which the negative pulse is applied to a counter electrode in front of the specimen) are equally affected. In this overview, the limits of applicability of the voltage-pulsed atom probe to high resistivity materials are examined. In this study, a wide range of materials have been examined to determine whether field ion microscopy and voltage-pulsed field evaporation can be achieved and the results are summarized in the report. Field ion microscopy including dc field evaporation was possible for all materials except bulk ceramic insulators and glasses. Field ion microscopy requires some conductivity both to achieve a high electric field at the apex of the specimen, and also to support the field ion current. In contrast, voltage-pulsed field evaporation requires transmission of the pulse to the apex of the specimen. All metallic alloys including high resistance alloys and metallic glasses were successfully field evaporated with a voltage pulse. Specimens that were produced from bulk material of several conducting ceramics including MoSi, TiB and TiC were also successfully field evaporated with a voltage pulse.

  15. Design of cantilever probes for Atomic Force Microscopy (AFM)

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2000-01-01

    A cantilever beam used in an Atomic Force Microscope is optimized with respect to two different objectives. The first goal is to maximize the first eigenfrequency while keeping the stiffness of the probe constant. The second goal is to maximize the tip angle of the first eigenmode while again...... keeping the stiffness constant. The resulting design of the beam from the latter optimization gives almost the same result as when maximizing the first eigenfrequency. Adding a restriction on the second eigenfrequency result in a significant change of the optimal design. The beam is modelled with 12 DOF...

  16. Clustered field evaporation of metallic glasses in atom probe tomography.

    Science.gov (United States)

    Zemp, J; Gerstl, S S A; Löffler, J F; Schönfeld, B

    2016-03-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses.

  17. Towards an accurate volume reconstruction in atom probe tomography.

    Science.gov (United States)

    Beinke, Daniel; Oberdorfer, Christian; Schmitz, Guido

    2016-06-01

    An alternative concept for the reconstruction of atom probe data is outlined. It is based on the calculation of realistic trajectories of the evaporated ions in a recursive refinement process. To this end, the electrostatic problem is solved on a Delaunay tessellation. To enable the trajectory calculation, the order of reconstruction is inverted with respect to previous reconstruction schemes: the last atom detected is reconstructed first. In this way, the emitter shape, which controls the trajectory, can be defined throughout the duration of the reconstruction. A proof of concept is presented for 3D model tips, containing spherical precipitates or embedded layers of strongly contrasting evaporation thresholds. While the traditional method following Bas et al. generates serious distortions in these cases, a reconstruction with the proposed electrostatically informed approach improves the geometry of layers and particles significantly.

  18. Encapsulation method for atom probe tomography analysis of nanoparticles.

    Science.gov (United States)

    Larson, D J; Giddings, A D; Wu, Y; Verheijen, M A; Prosa, T J; Roozeboom, F; Rice, K P; Kessels, W M M; Geiser, B P; Kelly, T F

    2015-12-01

    Open-space nanomaterials are a widespread class of technologically important materials that are generally incompatible with analysis by atom probe tomography (APT) due to issues with specimen preparation, field evaporation and data reconstruction. The feasibility of encapsulating such non-compact matter in a matrix to enable APT measurements is investigated using nanoparticles as an example. Simulations of field evaporation of a void, and the resulting artifacts in ion trajectory, underpin the requirement that no voids remain after encapsulation. The approach is demonstrated by encapsulating Pt nanoparticles in an ZnO:Al matrix created by atomic layer deposition, a growth technique which offers very high surface coverage and conformality. APT measurements of the Pt nanoparticles are correlated with transmission electron microscopy images and numerical simulations in order to evaluate the accuracy of the APT reconstruction.

  19. Reflections on the projection of ions in atom probe tomography

    CERN Document Server

    De Geuser, Frédéric

    2016-01-01

    There are two main projections used to transform, and reconstruct, field ion micrographs or atom probe tomography data into atomic coordinates at the specimen surface and, subsequently, in three-dimensions. In this article, we present a perspective on the strength of the azimuthal equidistant projection in comparison to the more widely used and well-established point-projection, which underpins data reconstruction in the only commercial software package available currently. After an overview of the reconstruction methodology, we demonstrate that the azimuthal equidistant is not only more accurate, but also more robust with regards to errors on the parameters used to perform the reconstruction and is therefore more likely to yield more accurate tomographic reconstructions.

  20. Generating and probing entangled states for optical atomic clocks

    Science.gov (United States)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2016-05-01

    The precision of quantum measurements is inherently limited by projection noise caused by the measurement process itself. Spin squeezing and more complex forms of entanglement have been proposed as ways of surpassing this limitation. In our system, a high-finesse asymmetric micromirror-based optical cavity can mediate the atom-atom interaction necessary for generating entanglement in an 171 Yb optical lattice clock. I will discuss approaches for creating, characterizing, and optimally utilizing these nonclassical states for precision measurement, as well as recent progress toward their realization. This research is supported by DARPA QuASAR, NSF, and NSERC.

  1. Materials applications of an advanced 3-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo, A. [Oxford Univ. (United Kingdom). Dept. of Materials; Gibuoin, D. [Oxford Univ. (United Kingdom). Dept. of Materials; Kim, S. [Oxford Univ. (United Kingdom). Dept. of Materials; Sijbrandij, S.J. [Oxford Univ. (United Kingdom). Dept. of Materials; Venker, F.M. [Oxford Univ. (United Kingdom). Dept. of Materials]|[Rijksuniversiteit Groningen (Netherlands). Dept. of Applied Physics; Warren, P.J. [Oxford Univ. (United Kingdom). Dept. of Materials; Wilde, J. [Oxford Univ. (United Kingdom). Dept. of Materials; Smith, G.D.W. [Oxford Univ. (United Kingdom). Dept. of Materials

    1996-09-01

    An advanced 3-dimensional atom probe system has been constructed, based on an optical position-sensitive atom probe (OPoSAP) detector with energy compensation using a reflectron lens. The multi-hit detection capability of the OPoSAP leads to significant improvements in the efficiency of the instrument over the earlier serial position-sensing system. Further gains in efficiency are obtained by using a biassed grid in front of the detector to collect secondary electrons generated when ions strike the interchannel area. The improvement in detection efficiency gives enhanced performance in the studies of ordered materials and the determination of site occupation. Energy compensation leads to a much improved mass resolution (m/{Delta}m=500 full width at half maximum) making it possible to map out the 3-dimensional spatial distributions of all the elements in complex engineering alloys, even when elements lie close together in the mass spectrum. For example, in the analysis of a maraging steel, this allows separation between the {sup 61}Ni{sup 2+} and {sup 92}Mo{sup 3+} peaks, which are only 1/6 of a mass unit apart. (orig.).

  2. Atomic-level imaging, processing and characterization of semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L.

    1995-08-22

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.

  3. Atomic-level imaging, processing and characterization of semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, Lawrence L. (Lakewood, CO)

    1995-01-01

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.

  4. Probing modified gravity with atom-interferometry: A numerical approach

    Science.gov (United States)

    Schlögel, Sandrine; Clesse, Sébastien; Füzfa, André

    2016-05-01

    Refined constraints on chameleon theories are calculated for atom-interferometry experiments, using a numerical approach consisting in solving for a four-region model the static and spherically symmetric Klein-Gordon equation for the chameleon field. By modeling not only the test mass and the vacuum chamber but also its walls and the exterior environment, the method allows one to probe new effects on the scalar field profile and the induced acceleration of atoms. In the case of a weakly perturbing test mass, the effect of the wall is to enhance the field profile and to lower the acceleration inside the chamber by up to 1 order of magnitude. In the thin-shell regime, results are found to be in good agreement with the analytical estimations, when measurements are realized in the immediate vicinity of the test mass. Close to the vacuum chamber wall, the acceleration becomes negative and potentially measurable. This prediction could be used to discriminate between fifth-force effects and systematic experimental uncertainties, by doing the experiment at several key positions inside the vacuum chamber. For the chameleon potential V (ϕ )=Λ4 +α/ϕα and a coupling function A (ϕ )=exp (ϕ /M ), one finds M ≳7 ×1016 GeV , independently of the power-law index. For V (ϕ )=Λ4(1 +Λ /ϕ ), one finds M ≳1014 GeV . A sensitivity of a ˜10-11 m /s2 would probe the model up to the Planck scale. Finally, a proposal for a second experimental setup, in a vacuum room, is presented. In this case, Planckian values of M could be probed provided that a ˜10-10 m /s2 , a limit reachable by future experiments. Our method can easily be extended to constrain other models with a screening mechanism, such as symmetron, dilaton and f(R) theories.

  5. An airborne icing characterization probe: nephelometer prototype

    Science.gov (United States)

    Roques, S.

    2007-10-01

    The aeronautical industry uses airborne probes to characterize icing conditions for flight certification purposes by counting and sizing cloud droplets. Existing probes have been developed for meteorologists in order to study cloud microphysics. They are used on specific aircraft, instrumented for this type of study, but are not adapted for an industrial flight test environment. The development by Airbus of a new probe giving a real time response for particle sizes between 10 and 500 µm, adapted to operational requirements, is in progress. An optical principle by coherent shadowgraphy with a low coherency point source is used for the application. The size of the droplets is measured from their shadows on a CCD. A pulsed laser coupled to a fast camera freezes the movement. Usually, image processing rejects out-of-focus objects. Here, particles far from the focal plane can be sized because of the large depth of field due to the point source. The technique used increases the depth of field and the sampled volume is enough to build a histogram even for low droplet concentrations. Image processing is done in real time and results are provided to the flight test engineer. All data and images are recorded in order to allow on-ground complementary analysis if necessary. A non-telescopic prototype has been tested in a wind tunnel and in flight. The definitive probe being retractable is designed to be easily installed through a dummy window. Retracted, it will allow the aircraft to fly at VMO (maximum operating limit speed).

  6. Atom probe study of Cu-poor to Cu-rich transition during Cu(In,Ga)Se2 growth

    Science.gov (United States)

    Couzinie-Devy, F.; Cadel, E.; Barreau, N.; Arzel, L.; Pareige, P.

    2011-12-01

    Atomic scale chemistry of polycrystalline Cu(In,Ga)Se2 (CIGSe) thin film has been characterized at key points of the 3-stage process using atom probe tomography. 3D atom distributions have been reconstructed when the layer is Cu-poor ([Cu]/([Ga] + [In]) 1), and at the end of the process. Particular attention has been devoted to grain boundary composition and Na atomic distribution within the CIGSe layer. Significant variation of composition is highlighted during the growing process, providing fundamental information helping the understanding of high efficiency CIGSe formation.

  7. Nondestructive characterization of municipal-solid-waste-contaminated surface soil by energy-dispersive X-ray fluorescence and low-Z (atomic number) particle electron probe X-ray microanalysis.

    Science.gov (United States)

    Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un

    2011-11-01

    The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind

  8. Estimation of the reconstruction parameters for Atom Probe Tomography

    CERN Document Server

    Gault, Baptiste; Stephenson, Leigh T; Moody, Michael P; Muddle, Barry C; Ringer, Simon P

    2015-01-01

    The application of wide field-of-view detection systems to atom probe experiments emphasizes the importance of careful parameter selection in the tomographic reconstruction of the analysed volume, as the sensitivity to errors rises steeply with increases in analysis dimensions. In this paper, a self-consistent method is presented for the systematic determination of the main reconstruction parameters. In the proposed approach, the compression factor and the field factor are determined using geometrical projections from the desorption images. A 3D Fourier transform is then applied to a series of reconstructions and, comparing to the known material crystallography, the efficiency of the detector is estimated. The final results demonstrate a significant improvement in the accuracy of the reconstructed volumes.

  9. Understanding proton-conducting perovskite interfaces using atom probe tomography

    Science.gov (United States)

    Clark, Daniel R.

    Proton-conducting ceramics are under intense scientific investigation for a number of exciting applications, including fuel cells, electrolyzers, hydrogen separation membranes, membrane reactors, and sensors. However, commercial application requires deeper understanding and improvement of proton conductivity in these materials. It is well-known that proton conductivity in these materials is often limited by highly resistive grain boundaries (GBs). While these conductivity-limiting GBs are still not well understood, it is hypothesized that their blocking nature stems from the formation of a positive (proton-repelling) space-charge zone. Furthermore, it has been observed that the strength of the blocking behavior can change dramatically depending on the fabrication process used to make the ceramic. This thesis applies laser-assisted atom probe tomography (LAAPT) to provide new insights into the GB chemistry and resulting space-charge behavior of BaZr0.9Y0.1O 3--delta (BZY10), a prototypical proton-conducting ceramic. LAAPT is an exciting characterization technique that allows for three-dimensional nm-scale spatial resolution and very high chemical resolution (up to parts-per-million). While it is challenging to quantitatively apply LAAPT to complex, multi-cation oxide materials, this thesis successfully develops a method to accurately quantify the stoichiometry of BZY10 and maintain minimal quantitative cationic deviation at a laser energies of approximately 10--20 pJ. With the analysis technique specifically optimized for BZY10, GB chemistry is then examined for BZY10 samples prepared using four differing processing methods: (1) spark plasma sintering (SPS), (2) conventional sintering using powder prepared by solid-state reaction followed by high-temperature annealing (HT), (3) conventional sintering using powder prepared by solid-state reaction with NiO used as a sintering aid (SSR-Ni), and (4) solid-state reactive sintering directly from BaCO3, ZrO2, and Y2O3

  10. Probing Modified Gravity with Atom-Interferometry: a Numerical Approach

    CERN Document Server

    Schlogel, Sandrine; Fuzfa, Andre

    2015-01-01

    Refined constraints on chameleon theories are calculated for atom-interferometry experiments, using a numerical approach consisting in solving for a four-region model the static and spherically symmetric Klein-Gordon equation for the chameleon field. By modeling not only the test mass and the vacuum chamber but also its walls and the exterior environment, the method allows to probe new effects on the scalar field profile and the induced acceleration of atoms. In the case of a weakly perturbing test mass, the effect of the wall is to enhance the field profile and to lower the acceleration inside the chamber by up to one order of magnitude. In the thin-shell regime, significant deviations from the analytical estimations are found, even when measurements are realized in the immediate vicinity of the test mass. Close to the vacuum chamber wall, the acceleration becomes negative and potentially measurable. This prediction could be used to discriminate between fifth-force effects and systematic experimental uncerta...

  11. Atomic force microscope characterization of a resonating nanocantilever

    DEFF Research Database (Denmark)

    Abadal, G.; Davis, Zachary James; Borrise, X.

    2003-01-01

    parallel to the cantilever. In order to minimize the interaction between AFM probe and the resonating transducer cantilever, the AFM is operated in a dynamic noncontact mode, using oscillation amplitudes corresponding to a low force regime. The dependence of the static cantilever deflection on DC voltage......An atomic force microscope (AFM) is used as a nanometer-scale resolution tool for the characterization of the electromechanical behaviour of a resonant cantilever-based mass sensor. The cantilever is actuated electrostatically by applying DC and AC voltages from a driver electrode placed closely...

  12. Atomic quantum superposition state generation via optical probing

    DEFF Research Database (Denmark)

    Nielsen, Anne Ersbak Bang; Poulsen, Uffe Vestergaard; Negretti, Antonio;

    2009-01-01

    investigate cavity enhanced probing with continuous beams of both coherent and squeezed light. The stochastic master equations used in the analysis are expressed in terms of the Hamiltonian of the probed system and the interaction between the probed system and the probe field and are thus quite generally...

  13. A theoretical study of dopant atom detection and probe behavior in STEM

    Science.gov (United States)

    Mittal, Anudha

    Very detailed information about the atomic and electronic structure of materials can be obtained via atomic-scale resolution scanning transmission electron microscopy (STEM). These experiments reach the limits of current microscopes, which means that optimal experimental design is a key ingredient in success. The step following experiment, extraction of information from experimental data is also complex. Comprehension of experimental data depends on comparison with simulated data and on fundamental understanding of aspects of scattering behavior. The research projects discussed in this thesis are formulated within three large concepts. 1. Usage of simulation to suggest experimental technique for observation of a particular structural feature.. Two specific structural features are explored. One is the characterization of a substitutional dopant atom in a crystal. Annular dark field scanning transmission electron microscope (ADF-STEM) images allow detection of individual dopant atoms in a crystal based on contrast between intensities of doped and non-doped column in the image. The magnitude of the said contrast is heavily influenced by specimen and microscope parameters. Analysis of multislice-based simulations of ADF-STEM images of crystals doped with one substitutional dopant atom for a wide range of crystal thicknesses, types and locations of dopant atom inside the crystal, and crystals with different atoms revealed trends and non-intuitive behaviors in visibility of the dopant atom. The results provide practical guidelines for the optimal experimental setup regarding both the microscope and specimen conditions in order to characterize the presence and location of a dopant atom. Furthermore, the simulations help in recognizing the cases where detecting a single dopant atom via ADF-STEM imaging is not possible. The second is a more specific case of detecting intrinsic twist in MoS2 nanotubes. Objective molecular dynamics simulations coupled with a density

  14. Multiple membrane tethers probed by atomic force microscopy.

    Science.gov (United States)

    Sun, Mingzhai; Graham, John S; Hegedüs, Balazs; Marga, Françoise; Zhang, Ying; Forgacs, Gabor; Grandbois, Michel

    2005-12-01

    Using the atomic force microscope to locally probe the cell membrane, we observed the formation of multiple tethers (thin nanotubes, each requiring a similar pulling force) as reproducible features within force profiles recorded on individual cells. Forces obtained with Chinese hamster ovary cells, a malignant human brain tumor cell line, and human endothelial cells (EA hy926) were found to be 28 +/- 10 pN, 29 +/- 9 pN, and 29 +/- 10 pN, respectively, independent of the nature of attachment to the cantilever. The rather large variation of the tether pulling forces measured at several locations on individual cells points to the existence of heterogeneity in the membrane properties of a morphologically homogeneous cell. Measurement of the summary lengths of the simultaneously extracted tethers provides a measure of the size of the available membrane reservoir through which co-existing tethers are associated. As expected, partial disruption of the actin cytoskeleton and removal of the hyaluronan backbone of the glycocalyx were observed to result in a marked decrease (30-50%) in the magnitude and a significant sharpening of the force distribution indicating reduced heterogeneity of membrane properties. Taken together, our results demonstrate the ability of the plasma membrane to locally produce multiple interdependent tethers-a process that could play an important role in the mechanical association of cells with their environment.

  15. Nanometer-scale isotope analysis of bulk diamond by atom probe tomography

    NARCIS (Netherlands)

    Schirhagl, R.; Raatz, N.; Meijer, J.; Markham, M.; Gerstl, S. S. A.; Degen, C. L.

    2015-01-01

    Atom-probe tomography (APT) combines field emission of atoms with mass spectrometry to reconstruct three-dimensional tomograms of materials with atomic resolution and isotope specificity. Despite significant recent progress in APT technology, application to wide-bandgap materials with strong covalen

  16. Probing Andreev bound states in one-atom superconducting contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pothier, Hugues; Janvier, Camille; Tosi, Leandro; Girit, Caglar; Goffman, Marcelo; Esteve, Daniel; Urbina, Cristian [Quantronics Group, SPEC, CEA-Saclay (France)

    2015-07-01

    Superconductors are characterized by a dissipationless current. Since the work of Josephson 50 years ago, it is known that a supercurrent can even flow through tunnel junctions between superconductors. This Josephson effect also occurs through any type of ''weak links'' between superconductors: non-superconducting materials, constrictions,.. A unified understanding of the Josephson effect has emerged from a mesoscopic description of weak links. It relies on the existence of doublets of localized states that have energies below the superconducting gap: the Andreev bound states. I will present experiments performed on the simplest conductor possible, a single-atom contact between superconductors, that illustrate these concepts. The most recent work demonstrates time-domain manipulation of quantum superpositions of Andreev bound states.

  17. C12/C13-ratio determination in nanodiamonds by atom-probe tomography.

    Science.gov (United States)

    Lewis, Josiah B; Isheim, Dieter; Floss, Christine; Seidman, David N

    2015-12-01

    The astrophysical origins of ∼ 3 nm-diameter meteoritic nanodiamonds can be inferred from the ratio of C12/C13. It is essential to achieve high spatial and mass resolving power and minimize all sources of signal loss in order to obtain statistically significant measurements. We conducted atom-probe tomography on meteoritic nanodiamonds embedded between layers of Pt. We describe sample preparation, atom-probe tomography analysis, 3D reconstruction, and bias correction. We present new data from meteoritic nanodiamonds and terrestrial standards and discuss methods to correct isotopic measurements made with the atom-probe tomograph.

  18. Atom Probe Insights into U-Pb Age Resetting in Baddeleyite

    Science.gov (United States)

    White, L. F.; Reinhard, D.; Moser, D.; Darling, J. R.; Bullen, D.; Prosa, T. J.; Olson, D.; Larson, D. J.; Clifton, P. H.; Lawrence, D.; Martin, I.

    2016-08-01

    Atom probe analysis of highly shocked baddeleyite suggests that igneous crystallisation ages can be isolated from 'partially reset' grains through careful segregation and rejection of planar features known to induce post-impact Pb-diffusion.

  19. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    Science.gov (United States)

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-07-01

    Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales - from single atoms to macroscopic devices. This short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. The discussion presents the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.

  20. Probe spectrum of a four-level atom in a double-band photonic crystal

    Institute of Scientific and Technical Information of China (English)

    Wen Qing-Bo; Wang Jian; Zhang Han-Zhuang

    2004-01-01

    In this paper, the probe absorption spectrum of an atom in a double-band photonic crystal have been studied. In the modes, we assume that one of the two atomic transitions in a A-type atomic system is interacting with free vacuum modes, and another transition is interacting with free vacuum modes, isotropic photonic band gap (PBG) modes and anisotropic PBG modes, separately. The effects of the fine structure of the atomic lower levels on the probe absorption spectrum are investigated in detail in the three cases. The most interesting thing is that the two (four) transparencies at one (two) probe absorption peak(s), caused by the fine structure of the lower levels of an atom, are predicted in the case of isotropic PBG modes.

  1. AFM characterization of ss-DNA probes immobilization: a sequence effect on surface organization

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, D [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Rouillat, M H [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Dugas, V [BioTray, Ecole Normale Superieure de Lyon, 46 allee d' Italie, 69364 Lyon Cedex 07 (France); Chevolot, Y [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Souteyrand, E [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Phaner-Goutorbe, M [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France)

    2007-03-15

    The biological sensitivity of a DNA chip depends on the molecular organization of the immobilized probe molecules, single stranded DNA (ss-DNA), on the substrate in terms of accessibility and non specific interactions between probes and substrate. In this article, Amplitude Modulation - Atomic Force Microscopy (AM-AFM) was used to characterize at a molecular scale, the morphological organization of different immobilized probes. In our system, three different ss-DNA were covalently grafted on a silicon substrate with the same deposit process. We studied the influence of probe length (25 bases, 12 bases) and sequence arrangement (two different 25 base oligoprobes) on the morphological organization. We showed that immobilized probes organize themselves in different structures depending on their sequence.

  2. Preparation of nanowire specimens for laser-assisted atom probe tomography.

    Science.gov (United States)

    Blumtritt, H; Isheim, D; Senz, S; Seidman, D N; Moutanabbir, O

    2014-10-31

    The availability of reliable and well-engineered commercial instruments and data analysis software has led to development in recent years of robust and ergonomic atom-probe tomographs. Indeed, atom-probe tomography (APT) is now being applied to a broader range of materials classes that involve highly important scientific and technological problems in materials science and engineering. Dual-beam focused-ion beam microscopy and its application to the fabrication of APT microtip specimens have dramatically improved the ability to probe a variety of systems. However, the sample preparation is still challenging especially for emerging nanomaterials such as epitaxial nanowires which typically grow vertically on a substrate through metal-catalyzed vapor phase epitaxy. The size, morphology, density, and sensitivity to radiation damage are the most influential parameters in the preparation of nanowire specimens for APT. In this paper, we describe a step-by-step process methodology to allow a precisely controlled, damage-free transfer of individual, short silicon nanowires onto atom probe microposts. Starting with a dense array of tiny nanowires and using focused ion beam, we employed a sequence of protective layers and markers to identify the nanowire to be transferred and probed while protecting it against Ga ions during lift-off processing and tip sharpening. Based on this approach, high-quality three-dimensional atom-by-atom maps of single aluminum-catalyzed silicon nanowires are obtained using a highly focused ultraviolet laser-assisted local electrode atom probe tomograph.

  3. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes

    Energy Technology Data Exchange (ETDEWEB)

    Puricelli, Luca; Galluzzi, Massimiliano; Schulte, Carsten; Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it; Milani, Paolo [CIMaINa and Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-03-15

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells’ fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cellular elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here, we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured Young’s modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in Young’s modulus induced by the action of a cytoskeleton-targeting drug.

  4. Probing angular momentum coherence in a twin-atom interferometer

    CERN Document Server

    de Carvalho, Carlos R; Impens, François; Robert, J; Medina, Aline; Zappa, F; Faria, N V de Castro

    2014-01-01

    We propose to use a double longitudinal Stern-Gerlach atom interferometer in order to investigate quantitatively the angular momentum coherence of molecular fragments. Assuming that the dissociated molecule has a null total angular momentum, we investigate the propagation of the corresponding atomic fragments in the apparatus. We show that the envisioned interferometer enables one to distinguish unambiguously a spin-coherent from a spin-incoherent dissociation, as well as to estimate the purity of the angular momentum density matrix associated with the fragments. This setup, which may be seen as an atomic analogue of a twin-photon interferometer, can be used to investigate the suitability of molecule dissociation processes -- such as the metastable hydrogen atoms H($2^2 S$)-H($2^2 S$) dissociation - for coherent twin-atom optics.

  5. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  6. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles

    Science.gov (United States)

    Shinde, D.; Arnoldi, L.; Devaraj, A.; Vella, A.

    2016-10-01

    Oxide-supported metal nano-particles are of great interest in catalysis but also in the development of new large-spectrum-absorption materials. The design of such nano materials requires three-dimensional characterization with a high spatial resolution and elemental selectivity. The laser assisted Atom Probe Tomography (La-APT) presents both these capacities if an accurate understanding of laser-material interaction is developed. In this paper, we focus on the fundamental physics of field evaporation as a function of sample geometry, laser power, and DC electric field for Au nanoparticles embedded in MgO. By understanding the laser-material interaction through experiments and a theoretical model of heat diffusion inside the sample after the interaction with laser pulse, we point out the physical origin of the noise and determine the conditions to reduce it by more than one order of magnitude, improving the sensitivity of the La-APT for metal-dielectric composites.

  7. Probing Structure and Composition of Nickel/Titanium Carbide Hybrid Interfaces at the Atomic Scale (Preprint)

    Science.gov (United States)

    2010-01-01

    The transition in structure and composition across the titanium carbide /nickel hybrid interface has been determined at near atomic resolution by...coupling high-resolution transmission electron microscopy with three-dimensional atom probe tomography. The titanium carbide phase adopts a rocksalt-type

  8. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Tevis D. B., E-mail: tjacobs@pitt.edu [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, Pennsylvania 15208 (United States); Wabiszewski, Graham E.; Goodman, Alexander J.; Carpick, Robert W., E-mail: carpick@seas.upenn.edu [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 S. 33rd St., Philadelphia, Pennsylvania 19104 (United States)

    2016-01-15

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture’s use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.

  9. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide

    Science.gov (United States)

    Jacobs, Tevis D. B.; Wabiszewski, Graham E.; Goodman, Alexander J.; Carpick, Robert W.

    2016-01-01

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture's use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.

  10. Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning.

    Science.gov (United States)

    Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P

    2015-12-01

    The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data.

  11. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    Science.gov (United States)

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-01-30

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  12. Investigation of material property influenced stoichiometric deviations as evidenced during UV laser-assisted atom probe tomography in fluorite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Valderrama, Billy; Henderson, Hunter B. [Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611 (United States); Yablinsky, Clarissa A. [Department of Nuclear Engineering, University of Wisconsin-Madison, 921 ERB, 1500 Engineering Drive, Madison, WI 53706 (United States); Gan, Jian [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Allen, Todd R. [Department of Nuclear Engineering, University of Wisconsin-Madison, 921 ERB, 1500 Engineering Drive, Madison, WI 53706 (United States); Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Manuel, Michele V., E-mail: mmanuel@mse.ufl.edu [Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611 (United States)

    2015-09-15

    Oxide materials are used in numerous applications such as thermal barrier coatings, nuclear fuels, and electrical conductors and sensors, all applications where nanometer-scale stoichiometric changes can affect functional properties. Atom probe tomography can be used to characterize the precise chemical distribution of individual species and spatially quantify the oxygen to metal ratio at the nanometer scale. However, atom probe analysis of oxides can be accompanied by measurement artifacts caused by laser-material interactions. In this investigation, two technologically relevant oxide materials with the same crystal structure and an anion to cation ratio of 2.00, pure cerium oxide (CeO{sub 2}) and uranium oxide (UO{sub 2}) are studied. It was determined that electronic structure, optical properties, heat transfer properties, and oxide stability strongly affect their evaporation behavior, thus altering their measured stoichiometry, with thermal conductance and thermodynamic stability being strong factors.

  13. Analysis of Radiation Damage in Light Water Reactors: Comparison of Cluster Analysis Methods for the Analysis of Atom Probe Data.

    Science.gov (United States)

    Hyde, Jonathan M; DaCosta, Gérald; Hatzoglou, Constantinos; Weekes, Hannah; Radiguet, Bertrand; Styman, Paul D; Vurpillot, Francois; Pareige, Cristelle; Etienne, Auriane; Bonny, Giovanni; Castin, Nicolas; Malerba, Lorenzo; Pareige, Philippe

    2017-01-30

    Irradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.

  14. Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data.

    Science.gov (United States)

    Moody, Michael P; Stephenson, Leigh T; Ceguerra, Anna V; Ringer, Simon P

    2008-07-01

    The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy subject to thermal ageing in 3D atom probe data. The conventional chi(2) statistics and significance testing are demonstrated to be inappropriate for comparison of quantity of solute segregation present in two or more different sized system. Pearson coefficient, mu, is shown to normalize chi(2) with respect to sample size over an order of magnitude. A simple computer simulation is implemented to investigate the binomial analysis and infer meaning in the measured value of mu over a series of systems at different solute concentrations and degree of clustering. The simulations replicate the form of experimental data and demonstrate the effect of detector efficiency to significantly underestimate the measured segregation. The binomial analysis is applied to experimental atom probe data sets and complementary simulations are used to interpret the results.

  15. State Feedback Control for Adjusting the Dynamic Behavior of a Piezoactuated Bimorph Atomic Force Microscopy Probe

    CERN Document Server

    Orun, Bilal; Basdogan, Cagatay; Guvenc, Levent

    2012-01-01

    We adjust the transient dynamics of a piezo-actuated bimorph Atomic Force Microscopy (AFM) probe using a state feedback controller. This approach enables us to adjust the quality factor and the resonance frequency of the probe simultaneously. First, we first investigate the effect of feedback gains on dynamic response of the probe and then show that the time constant of the probe can be reduced by reducing its quality factor and/or increasing its resonance frequency to reduce the scan error in tapping mode AFM.

  16. IMPROVED FABRICATION METHOD FOR CARBON NANOTUBE PROBE OF ATOMIC FORCE MICROSCOPY(AFM)

    Institute of Scientific and Technical Information of China (English)

    XU Zongwei; DONG Shen; GUO Liqiu; ZHAO Qingliang

    2006-01-01

    An improved arc discharge method is developed to fabricate carbon nanotube probe of atomic force microscopy (AFM) here. First, silicon probe and carbon nanotube are manipulated under an optical microscope by two high precision microtranslators. When silicon probe and carbon nanotube are very close, several tens voltage is applied between them. And carbon nanotube is divided and attached to the end of silicon probe, which mainly due to the arc welding function.Comparing with the arc discharge method before, the new method here needs no coat silicon probe with metal film in advance, which can greatly reduce the fabrication's difficulty. The fabricated carbon nanotube probe shows good property of higher aspect ratio and can more accurately reflect the true topography of silicon grating than silicon probe. Under the same image drive force, carbon nanotube probe had less indentation depth on soft triblock copolymer sample than silicon probe. This showed that carbon nanotube probe has lower spring constant and less damage to the scan sample than silicon probe.

  17. Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops.

    Science.gov (United States)

    Peterman, Emily M; Reddy, Steven M; Saxey, David W; Snoeyenbos, David R; Rickard, William D A; Fougerouse, Denis; Kylander-Clark, Andrew R C

    2016-09-01

    Isotopic discordance is a common feature in zircon that can lead to an erroneous age determination, and it is attributed to the mobilization and escape of radiogenic Pb during its post-crystallization geological evolution. The degree of isotopic discordance measured at analytical scales of ~10 μm often differs among adjacent analysis locations, indicating heterogeneous distributions of Pb at shorter length scales. We use atom probe microscopy to establish the nature of these sites and the mechanisms by which they form. We show that the nanoscale distribution of Pb in a ~2.1 billion year old discordant zircon that was metamorphosed c. 150 million years ago is defined by two distinct Pb reservoirs. Despite overall Pb loss during peak metamorphic conditions, the atom probe data indicate that a component of radiogenic Pb was trapped in 10-nm dislocation loops that formed during the annealing of radiation damage associated with the metamorphic event. A second Pb component, found outside the dislocation loops, represents homogeneous accumulation of radiogenic Pb in the zircon matrix after metamorphism. The (207)Pb/(206)Pb ratios measured from eight dislocation loops are equivalent within uncertainty and yield an age consistent with the original crystallization age of the zircon, as determined by laser ablation spot analysis. Our results provide a specific mechanism for the trapping and retention of radiogenic Pb during metamorphism and confirm that isotopic discordance in this zircon is characterized by discrete nanoscale reservoirs of Pb that record different isotopic compositions and yield age data consistent with distinct geological events. These data may provide a framework for interpreting discordance in zircon as the heterogeneous distribution of discrete radiogenic Pb populations, each yielding geologically meaningful ages.

  18. Atom probe study of Cu-poor to Cu-rich transition during Cu(In,Ga)Se{sub 2} growth

    Energy Technology Data Exchange (ETDEWEB)

    Couzinie-Devy, F.; Cadel, E.; Pareige, P. [Groupe de Physique des Materiaux (GPM), UMR 6634 CNRS, Universite et INSA de Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Barreau, N.; Arzel, L. [Institut des Materiaux Jean Rouxel (IMN), UMR 6502 CNRS, 2 rue de la Houssiniere BP 32229, 44322 Nantes cedex 3 (France)

    2011-12-05

    Atomic scale chemistry of polycrystalline Cu(In,Ga)Se{sub 2} (CIGSe) thin film has been characterized at key points of the 3-stage process using atom probe tomography. 3D atom distributions have been reconstructed when the layer is Cu-poor ([Cu]/([Ga] + [In]) < 1), Cu-rich ([Cu]/([Ga] + [In]) > 1), and at the end of the process. Particular attention has been devoted to grain boundary composition and Na atomic distribution within the CIGSe layer. Significant variation of composition is highlighted during the growing process, providing fundamental information helping the understanding of high efficiency CIGSe formation.

  19. Atomic resolution in noncontact AFM by probing cantilever frequency shifts

    Institute of Scientific and Technical Information of China (English)

    Hong Yong Xie

    2007-01-01

    Rutile TiO2(001) quantum dots (or nano-marks) in different shapes were used to imitate uncleaved material surfaces or materials with rough surfaces. By numerical integration of the equation of motion of cantilever for silicon tip scanning along the [110] direction over the rutile TiO2 (001) quantum dots in ultra high vacuum (UHV), scanning routes were explored to achieve atomic resolution from frequency shift image. The tip-surface interaction forces were calculated from Lennard-Jones (12-6) potential by the Hamaker summation method. The calculated results showed that atomic resolution could be achieved by frequency shift image for TiO2 (001) surfaces of rhombohedral quantum dot scanning in a vertical route, and spherical cap quantum dot scanning in a superposition route.

  20. Preparation and Analysis of Atom Probe Tips by Xenon Focused Ion Beam Milling.

    Science.gov (United States)

    Estivill, Robert; Audoit, Guillaume; Barnes, Jean-Paul; Grenier, Adeline; Blavette, Didier

    2016-06-01

    The damage and ion distribution induced in Si by an inductively coupled plasma Xe focused ion beam was investigated by atom probe tomography. By using predefined patterns it was possible to prepare the atom probe tips with a sub 50 nm end radius in the ion beam microscope. The atom probe reconstruction shows good agreement with simulated implantation profiles and interplanar distances extracted from spatial distribution maps. The elemental profiles of O and C indicate co-implantation during the milling process. The presence of small disc-shaped Xe clusters are also found in the three-dimensional reconstruction. These are attributed to the presence of Xe nanocrystals or bubbles that open during the evaporation process. The expected accumulated dose points to a loss of >95% of the Xe during analysis, which escapes undetected.

  1. Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe

    DEFF Research Database (Denmark)

    Kageshima, M.; Jensenius, Henriette; Dienwiebel, M.

    2002-01-01

    A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane surface were detected both in the frequency shift and dissipation. Due...... to the high aspect ratio of the CNT probe, the long-range background force was barely detectable in the solvation region. (C) 2002 Elsevier Science B.V. All rights reserved....

  2. Tailored probes for atomic force microscopy fabricated by two-photon polymerization

    Science.gov (United States)

    Göring, Gerald; Dietrich, Philipp-Immanuel; Blaicher, Matthias; Sharma, Swati; Korvink, Jan G.; Schimmel, Thomas; Koos, Christian; Hölscher, Hendrik

    2016-08-01

    3D direct laser writing based on two-photon polymerization is considered as a tool to fabricate tailored probes for atomic force microscopy. Tips with radii of 25 nm and arbitrary shape are attached to conventionally shaped micro-machined cantilevers. Long-term scanning measurements reveal low wear rates and demonstrate the reliability of such tips. Furthermore, we show that the resonance spectrum of the probe can be tuned for multi-frequency applications by adding rebar structures to the cantilever.

  3. Atomic-scale investigations of grain boundary segregation in astrology with a three dimensional atom-probe

    Energy Technology Data Exchange (ETDEWEB)

    Blavette, D. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut Universitaire de France (France); Letellier, L. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Duval, P. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Guttmann, M. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut de Recherches de la Siderurgie Francaise (IRSID), 57 - Maizieres-les-Metz (France)

    1996-08-01

    Both conventional and 3D atom-probes were applied to the investigation of grain-boundary (GB) segregation phenomena in two-phase nickel base superalloys Astroloy. 3D images as provided by the tomographic atom-probe reveal the presence of a strong segregation of both boron and molybdenum at grain-boundaries. Slight carbon enrichment is also detected. Considerable chromium segregation is exhibited at {gamma}`-{gamma}` grain-boundaries. All these segregants are distributed in a continuous manner along the boundary over a width close to 0.5 nm. Experiments show that segregation occurs during cooling and more probably between 1000 C and 800 C. Boron and molybdenum GB enrichments are interpreted as due to an equilibrium type-segregation while chromium segregation is thought to be induced by {gamma}` precipitation at GB`s and stabilised by the presence of boron. No segregation of zirconium is detected. (orig.)

  4. A new systematic framework for crystallographic analysis of atom probe data

    Energy Technology Data Exchange (ETDEWEB)

    Araullo-Peters, Vicente J., E-mail: vicente.araullopeters@gmail.com [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia); Breen, Andrew; Ceguerra, Anna V. [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia); Gault, Baptiste [Department of Materials, University of Oxford, Parks Road, Oxford (United Kingdom); Ringer, Simon P.; Cairney, Julie M. [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia)

    2015-07-15

    In this article, after a brief introduction to the principles behind atom probe crystallography, we introduce methods for unambiguously determining the presence of crystal planes within atom probe datasets, as well as their characteristics: location; orientation and interplanar spacing. These methods, which we refer to as plane orientation extraction (POE) and local crystallography mapping (LCM) make use of real-space data and allow for systematic analyses. We present here application of POE and LCM to datasets of pure Al, industrial aluminium alloys and doped-silicon. Data was collected both in DC voltage mode and laser-assisted mode (in the latter of which extracting crystallographic information is known to be more difficult due to distortions). The nature of the atomic planes in both datasets was extracted and analysed. - Highlights: • A new analysis method was designed that determines if reconstructed planes are present in atom probe data. • The location, orientation, and planar spacing of these planes are obtained. • This method was applied to simulated, aluminium alloy and silicon data where the extent of planes was shown to vary considerably. • This method can be used to examine atom probe reconstruction quality.

  5. Atomic parity violation as a probe of new physics

    Science.gov (United States)

    Marciano, William J.; Rosner, Jonathan L.

    1990-12-01

    Effects of physics beyond the standard model on electroweak observables ares studied using the Peskin-Takeuchi isospin-conserving, S, and -breaking, T, parametrization of ``new'' quantum loop corrections. Experimental constraints on S and T are presented. Atomic parity-violating experiments are shown to be particularly sensitive to S with existing data giving S=-2.7+/-2.0+/-1.1. That constraint has important implications for generic technicolor models which predict S~=0.1NTND (NT is the number of technicolors, ND is the number of technidoublets).

  6. Magnetoencephalography with a two-color pump probe atomic magnetometer.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Cort N.

    2010-07-01

    The authors have detected magnetic fields from the human brain with a compact, fiber-coupled rubidium spin-exchange-relaxation-free magnetometer. Optical pumping is performed on the D1 transition and Faraday rotation is measured on the D2 transition. The beams share an optical axis, with dichroic optics preparing beam polarizations appropriately. A sensitivity of <5 fT/{radical}Hz is achieved. Evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer. Recordings were validated by comparison with those taken by a commercial magnetoencephalography system. The design is amenable to arraying sensors around the head, providing a framework for noncryogenic, whole-head magnetoencephalography.

  7. Probing non-Hermitian physics with flying atoms

    Science.gov (United States)

    Wen, Jianming; Xiao, Yanhong; Peng, Peng; Cao, Wanxia; Shen, Ce; Qu, Weizhi; Jiang, Liang

    2016-05-01

    Non-Hermtian optical systems with parity-time (PT) symmetry provide new means for light manipulation and control. To date, most of experimental demonstrations on PT symmetry rely on advanced nanotechnologies and sophisticated fabrication techniques to manmade solid-state materials. Here, we report the first experimental realization of optical anti-PT symmetry, a counterpart of conventional PT symmetry, in a warm atomic-vapor cell. By exploiting rapid coherence transport via flying atoms, we observe essential features of anti-PT symmetry with an unprecedented precision on phase-transition threshold. Moreover, our system allows nonlocal interference of two spatially-separated fields as well as anti-PT assisted four-wave mixing. Besides, another intriguing feature offered by the system is refractionless (or unit-refraction) light propagation. Our results thus represent a significant advance in non-Hermitian physics by bridging a firm connection with the AMO field, where novel phenomena and applications in quantum and nonlinear optics aided by (anti-)PT symmetry can be anticipated.

  8. Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells

    Energy Technology Data Exchange (ETDEWEB)

    Felfer, P., E-mail: peter.felfer@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Ceguerra, A.V., E-mail: anna.ceguerra@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Ringer, S.P., E-mail: simon.ringer@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Cairney, J.M., E-mail: julie.cairney@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia)

    2015-03-15

    The analysis of the formation of clusters in solid solutions is one of the most common uses of atom probe tomography. Here, we present a method where we use the Voronoi tessellation of the solute atoms and its geometric dual, the Delaunay triangulation to test for spatial/chemical randomness of the solid solution as well as extracting the clusters themselves. We show how the parameters necessary for cluster extraction can be determined automatically, i.e. without user interaction, making it an ideal tool for the screening of datasets and the pre-filtering of structures for other spatial analysis techniques. Since the Voronoi volumes are closely related to atomic concentrations, the parameters resulting from this analysis can also be used for other concentration based methods such as iso-surfaces. - Highlights: • Cluster analysis of atom probe data can be significantly simplified by using the Voronoi cell volumes of the atomic distribution. • Concentration fields are defined on a single atomic basis using Voronoi cells. • All parameters for the analysis are determined by optimizing the separation probability of bulk atoms vs clustered atoms.

  9. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2016-09-01

    Full Text Available Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys.

  10. Atomic resolution probe for allostery in the regulatory thin filament

    Science.gov (United States)

    Williams, Michael R.; Lehman, Sarah J.; Tardiff, Jil C.; Schwartz, Steven D.

    2016-01-01

    Calcium binding and dissociation within the cardiac thin filament (CTF) is a fundamental regulator of normal contraction and relaxation. Although the disruption of this complex, allosterically mediated process has long been implicated in human disease, the precise atomic-level mechanisms remain opaque, greatly hampering the development of novel targeted therapies. To address this question, we used a fully atomistic CTF model to test both Ca2+ binding strength and the energy required to remove Ca2+ from the N-lobe binding site in WT and mutant troponin complexes that have been linked to genetic cardiomyopathies. This computational approach is combined with measurements of in vitro Ca2+ dissociation rates in fully reconstituted WT and cardiac troponin T R92L and R92W thin filaments. These human disease mutations represent known substitutions at the same residue, reside at a significant distance from the calcium binding site in cardiac troponin C, and do not affect either the binding pocket affinity or EF-hand structure of the binding domain. Both have been shown to have significantly different effects on cardiac function in vivo. We now show that these mutations independently alter the interaction between the Ca2+ ion and cardiac troponin I subunit. This interaction is a previously unidentified mechanism, in which mutations in one protein of a complex indirectly affect a third via structural and dynamic changes in a second to yield a pathogenic change in thin filament function that results in mutation-specific disease states. We can now provide atom-level insight that is potentially highly actionable in drug design. PMID:26957598

  11. High sensitivity probe absorption technique for time-of-flight measurements on cold atoms

    Indian Academy of Sciences (India)

    A K Mohapatra; C S Unnikrishnan

    2006-06-01

    We report on a phase-sensitive probe absorption technique with high sensitivity, capable of detecting a few hundred ultra-cold atoms in flight in an observation time of a few milliseconds. The large signal-to-noise ratio achieved is sufficient for reliable measurements on low intensity beams of cold atoms. We demonstrate the high sensitivity and figure of merit of the simple method by measuring the time-of-flight of atoms moving upwards from a magneto-optical trap released in the gravitational field.

  12. Single Cs Atoms as Collisional Probes in a large Rb Magneto-Optical Trap

    CERN Document Server

    Weber, Claudia; Spethmann, Nicolas; Meschede, Dieter; Widera, Artur

    2010-01-01

    We study cold inter-species collisions of Caesium and Rubidium in a strongly imbalanced system with single and few Cs atoms. Observation of the single atom fuorescence dynamics yields insight into light-induced loss mechanisms, while both subsystems can remain in steady-state. This significantly simplifies the analysis of the dynamics, as Cs-Cs collisions are effectively absent and the majority component remains unaffected, allowing us to extract a precise value of the Rb-Cs collision parameter. Extending our results to ground state collisions would allow to use single neutral atoms as coherent probes for larger quantum systems.

  13. Atom probe field ion microscopy and related topics: A bibliography 1992

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.F.; Godfrey, R.D.; Miller, M.K.

    1993-12-01

    This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

  14. A Study of the Probe Effect on the Apparent Image of Biological Atomic Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The probe effect on the apparent image of biological atomic force microscopy was explored in this study, and the potential of AFM in conformational study of gene related biological processes was illustrated by the specific nanostructural information of a new antitumor drug binding to DNA.

  15. Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography.

    Science.gov (United States)

    Prosa, Ty J; Larson, David J

    2017-02-06

    Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.

  16. Atomic structure and surface defects at mineral-water interfaces probed by in situ atomic force microscopy

    Science.gov (United States)

    Siretanu, Igor; van den Ende, Dirk; Mugele, Frieder

    2016-04-01

    Atomic scale details of surface structure play a crucial role for solid-liquid interfaces. While macroscopic characterization techniques provide averaged information about bulk and interfaces, high resolution real space imaging reveals unique insights into the role of defects that are believed to dominate many aspects of surface chemistry and physics. Here, we use high resolution dynamic Atomic Force Microscopy (AFM) to visualize and characterize in ambient water the morphology and atomic scale structure of a variety of nanoparticles of common clay minerals adsorbed to flat solid surfaces. Atomically resolved images of the (001) basal planes are obtained on all materials investigated, namely gibbsite, kaolinite, illite, and Na-montmorillonite of both natural and synthetic origin. Next to regions of perfect crystallinity, we routinely observe extended regions of various types of defects on the surfaces, including vacancies of one or few atoms, vacancy islands, atomic steps, apparently disordered regions, as well as strongly adsorbed seemingly organic and inorganic species. While their exact nature is frequently difficult to identify, our observations clearly highlight the ubiquity of such defects and their relevance for the overall physical and chemical properties of clay nanoparticle-water interfaces.Atomic scale details of surface structure play a crucial role for solid-liquid interfaces. While macroscopic characterization techniques provide averaged information about bulk and interfaces, high resolution real space imaging reveals unique insights into the role of defects that are believed to dominate many aspects of surface chemistry and physics. Here, we use high resolution dynamic Atomic Force Microscopy (AFM) to visualize and characterize in ambient water the morphology and atomic scale structure of a variety of nanoparticles of common clay minerals adsorbed to flat solid surfaces. Atomically resolved images of the (001) basal planes are obtained on all

  17. Probing the conformal Calabrese-Cardy scaling with cold atoms

    CERN Document Server

    Unmuth-Yockey, J; Preiss, P M; Yang, Li-Ping; Tsai, S -W; Meurice, Y

    2016-01-01

    We demonstrate that current experiments using cold bosonic atoms trapped in one-dimensional optical lattices and designed to measure the second-order Renyi entanglement entropy S_2, can be used to verify detailed predictions of conformal field theory (CFT) and estimate the central charge c. We discuss the adiabatic preparation of the ground state at half-filling where we expect a CFT with c=1. This can be accomplished with a very small hoping parameter J, in contrast to existing studies with density one where a much larger J is needed. We provide two complementary methods to estimate and subtract the classical entropy generated by the experimental preparation and imaging processes. We compare numerical calculations for the classical O(2) model with a chemical potential on a 1+1 dimensional lattice, and the quantum Bose-Hubbard Hamiltonian implemented in the experiments. S_2 is very similar for the two models and follows closely the Calabrese-Cardy scaling, (c/8)\\ln(N_s), for N_s sites with open boundary condi...

  18. Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface

    Science.gov (United States)

    Pawlak, Rémy; Kisiel, Marcin; Klinovaja, Jelena; Meier, Tobias; Kawai, Shigeki; Glatzel, Thilo; Loss, Daniel; Meyer, Ernst

    2016-11-01

    Motivated by the striking promise of quantum computation, Majorana bound states (MBSs) in solid-state systems have attracted wide attention in recent years. In particular, the wavefunction localisation of MBSs is a key feature and is crucial for their future implementation as qubits. Here we investigate the spatial and electronic characteristics of topological superconducting chains of iron atoms on the surface of Pb(110) by combining scanning tunnelling microscopy and atomic force microscopy. We demonstrate that the Fe chains are mono-atomic, structured in a linear manner and exhibit zero-bias conductance peaks at their ends, which we interpret as signature for a MBS. Spatially resolved conductance maps of the atomic chains reveal that the MBSs are well localised at the chain ends (≲25 nm), with two localisation lengths as predicted by theory. Our observation lends strong support to use MBSs in Fe chains as qubits for quantum-computing devices.

  19. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, D.; Arnoldi, L.; Devaraj, A.; Vella, A.

    2016-10-28

    Oxide-supported metal nano-particles are of great interest in catalysis but also in the development of new large-spectrum-absorption materials. The design of such nano materials requires three-dimensional characterization with a high spatial resolution and elemental selectivity. The laser assisted Atom Probe Tomography (La-APT) presents both these capacities if an accurate understanding of laser-material interaction is developed. In this paper, we focus on the fundamental physics of field evaporation as a function of sample geometry, laser power, and DC electric field for Au nanoparticles embedded in MgO. By understanding the laser-material interaction through experiments and a theoretical model of heat diffusion inside the sample after the interaction with laser pulse, we point out the physical origin of the noise and determine the conditions to reduce it by more than one order of magnitude, improving the sensitivity of the La-APT for metal-dielectric composites. Published by AIP Publishing.

  20. Design and optimization of a harmonic probe with step cross section in multifrequency atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jiandong; Zhang, Li [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT (Hong Kong); Wang, Michael Yu, E-mail: michael.wang@nus.edu.sg [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT (Hong Kong); Department of Mechanical Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-12-15

    In multifrequency atomic force microscopy (AFM), probe’s characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic components. The selection criterion of harmonic order is based on its amplitude’s sensitivity on material properties, e.g., elasticity. Previous studies on designing harmonic probe are unable to provide a large design capability along with maintaining the structural integrity. Herein, we propose a harmonic probe with step cross section, in which it has variable width in top and bottom steps, while the middle step in cross section is kept constant. Higher order resonance frequencies are tailored to be integer times of fundamental resonance frequency. The probe design is implemented within a structural optimization framework. The optimally designed probe is micromachined using focused ion beam milling technique, and then measured with an AFM. The measurement results agree well with our resonance frequency assignment requirement.

  1. Atomic structure and surface defects at mineral-water interfaces probed by in situ atomic force microscopy.

    Science.gov (United States)

    Siretanu, Igor; van den Ende, Dirk; Mugele, Frieder

    2016-04-21

    Atomic scale details of surface structure play a crucial role for solid-liquid interfaces. While macroscopic characterization techniques provide averaged information about bulk and interfaces, high resolution real space imaging reveals unique insights into the role of defects that are believed to dominate many aspects of surface chemistry and physics. Here, we use high resolution dynamic Atomic Force Microscopy (AFM) to visualize and characterize in ambient water the morphology and atomic scale structure of a variety of nanoparticles of common clay minerals adsorbed to flat solid surfaces. Atomically resolved images of the (001) basal planes are obtained on all materials investigated, namely gibbsite, kaolinite, illite, and Na-montmorillonite of both natural and synthetic origin. Next to regions of perfect crystallinity, we routinely observe extended regions of various types of defects on the surfaces, including vacancies of one or few atoms, vacancy islands, atomic steps, apparently disordered regions, as well as strongly adsorbed seemingly organic and inorganic species. While their exact nature is frequently difficult to identify, our observations clearly highlight the ubiquity of such defects and their relevance for the overall physical and chemical properties of clay nanoparticle-water interfaces.

  2. Poroelasticity of cell nuclei revealed through atomic force microscopy characterization

    Science.gov (United States)

    Wei, Fanan; Lan, Fei; Liu, Bin; Liu, Lianqing; Li, Guangyong

    2016-11-01

    With great potential in precision medical application, cell biomechanics is rising as a hot topic in biology. Cell nucleus, as the largest component within cell, not only contributes greatly to the cell's mechanical behavior, but also serves as the most vital component within cell. However, cell nucleus' mechanics is still far from unambiguous up to now. In this paper, we attempted to characterize and evaluate the mechanical property of isolated cell nuclei using Atomic Force Microscopy with a tipless probe. As indicated from typical indentation, changing loading rate and stress relaxation experiment results, cell nuclei showed significant dynamically mechanical property, i.e., time-dependent mechanics. Furthermore, through theoretical analysis, finite element simulation and stress relaxation experiment, the nature of nucleus' mechanics was better described by poroelasticity, rather than viscoelasticity. Therefore, the essence of nucleus' mechanics was clarified to be poroelastic through a sophisticated analysis. Finally, we estimated the poroelastic parameters for nuclei of two types of cells through a combination of experimental data and finite element simulation.

  3. A filtering method to reveal crystalline patterns from atom probe microscopy desorption maps.

    Science.gov (United States)

    Yao, Lan

    2016-01-01

    A filtering method to reveal the crystallographic information present in Atom Probe Microscopy (APM) data is presented. The method filters atoms based on the time difference between their evaporation and the evaporation of the previous atom. Since this time difference correlates with the location and the local structure of the evaporating atoms on the surface, it can be used to reveal any crystallographic information contained within APM data. The demonstration of this method is illustrated on: •A pure Al specimen for which crystallographic poles are clearly visible on the desorption patterns easily indexed.•Three Fe-15at.% Cr datasets where crystallographic patterns are less obvious and require this filtering method.

  4. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben

    2012-10-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies. © Microscopy Society of America 2012.

  5. The use of oligonucleotide probes for meningococcal serotype characterization

    Directory of Open Access Journals (Sweden)

    SACCHI Claudio Tavares

    1998-01-01

    Full Text Available In the present study we examine the potential use of oligonucleotide probes to characterize Neisseria meningitidis serotypes without the use of monoclonal antibodies (MAbs. Antigenic diversity on PorB protein forms the bases of serotyping method. However, the current panel of MAbs underestimated, by at least 50% the PorB variability, presumably because reagents for several PorB variable regions (VRs are lacking, or because a number of VR variants are not recognized by serotype-defining MAbs12. We analyzed the use of oligonucleotide probes to characterize serotype 10 and serotype 19 of N. meningitidis. The porB gene sequence for the prototype strain of serotype 10 was determined, aligned with 7 other porB sequences from different serotypes, and analysis of individual VRs were performed. The results of DNA probes 21U (VR1-A and 615U (VR3-B used against 72 N. meningitidis strains confirm that VR1 type A and VR3 type B encode epitopes for serotype-defined MAbs 19 and 10, respectively. The use of probes for characterizing serotypes possible can type 100% of the PorB VR diversity. It is a simple and rapid method specially useful for analysis of large number of samples.

  6. Generating Entanglement between Atomic Spins with Low-Noise Probing of an Optical Cavity

    CERN Document Server

    Cox, Kevin C; Greve, Graham P; Thompson, James K

    2015-01-01

    Atomic projection noise limits the ultimate precision of all atomic sensors, including clocks, inertial sensors, magnetometers, etc. The independent quantum collapse of $N$ atoms into a definite state (for example spin up or down) leads to an uncertainty $\\Delta \\theta_{SQL}=1/\\sqrt{N}$ in the estimate of the quantum phase accumulated during a Ramsey sequence or its many generalizations. This phase uncertainty is referred to as the standard quantum limit. Creating quantum entanglement between the $N$ atoms can allow the atoms to partially cancel each other's quantum noise, leading to reduced noise in the phase estimate below the standard quantum limit. Recent experiments have demonstrated up to $10$~dB of phase noise reduction relative to the SQL by making collective spin measurements. This is achieved by trapping laser-cooled Rb atoms in an optical cavity and precisely measuring the shift of the cavity resonance frequency by an amount that depends on the number of atoms in spin up. Detecting the probe light ...

  7. Train of high-power femtosecond pulses: Probe wave in a gas of prepared atoms

    Science.gov (United States)

    Muradyan, Gevorg; Muradyan, Atom Zh.

    2009-09-01

    We present a method for generating a regular train of ultrashort optical pulses in a prepared two-level medium. The train develops from incident monochromatic probe radiation traveling in a medium of atoms, which are in a quantum mechanical superposition of dressed internal states. In the frame of linear theory for the probe radiation, the energy of individual pulses is an exponentially growing function of atom density and of interaction cross section. Pulse repetition rate is determined by the pump field’s generalized Rabi frequency and can be around 1 THz and greater. We also show that the terms, extra to the dipole approximation, endow the gas by a new property: nonsaturating dependence of refractive index on dressing monochromatic field intensity. Contribution of these nonsaturating terms can be compatible with the main dipole approximation term contribution in the wavelength region of about ten micrometers (the range of CO2 laser) or larger.

  8. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography

    KAUST Repository

    Al-Kassab, Talaat

    2014-09-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3at.% Ti were investigated, the states selected from the decomposition path were the metastable γ″ and γ\\' states introduced on the basis of small-angle neutron scattering (SANS) and the two-phase model for evaluation. The composition values of the precipitates in these states could not be confirmed by APT data as the interface of the ordered precipitates may not be neglected. The present results rather suggest to apply a three-phase model for the interpretation of SANS measurements, in which the width of the interface remains nearly unchanged and the L12 structure close to 3:1 stoichiometry is maintained in the core of the precipitates from the γ″ to the γ\\' state. © 2014 Elsevier Ltd.

  9. Pulsed-laser atom probe studies of a precipitation hardened maraging TRIP steel.

    Science.gov (United States)

    Dmitrieva, O; Choi, P; Gerstl, S S A; Ponge, D; Raabe, D

    2011-05-01

    A precipitation hardened maraging TRIP steel was analyzed using a pulsed laser atom probe. The laser pulse energy was varied from 0.3 to 1.9 nJ to study its effect on the measured chemical compositions and spatial resolution. Compositional analyses using proximity histograms did not show any significant variations in the average matrix and precipitate compositions. The only remarkable change in the atom probe data was a decrease in the ++/+ charge state ratios of the elements. The values of the evaporation field used for the reconstructions exhibit a linear dependence on the laser pulse energy. The adjustment of the evaporation fields used in the reconstructions for different laser pulse energies was based on the correlation of the obtained cluster shapes to the TEM observations. No influence of laser pulse energy on chemical composition of the precipitates and on the chemical sharpness of their interfaces was detected.

  10. A computational geometry framework for the optimisation of atom probe reconstructions.

    Science.gov (United States)

    Felfer, Peter; Cairney, Julie

    2016-10-01

    In this paper, we present pathways for improving the reconstruction of atom probe data on a coarse (>10nm) scale, based on computational geometry. We introduce a way to iteratively improve an atom probe reconstruction by adjusting it, so that certain known shape criteria are fulfilled. This is achieved by creating an implicit approximation of the reconstruction through a barycentric coordinate transform. We demonstrate the application of these techniques to the compensation of trajectory aberrations and the iterative improvement of the reconstruction of a dataset containing a grain boundary. We also present a method for obtaining a hull of the dataset in both detector and reconstruction space. This maximises data utilisation, and can be used to compensate for ion trajectory aberrations caused by residual fields in the ion flight path through a 'master curve' and correct for overall shape deviations in the data.

  11. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy

    Science.gov (United States)

    Balke, Nina; Jesse, Stephen; Carmichael, Ben; Baris Okatan, M.; Kravchenko, Ivan I.; Kalinin, Sergei V.; Tselev, Alexander

    2017-02-01

    Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm-1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.

  12. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Muhunthan, N.; Singh, Om Pal [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India); Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, V.N., E-mail: singhvn@nplindia.org [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India)

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  13. Interface study of FeMgOFe magnetic tunnel junctions using 3D Atom Probe

    CERN Document Server

    Mazumder, B; Vella, A; Vurpillot, F; Deconihout, B

    2011-01-01

    A detailed interface study was conducted on a Fe/MgO/Fe system using laser assisted 3D atom probe. It exhibits an additional oxide formation at the second interface of the multilayer structure independent of laser wavelength, laser fluence and the thickness of the tunnel barrier. We have shown with the help of simulation that this phenomena is caused by the field evaporation of two layers having two different evaporation

  14. Atom probe field ion microscopy and related topics: A bibliography 1989

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications.

  15. Influence of atomic force microscope (AFM) probe shape on adhesion force measured in humidity environment

    Institute of Scientific and Technical Information of China (English)

    阳丽; 涂育松; 谭惠丽

    2014-01-01

    In micro-manipulation, the adhesion force has very important influence on behaviors of micro-objects. Here, a theoretical study on the effects of humidity on the adhesion force is presented between atomic force microscope (AFM) tips and substrate. The analysis shows that the precise tip geometry plays a critical role on humidity depen-dence of the adhesion force, which is the dominant factor in manipulating micro-objects in AFM experiments. For a blunt (paraboloid) tip, the adhesion force versus humidity curves tends to the apparent contrast (peak-to-valley corrugation) with a broad range. This paper demonstrates that the abrupt change of the adhesion force has high correla-tion with probe curvatures, which is mediated by coordinates of solid-liquid-vapor contact lines (triple point) on the probe profiles. The study provides insights for further under-standing nanoscale adhesion forces and the way to choose probe shapes in manipulating micro-objects in AFM experiments.

  16. Pulsed-laser atom probe studies of a precipitation hardened maraging TRIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrieva, O., E-mail: o.dmitrieva@mpie.de [Max-Planck-Institute for Iron Research, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Choi, P., E-mail: p.choi@mpie.de [Max-Planck-Institute for Iron Research, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Gerstl, S.S.A. [Imago Scientific Instruments, Madison, WI 53711 (United States); Ponge, D.; Raabe, D. [Max-Planck-Institute for Iron Research, Max-Planck-Str. 1, 40237 Duesseldorf (Germany)

    2011-05-15

    A precipitation hardened maraging TRIP steel was analyzed using a pulsed laser atom probe. The laser pulse energy was varied from 0.3 to 1.9 nJ to study its effect on the measured chemical compositions and spatial resolution. Compositional analyses using proximity histograms did not show any significant variations in the average matrix and precipitate compositions. The only remarkable change in the atom probe data was a decrease in the ++/+ charge state ratios of the elements. The values of the evaporation field used for the reconstructions exhibit a linear dependence on the laser pulse energy. The adjustment of the evaporation fields used in the reconstructions for different laser pulse energies was based on the correlation of the obtained cluster shapes to the TEM observations. No influence of laser pulse energy on chemical composition of the precipitates and on the chemical sharpness of their interfaces was detected. -- Research highlights: {yields} Changing the laser pulse energy in pulsed-laser atom probe could induce some changes in the analysis results of complex steels. {yields} Decreases in the evaporation fields and the ++/+ charge state ratios were detected with raising laser energy. {yields} Chemical composition of the intermetallic precipitates and the interface sharpness were not influenced by changing the laser energy.

  17. Controlling residual hydrogen gas in mass spectra during pulsed laser atom probe tomography.

    Science.gov (United States)

    Kolli, R Prakash

    2017-01-01

    Residual hydrogen (H2) gas in the analysis chamber of an atom probe instrument limits the ability to measure H concentration in metals and alloys. Measuring H concentration would permit quantification of important physical phenomena, such as hydrogen embrittlement, corrosion, hydrogen trapping, and grain boundary segregation. Increased insight into the behavior of residual H2 gas on the specimen tip surface in atom probe instruments could help reduce these limitations. The influence of user-selected experimental parameters on the field adsorption and desorption of residual H2 gas on nominally pure copper (Cu) was studied during ultraviolet pulsed laser atom probe tomography. The results indicate that the total residual hydrogen concentration, HTOT, in the mass spectra exhibits a generally decreasing trend with increasing laser pulse energy and increasing laser pulse frequency. Second-order interaction effects are also important. The pulse energy has the greatest influence on the quantity HTOT, which is consistently less than 0.1 at.% at a value of 80 pJ.

  18. Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

    Directory of Open Access Journals (Sweden)

    Mehmet Z. Baykara

    2012-09-01

    Full Text Available Noncontact atomic force microscopy (NC-AFM is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation.In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface.

  19. Arrays to atoms: the range, evolution, and frontiers of characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L. (National Renewable Energy Lab., Golden, CO (United States))

    1994-08-01

    This paper highlights some important evaluation and verification techniques, covering macroscale through nanoscale characterization methods. Some emphasis is placed upon the lower spatial resolution regimes, in which the characterization and processing of semiconductors are leading to areas of atomic engineering of materials. (author)

  20. Atomic species recognition on oxide surfaces using low temperature scanning probe microscopy

    Science.gov (United States)

    Ma, Zong Min; Shi, Yun Bo; Mu, Ji Liang; Qu, Zhang; Zhang, Xiao Ming; Qin, Li; Liu, Jun

    2017-02-01

    In scanning probe microscopy (SPM), the chemical properties and sharpness of the tips of the cantilever greatly influence the scanning of a sample surface. Variation in the chemical properties of the sharp tip apex can induce transformation of the SPM images. In this research, we explore the relationship between the tip and the structure of a sample surface using dynamic atomic force microscopy (AFM) on a Cu(110)-O surface under ultra-high vacuum (UHV) at low temperature (78 K). We observed two different c(6 × 2) phase types in which super-Cu atoms show as a bright spot when the tip apex is of O atoms and O atoms show as a bright spot when the tip apex is of Cu atoms. We also found that the electronic state of the tip has a serious effect on the resolution and stability of the sample surface, and provide an explanation for these phenomena. This technique can be used to identify atom species on sample surfaces, and represents an important development in the SPM technique.

  1. Probing the energy flow in Bessel light beams using atomic photoionization

    Science.gov (United States)

    Surzhykov, A.; Seipt, D.; Fritzsche, S.

    2016-09-01

    The growing interest in twisted light beams also requires a better understanding of their complex internal structure. Particular attention is currently being given to the energy circulation in these beams as usually described by the Poynting vector field. In the present study we propose to use the photoionization of alkali-metal atoms as a probe process to measure (and visualize) the energy flow in twisted light fields. Such measurements are possible since the angular distribution of photoelectrons, emitted from a small atomic target, appears sensitive to and is determined by the local direction of the Poynting vector. To illustrate the feasibility of the proposed method, detailed calculations were performed for the ionization of sodium atoms by nondiffractive Bessel beams.

  2. Atom-column distinction by Kikuchi pattern observed by an aberration-corrected convergent electron probe.

    Science.gov (United States)

    Saitoh, Koh; Tatara, Yoshihide; Tanaka, Nobuo

    2010-01-01

    Kikuchi patterns of an MgO crystal at the [110] incidence have been taken by a sub-angstrom electron beam focused on the single atom-column. A significant change in intensity has been observed in the 111 band; that is, the contrast in the central and side bands is reversed depending on the illuminated atom-column. The contrast reversal in the 111 band has been reproduced by multislice simulation using the frozen-phonon approach. The beam-position dependence of the 111 band intensity can be interpreted by electron channelling and the reciprocity theorem. The anomalous Kikuchi pattern can be a probe for identifying the illuminated atom-column, which is useful for column-by-column electron energy-loss spectroscopy and X-ray emission spectroscopy.

  3. Atom probe tomography characterisation of a laser diode structure grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Samantha E.; Humphreys, Colin J.; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Smeeton, Tim M.; Hooper, Stewart E.; Heffernan, Jonathan [Sharp Laboratories of Europe Limited, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4GB (United Kingdom); Saxey, David W.; Smith, George D. W. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom)

    2012-03-01

    Atom probe tomography (APT) has been used to achieve three-dimensional characterization of a III-nitride laser diode (LD) structure grown by molecular beam epitaxy (MBE). Four APT data sets have been obtained, with fields of view up to 400 nm in depth and 120 nm in diameter. These data sets contain material from the InGaN quantum well (QW) active region, as well as the surrounding p- and n-doped waveguide and cladding layers, enabling comprehensive study of the structure and composition of the LD structure. Two regions of the same sample, with different average indium contents (18% and 16%) in the QW region, were studied. The APT data are shown to provide easy access to the p-type dopant levels, and the composition of a thin AlGaN barrier layer. Next, the distribution of indium within the InGaN QW was analyzed, to assess any possible inhomogeneity of the distribution of indium (''indium clustering''). No evidence for a statistically significant deviation from a random distribution was found, indicating that these MBE-grown InGaN QWs do not require indium clusters for carrier localization. However, the APT data show steps in the QW interfaces, leading to well-width fluctuations, which may act to localize carriers. Additionally, the unexpected presence of a small amount (x = 0.005) of indium in a layer grown intentionally as GaN was revealed. Finally, the same statistical method applied to the QW was used to show that the indium distribution within a thick InGaN waveguide layer in the n-doped region did not show any deviation from randomness.

  4. Characterization of an atomic hydrogen source for charge exchange experiments

    Science.gov (United States)

    Leutenegger, M. A.; Beiersdorfer, P.; Betancourt-Martinez, G. L.; Brown, G. V.; Hell, N.; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; Porter, F. S.

    2016-11-01

    We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  5. Atom-probe tomography analyses of niobium superconducting RF cavity materials

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, J.T. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States); Seidman, D.N. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States); Yoon, K.E. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States)]. E-mail: megabass@northwestern.edu; Bauer, P. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Reid, T. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Boffo, C. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Norem, J. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2006-07-15

    We present the first atom-probe tomographic (APT) measurements of niobium superconducting RF (SCRF) cavity materials. APT involves the atom-by-atom dissection of sharply pointed niobium tips, along with their niobium oxide coatings, via the application of a high-pulsed electric field and the measurement of each ion's mass-to-charge state ratio (m/n) with time-of-flight (TOF) mass spectrometry. The resulting atomic reconstructions, typically containing at least 10{sup 5} atoms and with typical dimensions of 10{sup 5} nm{sup 3} (or less), show the detailed, nanoscale chemistry of the niobium oxide coatings, and of the underlying high-purity niobium metal. Our initial results show a nanochemically smooth transition through the oxide layer from near-stoichiometric Nb{sub 2}O{sub 5} at the surface to near-stoichiometric Nb{sub 2}O as the underlying metal is approached (after {approx}10 nm of surface oxide). The underlying metal, in the near-oxide region, contains a significant amount of interstitially dissolved oxygen ({approx}5-10 at.%), as well as a considerable amount of dissolved hydrogen. The experimental results are interpreted in light of current models of oxide and sub-oxide formation in the Nb-O system.

  6. Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging.

    Science.gov (United States)

    Ovchinnikova, Olga S; Kjoller, Kevin; Hurst, Gregory B; Pelletier, Dale A; Van Berkel, Gary J

    2014-01-21

    This paper reports on the development of a hybrid atmospheric pressure atomic force microscopy/mass spectrometry imaging system utilizing nanothermal analysis probes for thermal desorption surface sampling with subsequent atmospheric pressure chemical ionization and mass analysis. The basic instrumental setup and the general operation of the system were discussed, and optimized performance metrics were presented. The ability to correlate topographic images of a surface with atomic force microscopy and a mass spectral chemical image of the same surface, utilizing the same probe without moving the sample from the system, was demonstrated. Co-registered mass spectral chemical images and atomic force microscopy topographical images were obtained from inked patterns on paper as well as from a living bacterial colony on an agar gel. Spatial resolution of the topography images based on pixel size (0.2 μm × 0.8 μm) was better than the resolution of the mass spectral images (2.5 μm × 2.0 μm), which were limited by current mass spectral data acquisition rate and system detection levels.

  7. Data analysis and other considerations concerning the study of precipitation in Al–Mg–Si alloys by Atom Probe Tomography

    Directory of Open Access Journals (Sweden)

    M.W. Zandbergen

    2015-12-01

    Full Text Available Atom Probe Tomography (APT analysis and hardness measurements were used to characterize the early stages of precipitation in an Al–0.51 at%Mg–0.94 at%Si alloy as reported in the accompanying Acta Materialia paper [1]. The changes in microstructure were investigated after single-stage or multi-stage heat treatments including natural ageing at 298 K (NA, pre-ageing at 353 K (PA, and automotive paint-bake ageing conditions at 453 K (PB. This article provides Supporting information and a detailed report on the experimental conditions and the data analysis methods used for this investigation. Careful design of experimental conditions and analysis methods was carried out to obtain consistent and reliable results. Detailed data on clustering for prolonged NA and PA treatments have been reported.

  8. Correlation and contingency analysis of atom probe data: Diffusion-controlled dissolution of precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Camus, E. (Hahn-Meitner-Institut Berlin GmbH (Germany)); Abromeit, C. (Hahn-Meitner-Institut Berlin GmbH (Germany))

    1994-05-01

    A statistical analysis of atom probe data is developed for evaluating the evolution of local composition fluctuations in concentrated alloys. The model allows the calculation of theoretical correlation and contingency coefficients for a presumed alloy microstructure taking into account the instrumental parameters, i.e. aperture size, block size and detector efficiency. A comparison of theoretical coefficients with those obtained from measured concentration profiles gives access to physically relevant parameters. The analysis is applied to the diffusion-controlled dissolution of spherical precipitates in the technical alloy Nimonic PE16 under ion irradiation. (orig.)

  9. Atomic parity violation in one single trapped radium ion as a probe of electroweak running

    Energy Technology Data Exchange (ETDEWEB)

    Wansbeek, Lotje; Versolato, Oscar; Willmann, Lorenz; Timmermans, Rob; Jungmann, Klaus [KVI, University of Groningen (Netherlands)

    2008-07-01

    In a single trapped and laser cooled radium ion we investigate atomic parity violation by probing the differential splitting (*light shifts*) of the 7S and 6D Zeeman levels, which is caused by the interaction of the ion with an off-resonant laser light field. This experiment serves as a low-energy test of the electroweak Standard Model of particle physics. With precision RF spectroscopy and subsequent monitoring of quantum jumps, this splitting can be determined to sub-Hertz accuracy. A proof-of-principle has recently been given for the barium ion, and crucial ideas are being extended to Ra{sup +} which is a superior candidate.

  10. Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials

    OpenAIRE

    2015-01-01

    This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/S1431927615000422 Various practical issues affecting atom probe tomography (APT) analysis of III-nitride semiconductors have been studied as part of an investigation using a c-plane InAlN/GaN heterostructure. Specimen preparation was undertaken using a focused ion beam microscope with a mono-isotopic Ga source. This enabled the unambiguous observation of impl...

  11. Atom probe field ion microscopy and related topics: A bibliography 1990

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.F.; Miller, M.K.

    1991-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion microscopy (FIM), field emission (FE), ion sources, and field desorption mass microscopy (FDMM). Technique-orientated studies and applications are included. The bibliography covers the period 1990. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references, listed alphabetically by authors, are subdivided into the categories listed in paragraph one above. An Addendum of references missed in previous bibliographies is included.

  12. Atom probe field ion microscopy and related topics: A bibliography 1993

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included.

  13. Initial study on Z-phase strengthened 9-12% Cr steels by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; Andren, Hans-Olof [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Physics

    2010-07-01

    The microstructure of two different types of Z-phase strengthened experimental steels, CrNbN-based or CrTaN-based, was investigated. Both steels underwent aging at 650 C for relatively short period of time, 24 hours or 1005 hours. Atom probe tomography was used to study the chemical composition of the matrix and precipitates, and the size and number density of the small precipitates. Both steels contain Laves phase at prior austenite grain boundaries and martensitic lath boundaries. The CrTaN-based steel was found more promising due to its finer and more densely distributed precipitates after 1005 hour aging. (orig.)

  14. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.

    2013-09-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    Science.gov (United States)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  16. Probing spin-orbit-interaction-induced electron dynamics in the carbon atom by multiphoton ionization

    Science.gov (United States)

    Rey, H. F.; van der Hart, H. W.

    2014-09-01

    We use R-matrix theory with time dependence (RMT) to investigate multiphoton ionization of ground-state atomic carbon with initial orbital magnetic quantum number ML=0 and ML=1 at a laser wavelength of 390 nm and peak intensity of 1014W/cm2. Significant differences in ionization yield and ejected-electron momentum distribution are observed between the two values for ML. We use our theoretical results to model how the spin-orbit interaction affects electron emission along the laser polarization axis. Under the assumption that an initial C atom is prepared at zero time delay with ML=0, the dynamics with respect to time delay of an ionizing probe pulse modeled by using RMT theory is found to be in good agreement with available experimental data.

  17. Atom probe, AFM, and STM studies on vacuum-fired stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Stupnik, A. [ACC Austria GmbH, 8280 Fuerstenfeld (Austria); Frank, P. [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Leisch, M., E-mail: m.leisch@tugraz.at [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)

    2009-04-15

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced.

  18. Atom probe, AFM, and STM studies on vacuum-fired stainless steels.

    Science.gov (United States)

    Stupnik, A; Frank, P; Leisch, M

    2009-04-01

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced.

  19. Extracting features buried within high density atom probe point cloud data through simplicial homology.

    Science.gov (United States)

    Srinivasan, Srikant; Kaluskar, Kaustubh; Broderick, Scott; Rajan, Krishna

    2015-12-01

    Feature extraction from Atom Probe Tomography (APT) data is usually performed by repeatedly delineating iso-concentration surfaces of a chemical component of the sample material at different values of concentration threshold, until the user visually determines a satisfactory result in line with prior knowledge. However, this approach allows for important features, buried within the sample, to be visually obscured by the high density and volume (~10(7) atoms) of APT data. This work provides a data driven methodology to objectively determine the appropriate concentration threshold for classifying different phases, such as precipitates, by mapping the topology of the APT data set using a concept from algebraic topology termed persistent simplicial homology. A case study of Sc precipitates in an Al-Mg-Sc alloy is presented demonstrating the power of this technique to capture features, such as precise demarcation of Sc clusters and Al segregation at the cluster boundaries, not easily available by routine visual adjustment.

  20. Electrical and optical characterization of atomically thin WS₂.

    Science.gov (United States)

    Georgiou, Thanasis; Yang, Huafeng; Jalil, Rashid; Chapman, James; Novoselov, Kostya S; Mishchenko, Artem

    2014-07-21

    Atomically thin layers of materials, which are just a few atoms in thickness, present an attractive option for future electronic devices. Herein we characterize, optically and electronically, atomically thin tungsten disulphide (WS2), a layered semiconductor. We provide the distinctive Raman and photoluminescence signatures for single layers, and prepare field-effect transistors where atomically thin WS2 serves as the conductive channel. The transistors present mobilities μ = 10 cm(2) V(-1) s(-1) and exhibit ON/OFF ratios exceeding 100,000. Our results show that WS2 is an attractive option for applications in electronic and optoelectronic devices and pave the way for further studies in this two-dimensional material.

  1. Characterizing high- n quasi-one-dimensional strontium Rydberg atoms

    Science.gov (United States)

    Hiller, Moritz; Yoshida, Shuhei; Burgdörfer, Joachim; Ye, Shuzhen; Zhang, Xinyue; Dunning, F. Barry

    2014-05-01

    The production of high- n, n ~ 300 , quasi-one-dimensional strontium Rydberg atoms by two-photon excitation of selected extreme Stark states in the presence of a weak dc field is examined using a crossed laser-atom beam geometry. The polarization of the product states is probed using three independent techniques which are analyzed with the aid of classical-trajectory Monte Carlo simulations that employ initial ensembles based on quantum calculations using a two-active-electron model. Comparisons between theory and experiment demonstrate that the product states have large dipole moments, ~ 1 . 0 - 1 . 2n2 a . u . and that they can be engineered using pulsed electric fields to create a wide variety of target states. Research supported by the NSF, the Robert A Welch Foundation, and the FWF (Austria).

  2. Orthogonal Supramolecular Polymer Formation on Highly Oriented Pyrolytic Graphite (HOPG) Surfaces Characterized by Scanning Probe Microscopy.

    Science.gov (United States)

    Gong, Yongxiang; Zhang, Siqi; Geng, Yanfang; Niu, Chunmei; Yin, Shouchun; Zeng, Qingdao; Li, Min

    2015-10-27

    Formation of an orthogonal supramolecular polymer on a highly oriented pyrolytic graphite (HOPG) surface was demonstrated for the first time by means of scanning probe microscopy (SPM). Atomic force microscopy (AFM) was employed to characterize the variation of both the thickness and the topography of the film formed from (1) monomer 1, (2) monomer 1/Zn(2+), and (3) monomer 1/Zn(2+)/cross-linker 2, respectively. Scanning tunneling microscopy (STM) was used to monitor the self-assembly behavior of monomer 1 itself, as well as 1/Zn(2+) ions binary system on graphite surface, further testifying for the formation of linear polymer via coordination interaction at the single molecule level. These results, given by the strong surface characterization tool of SPM, confirm the formation of the orthogonal polymer on the surface of graphite, which has great significance in regard to fabricating a complex superstructure on surfaces.

  3. Atom probe tomography of secondary γ′ precipitation in a single crystal Ni-based superalloy after isothermal aging at 1100 °C

    Energy Technology Data Exchange (ETDEWEB)

    Tan, X.P., E-mail: xptan1985@gmail.com [IM 2NP, UMR 7334 CNRS, Université Aix-Marseille, 13397 Marseille Cedex 20 (France); Mangelinck, D.; Perrin-Pellegrino, C. [IM 2NP, UMR 7334 CNRS, Université Aix-Marseille, 13397 Marseille Cedex 20 (France); Rougier, L. [LSMX, MXG, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Gandin, Ch.-A. [CEMEF, UMR 7635 CNRS, MINES ParisTech, 06904 Sophia Antipolis (France); Jacot, A. [LSMX, MXG, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Ponsen, D.; Jaquet, V. [Snecma-SAFRAN Group, Service YQGC, 92702 Colombes (France)

    2014-10-25

    Highlights: • Bimodal size distribution of γ′ precipitates occurs after isothermal aging at 1100 °C. • Characterization of secondary γ′ by atom probe tomography. • It is proposed that the secondary γ′ occurs via a non-classical nucleation. • The coarsening of secondary γ′ precipitates well obeys the classical LSW theory. - Abstract: Secondary γ′ precipitation in a commercial single crystal Ni-based superalloy after the 1100 °C isothermal aging has been investigated by atom probe tomography. After the isothermal aging for 300 s, 1800 s and 3600 s, a bimodal size distribution of larger primary γ′ precipitates and numerous smaller secondary γ′ precipitates was obtained. It is proposed that the secondary γ′ precipitated via a non-classical nucleation mode. The coarsening of secondary γ′ precipitates well obeys the classical LSW theory.

  4. Attosecond probing of state-resolved ionization and superpositions of atoms and molecules

    Science.gov (United States)

    Leone, Stephen

    2016-05-01

    Isolated attosecond pulses in the extreme ultraviolet are used to probe strong field ionization and to initiate electronic and vibrational superpositions in atoms and small molecules. Few-cycle 800 nm pulses produce strong-field ionization of Xe atoms, and the attosecond probe is used to measure the risetimes of the two spin orbit states of the ion on the 4d inner shell transitions to the 5p vacancies in the valence shell. Step-like features in the risetimes due to the subcycles of the 800 nm pulse are observed and compared with theory to elucidate the instantaneous and effective hole dynamics. Isolated attosecond pulses create massive superpositions of electronic states in Ar and nitrogen as well as vibrational superpositions among electronic states in nitrogen. An 800 nm pulse manipulates the superpositions, and specific subcycle interferences, level shifting, and quantum beats are imprinted onto the attosecond pulse as a function of time delay. Detailed outcomes are compared to theory for measurements of time-dynamic superpositions by attosecond transient absorption. Supported by DOE, NSF, ARO, AFOSR, and DARPA.

  5. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min/sup -1/ can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected.

  6. Quantitative analysis of carbon in cementite using pulsed laser atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Kitaguchi, H.S., E-mail: hiroto.kitaguchi@twi.co.uk; Lozano-Perez, S.; Moody, M.P.

    2014-12-15

    Carbon quantification and the standardisation in a pure cementite were conducted using pulsed-laser atom probe tomography (APT). The results were analysed to investigate a dependence on three distinct experimental parameters; the laser pulse energy, the cryogenic specimen temperature and the laser pulse frequency. All the measurements returned an apparent carbon content of 25.0±1.0 at%. Carbon content measurements showed no clear dependence on the cryogenic temperature or the laser pulse frequency. However, the results did demonstrate a strong correlation with the laser pulse energy. For lower laser pulse energies, the analysis returned carbon contents higher than the stoichiometric ratio. It was suggested that this effect is due to pile up of {sup 56}Fe{sup ++} at the detector and as a consequence there is a systematic preferential loss of these ions throughout the course of the experiment. Conversely, in experiments utilising higher laser pulse energies, it was found that the carbon contents were smaller than the stoichiometric ratio. In these experiments an increasing fraction of the larger carbon molecular ions (e.g., C{sub 5} ions) were detected as part of a multiple detection events, which could affect the quantification measurements. - Highlights: • This paper describes carbon quantifications in cementite. • Laser pulsed atom probe tomography successfully quantified the carbon content. • A unique background subtraction method was applied. • Deviations from the stoichiometry were discussed.

  7. Laser-assisted atom probe tomography investigation of magnetic FePt nanoclusters: First experiments

    Energy Technology Data Exchange (ETDEWEB)

    Folcke, E.; Larde, R. [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Le Breton, J.M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Gruber, M.; Vurpillot, F. [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Shield, J.E.; Rui, X. [Department of Mechanical and Materials Engineering, Nebraska Center for Materials and Nanoscience, University of Nebraska, N104 WSEC, Lincoln, NE 68588 (United States); Patterson, M.M. [Department of Physics, University of Wisconsin-Stout, Menomonie, WI 54751 (United States)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FePt nanoclusters dispersed in a Cr matrix were studied by atom probe tomography. Black-Right-Pointing-Pointer Simulated experiments were conducted to study the artefacts of the analysis. Black-Right-Pointing-Pointer In FePt nanoclusters, Fe and Pt are present in equiatomic proportions. Black-Right-Pointing-Pointer FePt nanoclusters are homogeneous, no core-shell structure is observed. - Abstract: FePt nanoclusters dispersed in a Cr matrix have been investigated by laser-assisted atom probe tomography. The results were analysed according to simulated evaporation experiments. Three-dimensional (3D) reconstructions reveal the presence of nanoclusters roughly spherical in shape, with a size in good agreement with previous transmission electron microscopy observations. Some clusters appear to be broken up after the evaporation process due to the fact that the Cr matrix has a lower evaporation field than Fe and Pt. It is thus shown that the observed FePt nanoclusters are chemically homogeneous. They contain Fe and Pt in equiatomic proportions, with no core-shell structure observed.

  8. Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

    Directory of Open Access Journals (Sweden)

    Gemma Rius

    2015-01-01

    Full Text Available Many nanofabrication methods based on scanning probe microscopy have been developed during the last decades. Local anodic oxidation (LAO is one of such methods: Upon application of an electric field between tip and surface under ambient conditions, oxide patterning with nanometer-scale resolution can be performed with good control of dimensions and placement. LAO through the non-contact mode of atomic force microscopy (AFM has proven to yield a better resolution and tip preservation than the contact mode and it can be effectively performed in the dynamic mode of AFM. The tip plays a crucial role for the LAO-AFM, because it regulates the minimum feature size and the electric field. For instance, the feasibility of carbon nanotube (CNT-functionalized tips showed great promise for LAO-AFM, yet, the fabrication of CNT tips presents difficulties. Here, we explore the use of a carbon nanofiber (CNF as the tip apex of AFM probes for the application of LAO on silicon substrates in the AFM amplitude modulation dynamic mode of operation. We show the good performance of CNF-AFM probes in terms of resolution and reproducibility, as well as demonstration that the CNF apex provides enhanced conditions in terms of field-induced, chemical process efficiency.

  9. Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes.

    Science.gov (United States)

    Rius, Gemma; Lorenzoni, Matteo; Matsui, Soichiro; Tanemura, Masaki; Perez-Murano, Francesc

    2015-01-01

    Many nanofabrication methods based on scanning probe microscopy have been developed during the last decades. Local anodic oxidation (LAO) is one of such methods: Upon application of an electric field between tip and surface under ambient conditions, oxide patterning with nanometer-scale resolution can be performed with good control of dimensions and placement. LAO through the non-contact mode of atomic force microscopy (AFM) has proven to yield a better resolution and tip preservation than the contact mode and it can be effectively performed in the dynamic mode of AFM. The tip plays a crucial role for the LAO-AFM, because it regulates the minimum feature size and the electric field. For instance, the feasibility of carbon nanotube (CNT)-functionalized tips showed great promise for LAO-AFM, yet, the fabrication of CNT tips presents difficulties. Here, we explore the use of a carbon nanofiber (CNF) as the tip apex of AFM probes for the application of LAO on silicon substrates in the AFM amplitude modulation dynamic mode of operation. We show the good performance of CNF-AFM probes in terms of resolution and reproducibility, as well as demonstration that the CNF apex provides enhanced conditions in terms of field-induced, chemical process efficiency.

  10. Scanned Probe Oxidation onp-GaAs(100 Surface with an Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Juang Jenh-Yih

    2008-01-01

    Full Text Available AbstractLocally anodic oxidation has been performed to fabricate the nanoscale oxide structures onp-GaAs(100 surface, by using an atomic force microscopy (AFM with the conventional and carbon nanotube (CNT-attached probes. The results can be utilized to fabricate the oxide nanodots under ambient conditions in noncontact mode. To investigate the conversion of GaAs to oxides, micro-Auger analysis was employed to analyze the chemical compositions. The growth kinetics and the associated mechanism of the oxide nanodots were studied under DC voltages. With the CNT-attached probe the initial growth rate of oxide nanodots is in the order of ~300 nm/s, which is ~15 times larger than that obtained by using the conventional one. The oxide nanodots cease to grow practically as the electric field strength is reduced to the threshold value of ~2 × 107 V cm−1. In addition, results indicate that the height of oxide nanodots is significantly enhanced with an AC voltage for both types of probes. The influence of the AC voltages on controlling the dynamics of the AFM-induced nanooxidation is discussed.

  11. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu [Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, California 94305 (United States)

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  12. Mode-synthesizing atomic force microscopy for volume characterization of mixed metal nanoparticles.

    Science.gov (United States)

    Vitry, P; Bourillot, E; Tétard, L; Plassard, C; Lacroute, Y; Lesniewska, E

    2016-09-01

    Atomic force microscopy (AFM) and other techniques derived from AFM have revolutionized the understanding of materials and biology at the nanoscale, but mostly provide surface properties. The observation of subsurface nanoscale features and properties remains a great challenge in nanometrology. The operating principle of the mode-synthesizing AFM (MSAFM) is based on the interaction of two ultrasonic waves, one launched by the AFM probe fp , a second launched by the sample fs , and their resulting nonlinear frequency mixing. Recent developments highlighted the need for quantitative correlation between the role of the frequency actuation of the probe fp and the sample fs . Here we present the great potential of MSAFM for advanced volume characterization of metallic nanoparticles presenting a multilayered structure composed of a nickel core surrounded by a gold envelope.

  13. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A., E-mail: rao28@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P., E-mail: michael.moody@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-02-16

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering.

  14. Studying nearest neighbor correlations by atom probe tomography (APT) in metallic glasses as exemplified for Fe40Ni40B20 glassy ribbons

    KAUST Repository

    Shariq, Ahmed

    2012-01-01

    A next nearest neighbor evaluation procedure of atom probe tomography data provides distributions of the distances between atoms. The width of these distributions for metallic glasses studied so far is a few Angstrom reflecting the spatial resolution of the analytical technique. However, fitting Gaussian distributions to the distribution of atomic distances yields average distances with statistical uncertainties of 2 to 3 hundredth of an Angstrom. Fe 40Ni40B20 metallic glass ribbons are characterized this way in the as quenched state and for a state heat treated at 350 °C for 1 h revealing a change in the structure on the sub-nanometer scale. By applying the statistical tool of the χ2 test a slight deviation from a random distribution of B-atoms in the as quenched sample is perceived, whereas a pronounced elemental inhomogeneity of boron is detected for the annealed state. In addition, the distance distribution of the first fifteen atomic neighbors is determined by using this algorithm for both annealed and as quenched states. The next neighbor evaluation algorithm evinces a steric periodicity of the atoms when the next neighbor distances are normalized by the first next neighbor distance. A comparison of the nearest neighbor atomic distribution for as quenched and annealed state shows accumulation of Ni and B. Moreover, it also reveals the tendency of Fe and B to move slightly away from each other, an incipient step to Ni rich boride formation. © 2011 Elsevier B.V.

  15. Characterization of thin film semiconductors by scanning probe microscopy and tunneling spectroscopy

    Science.gov (United States)

    Gichuhi, Anthony

    We have used scanning tunneling microscopy, atomic force microscopy, tunneling spectroscopy, resonance Raman spectroscopy and electrochemistry to study the electrosynthesis of II-VI compound semiconductors with special emphasis on ZnS, CdS, and HgS. This dissertation will focus mainly on the electrochemical and scanning probe (STM and AFM) applications to these compounds, in addition to novel materials such as CoSb. We hope to understand the structural, as well optical properties of these materials. Finally, we hope to develop a recipe for the electrosynthesis of high quality semiconductor films. In Chapter 2, we report an electrochemical, scanning probe microscopic and Raman spectroscopic investigation of thin US films grown by electrochemical atomic layer epitaxy (EC-ALE) aimed at understanding the role played by the order of deposition on film quality. In Chapter 3, we report a study of electrosynthesized CdS-HgS heterojunctions using scanning tunneling microscopy (STM), photoluminescence spectroscopy (PL), and electrochemistry. US thin films were grown by electrochemical atomic layer epitaxy onto Au(111) substrates and were terminated with a single HgS monolayer. In Chapter 4, the structure and chemical composition of electrosynthesized ZnS thin films on Au(111) substrates grown by alternating underpotential deposition and oxidative adsorption cycles of S and Zn from solution precursors was studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). In Chapter 5, conditions for the growth of. stable mercury sulfide (HgS) monolayers on Au(111) surfaces using electrochemical atomic layer epitaxy have been investigated. HgS thin films were characterized by X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Chapter 6: This chapter describes the use of resonance Raman spectroscopy to characterize thin films of the II-VI compound semiconductors electrosynthesized on metal surfaces. We describe how resonance

  16. Detection of slow atoms confined in a Cesium vapor cell by spatially separated pump and probe laser beams

    CERN Document Server

    Todorov, Petko; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel

    2013-01-01

    The velocity distribution of atoms in a thermal gas is usually described through a Maxwell-Boltzman distribution of energy, and assumes isotropy. As a consequence, the probability for an atom to leave the surface under an azimuth angle {\\theta} should evolve as cos {\\theta}, in spite of the fact that there is no microscopic basis to justify such a law. The contribution of atoms moving at a grazing incidence towards or from the surface, i.e. atoms with a small normal velocity, here called "slow" atoms, reveals essential in the development of spectroscopic methods probing a dilute atomic vapor in the vicinity of a surface, enabling a sub-Doppler resolution under a normal incidence irradiation. The probability for such "slow" atoms may be reduced by surface roughness and atom-surface interaction. Here, we describe a method to observe and to count these slow atoms relying on a mechanical discrimination, through spatially separated pump and probe beams. We also report on our experimental progresses toward such a g...

  17. Role of strongly modulated coherence in transient evolution dynamics of probe absorption in a three-level atomic system

    Science.gov (United States)

    Panchadhyayee, Pradipta

    2013-11-01

    We investigate the dynamical behaviour of atomic response in a closed three-level V-type atomic system with the variation of different relevant parameters to exhibit transient evolution of absorption, gain and transparency in the probe response. The oscillations in probe absorption and gain can be efficiently modulated by changing the values of the Rabi frequency, detuning and the collective phase involved in the system. The interesting outcome of the work is the generation of coherence controlled loop-structure with varying amplitudes in the oscillatory probe response of the probe field at various parameter conditions. The prominence of these structures is observed when the coherence induced in a one-photon excitation path is strongly modified by two-step excitations driven by the coherent fields operating in closed interaction contour. In contrast to purely resonant case, the time interval between two successive loops gets significantly reduced with the application of non-zero detuning in the coherent fields.

  18. Probe Amplification with or without Population Inversion in a Five-Level Atomic System with Double-Dark Resonances

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Hua; XIE Xiao-Tao; LUO Jin-Ming; LIU Ji-Bing

    2006-01-01

    @@ We theoretically investigate the response of the probe amplification in a five-level atomic system in the presence of interacting double-dark resonances disturbed by introducing an additional signal field. It is found that a large enhancement of the probe amplification with or without population inversion can be achieved by properly adjusting the strengths of the microwave driving field and the signal laser field. From viewpoint of physics, we qualitatively explain these results in terms of quantum interference and dressed states.

  19. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuliang, E-mail: wangyuliang@buaa.edu.cn; Bi, Shusheng [Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Wang, Huimin [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  20. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi

    2011-05-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  1. Simulating compact quantum electrodynamics with ultracold atoms: probing confinement and nonperturbative effects.

    Science.gov (United States)

    Zohar, Erez; Cirac, J Ignacio; Reznik, Benni

    2012-09-21

    Recently, there has been much interest in simulating quantum field theory effects of matter and gauge fields. In a recent work, a method for simulating compact quantum electrodynamics (CQED) using Bose-Einstein condensates has been suggested. We suggest an alternative approach, which relies on single atoms in an optical lattice, carrying 2l + 1 internal levels, which converges rapidly to CQED as l increases. That enables the simulation of CQED in 2 + 1 dimensions in both the weak and the strong coupling regimes, hence, allowing us to probe confinement as well as other nonperturbative effects of the theory. We provide an explicit construction for the case l = 1 which is sufficient for simulating the effect of confinement between two external static charges.

  2. Specimen preparation and atom probe field ion microscopy of BSCCO-2212 superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.J. [Wisconsin Univ., Madison, WI (United States). Mater. Sci. Program]|[Applied Superconductivity Center, Univ. of Wisconsin, Madison, WI (United States); Camus, P.P. [Applied Superconductivity Center, Univ. of Wisconsin, Madison, WI (United States)]|[Wisconsin Univ., Madison, WI (United States). Dept. of Materials Sciences and Engineering; Vargas, J.L. [Applied Superconductivity Center, Univ. of Wisconsin, Madison, WI (United States); Kelly, T.F. [Wisconsin Univ., Madison, WI (United States). Mater. Sci. Program]|[Applied Superconductivity Center, Univ. of Wisconsin, Madison, WI (United States)]|[Wisconsin Univ., Madison, WI (United States). Dept. of Materials Sciences and Engineering; Miller, M.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1996-09-01

    Field ion specimens of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} (BSCCO) high temperature superconductor (HTS) materials have been prepared using a combination of three different preparation techniques: the method of sharp shards, electropolishing and ion milling. Field ion microscopy (FIM) has demonstrated that samples which exhibit the ``striped``-image contrast characteristic of HTS materials can be successfully fabricated using this combination. FIM images have been obtained which show the striped-image contrast much clearer than any previously published images of Pb-free BSCCO. Preliminary atom probe (AP) chemical analysis of the material was also performed. Analytical electron microscopy was used to confirm the existence of both the correct crystallographic structure and nominal composition in the near-apex region of the specimen after preparation and FIM. (orig.).

  3. Three-dimensional Chemical Imaging of Embedded Nanoparticles using Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuchibhatla, Satyanarayana V N T; Shutthanandan, V.; Prosa, Ty J.; Adusumilli, Praneet; Arey, Bruce W.; Buxbaum, Alex; Wang, Y. C.; Tessner, Ted; Ulfig, Robert M.; Wang, Chong M.; Thevuthasan, Suntharampillai

    2012-05-03

    Analysis of nanoparticles is often challenging especially when they are embedded in a matrix. Hence, we have used laser-assisted atom probe tomography (APT) to analyze the Au-nanoclusters synthesized in situ using ion beam implantation in single crystal MgO matrix. APT analysis along with scanning transmission electron microscopy and energy dispersive spectroscopy (STEM-EDS) indicated that the nanoparticles have an average size ~ 8 - 12 nm. While it is difficult to analyze the composition of individual nanoparticles using STEM, APT analysis can give three dimensional compositions of the same. It was shown that the maximum Au-concentration in the nanoparticles increases with increasing particle size, with a maximum Au-concentration of up to 50%.

  4. Analysis of deuterium in V-Fe5at.% film by atom probe tomography (APT)

    KAUST Repository

    Gemma, Ryota

    2011-09-01

    V-Fe5at.% 2 and 10-nm thick single layered films were prepared by ion beam sputtering on W substrate. They were loaded with D from gas phase at 0.2 Pa and at 1 Pa, respectively. Both lateral and depth D distribution of these films was investigated in detail by atom probe tomography. The results of analysis are in good agreement between the average deuterium concentration and the value, expected from electromotive force measurement on a similar flat film. An enrichment of deuterium at the V/W interface was observed for both films. The origin of this D-accumulation was discussed in respect to electron transfer, mechanical stress and misfit dislocations. © 2010 Elsevier B.V. All rights reserved.

  5. Determination of solute site occupancies within γ' precipitates in nickel-base superalloys via orientation-specific atom probe tomography.

    Science.gov (United States)

    Meher, S; Rojhirunsakool, T; Nandwana, P; Tiley, J; Banerjee, R

    2015-12-01

    The analytical limitations in atom probe tomography such as resolving a desired set of atomic planes, for solving complex materials science problems, have been overcome by employing a well-developed unique and reproducible crystallographic technique, involving synergetic coupling of orientation microscopy with atom probe tomography. The crystallographic information in atom probe reconstructions has been utilized to determine the solute site occupancies in Ni-Al-Cr based superalloys accurately. The structural information in atom probe reveals that both Al and Cr occupy the same sub-lattice within the L12-ordered γ' precipitates to form Ni3(Al,Cr) precipitates in a Ni-14Al-7Cr (at%) alloy. Interestingly, the addition of Co, which is a solid solution strengthener, to a Ni-14Al-7Cr alloy results in the partial reversal of Al site occupancy within γ' precipitates to form (Ni,Al)3(Al,Cr,Co) precipitates. This unique evidence of reversal of Al site occupancy, resulting from the introduction of other solutes within the ordered structures, gives insights into the relative energetics of different sub-lattice sites when occupied by different solutes.

  6. Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies

    Science.gov (United States)

    Wilkins, R.; Powell, Kirk St. A.

    1997-01-01

    Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.

  7. Characterization of positional errors and their influence on micro four-point probe measurements on a 100 nm Ru film

    DEFF Research Database (Denmark)

    Kjær, Daniel; Hansen, Ole; Østerberg, Frederik Westergaard;

    2015-01-01

    Thin-film sheet resistance measurements at high spatial resolution and on small pads are important and can be realized with micrometer-scale four-point probes. As a result of the small scale the measurements are affected by electrode position errors. We have characterized the electrode position...... errors in measurements on Ru thin film using an Au-coated 12-point probe. We show that the standard deviation of the static electrode position error is on the order of 5 nm, which significantly affects the results of single configuration measurements. Position-error-corrected dual......-configuration measurements, however, are shown to eliminate the effect of position errors to a level limited either by electrical measurement noise or dynamic position errors. We show that the probe contact points remain almost static on the surface during the measurements (measured on an atomic scale) with a standard...

  8. Atomic force microscopy probing of receptor-nanoparticle interactions for riboflavin receptor targeted gold-dendrimer nanocomposites.

    Science.gov (United States)

    Witte, Amanda B; Leistra, Abigail N; Wong, Pamela T; Bharathi, Sophia; Refior, Kevin; Smith, Phillip; Kaso, Ola; Sinniah, Kumar; Choi, Seok Ki

    2014-03-20

    Riboflavin receptors are overexpressed in malignant cells from certain human breast and prostate cancers, and they constitute a group of potential surface markers important for cancer targeted delivery of therapeutic agents and imaging molecules. Here we report on the fabrication and atomic force microscopy (AFM) characterization of a core-shell nanocomposite consisting of a gold nanoparticle (AuNP) coated with riboflavin receptor-targeting poly(amido amine) dendrimer. We designed this nanocomposite for potential applications such as a cancer targeted imaging material based on its surface plasmon resonance properties conferred by AuNP. We employed AFM as a technique for probing the binding interaction between the nanocomposite and riboflavin binding protein (RfBP) in solution. AFM enabled precise measurement of the AuNP height distribution before (13.5 nm) and after chemisorption of riboflavin-conjugated dendrimer (AuNP-dendrimer; 20.5 nm). Binding of RfBP to the AuNP-dendrimer caused a height increase to 26.7 nm, which decreased to 22.8 nm when coincubated with riboflavin as a competitive ligand, supporting interaction of AuNP-dendrimer and its target protein. In summary, physical determination of size distribution by AFM imaging can serve as a quantitative approach to monitor and characterize the nanoscale interaction between a dendrimer-covered AuNP and target protein molecules in vitro.

  9. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic-Resolution Electron Microscopy and Field Evaporation Simulation.

    Science.gov (United States)

    Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai

    2014-04-17

    Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.

  10. Atom probe tomography of Ni-base superalloys Allvac 718Plus and Alloy 718.

    Science.gov (United States)

    Viskari, L; Stiller, K

    2011-05-01

    Atom probe tomography (APT) allows near atomic scale compositional- and morphological studies of, e.g. matrix, precipitates and interfaces in a wide range of materials. In this work two Ni-base superalloys with similar compositions, Alloy 718 and its derivative Allvac 718Plus, are subject for investigation with special emphasis on the latter alloy. The structural and chemical nuances of these alloys are important for their properties. Of special interest are grain boundaries as their structure and chemistry are important for the materials' ability to resist rapid environmentally induced crack propagation. APT has proved to be suitable for analyses of these types of alloys using voltage pulsed APT. However, for investigations of specimens containing grain boundaries and other interfaces the risk for early specimen fracture is high. Analyses using laser pulsing impose lower electrical field on the specimen thereby significantly increasing the success rate of investigations. Here, the effect of laser pulsing was studied and the derived appropriate acquisition parameters were then applied for microstructural studies, from which initial results are shown. Furthermore, the influence of the higher evaporation field experienced by the hardening γ' Ni(3)(Al,Nb) precipitates on the obtained results is discussed.

  11. Study of borehole probing methods to improve the ground characterization

    Science.gov (United States)

    Naeimipour, Ali

    Collecting geological information allows for optimizing ground control measures in underground structures. This includes understanding of the joints and discontinuities and rock strength to develop rock mass classifications. An ideal approach to collect such information is through correlating the drilling data from the roofbolters to assess rock strength and void location and properties. The current instrumented roofbolters are capable of providing some information on these properties but not fully developed for accurate ground characterization. To enhance existing systems additional instrumentation and testing was conducted in laboratory and field conditions. However, to define the geology along the boreholes, the use of probing was deemed to be most efficient approach for locating joints and structures in the ground and evaluation of rock strength. Therefore, this research focuses on selection and evaluation of proper borehole probes that can offer a reliable assessment of rock mass structure and rock strength. In particular, attention was paid to borehole televiewer to characterize rock mass structures and joints and development of mechanical rock scratcher for determination of rock strength. Rock bolt boreholes are commonly drilled in the ribs and the roof of underground environments. They are often small (about 1.5 inches) and short (mostly 2-3 meter). Most of them are oriented upward and thus, mostly dry or perhaps wet but not filled with water. No suitable system is available for probing in such conditions to identify the voids/joints and specifically to measure rock strength for evaluation of rock mass and related optimization of ground support design. A preliminary scan of available borehole probes proved that the best options for evaluation of rock structure is through analysis of borehole images, captured by optical televiewers. Laboratory and field trials with showed that these systems can be used to facilitate measurement of the location, frequency and

  12. Mapping energetics of atom probe evaporation events through first principles calculations.

    Science.gov (United States)

    Peralta, Joaquín; Broderick, Scott R; Rajan, Krishna

    2013-09-01

    The purpose of this work is to use atomistic modeling to determine accurate inputs into the atom probe tomography (APT) reconstruction process. One of these inputs is evaporation field; however, a challenge occurs because single ions and dimers have different evaporation fields. We have calculated the evaporation field of Al and Sc ions and Al-Al and Al-Sc dimers from an L1₂-Al₃Sc surface using ab initio calculations and with a high electric field applied to the surface. The evaporation field is defined as the electric field at which the energy barrier size is calculated as zero, corresponding to the minimum field that atoms from the surface can break their bonds and evaporate from the surface. The evaporation field of the surface atoms are ranked from least to greatest as: Al-Al dimer, Al ion, Sc ion, and Al-Sc dimer. The first principles results were compared with experimental data in the form of an ion evaporation map, which maps multi-ion evaporations. From the ion evaporation map of L1₂-Al₃Sc, we extract relative evaporation fields and identify that an Al-Al dimer has a lower evaporation field than an Al-Sc dimer. Additionally, comparatively an Al-Al surface dimer is more likely to evaporate as a dimer, while an Al-Sc surface dimer is more likely to evaporate as single ions. These conclusions from the experiment agree with the ab initio calculations, validating the use of this approach for modeling APT energetics.

  13. Spray characterization during vibration-induced drop atomization

    Science.gov (United States)

    Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari

    2004-02-01

    Vibration-induced drop atomization is a process of rapid droplet ejection from a larger liquid drop. This occurs when a liquid drop resting on a thin diaphragm is vibrated under the appropriate forcing conditions using an attached piezoelectric actuator. The resulting spray of small droplets is characterized in this work using high-speed imaging and particle-tracking techniques. The results show that the average spatial and velocity distributions of the spray droplets are fairly axisymmetric during all stages of the atomization. The mean diameter of the droplets depends on the forcing frequency to the -2/3 power. The ejection velocity of the spray droplets depends on both the magnitude and the rate of change of the forcing amplitude. Thus, controlling the characteristics of the forcing signal may lead to strategies for controlling the spray process in specific applications.

  14. Probing molecular interaction between transferrin and anti-transferrin by atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The interaction between transferrin (Tf) and its antibody was investigated by atomic force microscope. Tf-antibody was immobilized on the Au-coated glass slide, and the specific combination between antibody and antigen was also characterized by AFM. The results showed that holo-transferrin was jogged with anti-transferrin, and binded anti-tran- sferrin more tightly than apo-transferrin. The force- distance curves revealed that the affinity of anti-trans- ferrin and holo-transferrin was much stronger than that of apo-transferrin.

  15. Characterization of RF He-N2/Ar mixture plasma via Langmuir probe and optical emission spectroscopy techniques

    Science.gov (United States)

    Younus, Maria; Rehman, N. U.; Shafiq, M.; Hussain, S. S.; Zakaullah, M.; Zaka-ul-Islam, M.

    2016-08-01

    A Magnetic Pole Enhanced inductively coupled RF H e - N 2 / A r plasma is characterized using a Langmuir probe and optical emission spectroscopy (OES) techniques. The effect of helium mixing on electron density ( n e ) and temperature ( T e ) , electron energy probability functions (EEPFs), [ N ] atomic density, and N 2 dissociation is investigated. A Langmuir probe and a zero slope method based on trace rare gas-optical emission spectroscopy (TRG-OES) are employed to measure the electron temperature. It is noted that the electron temperature shows an increasing trend for both methods. However, the temperature measured by a zero slope method T e ( Z . S ) approaches the temperature measured by a Langmuir probe; T e ( L . P ) at 56% and above helium concentration in the discharge. "Advance actinometry" is employed to monitor the variation in [ N ] atomic density with helium concentration and gas pressure. It is noted that [ N ] atomic density increases at 56% and above helium in the discharge, which is consistent with the trend of electron temperature and EEPFs. A drastic enhancement in N 2 dissociation fraction D 1 determined by "advance actinometry" is noted at 56% and above helium concentration in the mixture due to modifications in different population and depopulation mechanisms. However, it is also noted that the dissociation fraction D 2 determined by intensity ratio method increases linearly with helium addition.

  16. Near-grain-boundary characterization by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pramanick, A.K., E-mail: pramanick@nmlindia.org [MST Division, National Metallurgical Laboratory, Jamshedpur 831007 (India); Sinha, A. [MST Division, National Metallurgical Laboratory, Jamshedpur 831007 (India); Sastry, G.V.S. [Centre of Advanced Study, Department of Metallurgical Engineering, Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Ghosh, R.N. [MST Division, National Metallurgical Laboratory, Jamshedpur 831007 (India)

    2009-05-15

    Characterization of near-grain boundary is carried out by atomic force microscopy (AFM). It has been observed to be the most suitable technique owing to its capability to investigate the surface at high resolution. Commercial purity-grade nickel processed under different conditions, viz., (i) cold-rolled and annealed and (ii) thermally etched condition without cold rolling, is considered in the present study. AFM crystallographic data match well with the standard data. Hence, it establishes two grain-boundary relations viz., plane matching and coincidence site lattice (CSL {Sigma}=9) relation for the two different sample conditions.

  17. Preparation and Characterization of Fluorescence Probe from Assembly Hydroxyapatite Nanocomposite

    Directory of Open Access Journals (Sweden)

    Li Guang-Ming

    2010-01-01

    Full Text Available Abstract A new nanocomposite fluorescence probe with thioglycolic acid (TA functional layers embedded inside the hydroxyapatite nanoribbon spherulites has been synthesized. The fluorescence intensity of the novel probe is about 1.5–3.3-fold increase compared with the probe containing no TA. When used to detect cadmium ion, the most of original assembly nanoribbon spherulites structure in the novel probe is found to have been damaged to new flake structures. The mechanism of determining cadmium ion in alcohol solution has been studied. The present systematic study provides significant information on the effect of assembly nanostructure on the metal-enhanced fluorescence phenomenon.

  18. An atom probe perspective on phase separation and precipitation in duplex stainless steels

    Science.gov (United States)

    Guo, Wei; Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel; Young, George A.; Poplawsky, Jonathan D.

    2016-06-01

    Three-dimensional chemical imaging of Fe-Cr alloys showing Fe-rich (α)/Cr-rich (α‧) phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe-Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100-10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni-Mn-Si-Cu-rich G-phase precipitates form at the α/α‧ interfaces in both alloys. For the 2101 alloy, Cu clusters act to form a nucleus, around which a Ni-Mn-Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core-shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby-Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30-36). ).

  19. Nanoscale Stoichiometric Analysis of a High-Temperature Superconductor by Atom Probe Tomography.

    Science.gov (United States)

    Pedrazzini, Stella; London, Andrew J; Gault, Baptiste; Saxey, David; Speller, Susannah; Grovenor, Chris R M; Danaie, Mohsen; Moody, Michael P; Edmondson, Philip D; Bagot, Paul A J

    2017-01-31

    The functional properties of the high-temperature superconductor Y1Ba2Cu3O7-δ (Y-123) are closely correlated to the exact stoichiometry and oxygen content. Exceeding the critical value of 1 oxygen vacancy for every five unit cells (δ>0.2, which translates to a 1.5 at% deviation from the nominal oxygen stoichiometry of Y7.7Ba15.3Cu23O54-δ ) is sufficient to alter the superconducting properties. Stoichiometry at the nanometer scale, particularly of oxygen and other lighter elements, is extremely difficult to quantify in complex functional ceramics by most currently available analytical techniques. The present study is an analysis and optimization of the experimental conditions required to quantify the local nanoscale stoichiometry of single crystal yttrium barium copper oxide (YBCO) samples in three dimensions by atom probe tomography (APT). APT analysis required systematic exploration of a wide range of data acquisition and processing conditions to calibrate the measurements. Laser pulse energy, ion identification, and the choice of range widths were all found to influence composition measurements. The final composition obtained from melt-grown crystals with optimized superconducting properties was Y7.9Ba10.4Cu24.4O57.2.

  20. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms.

    Science.gov (United States)

    Christensen, Thomas; Yan, Wei; Raza, Søren; Jauho, Antti-Pekka; Mortensen, N Asger; Wubs, Martijn

    2014-02-25

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss spectroscopy, and light scattering. These constitute two near-field and one far-field measurements, with zero-, one-, and two-dimensional excitation sources, respectively. We search for the clearest signatures of hydrodynamic pressure waves in nanospheres. We employ a linearized hydrodynamic model, and Mie-Lorenz theory is applied for each case. Nonlocal response shows its mark in all three configurations, but for the two near-field measurements, we predict especially pronounced nonlocal effects that are not exhibited in far-field measurements. Associated with every multipole order is not only a single blueshifted surface plasmon but also an infinite series of bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii. For selected metals, we predict hydrodynamic multipolar plasmons to be measurable on single nanospheres.

  1. Atom probe tomography investigation of lath boundary segregation and precipitation in a maraging stainless steel.

    Science.gov (United States)

    Thuvander, Mattias; Andersson, Marcus; Stiller, Krystyna

    2013-09-01

    Lath boundaries in a maraging stainless steel of composition 13Cr-8Ni-2Mo-2Cu-1Ti-0.7Al-0.3Mn-0.2Si-0.03C (at%) have been investigated using atom probe tomography following aging at 475 °C for up to 100 h. Segregation of Mo, Si and P to the lath boundaries was observed already after 5 min of aging, and the amount of segregation increases with aging time. At lath boundaries also precipitation of η-Ni₃(Ti, Al) and Cu-rich 9R, in contact with each other, takes place. These co-precipitates grow with time and because of coarsening the area number density decreases. After 100 h of aging a ∼5 nm thick film-like precipitation of a Mo-rich phase was observed at the lath boundaries. From the composition of the film it is suggested that the phase in question is the quasicrystalline R' phase. The film is perforated with Cu-rich 9R and η-Ni₃(Ti, Al) co-precipitates. Not all precipitate types present in the matrix do precipitate at the lath boundaries; the Si-containing G phase and γ'-Ni₃(Ti, Al, Si) and the Cr-rich α' phase were not observed at the lath boundaries.

  2. Three-dimensional atom probe study of Fe-B-based nanocrystalline soft magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.M. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Ohkubo, T. [Magnetic Materials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)] [CREST, Japan Science and Technology Agency (Japan); Ohta, M.; Yoshizawa, Y. [Materials Development Laboratory, New Business Development Center, Hitachi Metals, Ltd., Kumagaya 360-0843 (Japan); Hono, K., E-mail: kazuhiro.hono@nims.go.jp [Magnetic Materials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)] [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan)] [CREST, Japan Science and Technology Agency (Japan)

    2009-09-15

    Solute clustering and partitioning in new Fe-B-based soft magnetic materials with high saturation magnetic flux density (B{sub s}), (Fe{sub 0.85}B{sub 0.15}){sub 100-x}Cu{sub x} (x = 0.0, 1.0, and 1.5) and Fe{sub 82.65}Cu{sub 1.35}Si{sub y}B{sub 16-y} (y = 0.0, 2.0, and 5.0) melt-spun alloys, were investigated by three-dimensional atom probe and transmission electron microscopy. Although Cu clusters form after annealing in all the samples, it was found that only the clusters of 4-6 nm can serve as heterogeneous nucleation sites for {alpha}-Fe. While annealing the Si-free alloys at 410 deg. C led to the precipitation of Fe{sub 3}B, only {alpha}-Fe nanocrystals were observed in the Si-containing alloys. Lorenz TEM observation indicated the Fe{sub 3}B particles pin magnetic domain walls. The Fe{sub 82.65}Cu{sub 1.35}Si{sub y}B{sub 16-y} alloy with y = 2.0 crystallized by annealing at 400 deg. C exhibited optimal nanocrsytal/amorphous microstructure without the precipitation of Fe{sub 3}B, which led to the lowest coercivity while keeping a high B{sub s} {approx}1.85 T.

  3. Quantitative chemical-structure evaluation using atom probe tomography: Short-range order analysis of Fe–Al

    Energy Technology Data Exchange (ETDEWEB)

    Marceau, R.K.W., E-mail: r.marceau@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Ceguerra, A.V.; Breen, A.J. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Raabe, D. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Ringer, S.P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia)

    2015-10-15

    Short-range-order (SRO) has been quantitatively evaluated in an Fe–18Al (at%) alloy using atom probe tomography (APT) data and by calculation of the generalised multicomponent short-range order (GM-SRO) parameters, which have been determined by shell-based analysis of the three-dimensional atomic positions. The accuracy of this method with respect to limited detector efficiency and spatial resolution is tested against simulated D0{sub 3} ordered data. Whilst there is minimal adverse effect from limited atom probe instrument detector efficiency, the combination of this with imperfect spatial resolution has the effect of making the data appear more randomised. The value of lattice rectification of the experimental APT data prior to GM-SRO analysis is demonstrated through improved information sensitivity. - Highlights: • Short-range-order (SRO) is quantitatively evaluated using atom probe tomography data. • Chemical species-specific SRO parameters have been calculated. • The accuracy of this method is tested against simulated D0{sub 3} ordered data. • Imperfect spatial resolution combined with finite detector efficiency causes a randomising effect. • Lattice rectification of the data prior to GM-SRO analysis is demonstrated to improve information sensitivity.

  4. Development of Two-Photon Pump Polarization Spectroscopy Probe Technique Tpp-Psp for Measurements of Atomic Hydrogen .

    Science.gov (United States)

    Satija, Aman; Lucht, Robert P.

    2015-06-01

    Atomic hydrogen (H) is a key radical in combustion and plasmas. Accurate knowledge of its concentration can be used to better understand transient phenomenon such as ignition and extinction in combustion environments. Laser induced polarization spectroscopy is a spatially resolved absorption technique which we have adapted for quantitative measurements of H atom. This adaptation is called two-photon pump, polarization spectroscopy probe technique (TPP-PSP) and it has been implemented using two different laser excitation schemes. The first scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-3P levels using a circularly polarized 656-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 656 nm. As a result, the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. The laser beams were created by optical parametric generation followed by multiple pulse dye amplification stages. This resulted in narrow linewidth beams which could be scanned in frequency domain and varied in energy. This allowed us to systematically investigate saturation and Stark effect in 2S-3P transitions with the goal of developing a quantitative H atom measurement technique. The second scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-4P transitions using a circularly polarized 486-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 486 nm. As a result the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. A dye laser was pumped by third harmonic of a Nd:YAG laser to create a laser beam

  5. Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy.

    Science.gov (United States)

    Yang, Yong; Wang, Hong; Erie, Dorothy A

    2003-02-01

    Atomic force microscopy (AFM) has been applied in many biological investigations in the past 15 years. This review focuses on the application of AFM for quantitatively characterizing the structural and thermodynamic properties of protein-protein and protein-nucleic acid complexes. AFM can be used to determine the stoichiometries and association constants of multiprotein assemblies and to quantify changes in conformations of proteins and protein-nucleic acid complexes. In addition, AFM in solution permits the observation of the dynamic properties of biomolecular complexes and the measurement of intermolecular forces between biomolecules. Recent advances in cryogenic AFM, AFM on two-dimensional crystals, carbon nanotube probes, solution imaging, high-speed AFM, and manipulation capabilities enhance these applications by improving AFM resolution and the dynamic and operative capabilities of the AFM. These developments make AFM a powerful tool for investigating the biomolecular assemblies and interactions that govern gene regulation.

  6. Interpretation of atom probe tomography data for the intermetallic TiAl+Nb by means of field evaporation simulation

    KAUST Repository

    Boll, Torben

    2013-01-01

    In this paper simulations of the field evaporation process during field ion microscopy (FIM) and atom probe tomography (APT) are presented and compared with experimental data. The Müller-Schottky-model [1] was extended to include the local atomic arrangement on the evaporation process of atoms. This arrangement was described by the sum of the next-neighbor-binding-energies, which differ for an atom of type A, depending on how many A-A, B-B or A-B bonds are present. Thus simulations of APT-data of intermetallic phases become feasible. In this study simulations of L10-TiAl with additions of Nb are compared with experimental data. Certain artifacts, which appear for experimental data are treated as well. © 2012 Elsevier B.V.

  7. Synthesis and characterization of arylamine derivatives of rauwolscine as molecular probes for alpha 2-adrenergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lanier, S.M.; Graham, R.M.; Hess, H.J.; Grodski, A.; Repaske, M.G.; Nunnari, J.M.; Limbird, L.E.; Homcy, C.J.

    1987-06-01

    The selective alpha 2-adrenergic receptor antagonist rauwolscine was structurally modified to yield a series of arylamine carboxamide derivatives, which were investigated as potential molecular probes for the localization and structural characterization of alpha 2-adrenergic receptors. The arylamine carboxamides differ in the number of carbon atoms separating the reactive phenyl moiety from the fused ring structure of the parent compound, rauwolscine carboxylate. Competitive inhibition studies with (/sup 3/H)rauwolscine in rat kidney membranes indicate that the affinity for the carboxamide derivatives is inversely related to the length of the carbon spacer arm with rauwolscine 4-aminophenyl carboxamide exhibiting the highest affinity (Kd = 2.3 +/- 0.2 nM). Radioiodination of rau-AMPC yields a ligand, /sup 125/I-rau-AMPC, which binds to rat kidney alpha 2-adrenergic receptors with high affinity, as determined by both kinetic analysis (Kd = k2/k1 = 0.016 min-1/2.1 X 10(7) M-1 min-1 = 0.76 nM) and equilibrium binding studies (Kd = 0.78 +/- 0.16 nM). /sup 125/I-rau-AMPC was quantitatively converted to the photolabile arylazide derivative 17 alpha-hydroxy-20 alpha-yohimban-16 beta-(N-4-azido-3-(/sup 125/I)iodophenyl) carboxamide (/sup 125/I-rau-AZPC). In a partially purified receptor preparation from porcine brain, this compound photolabels a major (Mr = 62,000) peptide. The labeling of this peptide is inhibited by adrenergic agonists and antagonists with a rank order of potency consistent with an alpha 2-adrenergic receptor binding site. Both /sup 125/I-rau-AMPC and the photolabile arylazide derivative, /sup 125/I-rau-AZPC, should prove useful as molecular probes for the structural and biochemical characterization of alpha 2-adrenergic receptors.

  8. Probing Atomic Structure and Majorana Wavefunctions in Mono-Atomic Fe-chains on Superconducting Pb-Surface

    CERN Document Server

    Pawlak, Remy; Klinovaja, Jelena; Meier, Tobias; Kawai, Shigeki; Glatzel, Thilo; Loss, Daniel; Meyer, Ernst

    2015-01-01

    Motivated by the striking promise of quantum computation, Majorana bound states (MBSs) in solid-state systems have attracted wide attention in recent years. In particular, the wavefunction localization of MBSs is a key feature and crucial for their future implementation as qubits. Here, we investigate the spatial and electronic characteristics of topological superconducting chains of iron atoms on the surface of Pb(110) by combining scanning tunneling microscopy (STM) and atomic force microscopy (AFM). We demonstrate that the Fe chains are mono-atomic, structured in a linear fashion, and exhibit zero-bias conductance peaks at their ends which we interprete as signature for a Majorana bound state. Spatially resolved conductance maps of the atomic chains reveal that the MBSs are well localized at the chain ends (below 25 nm), with two localization lengths as predicted by theory. Our observation lends strong support to use MBSs in Fe chains as qubits for quantum computing devices.

  9. Quenchant Characterization System Based on Application of Thermal Probes of Typical Steels

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-ting; ZHANG Li-wen; PEI Ji-bin; WANG Fu-gang; YU Cheng-xin

    2004-01-01

    A system was developed to identify characteristics of quenchants. It consists of computerized hardware,temperature acquisition software as well as changeable probes of steels. The feature of the ability to use probes made of any metallic material enables evaluation of hardening power of quenchants. Three thermal couples located on the same cross-section plane in the middle of probe's length give cooling curves that present cooling behavior at different depths from the surface of probe. Microstructure and hardness of the quenched probes on the same plane in the middle of probe's length from surface to center was investigated to estimate hardening effect. A number of quenchants were tested by this characterization system with several thermal probes of typical steels. Experimental data were stored in QuenDB quenchant database, which was designed for quenchants identification and hardness distribution storage.

  10. Voltage-pulsed and laser-pulsed atom probe tomography of a multiphase high-strength low-carbon steel.

    Science.gov (United States)

    Mulholland, Michael D; Seidman, David N

    2011-12-01

    The differences in artifacts associated with voltage-pulsed and laser-pulsed (wavelength = 532 or 355 nm) atom-probe tomographic (APT) analyses of nanoscale precipitation in a high-strength low-carbon steel are assessed using a local-electrode atom-probe tomograph. It is found that the interfacial width of nanoscale Cu precipitates increases with increasing specimen apex temperatures induced by higher laser pulse energies (0.6-2 nJ pulse(-1) at a wavelength of 532 nm). This effect is probably due to surface diffusion of Cu atoms. Increasing the specimen apex temperature by using pulse energies up to 2 nJ pulse(-1) at a wavelength of 532 nm is also found to increase the severity of the local magnification effect for nanoscale M2C metal carbide precipitates, which is indicated by a decrease of the local atomic density inside the carbides from 68 ± 6 nm(-3) (voltage pulsing) to as small as 3.5 ± 0.8 nm(-3). Methods are proposed to solve these problems based on comparisons with the results obtained from voltage-pulsed APT experiments. Essentially, application of the Cu precipitate compositions and local atomic density of M2C metal carbide precipitates measured by voltage-pulsed APT to 532 or 355 nm wavelength laser-pulsed data permits correct quantification of precipitation.

  11. Atom probe study of sodium distribution in polycrystalline Cu(In,Ga)Se{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Cadel, E. [Groupe de Physique des Materiaux (GPM), UMR 6634 CNRS, Avenue de l' Universite BP 12, 76801 Saint Etienne de Rouvray (France); Barreau, N., E-mail: nicolas.barreau@univ-nantes.fr [Institut des Materiaux Jean Rouxel (IMN), UMR 6502 CNRS, 2 rue de la Houssiniere BP 32229, 44322 Nantes cedex 3 (France); Kessler, J. [Institut des Materiaux Jean Rouxel (IMN), UMR 6502 CNRS, 2 rue de la Houssiniere BP 32229, 44322 Nantes cedex 3 (France); Pareige, P. [Groupe de Physique des Materiaux (GPM), UMR 6634 CNRS, Avenue de l' Universite BP 12, 76801 Saint Etienne de Rouvray (France)

    2010-04-15

    This article reports the first investigations of CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGSe) polycrystalline thin films by means of atom probe tomography. Attention is focused on the distribution of Na atoms within the films. Both Na-containing and Na-free CIGSe thin films have been investigated. When Na is available during the CIGSe coevaporation, it is observed to be mainly segregated at the grain boundaries of the films; however, it is also detected within the grains of CIGSe at very low concentration.

  12. A versatile LabVIEW and FPGA-based scanned probe microscope for in-operando electronic device characterization

    CERN Document Server

    Berger, Andrew J; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-01-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In-operando characterization of such devices by scanned probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanned probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically-biased graphene FET device. The c...

  13. Characterization of new drug delivery nanosystems using atomic force microscopy

    Science.gov (United States)

    Spyratou, Ellas; Mourelatou, Elena A.; Demetzos, C.; Makropoulou, Mersini; Serafetinides, A. A.

    2015-01-01

    Liposomes are the most attractive lipid vesicles for targeted drug delivery in nanomedicine, behaving also as cell models in biophotonics research. The characterization of the micro-mechanical properties of drug carriers is an important issue and many analytical techniques are employed, as, for example, optical tweezers and atomic force microscopy. In this work, polyol hyperbranched polymers (HBPs) have been employed along with liposomes for the preparation of new chimeric advanced drug delivery nanosystems (Chi-aDDnSs). Aliphatic polyester HBPs with three different pseudogenerations G2, G3 and G4 with 16, 32, and 64 peripheral hydroxyl groups, respectively, have been incorporated in liposomal formulation. The atomic force microscopy (AFM) technique was used for the comparative study of the morphology and the mechanical properties of Chi-aDDnSs and conventional DDnS. The effects of both the HBPs architecture and the polyesters pseudogeneration number in the stability and the stiffness of chi-aDDnSs were examined. From the force-distance curves of AFM spectroscopy, the Young's modulus was calculated.

  14. Using Atom-Probe Tomography to Understand Zn O ∶Al /SiO 2/Si Schottky Diodes

    Science.gov (United States)

    Jaramillo, R.; Youssef, Amanda; Akey, Austin; Schoofs, Frank; Ramanathan, Shriram; Buonassisi, Tonio

    2016-09-01

    We use electronic transport and atom-probe tomography to study Zn O ∶Al /SiO 2/Si Schottky diodes on lightly doped n - and p -type Si. We vary the carrier concentration in the ZnO ∶Al films by 2 orders of magnitude, but the Schottky barrier height remains nearly constant. Atom-probe tomography shows that Al segregates to the interface, so that the ZnO ∶Al at the junction is likely to be metallic even when the bulk of the ZnO ∶Al film is semiconducting. We hypothesize that the observed Fermi-level pinning is connected to the insulator-metal transition in doped ZnO. This implies that tuning the band alignment at oxide/Si interfaces may be achieved by controlling the transition between localized and extended states in the oxide, thereby changing the orbital hybridization across the interface.

  15. Atmospheric Solid Analysis Probe-Ion Mobility Mass Spectrometry: An Original Approach to Characterize Grafting on Cyclic Olefin Copolymer Surfaces.

    Science.gov (United States)

    Vieillard, Julien; Hubert-Roux, Marie; Brisset, Florian; Soulignac, Cecile; Fioresi, Flavia; Mofaddel, Nadine; Morin-Grognet, Sandrine; Afonso, Carlos; Le Derf, Franck

    2015-12-01

    A cyclic olefin copolymer (COC) was grafted with aryl layers from aryldiazonium salts, and then we combined infrared spectrometry, atomic force microscopy (AFM), and ion mobility mass spectrometry with atmospheric solid analysis probe ionization (ASAP-IM-MS) to characterize the aryl layers. ASAP is a recent atmospheric ionization method dedicated to the direct analysis of solid samples. We demonstrated that ASAP-IM-MS is complementary to other techniques for characterizing bromine and sulfur derivatives of COC on surfaces. ASAP-IM-MS was useful for optimizing experimental grafting conditions and to elucidate hypotheses around aryl layer formation during the grafting process. Thus, ASAP-IM-MS is a good candidate tool to characterize covalent grafting on COC surfaces.

  16. Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity

    DEFF Research Database (Denmark)

    Gammelmark, S.; Molmer, K.; Alt, W.

    2014-01-01

    We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian......, the atomic state is determined in a Bayesian manner from the measurement data, and we present an iterative protocol, which determines both the atomic state and the model parameters. As a new element in the treatment of observed quantum systems, we employ a Bayesian approach that conditions the atomic state...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...

  17. Laser-assisted atom probe tomography of Ti/TiN films deposited on Si.

    Science.gov (United States)

    Sanford, N A; Blanchard, P T; White, R; Vissers, M R; Diercks, D R; Davydov, A V; Pappas, D P

    2017-03-01

    Laser-assisted atom probe tomography (L-APT) was used to examine superconducting TiN/Ti/TiN trilayer films with nominal respective thicknesses of 5/5/5 (nm). Such materials are of interest for applications that require large arrays of microwave kinetic inductance detectors. The trilayers were deposited on Si substrates by reactive sputtering. Electron energy loss microscopy performed in a scanning transmission electron microscope (STEM/EELS) was used to corroborate the L-APT results and establish the overall thicknesses of the trilayers. Three separate batches were studied where the first (bottom) TiN layer was deposited at 500°C (for all batches) and the subsequent TiN/Ti bilayer was deposited at ambient temperature, 250°C, and 500°C, respectively. L-APT rendered an approximately planar TiN/Si interface by making use of plausible mass-spectral assignments to N3(1+), SiN(1+), and SiO(1+). This was necessary since ambiguities associated with the likely simultaneous occurrence of Si(1+) and N2(1+) prevented their use in rendering the TiN/Si interface upon reconstruction. The non-superconducting Ti2N phase was also revealed by L-APT. Neither L-APT nor STEM/EELS rendered sharp Ti/TiN interfaces and the contrast between these layers diminished with increased film deposition temperature. L-APT also revealed that hydrogen was present in varying degrees in all samples including control samples that were composed of single layers of Ti or TiN.

  18. Atom probe tomography investigation of lath boundary segregation and precipitation in a maraging stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Thuvander, Mattias, E-mail: mattias.thuvander@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Andersson, Marcus [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); R and D Centre, Sandvik Materials Technology, SE-811 81 Sandviken (Sweden); Stiller, Krystyna [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2013-09-15

    Lath boundaries in a maraging stainless steel of composition 13Cr–8Ni–2Mo–2Cu–1Ti–0.7Al–0.3Mn–0.2Si–0.03C (at%) have been investigated using atom probe tomography following aging at 475 °C for up to 100 h. Segregation of Mo, Si and P to the lath boundaries was observed already after 5 min of aging, and the amount of segregation increases with aging time. At lath boundaries also precipitation of η-Ni{sub 3}(Ti, Al) and Cu-rich 9R, in contact with each other, takes place. These co-precipitates grow with time and because of coarsening the area number density decreases. After 100 h of aging a ∼5 nm thick film-like precipitation of a Mo-rich phase was observed at the lath boundaries. From the composition of the film it is suggested that the phase in question is the quasicrystalline R′ phase. The film is perforated with Cu-rich 9R and η-Ni{sub 3}(Ti, Al) co-precipitates. Not all precipitate types present in the matrix do precipitate at the lath boundaries; the Si-containing G phase and γ′-Ni{sub 3}(Ti, Al, Si) and the Cr-rich α′ phase were not observed at the lath boundaries. - Highlights: ► Lath boundaries in a maraging steel were analyzed by APT. ► Segregation of Mo, Si and P was measured. ► Precipitation of η-Ni{sub 3}(Ti, Al) and Cu-rich 9R was observed. ► After 100 h of aging a quasicrystalline Mo-rich film was observed.

  19. Dimensional characterization of extracellular vesicles using atomic force microscopy

    Science.gov (United States)

    Sebaihi, N.; De Boeck, B.; Yuana, Y.; Nieuwland, R.; Pétry, J.

    2017-03-01

    Extracellular vesicles (EV) are small biological entities released from cells into body fluids. EV are recognized as mediators in intercellular communication and influence important physiological processes. It has been shown that the concentration and composition of EV in body fluids may differ from healthy subjects to patients suffering from particular disease. So, EV have gained a strong scientific and clinical interest as potential biomarkers for diagnosis and prognosis of disease. Due to their small size, accurate detection and characterization of EV remain challenging. The aim of the presented work is to propose a characterization method of erythrocyte-derived EV using atomic force microscopy (AFM). The vesicles are immobilized on anti-CD235a-modified mica and analyzed by AFM under buffer liquid and dry conditions. EV detected under both conditions show very similar sizes namely ~30 nm high and ~90 nm wide. The size of these vesicles remains stable over drying time as long as 7 d at room temperature. Since the detected vesicles are not spherical, EV are characterized by their height and diameter, and not only by the height as is usually done for spherical nanoparticles. In order to obtain an accurate measurement of EV diameters, the geometry of the AFM tip was evaluated to account for the lateral broadening artifact inherent to AFM measurements. To do so, spherical polystyrene (PS) nanobeads and EV were concomitantly deposited on the same mica substrate and simultaneously measured by AFM under dry conditions. By applying this procedure, direct calibration of the AFM tip could be performed together with EV characterization under identical experimental conditions minimizing external sources of uncertainty on the shape and size of the tip, thus allowing standardization of EV measurement.

  20. A Feasibility Study of UV Laser Assisted 3D-Atom Probe Analysis of AlGaN/GaN HEMTs

    Science.gov (United States)

    2013-03-05

    Final Report for AOARD Grant-FA2386-11-1-4031 “A feasibility study of UV laser assisted 3D-atom probe analysis of AlGaN/ GaN HEMTs ” March 5...20-06-2011 to 19-06-2012 4. TITLE AND SUBTITLE A feasibility study of UV laser assisted 3D-atom probe analysis of AlGaN/ GaN HEMTs 5a. CONTRACT...gate region (gate metal, interfacial layer and defects, and AlGaN/ GaN epilayers) of an AFRL HEMT using laser assisted 3-D atom probe (3DAP

  1. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.

    Science.gov (United States)

    Smirnov, Waldemar; Kriele, Armin; Hoffmann, René; Sillero, Eugenio; Hees, Jakob; Williams, Oliver A; Yang, Nianjun; Kranz, Christine; Nebel, Christoph E

    2011-06-15

    In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are

  2. Atom probe tomography and transmission electron microscopy of a Mg-doped AlGaN/GaN superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, S.E., E-mail: sb534@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Ulfig, R.M.; Clifton, P.H. [Imago Scientific Instruments Corporation, 5500 Nobel Drive, Madison, WI 53711 (United States); Kappers, M.J.; Barnard, J.S.; Humphreys, C.J.; Oliver, R.A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2011-02-15

    The electronic characteristics of semiconductor-based devices are greatly affected by the local dopant atom distribution. In Mg-doped GaN, the clustering of dopants at structural defects has been widely reported, and can significantly affect p-type conductivity. We have studied a Mg-doped AlGaN/GaN superlattice using transmission electron microscopy (TEM) and atom probe tomography (APT). Pyramidal inversion domains were observed in the TEM and the compositional variations of the dopant atoms associated with those defects have been studied using APT. Rarely has APT been used to assess the compositional variations present due to structural defects in semiconductors. Here, TEM and APT are used in a complementary fashion, and the strengths and weaknesses of the two techniques are compared. -- Research Highlights: {yields} Mg-rich regions of approximately 5 nm in size were revealed in Mg-doped AlGaN/GaN superlattices using atom probe tomography (APT). {yields} Transmission electron microscopy (TEM) of the superlattice sample showed pyramidal inversion domains, concluded to be the same Mg-rich features observed by APT. {yields} The information gained from both the 3D APT study and the 2D TEM characterisation was then compared to determine the strengths and weaknesses of each technique in analysing nanoscale features in nitride materials.

  3. Probing the properties of quantum matter; an experimental study in three parts using ultracold atoms

    NARCIS (Netherlands)

    Bons, P.C.

    2015-01-01

    The three experiments described in this thesis investigate fundamental properties of ultracold atoms. Using laser cooling and evaporative cooling, a dilute gas of sodium atoms is cooled to ~100 nK. Under these circumstances a Bose-Einstein condensate (BEC) forms, where millions of atoms collapse int

  4. Optical characterication of probes for photon scanning tunnelling microscopy

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    The photon scanning tunnelling microscope is a well-established member of the family of scanning near-field optical microscopes used for optical imaging at the sub-wavelength scale. The quality of the probes, typically pointed uncoated optical fibres, used is however difficult to evaluate...

  5. Controllable growth and characterizations of hybrid spiral-like atomically thin molybdenum disulfide

    Science.gov (United States)

    Hao, Song; Yang, Bingchu; Gao, Yongli

    2016-10-01

    Monolayer MoS2 is an emerging two-dimensional semiconductor with wide-ranging potential applications in novel electronic and optoelectronic devices. Here, we reported controlled vapor phase growth of hybrid spiral-like MoS2 crystals investigated by multiple means of X-Ray photoemission spectroscopy, scanning electron microscopy, atomic force microscopy, kelvin probe force microscopy, Raman and Photoluminescence techniques. Morphological characterizations reveal an intriguing hybrid spiral-like MoS2 feature whose lower planes are AB Bernal stacking and upper structure is spiral. We ascribe the hybrid spiral-like structure to a screw dislocation drive growth mechanism owing to lower supersaturation and layer-by-layer growth mode. In addition, the electrostatic properties of MoS2 microflakes with hybrid spiral structures are obvious inhomogeneous and dependent on morphology manifested by kelvin probe force microscopy. Our work deepens the understanding of growth mechanisms of CVD-grown MoS2, which is also adoptable to other TMDC materials.

  6. Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography.

    Science.gov (United States)

    Schmidt, Joel E; Poplawsky, Jonathan D; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D A Matthijs; Meirer, Florian; Bare, Simon R; Weckhuysen, Bert M

    2016-09-01

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using (13) C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 (13) C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.

  7. Pre-implantation electrochemical characterization of a Parylene C sheath microelectrode array probe.

    Science.gov (United States)

    Hara, Seth A; Kim, Brian J; Kuo, Jonathan T W; Lee, Curtis; Gutierrez, Christian A; Hoang, Tuan; Meng, Ellis

    2012-01-01

    We present the preliminary electrochemical characterization of 3D Parylene C sheath microelectrode array probes towards realizing reliable chronic neuroprosthetic recordings. Electrochemical techniques were used to verify electrode integrity after our novel post-fabrication thermoforming process was applied to flat surface micromachined structures to achieve a hollow sheath probe shape. Characterization of subsequent neurotrophic coatings was performed and accelerated life testing was used to simulate six months in vivo. Prior to probe implantation, crosstalk was measured and electrode surface properties were evaluated through the use of electrochemical impedance spectroscopy.

  8. Isolation and characterization of DNA probes for human chromosome 21.

    Science.gov (United States)

    Watkins, P C

    1990-01-01

    A coordinated effort to map and sequence the human genome has recently become a national priority. Chromosome 21, the smallest human chromosome accounting for less than 2% of the human genome, is an attractive model system for developing and evaluating genome mapping technology. Several strategies are currently being explored including the development of chromosome 21 libraries from somatic cell hybrids as reported here, the cloning of chromosome 21 in yeast artificial chromosomes (McCormick et al., 1989b), and the construction of chromosome 21 libraries using chromosome flow-sorting techniques (Fuscoe et al., 1989). This report describes the approaches used to identify DNA probes that are useful for mapping chromosome 21. Probes were successfully isolated from both phage and cosmid libraries made from two somatic cell hybrids that contain human chromosome 21 as the only human chromosome. The 15 cosmid clones from the WA17 library, reduced to cloned DNA sequences of an average size of 3 kb, total 525 kb of DNA which is approximately 1% of chromosome 21. From these clones, a set of polymorphic DNA markers that span the length of the long arm of chromosome 21 has been generated. All of the probes thus far analyzed from the WA17 libraries have been mapped to chromosome 21 both by physical and genetic mapping methods. It is therefore likely that the WA17 hybrid cell line contains human chromosome 21 as the only human component, in agreement with cytogenetic observation. The 153E7b cosmid libraries will provide an alternative source of cloned chromosome 21 DNA. Library screening techniques can be employed to obtain cloned DNA sequences from the same genetic loci of the two different chromosome 21s. Comparative analysis will allow direct estimation of DNA sequence variation for different regions of chromosome 21. Mapped DNA probes make possible the molecular analysis of chromosome 21 at a level of resolution not achievable by classical cytogenetic techniques (Graw et al

  9. Ultrafast probing of the x-ray-induced lattice and electron dynamics in graphite at atomic-resolution

    Energy Technology Data Exchange (ETDEWEB)

    Hau-Riege, S

    2010-10-07

    We used LCLS pulses to excite thin-film and bulk graphite with various different microstructures, and probed the ultrafast ion and electron dynamics through Bragg and x-ray Thomson scattering (XRTS). We pioneered XRTS at LCLS, making this technique viable for other users. We demonstrated for the first time that the LCLS can be used to characterize warm-dense-matter through Bragg and x-ray Thomson scattering. The warm-dense-matter conditions were created using the LCLS beam. Representative examples of the results are shown in the Figure above. In our experiment, we utilized simultaneously both Bragg and two Thomson spectrometers. The Bragg measurements as a function of x-ray fluence and pulse length allows us to characterize the onset of atomic motion at 2 keV with the highest resolution to date. The Bragg detector was positioned in back-reflection, providing us access to scattering data with large scattering vectors (nearly 4{pi}/{lambda}). We found a clear difference between the atomic dynamics for 70 and 300 fs pulses, and we are currently in the process of comparing these results to our models. The outcome of this comparison will have important consequences for ultrafast diffractive imaging, for which it is still not clear if atomic resolution can truly be achieved. The backward x-ray Thomson scattering data suggests that the average graphite temperature and ionization was 10 eV and 1.0, respectively, which agrees with our models. In the forward scattering data, we observed an inelastic feature in the Thomson spectrum that our models currently do not reproduce, so there is food for thought. We are in the process of writing these results up. Depending on if we can combine the Bragg and Thomson data or not, we plan to publish them in a single paper (e.g. Nature or Science) or as two separate papers (e.g. two Phys. Rev. Lett.). We will present the first analysis of the results at the APS Plasma Meeting in November 2010. We had a fantastic experience performing our

  10. The effect orientation of features in reconstructed atom probe data on the resolution and measured composition of T1 plates in an A2198 aluminium alloy.

    Science.gov (United States)

    Mullin, Maria A; Araullo-Peters, Vicente J; Gault, Baptiste; Cairney, Julie M

    2015-12-01

    Artefacts in atom probe tomography can impact the compositional analysis of microstructure in atom probe studies. To determine the integrity of information obtained, it is essential to understand how the positioning of features influences compositional analysis. By investigating the influence of feature orientation within atom probe data on measured composition in microstructural features within an AA2198 Al alloy, this study shows differences in the composition of T1 (Al2CuLi) plates that indicates imperfections in atom probe reconstructions. The data fits a model of an exponentially-modified Gaussian that scales with the difference in evaporation field between solutes and matrix. This information provides a guide for obtaining the most accurate information possible.

  11. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    Science.gov (United States)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  12. THEORETICAL ANALYSIS AND EXPERIMENTAL STUDY OF CARBON NANOTUBE PROBE AND CONVENTIONAL ATOMIC FORCE MICROSCOPY PROBE ON SURFACE ROUGHNESS

    Institute of Scientific and Technical Information of China (English)

    WANG Jinghe; WANG Hongxiang; XU Zongwei; DONG Shen; WANG Shiqian; ZHANG Huali

    2008-01-01

    In this paper, three different tips are employed, i.e., the carbon nanotube tip, monocrystalline silicon tip and silicon nitride tip. Resorting to atomic force microscope (AFM), they are used for measuring the surface roughness of indium tin oxide (ITO) film and the immunoglobulin G (IgG) proteins within the scanning area of 10 μm×10 μm and 0.5 μm×0.5 μm, respectively. Subsequently, the scanned surface of the ITO film and IgG proteins are analyzed by using fractal dimension. The results show that the fractal dimension measured by carbon nanotube tip is biggest with the highest frequency components and the most microscopic information. Therefore, the carbon nanotube tip is the ideal measuring tool for measuring super-smooth surface, which will play a more and more important role in the high-resolution imaging field.

  13. A Filtering Method to Reveal Crystalline Patterns from Atom Probe Microscopy Desorption Maps

    Science.gov (United States)

    2016-03-26

    between their evaporation and the evaporation of the previous atom . Since this time difference correlates with the location and the local structure of...APM is the only technique providing 3D atomic -scale composition information. However the amount of structural information can often be limited by...shape, the actual apex surface is not continuously smooth and presents some roughness due to the atomic nature of the surface structures . This results

  14. Electrochemical techniques for characterization of stem-loop probe and linear probe-based DNA sensors.

    Science.gov (United States)

    Lai, Rebecca Y; Walker, Bryce; Stormberg, Kent; Zaitouna, Anita J; Yang, Weiwei

    2013-12-15

    Here we present a summary of the sensor performance of the stem-loop probe (SLP) and linear probe (LP) electrochemical DNA sensors when interrogated using alternating current voltammetry (ACV), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). Specifically, we identified one critical parameter for each voltammetric technique that can be adjusted for optimal sensor performance. Overall, the SLP sensor displayed good sensor performance (i.e., 60+% signal attenuation in the presence of the target) over a wider range of experimental conditions when compared to the LP sensor. When used with ACV, the optimal frequency range was found to be between 5 and 5000 Hz, larger than the 5-100 Hz range observed with the LP sensor. A similar trend was observed for the two sensors in CV; the LP sensor was operational only at scan rates between 30 and 100 V/s, whereas the SLP sensor performed well at scan rates between 1 and 1000 V/s. Unlike ACV and CV, DPV has demonstrated to be a more versatile sensor interrogation technique for this class of sensors. Despite the minor differences in total signal attenuation upon hybridization to the target DNA, both SLP and LP sensors performed optimally under most pulse widths used in this study. More importantly, when used with longer pulse widths, both sensors showed "signal-on" behavior, which is generally more desirable for sensor applications.

  15. Simplifying Nanowire Hall Effect Characterization by Using a Three-Probe Device Design.

    Science.gov (United States)

    Hultin, Olof; Otnes, Gaute; Samuelson, Lars; Storm, Kristian

    2017-02-08

    Electrical characterization of nanowires is a time-consuming and challenging task due to the complexity of single nanowire device fabrication and the difficulty in interpreting the measurements. We present a method to measure Hall effect in nanowires using a three-probe device that is simpler to fabricate than previous four-probe nanowire Hall devices and allows characterization of nanowires with smaller diameter. Extraction of charge carrier concentration from the three-probe measurements using an analytical model is discussed and compared to simulations. The validity of the method is experimentally verified by a comparison between results obtained with the three-probe method and results obtained using four-probe nanowire Hall measurements. In addition, a nanowire with a diameter of only 65 nm is characterized to demonstrate the capabilities of the method. The three-probe Hall effect method offers a relatively fast and simple, yet accurate way to quantify the charge carrier concentration in nanowires and has the potential to become a standard characterization technique for nanowires.

  16. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  17. Characterization and Detection of Biological Weapons with Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Plomp, M; Leighton, T J; McPherson, A

    2006-09-25

    Critical gaps exist in our capabilities to rapidly characterize threat agents which could be used in attacks on facilities and military forces. DNA-based PCR and immunoassay-based techniques provide unique identification of species, strains and protein signatures of pathogens. However, differentiation between naturally occurring and weaponized bioagents and the identification of formulation signatures are beyond current technologies. One of the most effective and often the only definitive means to identify a threat agent is by its direct visualization. Atomic force microscopy (AFM) is a rapid imaging technique that covers the size range of most biothreat agents (several nanometers to tens of microns), is capable of resolving pathogen morphology and structure, and could be developed into a portable device for biological weapons (BW) field characterization. AFM can detect pathogens in aerosol, liquid, surface and soil samples while concomitantly acquiring their weaponization and threat agent digital signatures. BW morphological and structural signatures, including modifications to pathogen microstructural architecture and topology that occur during formulation and weaponization, provide the means for their differentiation from crude or purified unformulated agent, processing signatures, as well as assessment of their potential for dispersion, inhalation and environmental persistence. AFM visualization of pathogen morphology and architecture often provides valuable digital signatures and allows direct detection and identification of threat agents. We have demonstrated that pathogens, spanning the size range from several nanometers for small agricultural satellite viruses to almost half micron for pox viruses, and to several microns for bacteria and bacterial spores, can be visualized by AFM under physiological conditions to a resolution of {approx}20-30 {angstrom}. We have also demonstrated that viruses from closely related families could be differentiated by AFM on

  18. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  19. Photoelectron imaging, probe of the dynamics: from atoms... to clusters; Imagerie de photoelectrons, sonde de la dynamique: des atomes... aux agregats

    Energy Technology Data Exchange (ETDEWEB)

    Lepine, F

    2003-06-15

    This thesis concerns the study of the deexcitation of clusters and atoms by photoelectron imaging. The first part is dedicated to thermionic emission of a finite size system. A 3-dimensional imaging setup allows us to measure the time evolution of the kinetic energy spectrum of electrons emitted from different clusters (W{sub n}{sup -}, C{sub n}{sup -}, C{sub 60}). Then we have a direct access to the fundamental quantities which characterize this statistical emission: the temperature of the finite heat bath and the decay rate. The second part concerns the ionization of atomic Rydberg states placed in a static electric field. We performed the first experiment of photoionization microscopy which allows us to obtain a picture which is the macroscopic projection of the electronic wave function. Then we have access to the detail of the photoionization and particularly to the quantum properties of the electron usually confined at the atomic scale. (author)

  20. Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100 at 5 K: Probing the probe

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2012-01-01

    Full Text Available Background: Noncontact atomic force microscopy (NC-AFM now regularly produces atomic-resolution images on a wide range of surfaces, and has demonstrated the capability for atomic manipulation solely using chemical forces. Nonetheless, the role of the tip apex in both imaging and manipulation remains poorly understood and is an active area of research both experimentally and theoretically. Recent work employing specially functionalised tips has provided additional impetus to elucidating the role of the tip apex in the observed contrast.Results: We present an analysis of the influence of the tip apex during imaging of the Si(100 substrate in ultra-high vacuum (UHV at 5 K using a qPlus sensor for noncontact atomic force microscopy (NC-AFM. Data demonstrating stable imaging with a range of tip apexes, each with a characteristic imaging signature, have been acquired. By imaging at close to zero applied bias we eliminate the influence of tunnel current on the force between tip and surface, and also the tunnel-current-induced excitation of silicon dimers, which is a key issue in scanning probe studies of Si(100.Conclusion: A wide range of novel imaging mechanisms are demonstrated on the Si(100 surface, which can only be explained by variations in the precise structural configuration at the apex of the tip. Such images provide a valuable resource for theoreticians working on the development of realistic tip structures for NC-AFM simulations. Force spectroscopy measurements show that the tip termination critically affects both the short-range force and dissipated energy.

  1. Evaluation of carbon nanotube probes in critical dimension atomic force microscopes.

    Science.gov (United States)

    Choi, Jinho; Park, Byong Chon; Ahn, Sang Jung; Kim, Dal-Hyun; Lyou, Joon; Dixson, Ronald G; Orji, Ndubuisi G; Fu, Joseph; Vorburger, Theodore V

    2016-07-01

    The decreasing size of semiconductor features and the increasing structural complexity of advanced devices have placed continuously greater demands on manufacturing metrology, arising both from the measurement challenges of smaller feature sizes and the growing requirement to characterize structures in more than just a single critical dimension. For scanning electron microscopy, this has resulted in increasing sophistication of imaging models. For critical dimension atomic force microscopes (CD-AFMs), this has resulted in the need for smaller and more complex tips. Carbon nanotube (CNT) tips have thus been the focus of much interest and effort by a number of researchers. However, there have been significant issues surrounding both the manufacture and use of CNT tips. Specifically, the growth or attachment of CNTs to AFM cantilevers has been a challenge to the fabrication of CNT tips, and the flexibility and resultant bending artifacts have presented challenges to using CNT tips. The Korea Research Institute for Standards and Science (KRISS) has invested considerable effort in the controlled fabrication of CNT tips and is collaborating with the National Institute of Standards and Technology on the application of CNT tips for CD-AFM. Progress by KRISS on the precise control of CNT orientation, length, and end modification, using manipulation and focused ion beam processes, has allowed us to implement ball-capped CNT tips and bent CNT tips for CD-AFM. Using two different generations of CD-AFM instruments, we have evaluated these tip types by imaging a line/space grating and a programmed line edge roughness specimen. We concluded that these CNTs are capable of scanning the profiles of these structures, including re-entrant sidewalls, but there remain important challenges to address. These challenges include tighter control of tip geometry and careful optimization of scan parameters and algorithms for using CNT tips.

  2. Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC-coated Si probe

    Directory of Open Access Journals (Sweden)

    Zhou Jingfang

    2011-01-01

    Full Text Available Abstract Atomic force microscope (AFM equipped with diamond-like carbon (DLC-coated Si probe has been used for scratch nanolithography on Si surfaces. The effect of scratch direction, applied tip force, scratch speed, and number of scratches on the size of the scratched geometry has been investigated. The size of the groove differs with scratch direction, which increases with the applied tip force and number of scratches but decreases slightly with scratch speed. Complex nanostructures of arrays of parallel lines and square arrays are further fabricated uniformly and precisely on Si substrates at relatively high scratch speed. DLC-coated Si probe has the potential to be an alternative in AFM-based scratch nanofabrication on hard surfaces.

  3. Characterization of torque-spectroscopy techniques for probing rotary nanomotors

    NARCIS (Netherlands)

    Van Oene, M.M.

    2016-01-01

    This thesis describes developments in the characterization of torque-spectroscopy techniques, in particular magnetic and optical tweezers, with the goal of employing these techniques in studies on the bacterial flagellar motor of Escherichia coli.

  4. Atom probe tomography study on Ge{sub 1−x−y}Sn{sub x}C{sub y} hetero-epitaxial film on Ge substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji, E-mail: ejkamiyama@aol.com [Technology, GlobalWafers Japan Corp. Ltd., 6-861-5 Higashiko, Seiro, Niigata 957-0197 (Japan); Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama-ken 719-1197 (Japan); Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama-ken 719-1197 (Japan); Terasawa, Kengo; Yamaha, Takashi; Nakatsuka, Osamu [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Izunome, Koji; Kashima, Kazuhiko [Technology, GlobalWafers Japan Corp. Ltd., 6-861-5 Higashiko, Seiro, Niigata 957-0197 (Japan); Uchida, Hiroshi [Physical Analysis Technology Center, Toshiba Nanoanalysis Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan)

    2015-10-01

    We analyzed the incorporation of C atoms into a ternary alloy Ge{sub 1−x−y}Sn{sub x}C{sub y} epitaxial film on Ge substrates on a sub-nanometer scale by using atom probe tomography. Periodic atom distributions from individual (111) atomic planes were observed both in the Ge{sub 1−x−y}Sn{sub x}C{sub y} film and at the Ge substrates. Sn/C atoms had non-uniform distributions in the film. They also demonstrated a clear positive correlation in their distributions. Substitutional C atoms were only incorporated into the film when an Sn atom beam was applied onto the substrates under film growth conditions. - Highlights: • Incorporation of C atoms into epitaxial Ge{sub 1−x−y}Sn{sub x}C{sub y} film was studied. • Individual (111) atomic planes were observed by atom probe tomography. • Sn/C atoms had non-uniform distributions in the film. • Clear positive correlation in Sn/C atoms distributions was obtained.

  5. Predoping effects of boron and phosphorous on arsenic diffusion along grain boundaries in polycrystalline silicon investigated by atom probe tomography

    Science.gov (United States)

    Takamizawa, Hisashi; Shimizu, Yasuo; Inoue, Koji; Nozawa, Yasuko; Toyama, Takeshi; Yano, Fumiko; Inoue, Masao; Nishida, Akio; Nagai, Yasuyoshi

    2016-10-01

    The effect of P or B predoping on As diffusion in polycrystalline Si was investigated by atom probe tomography. In all samples, a high concentration of As was found at grain boundaries, indicating that such boundaries are the main diffusion path. However, As grain-boundary diffusion was suppressed in the B-doped sample and enhanced in the P-doped sample. In a sample codoped with both P and B, As diffusion was somewhat enhanced, indicating competition between the effects of the two dopants. The results suggest that As grain-boundary diffusion can be controlled by varying the local concentration of P or B.

  6. Construction of a New Atom-Probe and its Application to Study of Solute Behavior in Dilute Iron Base Alloys.

    Science.gov (United States)

    Al-Saleh, Kamal Amein

    An ultra-high-vacuum (UHC) time-of-flight atom -probe field ion microscope (ToF atom-probe) has been designed, constructed and operated successfully. The new ToF atom -probe is equipped with the following: (1) A poschenrieder electrostatic focusing lens for high mass resolution and noise-free performance, (2) a second chevron-channel plate -phosphor screen assembly in front of the Poschenrieder lens to be used for precise determination of the probing area and detection efficiency, (3) a quick-sample change chamber with a vacuum lock which is also used as a reaction chamber, (4) a closed-cycle liquid He refrigeration unit to cool a specimen tip down to 25 K for a better quality image, and (5) an automated data acquisition system which consists of an 8-channel digital timer with a 200 MHz internal clock and a DEC MINCII minicomputer which is capable of performing data collection at a pulse repetition rate up to 100/sec, with a mass resolution m/(DELTA)m of (TURN)1200. Using this instrument, the following alloys have been investigated: (1) Fe-0.29; 0.64; and 1.46 wt % Ti alloys. It was found that Ti segregates to the surface upon annealing the tip in vacuum at and above 650(DEGREES)C and its concentration is approximately 90% at the first layer, 20% at the second layer, 10% at the third layer and the bulk value thereafter. CO and H(,2) alone appear to have no effect at all on the segregation of Ti. However, oxygen has had profound effect on the behavior of Ti, demonstrating the initial stages of both oxidation (TiO scale formation) and internal oxidation (TiO, FeO clusters in Fe matrix) for the first time on an atomic scale. (2) Fe-0.17 wt % P alloy: P segregation to the interface was studied at the temperatures of 300 to 600(DEGREES)C. In one of the samples a carbide precipitate was found with an approximate composition of M(,5)C, where phosphorus was rejected by the M(,5)C precipitate and upon annealing the tip in vacuum P segregated at the interface.

  7. Variation of local atomic structure due to devitrification of Ni-Zr alloy thin films probed by EXAFS measurements

    Science.gov (United States)

    Bhattacharya, Debarati; Tiwari, Nidhi; Bhattacharyya, Dibyendu; Jha, S. N.; Basu, S.

    2016-05-01

    Thin film metallic glasses (TFMGs) exhibit properties superior to their bulk counterparts allowing them to be potentially useful in many practical applications. Apart from their technological interest, when converted to crystallized state (devitrification) TFMGs can also act as precursors for partially crystallized or fully crystallized forms. Such devitrified forms are attractive due to their novel structural and magnetic properties. The amorphous-to-crystalline transformation of co-sputtered Ni-Zr alloy thin films through annealing was studied using EXAFS (Extended X-ray Absorption Fine Structure) measurements. Investigation through an atomic probe gives a better insight into the local environment of the atomic species, rendering a deeper understanding of thermal evolution of such materials.

  8. Probing the dynamic structure factor of a neutral Fermi superfluid along the BCS-BEC crossover using atomic impurity qubits

    Science.gov (United States)

    Mitchison, Mark T.; Johnson, Tomi H.; Jaksch, Dieter

    2016-12-01

    We study an impurity atom trapped by an anharmonic potential, immersed within a cold atomic Fermi gas with attractive interactions that realizes the crossover from a Bardeen-Cooper-Schrieffer superfluid to a Bose-Einstein condensate. Considering the qubit comprising the lowest two vibrational energy eigenstates of the impurity, we demonstrate that its dynamics probes the equilibrium density fluctuations encoded in the dynamic structure factor of the superfluid. Observing the impurity's evolution is thus shown to facilitate nondestructive measurements of the superfluid order parameter and the contact between collective and single-particle excitation spectra. Our setup constitutes a model of an open quantum system interacting with a thermal reservoir, the latter supporting both bosonic and fermionic excitations that are also coupled to each other.

  9. Microstructured Reactors Designed by Stereolithography and Characterized by Fluorescent Probes

    Directory of Open Access Journals (Sweden)

    S. Corbel

    2008-01-01

    Full Text Available The main objective of this research was to define a structured and functionalized support for future biomedical applications (model of “low-density bioarray”. The experiments were carried out by using stereolithography process with a special SU-8 photoresist and the reproducibility of the method was studied by analyzing the surface profile of the support. Finally, a matrix of regular controlled sized wells was fabricated. Chemical reactions leading to covalent grafting were run to demonstrate that the inner surface of the wells remains still reactive after polymerization. The grafting of fluorophores with carboxylic functions activated by N-hydroxysuccinimide was studied as function of time, in order to determine the best reactions, conditions. Then, the grafting of two distinct fluorescent probes was led simultaneously inside the wells, showing the possibility of spatial localization of diverse reactions on the same support. The covalent and localized bindings were confirmed by fluorescence spectroscopy and microscopy analyses.

  10. Complete symmetry characterization in collisions involving four identical atoms

    Science.gov (United States)

    Douguet, Nicolas; Assemat, Elie; Kokoouline, Viatcheslav

    2016-10-01

    We discuss symmetry properties of a quantum system comprised of four identical atoms in different large-distance molecular configurations and derive general selection rules with possible nuclei exchange after a four-atom collision, e.g. a molecular reaction. We focus on the following important collisional processes: (1) two bound diatomic molecules, (2) a bound triatomic molecule and a free atom, and (3) a bound diatomic molecule and two free atoms. The approach employed to treat this problem is based on analyzing eigenspaces of the large-distance Hamiltonians and the corresponding constants of motion. The symmetry is then studied by decomposing a given eigenspace of the large-distance Hamiltonian in irreducible representations of the complete nuclear permutation inversion group G48 of four identical nuclei appropriate for short distances using appropriate symmetry subgroups. The final results provide selection rules for collisions of four identical atoms.

  11. Mg I as a probe of the solar chromosphere - The atomic model

    Science.gov (United States)

    Mauas, Pablo J.; Avrett, Eugene H.; Loeser, Rudolf

    1988-01-01

    This paper presents a complete atomic model for Mg I line synthesis, where all the atomic parameters are based on recent experimental and theoretical data. It is shown how the computed profiles at 4571 A and 5173 A are influenced by the choice of these parameters and the number of levels included in the model atom. In addition, observed profiles of the 5173 A b2 line and theoretical profiles for comparison (based on a recent atmospheric model for the average quiet sun) are presented.

  12. Quantitative analysis of doped/undoped ZnO nanomaterials using laser assisted atom probe tomography: Influence of the analysis parameters

    Energy Technology Data Exchange (ETDEWEB)

    Amirifar, Nooshin; Lardé, Rodrigue, E-mail: rodrigue.larde@univ-rouen.fr; Talbot, Etienne; Pareige, Philippe; Rigutti, Lorenzo; Mancini, Lorenzo; Houard, Jonathan; Castro, Celia [Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, Avenue de l' Université, BP 12, 76801 Saint Etienne du Rouvray (France); Sallet, Vincent; Zehani, Emir; Hassani, Said; Sartel, Corine [Groupe d' étude de la Matière Condensée (GEMAC), CNRS Université de Versailles St Quentin, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France); Ziani, Ahmed; Portier, Xavier [Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen, 14050 Caen (France)

    2015-12-07

    In the last decade, atom probe tomography has become a powerful tool to investigate semiconductor and insulator nanomaterials in microelectronics, spintronics, and optoelectronics. In this paper, we report an investigation of zinc oxide nanostructures using atom probe tomography. We observed that the chemical composition of zinc oxide is strongly dependent on the analysis parameters used for atom probe experiments. It was observed that at high laser pulse energies, the electric field at the specimen surface is strongly dependent on the crystallographic directions. This dependence leads to an inhomogeneous field evaporation of the surface atoms, resulting in unreliable measurements. We show that the laser pulse energy has to be well tuned to obtain reliable quantitative chemical composition measurements of undoped and doped ZnO nanomaterials.

  13. Parameters affecting the adhesion strength between a living cell and a colloid probe when measured by the atomic force microscope.

    Science.gov (United States)

    McNamee, Cathy E; Pyo, Nayoung; Tanaka, Saaya; Vakarelski, Ivan U; Kanda, Yoichi; Higashitani, Ko

    2006-03-15

    In this study, we used the colloid probe atomic force microscopy (AFM) technique to investigate the adhesion force between a living cell and a silica colloid particle in a Leibovitz's L-15 medium (L-15). The L-15 liquid maintained the pharmaceutical conditions necessary to keep the cells alive in the outside environment during the AFM experiment. The force curves in such a system showed a steric repulsion in the compression force curve, due to the compression of the cells by the colloid probe, and an adhesion force in the decompression force curve, due to binding events between the cell and the probe. We also investigated for the first time how the position on the cell surface, the strength of the pushing force, and the residence time of the probe at the cell surface individually affected the adhesion force between a living cell and a 6.84 microm diameter silica colloid particle in L-15. The position of measuring the force on the cell surface was seen not to affect the value of the maximum adhesion force. The loading force was also seen not to notably affect the value of the maximum adhesion force, if it was small enough not to pierce and damage the cell. The residence time of the probe at the cell surface, however, clearly affected the adhesion force, where a longer residence time gave a larger maximum force. From these results, we could conclude that the AFM force measurements should be made using a loading force small enough not to damage the cell and a fixed residence time, when comparing results of different systems.

  14. Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions

    Science.gov (United States)

    Tao, Yinglei; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.

  15. Characterizing optical dipole trap via fluorescence of trapped cesium atoms

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; GENG Tao; YAN Shubin; LI Gang; ZHANG Jing; WANG Junmin; PENG Kunchi; ZHANG Tiancai

    2006-01-01

    Optical dipole trap (ODT) is becoming an important tool of manipulating neutral atoms. In this paper ODT is realized with a far-off resonant laser beam strongly focused in the magneto-optical trap (MOT) of cesium atoms. The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the optical dipole trap simultaneously. The advantages of our experimental scheme are discussed, and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.

  16. Characterization of photodynamic and sonodynamic cytotoxicity by fluorescent probes

    Science.gov (United States)

    Kessel, David

    1993-06-01

    A variety of porphyrins and related structures can sensitize cells to light; many of these agents can also promote ultrasound-induced cytotoxicity. Subcellular sites of localization sensitizers with a sufficient fluorescence yield can be assessed by fluorescence microscopy, but this becomes difficult when (Phi) F is low. We have explored several indirect procedures for assessing examining loci of photodamage and sonodamage. Damage to lysosomal structures was probed with acridine orange, mitochondria with Rhodamine 123 and the plasma membrane with several diphenylhexatriene (DPH) derivatives. Additional information on alterations in heterogeneity of binding of diphenylhexatriene derivatives to photodamaged cells was provided by a distributed fluorescent lifetime study. Using a sulfonated benzochlorin, which photosensitizes cell-surface loci, we evaluated four DPH derivatives for their sensitivity to membrane damage. Anionic or cationic DPH derivatives were the most sensitive in this regard. Enhanced cytotoxicity associated with ultrasound + porphyrins yielded no detectable effects on mitochondrial or lysosomal structures, and barely detectable changes in membrane interactions with DPH derivatives, suggesting an 'all or none' effect.

  17. Characterization of a hot-film probe for hypersonic flow

    Science.gov (United States)

    Sheplak, M.; Spina, E.; Mcginley, C.

    1995-01-01

    The critical issues concerning the application of constant-temperature hot-film anemometry to hypersonic flow are reviewed and extended. Mass-flux static calibrations were conducted in a Mach 10 helium flow, while mass-flux and total-temperature static calibrations were made in a Mach 6 air flow. In addition, comparative hot-film/hot-wire turbulence measurements were made in a Mach 11 helium boundary layer to provide insight into the dynamic response of the hot film. The measurements indicate that substrate conduction 'losses' dominate the static response of the hot-film probe, thus resulting in poor sensitivity to mass-flux and total temperature. Furthermore, it has been found that it is not possible to isolate mass-flux fluctuations at high overheat ratios for the current hot-film design. Thus, the sapphire-substrate hot-film anemometer is a robust, high-bandwidth instrument limited to qualitative transition and turbulence measurements. Finally, the extension of this technique to providing quantitative information is dependent upon the development of lower thermal-conductivity substrate materials.

  18. The Design, Fabrication and Characterization of a Transparent Atom Chip

    Directory of Open Access Journals (Sweden)

    Ho-Chiao Chuang

    2014-06-01

    Full Text Available This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments.

  19. The Muonium Atom as a Probe of Physics beyond the Standard Model

    NARCIS (Netherlands)

    Willmann, L.; Jungmann, K.

    1998-01-01

    The observed interactions between particles are not fully explained in the successful theoretical description of the standard model to date. Due to the close confinement of the bound state muonium ($M = \\mu^+ e^-$) can be used as an ideal probe of quantum electrodynamics and weak interaction and als

  20. Probing Magnetism in 2D Molecular Networks after in Situ Metalation by Transition Metal Atoms.

    Science.gov (United States)

    Schouteden, K; Ivanova, Ts; Li, Z; Iancu, V; Janssens, E; Van Haesendonck, C

    2015-03-19

    Metalated molecules are the ideal building blocks for the bottom-up fabrication of, e.g., two-dimensional arrays of magnetic particles for spintronics applications. Compared to chemical synthesis, metalation after network formation by an atom beam can yield a higher degree of control and flexibility and allows for mixing of different types of magnetic atoms. We report on successful metalation of tetrapyridyl-porphyrins (TPyP) by Co and Cr atoms, as demonstrated by scanning tunneling microscopy experiments. For the metalation, large periodic networks formed by the TPyP molecules on a Ag(111) substrate are exposed in situ to an atom beam. Voltage-induced dehydrogenation experiments support the conclusion that the porphyrin macrocycle of the TPyP molecule incorporates one transition metal atom. The newly synthesized Co-TPyP and Cr-TPyP complexes exhibit striking differences in their electronic behavior, leading to a magnetic character for Cr-TPyP only as evidenced by Kondo resonance measurements.

  1. Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies.

    Science.gov (United States)

    Tettamanzi, Giuseppe Carlo; Hile, Samuel James; House, Matthew Gregory; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y

    2017-03-28

    The ability to apply gigahertz frequencies to control the quantum state of a single P atom is an essential requirement for the fast gate pulsing needed for qubit control in donor-based silicon quantum computation. Here, we demonstrate this with nanosecond accuracy in an all epitaxial single atom transistor by applying excitation signals at frequencies up to ≈13 GHz to heavily phosphorus-doped silicon leads. These measurements allow the differentiation between the excited states of the single atom and the density of states in the one-dimensional leads. Our pulse spectroscopy experiments confirm the presence of an excited state at an energy ≈9 meV, consistent with the first excited state of a single P donor in silicon. The relaxation rate of this first excited state to the ground state is estimated to be larger than 2.5 GHz, consistent with theoretical predictions. These results represent a systematic investigation of how an atomically precise single atom transistor device behaves under radio frequency excitations.

  2. The response of a neutral atom to a strong laser field probed by transient absorption near the ionisation threshold

    CERN Document Server

    Simpson, E R; Austin, D R; Diveki, Z; Hutchinson, S E E; Siegel, T; Ruberti, M; Averbukh, V; Miseikis, L; Strüber, C; Chipperfield, L; Marangos, J P

    2015-01-01

    We present transient absorption spectra of an extreme ultraviolet attosecond pulse train in helium dressed by an 800 nm laser field with intensity ranging from $2\\times10^{12}$ W/cm$^2$ to $2\\times10^{14}$ W/cm$^2$. The energy range probed spans 16-42 eV, straddling the first ionisation energy of helium (24.59 eV). By changing the relative polarisation of the dressing field with respect to the attosecond pulse train polarisation we observe a large change in the modulation of the absorption reflecting the vectorial response to the dressing field. With parallel polarized dressing and probing fields, we observe significant modulations with periods of one half and one quarter of the dressing field period. With perpendicularly polarized dressing and probing fields, the modulations of the harmonics above the ionisation threshold are significantly suppressed. A full-dimensionality solution of the single-atom time-dependent Schr\\"odinger equation obtained using the recently developed ab-initio time-dependent B-spline...

  3. Probing 2D Quantum Turbulence in Atomic Superfluid Gas using Bragg Scattering

    CERN Document Server

    Seo, Sang Won; Kim, Joon Hyun; Shin, Yong-il

    2016-01-01

    We demonstrate the use of spatially resolved Bragg spectroscopy for detection of the quantum vortex circulation signs in an atomic Bose-Einstein condensate (BEC). High-velocity atoms near the vortex cores are resonantly scattered from the BEC, and the vortex signs are determined from the scattered atom positions relative to the corresponding vortex cores. Using this method, we investigate decaying 2D quantum turbulence in a highly oblate BEC at temperatures of $\\sim 0.5 T_c$, where $T_c$ is the critical temperature of the trapped sample. Clustering of like-sign vortices is not observed; rather, the measured vortex configurations reveal weak pair correlations between the vortices and antivortices in the turbulent BEC. Our Bragg scattering method enables a direct experimental study of 2D quantum turbulence in BECs.

  4. Volatile organic compound ratios as probes of halogen atom chemistry in the Arctic

    Directory of Open Access Journals (Sweden)

    P. B. Shepson

    2008-03-01

    Full Text Available Volatile organic compound concentration ratios can be used as indicators of halogen chemistry that occurs during ozone depletion events in the Arctic during spring. Here we use a combination of modeling and measurements of [acetone]/[propanal] as an indicator of bromine chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-butane] are used to study the extent of chlorine chemistry during four ozone depletion events during the Polar Sunrise Experiment of 1995. Using a 0-D photochemistry model in which the input of halogen atoms is controlled and varied, the approximate ratio of [Br]/[Cl] can be estimated for each ozone depletion event. It is concluded that there must be an additional source of propanal (likely from the snowpack to correctly simulate the VOC chemistry of the Arctic, and further evidence that the ratio of Br atoms to Cl atoms can vary greatly during ozone depletion events is presented.

  5. Volatile organic compound ratios as probes of halogen atom chemistry in the Arctic

    Directory of Open Access Journals (Sweden)

    A. E. Cavender

    2007-08-01

    Full Text Available Volatile organic compound concentration ratios can be used as indicators of halogen chemistry that occurs during ozone depletion events in the Arctic during spring. Here we use a combination of modeling and measurements of [acetone]/[propanal] as an indicator of bromine chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-butane] are used to study the extent of chlorine chemistry during four ozone depletion events during the Polar Sunrise Experiment of 1995. Using a 0-D photochemistry model in which the input of halogen atoms is controlled and varied, the approximate ratio of [Br]/[Cl] can be estimated for each ozone depletion event. It is concluded that there must be an additional source of propanal (likely from the snowpack to correctly simulate the VOC chemistry of the Arctic, and that the ratio of Br atoms to Cl atoms can vary greatly during ozone depletion events.

  6. Magic frequencies in atom-light interaction for precision probing of the density matrix

    CERN Document Server

    Givon, Menachem; Waxman, Amir; David, Tal; Groswasser, David; Japha, Yonathan; Folman, Ron

    2013-01-01

    We analyze theoretically and experimentally the existence of a {\\it magic frequency} for which the absorption of a linearly polarized light beam by vapor alkali atoms is independent of the population distribution among the Zeeman sub-levels and the angle between the beam and a magnetic field. The phenomenon originates from a peculiar cancelation of the contributions of higher moments of the atomic density matrix, and is described using the Wigner-Eckart theorem and inherent properties of Clebsch-Gordan coefficients. One important application is the robust measurement of the hyperfine population.

  7. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  8. Atomic and Electronic Structure of Quantum Dots Measured with Scanning Probe Techniques

    NARCIS (Netherlands)

    Sun, Z.

    2012-01-01

    This thesis deals with low temperature scanning tunneling microscopy/spectroscopy and atomic force microscopy (LT-STM/STS and AFM) studies on colloidal semiconductor and graphene quantum dots (g-QDs). These nanostructures are interesting because they show tunable electrical and optical properties du

  9. Quantitative analysis of hydrogen in SiO2/SiN/SiO2 stacks using atom probe tomography

    Directory of Open Access Journals (Sweden)

    Yorinobu Kunimune

    2016-04-01

    Full Text Available We have demonstrated that it is possible to reproducibly quantify hydrogen concentration in the SiN layer of a SiO2/SiN/SiO2 (ONO stack structure using ultraviolet laser-assisted atom probe tomography (APT. The concentration of hydrogen atoms detected using APT increased gradually during the analysis, which could be explained by the effect of hydrogen adsorption from residual gas in the vacuum chamber onto the specimen surface. The amount of adsorbed hydrogen in the SiN layer was estimated by analyzing another SiN layer with an extremely low hydrogen concentration (<0.2 at. %. Thus, by subtracting the concentration of adsorbed hydrogen, the actual hydrogen concentration in the SiN layer was quantified as approximately 1.0 at. %. This result was consistent with that obtained by elastic recoil detection analysis (ERDA, which confirmed the accuracy of the APT quantification. The present results indicate that APT enables the imaging of the three-dimensional distribution of hydrogen atoms in actual devices at a sub-nanometer scale.

  10. Probing Matter-Field and Atom-Number Correlations in Optical Lattices by Global Nondestructive Addressing

    CERN Document Server

    Kozlowski, Wojciech; Mekhov, Igor B

    2014-01-01

    We show that light scattering from an ultracold gas reveals not only density correlations, but also matter-field interference at its shortest possible distance in an optical lattice, which defines key properties such as tunneling and matter-field phase gradients. This signal can be enhanced by concentrating probe light between lattice sites rather than at density maxima. As addressing between two single sites is challenging, we focus on global nondestructive scattering, allowing probing order parameters, matter-field quadratures and their squeezing. The scattering angular distribution displays peaks even if classical diffraction is forbidden and we derive generalized Bragg conditions. Light scattering distinguishes all phases in the Mott insulator - superfluid - Bose glass phase transition.

  11. The Muonium Atom as a Probe of Physics beyond the Standard Model

    CERN Document Server

    Willmann, L

    1998-01-01

    The observed interactions between particles are not fully explained in the successful theoretical description of the standard model to date. Due to the close confinement of the bound state muonium ($M = \\mu^+ e^-$) can be used as an ideal probe of quantum electrodynamics and weak interaction and also for a search for additional interactions between leptons. Of special interest is the lepton number violating process of sponteanous conversion of muonium to antimuonium.

  12. [Connection of magnetic antisense probe with SK-Br-3 oncocyte mRNA nucleotide detected by high resolution atomic force microscope].

    Science.gov (United States)

    Tan, Shude; Ouyang, Yu; Li, Xinyou; Wen, Ming; Li, Shaolin

    2011-06-01

    The present paper is aimed to detect superparamagnetic iron oxide labeled c-erbB2 oncogene antisense oligonucleotide probe (magnetic antisense probe) connected with SK-Br-3 oncocyte mRNA nucleotide by high resolution atomic force microscope (AFM). We transfected SK-Br-3 oncocyte with magnetic antisense probe, then observed the cells by AFM with high resolution and detected protein expression and magnetic resonance imagine (MRI). The high resolution AFM clearly showed the connection of the oligonucleotide remote end of magnetic antisense probe with the mRNA nucleotide of oncocyte. The expression of e-erbB2 protein in SK-Br3 cells were highly inhibited by using magnetic antisense probe. We then obtained the lowest signal to noise ratio (SNR) of SK-Br-3 oncocyte transfected with magnetic antisense probe by MRI (PSK-Br-3 mRNA of tumor cell nuclear.

  13. Probing the short range spin dependent interactions by polarized {sup 3}He atom beams

    Energy Technology Data Exchange (ETDEWEB)

    Yan, H. [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan (China); Indiana University, Center for Exploration of Energy and Matter, Bloomington, IN (United States); Sun, G.A.; Gong, J.; Pang, B.B.; Wang, Y.; Yang, Y.W.; Zhang, J.; Zhang, Y. [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan (China)

    2014-10-15

    Experiments using polarized {sup 3}He atom beams to search for short range spin dependent forces are proposed. High intensity, high polarization, small beam size {sup 3}He atom beams have been successfully produced and used in surface science researches. By incorporating background reduction designs as combination shielding by μ-metal and superconductor and double beam paths, the precision of spin rotation angle per unit length could be improved by a factor of ∝ 10{sup 4}. By this precision, in combination with a high density and low magnetic susceptibility sample source mass, and reversing one beam path if necessary, sensitivities on three different types of spin dependent interactions could be improved by as much as ∝ 10{sup 2} to ∝ 10{sup 8} over the current experiments at the millimeter range. (orig.)

  14. Laser spectroscopic probing of coexisting superfluid and insulating states of an atomic Bose-Hubbard system

    Science.gov (United States)

    Kato, Shinya; Inaba, Kensuke; Sugawa, Seiji; Shibata, Kosuke; Yamamoto, Ryuta; Yamashita, Makoto; Takahashi, Yoshiro

    2016-04-01

    A system of ultracold atoms in an optical lattice has been regarded as an ideal quantum simulator for a Hubbard model with extremely high controllability of the system parameters. While making use of the controllability, a comprehensive measurement across the weakly to strongly interacting regimes in the Hubbard model to discuss the quantum many-body state is still limited. Here we observe a great change in the excitation energy spectra across the two regimes in an atomic Bose-Hubbard system by using a spectroscopic technique, which can resolve the site occupancy in the lattice. By quantitatively comparing the observed spectra and numerical simulations based on sum rule relations and a binary fluid treatment under a finite temperature Gutzwiller approximation, we show that the spectra reflect the coexistence of a delocalized superfluid state and a localized insulating state across the two regimes.

  15. Probing Electronic States of Magnetic Semiconductors Using Atomic Scale Microscopy & Spectroscopy

    Science.gov (United States)

    2013-12-01

    N000140710348 Final Report as of December 2013 Objective: This project was focused on the application of the scanning tunneling microscopy (STM...magnetic atoms on the surface of a superconductor can be used as a versatile platform for creating a topological superconductor . These initial...the application of the scanning tunneling microscopy (STM) to understand the electronic structure of magnetically doped semiconductors and to develop

  16. Graphene Coatings: Probing the Limits of the One Atom Thick Protection Layer

    DEFF Research Database (Denmark)

    Nilsson, Louis; Andersen, Mie; Balog, Richard

    2012-01-01

    The limitations of graphene as an effective corrosion-inhibiting coating on metal surfaces, here exemplified by the hex-reconstructed Pt(100) surface, are probed by scanning tunneling microscopy measurements and density functional theory calculations. While exposure of small molecules directly onto...... the Pt(100) surface will lift the reconstruction, a single graphene layer is observed to act as an effective coating, protecting the reactive surface from O2 exposure and thus preserving the reconstruction underneath the graphene layer in O2 pressures as high as 104 mbar. A similar protective effect...

  17. Characterization of the electronic properties of magnetic and semiconductor devices using scanning probe techniques

    Science.gov (United States)

    Schaadt, Daniel Maria

    In the first part of this dissertation, scanning probe techniques are used in the study of localized charge deposition and subsequent transport in Co nanoclusters embedded in a SiO2 matrix are presented, and the application of this material in a hybrid magneto-electronic device for magnetic field sensing is described. Co nanoclusters are charged by applying a bias voltage pulse between a conductive tip and the sample, and electrostatic force microscopy is used to image charged areas. An exponential decay in the peak charge density is observed with decay times dependent on the nominal Co film thickness and on the sign of the deposited charge. The results are interpreted as a consequence of Coulomb-blockade effects. This study leads to the design of a hybrid magneto-electronic device, in which Co nanoclusters embedded in SiO2 are incorporated into the gate of a Si metal-oxide-semiconductor field-effect transistor. Current flow through the Co nanoclusters leads to a buildup of electronic charge within the gate, and consequently to a transistor threshold voltage shift that varies with applied external magnetic field. The shift in threshold voltage results in an exponential change in subthreshold current and a quadratic change in saturation current. A detailed analysis of the device operation is presented. The second part of this dissertation focuses on the characterization of electronic properties of GaN-based heterostructure devices. Scanning capacitance microscopy (SCM) and spectroscopy (SCS) are used to investigate lateral variations in the transistor threshold voltage and the frequency-dependent response of surface charges and of charge in the two-dimensional electron gas (2DEG). The technique is described in detail, electrostatic simulations performed to study the influence of the probe tip geometry on the measured dC/dV spectra are presented, and the limitations of the SCS technique in a variety of applications are evaluated. Features in SCM images and maps of

  18. Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrieva, O.; Ponge, D.; Inden, G.; Millan, J.; Choi, P. [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Sietsma, J. [Delft University of Technology, Faculty 3mE, Dept. MSE, 2628 CD Delft (Netherlands); Raabe, D., E-mail: d.raabe@mpie.de [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 40237 Duesseldorf (Germany)

    2011-01-15

    Partitioning at phase boundaries of complex steels is important for their properties. We present atom probe tomography results across martensite/austenite interfaces in a precipitation-hardened maraging-TRIP steel (12.2 Mn, 1.9 Ni, 0.6 Mo, 1.2 Ti, 0.3 Al; at.%). The system reveals compositional changes at the phase boundaries: Mn and Ni are enriched while Ti, Al, Mo and Fe are depleted. More specific, we observe up to 27 at.% Mn in a 20 nm layer at the phase boundary. This is explained by the large difference in diffusivity between martensite and austenite. The high diffusivity in martensite leads to a Mn flux towards the retained austenite. The low diffusivity in the austenite does not allow accommodation of this flux. Consequently, the austenite grows with a Mn composition given by local equilibrium. The interpretation is based on DICTRA and mixed-mode diffusion calculations (using a finite interface mobility).

  19. Design and implementation of precise position controller of active probe of atomic force microscopy for nanomanipulation

    Institute of Scientific and Technical Information of China (English)

    HAO LiNa; ZHANG JiangBo; XI Ning

    2008-01-01

    Efficiency and accuracy of AFM-based nanomanipulation are still major problems to be solved,due to the nonlinearities and uncertainties,such as drift,creep,hysteresis,etc.The deformation of cantilevers caused by manipulation force is also one of the most major factors of nonlinearities and uncertainties.It causes difficulties in precise control of the tip position and causes the tip to miss the position of the object.In order to solve this problem,the traditional approach is to use a rigid cantilever.However,this will significantly reduce the sensitivity of force sensing during manipulation,which is essential for achieving an efficient and reliable nanomanipulation.In this paper,a kind of active AFM probe has been used to solve this problem by directly controlling the cantilever's flexibility or rigidity during manipu- lation.Based on Euller-Bernoulli Model,a kind of controller of the active probe employing Peri- odic-Output-Feedback (POF) law is implemented.The results of simulation and experiments have demonstrated that this theoretical model and POF controller are suitable for precise position control of nanomanipulation.

  20. The development of a shock-tube based characterization technique for air-coupled ultrasonic probes.

    Science.gov (United States)

    Revel, G M; Pandarese, G; Cavuto, A

    2014-08-01

    The present paper proposes a new characterization technique for air-coupled ultrasound probes. The technique is based on a shock tube to generate a controlled pressure wave to calibrate transducers within their operating frequency range. The aim is to generate a high frequency pressure wave (at least up to 200 kHz) with the low energy levels typical of commonly used air-coupled ultrasound probes. A dedicated shock-tube has been designed and tested to assess calibration performances. The sensor transfer function has been measured by using a pressure transducer as reference.

  1. Note: Design considerations and characterization of a flexible snapshot hyperspectral probe

    Science.gov (United States)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-03-01

    Hyperspectral imaging is a combination of imaging and spectroscopy to give detailed spectral information for each spatial point in the imaged scene. Using the concept of integral field spectroscopy, a custom fabricated two-dimensional to one-dimensional fiber bundle has recently been reported. It is used as a flexible snapshot hyperspectral probe, which can be used as an endoscope for biomedical applications. This paper reports on the design considerations of the fiber bundle as the flexible probe in the snapshot hyperspectral imaging system. The physical characterization of the custom fabricated fiber bundle and lateral resolution of the developed hyperspectral imaging system are also analyzed and described.

  2. NATO Advanced Study Institute on Scanning Probe Microscopy : Characterization, Nanofabrication and Device Application of Functional Materials

    CERN Document Server

    Vilarinho, Paula Maria; Kingon, Angus; Scanning Probe Microscopy : Characterization, Nanofabrication and Device Application of Functional Materials

    2005-01-01

    As the characteristic dimensions of electronic devices continue to shrink, the ability to characterize their electronic properties at the nanometer scale has come to be of outstanding importance. In this sense, Scanning Probe Microscopy (SPM) is becoming an indispensable tool, playing a key role in nanoscience and nanotechnology. SPM is opening new opportunities to measure semiconductor electronic properties with unprecedented spatial resolution. SPM is being successfully applied for nanoscale characterization of ferroelectric thin films. In the area of functional molecular materials it is being used as a probe to contact molecular structures in order to characterize their electrical properties, as a manipulator to assemble nanoparticles and nanotubes into simple devices, and as a tool to pattern molecular nanostructures. This book provides in-depth information on new and emerging applications of SPM to the field of materials science, namely in the areas of characterisation, device application and nanofabrica...

  3. Nanomechanical Characterization of Bacillus anthracis Spores by Atomic Force Microscopy

    OpenAIRE

    2016-01-01

    The study of structures and properties of bacterial spores is important to understanding spore formation and biological responses to environmental stresses. While significant progress has been made over the years in elucidating the multilayer architecture of spores, the mechanical properties of the spore interior are not known. Here, we present a thermal atomic force microscopy (AFM) study of the nanomechanical properties of internal structures of Bacillus anthracis spores. We developed a nan...

  4. Investigation of the self tempering effect of martensite by means of atom probe tomography; Untersuchung des Selbstanlasseffektes von Martensit mit Hilfe von Atomsondentomographie

    Energy Technology Data Exchange (ETDEWEB)

    Sackl, Stephanie [Montanuniv. Leoben (Austria). Christian Doppler Labor ' ' Early Stages of Precipitation' ' ; Clemens, Helmut; Primig, Sophie [Montanuniv. Leoben (Austria). Dept. of Physical Metallurgy and Materials Testing

    2015-10-01

    Self-tempering effects can be observed in steels with relatively high martensite start temperatures. After the formation of the first martensitic laths, carbon is able to diffuse in these laths during cooling, which can be attributed to sufficiently high temperatures. This effect cannot be observed in laths formed at lower temperatures. In steels containing up to 0.2 m.-% carbon, up to 90 % of the carbon atoms in the martensite segregate to dislocations during quenching. Due to its atomic resolution and sensitivity with respect to light elements, atom probe tomography is very well suited for the investigation of this phenomenon. In this study, the self-tempering effect in a quenched and tempered steel 42CrMo4 with a martensite start temperature of 310 C is investigated by means of atom probe tomography.

  5. Probing characteristics of collagen molecules on various surfaces via atomic force microscopy

    Science.gov (United States)

    Su, Hao-Wei; Ho, Mon-Shu; Cheng, Chao-Min

    2012-06-01

    We examine, herein, specific dynamic responses of collagen molecules (i.e., observations of self-assembly and nanometric adhesion force measurements of type-I collagen molecules) as they interact with either a hydrophobic or a hydrophilic surface at two distinct temperatures, using a liquid-type atomic force microscope. We conclude that, regardless of surface hydrophobicity/hydrophilicity, assembled microfibrils eventually distribute homogeneously in accordance with changes in surface-related mechanical properties of collagen molecules at different self-assembly stages.

  6. DNA flexibility on short length scales probed by atomic force microscopy.

    Science.gov (United States)

    Mazur, Alexey K; Maaloum, Mounir

    2014-02-14

    Unusually high bending flexibility has been recently reported for DNA on short length scales. We use atomic force microscopy (AFM) in solution to obtain a direct estimate of DNA bending statistics for scales down to one helical turn. It appears that DNA behaves as a Gaussian chain and is well described by the wormlike chain model at length scales beyond 3 helical turns (10.5 nm). Below this threshold, the AFM data exhibit growing noise because of experimental limitations. This noise may hide small deviations from the Gaussian behavior, but they can hardly be significant.

  7. Structurally Well-Defined Sigmoidal Gold Clusters: Probing the Correlation between Metal Atom Arrangement and Chiroptical Response.

    Science.gov (United States)

    He, Xin; Wang, Yuechao; Jiang, Hong; Zhao, Liang

    2016-05-04

    Asymmetric arrangement of metal atoms is crucial for understanding the chirality origin of chiral metal nanoclusters and facilitating the design and development of new chiral catalysts and chiroptical devices. Here, we describe the construction of four asymmetric gold and gold-silver clusters by chirality transfer from diimido ligands. The acquired metal clusters show strong circular dichroism (CD) response with large anisotropy factors of up to 6 × 10(-3), larger than the values of most reported chiral gold nanoclusters. Regardless of the same absolute configuration of the applied three diimido ligands, sigmoidal and reverse-sigmoidal arrangements of gold atoms both can be achieved, which resultantly produce an opposite Cotton effect within a specific absorption range. On the basis of the detailed structural characterization via X-ray crystallography and contrast experiments, the chirality contribution of the imido ligand, the asymmetrically arranged metal cluster, and the chiral arrangement of aromatic rings of phosphine ligands have been qualitatively evaluated. Time-dependent DFT calculations reveal that the chiroptical property of the acquired metal clusters is mainly influenced by the asymmetrically arranged metal atoms. Correlation of asymmetric arrangements of metal atoms in clusters with their chiroptical response provides a viable means of fabricating a designable chiral surface of metal nanoclusters and opens a broader prospect for chiral cluster application.

  8. Atomic parity violation in one single trapped and laser cooled radium ion: a probe of electroweak running

    Energy Technology Data Exchange (ETDEWEB)

    Giri, G.S.; Boell, O.; Jungmann, K.; Sahoo, B.K.; Timmermans, R.G.E.; Versolato, O.O.; Wansbeek, L.W.; Willmann, L. [KVI, University of Groningen (Netherlands)

    2009-07-01

    One single-trapped and laser cooled radium ion is an ideal candidate to investigate atomic parity non-conservation (APNC). APNC can serve as a low energy test of the Standard Model of particle physics. We aim for a precision measurement of the electroweak mixing angle, by probing the differential light shift of the 7S and 6D Zeeman sublevels. This shift is caused by the interaction of the ion with an off-resonant laser light field. With precision RF spectroscopy and subsequent electron shelving, the differential splitting can be determined to sub-Hertz accuracy. Recent calculations show that Ra{sup +} is a superior candidate for probing APNC. With an almost identical set-up and using the electron shelving technique, ultra-narrow transitions in this ion can be exploited for an all optical, high stability frequency standard clock. We have succeeded in the production and subsequent slowing down of radium isotopes around {sup 213}Ra. Further progress has been made in the development of ion traps and the necessary high precision optical laboratory. Laser spectroscopy of Ra{sup +} and the first ever trapping of this particle are being prepared.

  9. Atom probe analysis on interaction between Cr and N in bake-hardening steels with anti-aging properties at RT

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Jun, E-mail: takahashi.3ct.jun@jp.nssmc.com [Advanced Technology Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 20-1, Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Maruyama, Naoki; Kawakami, Kazuto; Yoshinaga, Naoki; Sugiyama, Masaaki [Advanced Technology Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 20-1, Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Ohkubo, Tadakatsu; Ping, De-hai; Hono, Kazuhiro [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2013-11-15

    One-dimensional atom probe (1DAP) analysis was performed on chromium and nitrogen added bake hardening steel sheets that have both high bake-hardenability and anti-aging properties at room temperature (RT). The atomic data of more than 2 million atoms were collected for sample steels with and without low-temperature aging after recrystallization annealing and quenching. The correlation in atomic position between chromium and nitrogen atoms in a solid solution was investigated by a statistical analysis using the binomial distribution function. In the samples with low-temperature aging, the probability that a chromium atom was observed near a nitrogen atom was significantly higher than that estimated from the null hypothesis that there was no attractive atomic interaction. This suggests that there is an attractive interaction between a nitrogen atom and a chromium atom in bcc iron, which led to the anti-aging properties at RT. In contrast, such correlation was not observed definitely in the samples without low-temperature aging, which implied that the atomic pair formation is a thermal activation process.

  10. Probing deviations from traditional colloid filtration theory by atomic forces microscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Marissa Devan

    2005-12-01

    Colloid transport through saturated media is an integral component of predicting the fate and transport of groundwater contaminants. Developing sound predictive capabilities and establishing effective methodologies for remediation relies heavily on our ability to understand the pertinent physical and chemical mechanisms. Traditionally, colloid transport through saturated media has been described by classical colloid filtration theory (CFT), which predicts an exponential decrease in colloid concentration with travel distance. Furthermore, colloid stability as determined by Derjaguin-Landau-Veney-Overbeek (DLVO) theory predicts permanent attachment of unstable particles in a primary energy minimum. However, recent studies show significant deviations from these traditional theories. Deposition in the secondary energy minimum has been suggested as a mechanism by which observed deviations can occur. This work investigates the existence of the secondary energy minimum as predicted by DLVO theory using direct force measurements obtained by Atomic Forces Microscopy. Interaction energy as a function of separation distance between a colloid and a quartz surface in electrolyte solutions of varying ionic strength are obtained. Preliminary force measurements show promise and necessary modifications to the current experimental methodology have been identified. Stringent surface cleaning procedures and the use of high-purity water for all injectant solutions is necessary for the most accurate and precise measurements. Comparisons between direct physical measurements by Atomic Forces Microscopy with theoretical calculations and existing experimental findings will allow the evaluation of the existence or absence of a secondary energy minimum.

  11. Probing the interactions between lignin and inorganic oxides using atomic force microscopy

    Science.gov (United States)

    Wang, Jingyu; Qian, Yong; Deng, Yonghong; Liu, Di; Li, Hao; Qiu, Xueqing

    2016-12-01

    Understanding the interactions between lignin and inorganic oxides has both fundamental and practical importance in industrial and energy fields. In this work, the specific interactions between alkali lignin (AL) and three inorganic oxide substrates in aqueous environment are quantitatively measured using atomic force microscopy (AFM). The results show that the average adhesion force between AL and metal oxide such as Al2O3 or MgO is nearly two times bigger than that between AL and nonmetal oxide such as SiO2 due to the electrostatic difference and cation-π interaction. When 83% hydroxyl groups of AL is blocked by acetylation, the adhesion forces between AL and Al2O3, MgO and SiO2 decrease 43, 35 and 75% respectively, which indicate hydrogen bonds play an important role between AL and inorganic oxides, especially in AL-silica system.

  12. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.

    Science.gov (United States)

    Sapra, K Tanuj

    2013-01-01

    The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.

  13. Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms

    DEFF Research Database (Denmark)

    Christensen, Thomas; Yan, Wei; Raza, Søren

    2014-01-01

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss...... spectroscopy, and light scattering. These constitute two near-field and one far-field measurements, with zero-, one-, and two-dimensional excitation sources, respectively. We search for the clearest signatures of hydrodynamic pressure waves in nanospheres. We employ a linearized hydrodynamic model, and Mie......–Lorenz theory is applied for each case. Nonlocal response shows its mark in all three configurations, but for the two near-field measurements, we predict especially pronounced nonlocal effects that are not exhibited in far-field measurements. Associated with every multipole order is not only a single...

  14. Direct probe of anisotropy in atom-molecule collisions via quantum scattering resonances

    CERN Document Server

    Klein, Ayelet; Skomorowski, Wojciech; Żuchowski, Piotr S; Pawlak, Mariusz; Janssen, Liesbeth M C; Moiseyev, Nimrod; van de Meerakker, Sebastiaan Y T; van der Avoird, Ad; Koch, Christiane P; Narevicius, Edvardas

    2016-01-01

    Anisotropy is a fundamental property of particle interactions. It occupies a central role in cold and ultra-cold molecular processes, where long range forces have been found to significantly depend on orientation in ultra-cold polar molecule collisions. Recent experiments have demonstrated the emergence of quantum phenomena such as scattering resonances in the cold collisions regime due to quantization of the intermolecular degrees of freedom. Although these states have been shown to be sensitive to interaction details, the effect of anisotropy on quantum resonances has eluded experimental observation so far. Here, we directly measure the anisotropy in atom-molecule interactions via quantum resonances by changing the quantum state of the internal molecular rotor. We observe that a quantum scattering resonance at a collision energy of $k_B$ x 270 mK appears in the Penning ionization of molecular hydrogen with metastable helium only if the molecule is rotationally excited. We use state of the art ab initio and ...

  15. Characterization of anomalous Zeeman patterns in complex atomic spectra

    CERN Document Server

    Pain, Jean-Christophe

    2012-01-01

    The modeling of complex atomic spectra is a difficult task, due to the huge number of levels and lines involved. In the presence of a magnetic field, the computation becomes even more difficult. The anomalous Zeeman pattern is a superposition of many absorption or emission profiles with different Zeeman relative strengths, shifts, widths, asymmetries and sharpnesses. We propose a statistical approach to study the effect of a magnetic field on the broadening of spectral lines and transition arrays in atomic spectra. In this model, the sigma and pi profiles are described using the moments of the Zeeman components, which depend on quantum numbers and Land\\'{e} factors. A graphical calculation of these moments, together with a statistical modeling of Zeeman profiles as expansions in terms of Hermite polynomials are presented. It is shown that the procedure is more efficient, in terms of convergence and validity range, than the Taylor-series expansion in powers of the magnetic field which was suggested in the past...

  16. Characterization of fan spray atomizers through numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Altimira, Mireia [Thermal and Fluids Engineering Division, Mechanical Engineering Department, Tecnun (University of Navarra), Manuel de Lardizabal 13, 20018 San Sebastian (Spain)], E-mail: maltimira@tecnun.es; Rivas, Alejandro; Larraona, Gorka S.; Anton, Raul; Ramos, Juan Carlos [Thermal and Fluids Engineering Division, Mechanical Engineering Department, Tecnun (University of Navarra), Manuel de Lardizabal 13, 20018 San Sebastian (Spain)

    2009-04-15

    The present paper focuses on the mathematical modeling of industrial fan spray atomizers. The two-phase flow taking place inside the nozzle's tip and the exterior region near the outlet of three different industrial nozzle designs has been modeled and simulated. As a result, valuable information has been obtained regarding the influence of the inner geometry on the flow and also the formation and development of the liquid sheet. Characteristic magnitudes such as the discharge coefficient and the liquid sheet thickness factor have been obtained and validated through experimental measurements. The accumulation of liquid at the border of fan-shaped liquid sheets, also known as rim, has been studied in the analyzed designs, revealing the presence of a tangential velocity component in the liquid sheet and a relationship between the incoming flow rate of the rim and the angle of the liquid sheet. The dependence of the results on turbulence modeling has also been analyzed, drawing interesting conclusions regarding their influence on the liquid sheet mean flow characteristics and on the surrounding gas. Thus, the mathematical model developed has been proved to be a useful tool for nozzle manufacturers; it provides the most important characteristic parameters of the liquid sheet formed given certain nozzle geometry and, additionally, those data necessary to carry out studies of instability, breakup and atomization of the liquid sheet.

  17. Synthesis of circular double-stranded DNA having single-stranded recognition sequence as molecular-physical probe for nucleic acid hybridization detection based on atomic force microscopy imaging.

    Science.gov (United States)

    Nakano, Koji; Matsunaga, Hideshi; Murata, Masaharu; Soh, Nobuaki; Imato, Toshihiko

    2009-08-01

    A new class of DNA probes having a mechanically detectable tag is reported. The DNA probe, which consists of a single-stranded recognition sequence and a double-stranded circular DNA entity, was prepared by polymerase reaction. M13mp18 single strand and a 32mer oligodeoxynucleotide whose 5'-end is decorated with the recognition sequence were used in combination as template and primer, respectively. We have successfully demonstrated that the DNA probe is useful for bioanalytical purposes: by deliberately attaching target DNA molecules onto Au(111) substrates and by mechanically reading out the tag-entity using a high-resolution microscopy including atomic force microscopy, visualization/detection of the individual target/probe DNA conjugate was possible simply yet straightforwardly. The present DNA probe can be characterized as a 100%-nucleic acid product material. It is simply available by one-pod synthesis. A surface topology parameter, image roughness, has witnessed its importance as a quantitative analysis index with particular usability in the present visualization/detection method.

  18. The dynamic Allan Variance IV: characterization of atomic clock anomalies.

    Science.gov (United States)

    Galleani, Lorenzo; Tavella, Patrizia

    2015-05-01

    The number of applications where precise clocks play a key role is steadily increasing, satellite navigation being the main example. Precise clock anomalies are hence critical events, and their characterization is a fundamental problem. When an anomaly occurs, the clock stability changes with time, and this variation can be characterized with the dynamic Allan variance (DAVAR). We obtain the DAVAR for a series of common clock anomalies, namely, a sinusoidal term, a phase jump, a frequency jump, and a sudden change in the clock noise variance. These anomalies are particularly common in space clocks. Our analytic results clarify how the clock stability changes during these anomalies.

  19. Nanostructural evolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe

    DEFF Research Database (Denmark)

    Hatakeyama, Masahiko; Toyama, Takeshi; Nagai, Yasuyoshi;

    2008-01-01

    Nanostructural evolution of Cr (Cr-rich) precipitates in a Cu-0.78%Cr-0.13%Zr alloy has been studied after aging and overaging (reaging) by laser assisted local electrode 3 dimensional atom probe (Laser-LEAP). This material is a candidate for the first wall and divertor components of future fusion...

  20. Topographic and electronic contrast of the graphene moir´e on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy

    NARCIS (Netherlands)

    Sun, Z.; Hämäläinen, K.; Sainio, K.; Lahtinen, J.; Vanmaekelbergh, D.A.M.; Liljeroth, P.

    2011-01-01

    Epitaxial graphene grown on transition-metal surfaces typically exhibits a moir´e pattern due to the lattice mismatch between graphene and the underlying metal surface. We use both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) to probe the electronic and topographic contrast

  1. Some issues on atomic force microscopy based surface characterization

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-hang; HUANG Wen-hao

    2007-01-01

    Influences of tip radius and sampling interval on applying atomic force microscopy(AFM)in quantitative surface evaluations are investigated by numerical simulations and experiments. Several evaluation parameters of surfaces ranging from amplitude to functional parameters are studied. Numerical and experimental results are in good agreements. The accuracy of estimating tip radius on random rough surface with Gaussian distribution of heights using a blind reconstruction method is also discussed theoretically. It is found that the accuracy is greatly depending on the ratio of actual tip radius to rootmean-square (rms) radius of curvature. To obtain an accurate estimation of tip radius under Gaussian rough surface, the ratio has to be larger than 3/2.

  2. Perfect/complete scattering experiments probing quantum mechanics on atomic and molecular collisions and coincidences

    CERN Document Server

    Kleinpoppen, Hans; Grum-Grzhimailo, Alexei N

    2013-01-01

    The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter.  The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory.  It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'.  The language of the related theory is the language of quantum mechanical amplitudes and their relative phases.  This book captures the spi...

  3. Morphology and current-voltage characteristics of nanostructured pentacene thin films probed by atomic force microscopy.

    Science.gov (United States)

    Zorba, S; Le, Q T; Watkins, N J; Yan, L; Gao, Y

    2001-09-01

    Atomic force microscopy was used to study the growth modes (on SiO2, MoS2, and Au substrates) and the current-voltage (I-V) characteristics of organic semiconductor pentacene. Pentacene films grow on SiO2 substrate in a layer-by-layer manner with full coverage at an average thickness of 20 A and have the highest degree of molecular ordering with large dendritic grains among the pentacene films deposited on the three different substrates. Films grown on MoS2 substrate reveal two different growth modes, snowflake-like growth and granular growth, both of which seem to compete with each other. On the other hand, films deposited on Au substrate show granular structure for thinner coverages (no crystal structure) and dendritic growth for higher coverages (crystal structure). I-V measurements were performed with a platinum tip on a pentacene film deposited on a Au substrate. The I-V curves on pentacene film reveal symmetric tunneling type character. The field dependence of the current indicates that the main transport mechanism at high field intensities is hopping (Poole-Frenkel effect). From these measurements, we have estimated a field lowering coefficient of 9.77 x 10(-6) V-1/2 m1/2 and an ideality factor of 18 for pentacene.

  4. Probing the resonance potential in the F atom reaction with hydrogen deuteride with spectroscopic accuracy

    Science.gov (United States)

    Ren, Zefeng; Che, Li; Qiu, Minghui; Wang, Xingan; Dong, Wenrui; Dai, Dongxu; Wang, Xiuyan; Yang, Xueming; Sun, Zhigang; Fu, Bina; Lee, Soo-Y.; Xu, Xin; Zhang, Dong H.

    2008-01-01

    Reaction resonances are transiently trapped quantum states along the reaction coordinate in the transition state region of a chemical reaction that could have profound effects on the dynamics of the reaction. Obtaining an accurate reaction potential that holds these reaction resonance states and eventually modeling quantitatively the reaction resonance dynamics is still a great challenge. Up to now, the only viable way to obtain a resonance potential is through high-level ab initio calculations. Through highly accurate crossed-beam reactive scattering studies on isotope-substituted reactions, the accuracy of the resonance potential could be rigorously tested. Here we report a combined experimental and theoretical study on the resonance-mediated F + HD → HF + D reaction at the full quantum state resolved level, to probe the resonance potential in this benchmark system. The experimental result shows that isotope substitution has a dramatic effect on the resonance picture of this important system. Theoretical analyses suggest that the full-dimensional FH2 ground potential surface, which was believed to be accurate in describing the resonance picture of the F + H2 reaction, is found to be insufficiently accurate in predicting quantitatively the resonance picture for the F + HD → HF + D reaction. We constructed a global potential energy surface by using the CCSD(T) method that could predict the correct resonance peak positions as well as the dynamics for both F + H2 → HF + H and F + HD → HF + D, providing an accurate resonance potential for this benchmark system with spectroscopic accuracy. PMID:18687888

  5. The Quality Assessment of Stored Red Blood Cells Probed Using Atomic-Force Microscopy

    OpenAIRE

    Lamzin, I. M.; Khayrullin, R. M.

    2014-01-01

    At the moment the suitability of stored red blood cells (sRBC) for transfusion is checked by routine methods such as haemoglobin estimation and the level of haemolysis. These methods cannot characterize directly the quality of the membranes of sRBC. The aim of this work is to assess the quality of sRBC based on such criteria as the membrane’s stiffness and the size and the form of sRBC. Materials and Methods. We have investigated 5 series of dry cytosmears of the sRBC which had been kept in b...

  6. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy.

    Science.gov (United States)

    Razvag, Yair; Gutkin, Vitaly; Reches, Meital

    2013-08-13

    This article describes single-molecule force spectroscopy measurements of the interaction between individual amino acid residues and inorganic surfaces in an aqueous solution. In each measurement, there is an amino acid residue, lysine, glutamate, phenylalanine, leucine, or glutamine, and each represents a class of amino acids (positively or negatively charged, aromatic, nonpolar, and polar). Force-distance curves measured the interaction of the individual amino acid bound to a silicon atomic force microscope (AFM) tip with a silcon substrate, cut from a single-crystal wafer, or mica. Using this method, we were able to measure low adhesion forces (below 300 pN) and could clearly determine the strength of interactions between the individual amino acid residues and the inorganic substrate. In addition, we observed how changes in the pH and ionic strength of the solution affected the adsorption of the residues to the substrates. Our results pinpoint the important role of hydrophobic interactions among the amino acids and the substrate, where hydrophobic phenylalanine exhibited the strongest adhesion to a silicon substrate. Additionally, electrostatic interactions also contributed to the adsorption of amino acid residues to inorganic substrates. A change in the pH or ionic strength values of the buffer altered the strength of interactions among the amino acids and the substrate. We concluded that the interplay between the hydrophobic forces and electrostatic interactions will determine the strength of adsorption among the amino acids and the surface. Overall, these results contribute to our understanding of the interaction at the organic-inorganic interface. These results may have implications for our perception of the specificity of peptide binding to inorganic surfaces. Consequently, it would possibly lead to a better design of composite materials and devices.

  7. Probing anisotropic surface properties and interaction forces of chrysotile rods by atomic force microscopy and rheology.

    Science.gov (United States)

    Yang, Dingzheng; Xie, Lei; Bobicki, Erin; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2014-09-16

    Understanding the surface properties and interactions of nonspherical particles is of both fundamental and practical importance in the rheology of complex fluids in various engineering applications. In this work, natural chrysotile, a phyllosilicate composed of 1:1 stacked silica and brucite layers which coil into cylindrical structure, was chosen as a model rod-shaped particle. The interactions of chrysotile brucite-like basal or bilayered edge planes and a silicon nitride tip were measured using an atomic force microscope (AFM). The force-distance profiles were fitted using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which demonstrates anisotropic and pH-dependent surface charge properties of brucite-like basal plane and bilayered edge surface. The points of zero charge (PZC) of the basal and edge planes were estimated to be around pH 10-11 and 6-7, respectively. Rheology measurements of 7 vol % chrysotile (with an aspect ratio of 14.5) in 10 mM NaCl solution showed pH-dependent yield stress with a local maximum around pH 7-9, which falls between the two PZC values of the edge and basal planes of the rod particles. On the basis of the surface potentials of the edge and basal planes obtained from AFM measurements, theoretical analysis of the surface interactions of edge-edge, basal-edge, and basal-basal planes of the chrysotile rods suggests the yield stress maximum observed could be mainly attributed to the basal-edge attractions. Our results indicate that the anisotropic surface properties (e.g., charges) of chrysotile rods play an important role in the particle-particle interaction and rheological behavior, which also provides insight into the basic understanding of the colloidal interactions and rheology of nonspherical particles.

  8. Surface characterization of InP trenches embedded in oxide using scanning probe microscopy

    Science.gov (United States)

    Mannarino, Manuel; Chintala, Ravi; Moussa, Alain; Merckling, Clement; Eyben, Pierre; Paredis, Kristof; Vandervorst, Wilfried

    2015-12-01

    Metrology for structural and electrical analyses at device level has been identified as one of the major challenges to be resolved for the sub-14 nm technology nodes. In these advanced nodes, new high mobility semiconductors, such as III-V compounds, are grown in narrow trenches on a Si substrate. Probing the nature of the defects, the defect density, and the role of processing steps on the surface of such structures are prime metrology requirements. In order to enable defect analysis on a (III-V) surface, a proper sample preparation for oxide removal is of primary importance. In this work, the effectiveness of different chemical cleanings and thermal annealing procedures is investigated on both blanket InP and oxide embedded InP trenches by means of scanning probe microscopy techniques. It is found that the most effective approach is a combination of an HCl-based chemical cleaning combined with a low-temperature thermal annealing leading to an oxide free surface with atomically flat areas. Scanning tunneling microscopy (STM) has been the preferred method for such investigations on blanket films due to its intrinsic sub-nm spatial resolution. However, its application on oxide embedded structures is non-trivial. To perform STM on the trenches of interest (generally <20 nm wide), we propose a combination of non-contact atomic force microscopy and STM using the same conductive atomic force microscopy tip Our results prove that with these procedures, it is possible to perform STM in narrow InP trenches showing stacking faults and surface reconstruction. Significant differences in terms of roughness and terrace formation are also observed between the blanket and the oxide embedded InP.

  9. Characterization of a velocity-tunable 87Rb cold atomic source with a high-speed imaging technology

    Institute of Scientific and Technical Information of China (English)

    Feng Yan-Ying; Zhu Chang-Xing; Wang Xiao-Jia; Xue Hong-Bo; Ye Xiong-Ying; Zhou Zhao-Ying

    2009-01-01

    This paper has developed and characterized a method to produce a velocity-tunable 87Rb cold atomic source for atomic interferometry application.Using a high speed fluorescence imaging technology,it reports that the dynamic process of the atomic source formation is observed and the source performances including the flux and the initial velocity axe characterized.A tunable atomic source with the initial velocity of 1.4~2.6 m/s and the atomic source flux of 2×108~6×109 atoms/s has been obtained with the built experimental setup.

  10. Atom probe study of the carbon distribution in a hardened martensitic hot-work tool steel X38CrMoV5-1.

    Science.gov (United States)

    Lerchbacher, Christoph; Zinner, Silvia; Leitner, Harald

    2012-07-01

    The microstructure of the hardened common hot-work tool steel X38CrMoV5-1 has been characterized by atom probe tomography with the focus on the carbon distribution. Samples quenched with technically relevant cooling parameters λ from 0.1 (30 K/s) to 12 (0.25 K/s) have been investigated. The parameter λ is an industrially commonly used exponential cooling parameter, representing the cooling time from 800 to 500 °C in seconds divided with hundred. In all samples pronounced carbon segregation to dislocations and cluster formation could be observed after quenching. Carbon enriched interlath films with peak carbon levels of 6-10 at.%, which have been identified to be retained austenite by TEM, show a thickness increase with increasing λ. Therefore, the fraction of total carbon staying in the austenite grows. This carbon is not available for the tempering induced precipitation of secondary carbides in the bulk. Through all samples no segregation of any substitutional elements takes place. Charpy impact testing and fracture surface analysis of the hardened samples reveal the cooling rate induced microstructural distinctions.

  11. Gold-decorated highly ordered self-organized grating-like nanostructures on Ge surface: Kelvin probe force microscopy and conductive atomic force microscopy studies

    Science.gov (United States)

    Alam Mollick, Safiul; Kumar, Mohit; Singh, Ranveer; Satpati, Biswarup; Ghose, Debabrata; Som, Tapobrata

    2016-10-01

    Nanoarchitecture by atomic manipulation is considered to be one of the emerging trends in advanced functional materials. It has a gamut of applications to offer in nanoelectronics, chemical sensing, and nanobiological science. In particular, highly ordered one-dimensional semiconductor nanostructures fabricated by self-organization methods are in high demand for their high aspect ratios and large number of applications. An efficient way of fabricating semiconductor nanostructures is by molecular beam epitaxy, where atoms are added to a crystalline surface at an elevated temperature during growth, yielding the desired structures in a self-assembled manner. In this article, we offer a room temperature process, in which atoms are sputtered away by ion impacts. Using gold ion implantation, the present study reports on the formation of highly ordered self-organized long grating-like nanostructures, with grooves between them, on a germanium surface. The ridges of the patterns are shown to have flower-like protruding nanostructures, which are mostly decorated by gold atoms. By employing local probe microscopic techniques like Kelvin probe force microscopy and conductive atomic force microscopy, we observe a spatial variation in the work function and different nanoscale electrical conductivity on the ridges of the patterns and the grooves between them, which can be attributed to gold atom decorated ridges. Thus, the architecture presented offers the advantage of using the patterned germanium substrates as periodic arrays of conducting ridges and poorly conducting grooves between them.

  12. The Quality Assessment of Stored Red Blood Cells Probed Using Atomic-Force Microscopy

    Directory of Open Access Journals (Sweden)

    I. M. Lamzin

    2014-01-01

    Full Text Available At the moment the suitability of stored red blood cells (sRBC for transfusion is checked by routine methods such as haemoglobin estimation and the level of haemolysis. These methods cannot characterize directly the quality of the membranes of sRBC. The aim of this work is to assess the quality of sRBC based on such criteria as the membrane’s stiffness and the size and the form of sRBC. Materials and Methods. We have investigated 5 series of dry cytosmears of the sRBC which had been kept in blood bank in a period from 1 to 35 days. After AFM imaging, in every specimen, 5 RBC were chosen at random; the diameter, the height, and the stiffness were measured on each of them. Results. The present study shows high increase of the mean values of YM and height of RBC after 35 days of storage and decrease of the mean values of their diameter. Conclusion. Statistically significant high increase of the mean values of YM indicates the decrease of the elasticity of the cells in the course of storing of the RBC. This parameter along with the morphological characteristics can be used as criterion for assessment of applicability of the sRBC for blood transfusion.

  13. The quality assessment of stored red blood cells probed using atomic-force microscopy.

    Science.gov (United States)

    Lamzin, I M; Khayrullin, R M

    2014-01-01

    At the moment the suitability of stored red blood cells (sRBC) for transfusion is checked by routine methods such as haemoglobin estimation and the level of haemolysis. These methods cannot characterize directly the quality of the membranes of sRBC. The aim of this work is to assess the quality of sRBC based on such criteria as the membrane's stiffness and the size and the form of sRBC. Materials and Methods. We have investigated 5 series of dry cytosmears of the sRBC which had been kept in blood bank in a period from 1 to 35 days. After AFM imaging, in every specimen, 5 RBC were chosen at random; the diameter, the height, and the stiffness were measured on each of them. Results. The present study shows high increase of the mean values of YM and height of RBC after 35 days of storage and decrease of the mean values of their diameter. Conclusion. Statistically significant high increase of the mean values of YM indicates the decrease of the elasticity of the cells in the course of storing of the RBC. This parameter along with the morphological characteristics can be used as criterion for assessment of applicability of the sRBC for blood transfusion.

  14. Three-Dimensional (3-D) Atom Probe Tomography of a Cu-Precipitation-Strengthened, Ultrahigh-Strength Carburized Steel

    Science.gov (United States)

    Tiemens, Benjamin L.; Sachdev, Anil K.; Mishra, Raja K.; Olson, Gregory B.

    2012-10-01

    In an effort to reduce material cost, experimental steel alloys were developed that incorporated Cu precipitation in lieu of costly Co alloying additions in secondary hardening carburizing gear steels. This work utilizes three-dimensional atom probe tomography to study one of these prototype alloys and quantify the nanoscale dispersions of body-centered cubic (bcc) Cu and M2C alloy carbides used to strengthen these steels. The temporal evolution of precipitate, size, morphology, and interprecipitate interactions were studied for various tempering times. Findings suggest that Cu precipitation does act as a catalyst for heterogeneous nucleation of M2C carbides at relatively high hardness levels; however, the resultant volume fraction of strengthening carbides was noticeably less than that predicted by thermodynamic equilibrium calculations, indicating a reduced potency compared with Co-assisted precipitation. Microstructural information such as precipitate size and volume fraction was measured at the peak hardness condition and successfully used to recalibrate alloy design models for subsequent alloy design iterations.

  15. Atom probe tomography of a Ti–Si–Al–C–N coating grown on a cemented carbide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Thuvander, M.; Östberg, G. [Department of Applied Physics, Chalmers University of Technology, SE 412 96 Göteborg (Sweden); Ahlgren, M. [Sandvik Coromant, SE 126 80 Stockholm (Sweden); Falk, L.K.L., E-mail: lklfalk@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE 412 96 Göteborg (Sweden)

    2015-12-15

    The elemental distribution within a Ti–Si–Al–C–N coating grown by physical vapour deposition on a Cr-doped WC–Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti–N adhesion layer. The composition of this layer, and the Ti–Al–N interlayer present between the adhesion layer and the main Ti–Si–Al–C–N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti–Al–Si–C–N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N{sup +} and Si{sup 2+} at 14 Da. - Highlights: • A Ti–Si–Al–C–N coating/WC–Co substrate interface has been analysed by APT. • The TiN adhesion layer and the Ti–Al–N interlayer appeared to be anion deficient. • Intermixing of Co and Cr from the substrate was observed in the Ti–N adhesion layer. • The Ti–Si–Al–C–N coating displayed an undulating composition in the growth direction.

  16. Optimisation of sample preparation and analysis conditions for atom probe tomography characterisation of low concentration surface species

    Science.gov (United States)

    Douglas, J. O.; Bagot, P. A. J.; Johnson, B. C.; Jamieson, D. N.; Moody, M. P.

    2016-08-01

    The practicalities for atom probe tomography (APT) analysis of near-surface chemistry, particularly the distribution of low concentration elements, are presented in detail. Specifically, the challenges of surface analysis using APT are described through the characterisation of near-surface implantation profiles of low concentration phosphorus into single crystal silicon. This material system was chosen to illustrate this surface specific approach as low concentration phosphorus has significant mass spectra overlaps with silicon species and the near surface location requires particular attention to focused ion beam specimen preparation and deposition of various capping layers. Required changes to standard sample preparation procedure are described and the effects of changes in APT analysis parameters are discussed with regards to this specific material system. Implantation profiles of 14 kV phosphorus ions with a predicted peak concentration of 0.2 at .% were successfully analysed using APT using pulsed laser assisted evaporation. It is demonstrated that the most important factor in obtaining the most accurate implantation profile was to ensure all phosphorus mass peaks were as free of background noise as possible, with thermal tails from the Si2+ ions obscuring the P2+ ions being the major overlap in the mass spectrum. The false positive contribution to the phosphorus profiles from hydride species appears minimal at the capping layer/substrate interface. The initial capping layer selection of nickel was successful in allowing the analysis of the majority of the phosphorus profile but nickel and phosphorus mass spectra overlaps prevent optimum quantification of phosphorus at the surface.

  17. Temperature and force dependence of electron transport via the copper protein azurin: conductive probe atomic force microscopy measurements

    CERN Document Server

    Li, Wenjie; Amdursky, Nadav; Cohen, Sidney R; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2012-01-01

    We report conducting probe atomic force microscopy (CP-AFM) measurements of electron transport (ETp), as a function of temperature and force, through monolayers of holo-azurin (holo-Az) and Cu-depleted Az (apo-Az) that retain only their tightly bound water, immobilized on gold surfaces. The changes in CP-AFM current-voltage (I-V) curves for holo-Az and apo-Az, measured between 250 - 370K, are strikingly different. While ETp across holo-Az at low force (6 nN) is temperature-independent over the whole examined range, ETp across apo-Az is thermally activated, with calculated activation energy of 600\\pm100 meV. These results confirm our results of macroscopic contact area ETp measurements via holo- and apo-Az, as a function of temperature, where the crucial role of the Cu redox centre has been observed. While increasing the applied tip force from 6 to 12 nN did not significantly change the temperature dependence of ETp via apo-Az, ETp via holo-Az changed qualitatively, namely from temperature-independent at 6 nN ...

  18. Atom probe tomography of a Ti-Si-Al-C-N coating grown on a cemented carbide substrate.

    Science.gov (United States)

    Thuvander, M; Östberg, G; Ahlgren, M; Falk, L K L

    2015-12-01

    The elemental distribution within a Ti-Si-Al-C-N coating grown by physical vapour deposition on a Cr-doped WC-Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti-N adhesion layer. The composition of this layer, and the Ti-Al-N interlayer present between the adhesion layer and the main Ti-Si-Al-C-N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti-Al-Si-C-N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N(+) and Si(2+) at 14 Da.

  19. Dynamic characterization of silicon nanowires using a terahertz optical asymmetric demultiplexer-based pump-probe scheme

    DEFF Research Database (Denmark)

    Ji, Hua; Cleary, C. S.; Dailey, J. M.;

    2012-01-01

    Dynamic phase and amplitude all-optical responses of silicon nanowires are characterized using a terahertz optical asymmetric demultiplexer (TOAD) based pump-probe scheme. Ultra-fast recovery is observed for moderate pump powers....

  20. Four-probe electrical characterization of Pt-coated TMV-based nanostructures.

    Science.gov (United States)

    Górzny, M L; Walton, A S; Wnęk, M; Stockley, P G; Evans, S D

    2008-04-23

    The electrical transport and structural properties of tobacco mosaic virus (TMV)-based nanostructures have been studied. Electroless deposition was used to coat the TMV outer surface with a 13 nm thick homogeneous Pt layer. SEM, TEM and electrical characterization of the obtained nanostructures has been performed. Using four independently controlled scanning tunnelling microscope tips we were able to perform four-point probe resistance measurements on linear virus assemblies and demonstrate the continuous nature of the metallic coating. The measured resistivity values of the virial nanowires exceeded the bulk value by 10-100 times; notwithstanding this the coated structure allowed high current densities, of the order of 10(5)-10(8) A cm(-2). The four-probe technique proved to be useful for analysing the electrical properties of bio-inorganic nanowires.

  1. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe

    Science.gov (United States)

    Zhang, Xiaofei; Ye, Xuan; Li, Xide

    2016-08-01

    In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials.

  2. An integrated and multi-purpose microscope for the characterization of atomically thin optoelectronic devices

    CERN Document Server

    De Sanctis, Adolfo; Townsend, Nicola J; Craciun, Monica F; Russo, Saverio

    2016-01-01

    Optoelectronic devices based on graphene and other two-dimensional (2D) materials, such as transition metal dichalcogenides (TMDs) are the focus of wide research interest. They can be the key to improving bandwidths in telecommunications, capacity in data storage, new features in consumer electronics, safety devices and medical equipment. The characterization these emerging atomically thin materials and devices strongly relies on a set of measurements involving both optical and electronic instrumentation ranging from scanning photocurrent mapping to Raman and photoluminescence (PL) spectroscopy. Current state-of-the-art commercial instruments offer the ability to characterize individual properties of these materials with no option for the in situ characterization of a wide enough range of complementary optical and electrical properties. Presently, the requirement to switch atomically-thin materials from one system to another often radically affects the properties of these uniquely sensitive materials through ...

  3. Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode

    Science.gov (United States)

    Vecchiola, Aymeric; Chrétien, Pascal; Delprat, Sophie; Bouzehouane, Karim; Schneegans, Olivier; Seneor, Pierre; Mattana, Richard; Tatay, Sergio; Geffroy, Bernard; Bonnassieux, Yvan; Mencaraglia, Denis; Houzé, Frédéric

    2016-06-01

    An imaging technique associating a slowly intermittent contact mode of atomic force microscopy (AFM) with a home-made multi-purpose resistance sensing device is presented. It aims at extending the widespread resistance measurements classically operated in contact mode AFM to broaden their application fields to soft materials (molecular electronics, biology) and fragile or weakly anchored nano-objects, for which nanoscale electrical characterization is highly demanded and often proves to be a challenging task in contact mode. Compared with the state of the art concerning less aggressive solutions for AFM electrical imaging, our technique brings a significantly wider range of resistance measurement (over 10 decades) without any manual switching, which is a major advantage for the characterization of materials with large on-sample resistance variations. After describing the basics of the set-up, we report on preliminary investigations focused on academic samples of self-assembled monolayers with various thicknesses as a demonstrator of the imaging capabilities of our instrument, from qualitative and semi-quantitative viewpoints. Then two application examples are presented, regarding an organic photovoltaic thin film and an array of individual vertical carbon nanotubes. Both attest the relevance of the technique for the control and optimization of technological processes.

  4. Effect of the interaction conditions of the probe of an atomic-force microscope with the n-GaAs surface on the triboelectrization phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Baklanov, A. V., E-mail: baklanov@mail.ioffe.ru [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation); Gutkin, A. A.; Kalyuzhnyy, N. A. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Brunkov, P. N. [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation)

    2015-08-15

    Triboelectrization as a result of the scanning of an atomic-force-microscope probe over an n-GaAs surface in the contact mode is investigated. The dependences of the local potential variation on the scanning rate and the pressing force of the probe are obtained. The results are explained by point-defect formation in the surface layers of samples under the effect of deformation of these layers during probe scanning. The charge localized at these defects in the case of equilibrium changes the potential of surface, which is subject to triboelectrization. It is shown that, for qualitative explanation of the observed dependences, it is necessary to take into account both the generation and annihilation of defects in the region experiencing deformation.

  5. Mg dopant distribution in an AlGaN/GaN p-type superlattice assessed using atom probe tomography, TEM and SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, S E; Kappers, M J; Barnard, J S; Humphreys, C J; Oliver, R A [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke St., Cambridge, CB2 3QZ (United Kingdom); Clifton, P H; Ulfig, R M, E-mail: sb534@cam.ac.u [Imago Scientific Instruments Corporation, 5500 Nobel Drive, Madison, WI, 53711 (United States)

    2010-02-01

    P-type conducting layers are critical in GaN-based devices such as LEDs and laser diodes. Such layers are often produced by doping GaN with Mg, but the hole concentration can be enhanced using AlGaN/GaN p-type superlattices by exploiting the built-in polarisation fields. A Mg-doped AlGaN/GaN superlattice was studied using SIMS. Although the AlGaN and GaN were nominally doped to the same level, the SIMS data suggested a difference in doping density between the two materials. Atom probe tomography was then used to investigate the Mg distribution. The superlattice repeats were clearly visible, as expected and, in addition, significant Mg clustering was observed in both the GaN and AlGaN layers. There were many more Mg clusters in the AlGaN layers than the GaN layers, accounting for the difference in doping density suggested by SIMS. To evaluate the structural accuracy of the atom probe reconstruction, layer thicknesses from the atom probe were compared with STEM images. Finally, future work is proposed to investigate the Mg clusters in the TEM.

  6. Characterization of the ER-Targeted Low Affinity Ca2+ Probe D4ER

    Directory of Open Access Journals (Sweden)

    Elisa Greotti

    2016-09-01

    Full Text Available Calcium ion (Ca2+ is a ubiquitous intracellular messenger and changes in its concentration impact on nearly every aspect of cell life. Endoplasmic reticulum (ER represents the major intracellular Ca2+ store and the free Ca2+ concentration ([Ca2+] within its lumen ([Ca2+]ER can reach levels higher than 1 mM. Several genetically-encoded ER-targeted Ca2+ sensors have been developed over the last years. However, most of them are non-ratiometric and, thus, their signal is difficult to calibrate in live cells and is affected by shifts in the focal plane and artifactual movements of the sample. On the other hand, existing ratiometric Ca2+ probes are plagued by different drawbacks, such as a double dissociation constant (Kd for Ca2+, low dynamic range, and an affinity for the cation that is too high for the levels of [Ca2+] in the ER lumen. Here, we report the characterization of a recently generated ER-targeted, Förster resonance energy transfer (FRET-based, Cameleon probe, named D4ER, characterized by suitable Ca2+ affinity and dynamic range for monitoring [Ca2+] variations within the ER. As an example, resting [Ca2+]ER have been evaluated in a known paradigm of altered ER Ca2+ homeostasis, i.e., in cells expressing a mutated form of the familial Alzheimer’s Disease-linked protein Presenilin 2 (PS2. The lower Ca2+ affinity of the D4ER probe, compared to that of the previously generated D1ER, allowed the detection of a conspicuous, more clear-cut, reduction in ER Ca2+ content in cells expressing mutated PS2, compared to controls.

  7. Characterization of a Rydberg atom-based streak camera operating in synchroscan mode

    Science.gov (United States)

    Rella, C. W.; van der Meer, A. F. G.; Noordam, L. D.

    2000-06-01

    A streak camera that operates in synchroscan mode has been developed with a spectral response throughout the infrared. A gas-phase sample of Rydberg atoms is used as a photocathode. This compact device possesses 5 ps time resolution and can be used with a total infrared energy of about 1 nJ, or 10 -7 of the total macropulse energy of the FELIX free electron laser. This combination of characteristics makes it not only an attractive device for use in a variety of infrared experiments, but also a powerful tool for the study of photo-induced electron emission in atomic systems. As an example, a Rydberg-atom based electron gun which produces about 20 pulses of electrons at a 70 GHz repetition frequency has been characterized using this synchroscan streak camera.

  8. Ordering and site occupancy of D03 ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography

    KAUST Repository

    Rademacher, Thomas W.

    2011-05-01

    Addition of ternary elements to the D03 ordered Fe3Al intermetallic phase is a general approach to optimise its mechanical properties. To understand the physical influences of such additions the determination of the probability of site occupancies of these additions on the lattice site and ordering parameters is of high interest. Some common experimental techniques such as X-ray diffraction or Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) are usually applied to explore this interplay. Unfortunately, certain published results are partly inconsistent, imprecise or even contradictory. In this study, these aspects are evaluated systematically by atom probe tomography (APT) and a special data analysis method. Additionally, to account for possible field evaporation effects that can falsify the estimation of site occupancy and induce misinterpretations, APT evaporation sequences were also simulated. As a result, chromium occupies most frequently the next nearest neighbour sites of Al atoms and local ordering parameters could be achieved. © 2010 Elsevier B.V.

  9. Characterization of Residual Stresses in Ferrous Components by Magnetic Anisotropy Measurements Using a Hall Effect Sensor Array Probe

    Science.gov (United States)

    Lo, C. C. H.

    2011-06-01

    A new surface sensor probe comprising an angular array of Hall effect sensors has been developed for characterization of residual stresses in ferrous materials by means of stress-induced magnetic anisotropy measurements. The sensor probe applies a radially spreading ac magnetic field to a test sample, and detects stray fields in different directions simultaneously to determine the principal stress axes. In situ measurements were conducted on a annealed steel plate under four-point bending stresses to evaluate the probe performance. The ratio of stray field signals measured along and perpendicular to the stress axis varies linearly with the surface stress, indicating the possibility of characterizing residual stresses in ferrous components using the sensor array probe.

  10. Electrical Capacitance Probe Characterization in Vertical Annular Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Grazia Monni

    2013-01-01

    Full Text Available The paper presents the experimental analysis and the characterization of an electrical capacitance probe (ECP that has been developed at the SIET Italian Company, for the measurement of two-phase flow parameters during the experimental simulation of nuclear accidents, as LOCA. The ECP is used to investigate a vertical air/water flow, characterized by void fraction higher than 95%, with mass flow rates ranging from 0.094 to 0.15 kg/s for air and from 0.002 to 0.021 kg/s for water, corresponding to an annular flow pattern. From the ECP signals, the electrode shape functions (i.e., the signals as a function of electrode distances in single- and two-phase flows are obtained. The dependence of the signal on the void fraction is derived and the liquid film thickness and the phase’s velocity are evaluated by means of rather simple models. The experimental analysis allows one to characterize the ECP, showing the advantages and the drawbacks of this technique for the two-phase flow characterization at high void fraction.

  11. Associated-particle sealed-tube neutron probe for characterization of materials

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, E.; Dickerman, C.E. [Argonne National Lab., IL (United States); Peters, C.W. [5235 N. Whispering Hills Lane, Tucson, AZ (United States)

    1993-10-01

    A neutron diagnostic probe system has been developed that can identify and image most elements having a larger atomic number than boron. It can satisfy van-mobile and fixed-portal requirements for nondestructive detection of contraband drugs, explosives, and nuclear and chemical warfare weapon materials, and for treaty verification of sealed munitions and remediation of radioactive waste. The probe is based on a nonpulsed associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object with a 14-MeV neutrons and detects alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions (primarily inelastic scattering) identify nuclides associated with drugs, explosives, and other contraband. Flight times determined from detection times of gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. Chemical substances are identified and imaged by comparing relative spectra fine intensities with ratios of elements in reference compounds. The High-energy neutrons in gamma-rays will penetrate large objects and dense materials. The source and emission detection systems can be on the same side, allowing measurements with access to one side only. A high signal-to-background ratio is obtained and maximum information is extracted from each detected gamma-ray, yet high-bandwidth data acquisition is not required. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system. No collimators are required, and only minimal shielding is needed. The small and relatively inexpensive neutron generator tube exhibits high reliability and can be quickly replaced. The detector arrays and associated electronics can be made reliable with low maintenance cost.

  12. Probing Interaction Between Platinum Group Metal (PGM) and Non-PGM Support Through Surface Characterization and Device Performance

    Science.gov (United States)

    Saha, Shibely

    High cost and limited abundance of Platinum (Pt) have hindered effective commercialization of Proton Exchange Membrane Fuel Cell and Electrolyzer. Efforts have been undertaken to reduce precious group metal (PGM) requirement for these devices without compromising the activity of the catalyst by using transition metal carbides (TMC) as non-PGM support thanks to their similar electronic and geometric structures as Pt. In this work Mo2C was selected as non-PGM support and Pt was used as the PGM of interest. We hypothesize that the hollow nanotube morphology of Mo2C support combined with Pt nano particles deposited on it via atomic layer deposition (ALD) technique would allow increased interaction between them which may increase the activity of Pt and Mo2C as well as maximize the Pt active surface area. Specifically, a rotary ALD equipment was used to grow Pt particles from atomic level to 2--3 nanometers by simply adjusting number of ALD cycles in order to probe the interaction between the deposited Pt nanoparticles and Mo2C nanotube support. Interaction between the Pt and Mo2 C was analyzed via surface characterization and electrochemical characterization. Interaction between Pt and Mo2C arises due to the lattice mismatch between Pt and Mo2C as well as electron migration between them. Lattice spacing analysis using high resolution transmission electron microscopy (HRTEM) images, combined with Pt binding energy shift in XPS results, clearly showed strong bonding between Pt nanoparticles and the Mo2C nanotube support in all the resultant Pt/Mo2C samples. We postulate that this strong interaction is responsible for the significantly enhanced durability observed in our constant potential electrolysis (CPE) and accelerated degradation testing (ADT). Of the three samples from different ALD cycles (15, 50 and 100), Mo2C nanotubes modified by 50 (1.07 wt% Pt loading) and 100 cycles (4.4 wt% Pt) of Pt deposition, showed higher HER and HOR activity per Pt mass than commercial

  13. Influence of multi-hit capability on quantitative measurement of NiPtSi thin film with laser-assisted atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kinno, T., E-mail: teruyuki.kinno@toshiba.co.jp [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Akutsu, H.; Tomita, M. [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Kawanaka, S. [Center for Semiconductor Research and Development, Toshiba Corporation Semiconductor and Storage Products Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Sonehara, T. [Advanced Memory Development Center, Toshiba Corporation Semiconductor and Storage Products Company, 800 Yamano-Isshiki-cho, Yokkaichi, Mie 512-8550 (Japan); Hokazono, A. [Center for Semiconductor Research and Development, Toshiba Corporation Semiconductor and Storage Products Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Renaud, L.; Martin, I.; Benbalagh, R.; Salle, B. [Cameca SAS, 29 Quai des Gresillons, 92622 Gennevilliers Cedex (France); Takeno, S. [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Laser-assisted atom probe tomography was applied to NiPtSi films on Si substrates. Black-Right-Pointing-Pointer Comparison of depth profiles of single-hit events and those of multi-hit events. Black-Right-Pointing-Pointer {approx}80% of Pt atoms were detected in multi-hit events. Black-Right-Pointing-Pointer Multiple-ion detection is important for Laser-assisted atom probe tomography. - Abstract: Laser-assisted atom probe tomography (LA-APT) was applied to NiPtSi (0, 30, and 50% Pt contents) thin films on Si substrates. Consistent results with those of high-resolution Rutherford backscattering spectrometry (HR-RBS) were obtained. Based on the obtained data sets, the composition profiles from only the signals of single-hit events, meaning detection of one ion by one laser pulse, were compiled. The profiles from only the signals of multi-hit events, meaning detection of multiple ions by one laser pulse, were also compiled. There were large discrepancies with respect to Ni and Pt concentrations among the compiled profiles and the original profiles including the signals of both types of detection events. Additionally, the profiles compiled from single-hit events showed that Si concentration in NiPtSi layer became smaller toward the surface, differing from the original profiles and the multi-hit profiles. These results suggest that capability of simultaneous multiple-ion detection is important for appropriate LA-APT analyses.

  14. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ageev, O. A., E-mail: ageev@sfedu.ru [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation); Bykov, Al. V. [NT-MDT (Russian Federation); Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Tsukanova, O. G. [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation)

    2015-12-15

    The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is within the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.

  15. The use of molecular probes for the characterization of dispersions of functionalized silica nanoparticles.

    Science.gov (United States)

    Arce, Valeria B; Bertolotti, Sonia G; Oliveira, Fernando J V E; Airoldi, Claudio; Gonzalez, Mónica C; Allegretti, Patricia E; Mártire, Daniel O

    2009-07-01

    Butoxylated silica nanoparticles (BSN) were prepared by esterification of the silanol groups of fumed silica nanoparticles with butanol and characterized by 13C and 29Si NMR and thermogravimetry. The molecular probes benzophenone (BP) and safranine-T were used to investigate the BSN suspensions in water:acetonitrile. Laser flash-photolysis experiments at lambda(exc)=266 nm performed with BSN suspended in acetonitrile:aqueous phosphate buffer supported previous results of our group obtained by time-resolved phosphorescence experiments and showed that only free and adsorbed excited triplet states of BP and diphenylketyl radicals contribute to the signals. The UV-vis spectroscopic and photophysical properties of safranine-T are strongly solvent-dependent. Thus, the analysis of the emission spectra and fluorescence lifetimes yielded information on the localization of this probe molecule in suspensions of BSN and of the bare silica nanoparticles. The values of the equilibrium constant for the adsorption of the ground-state safranine-T on the particles were found to be (9.2+/-0.8)x10(4), (7.2+/-0.8)x10(5), and (3.0+/-0.1)x10(4) for the BSN in 1:1 acetonitrile:water, SiO2 in 1:1 acetonitrile:water, and SiO2 in acetonitrile, respectively.

  16. Interferometric pump-probe characterization of the nonlocal response of optically transparent ion implanted polymers

    Science.gov (United States)

    Stefanov, Ivan L.; Hadjichristov, Georgi B.

    2012-03-01

    Optical interferometric technique is applied to characterize the nonlocal response of optically transparent ion implanted polymers. The thermal nonlinearity of the ion-modified material in the near-surface region is induced by continuous wave (cw) laser irradiation at a relatively low intensity. The interferometry approach is demonstrated for a subsurface layer of a thickness of about 100 nm formed in bulk polymethylmethacrylate (PMMA) by implantation with silicon ions at an energy of 50 keV and fluence in the range 1014-1017 cm-2. The laser-induced thermooptic effect in this layer is finely probed by interferometric imaging. The interference phase distribution in the plane of the ion implanted layer is indicative for the thermal nonlinearity of the near-surface region of ion implanted optically transparent polymeric materials.

  17. Structure–performance characterization for carbon molecular sieve membranes using molecular scale gas probes

    KAUST Repository

    Rungta, Meha

    2015-04-01

    © 2015 Elsevier Ltd. All rights reserved. Understanding the relationship between carbon molecular sieve (CMS) pore structure and corresponding gas separation performance enables optimization for a given gas separation application. The final pyrolysis temperature and starting polymer precursor are the two critical parameters in controlling CMS performance. This study considers structure and performance changes of CMS derived from a commercially available polymer precursor at different pyrolysis temperatures. As reviewed in this paper, most traditional characterization methods based on microscopy, X-ray diffraction, spectroscopy, sorption-based pore size distribution measurements etc. provide limited information for relating separation performance to the CMS morphology and structural changes. A useful alternative approach based on different sized gases as molecular scale probes of the CMS pore structure was successfully used here in conjunction with separation data to provide critical insights into the structure-performance relationships of the engineered CMS.

  18. Probing/Manipulating the Interfacial Atomic Bonding between High k Dielectrics and InGaAs for Ultimate CMOS

    Science.gov (United States)

    2015-04-24

    elucidated the mechanism and nature of the bonding between the Hf atom in TEMAHf and In/As atoms of the reconstructed In0.53Ga0.47As(001)-4x2 surface... SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 11 19a. NAME OF RESPONSIBLE PERSON Kenneth Caster, Ph.D...identification of atom-toatom interaction at this interface. This work has elucidated the mechanism and nature of the bonding between the Hf atom in TEMAHf

  19. Precision X-ray spectroscopy of kaonic atoms as a probe of low-energy kaon-nucleus interaction

    CERN Document Server

    Shi, H; Beer, G; Bellotti, G; Berucci, C; Bragadireanu, A M; Bosnar, D; Cargnelli, M; Curceanu, C; Butt, A D; d'Uffizi, A; Fiorini, C; Ghio, F; Guaraldo, C; Hayano, R S; Iliescu, M; Ishiwatari, T; Iwasaki, M; Sandri, P Levi; Marton, J; Okada, S; Pietreanu, D; Piscicchia, K; Vidal, A Romero; Sbardella, E; Scordo, A; Sirghi, D L; Sirghi, F; Tatsuno, H; Doce, O Vazquez; Widmann, E; Zmeskal, J

    2016-01-01

    In the exotic atoms where one atomic $1s$ electron is replaced by a $K^{-}$, the strong interaction between the $K^{-}$ and the nucleus introduces an energy shift and broadening of the low-lying kaonic atomic levels which are determined by only the electromagnetic interaction. By performing X-ray spectroscopy for Z=1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the shift and width for the $1s$ state of $K^{-}p$ and the $2p$ state of kaonic helium-3 and kaonic helium-4. These results provided unique information of the kaon-nucleus interaction in the low energy limit.

  20. Heat transport through atomic contacts.

    Science.gov (United States)

    Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd

    2017-02-06

    Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.

  1. The Application of Atomic Absorption Spectroscopy and Optical Microscopy to the Characterization of Sized Airborne Particulate in Dayton, Ohio.

    Science.gov (United States)

    1978-01-01

    PERIOD COVERED " AneT Appication of Atomic Absorption Spectroscopy ’ and Optical Microscopy to the Characterization of THESIS/DISSERTATION 4 Sized...1978 U I HEREBY REC04MEND THAT THE THESIS PREPARED ’NDER MY SUPERVISION BY Lorelei Ann Krebs ENTITLED The Application of Atomic Absorption Spectroscopy and...acid and diluted with distilled water in a 25 milliliter volumetric flask. Atomic absorption . spectroscopy was used to analyze the solutions for

  2. Characterization of carbon nanotube yarn after exposure to hyperthermal atomic oxygen and thermal fatigue

    Science.gov (United States)

    Misak, H. E.; Mall, S.

    2016-12-01

    Carbon nanotube (CNT)-yarn was evaluated for the survivability under hazardous space environmental conditions which were thermal fatigue, atomic oxygen and additive effect of these two exposures. Its tensile strength, tenacity, stiffness, strain to failure and electrical conductivity were characterized at the two extreme space temperatures of -150 and 120 °C before and after exposure to these environmental conditions. Tensile strength, stiffness and electrical conductivity of unexposed CNT yarn increased at the cryogenic temperature relative to at the elevated temperature. There was no change in the tensile properties after exposure to the space environmental conditions when measured at the elevated and cryogenic temperatures. Electrical conductivity decreased after exposure to three hazardous environments involving thermal fatigue, but it had no or small decrease when exposed to atomic oxygen only. No additive effect of thermal fatigue followed by atomic oxygen or by atomic oxygen followed by thermal fatigue environments on the CNTs' tensile properties and electrical conductivity was observed. Considering the low density 0.59 g/cc and good resistant to the extreme hazardous space environment, CNT-yarns have potential for applications in spacecraft and satellites.

  3. Light-induced atom desorption from glass surfaces characterized by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Kumagai, Ryo; Hatakeyama, Atsushi

    2016-07-01

    We analyzed the surfaces of vitreous silica (quartz) and borosilicate glass (Pyrex) substrates exposed to rubidium (Rb) vapor by X-ray photoelectron spectroscopy (XPS) to understand the surface conditions of alkali metal vapor cells. XPS spectra indicated that Rb atoms adopted different bonding states in quartz and Pyrex. Furthermore, Rb atoms in quartz remained in the near-surface region, while they diffused into the bulk in Pyrex. For these characterized surfaces, we measured light-induced atom desorption (LIAD) of Rb atoms. Clear differences in time evolution, photon energy dependence, and substrate temperature dependence were found; the decay of LIAD by continuous ultraviolet irradiation for quartz was faster than that for Pyrex, a monotonic increase in LIAD with increasing photon energy from 1.8 to 4.3 eV was more prominent for quartz, and LIAD from quartz was more efficient at higher temperatures in the range from 300 to 580 K, while that from Pyrex was almost independent of temperature.

  4. Scanned Probe Characterization of Atmospheric Effects on diF TESADT Thin-Film Transistors

    Science.gov (United States)

    Bougher, Cortney; Huston, Shawn; Ward, Jeremy; Obaid, Abdul; Loth, Marsha; Anthony, John; Jurchescu, Oana; Conrad, Brad

    2014-03-01

    Single crystal organic semiconductors have been shown to exhibit carrier mobilities comparable to the silicon currently used in photovoltaics. However, during solution deposition of common organic semiconducting materials the resultant thin-film is often polycrystalline. Device performance and electrical properties of organic thin-film transistors are highly dependent on crystal structure and molecular packing. In polycrystalline thin-films, boundary regions between crystal grains can affect the overall performance of devices, as crystal structure and packing may differ from that of the surrounding crystal regions. These boundary regions may also serve as defect sites, allowing environmental factors, such as oxygen content and humidity, to alter local charge transport through devices. We utilize Kelvin Probe Force Microscopy (KPFM) to characterize how grain boundaries alter local conductivity and device performance as a function of doping in 2,8-difluoro-5,11-triethysilylethynyl anthradithiophene (diF TESADT) thin-film transistor surfaces. Device voltage drops at grain boundaries are characterized as a function of both atmospheric dopants and transition time between dopants. NC Space Grant Consortium, Appalachian State University Office of Student Research, Ralph E Powe Junior Faculty Enhancement Award.

  5. Observation by conductive-probe atomic force microscopy of strongly inverted surface layers at the hydrogenated amorphous silicon/crystalline silicon heterojunctions

    Science.gov (United States)

    Maslova, O. A.; Alvarez, J.; Gushina, E. V.; Favre, W.; Gueunier-Farret, M. E.; Gudovskikh, A. S.; Ankudinov, A. V.; Terukov, E. I.; Kleider, J. P.

    2010-12-01

    Heterojunctions made of hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si) are examined by conducting probe atomic force microscopy. Conductive channels at both (n )a-Si:H/(p)c-Si and (p)a-Si:H/(n)c-Si interfaces are clearly revealed. These are attributed to two-dimension electron and hole gases due to strong inversion layers at the c-Si surface in agreement with previous planar conductance measurements. The presence of a hole gas in (p )a-Si:H/(n)c-Si structures implies a quite large valence band offset (EVc-Si-EVa-Si:H>0.25 eV).

  6. In situ characterization of an optically thick atom-filled cavity

    Science.gov (United States)

    Munns, J. H. D.; Qiu, C.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.; Saunders, D. J.

    2016-01-01

    A means for precise experimental characterization of the dielectric susceptibility of an atomic gas inside an optical cavity is important for the design and operation of quantum light-matter interfaces, particularly in the context of quantum information processing. Here we present a numerically optimized theoretical model to predict the spectral response of an atom-filled cavity, accounting for both homogeneous and inhomogeneous broadening at high optical densities. We investigate the regime where the two broadening mechanisms are of similar magnitude, which makes the use of common approximations invalid. Our model agrees with an experimental implementation with warm caesium vapor in a ring cavity. From the cavity response, we are able to extract important experimental parameters, for instance the ground-state populations, total number density, and the magnitudes of both homogeneous and inhomogeneous broadening.

  7. Construction and characterization of external cavity diode lasers for atomic physics.

    Science.gov (United States)

    Hardman, Kyle S; Bennetts, Shayne; Debs, John E; Kuhn, Carlos C N; McDonald, Gordon D; Robins, Nick

    2014-04-24

    Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman, updating components, and providing a video tutorial. The setup, frequency locking and performance characterization of an ECDL will be described. Discussion of component selection and proper mounting of both diodes and gratings, the factors affecting mode selection within the cavity, proper alignment for optimal external feedback, optics setup for coarse and fine frequency sensitive measurements, a brief overview of laser locking techniques, and laser linewidth measurements are included.

  8. Shock-tube studies of atomic silicon emission in the spectral range 180 to 300 nm. [environment simulation for Jupiter probes

    Science.gov (United States)

    Prakash, S. G.; Park, C.

    1978-01-01

    Emission spectroscopy of shock-heated atomic silicon was performed in the spectral range 180 to 300 nm, in an environment simulating the ablation layer expected around a Jovian entry probe with a silica heat shield. From the spectra obtained at temperatures from 6000 to 10,000 K and electron number densities from 1 quadrillion to 100 quadrillion per cu cm, the Lorentzian line-widths were determined. The results showed that silicon lines are broadened significantly by both electrons (Stark broadening) and hydrogen atoms (Van der Waals broadening), and the combined line-widths are much larger than previously assumed. From the data, the Stark and the Van der Waals line-widths were determined for 34 silicon lines. Radiative transport through a typical shock layer was computed using the new line-width data. The computations showed that silicon emission in the hot region is large, but it is mostly absorbed in the colder region adjacent to the wall.

  9. Combined nano-SIMS/AFM/EBSD analysis and atom probe tomography, of carbon distribution in austenite/ε-martensite high-Mn steels.

    Science.gov (United States)

    Seol, Jae-Bok; Lee, B-H; Choi, P; Lee, S-G; Park, C-G

    2013-09-01

    We introduce a new experimental approach for the identification of the atomistic position of interstitial carbon in a high-Mn binary alloy consisting of austenite and ε-martensite. Using combined nano-beam secondary ion mass spectroscopy, atomic force microscopy and electron backscatter diffraction analyses, we clearly observe carbon partitioning to austenite. Nano-beam secondary ion mass spectroscopy and atom probe tomography studies also reveal carbon trapping at crystal imperfections as identified by transmission electron microscopy. Three main trapping sites can be distinguished: phase boundaries between austenite and ε-martensite, stacking faults in austenite, and prior austenite grain boundaries. Our findings suggest that segregation and/or partitioning of carbon can contribute to the austenite-to-martensite transformation of the investigated alloy.

  10. Characterization of TCP-1 probes for molecular imaging of colon cancer.

    Science.gov (United States)

    Liu, Zhonglin; Gray, Brian D; Barber, Christy; Bernas, Michael; Cai, Minying; Furenlid, Lars R; Rouse, Andrew; Patel, Charmi; Banerjee, Bhaskar; Liang, Rongguang; Gmitro, Arthur F; Witte, Marlys H; Pak, Koon Y; Woolfenden, James M

    2016-10-10

    Molecular probes capable of detecting colorectal cancer (CRC) are needed for early CRC diagnosis. The objective of this study was to characterize c[CTPSPFSHC]OH (TCP-1), a small peptide derived from phage display selection, for targeting human CRC xenografts using technetium-99m ((99m)Tc)-labeled TCP-1 and fluorescent cyanine-7 (Cy7)-labeled form of the peptide (Cy7-TCP-1). (99m)Tc-TCP-1 was generated by modifying TCP-1 with succinimidyl-6-hydrazino-nicotinamide (S-HYNIC) followed by radiolabeling. In vitro saturation binding experiments were performed for (99m)Tc-TCP-1 in human HCT116 colon cancer cells. SCID mice with human HCT116 cancer xenografts were imaged with (99m)Tc-TCP-1 or control peptide using a small-animal SPECT imager: Group I (n=5) received no blockade; Group II (n=5) received a blocking dose of non-radiolabeled TCP-1. Group III (n=5) were imaged with (99m)Tc-labeled control peptide (inactive peptide). SCID mice with human PC3 prostate cancer xenografts (Group IV, n=5) were also imaged with (99m)Tc-TCP-1. Eight additional SCID mice bearing HCT116 xenografts in dorsal skinfold window chambers (DSWC) were imaged by direct positron imaging of (18)F-fluorodeoxyglucose ((18)F-FDG) and fluorescence microscopy of Cy7-TCP-1. In vitro(99m)Tc-HYNIC-TCP-1 binding assays on HCT 116 cells indicated a mean Kd of 3.04±0.52nM. In cancer xenografts, (99m)Tc-TCP-1 radioactivity (%ID/g) was 1.01±0.15 in the absence of blockade and was reduced to 0.26±0.04 (PTCP-1 or HCT116 tumors with inactive peptide. Cy7-TCP-1 activity localized not only in metabolically active tumors, as defined by (18)F-FDG imaging, but also in peritumoral microvasculature. In conclusion, TCP-1 probes may have a distinct targeting mechanism with high selectivity for CRC and tumor-associated vasculature. Molecular imaging with TCP-1 probes appears promising to detect malignant colorectal lesions.

  11. Theoretical characterization of the spatial resolution intra-operative probes; Caracterizacion teorica de la resolucion espacial de sondas intraoperatorias

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt Chaler, S.; Jurado Bruggeman, D.; Munoz Montplet, C.

    2013-07-01

    This work intends to check that the characterization of the spatial profiles obtained by a an intraoperative probe in the presence of a point source is possible enough making use only of the parameters down time sensitivity and opening of the collimator. (Author)

  12. A novel low-cost high-throughput probe card scanner analyzer for characterization of magnetic tunnel junctions

    Science.gov (United States)

    Pong, Philip W. T.; Schmoueli, Moshe; Marcus, Eliezer; Egelhoff, William F., Jr.

    2007-09-01

    The advancement of the technology of magnetic tunnel junctions (MTJs) greatly hinges on the optimization of the magnetic materials, fabrication process, and annealing conditions which involve characterization of a large number of samples. As such, it is of paramount importance to have a rapid-turnaround characterization method since the characterization process can take even longer time than the fabrication. Conventionally, micropositioners and probe tips are manually operated to perform 4-point electrical measurement on each individual device which is a time-consuming, low-throughput process. A commercial automatic probe card analyzer can provide high turnaround; however, it is expensive and involves much cost and labor to install and maintain the equipment. In view of this, we have developed a novel low-cost, home-made, high-throughput probe card analyzer system for characterization of MTJs. It can perform fast 4-probe electrical measurements including current vs voltage, magnetoresistance, and bias dependence measurements with a high turnaround of about 500 devices per hour. The design and construction of the system is discussed in detail in this paper.

  13. Characterization of atomized extract of Opuntia ficusindica (L. Mill. and assessment of its pharmaceutical potential

    Directory of Open Access Journals (Sweden)

    Cinthya Maria Pereira Souza

    2014-04-01

    Full Text Available Given the many traditional uses of Opuntia ficus-indica (L. Mill. and the widespread employment of dry extracts in herbal medicine and phytocosmetics, the aim of this study is to characterize an atomized extract of O. ficus-indica cladodes, as well as to analyze its phytochemical composition and assay the total phenol content. In addition, the antioxidant, antimicrobial and photoprotective activities of the extract and its capacity to inhibit the enzyme tyrosinase were assessed, with a view to its pharmaceutical use. The physicochemical characterization was performed by pharmacopoeial tests, thermal analysis and infrared spectroscopy. Phytochemicals were analyzed by thin layer chromatography and total phenols by spectroscopy in the visible region. Antioxidant activity was detected by the method of free radical (DPPH● scavenging and antimicrobial activity by the agar diffusion method, while inhibition of tyrosinase was estimated by the diphenolase activity assay and photoprotective activity by a spectrophotometric method. The pharmacopeial tests, IR spectroscopy and thermal analysis enabled the atomized extract to be characterized. Concerning the potential for pharmaceutical use, it was found that, under the study conditions, the extract did not show any antioxidant, antimicrobial or photoprotective activity. However, it did show a modest tyrosinase inhibitory capacity. The originality of the proposed research on O. ficus-indica in the pharmaceutical field should be emphasized, as it opens new prospects for the study of a species that is so abundant and adapted to Brazilian semi-arid regions.

  14. Four-probe scanning tunnelling microscope with atomic resolution for electrical and electro-optical property measurements of nanosystems

    Institute of Scientific and Technical Information of China (English)

    Lin Xiao; He Xiao-Bo; Lu Jun-Ling; Gao Li; Huan Qing; Shi Dong-Xia; Gao Hong-Jun

    2005-01-01

    We demonstrate a special four-probe scanning tunnelling microscope (STM) system in ultrahigh vacuum (UHV),which can provide coarse positioning for every probe independently with the help of scanning electron microscope (SEM)and fine positioning down to nanometre using the STM technology. The system allows conductivity measurement by means of a four-point probe method, which can draw out more accurate electron transport characteristics in nanostructures, and provides easy manipulation of low dimension materials. All measurements can be performed in variable temperature (from 30K to 500K), magnetic field (from 0 to 0.1T), and different gas environments. Simultaneously, the cathodoluminescence (CL) spectrum can be achieved through an optical subsystem. Test measurements using some nanowire samples show that this system is a powerful tool in exploring electron transport characteristics and spectra in nanoscale physics.

  15. Effect of AFM probe geometry on visco-hyperelastic characterization of soft materials.

    Science.gov (United States)

    Boccaccio, Antonio; Lamberti, Luciano; Papi, Massimiliano; De Spirito, Marco; Pappalettere, Carmine

    2015-08-14

    Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized.

  16. Electrical characterization of dislocations in gallium nitride using advanced scanning probe techniques

    Science.gov (United States)

    Simpkins, Blake Shelley Ginsberg

    GaN-based materials are promising for high speed and power applications such as amplifier and communications circuits. Ga, In, and AIN-based alloys span a wide optical range (2--6.1 eV) and exhibit strong polarizations making them useful in many devices; however, films are highly defective (˜10 8 dislocations cm-2) due to lack of suitable substrates. Thus, nanoscale electronic characterization of these dislocations is critical for device and growth optimization. Scanning probe techniques enable characterization at length-scales unattainable by conventional techniques. First, scanning Kelvin probe microscopy (SKPM) was used to image surface potential variations due to charged dislocations in HVPE-grown GaN. The film's structural evolution "with thickness was monitored showing a decrease in dislocation density, likely through dislocation reaction. Numerical simulations were used to investigate tip-size effects when imaging highly localized (tens of nm) potential variations indicating that measured dislocation induced potential features in GaN can be much smaller (˜80%) than true variations. Next, capacitance variations in MBE-grown HFETs, due to dislocations-induced carrier depletion, were imaged with scanning capacitance microscopy (SCM). The distribution of these charged centers was correlated with buffer schemes showing that an AIN buffer leads to pseudomorphic (2D) nucleation and randomly distributed misfit dislocations while deposition directly on SiC results in island (3D) nucleation and a domain structure with dislocations grouped at domain boundaries. Hall measurements and numerical simulations were also carried out to further study the implications of these microstructures. Numerical results indicated that randomly distributed dislocations deplete a larger fraction of free carriers than the same density of grouped dislocations and correlated favorably with Hall results. Correlated SKPM and conductive AFM (C-AFM) measurements were then used to study

  17. Experimental characterization of the lower hybrid wave field on the first pass using a magnetic probe array

    Science.gov (United States)

    Shinya, T.; Baek, S. G.; Wallace, G. M.; Parker, R. R.; Shiraiwa, S.; Takase, Y.

    2016-10-01

    Experimental characterization of the lower hybrid (LH) wave propagation from the launcher to the core plasma is important to validate an antenna spectrum model and to identify parasitic wave-edge plasma interactions occurring in front of the launcher. On Alcator C-Mod, the wave frequency spectrum and dominant parallel wavenumber are characterized with two probe arrays installed near the edge plasma. The first one is mounted on a radially movable structure that is about 108 deg toroidally away from the launcher. A phasing scan experiment at moderate density suggests a resonance-cone propagation of the launched slow LH wave with a finite spectral width. As plasma density is raised, the measured power decreases, correlated with the observed loss of efficiency. Recently, the second probe array with an increased number of probes has been installed on a limiter that is 54 deg. toroidally away from the launcher, which is expected to be dominantly sensitive to the wave-field directly leaving the launcher. An initial measurement shows that the probe array detects a coherent wave field. A full-wave model to evaluate the wave electric-field pattern in front of the probe array is under development. If available, further experimental and modeling results will be presented. Supported by USDoE Award(s) DE-FC02-99ER54512 and Japan/U.S. Cooperation in Fusion Research and Development.

  18. Macro and microscale mechanical testing and local electrode atom probe measurements of STIP irradiated F82H, Fe-8Cr ODS and Fe-8Cr-2W ODS

    Energy Technology Data Exchange (ETDEWEB)

    Hosemann, P., E-mail: peterh@lanl.gov [Los Alamos National Laboratory (LANL), MST-8 (United States); University of California Berkeley, Department of Nuclear Engineering (United States); Stergar, E. [University of California Berkeley, Department of Nuclear Engineering (United States); Peng, L. [Paul Scherrer Institute (PSI), 5332 Villigen PSI (Switzerland); Institute of Plasma Physics, Chinese Academy of Science (China); Dai, Y. [Paul Scherrer Institute (PSI), 5332 Villigen PSI (Switzerland); Maloy, S.A. [Los Alamos National Laboratory (LANL), MST-8 (United States); Pouchon, M.A. [Paul Scherrer Institute (PSI), 5332 Villigen PSI (Switzerland); Shiba, K.; Hamaguchi, D. [Japan Atomic Energy Agency (JAEA) (Japan); Leitner, H. [MontanuniversitaetLeoben, Department fuerMetallkunde (Austria)

    2011-10-01

    The reduced activation ferritic/martensitic alloy F82H (Fe-8Cr-2W-0.2V-0.04Ta-0.1C) is being considered as a structural material for several different fusion related nuclear applications. The oxide dispersion strengthened (ODS) alloys Fe-8Cr-2W ODS and Fe-8Cr ODS were developed for better high-temperature strength and radiation tolerance. These materials have been exposed to a neutron and proton environment in the Spallation Target Irradiation Program (STIP) (<13 dpa) with an average He/dpa ratio of 60 appm He/dpa at irradiation temperatures 159-347 deg. C. After irradiation, the samples were tensile tested at different temperatures. The post tensile testing fractured parts were collected and nanoindentation, microcompression testing and local electrode atom probe was conducted. The information gained by local electron atom probe in combination with the micro, nano and macroscopic mechanical tests allows one to establish a fundamental understanding of the relationship between the data measured at different scales on irradiated materials.

  19. Macro and microscale mechanical testing and local electrode atom probe measurements of STIP irradiated F82H, Fe-8Cr ODS and Fe-8Cr-2W ODS

    Science.gov (United States)

    Hosemann, P.; Stergar, E.; Peng, L.; Dai, Y.; Maloy, S. A.; Pouchon, M. A.; Shiba, K.; Hamaguchi, D.; Leitner, H.

    2011-10-01

    The reduced activation ferritic/martensitic alloy F82H (Fe-8Cr-2W-0.2V-0.04Ta-0.1C) is being considered as a structural material for several different fusion related nuclear applications. The oxide dispersion strengthened (ODS) alloys Fe-8Cr-2W ODS and Fe-8Cr ODS were developed for better high-temperature strength and radiation tolerance. These materials have been exposed to a neutron and proton environment in the Spallation Target Irradiation Program (STIP) (<13 dpa) with an average He/dpa ratio of 60 appm He/dpa at irradiation temperatures 159-347 °C. After irradiation, the samples were tensile tested at different temperatures. The post tensile testing fractured parts were collected and nanoindentation, microcompression testing and local electrode atom probe was conducted. The information gained by local electron atom probe in combination with the micro, nano and macroscopic mechanical tests allows one to establish a fundamental understanding of the relationship between the data measured at different scales on irradiated materials.

  20. Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and radical polymerization

    Indian Academy of Sciences (India)

    Dhruba Jyoti Haloi; Bishnu Prasad Koiry; Prithwiraj Mandal; Nikhil Kumar Singha

    2013-07-01

    This investigation reports a comparative study of poly(2-ethylhexyl acrylate) (PEHA) prepared via atom transfer radical polymerization (ATRP), reverse atom transfer radical polymerization (RATRP) and conventional free radical polymerization (FRP). The molecular weights and the molecular weight distributions of the polymers were measured by gel permeation chromatography (GPC) analysis. Structural characterization of the polymers was carried out by 1H NMR and MALDI-TOF-MS analyses. Thermal properties of the polymers were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The polymerization results and the thermal properties of PEHAs prepared via ATRP, RATRP and FRP were compared.

  1. Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Nikiforov, Maxim [ORNL; Bradshaw, James A [ORNL; Jesse, Stephen [ORNL; Van Berkel, Gary J [ORNL

    2011-01-01

    Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2 array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.

  2. Optical Characterization of a Hollow Fiber Raman Probe toward Non-Invasive Measurements of Living Tissues

    Science.gov (United States)

    Mitsuoka, Hiroki; Morita, Shin-ichi; Suzuki, Toshiaki; Matsuura, Yuji; Katsumoto, Yukiteru; Sato, Hidetoshi

    2009-02-01

    The use of a hollow fiber as a Raman probe, which gives strong advantage of a free link in space, was confirmed to be a versatile and standard analytical method, since Raman data obtained through a hollow fiber probe assures a sufficient link to conventional Raman data. In this paper, we confirmed that a Raman spectrum given by the hollow fiber probe becomes identical to a Raman spectrum measured by a conventional approach, if one is multiplied by an optimized coefficient. In addition, Raman signal intensity changes were related to various types of curved geometries of the probe. The Raman signal intensity value at a curved geometry of the probe, which is one of the most frequently used positions, became 0.35 compared to the value at the standard position of the probe (straight lined).

  3. Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes.

    Science.gov (United States)

    Tian, Bozhi; Lieber, Charles M

    2011-01-01

    Semiconductor nanowires (NWs) represent a unique system for exploring phenomena at the nanoscale and are expected to play a critical role in future electronic, optoelectronic, and miniaturized biomedical devices. Modulation of the composition and geometry of nanostructures during growth could encode information or function, and realize novel applications beyond the conventional lithographical limits. This review focuses on the fundamental science aspects of the bottom-up paradigm, which are synthesis and physical property characterization of semiconductor NWs and NW heterostructures, as well as proof-of-concept device concept demonstrations, including solar energy conversion and intracellular probes. A new NW materials synthesis is discussed and, in particular, a new "nanotectonic" approach is introduced that provides iterative control over the NW nucleation and growth for constructing 2D kinked NW superstructures. The use of radial and axial p-type/intrinsic/n-type (p-i-n) silicon NW (Si-NW) building blocks for solar cells and nanoscale power source applications is then discussed. The critical benefits of such structures and recent results are described and critically analyzed, together with some of the diverse challenges and opportunities in the near future. Finally, results are presented on several new directions, which have recently been exploited in interfacing biological systems with NW devices.

  4. Kelvin probe force microscopy for characterizing doped semiconductors for future sensor applications in nano- and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Heidemarie, E-mail: Heidemarie.Schmidt@etit.tu-chemnitz.de [Chemnitz University of Technology, Department of Materials for Nanoelectronics, Faculty of Electrical Engineering and Information Technology, 09126 Chemnitz (Germany); Habicht, Stefan; Feste, Sebastian [Forschungszentrum Jülich, Peter Grünberg Institute 9 (PGI-9-IT), 52425 Jülich (Germany); JARA-FIT, Fundamentals of Future Information Technology (Germany); Müller, Anne-Dorothea [Anfatec Instruments AG, Melanchthonstr. 28, 08606 Oelsnitz (Germany); Schmidt, Oliver G. [Chemnitz University of Technology, Department of Materials for Nanoelectronics, Faculty of Electrical Engineering and Information Technology, 09126 Chemnitz (Germany); Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden (Germany)

    2013-09-15

    Kelvin probe force microscopy (KPFM) is one of the most promising non-contact electrical nanometrology techniques to characterize doped semiconductors. By applying a recently introduced explanation of measured KPFM signals, we show the applicability of KPFM to determine and control surface-near electrostatic forces in planar doped silicon and in doped silicon nanostructures. Surface-near electrostatic forces may be used for the immobilization of nano- and biomaterials in future sensor applications in nano- and biotechnology. Additionally, the influence of the electrostatic potential distribution in doped semiconductor nanostructures, e.g. in horizontal Si nanowires, and its influence on the surface-near electrostatic forces are discussed. It is explained how drift and diffusion of injected electrons and holes in intrinsic electric fields influence the detected KPFM signal. For example KPFM is successfully employed to locate p{sup +}p and n{sup +}p junctions along B-doped and As-doped p-Si nanowires, respectively. As an outlook the physical immobilization and the transport of biomaterials above arrays of separately addressable doped semiconductor cells will be discussed.

  5. Kelvin probe force microscopy for characterizing doped semiconductors for future sensor applications in nano- and biotechnology

    Science.gov (United States)

    Schmidt, Heidemarie; Habicht, Stefan; Feste, Sebastian; Müller, Anne-Dorothea; Schmidt, Oliver G.

    2013-09-01

    Kelvin probe force microscopy (KPFM) is one of the most promising non-contact electrical nanometrology techniques to characterize doped semiconductors. By applying a recently introduced explanation of measured KPFM signals, we show the applicability of KPFM to determine and control surface-near electrostatic forces in planar doped silicon and in doped silicon nanostructures. Surface-near electrostatic forces may be used for the immobilization of nano- and biomaterials in future sensor applications in nano- and biotechnology. Additionally, the influence of the electrostatic potential distribution in doped semiconductor nanostructures, e.g. in horizontal Si nanowires, and its influence on the surface-near electrostatic forces are discussed. It is explained how drift and diffusion of injected electrons and holes in intrinsic electric fields influence the detected KPFM signal. For example KPFM is successfully employed to locate p+p and n+p junctions along B-doped and As-doped p-Si nanowires, respectively. As an outlook the physical immobilization and the transport of biomaterials above arrays of separately addressable doped semiconductor cells will be discussed.

  6. Preparation and characterization of a magnetic and optical dual-modality molecular probe

    Energy Technology Data Exchange (ETDEWEB)

    Bumb, A; Brechbiel, M W [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, NCI, NIH, Building 10, Room 1B53, 10 Center Drive, Bethesda, MD 20892 (United States); Regino, C A S; Ogawa, M; Choyke, P L [Molecular Imaging Program, NCI, NIH, Building 10, Room B3B69, 10 Center Drive, Bethesda, MD 20892 (United States); Perkins, M R [Vaccine Research Center, NIAID, NIH, Building 40, Room 3608B, 40 Convent Drive, Bethesda, MD 20892 (United States); Bernardo, M [SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702 (United States); Fugger, L [MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, The University of Oxford, Oxford OX3 9DS (United Kingdom); Dobson, P J, E-mail: Bumba@mail.nih.gov, E-mail: martinwb@mail.nih.gov [Oxford University Begbroke Science Park, Sandy Lane, Kidlington, Oxon OX5 1PF (United Kingdom)

    2010-04-30

    Multi-modality imaging probes combine the advantages of individual imaging techniques to yield highly detailed anatomic and molecular information in living organisms. Herein, we report the synthesis and characterization of a dual-modality nanoprobe that couples the magnetic properties of ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) with the near infrared fluorescence of Cy5.5. The fluorophore is encapsulated in a biocompatible shell of silica surrounding the iron oxide core for a final diameter of {approx} 17 nm. This silica-coated iron oxide nanoparticle (SCION) has been analyzed by transmission electron microscopy, dynamic light scattering, and superconducting quantum interference device (SQUID). The particle demonstrates a strong negative surface charge and maintains colloidal stability in the physiological pH range. Magnetic hysteresis analysis confirms superparamagnetic properties that could be manipulated for thermotherapy. The viability of primary human monocytes, T cells, and B cells incubated with the particle has been examined in vitro. In vivo analysis of agent leakage into subcutaneous A431 tumors in mice was also conducted. This particle has been designed for diagnostic application with magnetic resonance and fluorescence imaging, and has future potential to serve as a heat-sensitive targeted drug delivery platform.

  7. Synthesis and Characterization of a Novel β-cyclodextrin Fluorescent Probe

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction In recent years, new development for the fluorescent chemical sensor has made the method and application of fluorescent probes been greatly enhanced and extended fully. Fluorescent probes has important value not only in research of pharmacology and physiology, but also has made great contribution in environmental science, information science etc.Cyclodextrin modified by fluorescence group as a spectral probe in supramolecular chemistry has important applications, and Japan's Ueno researc...

  8. Noise characterization of an atomic magnetometer at sub-millihertz frequencies

    CERN Document Server

    Mateos, I; Zhivun, E; Budker, D; Wurm, D; Ramos-Castro, J

    2015-01-01

    Noise measurements have been carried out in the LISA bandwidth (0.1 mHz to 100 mHz) to characterize an all-optical atomic magnetometer based on nonlinear magneto-optical rotation. This was done in order to assess if the technology can be used for space missions with demanding low-frequency requirements like the LISA concept. Magnetometry for low-frequency applications is usually limited by $1/f$ noise and thermal drifts, which become the dominant contributions at sub-millihertz frequencies. Magnetic field measurements with atomic magnetometers are not immune to low-frequency fluctuations and significant excess noise may arise due to external elements, such as temperature fluctuations or intrinsic noise in the electronics. In addition, low-frequency drifts in the applied magnetic field have been identified in order to distinguish their noise contribution from that of the sensor. We have found the technology suitable for LISA in terms of sensitivity, although further work must be done to characterize the low-fr...

  9. Use of optical probes to characterize bubble behavior in gas-solid fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Mainland, M.E.; Welty, J.R. (Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering)

    1995-02-01

    Optical probes are used to study gas-solid fluidized-bed hydrodynamics. The probes each consisting of a light source and photodetector separated by a gap are suitable for use at combustion-level temperatures. The methodology to process the signal for calculation of bubble properties such as bubble frequency, local bubble residence time, bubble velocity, pierced length, bubble size, and visible bubble flow is presented. The signal processing technique is independent of bed operating conditions. The probe signal processing methodology is validated by comparing calculated bubble properties based on the probe signal with properties observed on videotapes of a 2-D bed.

  10. Electrical characterization of electron beam induced damage on sub-10 nm n-channel MOS transistors using nano-probing technique

    Science.gov (United States)

    Kang, Jonghyuk; Lee, Sungho; Choi, Byoungdeog

    2016-11-01

    Electron beam induced damage on sub-10 nm n-channel MOS transistors was evaluated using an atomic force microscopy-based nano-probing technique. After electron beam irradiation, all the device parameters shifted including threshold voltage (V th), saturation current, sub-threshold slope and transistor leakage current. A negative shift in V th occurred at low electron beam acceleration voltage (V acc) because of the increase in oxide trapped holes generated by excited plasmons. At high V acc, however, a positive V th shift was observed because of an increased contribution of interface trap generation caused by the deeper electron penetration depth. In addition, interface trap generation not only degraded the sub-threshold slope due to the additional capacitance from the generated interface traps, but also increased transistor leakage current due to changes in junction characteristics. Our studies show that it is critical to avoid electron beam exposure before electrical characterization on sub-10 nm devices even in the range of less than 1.0 kV of V acc using nano-probe systems.

  11. Synthesis and characterization of a combined fluorescence, phosphorescence, and electron paramagnetic resonance probe

    Science.gov (United States)

    Beth, Albert H.; Cobb, Charles E.; Beechem, Joseph M.

    1992-04-01

    A spin-labeled derivative of eosin was chemically synthesized from 5-aminoeosin and the nitroxide spin label 2,2,5,5-tetramethylpyrrolin-1-oxyl-3-carboxylic acid. Following determination of the chemical identity of the spin-labeled eosin (5-SLE) by FAB mass spectroscopy, its optical and magnetic resonance spectroscopic properties were characterized in aqueous solution and compared to a diamagnetic eosin derivative, 5-acetamido eosin (5- AcE). The visible light absorption maximum of 5-SLE was 518 nm, the same as for 5-AcE. The fluorescence quantum yield of 5-SLE was only reduced by approximately 10% relative to 5-AcE, and the fluorescence lifetime was marginally reduced relative to 5-AcE. The phosphorescence lifetime and yield for 5-SLE were very similar to those for 5-AcE. The phosphorescence yield of 5-SLE bound noncovalently to BSA was reduced by approximately 60% relative to 5-AcE, and the phosphorescence lifetime reduced from approximately 2.4 msec (5-AcE) to 1.6 msec (5-SLE). Reduction of the nitroxide moiety of the 5-SLE with sodium ascorbate resulted in minimal changes in the fluorescence and phosphorescence quantum yields and lifetimes. This indicated that the unpaired electron of the nitroxide spin label did not seriously affect the optical spectroscopic characteristics of the spin-labeled eosin molecule. The quantum yields and lifetimes of 5-SLE were still quite acceptable for time- resolved fluorescence and phosphorescence studies. The electron paramagnetic resonance (EPR) spectrum of 5-SLE in aqueous solution has a lineshape consistent with a molecule the size of 5-SLE undergoing rapid rotational reorientation. When bound to BSA, the EPR spectrum of 5-SLE was broadened to a near slow motion limit for EPR, as expected for the relatively slowly rotating protein-5-SLE complex. Time-resolved phosphorescence anisotropy and saturation transfer EPR (ST-EPR) experiments with samples of 5-SLE bound to BSA in solutions of varying glycerol concentrations at 2

  12. Distribution of Cold ($\\lesssim 300$K) Atomic Gas in Galaxies: Results from the GBT HI Absorption Survey Probing the Inner Halos ($\\rho<20$kpc) of Low-z Galaxies

    CERN Document Server

    Borthakur, Sanchayeeta

    2016-01-01

    We present the Green Bank Telescope absorption survey of cold atomic hydrogen ($\\lesssim 300$K) in the inner halo of low-redshift galaxies. The survey aims to characterize the cold gas distribution and to address where condensation - the process where ionized gas accreted by galaxies condenses into cold gas within the disks of galaxies - occurs. Our sample consists of 16 galaxy-quasar pairs with impact parameters of $\\le$ 20kpc. We detected an HI absorber associated with J0958+3222 (NGC 3067) and HI emission from six galaxies. We also found two \\ion{Ca}{2} absorption system in the archival SDSS data associated with galaxies J0958+3222 and J1228+3706, although the sample was not selected based on the presence of metals in absorption. Our detection rate of HI absorbers with optical depths of $\\ge 0.06$ is $\\sim$7\\%. We also find that cold HI phase ($\\lesssim$300K) is 44($\\pm$18)\\% of the total atomic gas in the sightline probing J0958+3222. We find no correlation between the peak optical depth and impact parame...

  13. Using Downhole Probes to Locate and Characterize Buried Transuranic and Mixed Low Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Steinman, Donald K; Bramblett, Richard L; Hertzog, Russel C

    2012-06-25

    Borehole logging probes were developed and tested to locate and quantify transuranic elements in subsurface disposal areas and in contaminated sites at USDOE Weapons Complex sites. A new method of measuring very high levels of chlroine in the subsurface was developed using pulsed neutron technology from oilfield applications. The probes were demonstrated at the Hanford site in wells containing plutonium and other contaminants.

  14. Development of simple designs of multitip probe diagnostic systems for RF plasma characterization.

    Science.gov (United States)

    Naz, M Y; Shukrullah, S; Ghaffar, A; Rehman, N U

    2014-01-01

    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures.

  15. Development of Simple Designs of Multitip Probe Diagnostic Systems for RF Plasma Characterization

    Directory of Open Access Journals (Sweden)

    M. Y. Naz

    2014-01-01

    Full Text Available Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP generated by a 13.56 MHz radio frequency (RF source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures.

  16. Multiple-probe scanning probe microscopes for nanoarchitectonic materials science

    Science.gov (United States)

    Nakayama, Tomonobu; Shingaya, Yoshitaka; Aono, Masakazu

    2016-11-01

    Nanoarchitectonic systems are of interest for utilizing a vast range of nanoscale materials for future applications requiring a huge number of elemental nanocomponents. To explore the science and technology of nanoarchitectonics, advanced characterization tools that can deal with both nanoscale objects and macroscopically extended nanosystems are demanded. Multiple-probe scanning probe microscopes (MP-SPMs) are powerful tools that meet this demand because they take the advantages of conventional scanning probe microscopes and realize atomically precise electrical measurements, which cannot be done with conventional microprobing systems widely used in characterizing materials and devices. Furthermore, an MP-SPM can be used to operate some nanoarchitectonic systems. In this review, we overview the indispensable features of MP-SPMs together with the past, present and future of MP-SPM technology.

  17. Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications

    Science.gov (United States)

    Sharma, Manu; Marple, Eric; Reichenberg, Jason; Tunnell, James W.

    2014-08-01

    The design and characterization of an instrument combining Raman, fluorescence, and reflectance spectroscopic modalities is presented. Instrument development has targeted skin cancer applications as a novel fiber-optic probe has been specially designed to interrogate cutaneous lesions. The instrument is modular and both its software and hardware components are described in depth. Characterization of the fiber-optic probe is also presented, which details the probe's ability to measure diagnostically important parameters such as intrinsic fluorescence and absorption and reduced scattering coefficients along with critical performance metrics such as high Raman signal-to-noise ratios at clinically practical exposure times. Validation results using liquid phantoms show that the probe and system can extract absorption and scattering coefficients with less than 10% error. As the goal is to use the instrument for the clinical early detection of skin cancer, preliminary clinical data are also presented, which indicates our system's ability to measure physiological quantities such as relative collagen and nicotinamide adenine dinucleotide concentration, oxygen saturation, blood volume fraction, and mean vessel diameter.

  18. Probing Co/Si interface behaviour by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this work, we investigate the Co-Si reaction, the Co growth mode at room temperature, diffusion behaviour as well as morphology evolution during annealing on both H-terminated and clean Si(001) and Si(111) surfaces. From in-situ X-ray photoelectron spectroscopy (XPS) investigation, "Co-Si" reaction appears to occur on both H-terminated and clean surfaces at room temperature (RT) and the silicide crystallinity is improved upon annealing.Co growth mode on H-terminated Si surfaces occurs in a pseudo layer-by-layer manner while small close-packed island growth mode is observed on the clean Si surface. Upon annealing at different temperatures, Co atom concentration decreases versus annealing time, which in part is attributed to Co atoms inward diffusion. The diffusion behaviour on both types of surfaces demonstrates a similar trend. Morphology study using ex-situ atomic force microscopy (AFM) shows that the islands formed on Si(001) surface after annealing at 700 ℃ are elongated with growth directions alternate between the two perpendicular [(-1)10] and [110] directions. Triangular islands are observed on Si(111) surface.

  19. Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy.

    Science.gov (United States)

    Tello, Marta; Spenlé, Caroline; Hemmerlé, Joseph; Mercier, Luc; Fabre, Roxane; Allio, Guillaume; Simon-Assmann, Patricia; Goetz, Jacky G

    2016-02-01

    Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.

  20. OPTIMIZATION AND CHARACTERIZATION OF ELECTRON BEAM RESIST USING ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    - Sutikno

    2012-01-01

    Full Text Available Resis negatif ma-N 2403 dan 495 K PMMA memiliki resolusi yang baik untuk aplikasi litografi berkas elektron (EBL. Ketebalanresist optimal memainkan peran penting dalam paparan berkas elektron. Oleh karena itu, dalam penelitian ini, ketebalan darikedua resist yang dioptimalkan menggunakan spincoater dalam jangkauan laju spin 1000-6000 rpm. Semakin laju spin meningkat,ketebalan resist menurun juga. Morfologi permukaan resist dikarakterisasi dengan mikroskop gaya atom. Butir butir resist nampakpanjang. Dalam analisis AFM, permukaan profil resist negatif ma-N 2403 dan 495 K PMMA nampak seperti kerucut. Negative resist ma-N 2403 and 495 K PMMA have good resolution for electron beam lithography (EBL application. The optimumresist thickness plays significant role in e-beam exposure. Therefore, in this research, thicknesses of both resists were optimizedusing spincoater within spin speeds of 1000-6000 rpm. As spin speed increased, resist thickness decreased as well. Morphology ofresist surfaces were characterized using atomic force microscopy (AFM. Grains of resist show long grains. In AFM analyses,surface profiles of negative resist ma-N 2403 and 495 K PMMA show cone peaks.Keywords: e-beam resist; spincoater; e-beam lithography

  1. Atomic force microscopy characterization of the surface wettability of natural fibres

    Science.gov (United States)

    Pietak, Alexis; Korte, Sandra; Tan, Emelyn; Downard, Alison; Staiger, Mark P.

    2007-01-01

    Natural fibres represent a readily available source of ecologically friendly and inexpensive reinforcement in composites with degradable thermoplastics, however chemical treatments of fibres are required to prepare feasible composites. It is desirable to characterize the surface wettability of fibres after chemical treatment as the polarity of cellulose-based fibres influences compatibility with a polymer matrix. Assessment of the surface wettability of natural fibres using conventional methods presents a challenge as the surfaces are morphologically and chemically heterogeneous, rough, and can be strongly wicking. In this work it is shown that under atmospheric conditions the adhesion force between an atomic force microscopy (AFM) tip and the fibre surface can estimate the water contact angle and surface wettability of the fibre. AFM adhesion force measurements are suitable for the more difficult surfaces of natural fibres and in addition allow for correlations between microstructural features and surface wettability characteristics.

  2. Morphology of Platinum Nanowire Array Electrodeposited Within Anodic Aluminium Oxide Template Characterized by Atomic Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    孔令斌; 陆梅; 李梦轲; 郭新勇; 力虎林

    2003-01-01

    Uniform platinum nanowires were synthesized by electrodepositing the platinum under a very low altering current frequency (20Hz) and increasing voltage (5-15 V) in the pores of anodic aluminium oxide (AAO) template.Atomic force microscopy observation indicates that the template membranes we obtained have hexagonally closepacked nanochannels. The platinum nanowires have highly ordered arrays after partially dissolving the aluminium oxide membrane. With the increasing dissolving time, the platinum nanowire array collapsed. A concave topography of the aluminium substrate was observed after the aluminium oxide membrane was dissolved completely and the platinum nanowires were released from the template. Platinum nanowires were also characterized by transmission electron microscopy and the phase structure of the Al/AAO/Pt composite was proven by x-ray diffraction.

  3. Transmission electron microscopy and atomic force microscopy characterization of nickel deposition on bacterial cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Recently bacterial cells have become attractive biological templates for the fabrication of metal nano- structures or nanomaterials due to their inherent small size, various standard geometrical shapes and abundant source. In this paper, nickel-coated bacterial cells (gram-negative bacteria of Escherichia coli) were fabricated via electroless chemical plating. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) characterization results reveal evident morphological difference between bacterial cells before and after deposition with nickel. The bare cells with smooth surface presented transverse outspreading effect at mica surface. Great changes took place in surface roughness for those bacterial cells after metallization. A large number of nickel nanoparticles were observed to be equably distributed at bacterial surface after activation and subsequent metallization. Furthermore, ultra thin section analytic results validated the presence and uniformity of thin nickel coating at bacterial surface after metallization.

  4. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...... areas traced in single scans of 40 mu m x 40 mu m. The results show that surface mapping on industrial surfaces is possible using the Least Mean Square alignment provided by the AFM software....... values in the order of 1 nm. The positioning repeatability of the two horizontal axes of the CMM was determined to +/-1 mu m. Sets of four 20 mu m x 20 mu m areas were traced on fiat objects, combining the data into single 40 mu m x 40 mu m areas, and comparing the roughness values to those for the same...

  5. Nanotribological characterization of digital micromirror devices using an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Liu Huiwen; Bhushan, Bharat

    2004-08-15

    Texas Instruments' digital micromirror device (DMD) comprises an array of fast digital micromirrors, monolithically integrated onto and controlled by an underlying silicon memory chip. The DMD is one of the few success stories in the emerging field of MEMS. In this study, an atomic force microscope (AFM) has been used to characterize the nanotribological properties of the elements of the DMD. An AFM methodology was developed to identify and remove micromirrors of interest. The surface roughness, adhesion, friction, and stiffness properties of the DMD elements were studied. The influence of relative humidity and temperature on the behavior of the DMD element surfaces was also investigated. Potential mechanisms for wear and stiction are discussed in light of the findings.

  6. Laser-induced reversion of $\\delta^{'}$ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    CERN Document Server

    Khushaim, Muna; Al-Kassab, Talaat

    2015-01-01

    The influence of tuning the laser energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction and composition of $\\delta^{'}$ precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser energy of 100 pJ was in fairly good agreement with reported range of $\\delta^{'}$ solvus temperature, suggesting a result of reversion upon heating due to laser pulsing.

  7. Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post-deposition annealing

    Science.gov (United States)

    Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.; Mousel, M.; Redinger, A.; Siebentritt, S.; Raabe, D.

    2013-01-01

    We use atom probe tomography (APT) for resolving nanometer scale compositional fluctuations in Cu2ZnSnSe4 (CZTSe) thin-films prepared by co-evaporation and post-deposition annealing. We detect a complex, nanometer-sized network of CZTSe and ZnSe domains in these films. Some of the ZnSe domains contain precipitates having a Cu- and Sn-rich composition, where the composition cannot be assigned to any of the known equilibrium phases. Furthermore, Na impurities are found to be segregated at the CZTSe/ZnSe interface. The insights given by APT are essential for understanding the growth of CZTSe absorber layers for thin-film solar cells and for optimizing their optoelectronic properties.

  8. Characterization of Cr(V)-induced genotoxicity using CdTe nanocrystals as fluorescent probes.

    Science.gov (United States)

    Zhang, Wen-Hao; Sui, Chao-Xia; Wang, Xie; Yin, Gong-Ju; Liu, Ying-Fan; Zhang, Ding

    2014-12-21

    CdTe nanocrystals capped by cysteamine were synthesized to study Cr(V)-induced genotoxicity. On the surface of TiO2 thin films, the stepwise process of DNA breakage induced by Cr(V)-GSH complexes was vividly observed by using CdTe-DNA self-assembled fluorescent probes; in acetate buffer solution, an analytical method was developed to detect Cr(V)-induced genotoxicity with CdTe fluorescent probes.

  9. Probing the elastic response of microalga Scenedesmus dimorphus in dry and aqueous environments through atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Warren, K. M.; Mpagazehe, J. N.; Higgs, C. F., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); LeDuc, P. R., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Departments of Biomedical Engineering and Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States)

    2014-10-20

    With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.

  10. Probing the elastic response of microalga Scenedesmus dimorphus in dry and aqueous environments through atomic force microscopy

    Science.gov (United States)

    Warren, K. M.; Mpagazehe, J. N.; LeDuc, P. R.; Higgs, C. F.

    2014-10-01

    With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.

  11. Attosecond time delay in the photoionization of endohedral atoms A@C$_{60}$: A new probe of confinement resonances

    CERN Document Server

    Deshmukh, P C; Saha, S; Kheifets, A S; Dolmatov, V K; Manson, S T

    2014-01-01

    The effects of confinement resonances on photoelectron group delay (Wigner time delay) following ionization of an atom encapsulated inside a C$_{60}$ cage have been studied theoretically using both relativistic and non-relativistic random phase approximations. The results indicate clearly the resonant character of the confinement oscillations in time delay of the $4d$ shell of Xe@C$_{60}$ and present a most direct manifestation of Wigner time delay. These oscillations were missed in a previous theoretical investigation of Ar@C$_{60}$ [PRL 111, 203003 (2013)

  12. Parallel scanning probe arrays: their applications

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2008-01-01

    Full Text Available Since the invention of the scanning tunneling microscope (STM1 and the atomic force microscope (AFM2, the field of scanning probe microscopy (SPM instruments has grown steadily and has had a profound influence in materials research, chemistry, biology, nanotechnology, and electronics3,4. Today, scanning probe instruments are used for metrology, characterization5, detection6, manipulation7, patterning8,9, and material modification. A wide range of scanning probe applications are available, taking advantage of various modes of tip–substrate interactions, including force, optics10,11, electrochemistry12, electromagnetics, electrostatics, thermal and mass transfer13,14, and vibration15,16.

  13. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun

    Science.gov (United States)

    Vijayan, T.; Roychowdhury, P.; Venkatramani, N.

    2004-10-01

    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current signal recorded by the Rogowski magnetic probe. Similarly the arc velocity and displacement derived from the signatures of B-dot probes are shown to concur closely with the results of J ×B propulsion from simulation. The heating of plasma is formulated in a three-electron population regime with direct arc energy coupling through magnetohydrodynamic, ion-acoustic, Coulomb, and neutral interactions. This results in high temperature (Te) of hundreds of eV in the arc as revealed by the simulation. Hence Te of the rapidly cooling and equilibrating plasma that emerged from the muzzle is high around 80-90eV, which is confirmed by Langmuir electric probe measurements. Density ne of this metal plasma is shown to be in the range 4×1021-6×1021m-3 and includes multiple ion charge states. The exit velocity of the plasma measured by a pair of Langmuir probes is close to 2.2×106cm/s and matched well with the arc velocity determined by the B-dot probes and the results from simulation.

  14. Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy.

    Science.gov (United States)

    Azeloglu, Evren U; Costa, Kevin D

    2010-03-01

    To study how the dynamic subcellular mechanical properties of the heart relate to the fundamental underlying process of actin-myosin cross-bridge cycling, we developed a novel atomic force microscope elastography technique for mapping spatiotemporal stiffness of isolated, spontaneously beating neonatal rat cardiomyocytes. Cells were indented repeatedly at a rate close but unequal to their contractile frequency. The resultant changes in pointwise apparent elastic modulus cycled at a predictable envelope frequency between a systolic value of 26.2 +/- 5.1 kPa and a diastolic value of 7.8 +/- 4.1 kPa at a representative depth of 400 nm. In cells probed along their major axis, spatiotemporal changes in systolic stiffness displayed a heterogeneous pattern, reflecting the banded sarcomeric structure of underlying myofibrils. Treatment with blebbistatin eliminated contractile activity and resulted in a uniform apparent modulus of 6.5 +/- 4.8 kPa. This study represents the first quantitative dynamic mechanical mapping of beating cardiomyocytes. The technique provides a means of probing the micromechanical effects of disease processes and pharmacological treatments on beating cardiomyocytes, providing new insights and relating subcellular cardiac structure and function.

  15. Quantifying adhesion of acidophilic bioleaching bacteria to silica and pyrite by atomic force microscopy with a bacterial probe.

    Science.gov (United States)

    Diao, Mengxue; Taran, Elena; Mahler, Stephen; Nguyen, Tuan A H; Nguyen, Anh V

    2014-03-01

    The adhesion of acidophilic bacteria to mineral surfaces is an important phenomenon in bioleaching processes. In this study, functionalized colloidal probes covered by bioleaching bacterial cells (Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans) were developed and used to sense specific adhesion forces to a silica surface and a pyrite surface in various solutions. Experimentally, recorded retraction curves of A. thiooxidans revealed sawtooth features that were in good agreement with the wormlike chain model, while that of L. ferrooxidans exhibited stair-step separation. The magnitudes of adhesion forces and snap-off distances were strongly influenced by the ionic strength and pH. Macroscopic surface properties including hydrophobicity and surface potential for bacterial cells and substrata were measured by a sessile drop method and microelectrophoresis. The ATR-FTIR spectra indicated the presence of different types of biopolymers on two strains of bacteria.

  16. Post-irradiation annealing of Ni–Mn–Si-enriched clusters in a neutron-irradiated RPV steel weld using Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Styman, P.D., E-mail: paul.styman@materials.ox.ac.uk [National Nuclear Laboratory, 168 Harwell Business Centre, Didcot, Oxon OX11 0QT (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Hyde, J.M. [National Nuclear Laboratory, 168 Harwell Business Centre, Didcot, Oxon OX11 0QT (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Parfitt, D.; Wilford, K. [Rolls-Royce, PO BOX 2000, Raynesway, Derby DE21 7XX (United Kingdom); Burke, M.G. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); English, C.A. [National Nuclear Laboratory, 168 Harwell Business Centre, Didcot, Oxon OX11 0QT (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Efsing, P. [Vattenfall Ringhals AB, Väröbacka (Sweden)

    2015-04-15

    Highlights: • Characterisation of high Ni neutron irradiated RPV surveillance samples at high fluence. • Post-irradiation annealing performed to give insight into the formation mechanisms of Ni–Mn–Si precipitates. • Dissolution of Ni–Mn–Si clusters appears to be lead by the removal of Mn. - Abstract: Atom Probe Tomography has been performed on as-irradiated and post-irradiation annealed surveillance weld samples from Ringhals Unit 3. The weld contains low Cu (0.07 at.%) and high Ni (1.5 at.%). A high number density (∼4 × 10{sup 23} m{sup −3}) of Ni–Mn–Si-enriched clusters was observed in the as-irradiated material. The onset of recovery was observed during the annealing for 30 min at 450 °C. Much more significant dissolution of clusters occurred during the 10 min 500 °C anneal, resulting in a reduction in mean cluster size and a halving of their volume fraction. Detailed analyses of the changes in microstructure demonstrate that the dissolution process is driven by migration of Mn atoms from the clusters. This may indicate a strong correlation between Mn and point defects. Dissolution of the clusters is shown to correlate with recovery of mechanical properties in this material.

  17. Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy.

    Science.gov (United States)

    Sun, Zhiyuan; Hazut, Ori; Huang, Bo-Chao; Chiu, Ya-Ping; Chang, Chia-Seng; Yerushalmi, Roie; Lauhon, Lincoln J; Seidman, David N

    2016-07-13

    Dopants play a critical role in modulating the electric properties of semiconducting materials, ranging from bulk to nanoscale semiconductors, nanowires, and quantum dots. The application of traditional doping methods developed for bulk materials involves additional considerations for nanoscale semiconductors because of the influence of surfaces and stochastic fluctuations, which may become significant at the nanometer-scale level. Monolayer doping is an ex situ doping method that permits the post growth doping of nanowires. Herein, using atom-probe tomography (APT) with subnanometer spatial resolution and atomic-ppm detection limit, we study the distributions of boron and phosphorus in ex situ doped silicon nanowires with accurate control. A highly phosphorus doped outer region and a uniformly boron doped interior are observed, which are not predicted by criteria based on bulk silicon. These phenomena are explained by fast interfacial diffusion of phosphorus and enhanced bulk diffusion of boron, respectively. The APT results are compared with scanning tunneling spectroscopy data, which yields information concerning the electrically active dopants. Overall, comparing the information obtained by the two methods permits us to evaluate the diffusivities of each different dopant type at the nanowire oxide, interface, and core regions. The combined data sets permit us to evaluate the electrical activation and compensation of the dopants in different regions of the nanowires and understand the details that lead to the sharp p-i-n junctions formed across the nanowire for the ex situ doping process.

  18. Thermochemical nanolithography fabrication and atomic force microscopy characterization of functional nanostructures

    Science.gov (United States)

    Wang, Debin

    This thesis presents the development of a novel atomic force microscope (AFM) based nanofabrication technique termed as thermochemical nanolithography (TCNL). TCNL uses a resistively heated AFM cantilever to thermally activate chemical reactions on a surface with nanometer resolution. This technique can be used for fabrication of functional nanostructures that are appealing for various applications in nanofluidics, nanoelectronics, nanophotonics, and biosensing devices. This thesis research is focused on three main objectives. The first objective is to study the fundamentals of TCNL writing aspects. We have conducted a systematic study of the heat transfer mechanism using finite element analysis modeling, Raman spectroscopy, and local glass transition measurement. In addition, based on thermal kinetics analysis, we have identified several key factors to achieve high resolution fabrication of nanostructures during the TCNL writing process. The second objective is to demonstrate the use of TCNL on a variety of systems and thermochemical reactions. We show that TCNL can be employed to (1) modify the wettability of a polymer surface at the nanoscale, (2) fabricate nanoscale templates on polymer films for assembling nano-objects, such as proteins and DNA, (3) fabricate conjugated polymer semiconducting nanowires, and (4) reduce graphene oxide with nanometer resolution. The last objective is to characterize the TCNL nanostructures using AFM based methods, such as friction force microscopy, phase imaging, electric force microscopy, and conductive AFM. We show that they are useful for in situ characterization of nanostructures, which is particularly challenging for conventional macroscopic analytical tools, such as Raman spectroscopy, IR spectroscopy, and fluorescence microscopy.

  19. Transformation twinning of Ni-Mn-Ga characterized with temperature-controlled atomic force microscopy.

    Science.gov (United States)

    Reinhold, Matthew; Watson, Chad; Knowlton, William B; Müllner, Peter

    2010-06-01

    The magnetomechanical properties of ferromagnetic shape memory alloy Ni-Mn-Ga single crystals depend strongly on the twin microstructure, which can be modified through thermomagnetomechanical training. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to characterize the evolution of twin microstructures during thermomechanical training of a Ni-Mn-Ga single crystal. Experiments were performed in the martensite phase at 25 degrees C and in the austenite phase at 55 degrees C. Two distinct twinning surface reliefs were observed at room temperature. At elevated temperature (55 degrees C), the surface relief of one twinning mode disappeared while the other relief remained unchanged. When cooled back to 25 degrees C, the twin surface relief recovered. The relief persisting at elevated temperature specifies the positions of twin boundaries that were present when the sample was polished prior to surface characterization. AFM and MFM following thermomechanical treatment provide a nondestructive method to identify the crystallographic orientation of each twin and of each twin boundary plane. Temperature dependent AFM and MFM experiments reveal the twinning history thereby establishing the technique as a unique predictive tool for revealing the path of the martensitic and reverse transformations of magnetic shape memory alloys.

  20. Note: A silicon-on-insulator microelectromechanical systems probe scanner for on-chip atomic force microscopy.

    Science.gov (United States)

    Fowler, Anthony G; Maroufi, Mohammad; Moheimani, S O Reza

    2015-04-01

    A new microelectromechanical systems-based 2-degree-of-freedom (DoF) scanner with an integrated cantilever for on-chip atomic force microscopy (AFM) is presented. The silicon cantilever features a layer of piezoelectric material to facilitate its use for tapping mode AFM and enable simultaneous deflection sensing. Electrostatic actuators and electrothermal sensors are used to accurately position the cantilever within the x-y plane. Experimental testing shows that the cantilever is able to be scanned over a 10 μm × 10 μm window and that the cantilever achieves a peak-to-peak deflection greater than 400 nm when excited at its resonance frequency of approximately 62 kHz.

  1. Note: A silicon-on-insulator microelectromechanical systems probe scanner for on-chip atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Anthony G.; Maroufi, Mohammad; Moheimani, S. O. Reza, E-mail: Reza.Moheimani@newcastle.edu.au [School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2015-04-15

    A new microelectromechanical systems-based 2-degree-of-freedom (DoF) scanner with an integrated cantilever for on-chip atomic force microscopy (AFM) is presented. The silicon cantilever features a layer of piezoelectric material to facilitate its use for tapping mode AFM and enable simultaneous deflection sensing. Electrostatic actuators and electrothermal sensors are used to accurately position the cantilever within the x-y plane. Experimental testing shows that the cantilever is able to be scanned over a 10 μm × 10 μm window and that the cantilever achieves a peak-to-peak deflection greater than 400 nm when excited at its resonance frequency of approximately 62 kHz.

  2. Detection of atomic spin labels in a lipid bi-layer using a single-spin nanodiamond probe

    CERN Document Server

    Kaufmann, Stefan; Hall, Liam T; Perunicic, Viktor; Senn, Philipp; Steinert, Steffen; McGuinness, Liam P; Johnson, Brett C; Ohshima, Takeshi; Caruso, Frank; Wrachtrup, Joerg; Scholten, Robert E; Mulvaney, Paul; Hollenberg, Lloyd C L

    2013-01-01

    Magnetic field fluctuations arising from fundamental spins are ubiquitous in nanoscale biology, and are a rich source of information about the processes that generate them. However, the ability to detect the few spins involved without averaging over large ensembles has remained elusive. Here we demonstrate the detection of gadolinium spin labels in an artificial cell membrane under ambient conditions using a single-spin nanodiamond sensor. Changes in the spin relaxation time of the sensor located in the lipid bilayer were optically detected and found to be sensitive to near-individual proximal gadolinium atomic labels. The detection of such small numbers of spins in a model biological setting, with projected detection times of one second, opens a new pathway for in-situ nanoscale detection of dynamical processes in biology.

  3. Advanced characterization of carrier profiles in germanium using micro-machined contact probes

    DEFF Research Database (Denmark)

    Clarysse, T.; Konttinen, M.; Parmentier, B.;

    2012-01-01

    The accurate determination of the sheet resistance and carrier depth profile, i.e. active dopant profile, of shallow junction isolated structures involving new high mobility materials, such as germanium, is a crucial topic for future CMOS development. In this work, we discuss the capabilities...... of new concepts based on micro machined, closely spaced contact probes (10 μm pitch). When using four probes to perform sheet resistance measurements, a quantitative carrier profile extraction based on the evolution of the sheet resistance versus depth along a beveled surface is obtained. Considering...... the use of only two probes, a spreading resistance like setup is obtained with small spacing and drastically reduced electrical contact radii (~10 nm) leading to a substantial reduction of the correction factors which are normally required for converting spreading resistance profiles. We demonstrate...

  4. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Science.gov (United States)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-12-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  5. Review of electrical characterization of ultra-shallow junctions with micro four-point probes

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Hansen, Ole; Hansen, Torben M.;

    2010-01-01

    techniques will become even more evident. In several recent studies micro four-point probe (M4PP) has been demonstrated as a reliable high precision metrology method for both sheet resistance and Hall effect measurements of ultra-shallow implants and has revealed a promising potential for carrier profiling....

  6. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization.

    Science.gov (United States)

    Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  7. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Young, Justin R.; Bhallamudi, Vidya P.; Johnston-Halperin, Ezekiel; Pelekhov, Denis V.; Hammel, P. Chris [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Jacob, Jan [Werum Software and Systems CIS AG, Wulf-Werum-Straße 3, 21337 Lüneburg (Germany); Lewis, Jim; Wenzel, Lothar [National Instruments, Austin, Texas 78759 (United States)

    2014-12-15

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  8. Fe-implanted 6H-SiC: Direct evidence of Fe{sub 3}Si nanoparticles observed by atom probe tomography and {sup 57}Fe Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, M. L.; Fnidiki, A., E-mail: abdeslem.fnidiki@univ-rouen.fr; Lardé, R.; Cuvilly, F.; Blum, I. [Groupe de Physique des Matériaux, Université et INSA de Rouen - UMR CNRS 6634 - Normandie Université. F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, Université et INSA de Rouen - UMR CNRS 6634 - Normandie Université. F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, rue d' Eragny, Neuville sur Oise, 95031 Cergy-Pontoise (France); Debelle, A.; Thomé, L. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), CNRS-IN2P3-Univ. Paris-Sud 11, Bât. 108, 91405 Orsay (France); Viret, M. [Service de Physique de l' Etat Condensé (DSM/IRAMIS/SPEC), UMR 3680 CNRS, Bât. 772, Orme des Merisiers, CEA Saclay 91191 Gif sur Yvette (France); Marteau, M.; Eyidi, D.; Declémy, A. [Institut PPRIME, UPR 3346 CNRS, Université de Poitiers, ENSMA, SP2MI, téléport 2, 11 Bvd M. et P. Curie 86962 Futuroscope, Chasseneuil (France)

    2015-05-14

    In order to understand ferromagnetic ordering in SiC-based diluted magnetic semiconductors, Fe-implanted 6H-SiC subsequently annealed was studied by Atom Probe Tomography, {sup 57}Fe Mössbauer spectroscopy and SQUID magnetometry. Thanks to its 3D imaging capabilities at the atomic scale, Atom Probe Tomography appears as the most suitable technique to investigate the Fe distribution in the 6H-SiC host semiconductor and to evidence secondary phases. This study definitely evidences the formation of Fe{sub 3}Si nano-sized clusters after annealing. These clusters are unambiguously responsible for the main part of the magnetic properties observed in the annealed samples.

  9. Characterization of post-copper CMP surfaces with scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominget, A. [Freescale Semiconductor, Crolles2 Alliance, 870 Rue Jean Monnet, 38926 Crolles (France); Farkas, J. [Freescale Semiconductor, Crolles2 Alliance, 870 Rue Jean Monnet, 38926 Crolles (France)]. E-mail: Janos.Farkas@freescale.com; Szunerits, S. [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces (LEPMI), CNRS-INPG-UJF, 1130 Rue de la Piscine, BP 75, 38402 St. Martin d' Heres (France)]. E-mail: sabine.szunerits@lepmi.inpg.fr

    2006-09-15

    We demonstrate in this paper for the first time the use of conductive atomic force microscopy (AFM) to measure surface leakage between copper structures with varying line width and spacing in the micro and sub micrometer ranges. Conducting atomic force microscopy allows subsequent measurement of the topography as well as the electrical properties of surfaces. The feasibility and interest of these measurements will be shown by studying the impact of chemical mechanical polishing (CMP) of an electrical interface bearing different micrometric copper structures. As expected the polishing time has a crucial impact on the current determined between closely spaced copper structures. This paper will also deal with issues observed during the measurement.

  10. Engineering and Characterization of Collagen Networks Using Wet Atomic Force Microscopy and Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Osborn, Jenna; Coffey, Tonya; Conrad, Brad; Burris, Jennifer; Hester, Brooke

    2014-03-01

    Collagen is an abundant protein and its monomers covalently crosslink to form fibrils which form fibers which contribute to forming macrostructures like tendon or bone. While the contribution is well understood at the macroscopic level, it is not well known at the fibril level. We wish to study the mechanical properties of collagen for networks of collagen fibers that vary in size and density. We present here a method to synthesize collagen networks from monomers and that allows us to vary the density of the networks. By using biotynilated collagen and a surface that is functionalized with avidin, we generate two-dimensional collagen networks across the surface of a silicon wafer. During network synthesis, the incubation time is varied from 30 minutes to 3 hours or temperature is varied from 25°C to 45°C. The two-dimensional collagen network created in the process is characterized using environmental atomic force microscopy (AFM) and scanning electron microscopy (SEM). The network density is measured by the number of strands in one frame using SPIP software. We expect that at body temperature (37°C) and with longer incubation times, the network density should increase.

  11. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    Science.gov (United States)

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments.

  12. In-vivo characterization of DALM in ulcerative colitis with high-resolution probe-based confocal laser endomicroscopy

    Institute of Scientific and Technical Information of China (English)

    Giovanni D De Palma; Stefania Staibano; Saverio Siciliano; Francesco Maione; Maria Siano; Dario Esposito; Giovanni Persico; Yang Yi

    2011-01-01

    Recently, the use of confocal laser endomicroscopy (CLE)in the diagnosis of chronic ulcerative colitis (CUC) was reported. In this brief report we aimed to assess the application of probe-based CLE to characterize colonic mucosa and dysplasia in CUC. The study involved a patient presenting long-standing CUC. Confocal imaging of both the inflamed mucosa, a circumscribed lesion (dysplasiaassociated lesional mass), and adjacent colonic mucosa are demonstrated and the correlation between the CLE and histological images. Inflamed mucosa and dysplasia showed specific alteration of crypt architecture, cellular infiltration, and vessel architecture with an excellent correlation between CLE and standard histological examination.

  13. Novel four-point-probe design and nanorobotic dual endeffector strategy for electrical characterization of as-grown SWCNT bundles

    DEFF Research Database (Denmark)

    Eichhorn, V; Fatikow, S; Sardan Sukas, Özlem

    2010-01-01

    In this paper, a novel nanorobotic strategy for non-destructive and direct electrical characterization of as-grown bundles of single-walled carbon nanotubes (SWCNTs) is presented. For this purpose, test patterns of SWCNT bundles having different diameters are grown on a silicon substrate...... by chemical vapor deposition. A new design of microstructured four-point-probes is proposed and fabricated allowing for direct contacting of vertically aligned bundles of SWCNTs. A nanorobotic setup is upgraded into a dual endeffector system to achieve good electrical contact between four...

  14. Distribution of Cold (≲300 K) Atomic Gas in Galaxies: Results from the GBT H i Absorption Survey Probing the Inner Halos (ρ < 20 kpc) of Low-z Galaxies

    Science.gov (United States)

    Borthakur, Sanchayeeta

    2016-10-01

    We present the Green Bank Telescope absorption survey of cold atomic hydrogen (≲300 K) in the inner halo of low-redshift galaxies. The survey aims to characterize the cold gas distribution and to address where the condensation—the process where ionized gas accreted by galaxies condenses into cold gas within the disks of galaxies—occurs. Our sample consists of 16 galaxy-quasar pairs with impact parameters of ≤20 kpc. We detected an H i absorber associated with J0958+3222 (NGC 3067) and H i emission from six galaxies. We also found two Ca ii absorption systems in the archival SDSS data associated with galaxies J0958+3222 and J1228+3706. Our detection rate of H i absorbers with optical depths of ≥0.06 is ˜7%. We also find that the cold H i phase (≲300 K) is 44(±18)% of the total atomic gas in the sightline probing J0958+3222. We find no correlation between the peak optical depth and impact parameter or stellar and H i radii normalized impact parameters, ρ/R 90 and ρ/R H i . We conclude that the process of condensation of inflowing gas into cold (≲300 K) H i occurs at the ρ ≪ 20 kpc. However, the warmer phase of neutral gas (T ˜ 1000 K) can exist out to much larger distances, as seen in emission maps. Therefore, the process of condensation of warm to cold H i is likely occurring in stages from ionized to warm H i in the inner halo and then to cold H i very close to the galaxy disk. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  15. Laser-assisted atom probe tomography of four paired poly-Si/SiO2 multiple-stacks with each thickness of 10 nm

    Science.gov (United States)

    Kwak, C.-M.; Seol, J.-B.; Kim, Y.-T.; Park, C.-G.

    2017-02-01

    For the past 10 years, laser-assisted atom probe tomography (APT) analysis has been performed to quantify the near-atomic scale distribution of elements and their local chemical compositions within interfaces that determine the design, processing, and properties of virtually all materials. However, the nature of the occurring laser-induced emission at the surface of needle-shaped sample is highly complex and it has been an ongoing challenge to understand the surface-related interactions between laser-sources and tips containing non-conductive oxides for a robust and reliable analysis of multiple-stacked devices. Here, we find that the APT analysis of four paired poly-Si/SiO2 (conductive/non-conductive) multiple stacks with each thickness of 10 nm is governed by experimentally monitoring three experimental conditions, such as laser-beam energies ranged from 30 to 200 nJ, analysis temperatures varying with 30-100 K, and the inclination of aligned interfaces within a given tip toward analysis direction. Varying with laser-energy and analysis temperature, a drastic compositional ratio of doubly charged Si ions to single charged Si ions within conductive poly-Si layers is modified, as compared with ones detected in the non-conductive layers. Severe distorted APT images of multiple stacks are also inevitable, especially at the conductive layers, and leading to a lowering of the successful analysis yields. This lower throughput has been overcome though changing the inclination of interfaces within a given tip to analysis direction (planar interfaces parallel to the tip axis), but significant deviations in chemical compositions of a conductive layer counted from those of tips containing planar interfaces perpendicular to the tip axis are unavoidable owing to the Si2, SiH2O, and Si2O ions detected, for the first time, within poly-Si layers.

  16. Effects of post-irradiation annealing and re-irradiation on microstructure in surveillance test specimens of the Loviisa-1 reactor studied by atom probe tomography and positron annihilation

    Science.gov (United States)

    Toyama, T.; Kuramoto, A.; Nagai, Y.; Inoue, K.; Nozawa, Y.; Shimizu, Y.; Matsukawa, Y.; Hasegawa, M.; Valo, M.

    2014-06-01

    This paper presents a microstructural study of a surveillance test specimen from the Loviisa-1 reactor in Finland, which is a Russian-type pressurized water reactor (VVER-440), after initial irradiation to a neutron fluence of 2.5 × 1019 n/cm2 (E > 1 MeV), post-irradiation annealing at 475 °C for 100 h and re-irradiation to three different fluences up to 2.7 × 1019 n/cm2. Atom probe tomography (APT) and positron annihilation spectroscopy (PAS) were used to characterize the test specimens. APT results showed the formation of Cu-rich solute clusters (SCs) during the initial irradiation and their subsequent coarsening during annealing. After re-irradiation, a small number of SCs formed once again. The hardening due to the SCs was estimated using the Russell-Brown model based on the APT results, and was in good agreement with the measured hardening after the initial irradiation and post-irradiation annealing. In contrast, during the first-step of re-irradiation, the estimated hardening due to the SCs was smaller than the measured hardening. This suggested that the hardening after re-irradiation was due to some microstructure other than the observed SCs. This difference was attributed to newly-formed matrix defects during re-irradiation, which was supported by the PAS results. However in subsequent steps of re-irradiation, the hardening was almost constant.

  17. Characterization of human OCT1-mediated transport of DAPI as a fluorescent probe substrate.

    Science.gov (United States)

    Yasujima, Tomoya; Ohta, Kinya; Inoue, Katsuhisa; Yuasa, Hiroaki

    2011-09-01

    The present study was conducted to assess the functional characteristics of human organic cation transporter 1 (hOCT1) for the transport of 4',6-diamidino-2-phenylindol (DAPI), a fluorescent compound that may be used as a probe substrate for rapid assays of its functionality. The specific uptake of DAPI by hOCT1 heterologously introduced into Madin-Darby canine kidney II cells by stable transfection was found to be, when assessed by DAPI-derived fluorescence intensity, rapid and saturable with a Michaelis constant of 8.94 µM, indicating that DAPI is a good substrate of hOCT1. The specific uptake of DAPI was insensitive to the membrane potential and extracellular pH, indicating a mode of operation different from that for typical cationic substrates such as tetraethylammonium (TEA), for which hOCT1 has been suggested to be driven by an inside-negative membrane potential and favor higher pH for optimal operation. However, many organic cations were found to inhibit the specific DAPI uptake with extents well correlated with those of inhibition of the specific uptake of [(14) C]TEA, indicating comparable performances of both substrates as probes in identifying inhibitors. Thus, DAPI can be an alternative probe substrate that enables fluorometric rapid assays of the functionality of hOCT1.

  18. Atomic magnetometer

    Science.gov (United States)

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  19. In vitro pharmacological characterization of RXFP3 allosterism: an example of probe dependency.

    Directory of Open Access Journals (Sweden)

    Lily Alvarez-Jaimes

    Full Text Available Recent findings suggest that the relaxin-3 neural network may represent a new ascending arousal pathway able to modulate a range of neural circuits including those affecting circadian rhythm and sleep/wake states, spatial and emotional memory, motivation and reward, the response to stress, and feeding and metabolism. Therefore, the relaxin-3 receptor (RXFP3 is a potential therapeutic target for the treatment of various CNS diseases. Here we describe a novel selective RXFP3 receptor positive allosteric modulator (PAM, 3-[3,5-Bis(trifluoromethylphenyl]-1-(3,4-dichlorobenzyl-1-[2-(5-methoxy-1H-indol-3-ylethyl]urea (135PAM1. Calcium mobilization and cAMP accumulation assays in cell lines expressing the cloned human RXFP3 receptor show the compound does not directly activate RXFP3 receptor but increases functional responses to amidated relaxin-3 or R3/I5, a chimera of the INSL5 A chain and the Relaxin-3 B chain. 135PAM1 increases calcium mobilization in the presence of relaxin-3(NH2 and R3/I5(NH2 with pEC50 values of 6.54 (6.46 to 6.64 and 6.07 (5.94 to 6.20, respectively. In the cAMP accumulation assay, 135PAM1 inhibits the CRE response to forskolin with a pIC50 of 6.12 (5.98 to 6.27 in the presence of a probe (10 nM concentration of relaxin-3(NH2. 135PAM1 does not compete for binding with the orthosteric radioligand, [(125I] R3I5 (amide, in membranes prepared from cells expressing the cloned human RXFP3 receptor. 135PAM1 is selective for RXFP3 over RXFP4, which also responds to relaxin-3. However, when using the free acid (native form of relaxin-3 or R3/I5, 135PAM1 doesn't activate RXFP3 indicating that the compound's effect is probe dependent. Thus one can exchange the entire A-chain of the probe peptide while retaining PAM activity, but the state of the probe's c-terminus is crucial to allosteric activity of the PAM. These data demonstrate the existence of an allosteric site for modulation of this GPCR as well as the subtlety of changes in probe

  20. Electropolymerizable 2,2'-Carboranyldithiophenes. Structure-Property Investigations of the Corresponding Conducting Polymer Films by Electrochemistry, UV-Visible Spectroscopy and Conducting Probe Atomic Force Microscopy.

    Science.gov (United States)

    Barrière, Frédéric; Fabre, Bruno; Hao, Erhong; Lejeune, Zorabel M; Hwang, Euiyong; Garno, Jayne C; Nesterov, Evgueni E; Vicente, M Graça H

    2009-04-28

    Carborane-functionalized conducting polymer films have been electrogenerated in dichloromethane from the anodic oxidation of ortho- (1), meta- (3) and para-carborane (4) isomers linked to two 2-thienyl units. The corresponding electrochemical response was characterized by a broad reversible redox system corresponding to the p-doping/undoping of the polythiophene backbone, the formal potential of which increased in the order poly(1) conductive domains of the electropolymerized films were evaluated by conducting probe AFM. The three polymers exhibit fairly similar morphological characteristics and a surface roughness of ~2 nm. Current-voltage (I-V) characteristics of conducting AFM tip-carborane polymer-ITO junctions showed that poly(1) had the highest conductivity.

  1. Experimental validation of a method characterizing bow tie filters in CT scanners using a real-time dose probe

    Energy Technology Data Exchange (ETDEWEB)

    McKenney, Sarah E.; Nosratieh, Anita; Gelskey, Dale; Yang Kai; Huang Shinying; Chen Lin; Boone, John M. [Department of Radiology, University of California, Davis Medical Center, Rm. 0505, ACC Ellison Bldg., 4860 Y St., Sacramento, California 95817 (United States) and Department of Biomedical Engineering, University of California, Davis, Rm. 2303, GBSF, 451 E. Health Science Dr., Davis, California 95616 (United States); Diagnostic Imaging Specialists Corporation (DISC), 163 St. Malo Street, St. Malo, Manitoba R0A 1T0 (Canada); Department of Radiology, University of California, Davis Medical Center, Rm. 0505, ACC Ellison Bldg., 4860 Y St., Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis Medical Center, Rm. 0505, ACC Ellison Bldg., 4860 Y St., Sacramento, California 95817 (United States) and Department of Biomedical Engineering, University of California, Davis, Rm. 2303, GBSF, 451 E. Health Science Dr., Davis, California 95616 (United States)

    2011-03-15

    Purpose: Beam-shaping or ''bow tie'' (BT) filters are used to spatially modulate the x-ray beam in a CT scanner, but the conventional method of step-and-shoot measurement to characterize a beam's profile is tedious and time-consuming. The theory for characterization of bow tie relative attenuation (COBRA) method, which relies on a real-time dosimeter to address the issues of conventional measurement techniques, was previously demonstrated using computer simulations. In this study, the feasibility of the COBRA theory is further validated experimentally through the employment of a prototype real-time radiation meter and a known BT filter. Methods: The COBRA method consisted of four basic steps: (1) The probe was placed at the edge of a scanner's field of view; (2) a real-time signal train was collected as the scanner's gantry rotated with the x-ray beam on; (3) the signal train, without a BT filter, was modeled using peak values measured in the signal train of step 2; and (4) the relative attenuation of the BT filter was estimated from filtered and unfiltered data sets. The prototype probe was first verified to have an isotropic and linear response to incident x-rays. The COBRA method was then tested on a dedicated breast CT scanner with a custom-designed BT filter and compared to the conventional step-and-shoot characterization of the BT filter. Using basis decomposition of dual energy signal data, the thickness of the filter was estimated and compared to the BT filter's manufacturing specifications. The COBRA method was also demonstrated with a clinical whole body CT scanner using the body BT filter. The relative attenuation was calculated at four discrete x-ray tube potentials and used to estimate the thickness of the BT filter. Results: The prototype probe was found to have a linear and isotropic response to x-rays. The relative attenuation produced from the COBRA method fell within the error of the relative attenuation

  2. Characterization of BF4− in terms of its effect on water by the 1-propanol probing methodology

    DEFF Research Database (Denmark)

    Morita, Takeshi; Ayako, Nitta; Nishikawa, Keilo;

    2014-01-01

    One of the most common constituent anions for room temperature ionic liquids (RTILs), BF4−, was characterized in terms of its effect on H2O using the so-called 1-propanol (1P) probing methodology developed by us earlier [PCCP, 15(2013) 14548-14565]. The results indicated that BF4− is quantitatively...... characterized as an amphiphile with weak hydrophobic and moderate hydrophilic contributions. These results were plotted on a two-dimensional map with hydrophobicity and hydrophilicity axes, H2O defining the origin. The melting point of 1-ethyl-3-methylimidazoliumtetrafluoroborate ([C2mim]BF4) was found within...... the trend that the larger the hydrophobicity and the hydrophilicity of the chosen counter anion, the lower the melting point of the resulting RTIL made of [C2mim]+ cation and the chosen anion. For the 1-butyl-3-methylimidazolium ([C4mim]+) based RTILs, however, redetermination of the melting point...

  3. A comment on "the far future of exoplanet direct characterization"--the case for interstellar space probes.

    Science.gov (United States)

    Crawford, Ian A

    2010-10-01

    Following on from ideas presented in a recent paper by Schneider et al. on "The Far Future of Exoplanet Direct Characterization," I argue that they have exaggerated the technical obstacles to performing such "direct characterization" by means of fast (order 0.1c) interstellar space probes. A brief summary of rapid interstellar spaceflight concepts that may be found in the literature is presented. I argue that the presence of interstellar dust grains, while certainly something that will need to be allowed for in interstellar vehicle design, is unlikely to be the kind of showstopper suggested by Schneider et al. Astrobiology as a discipline would be a major beneficiary of developing an interstellar spaceflight capability, albeit in the longer term, and I argue that astrobiologists should keep an open mind to the possibilities.

  4. Use of biaxially oriented polypropylene film for evaluating and cleaning contaminated atomic force microscopy probe tips: An application to blind tip reconstruction

    Science.gov (United States)

    Nie, H.-Y.; Walzak, M. J.; McIntyre, N. S.

    2002-11-01

    An atomic force microscopy (AFM) image of a surface is basically a convolution of the probe tip geometry and the surface features; it is important to know this tip effect to ensure that an image truly reflects the surface features. We have found that a biaxially oriented polypropylene (BOPP) film is suitable for checking tip performance and for cleaning contaminated tips, thus making it possible to collect images of the same area of a BOPP film surface before and after the tip was cleaned. Therefore, the difference between the two different images is solely due to the contamination of the tip. We took advantage of our ability to collect AFM images of the same area using the same tip, in one instance, contaminated and, in the other, after being cleaned. First we used blind reconstruction on the image collected using the contaminated tip. Blind tip reconstruction allows one to extract the geometry of the tip from a given image. Once we had estimated the geometry of the contaminated tip, we used it to simulate the tip effect using the image collected using the cleaned tip. By comparing the simulation result with the image collected using the contaminated tip we showed that the blind reconstruction routine works well. Prior to this, there was no de facto method for testing blind reconstruction algorithms.

  5. Atom probe extended to AlGaN: three-dimensional imaging of a Mg-doped AlGaN/GaN superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Samantha E.; Kappers, Menno J.; Barnard, Jonathan S.; Humphreys, Colin J.; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, CB2 3QZ (United Kingdom); Clifton, Peter H.; Ulfig, Robert M. [Imago Scientific Instruments Corporation, 5500 Nobel Drive, Madison, WI (United States)

    2010-07-15

    Laser pulsed atom probe tomography (APT) can provide three-dimensional chemical and spatial information in semiconductor materials, revealing buried features at the nanoscale. In this investigation, a Mg-doped AlGaN/GaN superlattice was studied using laser pulsed APT. Such superlattices are commonly used to overcome the intrinsically low doping efficiency of Mg. Although the superlattice was nominally doped to the same level throughout, secondary ion mass spectrometry (SIMS) suggested a greater Mg content in the AlGaN layers. The APT data provided three-dimensional element mapping and revealed clustered Mg in both the GaN and AlGaN layers. These clusters are shown to be statistically significant when compared to a random distribution of Mg. More clusters were found in the AlGaN layers, suggesting that the presence of clusters accounts for the higher Mg level in the AlGaN layers that was suggested by SIMS. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin

    2016-06-14

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ\\' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ\\' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  7. Analysis of dynamic segregation and crystallisation in Mg{sub 65}Cu{sub 25}Y{sub 10} bulk metallic glass using atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Laws, K.J., E-mail: k.laws@unsw.edu.au [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Saxey, D.W. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. (Australia); McKenzie, W.R. [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052 (Australia); Marceau, R.K.W. [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Max-Planck Institut fuer Eisenforschung, Max-Planck-Str.1, Duesseldorf, D-40237 (Germany); Gun, B. [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Ringer, S.P. [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Ferry, M. [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2012-10-30

    In order to develop an in-depth understanding of the flow behaviour and dynamic devitrification processes of metallic glasses in the supercooled liquid region, tensile testing of amorphous Mg{sub 65}Cu{sub 25}Y{sub 10} samples was carried out at temperatures from 150 to 170 Degree-Sign C and at strain rates from 1 Multiplication-Sign 10{sup -3} s{sup -1} to 1 Multiplication-Sign 10{sup -2} s{sup -1}. Tensile data showed a consistent and reproducible inflexion in flow stress at a particular strain that was largely independent of strain rate. This was followed by a dramatic increase in flow stress occuring prior to the determined onset times of static crystallisation. Samples were analysed using atom probe tomography and the results indicate that tensile straining of the initially homogeneous amorphous alloy results in segregation into two distinct glassy phases via a shear-related process, coincident with the maximum shear plane angle, followed by the evolution of regions corresponding to the composition of a number of equilibrium binary and ternary intermetallic phases.

  8. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser Assisted Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Rich; Janssen, Yuri; Kalifah, Peter; Meng, Ying S.

    2015-01-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative accuracy of atom probe tomography (APT) examinations of LiFePO4 (LFP) are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted APT of LFP has revealed distinctly different behaviors. With the use of UV laser the major issue was identified as the preferential loss of oxygen (up to 10 at. %) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ increased the observed oxygen concentration to near its correct stoichiometry and was well correlated with systematically higher concentrations of 16O2+ ions. This observation supports the premise that lower laser energies lead to a higher probability of oxygen molecule ionization. Conversely, at higher laser energies the resultant lower effective electric field reduces the probability of oxygen molecule ionization. Green laser assisted field evaporation led to the selective loss of Li (~50% deficiency) and correct ratios of the remaining elements, including the oxygen concentration. The loss of Li is explained by selective dc evaporation of lithium between laser pulses and relatively negligible oxygen loss as neutrals during green-laser pulsing. Lastly, plotting of multihit events on a Saxey plot for the straight-flight path data (green laser only) revealed a surprising dynamic recombination process for some molecular ions mid-flight.

  9. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: vincent.baltz@cea.fr [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  10. Model-independent measurement of the charge density distribution along an Fe atom probe needle using off-axis electron holography without mean inner potential effects

    Energy Technology Data Exchange (ETDEWEB)

    Migunov, V., E-mail: v.migunov@fz-juelich.de; Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); London, A. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Farle, M. [Fakultät für Physik and Center of Nanointegration (CeNIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2015-04-07

    The one-dimensional charge density distribution along an electrically biased Fe atom probe needle is measured using a model-independent approach based on off-axis electron holography in the transmission electron microscope. Both the mean inner potential and the magnetic contribution to the phase shift are subtracted by taking differences between electron-optical phase images recorded with different voltages applied to the needle. The measured one-dimensional charge density distribution along the needle is compared with a similar result obtained using model-based fitting of the phase shift surrounding the needle. On the assumption of cylindrical symmetry, it is then used to infer the three-dimensional electric field and electrostatic potential around the needle with ∼10 nm spatial resolution, without needing to consider either the influence of the perturbed reference wave or the extension of the projected potential outside the field of view of the electron hologram. The present study illustrates how a model-independent approach can be used to measure local variations in charge density in a material using electron holography in the presence of additional contributions to the phase, such as those arising from changes in mean inner potential and specimen thickness.

  11. Laser-induced reversion of δ' precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe.

    Science.gov (United States)

    Khushaim, Muna; Gemma, Ryota; Al-Kassab, Talaat

    2016-08-01

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of  δ' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. Microsc. Res. Tech. 79:727-737, 2016. © 2016 Wiley Periodicals, Inc.

  12. On the microstructure and strengthening mechanism in oxide dispersion-strengthened 316 steel: A coordinated electron microscopy, atom probe tomography and in situ synchrotron tensile investigation

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin, E-mail: miao2@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Zhou, Zhangjian [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Xiang; Lan, Kuan-Che [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Zhang, Guangming [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Miller, Michael K.; Powers, Kathy A. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mei, Zhi-Gang [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Park, Jun-Sang; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Stubbins, James F. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-07-15

    An oxide dispersion-strengthened (ODS) 316 steel was developed to simultaneously provide the advantages of ODS steels in mechanical strength and radiation tolerance as well as the excellence of austenitic steels in creep performance and corrosion resistance. The precipitate phases within the austenite matrix were identified by the combined techniques of atom probe tomography (APT), scanning transmission electron microscopy equipped with electron dispersive X-ray spectroscopy (STEM-EDS), and synchrotron wide-angle and small-angle X-ray scattering (WAXS and SAXS). Coarse TiN, hexagonal YAlO{sub 3} and orthorhombic YAlO{sub 3} precipitates were found along with fine Y–Ti–O nanoparticles. In situ WAXS experiments were performed at room and elevated temperatures to examine the size effect on the load partitioning phenomenon for TiN, hexagonal YAlO{sub 3} and Y{sub 2}Ti{sub 2}O{sub 7} phases. In addition, the dislocation density evolution throughout the tensile tests was analyzed by the modified Williamson–Hall method and confirmed by transmission electron microscopy (TEM) observations, revealing the difference in plasticity at various temperatures.

  13. Toward Comprehensive Physical/Chemical Understanding of the Circumstellar Environments - Simultaneous Probing of Each of the Ionized/Atomic/Molecular Gas and Dust Components

    Science.gov (United States)

    Ueta, Toshiya

    We propose to continue our successful investigations into simultaneous probing of each of the ionized/atomic/molecular gas and dust components in planetary nebulae using primarily far-IR broadband images and spatially-resolved spectroscopic data cubes obtained with the Herschel Space Observatory to enhance our understanding of the circumstellar environments. This research originally started as the Herschel Planetary Nebula Survey (HerPlaNS) - an open time 1 program of the Herschel Space Observatory - in which 11 high-excitation PNs were observed to study the nebular energetics that involves very hot X-ray emitting plasma to very cold dust grains, whose density ranges over 3 to 4 orders of magnitude and temperature ranges over 7 orders of magnitude. The HerPlaNS data include broadband maps, IFU spectral data cubes, and bolometer array spectral data cubes covering 50 to 670 microns. Because of the sheer volume and complexity of the data set, the original funding was exhausted almost exclusively to the initial data reduction and not much to the subsequent science analysis. However, we managed to perform a nearly full science analysis for one target, NGC 6781, for which the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbonrich dust shell and the surrounding halo having temperatures of 26-40 K. We also demonstrated that spatially resolved far-IR line diagnostics would yield the (Te, ne) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allowed to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195 with a standard deviation of 110. The analysis also yielded estimates of the total mass of the shell to be 0.86 M_sun, consisting of 0.54 M_sun of ionized gas, 0.12 M_sun of atomic gas, 0.2 M_sun of molecular gas, and 0.004 M_sun of dust grains. These estimates

  14. Graphene-coated atomic force microscope tips for reliable nanoscale electrical characterization.

    Science.gov (United States)

    Lanza, M; Bayerl, A; Gao, T; Porti, M; Nafria, M; Jing, G Y; Zhang, Y F; Liu, Z F; Duan, H L

    2013-03-13

    Graphene single-layer films are grown by chemical vapor deposition and transferred onto commercially available conductive tips for atomic force microscopy. Graphene-coated tips are much more resistant to both high currents and frictions than commercially available, metal-varnished, conductive atomic force microscopy tips, leading to much larger lifetimes and more reliable imaging due to a lower tip-sample interaction.

  15. Characterizing Uranus with an Ice giant Planetary Origins Probe (Ice-POP)

    Science.gov (United States)

    Marley, Mark S.; Fortney, Jonathan; Nettelmann, Nadine; Zahnle, Kevin J.

    2013-01-01

    We now know from studies of planetary transits and microlensing that Neptune-mass planets are ubitquitous and may be the most common class of planets in the Galaxy. As such it is crucial that we understand the formation and evolution of the ice giant planets in our own solar system so that we can better understand planet formation throughout the galaxy. An entry probe mission to Uranus would help accomplish this goal. In fact the Planetary Decadal Survey recommended a Uranus orbiter with entry probe but did not explore in detail the specifications for the entry probe. NASA Ames is currently studying thermal protection system requirements for such a mission and this has led to questions regarding the minimum interesting science payload of such an entry probe. The single most important in-situ measurement for an ice giant entry probe is a measurement of atmospheric composition. For Uranus this would specifically include the methane and noble gas abundances. An in situ measurement of the methane abundance, from below the methane cloud, would constrain the atmospheric carbon abundance, which is believed to be roughly 30 to 50 times solar. There are hints from the transiting planets that extrasolar ice giants show comparable or even greater enhancements of heavy elements compared to their primary stars. However the origin of this carbon enhancement is controversial. Is Uranus a "failed core" of a larger gas giant or was the atmosphere enhanced by accretion of icy planetesimals' Constraining atmospheric abundances of C and perhaps S or even N from below 5 bars would provide badly needed data to address such issues. A measurement of the N abundance would provide clues on the origin of the planetesimals that formed Uranus. Low N-abundance indicates planetesimals from 'warmer' regions where N was mainly in form of NH3, whereas a strong enrichment could indicate planetesimals / cometary material from the colder outer regions of the nebula. Furthermore CO and HCN have been

  16. Four point probe structures with buried electrodes for the electrical characterization of ultrathin conducting films

    NARCIS (Netherlands)

    Groenland, A.W.; Wolters, R.A.M.; Kovalgin, A.Y.; Schmitz, J.

    2009-01-01

    Test structures for the electrical characterization of ultrathin conductive (ALD) films are presented based on buried electrodes on which the ultrathin film is deposited. This work includes test structure design and fabrication, and the electrical characterization of ALD TiN films down to 4 nm. It i

  17. CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER AND STEAM ATOMIZED SCRUBBER DEPOSIT SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, K; Ned Bibler, N

    2007-06-06

    This report summarizes the results from the characterization of deposits from the inlets of the primary off-gas Quencher and Steam Atomized Scrubber (SAS) in the Defense Waste Processing Facility (DWPF), as requested by a technical assistance request. DWPF requested elemental analysis and compound identification to help determine the potential causes for the substance formation. This information will be fed into Savannah River National Laboratory modeling programs to determine if there is a way to decrease the formation of the deposits. The general approach to the characterization of these samples included x-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis. The following conclusions are drawn from the analytical results found in this report: (1) The deposits are not high level waste glass from the DWPF melt pool based on comparison of the compositions of deposits to the composition of a sample of glass taken from the pour stream of the melter during processing of Sludge Batch 3. (2) Chemical composition results suggest that the deposits are probably a combination of sludge and frit particles entrained in the off-gas. (3) Gamma emitters, such as Co-60, Cs-137, Eu-154, Am-241, and Am-243 were detected in both the Quencher and SAS samples with Cs-137 having the highest concentration of the gamma emitters. (4) No evidence existed for accumulation of fissile material (U-233, U-235, and Pu-239) relative to Fe in either deposit. (5) XRD results indicated both samples were primarily amorphorous and contained some crystals of the iron oxides, hematite and magnetite (Fe{sub 2}O{sub 3} and Fe(Fe{sub 2}O{sub 4})), along with sodium nitrate (NaNO{sub 3}). The other main crystalline compound in the SAS deposit was mercurous chloride. The main crystalline compound in the Quencher deposit was a uranium oxide compound. These are all sludge components. (6) SEM analysis of the Quencher deposit revealed crystalline uranium compounds within the sample

  18. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    Science.gov (United States)

    Araujo, Jefferson F. D. F.; Costa, Mateus C.; Louro, Sonia R. W.; Bruno, Antonio C.

    2017-03-01

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10-7 Am2. We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am2/kg (i.e 0.4%) at saturation and below 0.5 Am2/kg (i.e. 10%) at remanence.

  19. Characterization of Predominant Reductants in an Anaerobic Leachate-Contaminated Aquifer by Nitroaromatic Probe Compounds

    DEFF Research Database (Denmark)

    Rügge, Kirsten; Hofstetter, Thomas B.; Haderlein, Stefan B.;

    1998-01-01

    The biogeochemical processes controlling the reductive transformation of contaminants in an anaerobic aquifer were inferred from the relative reactivity patterns of redox-sensitive probe compounds. The fate of five nitroaromatic compounds (NACs) was monitored under different redox conditions in a...... results suggest that Fe(ll) associated with ferric iron minerals is a highly reactive reductant in anaerobic aquifers, which may also determine the fate of other classes of reducible contaminants such as halogenated solvents, azo compounds, sulfoxides, chromate, or arsenate....... in a landfill leachate plume of a sandy aquifer. Results of field experiments (continuous injection and in situ microcosms) were compared to the findings of laboratory batch and column experiments (using aquifer matrix and model systems for sulfate-and iron-reducing conditions). NACs were transformed within 2...... potential reductants (e.g., H(2)S/HS(-), Fe(II)(aq), reduced organic matter, microorganisms), the patterns of relative reactivity of the probe compounds indicated that ferrous iron associated with iron(lll) (hydr)oxide surfaces was the dominant reductant throughout the anaerobic region of the plume. Our...

  20. Scanning probe microscopies for the creation and characterization of interfacial architectures: Studies of alkyl thiolate monolayers at gold

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.

    1997-01-10

    Scanning probe microscopy (SPM) offers access to the structural and material properties of interfaces, and when combined with macroscopic characterization techniques results in a powerful interfacial development tool. However, the relative infancy of SPM techniques has dictated that initial investigations concentrate on model interfacial systems as benchmarks for testing the control and characterization capabilities of SPM. One such family of model interfacial systems results from the spontaneous adsorption of alkyl thiols to gold. This dissertation examines the application of SPM to the investigation of the interfacial properties of these alkyl thiolate monolayers. Structural investigations result in a proposed explanation for counterintuitive correlations between substrate roughness and heterogeneous electron transfer barrier properties. Frictional measurements are used for characterization of the surface free energy of a series of end-group functionalized monolayers, as well as for the material properties of monolayers composed of varying chain length alkyl thiols. Additional investigations used these characterization techniques to monitor the real-time evolution of chemical and electrochemical surface reactions. The results of these investigations demonstrates the value of SPM technology to the compositional mapping of surfaces, elucidation of interfacial defects, creation of molecularly sized chemically heterogeneous architectures, as well as to the monitoring of surface reactions. However, it is the future which will demonstrate the usefulness of SPM technology to the advancement of science and technology.

  1. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Pia C. Lansåker

    2014-10-01

    Full Text Available Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness dg—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM combined with image analysis as well as by atomic force microscopy (AFM. The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for dg were obtained by SEM with image analysis and by AFM.

  2. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    McKelvey, Kim; Nadappuram, Binoy Paulose; Actis, Paolo; Takahashi, Yasufumi; Korchev, Yuri E; Matsue, Tomokazu; Robinson, Colin; Unwin, Patrick R

    2013-08-01

    Dual carbon electrodes (DCEs) are quickly, easily, and cheaply fabricated by depositing pyrolytic carbon into a quartz theta nanopipet. The size of DCEs can be controlled by adjusting the pulling parameters used to make the nanopipet. When operated in generation/collection (G/C) mode, the small separation between the electrodes leads to reasonable collection efficiencies of ca. 30%. A three-dimensional finite element method (FEM) simulation is developed to predict the current response of these electrodes as a means of estimating the probe geometry. Voltammetric measurements at individual electrodes combined with generation/collection measurements provide a reasonable guide to the electrode size. DCEs are employed in a scanning electrochemical microscopy (SECM) configuration, and their use for both approach curves and imaging is considered. G/C approach curve measurements are shown to be particularly sensitive to the nature of the substrate, with insulating surfaces leading to enhanced collection efficiencies, whereas conducting surfaces lead to a decrease of collection efficiency. As a proof-of-concept, DCEs are further used to locally generate an artificial electron acceptor and to follow the flux of this species and its reduced form during photosynthesis at isolated thylakoid membranes. In addition, 2-dimensional images of a single thylakoid membrane are reported and analyzed to demonstrate the high sensitivity of G/C measurements to localized surface processes. It is finally shown that individual nanometer-size electrodes can be functionalized through the selective deposition of platinum on one of the two electrodes in a DCE while leaving the other one unmodified. This provides an indication of the future versatility of this type of probe for nanoscale measurements and imaging.

  3. Production and Characterization of Atomized U-Mo Powder by the Rotating Electrode Process

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Clark; B.R. Muntifering; J.F. Jue

    2007-09-01

    In order to produce feedstock fuel powder for irradiation testing, the Idaho National Laboratory has produced a rotating electrode type atomizer to fabricate uranium-molybdenum alloy fuel. Operating with the appropriate parameters, this laboratory-scale atomizer produces fuel in the desired size range for the RERTR dispersion experiments. Analysis of the powder shows a homogenous, rapidly solidified microstructure with fine equiaxed grains. This powder has been used to produce irradiation experiments to further test adjusted matrix U-Mo dispersion fuel.

  4. Characterization of micro-contact resistance between a gold nanocrystalline line and a tungsten electrode probe in interconnect fatigue testing.

    Science.gov (United States)

    Ling, Xue; Wang, Yusheng; Li, Xide

    2014-10-01

    An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.

  5. Synthesis and atomic level in situ redox characterization in ceria and ceria zirconia

    Science.gov (United States)

    Wang, Ruigang

    2007-12-01

    Nanocrystalline ceria-based oxides are widely used in automotive three-way catalytic converters to reduce the emissions of carbon monoxide, nitrogen oxides, and unburned hydrocarbons. The primary function of ceria-based oxides in the catalytic process is to adjust the local oxygen partial pressure and maintain an air-to-fuel ratio near the stoichiometric value (˜14.5) required for the optimal catalyst performance for carbon monoxide, hydrocarbon oxidation, and nitrogen oxides reduction. In this dissertation, a study of the relationship between the nanoscale structure, chemistry, and the redox behavior on high surface area ceria and ceria zirconia is presented. Precipitation and spray freezing methods were used to synthesize nanocrystalline ceria and ceria zirconia solid solution powders respectively. The effect of thermal treatments in oxidizing and reducing atmospheres on the reducibility of the materials has been systematically investigated. X-ray diffraction and thermogravimetric analysis were used to characterize the average structure and reducibility. In situ environmental transmission electron microscope was exploited to visualize the dynamic changes during redox processes at the atomic level. This resulted in the identification of the nanoscale structure and chemistry for the most active nanoparticles in these oxides. The correlation between ex situ macroscopic redox properties and in situ redox behavior of individual nanoparticles is demonstrated. The addition of zirconia to ceria clearly enhances the reducibility and thermal stability of ceria. A fundamental difference between ceria and ceria zirconia during in situ redox processes is related to oxygen vacancy ordering. Ceria showed oxygen vacancy ordering during reduction, whereas ceria zirconia did not. It is suggested that the absence of oxygen vacancy ordering might be a fundamental factor for improved redox properties of ceria zirconia compared with pure ceria. The 50% ceria-50% zirconia solid

  6. Comparison of segregations formed in unmodified and Sr-modified Al–Si alloys studied by atom probe tomography and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barrirero, Jenifer [Department of Materials Science, Campus D3 3, Saarland University, D-66123 Saarbrücken (Germany); Nanostructured Materials, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Engstler, Michael [Department of Materials Science, Campus D3 3, Saarland University, D-66123 Saarbrücken (Germany); Ghafoor, Naureen [Nanostructured Materials, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Jonge, Niels de [Innovative Electron Microscopy, INM-Leibniz Institute for New Materials, Campus D2 2, Saarland University, D-66123 Saarbrücken (Germany); Odén, Magnus [Nanostructured Materials, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Mücklich, Frank, E-mail: muecke@matsci.uni-sb.de [Department of Materials Science, Campus D3 3, Saarland University, D-66123 Saarbrücken (Germany)

    2014-10-25

    Highlights: • Nucleation of nanoclusters is proposed to assist in the structural modification. • The role of Al in the Si-phase of unmodified and Sr-modified alloys is discussed. • Segregations in the Si-phase of unmodified and Sr-modified alloys are compared. • Solubilities of 430 ± 160 at-ppm Al and 40 ± 10 at-ppm Sr in the Si phase were determined. - Abstract: The mechanical properties of Al-7 wt.% Si can be enhanced by structural modifications of its eutectic phase. Addition of low concentrations of certain elements, in this case 150 wt-ppm Sr, is enough to cause a transition from a coarse plate-like Si structure to a finer coralline one. To fully understand the operating mechanism of this modification, the composition of the eutectic Si phase in unmodified and Sr-modified alloys was analysed and compared by atom probe tomography and (scanning) transmission electron microscopy. The unmodified alloy showed nanometre sized Al-segregations decorating defects, while the Sr-modified sample presented three types of Al–Sr segregations: (1) rod-like segregations that promote smoothening of the Al–Si boundaries in the eutectic phase, (2) particle-like segregations comparable to the ones seen in the unmodified alloy, and (3) planar segregations favouring the formation of twin boundaries. Al and Sr solubilities in Si after solidification were determined to be 430 ± 160 at-ppm and 40 ± 10 at-ppm, respectively. Sr predominantly segregates to the Si phase confirming its importance in the modification of the eutectic growth.

  7. Formation and characterization of thin films from phthalocyanine complexes: An electrosynthesis study using the atomic-force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, M.E. [Departamento de Ingenieria Mecatronica, Escuela de Ingenieria, Universidad Anahuac del Norte, Avenida Lomas de la Anahuac s/n, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico)]. E-mail: elena.sanchez@anahuac.mx; Islas Bernal, I.F. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510, Mexico D.F. (Mexico); Rivera, M. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510, Mexico D.F. (Mexico); Ortiz Rebollo, A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, Coyoacan, 04510, Mexico, D.F. (Mexico); Alvarez Bada, J.R. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Ciudad de Mexico, Calle del Puente 222, Col. Ejidos de Huipulco, 14380, Mexico D.F. (Mexico)

    2007-05-07

    ({mu}-Cyano)(phthalocyaninato)metal(III) [PcMCN]{sub n} species with a central transition metal ion, such as Fe(III) and Co(III), were used to prepare molecular films on a highly oriented pyrolytic graphite electrode substrate by using the cyclic voltammetry technique. In order to investigate the influence of the ligand on the film properties, 1,8-dihydroxyanthraquinone and 2,6-dihydroxyanthraquinone as bivalent ligands were employed. The structure of the molecular materials was analyzed by infrared spectroscopy. The in situ film formation, texture, composition and conductivity of each film were further investigated using atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and the four-probe technique, respectively. The [PcMCN]{sub n} complexes provided conductive films with an electrical conductivity of 1 x 10{sup -6} {omega}{sup -1} cm{sup -1} at 298 K.

  8. The Contact Measuring Head of in Dual-probe Atomic Force Microscope%原子力显微镜的双探针接触测量研究

    Institute of Scientific and Technical Information of China (English)

    张华坤; 高思田; 李伟

    2016-01-01

    In order to align two probes of dual-probe atomic force microscope( AFM ),it is necessary to establish a measuring head to do in-depth research on the probe A scanning the probe B. Firstly,the mechanical characteristics of the probe are obtained by finite element( FE)simulations. Secondly,using the locked-in amplifier to attain the amplitude and frequency signals to analyze the system resolution( better than 1 nm),the probe is rotated 90 degrees compared traditional AFM. Lastly,probe B is scanned by probe A in YOZ plane,reducing the scanning range and scanning step gradually. The alignment accuracy is of 5 nm.%为实现双探针原子力显微镜的探针对准,用探针A对探针B的成像进行了深入的研究。首先对音叉探针进行有限元仿真,分析探针的机械特性。其次用锁相放大器获取探针的幅度和频率信号,让探针接近样品(硅片)以获得系统的分辨率。最后在YOZ平面用探针A对探针B扫描成像,逐步缩小扫描范围并同时减小扫描步进。实验表明,探针的分辨率优于1 nm,双探针对准精度可达5 nm。

  9. Characterization of molecular mobility in seed tissues: an electron paramagnetic resonance spin probe study.

    Science.gov (United States)

    Buitink, J; Hemminga, M A; Hoekstra, F A

    1999-06-01

    The relationship between molecular mobility (tauR) of the polar spin probe 3-carboxy-proxyl and water content and temperature was established in pea axes by electron paramagnetic resonance (EPR) and saturation transfer EPR. At room temperature, tauR increased during drying from 10(-11) s at 2.0 g water/g dry weight to 10(-4) s in the dry state. At water contents below 0.07 g water/g dry weight, tauR remained constant upon further drying. At the glass transition temperature, tauR was constant at approximately 10(-4) s for all water contents studied. Above Tg, isomobility lines were found that were approximately parallel to the Tg curve. The temperature dependence of tauR at all water contents studied followed Arrhenius behavior, with a break at Tg. Above Tg the activation energy for rotational motion was approximately 25 kJ/mol compared to 10 kJ/mol below Tg. The temperature dependence of tauR could also be described by the WLF equation, using constants deviating considerably from the universal constants. The temperature effect on tauR above Tg was much smaller in pea axes, as found previously for sugar and polymer glasses. Thus, although glasses are present in seeds, the melting of the glass by raising the temperature will cause only a moderate increase in molecular mobility in the cytoplasm as compared to a huge increase in amorphous sugars.

  10. Electrochemical and scanning probe microscopic characterization of spontaneously adsorbed organothiolate monolayers at gold

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Sze-Shun Season [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational disposition is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n ± 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.

  11. Localization and characterization of fatigue cracks around fastener holes using spherically focused ultrasonic probes

    Science.gov (United States)

    Hopkins, Deborah; Datuin, Marvin; Aldrin, John; Warchol, Mark; Warchol, Lyudmila; Forsyth, David

    2017-02-01

    Results are presented from laboratory experiments and simulations that demonstrate the ability to localize fatigue cracks around fastener holes using spherically focused ultrasonic probes for shear-wave inspections. For the experiments, fatigue cracks were created in aluminum plates in a testing frame under cyclic loading. With the exceptions of one specimen with a mid-bore crack and another with a "through" crack, the remaining specimens contain surface-breaking cracks. All of the specimens were inspected for the cracks intersecting the back wall, and some were flipped over and re-inspected with the crack intersecting the front surface. Parameter and variable sensitivity studies were performed using CIVA Simulation Software. In contrast to C-scans where detection and localization of small cracks can be very difficult, modeling and initial experimental results demonstrate that cracks can be accurately located in "True" B-scans (B-scans projected in the part along the beam path). Initial results show that small-amplitude diffracted/scattered signals from the crack tips and edges are essential in obtaining clear crack traces in the True B-scans. It is important therefore that experimental data be acquired with sufficient gain to capture the diffracted/scattered signals. In all of the cases studied here, saturating the high-amplitude specular reflections from the fastener hole and crack enhanced the crack trace in the True B-scans.

  12. Physical characterization of the state of motion of the phenalenyl spin probe in cation-exchanged faujasite zeolite supercages with pulsed EPR

    Science.gov (United States)

    Doetschman, D. C.; Dwyer, D. W.; Fox, J. D.; Frederick, C. K.; Scull, S.; Thomas, G. D.; Utterback, S. G.; Wei, J.

    1994-08-01

    The molecular motion of the phenalenyl (PNL) spin probe in the supercages of cation-exchanged X and Y zeolites (faujasites) has been physically characterized by pulsed and continuous wave (CW) electron paramagnetic resonance (EPR). Both X and Y zeolites, whose cation sites were exchanged with the alkali metal ions, Li +, Na +, K +, Rb + and Cs + were examined. There is a good correspondence between the temperature dependences of the PNL electron spin phase memory time and the CW EPR spectra. Both display evidence of a thermal activation from a stationary, non-rotating molecular state to a low-temperature state of in-plane rotation (Das et al., Chem Phys. 143 (1990) 253). The rate of in-plane rotation is an activated process, with E* | / R=1289 |+- 35 K and 1462 ± 47 K in NaX and KX zeolites, respectively. The rotation appears to be about an axis along which the half-filled, non-bonding π orbital interacts with the exchanged cation in the supercage. Both CW and pulsed EPR also show a higher temperature activation from the in-plane rotating state to an effectively isoptropic state of rotation of PNL in which the PNL-cation bond is thought to be broken, with E* ⊥ / R=2050 ± 110 K, 1956 ± 46K, 1335 ± 97 K in LiX, NaX and KX zeolites, respectively. The strength of the PNL-cation bonding decreases with increasing cation atomic number as indicated by E* ⊥ and the peripheral repulsion (crowding) of PNL increases with cation size as indicated E* |. There are qualitative indications that the binding of PNL to the cations in the Y zeolite is stronger than in the X zeolite.

  13. Characterization of Al2O3 Thin Films on GaAs Substrate Grown by Atomic Layer Deposition

    Institute of Scientific and Technical Information of China (English)

    LU Hong-Liang; LI Yan-Bo; XU Min; DING Shi-Jin; SUN Liang; ZHANG Wei; WANG Li-Kang

    2006-01-01

    @@ Al2O3 thin films are grown by atomic layer deposition on GaAs substrates at 300℃. The structural properties of the Al2O3 thin film and the Al2O3/GaAs interface are characterized using x-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM), and x-ray photoelectron spectroscopy (XPS). The XRD results show that the as-deposited Al2O3 film is amorphous. For 30 atomic layer deposition growth cycles, the thicknesses of the Al2O3 thin film and the interface layer from the HRTEM are 3.3nm and 0.5nm, respectively.XPS analyses reveal that the Al2O3/GaAs interface is almost free from As2O3.

  14. Characterization and Optimization of silicon photomultipliers for the development of intraoperative beta probes

    Energy Technology Data Exchange (ETDEWEB)

    Hudin, N.; Pinot, L. [Laboratoire Imagerie et Modelisation en Neurobiologie et Cancerologie (UMR 8165), Campus d' Orsay, IN2P3-CNRS, 91406 Orsay Cedex (France); Dinu, N. [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS, 91898 Orsay (France); Charon, Y. [Laboratoire Imagerie et Modelisation en Neurobiologie et Cancerologie (UMR 8165), Campus d' Orsay, IN2P3-CNRS, 91406 Orsay Cedex (France); Puill, V. [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS, 91898 Orsay (France); Janvier, B. [Laboratoire Imagerie et Modelisation en Neurobiologie et Cancerologie (UMR 8165), Campus d' Orsay, IN2P3-CNRS, 91406 Orsay Cedex (France); Chaumat, V. [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS, 91898 Orsay (France); Duval, M.-A.; Abi Haidar, D.; Siebert, R. [Laboratoire Imagerie et Modelisation en Neurobiologie et Cancerologie (UMR 8165), Campus d' Orsay, IN2P3-CNRS, 91406 Orsay Cedex (France); Menard, L., E-mail: menard@imnc.in2p3.fr [Laboratoire Imagerie et Modelisation en Neurobiologie et Cancerologie (UMR 8165), Campus d' Orsay, IN2P3-CNRS, 91406 Orsay Cedex (France)

    2012-12-11

    This work reports the results of a comprehensive study aiming to characterize and optimize the performances of Silicon Photomultipliers (SiPM) as photodetectors for intraoperative beta detection of radiolabeled tumor tissues. In that purpose, we focused our measurements on the influence of temperature and operating voltage on dark noise (count rate and amplitude distribution), absolute photon detection efficiency and total gain of different SiPM devices from Hamamatsu. The impact of these parameters on the overall beta sensitivity of SiPM-based scintillation detectors was quantified as a function of the intensity of the incident light following a simple physical model that is shown to correspond well with measurements.

  15. In-situ RHEED analysis of atomic layer deposition and characterization of AL203 gate dielectrics

    NARCIS (Netherlands)

    Bankras, R.G.; Aarnink, A.A.I.; Holleman, J.; Schmitz, J.

    2003-01-01

    A new custom designed reactor was realized at the MESA+ cleanroom to fabricate high-k dielectrics using atomic layer deposition (ALD). Key features of the reactor are: a small reactor volume, in-situ RHEED analysis and low background pressure. The effect of precursor and purge pulse times is discuss

  16. Characterization of novel sufraces by FTIR spectroscopy and atomic force microscopy for food pathogen detection

    Science.gov (United States)

    Single molecular detection of pathogens and toxins of interest to food safety is within grasp using technology such as Atomic Force Microscopy. Using antibodies or specific aptamers connected to the AFM tip make it possible to detect a pathogen molecule on a surface. However, it also becomes necess...

  17. Characterization and modeling of atomic layer deposited high-density trench capacitors in silicon

    NARCIS (Netherlands)

    Matters-Kammerer, M.K.; Jinesh, K.B.; Rijks, T.G.S.M.; Roozeboom, F.; Klootwijk, J.H.

    2012-01-01

    A detailed electrical analysis of multiple layer trench capacitors fabricated in silicon with atomic-layer-deposited Al 2O 3 and TiN is presented. It is shown that in situ ozone annealing of the Al 2O 3 layers prior to the TiN electrode deposition significantly improves the electric properties of th

  18. Electronic characterization of supramolecular materials at the nanoscale by Conductive Atomic Force and Kelvin Probe Force microscopies

    Directory of Open Access Journals (Sweden)

    Chiara Musumeci

    2014-12-01

    Full Text Available The performances of organic (optoelectronic devices strongly depend on the order at the supramolecular level. Unraveling the relationship between structural and electronic properties in nanoscale architectures is therefore key for both fundamental studies and technological applications. C-AFM and KPFM provide an immediate correlation between the morphology of a material and its electrical/electronic properties such as local conductivity and surface potential. Thus, they are unrivaled techniques offering crucial information toward the optimization of the real devices, ultimately providing an important contribution to a hot field at the cross-road between nanoscience and organic (optoelectronics. Herein we focus on the application of C-AFM and KPFM on self-assembled monolayers (SAMs, organic (semiconducting materials for thin film transistors (TFTs and organic blends for photovoltaics (OSCs.

  19. Phosphorus and boron diffusion paths in polycrystalline silicon gate of a trench-type three-dimensional metal-oxide-semiconductor field effect transistor investigated by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bin, E-mail: hanbin@imr.tohoku.ac.jp; Takamizawa, Hisashi, E-mail: takamizawa.hisashi@jaea.go.jp; Shimizu, Yasuo; Inoue, Koji; Nagai, Yasuyoshi [The Oarai Center, Institute for Materials Research, Tohoku University, 2145-2 Narita, Oarai, Ibaraki 311-1313 (Japan); Yano, Fumiko [Department of Electrical Engineering, Faculty of Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557 (Japan); Kunimune, Yorinobu [Renesas Semiconductor Manufacturing Co., Ltd., 1120 Shimokuzawa, Sagamihara, Kanagawa 252-5298 (Japan); Inoue, Masao; Nishida, Akio [Renesas Electronics Corporation, 751 Horiguchi, Hitachinaka, Ibaraki 312-8504 (Japan)

    2015-07-13

    The dopant (P and B) diffusion path in n- and p-types polycrystalline-Si gates of trench-type three-dimensional (3D) metal-oxide-semiconductor field-effect transistors (MOSFETs) were investigated using atom probe tomography, based on the annealing time dependence of the dopant distribution at 900 °C. Remarkable differences were observed between P and B diffusion behavior. In the initial stage of diffusion, P atoms diffuse into deeper regions from the implanted region along grain boundaries in the n-type polycrystalline-Si gate. With longer annealing times, segregation of P on the grain boundaries was observed; however, few P atoms were observed within the large grains or on the gate/gate oxide interface distant from grain boundaries. These results indicate that P atoms diffuse along grain boundaries much faster than through the bulk or along the gate/gate oxide interface. On the other hand, in the p-type polycrystalline-Si gate, segregation of B was observed only at the initial stage of diffusion. After further annealing, the B atoms became uniformly distributed, and no clear segregation of B was observed. Therefore, B atoms diffuse not only along the grain boundary but also through the bulk. Furthermore, B atoms diffused deeper than P atoms along the grain boundaries under the same annealing conditions. This information on the diffusion behavior of P and B is essential for optimizing annealing conditions in order to control the P and B distributions in the polycrystalline-Si gates of trench-type 3D MOSFETs.

  20. Application of scanning Kelvin probe microscopy for the electrical characterization of microcrystalline silicon for photovoltaics

    CERN Document Server

    Breymesser, A

    2000-01-01

    constructed and built. Great effort was concentrated on the characterization of the SKPM experiment. On the basis of an extended knowledge about the performance investigations concentrated on cross sections of microcrystalline silicon diode structures produced by hot-wire chemical vapor deposition (HW-CVD). A pin structure for the diodes was chosen due to the low diffusion lengths within this rather defective material. The evolution of the built-in electric drift field within the intrinsic absorber is a prerequisite for obtaining high short circuit current densities. SKPM was able to provide information about the potential and electric field distribution within the cross-sectioned diode structures. In conjunction with simulations statements about actual defect and dopant distributions could be derived. Several diode structures with different deposition and compensation conditions of the naturally n-type intrinsic layer were investigated. In order to explore the character of the defects deep level transient sp...

  1. Determination of hydrogen sulfide and volatile thiols in air samples by mercury probe derivatization coupled with liquid chromatography-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bramanti, Emilia [Italian National Research Council, CNR-Istituto per i Processi Chimico-Fisici, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124 Pisa (Italy)]. E-mail: emilia@ipcf.cnr.it; D' Ulivo, Lucia [Italian National Research Council, CNR-Istituto per i Processi Chimico-Fisici, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124 Pisa (Italy); Lomonte, Cristina [Italian National Research Council, CNR-Istituto per i Processi Chimico-Fisici, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124 Pisa (Italy); Ambiente s.c.r.l., Via Frassina 21, 54033, Carrrara, Massa (Italy); Onor, Massimo [Italian National Research Council, CNR-Istituto per i Processi Chimico-Fisici, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124 Pisa (Italy); Zamboni, Roberto [Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy); Raspi, Giorgio [Italian National Research Council, CNR-Istituto per i Processi Chimico-Fisici, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124 Pisa (Italy); D' Ulivo, Alessandro [Italian National Research Council, CNR-Istituto per i Processi Chimico-Fisici, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2006-10-02

    A new procedure is proposed for the sampling and storage of hydrogen sulphide (H{sub 2}S) and volatile thiols (methanethiol or methyl mercaptan, ethanethiol and propanethiol) for their determination by liquid chromatography. The sampling procedure is based on the trapping/pre-concentration of the analytes in alkaline aqueous solution containing an organic mercurial probe p-hydroxymercurybenzoate, HO-Hg-C{sub 6}H{sub 4}-COO{sup -} (PHMB), where they are derivatized to stable PHMB complexes based on mercury-sulfur covalent bonds. PHMB complexes are separated on a C{sub 18} reverse phase column, allowing their determination by liquid chromatography coupled with sequential non-selective UV-vis (DAD) and mercury specific (chemical vapor generation atomic fluorescence spectrometry, CVGAFS) on-line detectors. PHMB complexes, S(PHMB){sub 2}CH{sub 3}S-PHMB, C{sub 2}H{sub 5}S-PHMB and C{sub 3}H{sub 7}S-PHMB, are stable alt least for 12 h at room temperature and for 3 months if stored frozen (-20 deg. C). The best analytical figures of merits in the optimized conditions were obtained by CVGAFS detection, with detection limits (LODc) of 9.7 {mu}g L{sup -1} for H{sub 2}S, 13.7 {mu}g L{sup -1} for CH{sub 3}SH, 17.7 {mu}g L{sup -1} for C{sub 2}H{sub 5}SH and 21.7 {mu}g L{sup -1} for C{sub 3}H{sub 7}SH in the trapping solution in form of RS-PHMB complexes, the relative standard deviation (R.S.D.) ranging between 1.0 and 1.5%, and a linear dynamic range (LDR) between 10 and 9700 {mu}g L{sup -1}. Conventional UV absorbance detectors tuned at 254 nm can be employed as well with comparable R.S.D. and LDR, but with LODc one order of magnitude higher than AFS detector and lower specificity. The sampling procedure followed by LC-DAD-CVGAFS analysis has been validated, as example, for H{sub 2}S determination by a certified gas permeation tube as a source of 3.071 {+-} 0.154 {mu}g min{sup -1} of H{sub 2}S, giving a recovery of 99.8 {+-} 7% and it has been applied to the determination of

  2. Determination of hydrogen sulfide and volatile thiols in air samples by mercury probe derivatization coupled with liquid chromatography-atomic fluorescence spectrometry.

    Science.gov (United States)

    Bramanti, Emilia; D'Ulivo, Lucia; Lomonte, Cristina; Onor, Massimo; Zamboni, Roberto; Raspi, Giorgio; D'Ulivo, Alessandro

    2006-10-02

    A new procedure is proposed for the sampling and storage of hydrogen sulphide (H2S) and volatile thiols (methanethiol or methyl mercaptan, ethanethiol and propanethiol) for their determination by liquid chromatography. The sampling procedure is based on the trapping/pre-concentration of the analytes in alkaline aqueous solution containing an organic mercurial probe p-hydroxymercurybenzoate, HO-Hg-C6H4-COO- (PHMB), where they are derivatized to stable PHMB complexes based on mercury-sulfur covalent bonds. PHMB complexes are separated on a C18 reverse phase column, allowing their determination by liquid chromatography coupled with sequential non-selective UV-vis (DAD) and mercury specific (chemical vapor generation atomic fluorescence spectrometry, CVGAFS) on-line detectors. PHMB complexes, S(PHMB)2CH3S-PHMB, C2H5S-PHMB and C3H7S-PHMB, are stable alt least for 12 h at room temperature and for 3 months if stored frozen (-20 degrees C). The best analytical figures of merits in the optimized conditions were obtained by CVGAFS detection, with detection limits (LODc) of 9.7 microg L(-1) for H2S, 13.7 microg L(-1) for CH(3)SH, 17.7 microg L(-1) for C2H5SH and 21.7 microg L(-1) for C3H7SH in the trapping solution in form of RS-PHMB complexes, the relative standard deviation (R.S.D.) ranging between 1.0 and 1.5%, and a linear dynamic range (LDR) between 10 and 9700 microg L(-1). Conventional UV absorbance detectors tuned at 254 nm can be employed as well with comparable R.S.D. and LDR, but with LODc one order of magnitude higher than AFS detector and lower specificity. The sampling procedure followed by LC-DAD-CVGAFS analysis has been validated, as example, for H2S determination by a certified gas permeation tube as a source of 3.071+/-0.154 microg min(-1) of H2S, giving a recovery of 99.8+/-7% and it has been applied to the determination of sulfur compounds in real gas samples (biogas and the air of a plant for fractional distillation of crude oil).

  3. Characterization of a SiC/SiC composite by X-ray diffraction, atomic force microscopy and positron spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, G. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf e.V., PF 510119, D-01314 Dresden (Germany)]. E-mail: g.brauer@fz-rossendorf.de; Anwand, W. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf e.V., PF 510119, D-01314 Dresden (Germany); Eichhorn, F. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf e.V., PF 510119, D-01314 Dresden (Germany); Skorupa, W. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf e.V., PF 510119, D-01314 Dresden (Germany); Hofer, C. [Institut fuer Physik, Montanuniversitaet Leoben, Franz Josef Str. 18, A-8700 Leoben (Austria); Teichert, C. [Institut fuer Physik, Montanuniversitaet Leoben, Franz Josef Str. 18, A-8700 Leoben (Austria); Kuriplach, J. [Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, CZ-180 00 Prague (Czech Republic); Cizek, J. [Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, CZ-180 00 Prague (Czech Republic); Prochazka, I. [Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, CZ-180 00 Prague (Czech Republic); Coleman, P.G. [Department of Physics, University of Bath, Bath BA2 7 AY (United Kingdom); Nozawa, T. [Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6151, Oak Ridge, TN 37831-6151 (United States); Kohyama, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2006-02-28

    A SiC/SiC composite is characterized by X-ray diffraction, atomic force microscopy and various positron spectroscopies (slow positron implantation, positron lifetime and re-emission). It is found that besides its main constituent 3C-SiC the composite still must contain some graphite. In order to better interpret the experimental findings of the composite, a pyrolytic graphite sample was also investigated by slow positron implantation and positron lifetime spectroscopies. In addition, theoretical calculations of positron properties of graphite are presented.

  4. A novel method to characterize bacterial communities affected by carbon source and electricity generation in microbial fuel cells using stable isotope probing and Illumina sequencing.

    Science.gov (United States)

    Song, Yang; Xiao, Li; Jayamani, Indumathy; He, Zhen; Cupples, Alison M

    2015-01-01

    Stable isotope probing and high throughput sequencing were used to characterize the microbial communities involved in carbon uptake in microbial fuel cells at two levels of electricity generation. With acetate, the dominant phylotypes involved in carbon uptake included Geobacter and Rhodocyclaceae. With glucose, both Enterobacteriaceae and Geobacter were dominant.

  5. Fabrication and characterization of hydroxyapatite microspheres obtained by ultrasonic atomization method

    Institute of Scientific and Technical Information of China (English)

    WANG Aijuan; LU Yupeng; CHEN Chuanzhong; SUN Ruixue

    2007-01-01

    Two kinds of hydroxyapatite microspheres were prepared using an ultrasonic atomization method. The surface morphology, phase composition, size distribution and spe-cific surface area were determined by field emission scanning electron microscopy, transmission electron microscopy,X-ray diffractometry and laser diffraction particle size analy-sis, respectively. The results indicate that the hydroxyapatite microspheres are composed of nanosized crystals and have porous surface morphology. The specific surface areas are different before sintering, and have a slight difference after sintering. The size distribution of the microspheres added with Lopon 885 is narrow and the average size is smaller than those fabricated without the addition of Lopon 885. Besides,the impurity phase, tetracalcium phosphate, appeared during ultrasonic atomizing procedure, and can be completely removed after sintering at 650℃ for 1 h.

  6. Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy

    Science.gov (United States)

    Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram; van den Ende, Dirk; Mugele, Frieder; Siretanu, Igor

    2016-02-01

    Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the surface charge and ζ -potential of these surfaces. However, because of the macroscopic averaging character these techniques cannot do justice to the role of local heterogeneities on the surfaces. In this work, we use dynamic atomic force microscopy (AFM) to determine the distribution of surface charge on the two (gibbsite-like and silica-like) basal planes of kaolinite nanoparticles immersed in aqueous electrolyte with a lateral resolution of approximately 30 nm. The surface charge density is extracted from force-distance curves using DLVO theory in combination with surface complexation modeling. While the gibbsite-like and the silica-like facet display on average positive and negative surface charge values as expected, our measurements reveal lateral variations of more than a factor of two on seemingly atomically smooth terraces, even if high resolution AFM images clearly reveal the atomic lattice on the surface. These results suggest that simple surface complexation models of clays that attribute a unique surface chemistry and hence homogeneous surface charge densities to basal planes may miss important aspects of real clay surfaces.

  7. Characterization of Atmospheric Aerosol Particles from a Mining City in Southwest China Using Electron Probe microanalysis

    Science.gov (United States)

    Cheng, X.; Huang, Y.; Lu, H., III; Liu, Z., IV; Wang, N. V.

    2015-12-01

    Xin Cheng1, Yi Huang1*, Huilin Lu2, Zaidong Liu2, Ningming Wang21 Key Laboratory of Geological Nuclear Technology of Sichuan Province, College of Earth Science, Chengdu University of Technology, Chengdu 610059, China. ; E-mail:chengxin_cdut@163.com 2 College of Earth Science, Chengdu University of Technology, Chengdu 610059, China. ; *Corresponding author: E-mail: huangyi@cdut.cn Panzhihua is a mining city located at Pan-Xi Rift valley, southwest China. It has a long industrial history of vanadium-titanium magnetite mining, iron and steel smelting, and coal-fired power plants. Atomospheric environment has been seriously contaminated with airborne paticles, which is threatening human health.The harmful effects of aerosols are dependent on certain characteristics such as microphysical properties. However, few studsies have been carried out on morphological information contained on single atmospheric particles in this area. In this study, we provide a detailed morphologically and chemically characterization of airborne particles collected at Panzhihua city in October, 2014, using a quantitative single particle analysis based on EPXMA. The results indicate that based on their chemical composition, five major types of particles were identified. Among these, aluminosilicate particles have typical spherical shapes and are produced during the high-temperature combustion; Fe-containing particles contains high level of Mn, and more likely originated from mineralogical and steel industry; Si-containing particles can originate from mineralogical source; V-Ti-Mn-containing particles are also produced by steel industry; Ca-containing particles,these particles are CaCO3, mainly from the mining of limestone mine. The results help us on tracing and partitioning different sources of atomospheric particles in the industrial area. Fig.1 Fe-rich shperical particles

  8. Atoms Talking to SQUIDs

    CERN Document Server

    Hoffman, J E; Kim, Z; Wood, A K; Anderson, J R; Dragt, A J; Hafezi, M; Lobb, C J; Orozco, L A; Rolston, S L; Taylor, J M; Vlahacos, C P; Wellstood, F C

    2011-01-01

    We present a scheme to couple trapped $^{87}$Rb atoms to a superconducting flux qubit through a magnetic dipole transition. We plan to trap atoms on the evanescent wave outside an ultrathin fiber to bring the atoms to less than 10 $\\mu$m above the surface of the superconductor. This hybrid setup lends itself to probing sources of decoherence in superconducting qubits. Our current plan has the intermediate goal of coupling the atoms to a superconducting LC resonator.

  9. Atomic-level characterization of the activation mechanism of SERCA by calcium.

    Directory of Open Access Journals (Sweden)

    L Michel Espinoza-Fonseca

    Full Text Available We have performed molecular dynamics (MD simulations to elucidate, in atomic detail, the mechanism by which the sarcoplasmic reticulum Ca(2+-ATPase (SERCA is activated by Ca(2+. Crystal structures suggest that activation of SERCA occurs when the cytoplasmic head-piece, in an open (E1 conformation stabilized by Ca(2+, undergoes a large-scale open-to-closed (E1 to E2 transition that is induced by ATP binding. However, spectroscopic measurements in solution suggest that these structural states (E1 and E2 are not tightly coupled to biochemical states (defined by bound ligands; the closed E2 state predominates even in the absence of ATP, in both the presence and absence of Ca(2+. How is this loose coupling consistent with the high efficiency of energy transduction in the Ca(2+-ATPase? To provide insight into this question, we performed long (500 ns all-atom MD simulations starting from the open crystal structure, including a lipid bilayer and water. In both the presence and absence of Ca(2+, we observed a large-scale open-to-closed conformational transition within 400 ns, supporting the weak coupling between structural and biochemical states. However, upon closer inspection, it is clear that Ca(2+ is necessary and sufficient for SERCA to reach the precise geometrical arrangement necessary for activation of ATP hydrolysis. Contrary to suggestions from crystal structures, but in agreement with solution spectroscopy, the presence of ATP is not required for this activating transition. Principal component analysis showed that Ca(2+ reshapes the free energy landscape of SERCA to create a path between the open conformation and the activated closed conformation. Thus the malleability of the free energy landscape is essential for SERCA efficiency, ensuring that ATP hydrolysis is tightly coupled to Ca(2+ transport. These results demonstrate the importance of real-time dynamics in the formation of catalytically competent conformations of SERCA, with broad

  10. Growth and characterization of titanium oxide by plasma enhanced atomic layer deposition

    KAUST Repository

    Zhao, Chao

    2013-09-01

    The growth of TiO2 films by plasma enhanced atomic layer deposition using Star-Ti as a precursor has been systematically studied. The conversion from amorphous to crystalline TiO2 was observed either during high temperature growth or annealing process of the films. The refractive index and bandgap of TiO2 films changed with the growth and annealing temperatures. The optimization of the annealing conditions for TiO2 films was also done by morphology and density studies. © 2013 Elsevier B.V. All rights reserved.

  11. Atomic force microscopy characterization of kinase-mediated phosphorylation of a peptide monolayer

    Science.gov (United States)

    Zhuravel, Roman; Amit, Einav; Elbaz, Shir; Rotem, Dvir; Chen, Yu-Ju; Friedler, Assaf; Yitzchaik, Shlomo; Porath, Danny

    2016-11-01

    We describe the detailed microscopic changes in a peptide monolayer following kinase-mediated phosphorylation. A reversible electrochemical transformation was observed using square wave voltammetry (SWV) in the reversible cycle of peptide phosphorylation by ERK2 followed by dephosphorylation by alkaline phosphatase. A newly developed method for analyzing local roughness, measured by atomic force microscope (AFM), showed a bimodal distribution. This may indicate either a hole-formation mechanism and/or regions on the surface in which the peptide changed its conformation upon phosphorylation, resulting in increased roughness and current. Our results provide the mechanistic basis for developing biosensors for detecting kinase-mediated phosphorylation in disease.

  12. The identification, characterization and optimization of small molecule probes of cysteine proteases: experiences of the Penn Center for Molecular Discovery with cathepsin B and cathepsin L.

    Science.gov (United States)

    Huryn, Donna M; Smith, Amos B

    2009-01-01

    During the pilot phase of the NIH Molecular Library Screening Network, the Penn Center for Molecular Discovery focused on a series of projects aimed at high throughput screening and the development of probes of a variety of protease targets. This review provides our medicinal chemistry experience with two such targets--cathepsin B and cathepsin L. We describe our approach for hit validation, characterization and triage that led to a critical understanding of the nature of hits from the cathepsin B project. In addition, we detail our experience at hit identification and optimization that led to the development of a novel thiocarbazate probe of cathepsin L.

  13. 2H-NMR CHARACTERIZATION OF CLAY DISPERSION AND CONFINEMENT EFFECT ON PROBE MOLECULES IN RUBBER/CLAY NANOCOMPOSITE-GELS

    Institute of Scientific and Technical Information of China (English)

    Ping-chuan Sun; Jian-jun Zhu; Tie-hong Chen

    2009-01-01

    2H-NMR spectroscopy of the probe molecule,deuterated benzene,was applied to characterize organo-clay dispersion and confinement effect on the local motion of benzene in rubber/clay nanocomposite-gels.The observed 2H line shapes of benzene in intercalated and exfoliated nanocomposites were obviously different,which can be used to estimate clay-dispersion quality.2H-NMR line shapes also reflect the different influence of intercalated or exfoliated layered-silicates on local motions of benzene,implying that probe molecules exhibit different local motions depending on different confined geometry in these nanocomposites.Viscosity measurements further confirmed these NMR results.

  14. Characterization of the vitreous body of the human eye using a cyanine dye as a spectral and fluorescent probe

    Science.gov (United States)

    Panova, Ina G.; Tatikolov, Alexander S.

    2009-02-01

    We used one of cyanine dyes as a spectral and fluorescent probe in the study of the composition of the extracellular matrix of the human eye (its vitreous body). Owing to the unique ability of the dye to bind to collagens and human serum albumin, we revealed the simultaneous presence of both types of biomacromolecules in the vitreous body. The formation of the dye complex with human serum albumin leads to appearance of a long-wavelength absorption band (~612 nm) and a steep rise of fluorescence, whereas in the presence of collagens the dye forms J-aggregates with a longer-wavelength absorption band (640-660 nm) and moderate fluorescence. In this work we studied the composition of the human fetus vitreous body and its dynamics from 9 to 31 gestation weeks. On the basis of the data obtained by this method, we may assume that albumin, being a carrier protein, probably provides the vitreous body and surrounding tissues with necessary growth factors, hormones, lipids, vitamins, and some other biomolecules. The data show that the dye is promising not only for study of albumin functions in eye development, but also for characterization of some eye diseases and for analysis of other extracellular media.

  15. Structure biodistribution relationship of radioiodinated tropeines: search for a molecular probe for the characterization of the cocaine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Basmadjian, G.P.; Mills, S.L.; Kanvinde, M.; Basmadjian, N.P. (Oklahoma Univ., Oklahoma City, OK (USA). Health Sciences Center)

    1990-07-01

    Three iodinated analogs of cocaine were synthesized and radiolabeled by isotope exchange in the presence of CU{sup ++} using a ''kit'' procedure. 2'-Iodococaine, 2'-iodotropacocaine and 2'-iodobenzoyl tropine radiolabeled with {sup 125}I were injected in mice and their biodistribution studied. Activity with all three radiolabeled compounds peaked in the brain and heart between 5 and 30 min. post injection. Activity from {sup 125}I-2'-iodococaine peaked in the brain at 15 min and showed a plateau in the heart between 5 and 60 min post injection. Sup(125)I-2'-iodotropacocaine at 5 min had the highest uptake in the brain and the heart while activity from {sup 125}I-2'-iodobenzoyl tropine peaked in the brain at 15 min and at 5 min in the heart. The biodistribution of {sup 125}1-2'-iodococaine paralleled literature values obtained with {sup 3}H'/{sup 14}C-cocaine. We conclude that radioiodinated tropeines radiolabeled with {sup 123}I may be developed into useful probes to examine and characterize the cocaine receptor in-vivo by SPECT imaging. (author).

  16. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  17. Atomic scale chemical tomography of human bone

    Science.gov (United States)

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale – the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.

  18. CHARACTERIZATION OF PRECIPITATES IN CUBIC SILICON CARBIDE IMPLANTED WITH 25Mg+ IONS

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Edwards, Danny J.; Schreiber, Daniel K.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2016-09-26

    The aim of this study is to characterize precipitates in Mg+ ion implanted and high-temperature annealed cubic silicon carbide using scanning transmission electron microscopy, electron energy loss spectroscopy and atom probe tomography.

  19. 回火马氏体中合金碳化物的3D原子探针表征Ⅱ.长大%3D ATOM PROBE CHARACTERAZATION OF ALLOY CARBIDES IN TEMPERING MARTENITE Ⅱ. Growth

    Institute of Scientific and Technical Information of China (English)

    刘庆冬; 彭剑超; 刘文庆; 周邦新

    2009-01-01

    The mechanical properties of quench-tempered high-strength low alloy steels are commonly optimized by fine and dispersively distributed alloy carbides. The role of the alloying elements in determining the alloy carbide precipitation sequence is of great significance. The co-addition of carbide-forming elements such as Mo, V and Nb complicates the precipitation behavior. The mutual inter-solutions and growth rates of various MC-and/or M_2C-type carbides are qual-itatively affected by the intrinsic solubility and diffusion at certain tempering condition. However, comprehensive study of the precipitation sequence must be followed with atomic scale resolution techniques. The 3D atom probe (3DAP) is a unique tool capable of obtaining chemical information at the atomic level, offering a powerful method to investigate microstructural and compositional changes occurring at nano-scale. And the sizes, morphology and composition of individual alloy carbide may be visualized and quantified by 3DAP. In this paper, a quenched Nb-V microalloyed steel was chosen to investigate the precipitation behavior of alloy carbide after tempering at 450-650 ℃ for different times. 3DAP, micro hardness test and TEM were applied to characterize the phenomena of hardening and softening during tempering, and the composition evolution and growth behaviors of the alloyed carbides were also studied. The results indicated the second hardening of the 500-600℃ tempering martensite is mainly resulting from precipitation strengthening of alloy carbides. The alloy carbides composition dynamically changed with elevated temperature or prolonged time, that is, the stronger carbide-forming elements replaced or partly replaced the weaker ones. At first V and Nb replaced Mo, and then Nb partly replaced V, and at last the carbides with certain composition were formed. Tempering time has relatively less effect on the carbides composition compared with temperature. When the tempering temperature elevated or

  20. Mixed monolayer protected gold atom-oxide cluster synthesis and characterization

    Science.gov (United States)

    Nambiar, Sindhu R.; Aneesh, Padamadathil K.; Sukumar, Chinthu; Rao, Talasila P.

    2012-06-01

    Small atomic gold clusters in solution, Aun, stabilized by cetyl trimethylammonium bromide (CTAB) and cysteine, have been synthesized potentiodynamically in quiescent aqueous solutions. The electrodissolution of gold to gold ions during an anodic scan and subsequent cluster formation during a cathodic scan in underpotential (UPDD) and overpotential dissolution-deposition (OPDD) regions were studied. The experimental potentiodynamic I-E profiles and chronoamperometric i-t transients are fit into reported theoretical models of adsorption and electrocrystallization. The plausible application of clusters/cluster film to cysteine sensing based on fluorescence quenching and square wave stripping voltammetry is demonstrated.Small atomic gold clusters in solution, Aun, stabilized by cetyl trimethylammonium bromide (CTAB) and cysteine, have been synthesized potentiodynamically in quiescent aqueous solutions. The electrodissolution of gold to gold ions during an anodic scan and subsequent cluster formation during a cathodic scan in underpotential (UPDD) and overpotential dissolution-deposition (OPDD) regions were studied. The experimental potentiodynamic I-E profiles and chronoamperometric i-t transients are fit into reported theoretical models of adsorption and electrocrystallization. The plausible application of clusters/cluster film to cysteine sensing based on fluorescence quenching and square wave stripping voltammetry is demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30446e

  1. Retained Austenite Decomposition and Carbide Formation During Tempering a Hot-Work Tool Steel X38CrMoV5-1 Studied by Dilatometry and Atom Probe Tomography

    Science.gov (United States)

    Lerchbacher, Christoph; Zinner, Silvia; Leitner, Harald

    2012-12-01

    The microstructural development of a hot-work tool steel X38CrMoV5-1 during continuous heating to tempering temperature has been investigated with the focus on the decomposition of retained austenite (Stage II) and carbide formation (Stages III and IV). Investigations have been carried out after heating to 673.15 K, 773.15 K, 883.15 K (400 °C, 500 °C, 610 °C) and after a dwell time of 600 seconds at 883.15 K (610 °C). Dilatometry and atom probe tomography were used to identify tempering reactions. A distinctive reaction takes place between 723.15 K and 823.15 K (450 °C and 550 °C) which is determined to be the formation of M3C from transition carbides. Stage II could be evidenced with the atom probe results and indirectly with dilatometry, indicating the formation of new martensite during cooling. Retained austenite decomposition starts with the precipitation of alloy carbides formed from nanometric interlath retained austenite films which are laminary arranged and cause a reduction of the carbon content within the retained austenite. Preceding enrichment of substitutes at the matrix/carbide interface in the early stages of Cr7C3 alloy carbide formation could be visualised on the basis of coarse M3C carbides within the matrix. Atom probe tomography has been found to be very useful to complement dilatational experiments in order to characterise and identify microstructural changes.

  2. Characterization of truck-mounted atomization equipment typically used in vector control.

    Science.gov (United States)

    Hoffmann, W C; Walker, T W; Martin, D E; Barber, J A B; Gwinn, T; Smith, V L; Szumlas, D; Lan, Y; Fritz, B K

    2007-09-01

    The control of medically important arthropod vectors of human and animal disease is a high priority for both public health and military officials. Because droplet size of pesticide spray material is a critical factor affecting vector control applications, the droplet-size spectra produced by 11 sprayers and 3 spray formulations were evaluated. Droplet-size spectra were measured by a laser diffraction instrument, a hot-wire system, and rotating slides. There were considerable differences in the droplet-size spectra produced by the different sprayers tested. The volume median diameter (Dv0.5) for the water-based sprays ranged from 4.7 to 211 microm, depending on the sprayer, and the percent of spray volume contained in droplets less than 20 microm (%vol <20 microm) ranged between 0.5% and 98.9%. The Dv0.5 measurements for the oil-based sprays ranged from 9.4 to 125.3 microm and the %vol <20 microm ranged between 2.4% and 97.9%. The correlations between the Dv0.5 measured by the laser system (Dv0.5-laser) and the mass median diameter, Sauter diameter, and Dv0.5 measured by the AIMS probe were all significant. Generally, the slide Dv0.5s were numerically similar to the Dv0.5 from the laser system and the Sauter diameter from the Army Insecticide Measuring System probe. There was less consistent agreement between the % <32 microm values obtained from the slides and those from the other 2 samplers. The information presented can be used by applicators to select the sprayer that produces the droplet-size spectra needed for their particular application situation.

  3. Quantum magnetism through atomic assembly

    NARCIS (Netherlands)

    Spinelli, A.

    2015-01-01

    This thesis presents an experimental study of magnetic structures, composed of only a few atoms. Those structures are first built atom-by-atom and then locally probed, both with a low-temperature STM. The technique that we use to assemble them is vertical atom manipulation, while to study their phy

  4. Development of near-field scanning microwave and optical dual probe: Application to characterization of high-T(c) superconductors

    Science.gov (United States)

    Aga, Roberto Sabas, Jr.

    In this dissertation, a novel dual-channel near-field scanning microwave and optical microprobe (NSMM/NSOM) was developed for simultaneous mapping of microwave and optical properties of a sample at microscopic scales. This microprobe is composed of an open-end coaxial resonator with its center conductor being replaced by a stainless steel tube terminated by a titanium/silver coated fiber optic with a tapered tip. The optical fiber serves as the channel for NSOM, while its metal coating is the channel for NSMM. Using this dual-channel NSMM/NSOM probe, a spatial resolution of ˜5 mum, that is comparable to the best reported for single-channel NSMM, has been achieved on metallic samples. This resolution is mainly limited by the sensitivity of the NSMM channel and may be further improved when the sensitivity of NSMM is enhanced. Characterization of the microwave properties of the highest-Tc Hg-based superconductors has been carried out using a traditional resonant cavity technique, as well as a novel single-channel NSMM and the dual-channel NSMM/NSOM. Using the traditional technique, the microwave surface resistance (Rs) and power handling capability (Pc) of HgBa 2CaCu2O6 (Hg-1212 with Tc ˜ 125 K) films have been measured for the first time, and the results are superior to the best achieved on other superconductors. For example, a comparable R s ˜ 0.3 mO (10 GHz) can be obtained on Hg-1212 at close to 120 K as opposed to the same Rs for YBa2Cu3O 7 (the most popular high-Tc superconductor with Tc ˜ 92 K) at around 77K. This can be attributed to the large difference in the Tcs between the two materials and has demonstrated the potential of Hg-1212 for microwave applications. A comparison of the microwave properties of Hg-1212, Tl-2212 and YBCO films at reduced temperature scale suggested further room for improvement of Hg-1212 performance. Using NSMM, the localized microwave properties, such as Tcs, sheet resistance and power handling capability have been investigated

  5. Characterization of hafnium oxide resistive memory layers deposited on copper by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.D.; Bishop, S.M. [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States); Leedy, K.D. [Air Force Research Laboratory, 2241 Avionics Circle, Wright Patterson Air Force Base, Dayton, OH 45433 (United States); Cady, N.C., E-mail: ncady@albany.edu [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States)

    2014-07-01

    Hafnium oxide-based resistive memory devices have been fabricated on copper bottom electrodes. The HfO{sub x} active layers in these devices were deposited by atomic layer deposition (ALD) at 250 °C with tetrakis(dimethylamido)hafnium(IV) as the metal precursor and an O{sub 2} plasma as the reactant. Depth profiles of the HfO{sub x} by X-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a copper concentration on the order of five atomic percent throughout the HfO{sub x} film. In addition to the Cu doped HfO{sub x}, a thin layer (20 nm) of Cu{sub x}O is present at the surface. This surface layer is believed to have formed during the ALD process, and greatly complicates the analysis of the switching mechanism. The resistive memory structures fabricated from the ALD HfO{sub x} exhibited non-polar resistive switching, independent of the top metal electrode (Ni, Pt, Al, Au). Resistive switching current voltage (I–V) curves were analyzed using Schottky emission and ionic hopping models to gain insight into the physical mechanisms underpinning the device behavior. During the forming process it was determined that, at voltages in excess of 2.5 V, an ionic hopping model is in good agreement with the I–V data. The extracted ion hopping distance ∼ 4 Å was within the range of interatomic spacing of HfO{sub 2} during the forming process consistent with ionic motion of Cu{sup 2+} ions. Lastly the on state I–V data was dominated at larger voltages by Schottky emission with an estimated barrier height of ∼ 0.5 eV and a refractive index of 2.59. The consequence of the Schottky emission analysis indicates the on state resistance to be a product of a Pt/Cu{sub 2}O/Cu filament(s)/Cu{sub 2}O/Cu structure. - Highlights: • HfO{sub 2} was grown via atomic layer deposition at 250 and 100 °C on Cu substrates. • A Cu{sub 2}O surface layer and Cu doping were observed in post-deposition of HfO{sub 2}. • Resistive memory devices were fabricated and

  6. Characterization of 1064nm laser-induced damage on antireflection coatings grown by atomic layer deposition

    Science.gov (United States)

    Liu, Zhichao; Wei, Yaowei; Chen, Songlin; Luo, Jin; Ma, Ping

    2011-12-01

    Damage tests were carried out to measure the laser resistance of Al2O3/TiO2 and Al2O3/HfO2 antireflection coatings at 1064nm grown by atomic layer deposition (ALD). The S-on-1 and R-on-1 damage results are given. It's interesting to find that ALD coatings damage performance seems closed to those grown by conventional e-beam evaporation process. For Al2O3/TiO2 coatings, the grown temperature will impact the damage resistance of thin films. Crystallization of TiO2 layer at higher temperature could play an importance role as absorption defects that reduced the LIDT of coatings. In addition, it is found that using inorganic compound instead of organic compound as precursors for ALD process can effective prevent residual carbon in films and will increase the LIDT of coatings.

  7. Modification and characterization of thin silicon gate oxides using conducting atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kremmer, S.; Peissl, S.; Teichert, C.; Kuchar, F.; Hofer, H

    2003-09-15

    Conducting atomic force microscopy (C-AFM) is used for the anodic oxidation on thermally grown gate oxide samples. The electric field distribution during the oxidation process is studied by computer simulations as function of tip radius, thermal oxide thickness and water film coverage. The results are compared with the experimental oxidation experiments. It is shown that the tip radius and its nano-roughness play an important role for the shape of the protrusions obtained by oxidation. For smooth tips, which do not exhibit high nano-roughness, formation of ring structures can be observed. For tips with higher nano-roughness, the ring structure formation is suppressed. From a comparison of the electric field distributions within the oxide with the experimental data, we concluded that the electric field near the oxide/tip interface is the driving force during the anodic oxidation process.

  8. Topographic characterization of unworn contact lenses assessed by atomic force microscopy and wavelet transform.

    Science.gov (United States)

    Ţălu, Ştefan; StȨpień, Krzysztof; Caglayan, Mustafa Oguzhan

    2015-11-01

    This paper analyses the three-dimensional (3-D) surface morphology of optic surface of unworn contact lenses (CLs) using atomic force microscopy (AFM) and wavelet transform. Refractive powers of all lens samples were 2.50 diopters. Topographic images were acquired in contact mode in air-conditioned medium (35% RH, 23°C). Topographic measurements were taken over a 5 µm × 5 µm area with 512 pixel resolution. Resonance frequency of the tip was 65 kHz. The 3-D surface morphology of CL unworn samples revealed (3-D) micro-textured surfaces that can be analyzed using (AFM) and wavelet transform. AFM and wavelet transform are accurate and sensitive tools that may assist CL manufacturers in developing CLs with optimal surface characteristics.

  9. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  10. Development of a microwave dielectric spectroscopy system for materials characterization using the open-ended coaxial probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Ruiz, I.; Aviles-Castro, D. [Centro Nacional de Metrologia, Queretaro (Mexico); Jardon-Aguilar, H. [Instituto Politecnico Nacional, Mexico, D. F. (Mexico)

    2001-02-01

    Dielectric spectroscopy is a measurement technique to characterize the interaction between electromagnetic energy and macroscopic samples as a function of frequency. It is based on the measurement of complex permittivity plus conductivity and it has shown to be very useful to provide information about internal structure of matter. It has some advantages over others like optical or chemical analysis: it is very fast, easy to implement, requires little or no preparation of the sample, it can be non-destructive and/or minimally intrusive. In this paper the development of a dielectric spectroscopy system for the microwave frequency range (50 MHz-20 GHz), using an open-ended coaxial probe as sensor, is described. The complete system includes a vector network analyzer, a microwave coaxial cable, the probe, a sample holder and a computer to automate measurements and further data processing. This system has been used to measure some liquid and solid materials such as alcohol, water and Teflon. The real and imaginary parts of permittivity as function of frequency, for several sugarcane alcohol and deionised water mixtures, tequilas and Teflon samples are given. Measurement repeatability and accuracy considerations were taken and it was identified that uncertainty of reference standards and system repeatability are the most important error sources. Also, it was found that open-ended coaxial probe technique is appropriate for measuring not only liquids but also solid materials. Some of the obtained results were compared to those reported in literature and good convergence was observed. [Spanish] La espectroscopia dielectrica es una tecnica moderna de medicion para caracterizar la interaccion entre la energia electromagnetica y muestras macroscopicas como funcion de la frecuencia. Esta tecnica se basa en la medicion de la permitividad compleja y conductividad de los materiales y ha mostrado ser muy util para proporcionar informacion sobre la estructura interna de estos. Tiene

  11. Optical atomic magnetometer

    Science.gov (United States)

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  12. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly...

  13. Combining Theory and Experiment to Characterize the Atomic Structures of Surface-Deposited Au309 Clusters

    NARCIS (Netherlands)

    Curley, B.C.; Johnston, R.L.; Young, N.P.; Li, Z.; Di Vece, M.; Palmer, R.E.; Bleloch, A.l.

    2007-01-01

    Gold clusters with icosahedral, decahedral, and cuboctahedral shell structures, have been studied using the Gupta many-body potential, to aid in the structural characterization of surface-deposited Au309 clusters using high-angle annular dark field-scanning transmission electron microscopy (HAADF-ST

  14. Characterization of nodular and thermal defects in hafnia/silica multilayer coatings using optical, photothermal, and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C.J.; Yoshiyama, J.M.; Salleo, A.; Wu, Z.L.; Green, J.; Krupka, R.

    1997-12-24

    Multilayer coatings manufactured from metallic hafnium and silica sources by reactive electron beam deposition, are being developed for high fluence optics in a fusion laser with a wavelength of 1053 nm and a 3 ns pulse length. Damage threshold studies have revealed a correlation between laser damage and nodular defects, but interestingly laser damage is also present in nodule-free regions. Photothermal studies of optical coatings reveal the existence of defects with strong optical absorption in nodule-free regions of the coating. A variety of microscopic techniques were employed to characterize the effects for a better understanding of the thermal properties of nodular defects and role of thermal defects in laser damage. Photothermal microscopy, utilizing the surface thermal lensing technique, was used to map the thermal characteristics of 3 mm x 3 mm areas of the coatings. High resolution subaperture scans, with a 1 pm step size and a 3 um pump beam diameter, W= conducted on the defects to characterize their photothermal properties. Optical and atomic force microscopy was used to visually identify defects and characterize their topography. The defects were then irradiated to determine the role of nodular and thermal defects in limiting the damage threshold of the multilayer.

  15. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-08-31

    We report the growth and characterization of III-nitride ternary thin films (Al{sub x}Ga{sub 1−x}N, In{sub x}Al{sub 1−x}N and In{sub x}Ga{sub 1−x}N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxy • Growth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures.

  16. Determination and characterization of phytochelatins by liquid chromatography coupled with on line chemical vapour generation and atomic fluorescence spectrometric detection.

    Science.gov (United States)

    Bramanti, Emilia; Toncelli, Daniel; Morelli, Elisabetta; Lampugnani, Leonardo; Zamboni, Roberto; Miller, Keith E; Zemetra, Joseph; D'Ulivo, Alessandro

    2006-11-10

    Liquid chromatography (LC) coupled on line with UV/visible diode array detector (DAD) and cold vapour generation atomic fluorescence spectrometry (CVGAFS) has been developed for the speciation, determination and characterization of phytochelatins (PCs). The method is based on a bidimensional approach, e.g. on the analysis of synthetic PC solutions (apo-PCs and Cd(2+)-complexed PCs) (i) by size exclusion chromatography coupled to UV diode array detector (SEC-DAD); (ii) by the derivatization of PC -SH groups in SEC fractions by p-hydroxymercurybenzoate (PHMB) and the indirect detection of PC-PHMB complexes by reversed phase liquid chromatography coupled to atomic fluorescence detector (RPLC-CVGAFS). MALDI-TOF/MS (matrix assisted laser desorption ionization time of flight mass spectrometry) analysis of underivatized synthetic PC samples was performed in order have a qualitative information of their composition. Quantitative analysis of synthetic PC solutions has been performed on the basis of peak area of PC-PHMB complexes of the mercury specific chromatogram and calibration curve of standard solution of glutathione (GSH) complexed to PHMB (GS-PHMB). The limit of quantitation (LOQ) in terms of GS-PHMB complex was 90 nM (CV 5%) with an injection volume of 35 microL, corresponding to 3.2 pmol (0.97 ng) of GSH. The method has been applied to analysis of extracts of cell cultures from Phaeodactylum tricornutum grown in Cd-containing nutrient solutions, analysed by SEC-DAD-CVGAFS and RPLC-DAD-CVGAFS.

  17. Atom-Probe Tomography, TEM and ToF-SIMS study of borosilicate glass alteration rim: A multiscale approach to investigating rate-limiting mechanisms

    Science.gov (United States)

    Gin, S.; Jollivet, P.; Barba Rossa, G.; Tribet, M.; Mougnaud, S.; Collin, M.; Fournier, M.; Cadel, E.; Cabie, M.; Dupuy, L.

    2017-04-01

    Significant efforts have been made into understanding the dissolution of silicate glasses and minerals, but there is still debate about the formation processes and the properties of surface layers. Here, we investigate glass coupons of ISG glass - a 6 oxide borosilicate glass of nuclear interest - altered at 90 °C in conditions close to saturation and for durations ranging from 1 to 875 days. Altered glass coupons were characterized from atomic to macroscopic levels to better understand how surface layers become protective. With this approach, it was shown that a rough interface, whose physical characteristics have been modeled, formed in a few days and then propagated into the pristine material at a rate controlled by the reactive transport of water within the growing alteration layer. Several observations such as stiff interfacial B, Na, and Ca profiles and damped profiles within the rest of the alteration layer are not consistent with the classical inter-diffusion model, or with the interfacial dissolution-precipitation model. A new paradigm is proposed to explain these features. Inter-diffusion, a process based on water ingress into the glass and ion-exchange, may only explain the formation of the rough interface in the early stage of glass corrosion. A thin layer of altered glass is formed by this process, and as the layer grows, the accessibility of water to the reactive interface becomes rate-limiting. As a consequence, only the most easily accessible species are dissolved. The others remain undissolved in the alteration layer, probably fixed in highly hydrolysis resistant clusters. A new estimation of water diffusivity in the glass when covered by the passivating layer was determined from the shift between B and H profiles, and was 10-23 m2.s-1, i.e. approximately 3 orders of magnitude lower than water diffusivity in the pristine material. Overall, in the absence of secondary crystalline phases that could consume the major components of the alteration

  18. Poly(glutamic acid) nanofibre modified glassy carbon electrode: Characterization by atomic force microscopy, voltammetry and electrochemical impedance

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Daniela Pereira; Zanoni, Maria Valnice Boldrin; Bergamini, Marcio Fernando [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual Paulista, Caixa Postal 355, 14800-900 Araraquara, S.P. (Brazil); Chiorcea-Paquim, Ana-Maria; Diculescu, Victor Constantin [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra (Portugal); Oliveira Brett, Ana-Maria [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra (Portugal)], E-mail: brett@ci.uc.pt

    2008-04-20

    Glassy carbon electrodes (GCE) were modified with poly(glutamic acid) acid films prepared using three different procedures: glutamic acid monomer electropolymerization (MONO), evaporation of poly(glutamic acid) (PAG) and evaporation of a mixture of poly(glutamic acid)/glutaraldehyde (PAG/GLU). All three films showed good adherence to the electrode surface. The performance of the modified GCE was investigated by cyclic voltammetry and differential pulse voltammetry, and the films were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The three poly(glutamic acid) modified GCEs were tested using the electrochemical oxidation of ascorbic acid and a decrease of the overpotential and the improvement of the oxidation peak current was observed. The PAG modified electrode surfaces gave the best results. AFM morphological images showed a polymeric network film formed by well-defined nanofibres that may undergo extensive swelling in solution, allowing an easier electron transfer and higher oxidation peaks.

  19. MM99.50 - Surface Topography Characterization Using an Atomic Force Microscope Mounted on a Coordinate Measuring Machine

    DEFF Research Database (Denmark)

    Chiffre, Leonardo De; Hansen, Hans Nørgaard; Kofod, Niels

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...... areas traced in single scans of 40 mu m x 40 mu m. The results show that surface mapping on industrial surfaces is possible using the Least Mean Square alignment provided by the AFM software....... values in the order of 1 nm. The positioning repeatability of the two horizontal axes of the CMM was determined to +/-1 mu m. Sets of four 20 mu m x 20 mu m areas were traced on fiat objects, combining the data into single 40 mu m x 40 mu m areas, and comparing the roughness values to those for the same...

  20. Electrical characterization of InAs/GaAs (110) nanostructures by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beinik, Igor; Teichert, Christian [Institute of Physics, Montanuniversitaet Leoben (Austria); Diez-Merino, Laura; Tejedor, Paloma [Instituto de Ciencia de Materiales de Madrid (Spain). CSIC

    2009-07-01

    Self-assembled InAs quantum dots and wires have been studied over many years and still they are of great interest for application in nanoelectronics, high-speed spintronic devices, etc. Samples for our investigation were grown by molecular beam epitaxy on misoriented (110) GaAs substrates. Conductive Atomic Force Microscopy (C-AFM) technique was used to study the surface topography and conductivity simultaneously. Comparison of the corresponding cross-section profiles indicated that InAs nucleation takes place on the[1-10]-oriented step bunches, forming 3 nm-high and up to 70 nm-wide wires of variable length. On the other hand,[1-12]-type steps very rarely appeared to be decorated by InAs, also in agreement with previous TEM studies. The presented results prove that C-AFM technique might be successfully applied as a tool for investigation of electrical properties in III-V quantum dots and wires on the nanometer scale.