WorldWideScience

Sample records for atom chip based

  1. Atom chip based generation of entanglement for quantum metrology

    CERN Document Server

    Riedel, Max F; Li, Yun; Hänsch, Theodor W; Sinatra, Alice; Treutlein, Philipp

    2010-01-01

    Atom chips provide a versatile `quantum laboratory on a microchip' for experiments with ultracold atomic gases. They have been used in experiments on diverse topics such as low-dimensional quantum gases, cavity quantum electrodynamics, atom-surface interactions, and chip-based atomic clocks and interferometers. A severe limitation of atom chips, however, is that techniques to control atomic interactions and to generate entanglement have not been experimentally available so far. Such techniques enable chip-based studies of entangled many-body systems and are a key prerequisite for atom chip applications in quantum simulations, quantum information processing, and quantum metrology. Here we report experiments where we generate multi-particle entanglement on an atom chip by controlling elastic collisional interactions with a state-dependent potential. We employ this technique to generate spin-squeezed states of a two-component Bose-Einstein condensate and show that they are useful for quantum metrology. The obser...

  2. Atom chips

    CERN Document Server

    Reichel, Jakob

    2010-01-01

    This book provides a stimulating and multifaceted picture of a rapidly developing field. The first part reviews fundamentals of atom chip research in tutorial style, while subsequent parts focus on the topics of atom-surface interaction, coherence on atom chips, and possible future directions of atom chip research. The articles are written by leading researchers in the field in their characteristic and individual styles.

  3. Manipulating Neutral Atoms in Chip-Based Magnetic Traps

    Science.gov (United States)

    Aveline, David; Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Yu, Nan; Kohel, James

    2009-01-01

    Several techniques for manipulating neutral atoms (more precisely, ultracold clouds of neutral atoms) in chip-based magnetic traps and atomic waveguides have been demonstrated. Such traps and waveguides are promising components of future quantum sensors that would offer sensitivities much greater than those of conventional sensors. Potential applications include gyroscopy and basic research in physical phenomena that involve gravitational and/or electromagnetic fields. The developed techniques make it possible to control atoms with greater versatility and dexterity than were previously possible and, hence, can be expected to contribute to the value of chip-based magnetic traps and atomic waveguides. The basic principle of these techniques is to control gradient magnetic fields with suitable timing so as to alter a trap to exert position-, velocity-, and/or time-dependent forces on atoms in the trap to obtain desired effects. The trap magnetic fields are generated by controlled electric currents flowing in both macroscopic off-chip electromagnet coils and microscopic wires on the surface of the chip. The methods are best explained in terms of examples. Rather than simply allowing atoms to expand freely into an atomic waveguide, one can give them a controllable push by switching on an externally generated or a chip-based gradient magnetic field. This push can increase the speed of the atoms, typically from about 5 to about 20 cm/s. Applying a non-linear magnetic-field gradient exerts different forces on atoms in different positions a phenomenon that one can exploit by introducing a delay between releasing atoms into the waveguide and turning on the magnetic field.

  4. Miniature Bose-Einstein condensate system design based on a transparent atom chip

    Science.gov (United States)

    Cheng, Jun; Li, Xiaolin; Zhang, Jingfang; Xu, Xinping; Jiang, Xiaojun; Zhang, Haichao; Wang, Yuzhu

    2016-08-01

    We propose a new miniature Bose-Einstein condensate (BEC) system based on a transparent atom chip with a compact external coil structure. A standard six-beam macroscopic magneto-optical trap (MOT) is able to be created near the chip surface due to the chip’s transparency. A novel wire pattern consisting of a double-z wire and a z-shaped wire is designed on the transparent atom chip. With a vertical bias magnetic field, the double-z wire can create the quadrupole magnetic field of an intermediate chip MOT, which is suitable for transporting atoms from the macroscopic MOT to the chip z-wire trap efficiently. The compact external coil structure is designed with a rectangular frameless geometry consisting of only four coil pairs and its volume is less than 0.3 liters. The maximum system power consumption during the BEC generation procedure is about 45 W. The miniature system is evaluated, and about 3 × 106 atoms can be loaded into the chip z-wire trap. The miniature chip BEC system has the advantages of small volume and low power consumption, and it has great potential for practical applications of BEC.

  5. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  6. Dynamic splitting and merging of an atom cloud on an atom chip

    Institute of Scientific and Technical Information of China (English)

    Ke Min; Yan Bo; Cheng Feng; Wang Yu-Zhu

    2009-01-01

    Chip-based atom interferometers bring together the advantages of atom chips and Bose-Einstein condensates. Their central prerequisite is that a condensate can be coherently split into two halves with a determined relative phase. This paper demonstrates the dynamical splitting and merging of an atom cloud with two U-wires on an atom chip. Symmetrical and asymmetrical splittings are realized by applying a bias field with different directions and magnitudes. The trajectories of the splitting are consistent with theoretical calculations. The atom chip is a good candidate for constructing an atom interferometer.

  7. Design and Fabrication of a Chip-based Continuous-wave Atom Laser

    CERN Document Server

    Power, E P; Vanderelzen, B; Herrera-Fierro, P; Murphy, R; Yalisove, S M; Raithel, G

    2012-01-01

    We present a design for a continuous-wave (CW) atom laser on a chip and describe the process used to fabricate the device. Our design aims to integrate quadrupole magnetic guiding of ground state Rb atoms with continuous surface adsorption evaporative cooling to create a continuous Bose-Einstein condensate; out-coupled atoms from the condensate should realize a CW atom laser. We choose a geometry with three wires embedded in a spiral pattern in a silicon subtrate. The guide features an integrated solenoid to mitigate spin-flip losses and provide a tailored longitudinal magnetic field. Our design also includes multiple options for atom interferometry: accomodations are in place for laser-generated atom Fabry-Perot and Mach-Zehnder interferometers, and a pair of atomic beam X-splitters is incorporated for an all-magnetic atom Mach-Zehnder setup. We demonstrate the techniques necessary to fabricate our device using existing micro- and nano-scale fabrication equipment, and discuss future options for modified desi...

  8. Ex Vacuo Atom Chip Bose-Einstein Condensate (BEC)

    CERN Document Server

    Squires, Matthew B; Kasch, Brian; Stickney, James A; Erickson, Christopher J; Crow, Jonathan A R; Carlson, Evan J; Burke, John H

    2016-01-01

    Ex vacuo atom chips, used in conjunction with a custom thin walled vacuum chamber, have enabled the rapid replacement of atom chips for magnetically trapped cold atom experiments. Atoms were trapped in $>2$ kHz magnetic traps created using high power atom chips. The thin walled vacuum chamber allowed the atoms to be trapped $\\lesssim1$ mm from the atom chip conductors which were located outside of the vacuum system. Placing the atom chip outside of the vacuum simplified the electrical connections and improved thermal management. Using a multi-lead Z-wire chip design, a Bose-Einstein condensate was produced with an external atom chip. Vacuum and optical conditions were maintained while replacing the Z-wire chip with a newly designed cross-wire chip. The atom chips were exchanged and an initial magnetic trap was achieved in less than three hours.

  9. Microfabricated cells for chip-scale atomic clock based on coherent population trapping: Fabrication and investigation

    Directory of Open Access Journals (Sweden)

    S.V. Ermak

    2015-03-01

    Full Text Available A universal method for fabrication of miniature cells for frequency standards and quantum magnetometers containing 87Rb atoms in the atmosphere of inert gas neon based on integrated technologies is considered. The results of experimental studies of coherent population trapping signals observed for a series of cells which provided recovery of vapors of an alkali metal from the rubidium dichromate salt with the help of laser radiation are presented. The coherent population trapping signals with a typical linewidth of 2–3 kHz and a signal-to-noise ratio of 1500 in the 1-Hz bandwidth were observed, which allows one to provide a relative frequency stability of atomic clock of 10−11 at 100 s.

  10. Tunable axial potentials for atom chip waveguides

    CERN Document Server

    Stickney, James A; Imhof, Eric; Kroese, Bethany R; Crow, Jonathon A R; Olson, Spencer E; Squires, Matthew B

    2014-01-01

    We present a method for generating algebraically precise magnetic potentials along the axis of a cold atom waveguide near the surface of an atom chip. With a single chip design consisting of several wire pairs, various axial potentials can be created, including double wells, triple wells, and pure harmonic traps with suppression of higher order terms. We characterize the error along a harmonic trap between the expected algebraic form and magnetic field simulations and find excel- lent agreement, particularly at small displacements from the trap center. Finally, we demonstrate experimental control over the bottom fields of an asymmetric double well potential.

  11. Atom chip apparatus for experiments with ultracold rubidium and potassium gases

    Energy Technology Data Exchange (ETDEWEB)

    Ivory, M. K.; Ziltz, A. R.; Fancher, C. T.; Pyle, A. J.; Sensharma, A.; Chase, B.; Field, J. P.; Garcia, A.; Aubin, S., E-mail: saaubi@wm.edu [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187 (United States); Jervis, D. [Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2014-04-15

    We present a dual chamber atom chip apparatus for generating ultracold {sup 87}Rb and {sup 39}K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10{sup 4} {sup 87}Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold {sup 39}K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the laser cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.

  12. Atom chip apparatus for experiments with ultracold rubidium and potassium gases.

    Science.gov (United States)

    Ivory, M K; Ziltz, A R; Fancher, C T; Pyle, A J; Sensharma, A; Chase, B; Field, J P; Garcia, A; Jervis, D; Aubin, S

    2014-04-01

    We present a dual chamber atom chip apparatus for generating ultracold (87)Rb and (39)K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10(4) (87)Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold (39)K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the laser cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.

  13. Electrostatic trapping and in situ detection of Rydberg atoms above chip-based transmission lines

    CERN Document Server

    Lancuba, P

    2016-01-01

    Beams of helium atoms in Rydberg-Stark states with principal quantum number $n=48$ and electric dipole moments of 4600~D have been decelerated from a mean initial longitudinal speed of 2000~m/s to zero velocity in the laboratory-fixed frame-of-reference in the continuously moving electric traps of a transmission-line decelerator. In this process accelerations up to $-1.3\\times10^{7}$~m/s$^2$ were applied, and changes in kinetic energy of $\\Delta E_{\\mathrm{kin}}=1.3\\times10^{-20}$~J ($\\Delta E_{\\mathrm{kin}}/e = 83$~meV) per atom were achieved. Guided and decelerated atoms, and those confined in stationary electrostatic traps, were detected in situ by pulsed electric field ionisation. The results of numerical calculations of particle trajectories within the decelerator have been used to characterise the observed deceleration efficiencies, and aid in the interpretation of the experimental data.

  14. Electrostatic trapping and in situ detection of Rydberg atoms above chip-based transmission lines

    Science.gov (United States)

    Lancuba, P.; Hogan, S. D.

    2016-04-01

    Beams of helium atoms in Rydberg-Stark states with principal quantum number n = 48 and electric dipole moments of 4600 D have been decelerated from a mean initial longitudinal speed of 2000 m s-1 to zero velocity in the laboratory-fixed frame-of-reference in the continuously moving electric traps of a transmission-line decelerator. In this process accelerations up to -1.3× {10}7 m s-2 were applied, and changes in kinetic energy of {{Δ }}{E}{kin}=1.3× {10}-20 J ({{Δ }}{E}{kin}/e=83 meV) per atom were achieved. Guided and decelerated atoms, and those confined in stationary electrostatic traps, were detected in situ by pulsed electric field ionisation. The results of numerical calculations of particle trajectories within the decelerator have been used to characterise the observed deceleration efficiencies, and aid in the interpretation of the experimental data.

  15. Fully permanent magnet atom chip for Bose-Einstein condensation

    NARCIS (Netherlands)

    T. Fernholz; R. Gerritsma; S. Whitlock; I. Barb; R.J.C. Spreeuw

    2008-01-01

    We describe a proof-of-principle experiment on a fully permanent magnet atom chip. We study ultracold atoms and produce a Bose-Einstein condensate. The magnetic trap is loaded efficiently by adiabatic transport of a magnetic trap via the application of uniform external fields. Radio frequency spectr

  16. High-performance solid-state on-chip supercapacitors based on Si nanowires coated with ruthenium oxide via atomic layer deposition

    Science.gov (United States)

    Zheng, Wen; Cheng, Qingmei; Wang, Dunwei; Thompson, Carl V.

    2017-02-01

    Solid-state on-chip supercapacitors based on ruthenium oxide coated silicon nanowires were fabricated using a process that is compatible with silicon integrated circuit processing. Ordered arrays of silicon nanowires were fabricated using metal-assisted anodic etching (MAAE). Atomic layer deposition (ALD) was used to form a uniform coating of ruthenium oxide on high-aspect-ratio silicon nanowires at a moderate temperature of 290 °C. Coated nanowire electrodes were studied using cyclic voltammetry and charge-discharge tests in a neutral Na2SO4 electrolyte, and a specific capacitance of 19 mFcm-2 was achieved at 5 mVs-1. Solid state nanowire capacitors were then fabricated with symmetric face to face nanowire arrays separated by a polymer-based electrolyte. This device exhibited a specific capacitance as high as 6.5 mFcm-2 at 2 mVs-1. The full device was tested over 10000 cycles under galvanostatic charge-discharge at 0.4 mAcm-2, and showed a retention of 92% of the specific capacitance. The specific capacitance was found to scale with the total nanowire surface area, as controlled by controlling the aspect ratios of the wires. The solid state nanowire-based device also achieved high specific energies without sacrificing power performance.

  17. Electric field sensing near the surface microstructure of an atom chip using cold Rydberg atoms

    CERN Document Server

    Carter, J D; Martin, J D D

    2012-01-01

    The electric fields near the heterogeneous metal/dielectric surface of an atom chip were measured using cold atoms. The atomic sensitivity to electric fields was enhanced by exciting the atoms to Rydberg states that are 10^8 times more polarizable than the ground state. We attribute the measured fields to charging of the insulators between the atom chip wires. Surprisingly, it is observed that these fields may be dramatically lowered with appropriate voltage biasing, suggesting configurations for the future development of hybrid quantum systems.

  18. The Design, Fabrication and Characterization of a Transparent Atom Chip

    Directory of Open Access Journals (Sweden)

    Ho-Chiao Chuang

    2014-06-01

    Full Text Available This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments.

  19. Adsorbate Electric Fields on a Cryogenic Atom Chip

    CERN Document Server

    Chan, K S; Hufnagel, C; Dumke, R

    2013-01-01

    We investigate the behaviour of electric fields originating from adsorbates deposited on a cryogenic atom chip as it is cooled from room temperature to cryogenic temperature. Using Rydberg electromagnetically induced transparency we measure the field strength versus distance from a 1 mm square of YBCO patterned onto a YSZ chip substrate. We find a localized and stable dipole field at room temperature and attribute it to a saturated layer of chemically adsorbed rubidium atoms on the YBCO. As the chip is cooled towards 83 K we observe a change in sign of the electric field as well as a transition from a localized to a delocalized dipole density. We relate these changes to the onset of physisorption on the chip surface when the van der Waals attraction overcomes the thermal desorption mechanisms. Our findings suggest that, through careful selection of substrate materials, it may be possible to reduce the electric fields caused by atomic adsorption on chips, opening up experiments to controlled Rydberg-surface co...

  20. Magneto-optical Trapping through a Transparent Silicon Carbide Atom Chip

    CERN Document Server

    Huet, Landry; Morvan, Erwan; Sarazin, Nicolas; Pocholle, Jean-Paul; Reichel, Jakob; Guerlin, Christine; Schwartz, Sylvain

    2011-01-01

    We demonstrate the possibility of trapping about one hundred million rubidium atoms in a magneto-optical trap with several of the beams passing through a transparent atom chip mounted on a vacuum cell wall. The chip is made of a gold microcircuit deposited on a silicon carbide substrate, with favorable thermal conductivity. We show how a retro-reflected configuration can efficiently address the chip birefringence issues, allowing atom trapping at arbitrary distances from the chip. We also demonstrate detection through the chip, granting a large numerical aperture. This configuration is compared to other atom chip devices, and some possible applications are discussed.

  1. Heating rate and spin flip lifetime due to near field noise in layered superconducting atom chips

    CERN Document Server

    Fermani, Rachele; Zhang, Bo; Lim, Michael J; Dumke, Rainer

    2009-01-01

    We theoretically investigate the heating rate and spin flip lifetimes due to near field noise for atoms trapped close to layered superconducting structures. In particular, we compare the case of a gold layer deposited above a superconductor with the case of a bare superconductor. We study a niobium-based and a YBCO-based chip. For both niobium and YBCO chips at a temperature of 4.2 K, we find that the deposition of the gold layer can have a significant impact on the heating rate and spin flip lifetime, as a result of the increase of the near field noise. At a chip temperature of 77 K, this effect is less pronounced for the YBCO chip.

  2. Hexapole-compensated magneto-optical trap on a mesoscopic atom chip

    DEFF Research Database (Denmark)

    Jöllenbeck, S.; Mahnke, J.; Randoll, R.

    2011-01-01

    Magneto-optical traps on atom chips are usually restricted to small atomic samples due to a limited capture volume caused primarily by distorted field configurations. Here we present a magneto-optical trap based on a millimeter-sized wire structure which generates a magnetic field with minimized...... distortions. Together with the loading from a high-flux two-dimensional magneto-optical trap, we achieve a loading rate of 8.4×1010 atoms/s and maximum number of 8.7×109 captured atoms. The wire structure is placed outside of the vacuum to enable a further adaptation to new scientific objectives. Since all...

  3. Microtrap arrays on magnetic film atom chips for quantum information science.

    NARCIS (Netherlands)

    Leung, Y.F.V.; Tauschinsky, A.; van Druten, N.J.; Spreeuw, R.J.C.

    2011-01-01

    We present two different strategies for developing a quantum information science platform, based on our experimental results with magnetic microtrap arrays on a magnetic-film atom chip. The first strategy aims for mesoscopic ensemble qubits in a lattice of ~5 μm period, so that qubits can be individ

  4. Controllable Magnetic Focusing of Cold Atoms on a Chip

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; YUN Min; YIN Jian-Ping

    2006-01-01

    @@ We propose a new lens scheme to focus cold atoms by using a controllable inhomogeneous magnetic field from a square current-carrying wire fabricated on a chip. The spatial distributions of the magnetic field are calculated, and the results show that the generated magnetic field is a two-dimensional (2D) quadrupole one and can be used to focus cold atoms or a cold atomic beam. The dynamic processes of cold atoms passing through our square wire layout and its focusing properties are studied by using Monte Carlo simulations. Our study shows that the atomic clouds can be focused effectively by our magnetic lens scheme, and the focal lengthof the atomic lens and its radius of focused spot can be continuously changed by adjusting the current in the wires.

  5. Nanoscale magnetic atom chips for quantum simulation

    NARCIS (Netherlands)

    La Rooij, A.L.

    2017-01-01

    This thesis consists of five chapters that describe the different things that I have done in the past few years which all concern my effort to create lattices of ultracold gaseous atoms at length-scales of approximately 100 nano-meters (a millionth of a decimeter, or 200 times smaller than the diame

  6. Efficient Direct Evaporative Cooling in an Atom Chip Magnetic Trap

    CERN Document Server

    Farkas, Daniel M; Du, Shengwang; Anderson, Dana

    2013-01-01

    We demonstrate direct evaporative cooling of $^{87}$Rb atoms confined in a dimple trap produced by an atom chip. By changing the two chip currents and two external bias fields, we show theoretically that the trap depth can be lowered in a controlled way with no change in the trap frequencies or the value of the field at the trap center. Experimentally, we maximized the decrease in trap depth by allowing some loosening of the trap. In total, we reduced the trap depth by a factor of 20. The geometric mean of the trap frequencies was reduced by less than a factor of 6. The measured phase space density in the final two stages increased by more than two orders of magnitude, and we estimate an increase of four orders of magnitude over the entire sequence. A subsequent rf evaporative sweep of only a few megahertz produced Bose-Einstein condensates. We also produce condensates in which raising the trap bottom pushes hotter atoms into an rf "knife" operating at a fixed frequency of 5\\,MHz.

  7. Microchip-Based Trapped-Atom Clocks

    CERN Document Server

    Vuletic, Vladan; Schleier-Smith, Monika H

    2011-01-01

    This is a chapter of a recently published book entitled Atom Chips, edited by Jakob Reichel and Vladan Vuletic. The contents of this chapter include: Basic Principles; Atomic-Fountain versus Trapped-Atom Clocks; Optical-Transition Clocks versus Microwave Clocks; Clocks with Magnetically Trapped Atoms--Fundamental Limits and Experimental Demonstrations; Readout in Trapped-Atom Clocks; and Spin Squeezing.

  8. Matter-wave beam splitter on an atom chip for a portable atom-interferometer

    CERN Document Server

    Kim, S J; Gang, S T; Kim, J B

    2016-01-01

    We construct a matter-wave beam splitter using 87Rb Bose-Einstein condensate on an atom chip. Through the use of radio-frequency-induced double-well potentials, we were able to split a BEC into two clouds separated by distances ranging from 2.8 {\\mu}m to 57 {\\mu}m. Interference between these two freely expanding BECs has been observed. By varying the rf-field amplitude, frequency, or polarization, we investigate behaviors of the beam-splitter. From the perspective of practical use, our BEC manipulation system is suitable for application to interferometry since it is compact and the repetition rate is high due to the anodic bonded atom chip on the vacuum cell. The portable system occupies a volume of 0.5 m3 and operates at a repetition rate as high as ~0.2 Hz.

  9. Cold atoms in microscopic traps from wires to chips

    CERN Document Server

    Cassettari, D

    2000-01-01

    Ioffe-Pritchard trap. In the latter we have achieved the trapping parameters required in the experiments with Bose-Einstein condensates with much reduced power consumption. In a second time we have replaced the free standing wires with an atom chip, which we have used to compress the atomic cloud in potentials with trap frequencies above 100 kHz and ground state sizes below 100 nm. Such potentials are especially interesting for quantum information proposals of performing quantum gate operations with controlled collisions between trapped atoms. Finally, by combining two wire guides we have experimentally realized an innovative kind of beam splitter for guided atoms. We have investigated the splitting potential generated by a Y-shaped wire which has one input, i.e. the central arm of the Y, and two outputs corresponding to the left and right arms of the Y. By tuning the current ratio in the two outputs we have observed atoms switching from left to right as well as symmetric splitting. This and other similar des...

  10. Coherent Stern-Gerlach momentum splitting on an atom chip

    Science.gov (United States)

    Machluf, Shimon; Japha, Yonathan; Folman, Ron

    2013-09-01

    In the Stern-Gerlach effect, a magnetic field gradient splits particles into spatially separated paths according to their spin projection. The idea of exploiting this effect for creating coherent momentum superpositions for matter-wave interferometry appeared shortly after its discovery, almost a century ago, but was judged to be far beyond practical reach. Here we demonstrate a viable version of this idea. Our scheme uses pulsed magnetic field gradients, generated by currents in an atom chip wire, and radio-frequency Rabi transitions between Zeeman sublevels. We transform an atomic Bose-Einstein condensate into a superposition of spatially separated propagating wavepackets and observe spatial interference fringes with a measurable phase repeatability. The method is versatile in its range of momentum transfer and the different available splitting geometries. These features make our method a good candidate for supporting a variety of future applications and fundamental studies.

  11. A dynamic magneto-optical trap for atom chips

    CERN Document Server

    Rushton, Jo; Bateman, James; Himsworth, Matt

    2016-01-01

    We describe a dynamic magneto-optical trap (MOT) suitable for the use with vacuum systems in which optical access is limited to a single window. This technique facilitates the long-standing desire of producing integrated atom chips, many of which are likely to have severely restricted optical access compared with conventional vacuum chambers. This "switching-MOT" relies on the synchronized pulsing of optical and magnetic fields at audio frequencies. The trap's beam geometry is obtained using a planar mirror surface, and does not require a patterned substrate or bulky optics inside the vacuum chamber. Central to the design is a novel magnetic field geometry that requires no external quadrupole or bias coils which leads toward a very compact system. We have implemented the trap for $^{85}$Rb and shown that it is capable of capturing 2 million atoms and directly cooling below the Doppler temperature.

  12. Guiding Neutral Atoms with Two Current-Carrying Wires and a Vertical Bias Field on the Atom Chip

    Institute of Scientific and Technical Information of China (English)

    KE Min; YAN Bo; LI Xiao-Lin; WANG Yu-Zhu

    2008-01-01

    @@ We demonstrate the guiding of neutral atoms with two parallel microfabricated current-carrying wires on the atom chip and a verticai magnetic bias field.The atoms are guided along a magnetic field minimum parallel to the current-carrying wires and confined in the other two directions.We describe in detail how the precooled atoms are efficiently loaded into the two-wire guide.

  13. Atom Michelson interferometer on a chip using a Bose-Einstein condensate.

    Science.gov (United States)

    Wang, Ying-Ju; Anderson, Dana Z; Bright, Victor M; Cornell, Eric A; Diot, Quentin; Kishimoto, Tetsuo; Prentiss, Mara; Saravanan, R A; Segal, Stephen R; Wu, Saijun

    2005-03-11

    An atom Michelson interferometer is implemented on an "atom chip." The chip uses lithographically patterned conductors and external magnetic fields to produce and guide a Bose-Einstein condensate. Splitting, reflecting, and recombining of condensate atoms are achieved by a standing-wave light field having a wave vector aligned along the atom waveguide. A differential phase shift between the two arms of the interferometer is introduced by either a magnetic-field gradient or with an initial condensate velocity. Interference contrast is still observable at 20% with an atom propagation time of 10 ms.

  14. Microtrap arrays on magnetic film atom chips for quantum information science

    CERN Document Server

    Leung, V Y F; van Druten, N J; Spreeuw, R J C

    2011-01-01

    We present two different strategies for developing a quantum information science platform, based on our experimental results with magnetic microtrap arrays on a magnetic-film atom chip. The first strategy aims for mesoscopic ensemble qubits in a lattice of ~5 {\\mu}m period, so that qubits can be individually addressed and interactions can be mediated by Rydberg excitations. The second strategy aims for direct quantum simulators using sub-optical lattices of ~100 nm period. These would allow the realization of condensed matter inspired quantum many-body systems, such as Hubbard models in new parameter regimes. The two approaches raise quite different issues, some of which are identified and discussed.

  15. Multimedia-Based Chip Design Education.

    Science.gov (United States)

    Catalkaya, Tamer; Golze, Ulrich

    This paper focuses on multimedia computer-based training programs on chip design. Their development must be fast and economical, in order to be affordable by technical university institutions. The self-produced teaching program Illusion, which demonstrates a monitor controller as an example of a small but complete chip design, was implemented to…

  16. Integrated MEMS mass sensor and atom source for a ``Fab on a Chip''

    Science.gov (United States)

    Han, Han; Imboden, Matthias; Stark, Thomas; Bishop, David

    2014-03-01

    ``Fab on a Chip'' is a new concept suggesting that the semiconductor fabrication facility can be integrated into a single silicon chip for nano-manufacturing. Such a chip contains various MEMS devices which can work together, operating in a similar way as a conventional fab does, to fabricate nano-structures. Here we present two crucial ``Fab on a chip'' components: the MEMS mass sensor and atomic evaporation source. The mass sensor is essentially a parallel plate capacitor with one suspended plate. When incident atoms deposit on the suspended plate, the mass change of the plate can be measured by detecting the resonant frequency shift. Using the mass sensor, a mass resolution of 3 fg is achieved. The MEMS evaporation source consists of a polysilicon plate suspended by two electrical leads with constrictions. By resistively heating the plate, this device works as a tunable atom flux source. By arranging many of these devices into an array, one can build a multi-element atom evaporator. The mass sensor and atom source are integrated so that the mass sensor is used to monitor and characterize the atomic flux. A material source and a sensor to monitor the fabrication are two integral components for our ``Fab on a Chip.''

  17. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  18. Design and fabrication of diffractive atom chips for laser cooling and trapping

    CERN Document Server

    Cotter, J P; Griffin, P F; Rabey, I M; Docherty, K; Riis, E; Arnold, A S; Hinds, E A

    2016-01-01

    It has recently been shown that optical reflection gratings fabricated directly into an atom chip provide a simple and effective way to trap and cool substantial clouds of atoms [1,2]. In this article we describe how the gratings are designed and micro-fabricated and we characterise their optical properties, which determine their effectiveness as a cold atom source. We use simple scalar diffraction theory to understand how the morphology of the gratings determines the power in the diffracted beams.

  19. Chip-Scale Magnetic Source of Cold Atoms

    Science.gov (United States)

    2013-06-01

    30 3.7 The transistor motherboard and the 100 pin breakout board. . . . . . . . . . . . 31 3.8 The full structure of the slowing chip...a separate motherboard of 60 N-channel IRLB3813PbF International Rectifier MOSFET transistors. These transistors will be turned on and off by...60 wires from the slowing chip were soldered to a motherboard of 60 transistors, lined up in two rows of 30 on a 0.1 inch grid perforated prototyping

  20. Fifteen years of cold matter on the atom chip: promise, realizations, and prospects

    Science.gov (United States)

    Keil, Mark; Amit, Omer; Zhou, Shuyu; Groswasser, David; Japha, Yonathan; Folman, Ron

    2016-10-01

    Here we review the field of atom chips in the context of Bose-Einstein Condensates (BEC) as well as cold matter in general. Twenty years after the first realization of the BEC and 15 years after the realization of the atom chip, the latter has been found to enable extraordinary feats: from producing BECs at a rate of several per second, through the realization of matter-wave interferometry, and all the way to novel probing of surfaces and new forces. In addition, technological applications are also being intensively pursued. This review will describe these developments and more, including new ideas which have not yet been realized.

  1. Fifteen Years of Cold Matter on the Atom Chip: Promise, Realizations, and Prospects

    CERN Document Server

    Keil, Mark; Zhou, Shuyu; Groswasser, David; Japha, Yonathan; Folman, Ron

    2016-01-01

    Here we review the field of atom chips in the context of Bose-Einstein Condensates (BEC) as well as cold matter in general. Twenty years after the first realization of the BEC and fifteen years after the realization of the atom chip, the latter has been found to enable extraordinary feats: from producing BECs at a rate of several per second, through the realization of matter-wave interferometry, and all the way to novel probing of surfaces and new forces. In addition, technological applications are also being intensively pursued. This review will describe these developments and more, including new ideas which have not yet been realized.

  2. Atomic layer deposited TiO{sub 2} for implantable brain-chip interfacing devices

    Energy Technology Data Exchange (ETDEWEB)

    Cianci, E., E-mail: elena.cianci@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, 20864 Agrate Brianza (MB) (Italy); Lattanzio, S. [Istituto di Fisiologia, Dipartimento di Anatomia Umana e Fisiologia, Universita di Padova, 35131 Padova (Italy); Dipartimento di Ingegneria dell' Informazione, Universita di Padova, 35131 Padova (Italy); Seguini, G. [Laboratorio MDM, IMM-CNR, 20864 Agrate Brianza (Italy); Vassanelli, S. [Istituto di Fisiologia, Dipartimento di Anatomia Umana e Fisiologia, Universita di Padova, 35131 Padova (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, 20864 Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano-Bicocca, 20126 Milano (Italy)

    2012-05-01

    In this paper we investigated atomic layer deposition (ALD) TiO{sub 2} thin films deposited on implantable neuro-chips based on electrolyte-oxide-semiconductor (EOS) junctions, implementing both efficient capacitive neuron-silicon coupling and biocompatibility for long-term implantable functionality. The ALD process was performed at 295 Degree-Sign C using titanium tetraisopropoxide and ozone as precursors on needle-shaped silicon substrates. Engineering of the capacitance of the EOS junctions introducing a thin Al{sub 2}O{sub 3} buffer layer between TiO{sub 2} and silicon resulted in a further increase of the specific capacitance. Biocompatibility for long-term implantable neuroprosthetic systems was checked upon in-vitro treatment.

  3. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms.

    Science.gov (United States)

    Leung, V Y F; Pijn, D R M; Schlatter, H; Torralbo-Campo, L; La Rooij, A L; Mulder, G B; Naber, J; Soudijn, M L; Tauschinsky, A; Abarbanel, C; Hadad, B; Golan, E; Folman, R; Spreeuw, R J C

    2014-05-01

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold (87)Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  4. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms

    Energy Technology Data Exchange (ETDEWEB)

    Leung, V. Y. F. [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, PO Box 94485, 1090 GL Amsterdam (Netherlands); Complex Photonic Systems (COPS), MESA Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Pijn, D. R. M.; Schlatter, H.; Torralbo-Campo, L.; La Rooij, A. L.; Mulder, G. B.; Naber, J.; Soudijn, M. L.; Tauschinsky, A.; Spreeuw, R. J. C., E-mail: r.j.c.spreeuw@uva.nl [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, PO Box 94485, 1090 GL Amsterdam (Netherlands); Abarbanel, C.; Hadad, B.; Golan, E. [Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be' er Sheva 84105 (Israel); Folman, R. [Department of Physics and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be' er Sheva 84105 (Israel)

    2014-05-15

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold {sup 87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  5. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms

    Science.gov (United States)

    Leung, V. Y. F.; Pijn, D. R. M.; Schlatter, H.; Torralbo-Campo, L.; La Rooij, A. L.; Mulder, G. B.; Naber, J.; Soudijn, M. L.; Tauschinsky, A.; Abarbanel, C.; Hadad, B.; Golan, E.; Folman, R.; Spreeuw, R. J. C.

    2014-05-01

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold 87Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  6. Chip-based quantum key distribution

    Science.gov (United States)

    Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.

    2017-02-01

    Improvement in secure transmission of information is an urgent need for governments, corporations and individuals. Quantum key distribution (QKD) promises security based on the laws of physics and has rapidly grown from proof-of-concept to robust demonstrations and deployment of commercial systems. Despite these advances, QKD has not been widely adopted, and large-scale deployment will likely require chip-based devices for improved performance, miniaturization and enhanced functionality. Here we report low error rate, GHz clocked QKD operation of an indium phosphide transmitter chip and a silicon oxynitride receiver chip--monolithically integrated devices using components and manufacturing processes from the telecommunications industry. We use the reconfigurability of these devices to demonstrate three prominent QKD protocols--BB84, Coherent One Way and Differential Phase Shift--with performance comparable to state-of-the-art. These devices, when combined with integrated single photon detectors, pave the way for successfully integrating QKD into future telecommunications networks.

  7. A surface-patterned chip as a strong source of ultracold atoms for quantum technologies

    Science.gov (United States)

    Nshii, C. C.; Vangeleyn, M.; Cotter, J. P.; Griffin, P. F.; Hinds, E. A.; Ironside, C. N.; See, P.; Sinclair, A. G.; Riis, E.; Arnold, A. S.

    2013-05-01

    Laser-cooled atoms are central to modern precision measurements. They are also increasingly important as an enabling technology for experimental cavity quantum electrodynamics, quantum information processing and matter-wave interferometry. Although significant progress has been made in miniaturizing atomic metrological devices, these are limited in accuracy by their use of hot atomic ensembles and buffer gases. Advances have also been made in producing portable apparatus that benefits from the advantages of atoms in the microkelvin regime. However, simplifying atomic cooling and loading using microfabrication technology has proved difficult. In this Letter we address this problem, realizing an atom chip that enables the integration of laser cooling and trapping into a compact apparatus. Our source delivers ten thousand times more atoms than previous magneto-optical traps with microfabricated optics and, for the first time, can reach sub-Doppler temperatures. Moreover, the same chip design offers a simple way to form stable optical lattices. These features, combined with simplicity of fabrication and ease of operation, make these new traps a key advance in the development of cold-atom technology for high-accuracy, portable measurement devices.

  8. A Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip

    CERN Document Server

    Treutlein, P; Hunger, D; Hänsch, T W; Reichel, J; Camerer, Stephan; H\\"ansch, Theodor W.; Hunger, David; Reichel, Jakob; Treutlein, Philipp

    2007-01-01

    We study the coupling of the spin of Bose-Einstein condensed atoms to the mechanical oscillations of a nanoscale cantilever with a magnetic tip. This is an experimentally viable hybrid quantum system which allows one to explore the interface of quantum optics and condensed matter physics. We propose an experiment where easily detectable atomic spin-flips are induced by the cantilever motion. This can be used to probe thermal oscillations of the cantilever with the atoms. At low cantilever temperatures, as realized in recent experiments, back-action of the atoms onto the cantilever is significant and the system represents a mechanical analog of cavity quantum electrodynamics. With high but realistic cantilever quality factors, the strong coupling regime can be reached, either with single atoms or collectively with BECs. We discuss an implementation on an atom chip.

  9. High-Flux Ultracold-Atom Chip Interferometers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ColdQuanta's ultimate objective is to produce a compact, turnkey, ultracold-atom system specifically designed for performing interferometry with Bose-Einstein...

  10. Chip-based quantum key distribution

    Science.gov (United States)

    Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.

    2017-01-01

    Improvement in secure transmission of information is an urgent need for governments, corporations and individuals. Quantum key distribution (QKD) promises security based on the laws of physics and has rapidly grown from proof-of-concept to robust demonstrations and deployment of commercial systems. Despite these advances, QKD has not been widely adopted, and large-scale deployment will likely require chip-based devices for improved performance, miniaturization and enhanced functionality. Here we report low error rate, GHz clocked QKD operation of an indium phosphide transmitter chip and a silicon oxynitride receiver chip—monolithically integrated devices using components and manufacturing processes from the telecommunications industry. We use the reconfigurability of these devices to demonstrate three prominent QKD protocols—BB84, Coherent One Way and Differential Phase Shift—with performance comparable to state-of-the-art. These devices, when combined with integrated single photon detectors, pave the way for successfully integrating QKD into future telecommunications networks. PMID:28181489

  11. Silicon-Chip-Based Optical Frequency Combs

    Science.gov (United States)

    2015-10-26

    frequencies . This phenomenon appears in many systems spanning biology, chemistry, neuroscience, and physics [29,30]. Examples include power grid networks... Frequency Combs," Phys. Rev. Lett. 100, 013902 (2008). [91] F. Leo, et al., “Dispersive wave emission and supercontinuum generation in a silicon wire...AFRL-AFOSR-VA-TR-2015-0365 Silicon-Chip-Based Optical Frequency Combs Alexander Gaeta CORNELL UNIVERSITY Final Report 10/26/2015 DISTRIBUTION A

  12. A surface-patterned chip as a strong source of ultra-cold atoms for quantum technologies

    CERN Document Server

    Nshii, C C; Cotter, J P; Griffin, P F; Hinds, E A; Ironside, C N; See, P; Sinclair, A G; Riis, E; Arnold, A S

    2013-01-01

    Laser cooled atoms are central to modern precision measurements. They are also increasingly important as an enabling technology for experimental cavity quantum electrodynamics, quantum information processing and matter wave interferometry. Although significant progress has been made in miniaturising atomic metrological devices, these are limited in accuracy by their use of hot atomic ensembles and buffer gases. Advances have also been made in producing portable apparatus that benefit from the advantages of atoms in the microKelvin regime. However, simplifying atomic cooling and loading using microfabrication technology has proved difficult. In this letter we address this problem, realising an atom chip that enables the integration of laser cooling and trapping into a compact apparatus. Our source delivers ten thousand times more atoms than previous magneto-optical traps with microfabricated optics and, for the first time, can reach sub-Doppler temperatures. Moreover, the same chip design offers a simple way t...

  13. Chip-based droplet sorting

    Science.gov (United States)

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2014-07-01

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  14. Chip-based droplet sorting

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2014-07-01

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  15. High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors

    Energy Technology Data Exchange (ETDEWEB)

    Deligianni, Hariklia; Gallagher, William J.; Mason, Maurice; O' Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang

    2017-03-07

    An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.

  16. Polystyrene Based SPR Biosensor Chip for Use in Immunoassay

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Biosensors are widely used in immunoassay.The biosensor chip carries a receptor which is used in immunoassay and the chip properties have an important influence on the detecting sensitivity of the biosensor.This paper describes a polystyrene-based biosensor chip developed and used as part of a surface plasmon resonance (SPR) biosensor.The SPR biosensor has a much higher detecting sensitivity than enzyme-linked immunoserbent assay (ELISA).

  17. Atomic quantum transistor based on swapping operation

    CERN Document Server

    Moiseev, Sergey A; Moiseev, Eugene S

    2011-01-01

    We propose an atomic quantum transistor based on exchange by virtual photons between two atomic systems through the control gate-atom. The quantum transistor is realized in two QED cavities coupled in nano-optical scheme. We have found novel effect in quantum dynamics of coupled three-node atomic system which provides control-SWAP(\\theta) processes in quantum transistor operation. New possibilities of quantum entanglement in an example of bright and dark qubit states have been demonstrated for quantum transport in the atomic chain. Potentialities of the proposed nano-optical design for quantum computing and fundamental issues of multi-atomic physics are also discussed.

  18. Droplet Microfluidics for Chip-Based Diagnostics

    Directory of Open Access Journals (Sweden)

    Karan V. I. S. Kaler

    2014-12-01

    Full Text Available Droplet microfluidics (DMF is a fluidic handling technology that enables precision control over dispensing and subsequent manipulation of droplets in the volume range of microliters to picoliters, on a micro-fabricated device. There are several different droplet actuation methods, all of which can generate external stimuli, to either actively or passively control the shape and positioning of fluidic droplets over patterned substrates. In this review article, we focus on the operation and utility of electro-actuation-based DMF devices, which utilize one or more micro-/nano-patterned substrates to facilitate electric field-based handling of chemical and/or biological samples. The underlying theory of DMF actuations, device fabrication methods and integration of optical and opto-electronic detectors is discussed in this review. Example applications of such electro-actuation-based DMF devices have also been included, illustrating the various actuation methods and their utility in conducting chip-based laboratory and clinical diagnostic assays.

  19. The fabrication of a double-layer atom chip with through silicon vias for an ultra-high-vacuum cell

    Science.gov (United States)

    Chuang, Ho-Chiao; Lin, Yun-Siang; Lin, Yu-Hsin; Huang, Chi-Sheng

    2014-04-01

    This study presents a double-layer atom chip that provides users with increased diversity in the design of the wire patterns and flexibility in the design of the magnetic field. It is more convenient for use in atomic physics experiments. A negative photoresist, SU-8, was used as the insulating layer between the upper and bottom copper wires. The electrical measurement results show that the upper and bottom wires with a width of 100 µm can sustain a 6 A current without burnout. Another focus of this study is the double-layer atom chips integrated with the through silicon via (TSV) technique, and anodically bonded to a Pyrex glass cell, which makes it a desired vacuum chamber for atomic physics experiments. Thus, the bonded glass cell not only significantly reduces the overall size of the ultra-high-vacuum (UHV) chamber but also conducts the high current from the backside to the front side of the atom chip via the TSV under UHV (9.5 × 10-10 Torr). The TSVs with a diameter of 70 µm were etched through by the inductively coupled plasma ion etching and filled by the bottom-up copper electroplating method. During the anodic bonding process, the electroplated copper wires and TSVs on atom chips also need to pass the examination of the required bonding temperature of 250 °C, under an applied voltage of 1000 V. Finally, the UHV test of the double-layer atom chips with TSVs at room temperature can be reached at 9.5 × 10-10 Torr, thus satisfying the requirements of atomic physics experiments under an UHV environment.

  20. Heteronanojunctions with atomic size control using a lab-on-chip electrochemical approach with integrated microfluidics.

    Science.gov (United States)

    Lunca Popa, P; Dalmas, G; Faramarzi, V; Dayen, J F; Majjad, H; Kemp, N T; Doudin, B

    2011-05-27

    A versatile tool for electrochemical fabrication of heteronanojunctions with nanocontacts made of a few atoms and nanogaps of molecular spacing is presented. By integrating microfluidic circuitry in a lab-on-chip approach, we keep control of the electrochemical environment in the vicinity of the nanojunction and add new versatility for exchanging and controlling the junction's medium. Nanocontacts made of various materials by successive local controlled depositions are demonstrated, with electrical properties revealing sizes reaching a few atoms only. Investigations on benchmark molecular electronics material, trapped between electrodes, reveal the possibility to create nanogaps of size matching those of molecules. We illustrate the interest of a microfluidic approach by showing that exposure of a fabricated molecular junction to controlled high solvent flows can be used as a reliability criterion for the presence of molecular entities in a gap.

  1. WAVELET BASED SPECTRAL CORRELATION METHOD FOR DPSK CHIP RATE ESTIMATION

    Institute of Scientific and Technical Information of China (English)

    Li Yingxiang; Xiao Xianci; Tai Hengming

    2004-01-01

    A wavelet-based spectral correlation algorithm to detect and estimate BPSK signal chip rate is proposed. Simulation results show that the proposed method can correctly estimate the BPSK signal chip rate, which may be corrupted by the quadratic characteristics of the spectral correlation function, in a low SNR environment.

  2. Note: A silicon-on-insulator microelectromechanical systems probe scanner for on-chip atomic force microscopy.

    Science.gov (United States)

    Fowler, Anthony G; Maroufi, Mohammad; Moheimani, S O Reza

    2015-04-01

    A new microelectromechanical systems-based 2-degree-of-freedom (DoF) scanner with an integrated cantilever for on-chip atomic force microscopy (AFM) is presented. The silicon cantilever features a layer of piezoelectric material to facilitate its use for tapping mode AFM and enable simultaneous deflection sensing. Electrostatic actuators and electrothermal sensors are used to accurately position the cantilever within the x-y plane. Experimental testing shows that the cantilever is able to be scanned over a 10 μm × 10 μm window and that the cantilever achieves a peak-to-peak deflection greater than 400 nm when excited at its resonance frequency of approximately 62 kHz.

  3. Note: A silicon-on-insulator microelectromechanical systems probe scanner for on-chip atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Anthony G.; Maroufi, Mohammad; Moheimani, S. O. Reza, E-mail: Reza.Moheimani@newcastle.edu.au [School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2015-04-15

    A new microelectromechanical systems-based 2-degree-of-freedom (DoF) scanner with an integrated cantilever for on-chip atomic force microscopy (AFM) is presented. The silicon cantilever features a layer of piezoelectric material to facilitate its use for tapping mode AFM and enable simultaneous deflection sensing. Electrostatic actuators and electrothermal sensors are used to accurately position the cantilever within the x-y plane. Experimental testing shows that the cantilever is able to be scanned over a 10 μm × 10 μm window and that the cantilever achieves a peak-to-peak deflection greater than 400 nm when excited at its resonance frequency of approximately 62 kHz.

  4. Decision maker based on atomic switches

    OpenAIRE

    Song-Ju Kim; Tohru Tsuruoka; Tsuyoshi Hasegawa; Masashi Aono; Kazuya Terabe; Masakazu Aono

    2016-01-01

    We propose a simple model for an atomic switch-based decision maker (ASDM), and show that, as long as its total number of metal atoms is conserved when coupled with suitable operations, an atomic switch system provides a sophisticated ``decision-making'' capability that is known to be one of the most important intellectual abilities in human beings. We considered a popular decision-making problem studied in the context of reinforcement learning, the multi-armed bandit problem (MAB); the probl...

  5. Solid state silicon based condenser microphone for hearing aid, has transducer chip and IC chip between intermediate chip and openings on both sides of intermediate chip, to allow sound towards diaphragm

    DEFF Research Database (Denmark)

    2000-01-01

    NOVELTY - A silicon transducer chip (1) has parallel backplate and movable diaphragm (12) and forms an electrical capacitor. The chip and electronic circuit chip (3) are provided on either sides of intermediate chip (2). The chip (2) has openings (4,10) between two sides of the chip, to allow sou...... inlet of microphone. External electrical connection can be made economically reliable and the thermal stress is avoided with the small size solid state silicon based condenser microphone....... towards diaphragm. Surface of the chip (2) has electrical conductors (14) to connect chip with IC chip (3). USE - For use in miniature electroacoustic devices such as hearing aid. ADVANTAGE - Since sound inlet is covered by filter, dust, moisture and other impurities do not obstruct interior and sound...

  6. Test of an ME Chip Based on FPGAs

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The characteristic of FPGA, motion estimation(ME) and the full search block matching arithmetic were introduced, it analyses the collectivity configuration of basic working flow in ME.Based on FPGA, the study concentrates on the control, computing and test part of ME chip implementation.In the end PCB of ME chip is designed and completed.ME is an important link of MPEG standard on picture compression, whose characteristics is its huge amount of data and computing task.So people often use special chip to meet the requirement, but there is still not such production in China at present.

  7. Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Shingo [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Uchihashi, Takayuki; Ando, Toshio [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency, 7 Goban-cho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2015-06-15

    In tip-scan atomic force microscopy (AFM) that scans a cantilever chip in the three dimensions, the chip body is held on the Z-scanner with a holder. However, this holding is not easy for high-speed (HS) AFM because the holder that should have a small mass has to be able to clamp the cantilever chip firmly without deteriorating the Z-scanner’s fast performance, and because repeated exchange of cantilever chips should not damage the Z-scanner. This is one of the reasons that tip-scan HS-AFM has not been established, despite its advantages over sample stage-scan HS-AFM. Here, we present a novel method of cantilever chip holding which meets all conditions required for tip-scan HS-AFM. The superior performance of this novel chip holding mechanism is demonstrated by imaging of the α{sub 3}β{sub 3} subcomplex of F{sub 1}-ATPase in dynamic action at ∼7 frames/s.

  8. A Novel Chip-based Spectrophotometer for Online Detection

    Institute of Scientific and Technical Information of China (English)

    Haoyuan Cai; Min-Hsien Wu; Zheng Cui

    2006-01-01

    A chip-based spectrophotometer integrated with optical fiber is successfully demonstrated. Grade concentration of lactate solution flowed through the chip to perform an online detection. The response time (100s) and Limit of Detection (LOD,50mg/L) of the device were measured. This device shows comparable performance with traditional commercial instrument,while greatly decreases the sample requirement per detection and reduces the size of total system, introducing a novel method for real-time detection.

  9. Droplets actuating chip based on electrowetting-on-dielectric

    Institute of Scientific and Technical Information of China (English)

    WU Jiangang; YUE Ruifeng; ZENG Xuefeng; LIU Litian

    2007-01-01

    A droplet-based actuating chip by using the method of electrowetting-on-dielectric (EWOD)was developed to manipulate the microfluidics.Here,the actuation mechanism of the sandwiched-configuration EWOD chips was carefully studied,and the movement of droplets was numerically analyzed by using the computational fluidic software,CFD-ACE+.The fabrication of the chip,including a heavily phosphorus-doped poly-silicon micro-electrode array and a thermally grown SiO2 dielectric layer,was exploited to improve the chip stability and decrease the actuation voltage.In experiments,the transportation of a deionized droplet of about 0.5 μL is successfully achieved in air by applying the low voltage of 45 V.

  10. Low-power chip-level optical interconnects based on bulk-silicon single-chip photonic transceivers

    Science.gov (United States)

    Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Kim, In Gyoo; Kim, Sun Ae; Oh, Jin Hyuk; Park, Jaegyu; Kim, Sanggi

    2016-03-01

    We present new scheme for chip-level photonic I/Os, based on monolithically integrated vertical photonic devices on bulk silicon, which increases the integration level of PICs to a complete photonic transceiver (TRx) including chip-level light source. A prototype of the single-chip photonic TRx based on a bulk silicon substrate demonstrated 20 Gb/s low power chip-level optical interconnects between fabricated chips, proving that this scheme can offer compact low-cost chip-level I/O solutions and have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, 3D-IC, and LAN/SAN/data-center and network applications.

  11. Researching and implementation of reconfigurable Hash chip based on FPGA

    Institute of Scientific and Technical Information of China (English)

    Yang Xiaohui; Dai Zibin; Liu Yuanfeng; Wang Ting

    2007-01-01

    The reconfigurable cryptographic chip is an integrated circuit that is designed by means of the method of reconfigurable architecture, and is used for encryption and decryption. Many different cipher algorithms can be flexibly implemented with the aid of a reconfigurable cryptographic chip and can be used in many fields. This article takes an example for the SHA-1/224/256 algorithms, and then designs a reconfigurable cryptographic chip based on the thought and method of the reconfigurable architecture. Finally, this paper gives the implementation result based on the FPGA of the family of Stratix II of Altera Corporation, and presents a good research trend for resolving the storage in hardware implementation using FPGAs.

  12. Nanofabrication for On-Chip Optical Levitation, Atom-Trapping, and Superconducting Quantum Circuits

    Science.gov (United States)

    Norte, Richard Alexander

    a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4pi Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a SiN membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents

  13. Decision maker based on atomic switches

    Directory of Open Access Journals (Sweden)

    Song-Ju Kim

    2016-02-01

    Full Text Available We propose a simple model for an atomic switch-based decision maker (ASDM, and show that, as long as its total number of metal atoms is conserved when coupled with suitable operations, an atomic switch system provides a sophisticated ``decision-making'' capability that is known to be one of the most important intellectual abilities in human beings. We considered a popular decision-making problem studied in the context of reinforcement learning, the multi-armed bandit problem (MAB; the problem of finding, as accurately and quickly as possible, the most profitable option from a set of options that gives stochastic rewards. These decisions are made as dictated by each volume of precipitated metal atoms, which is moved in a manner similar to the fluctuations of a rigid body in a tug-of-war game. The ``tug-of-war (TOW dynamics'' of the ASDM exhibits higher efficiency than conventional reinforcement-learning algorithms. We show analytical calculations that validate the statistical reasons for the ASDM to produce such high performance, despite its simplicity. Efficient MAB solvers are useful for many practical applications, because MAB abstracts a variety of decision-making problems in real-world situations where an efficient trial-and-error is required. The proposed scheme will open up a new direction in physics-based analog-computing paradigms, which will include such things as ``intelligent nanodevices'' based on self-judgment.

  14. World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays.

    Science.gov (United States)

    Oh, Kwang W; Park, Chinsung; Namkoong, Kak; Kim, Jintae; Ock, Kyeong-Sik; Kim, Suhyeon; Kim, Young-A; Cho, Yoon-Kyoung; Ko, Christopher

    2005-08-01

    We report a practical world-to-chip microfluidic interfacing method with built-in valves suitable for microscale multichamber chip-based assays. One of the primary challenges associated with the successful commercialization of fully integrated microfluidic systems has been the lack of reliable world-to-chip microfluidic interconnections. After sample loading and sealing, leakage tests were conducted at 100 degrees C for 30 min and no detectable leakage flows were found during the test for 100 microchambers. To demonstrate the utility of our world-to-chip microfluidic interface, we designed a microscale PCR chip with four chambers and performed PCR assays. The PCR results yielded a 100% success rate with no contamination or leakage failures. In conclusion, we have introduced a simple and inexpensive microfluidic interfacing system for both sample loading and sealing with no dead volume, no leakage flow and biochemical compatibility.

  15. Chip electrophoresis of gelatin-based nanoparticles.

    Science.gov (United States)

    Weiss, Victor U; Lehner, Angela; Grombe, Ringo; Marchetti-Deschmann, Martina; Allmaier, Günter

    2013-08-01

    Recently, biodegradable nanoparticles received increasing attention for pharmaceutical applications as well as applications in the food industry. With the current investigation we demonstrate chip electrophoresis of fluorescently (FL) labeled gelatin nanoparticles (gelatin NPs) on a commercially available instrument. FL labeling included a step for the removal of low molecular mass material (especially excess dye molecules). Nevertheless, for the investigated gelatin NP preparation two analyte peaks, one very homogeneous with an electrophoretic net mobility of μ = -24.6 ± 0.3 × 10(-9) m(2) /Vs at the peak apex (n = 17) and another more heterogeneous peak with μ between approximately -27.2 ± 0.2 × 10(-9) m(2) /Vs and -36.6 ± 0.2 × 10(-9) m(2) /Vs at the peak beginning and end point (n = 11, respectively) were recorded. Filtration allowed enrichment of particles in the size range of approximately 35 nm (pore size employed for concentration of gelatin NPs) to 200 nm (pore size employed during FL labeling). This corresponded to the very homogeneous peak linking it to gelatin NPs, whereas the more heterogeneous peak probably corresponds to gelatin not cross-linked to such a high degree (NP building blocks). Several further gelatin NP preparations were analyzed according to the same protocol yielding peaks with electrophoretic net mobilities between -23.3 ± 0.3 × 10(-9) m(2) /Vs and -28.9 ± 0.2 × 10(-9) m(2) /Vs at peak apexes (n = 15 and 6). Chip electrophoresis allows analyte separation in less than two minutes (including electrophoretic sample injection). Together with the high sensitivity of the FL detection - the LOD as derived for the first main peak of the applied dye from the threefold standard deviation of the background noise values 80 pM for determined separation conditions - this leads to a very promising high throughput separation technique especially for the analysis of bionanoparticles. For gelatin NP preparations, chip electrophoresis

  16. Heart-on-a-chip based on stem cell biology.

    Science.gov (United States)

    Jastrzebska, Elzbieta; Tomecka, Ewelina; Jesion, Iwona

    2016-01-15

    Heart diseases are one of the main causes of death around the world. The great challenge for scientists is to develop new therapeutic methods for these types of ailments. Stem cells (SCs) therapy could be one of a promising technique used for renewal of cardiac cells and treatment of heart diseases. Conventional in vitro techniques utilized for investigation of heart regeneration do not mimic natural cardiac physiology. Lab-on-a-chip systems may be the solution which could allow the creation of a heart muscle model, enabling the growth of cardiac cells in conditions similar to in vivo conditions. Microsystems can be also used for differentiation of stem cells into heart cells, successfully. It will help better understand of proliferation and regeneration ability of these cells. In this review, we present Heart-on-a-chip systems based on cardiac cell culture and stem cell biology. This review begins with the description of the physiological environment and the functions of the heart. Next, we shortly described conventional techniques of stem cells differentiation into the cardiac cells. This review is mostly focused on describing Lab-on-a-chip systems for cardiac tissue engineering. Therefore, in the next part of this article, the microsystems for both cardiac cell culture and SCs differentiation into cardiac cells are described. The section about SCs differentiation into the heart cells is divided in sections describing biochemical, physical and mechanical stimulations. Finally, we outline present challenges and future research concerning Heart-on-a-chip based on stem cell biology.

  17. A Compact Microchip-Based Atomic Clock Based on Ultracold Trapped Rb Atoms

    CERN Document Server

    Farkas, Daniel M; Anderson, Dana Z

    2009-01-01

    We propose a compact atomic clock based on ultracold Rb atoms that are magnetically trapped near the surface of an atom microchip. An interrogation scheme that combines electromagnetically-induced transparency (EIT) with Ramsey's method of separated oscillatory fields can achieve atomic shot-noise level performance of 10^{-13}/sqrt(tau) for 10^6 atoms. The EIT signal can be detected with a heterodyne technique that provides noiseless gain; with this technique the optical phase shift of a 100 pW probe beam can be detected at the photon shot-noise level. Numerical calculations of the density matrix equations are used to identify realistic operating parameters at which AC Stark shifts are eliminated. By considering fluctuations in these parameters, we estimate that AC Stark shifts can be canceled to a level better than 2*10^{-14}. An overview of the apparatus is presented with estimates of duty cycle and power consumption.

  18. Lab-on-a-Chip Based Protein Crystallization

    Science.gov (United States)

    vanderWoerd, Mark J.; Brasseur, Michael M.; Spearing, Scott F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We are developing a novel technique with which we will grow protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. This development, which is a collaborative effort between NASA's Marshall Space Flight Center and Caliper Technologies Corporation, promises a breakthrough in the field of protein crystal growth. Our initial results obtained from two model proteins, Lysozyme and Thaumatin, show that it is feasible to dispense and adequately mix protein and precipitant solutions on a nano-liter scale. The mixtures have shown crystal growth in volumes in the range of 10 nanoliters to 5 microliters. In addition, large diffraction quality crystals were obtained by this method. X-ray data from these crystals were shown to be of excellent quality. Our future efforts will include the further development of protein crystal growth with LabChip(trademark) technology for more complex systems. We will initially address the batch growth method, followed by the vapor diffusion method and the liquid-liquid diffusion method. The culmination of these chip developments is to lead to an on orbit protein crystallization facility on the International Space Station. Structural biologists will be invited to utilize the on orbit Iterative Biological Crystallization facility to grow high quality macromolecular crystals in microgravity.

  19. Frequency Stability of Atomic Clocks Based on Coherent Population Trapping Resonance in 85Rb

    Institute of Scientific and Technical Information of China (English)

    LIU Lu; GUO Tao; DENG Ke; LIU Xin-Yuan; CHEN Xu-Zong; WANG Zhong

    2007-01-01

    An atomic clock system based on coherent population trapping (CPT) resonance in 85Rb is reported, while most past works about the CPT clock are in 87Rb. A new modulation method (full-hyperfine-frequency-splitting modulation) is presented to reduce the effect of light shift to improve the frequency stability of the CPT clock in 85Rb. The experimental results show that the short-term frequency stability of the CPT clock in 85Rb is in the order of 10-10/s and the long-term frequency stability can achieve 1.5 × 10-11 /80000s, which performs as well as 87Rb in CPT resonance. This very good frequency stability performance associated with the low-cost and low-power properties of 85Rb indicates that an atomic clock based on CPT in 85 Rb should be a promising candidate for making the chip scale atomic clock.

  20. Development of Microreactor Array Chip-Based Measurement System for Massively Parallel Analysis of Enzymatic Activity

    Science.gov (United States)

    Hosoi, Yosuke; Akagi, Takanori; Ichiki, Takanori

    Microarray chip technology such as DNA chips, peptide chips and protein chips is one of the promising approaches for achieving high-throughput screening (HTS) of biomolecule function since it has great advantages in feasibility of automated information processing due to one-to-one indexing between array position and molecular function as well as massively parallel sample analysis as a benefit of down-sizing and large-scale integration. Mostly, however, the function that can be evaluated by such microarray chips is limited to affinity of target molecules. In this paper, we propose a new HTS system of enzymatic activity based on microreactor array chip technology. A prototype of the automated and massively parallel measurement system for fluorometric assay of enzymatic reactions was developed by the combination of microreactor array chips and a highly-sensitive fluorescence microscope. Design strategy of microreactor array chips and an optical measurement platform for the high-throughput enzyme assay are discussed.

  1. Engineered peptide-based nanobiomaterials for electrochemical cell chip

    Science.gov (United States)

    Kafi, Md. Abdul; Cho, Hyeon-Yeol; Choi, Jeong-Woo

    2016-07-01

    Biomaterials having cell adhesion ability are considered to be integral part of a cell chip. A number of researches have been carried out to search for a suitable material for effective immobilization of cell on substrate. Engineered ECM materials or their components like collagen, Poly- l-Lysine (PLL), Arg-Gly-Asp (RGD) peptide have been extensively used for mammalian cell adhesion and proliferation with the aim of tissue regeneration or cell based sensing application. This review focuses on the various approaches for two- and three-dimensionally patterned nanostructures of a short peptide i.e. RGD peptide on chip surfaces together with their effects on cell behaviors and electrochemical measurements. Most of the study concluded with positive remarks on the well-oriented engineered RGD peptide over their homogenous thin film. The engineered RGD peptide not only influences cell adhesion, spreading and proliferation but also their periodic nano-arrays directly influence electrochemical measurements of the chips. The electrochemical signals found to be enhanced when RGD peptides were used in well-defined two-dimensional nano-arrays. The topographic alteration of three-dimensional structure of engineered RGD peptide was reported to be suitably contacted with the integrin receptors of cellular membrane which results indicated the enhanced cell-electrode adhesion and efficient electron exchange phenomenon. This enhanced electrochemical signal increases the sensitivity of the chip against the target analytes. Therefore, development of engineered cellular recognizable peptides and its 3D topological design for fabrication of cell chip will provide the synergetic effect on bio-affinity, sensitivity and accuracy for the in situ real-time monitoring of analytes.

  2. Demonstration of a Chip-based Nonlinear Optical Isolator

    CERN Document Server

    Hua, Shiyue; Jiang, Xiaoshun; Hua, Qian; Jiang, Liang; Xiao, Min

    2016-01-01

    Despite fundamentally challenging in integrated (nano)photonics, achieving chip-based light nonreciprocity becomes increasingly urgent in signal processing and optical communications. Because of material incompatibilities in conventional approaches based on Faraday effects, alternative solutions have resorted to nonlinear processes to obtain one-way transmission. However, revealed dynamic reciprocity in a recent theoretical analysis has pinned down the functionalities of these nonlinear isolators. To overcome this dynamic reciprocity, we here report the first demonstration of a nonlinear optical isolator on a silicon chip enforced by phase-matched parametric amplification. Using a high-Q microtoroid resonator, we realize highly nonreciprocal transport at the 1,550 nm wavelength when waves are simultaneously launched in both forward and backward directions. Our design, compatible with current CMOS technique, yields convincing isolation performance with sufficiently low insertion loss for a wide range of input ...

  3. Atom-Role-Based Access Control Model

    Science.gov (United States)

    Cai, Weihong; Huang, Richeng; Hou, Xiaoli; Wei, Gang; Xiao, Shui; Chen, Yindong

    Role-based access control (RBAC) model has been widely recognized as an efficient access control model and becomes a hot research topic of information security at present. However, in the large-scale enterprise application environments, the traditional RBAC model based on the role hierarchy has the following deficiencies: Firstly, it is unable to reflect the role relationships in complicated cases effectively, which does not accord with practical applications. Secondly, the senior role unconditionally inherits all permissions of the junior role, thus if a user is under the supervisor role, he may accumulate all permissions, and this easily causes the abuse of permission and violates the least privilege principle, which is one of the main security principles. To deal with these problems, we, after analyzing permission types and role relationships, proposed the concept of atom role and built an atom-role-based access control model, called ATRBAC, by dividing the permission set of each regular role based on inheritance path relationships. Through the application-specific analysis, this model can well meet the access control requirements.

  4. Fabrication method for chip-scale-vacuum-packages based on a chip-to-wafer-process

    Science.gov (United States)

    Bauer, J.; Weiler, D.; Ruß, M.; Heß, J.; Yang, P.; Voß, J.; Arnold, N.,; Vogt, H.

    2010-10-01

    This paper introduces a simple vacuum packaging method which is based on a Chip-to-Wafer process. The MEMS-device is provided with an electroplated solder frame. A Si-lid with the same solder frame is mounted on each die of the wafer using a flip chip process. The same materials for lid and substrate are used in order to reduce the mechanical stress due to the same thermal coefficients of expansion. The resulting cavity between die and lid can be evacuated and hermetically sealed with an eutectic soldering process. The feasibility of the method is demonstrated with an infrared focal plane array (IR-FPA). In this case, the Si-lid acts as an optical window and contains an anti reflective layer for the 8-14 μm wavelength area on both sides. The long-term vacuum stability is supported by a getter film inside the package. This method simplifies the sawing process and has the additional cost benefit that it is possible to package only known good dies.

  5. Characterizing Rat PNS Electrophysiological Response to Electrical Stimulation Using in vitro Chip-Based Human Investigational Platform (iCHIP)

    Energy Technology Data Exchange (ETDEWEB)

    Khani, Joshua [Georgetown Univ., Washington, DC (United States); Prescod, Lindsay [Georgetown Univ., Washington, DC (United States); Enright, Heather [Georgetown Univ., Washington, DC (United States); Felix, Sarah [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osburn, Joanne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wheeler, Elizabeth [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kulp, Kris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-18

    Ex vivo systems and organ-on-a-chip technology offer an unprecedented approach to modeling the inner workings of the human body. The ultimate goal of LLNL’s in vitro Chip-based Human Investigational Platform (iCHIP) is to integrate multiple organ tissue cultures using microfluidic channels, multi-electrode arrays (MEA), and other biosensors in order to effectively simulate and study the responses and interactions of the major organs to chemical and physical stimulation. In this study, we focused on the peripheral nervous system (PNS) component of the iCHIP system. Specifically we sought to expound on prior research investigating the electrophysiological response of rat dorsal root ganglion cells (rDRGs) to chemical exposures, such as capsaicin. Our aim was to establish a protocol for electrical stimulation using the iCHIP device that would reliably elicit a characteristic response in rDRGs. By varying the parameters for both the stimulation properties – amplitude, phase width, phase shape, and stimulation/ return configuration – and the culture conditions – day in vitro and neural cell types - we were able to make several key observations and uncover a potential convention with a minimal number of devices tested. Future work will seek to establish a standard protocol for human DRGs in the iCHIP which will afford a portable, rapid method for determining the effects of toxins and novel therapeutics on the PNS.

  6. Atomic Electronic Contract Protocol Based on Convertible Signature

    Institute of Scientific and Technical Information of China (English)

    LIU Yi-chun; WANG Li-na; ZHANG Huan-guo

    2005-01-01

    A new class of atomicity, namely contract atomicity is presented. A new technical strategy based on convertible signature and two-phase commitment is proposed for implementing atomicity of electronic contract protocol. A new atomic contract signing protocol is given out by using ElGamal-like convertible undeniable signature and commitment of conversion key, and another new atomic contract signing protocol is brought forward by using RSA-based convertible undeniable signature scheme and commitment of conversion key.These two new protocols are proved to be of atomicity, fairness, privacy, non-repudiation.

  7. Magnetohydrodynamic-based Laboratories on a Chip for Analysis of Biomolecules Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A laboratory-on-a-chip design based on magnetohydrodynamic (MHD) microfluidics and integrated microelectrochemical detection is proposed. The proposed device is...

  8. Note: A microfluidic freezer based on evaporative cooling of atomized aqueous microdroplets

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jin; Kim, Dohyun, E-mail: dohyun.kim@mju.ac.kr [Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do 449-728 (Korea, Republic of); Chung, Minsub [Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul 121-791 (Korea, Republic of)

    2015-01-15

    We report for the first time water-based evaporative cooling integrated into a microfluidic chip for temperature control and freezing of biological solution. We opt for water as a nontoxic, effective refrigerant. Aqueous solutions are atomized in our device and evaporation of microdroplets under vacuum removes heat effectively. We achieve rapid cooling (−5.1 °C/s) and a low freezing temperature (−14.1 °C). Using this approach, we demonstrate freezing of deionized water and protein solution. Our simple, yet effective cooling device may improve many microfluidic applications currently relying on external power-hungry instruments for cooling and freezing.

  9. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.

    Science.gov (United States)

    Han, Song-I; Han, Ki-Ho

    2013-01-01

    As lab-on-a-chips are developed for on-chip integrated microfluidic systems with multiple functions, the development of microfluidic interface (MFI) technology to enable integration of complex microfluidic systems becomes increasingly important and faces many technical difficulties. Such difficulties include the need for more complex structures, the possibility of biological or chemical cross-contamination between functional compartments, and the possible need for individual compartments fabricated from different substrate materials. This chapter introduces MFI technology, based on rapid stereolithography, for a glass-based miniaturized genetic sample preparation system, as an example of a complex lab-on-a-chip that could include functional elements such as; solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. To enable the integration of a complex lab-on-a-chip system in a single chip, MFI technology based on stereolithography provides a simple method for realizing complex arrangements of one-step plug-in microfluidic interconnects, integrated microvalves for microfluidic control, and optical windows for on-chip optical processes.

  10. Chip based electroanalytical systems for cell analysis

    DEFF Research Database (Denmark)

    Spegel, C.; Heiskanen, A.; Skjolding, L.H.D.

    2008-01-01

    This review with 239 references has as its aim to give the reader an introduction to the kinds of methods used for developing microchip based electrode systems as well as to cover the existing literature on electroanalytical systems where microchips play a crucial role for 'nondestructive...

  11. Narrow linewidth Brillouin laser based on chalcogenide photonic chip

    CERN Document Server

    Kabakova, Irina V; Choi, Duk-Yong; Debbarma, Sukhanta; Luther-Davies, Barry; Madden, Stephen J; Eggleton, Benjamin J

    2013-01-01

    We present the first demonstration of a narrow linewidth, waveguide-based Brillouin laser which is enabled by large Brillouin gain of a chalcogenide chip. The waveguides are equipped with vertical tapers for low loss coupling. Due to optical feedback for the Stokes wave, the lasing threshold is reduced to 360 mW, which is 5 times lower than the calculated single-pass Brillouin threshold for the same waveguide. The slope efficiency of the laser is found to be 30% and the linewidth of 100 kHz is measured using a self-heterodyne method.

  12. Development of gold based solder candidates for flip chip assembly

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Flip chip technology is now rapidly replacing the traditional wire bonding interconnection technology in the first level packaging applications due to the miniaturization drive in the microelectronics industry. Flip chip assembly currently involves the use of high lead containing solders for inte......Flip chip technology is now rapidly replacing the traditional wire bonding interconnection technology in the first level packaging applications due to the miniaturization drive in the microelectronics industry. Flip chip assembly currently involves the use of high lead containing solders...

  13. Determination of absolute configuration using heavy atom based co-crystallization method: Halogen atom effects

    Science.gov (United States)

    Wang, Jian-Rong; Fan, Xiaowu; Ding, Qiaoce; Mei, Xuefeng

    2016-09-01

    Heavy atom (chloride, bromide, and iodide) based co-crystals for determination of absolute configuration (AC) for chiral molecules were synthesized and evaluated. Co-crystals of cholestanol and L-ascorbic acid were analysed and the effects and potential benefits of varying the heavy atom are discussed. Changing the halogen atoms (chloride, bromide, or iodide) affects the co-crystal formation, X-ray absorption, and anomalous dispersion, and hence the ability to determine AC.

  14. Fabrication LSPR sensor chip of Ag NPs and their biosensor application based on interparticle coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ghodselahi, T., E-mail: t_ghodselahi@yahoo.com [Nano Mabna Iranian Inc., PO Box 1676664116, Tehran (Iran, Islamic Republic of); School of Physics, Institute for Research in Fundamental Sciences, PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Neishaboorynejad, T. [School of Physics, Institute for Research in Fundamental Sciences, PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Arsalani, S. [School of Physics, Institute for Research in Fundamental Sciences, PO Box 19395-5531, Tehran (Iran, Islamic Republic of); School of Medicine, Bam University of Medical Sciences, Bam (Iran, Islamic Republic of)

    2015-07-15

    Highlights: • Localized surface plasmon resonance (LSPR) sensor of silver nanoparticles on hydrogenated amorphous carbon thin film were synthetized by co-deposition of RF-sputtering and RF-PECVD. • Samples were characterized by XRD, XPS, AFM, and UV visible. • DNA primer at fM concentration was detected based on breaking of inter-particles coupling. • Dipolar plasmon of isolated Ag NPs, coupled Ag NPs plasmons, in-plane and out-plane coupling, and quadrupole plasmon modes were considered to explain biosensor properties. • The initial response, wavelength shift sensitivity, and response time of LSPR sensors were compared by morphology. - Abstract: We introduce a simple method to synthesize localized surface plasmon resonance (LSPR) sensor chip of Ag NPs on the hydrogenated amorphous carbon by co-deposition of RF-Sputtering and RF-PECVD. The X-ray photoelectron spectroscopy revealed the content of Ag and C atoms. X-ray diffraction profile and atomic force microscopy indicate that the Ag NPs have fcc crystal structure and spherical shape and by increasing deposition time, particle sizes do not vary and only Ag NPs aggregation occurs, resulting in LSPR wavelength shift. Firstly, by increasing Ag NPs content, in-plan interparticles coupling is dominant and causes redshift in LSPR. At the early stage of agglomeration, out-plane coupling occurs and in-plane coupling is reduced, resulting a blueshift in the LSPR. By further increasing of Ag NPs content, agglomeration is completed on the substrate and in-plan coupling rises, resulting significant redshift in the LSPR. Results were used to implement biosensor application of chips. Detection of DNA primer at fM concentration was achieved based on breaking interparticles coupling of Ag NPs. A significant wavelength shift sensitivity of 30 nm and a short response time of 30 min were obtained, where both of these are prerequisite for biosensor applications.

  15. Polymer-based chips for surface plasmon resonance sensors

    Science.gov (United States)

    Obreja, Paula; Cristea, Dana; Kusko, Mihai; Dinescu, Adrian

    2008-06-01

    This paper presents a design and low-cost techniques for polymer-based chips for surface plasmon resonance (SPR) sensors. To obtain a polymer chip with a prism, microchannels and a chamber at microscale dimensions, replication techniques in polymers with controlled refractive index have been developed. Photoresist, polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA) and epoxy resin were used. Silicon dioxide/silicon-based molds have been obtained by anisotropic etching of silicon, and glass prisms were used as masters for replication. The photoresist molds were obtained by optical lithography and were used to obtain the microchannels and the chamber. A liquid prepolymer (PDMS, Sylgard 184) with curing agent at a ratio of 10:1 was used, and a special technique was developed in order to fabricate the components of the structure at the same time. For the deposition and direct patterning of the metallic layers onto the polymer surface, different methods were experimented with, including sputtering. The materials and techniques used to achieve SPR sensors are presented, and the possibilities and limitations of the technology are discussed.

  16. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip

    OpenAIRE

    2014-01-01

    In this work, we demonstrate in vitro detection of glucose by means of a lab-on-chip absorption spectroscopy approach. This optical method allows label-free and specific detection of glucose. We show glucose detection in aqueous glucose solutions in the clinically relevant concentration range with a silicon-based optofluidic chip. The sample interface is a spiral-shaped rib waveguide integrated on a silicon-on-insulator (SOI) photonic chip. This SOI chip is combined with micro-fluidics in pol...

  17. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  18. Nondestructive diagnosis of flip chips based on vibration analysis using PCA-RBF

    Science.gov (United States)

    Su, Lei; Shi, Tielin; Liu, Zhiping; Zhou, Hongdi; Du, Li; Liao, Guanglan

    2017-02-01

    Flip chip technology combined with solder bump interconnection has been widely applied in IC package. The solder bumps are sandwiched between dies and substrates, leading to conventional techniques being difficult to diagnose the flip chips. Meanwhile, these conventional diagnosis methods are usually performed by human visual judgment. The human eye-fatigue can easily cause fault detection. Thus, it is difficult and crucial to detect the defects of flip chips automatically. In this paper, a nondestructive diagnosis system based on vibration analysis is proposed. The flip chip is excited by air-coupled ultrasounds and raw vibration signals are measured by a laser scanning vibrometer. Forty-two features are extracted for analysis, including ten time domain features, sixteen frequency domain features and sixteen wavelet packet energy features. Principal component analysis is used for feature reduction. Radial basis function neural network is adopted for classification and recognition. Flip chips in three states (good flip chips, flip chips with missing solder bumps and flip chips with open solder bumps) are utilized to validate the proposed method. The results demonstrate that this method is effective for defect inspection in flip chip package.

  19. Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb

    Science.gov (United States)

    Korth, Haje; Strohbehn, Kim; Tejada, Francisco; Andreou, Andreas G.; Kitching, John; Knappe, Svenja; Lehtonen, S. John; London, Shaughn M.; Kafel, Matiwos

    2016-08-01

    A miniature atomic scalar magnetometer based on the rubidium isotope 87Rb was developed for operation in space. The instrument design implements both Mx and Mz mode operation and leverages a novel microelectromechanical system (MEMS) fabricated vapor cell and a custom silicon-on-sapphire (SOS) complementary metal-oxide-semiconductor (CMOS) integrated circuit. The vapor cell has a volume of only 1 mm3 so that it can be efficiently heated to its operating temperature by a specially designed, low-magnetic-field-generating resistive heater implemented in multiple metal layers of the transparent sapphire substrate of the SOS-CMOS chips. The SOS-CMOS chip also hosts the Helmholtz coil and associated circuitry to stimulate the magnetically sensitive atomic resonance and temperature sensors. The prototype instrument has a total mass of fewer than 500 g and uses less than 1 W of power, while maintaining a sensitivity of 15 pT/√Hz at 1 Hz, comparable to present state-of-the-art absolute magnetometers.

  20. Miniature atomic scalar magnetometer for space based on the rubidium isotope (87)Rb.

    Science.gov (United States)

    Korth, Haje; Strohbehn, Kim; Tejada, Francisco; Andreou, Andreas G; Kitching, John; Knappe, Svenja; Lehtonen, S John; London, Shaughn M; Kafel, Matiwos

    2016-08-01

    A miniature atomic scalar magnetometer based on the rubidium isotope (87)Rb was developed for operation in space. The instrument design implements both Mx and Mz mode operation and leverages a novel microelectromechanical system (MEMS) fabricated vapor cell and a custom silicon-on-sapphire (SOS) complementary metal-oxide-semiconductor (CMOS) integrated circuit. The vapor cell has a volume of only 1 mm(3) so that it can be efficiently heated to its operating temperature by a specially designed, low-magnetic-field-generating resistive heater implemented in multiple metal layers of the transparent sapphire substrate of the SOS-CMOS chips. The SOS-CMOS chip also hosts the Helmholtz coil and associated circuitry to stimulate the magnetically sensitive atomic resonance and temperature sensors. The prototype instrument has a total mass of fewer than 500 g and uses less than 1 W of power, while maintaining a sensitivity of 15 pT/√Hz at 1 Hz, comparable to present state-of-the-art absolute magnetometers.

  1. Artificial atoms based on correlated materials

    Science.gov (United States)

    Mannhart, J.; Boschker, H.; Kopp, T.; Valentí, R.

    2016-08-01

    Low-dimensional electron systems fabricated from quantum matter have in recent years become available and are being explored with great intensity. This article gives an overview of the fundamental properties of such systems and summarizes the state of the field. We furthermore present and consider the concept of artificial atoms fabricated from quantum materials, anticipating remarkable scientific advances and possibly important applications of this new field of research. The surprising properties of these artificial atoms and of molecules or even of solids assembled from them are presented and discussed.

  2. A single-chip event sequencer and related microcontroller instrumentation for atomic physics research.

    Science.gov (United States)

    Eyler, E E

    2011-01-01

    A 16-bit digital event sequencer with 50 ns resolution and 50 ns trigger jitter is implemented by using an internal 32-bit timer on a dsPIC30F4013 microcontroller, controlled by an easily modified program written in standard C. It can accommodate hundreds of output events, and adjacent events can be spaced as closely as 1.5 μs. The microcontroller has robust 5 V inputs and outputs, allowing a direct interface to common laboratory equipment and other electronics. A USB computer interface and a pair of analog ramp outputs can be added with just two additional chips. An optional display/keypad unit allows direct interaction with the sequencer without requiring an external computer. Minor additions also allow simple realizations of other complex instruments, including a precision high-voltage ramp generator for driving spectrum analyzers or piezoelectric positioners, and a low-cost proportional integral differential controller and lock-in amplifier for laser frequency stabilization with about 100 kHz bandwidth.

  3. Ag2S atomic switch-based `tug of war' for decision making

    Science.gov (United States)

    Lutz, C.; Hasegawa, T.; Chikyow, T.

    2016-07-01

    For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture.For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00690f

  4. Spreadsheet-Based Program for Simulating Atomic Emission Spectra

    Science.gov (United States)

    Flannigan, David J.

    2014-01-01

    A simple Excel spreadsheet-based program for simulating atomic emission spectra from the properties of neutral atoms (e.g., energies and statistical weights of the electronic states, electronic partition functions, transition probabilities, etc.) is described. The contents of the spreadsheet (i.e., input parameters, formulas for calculating…

  5. A Transportable Gravity Gradiometer Based on Atom Interferometry

    Science.gov (United States)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving

  6. Embedded 3D Graphics Core for FPGA-based System-on-Chip Applications

    DEFF Research Database (Denmark)

    Holten-Lund, Hans Erik

    2005-01-01

    This paper presents a 3D graphics accelerator core for an FPGA based system, and illustrates how to build a System-on-Chip containing a Xilinx MicroBlaze soft-core CPU and our 3D graphics accelerator core. The system is capable of running uClinux and hardware accelerated 3D graphics applications...... consumption is reduced as well. We show how an FPGA based embedded system is capable of most tasks in a single chip solution, without requiring additional CPU or graphics chips....

  7. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Dasheng Lee

    2008-12-01

    Full Text Available In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV measurement. The energy harvesting wireless sensor network (WSN was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an

  8. Simultaneous detection of lactate and glucose by integrated printed circuit board based array sensing chip

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuelian [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China); School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zang, Jianfeng [Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 (United States); Liu, Yingshuai; Lu, Zhisong [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China); Li, Qing, E-mail: Qli@swu.edu.cn [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Chang Ming, E-mail: ecmli@swu.edu.cn [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2013-04-10

    Highlights: ► An integrated printed circuit board (PCB) based array sensing chip was developed. ► Simultaneous detection of lactate and glucose in serum has been demonstrated. ► The array electronic biochip has high signal to noise ratio and high sensitivity. ► Additional electrodes were designed on the chip to correct interferences. -- Abstract: An integrated printed circuit board (PCB) based array sensing chip was developed to simultaneously detect lactate and glucose in mouse serum. The novelty of the chip relies on a concept demonstration of inexpensive high-throughput electronic biochip, a chip design for high signal to noise ratio and high sensitivity by construction of positively charged chitosan/redox polymer Polyvinylimidazole-Os (PVI-Os)/carbon nanotube (CNT) composite sensing platform, in which the positively charged chitosan/PVI-Os is mediator and electrostatically immobilizes the negatively charged enzyme, while CNTs function as an essential cross-linker to network PVI-Os and chitosan due to its negative charged nature. Additional electrodes on the chip with the same sensing layer but without enzymes were prepared to correct the interferences for high specificity. Low detection limits of 0.6 μM and 5 μM were achieved for lactate and glucose, respectively. This work could be extended to inexpensive array sensing chips with high sensitivity, good specificity and high reproducibility for various sensor applications.

  9. Mission Profile Based Sizing of IGBT Chip Area for PV Inverter Applications

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Yang, Yongheng;

    2016-01-01

    Maximizing the total energy generation is of importance for Photovoltaic (PV) plants. This paper proposes a method to optimize the IGBT chip area for PV inverters to minimize the annual energy loss of the active switches based on long-term operation conditions (i.e., mission profile). The design...... process is firstly introduced. Then the power loss, thermal characteristic and lifetime for IGBT modules with different chip areas are modeled. After that, the dependence of the annual energy loss and maximum junction temperature on the IGBT chip area and switching frequency is derived under a specific...

  10. Continuous cell electroporation for efficient DNA and siRNA delivery based on laminar microfluidic chips.

    Science.gov (United States)

    Wei, Zewen; Li, Zhihong

    2014-01-01

    Electroporation is a high-efficiency and low-toxicity physical gene transfer method. Traditional electroporation is limited to only low volume cell samples. Here we present a continuous cell electroporation method based on commonly used microfluidic chip fabrication technology. Using easily fabricated PDMS microfluidic chip, syringe pumps, and pulse generator, we show efficient delivery of both DNA and siRNA into different cell lines. We describe the protocol of chip fabrication, apparatus setup, and cell electroporation assay. Typically, the fabrication of the devices takes 1 or 2 days and the continuous electroporation assay takes 1 h.

  11. A Nanofiber-Based Optical Conveyor Belt for Cold Atoms

    CERN Document Server

    Schneeweiss, Philipp; Mitsch, Rudolf; Reitz, Daniel; Vetsch, Eugen; Rauschenbeutel, Arno

    2012-01-01

    We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- and blue-detuned with respect to the atomic transition. The blue-detuned field is a propagating nanofiber-guided mode while the red-detuned field is a standing-wave mode which leads to the periodic axial confinement of the atoms. Here, this standing wave is used for transporting the atoms along the nanofiber by mutually detuning the two counter-propagating fields which form the standing wave. The performance and limitations of the nanofiber-based transport are evaluated and possible applications are discussed.

  12. Future Gravitational Wave Detectors Based on Atom Interferometry

    CERN Document Server

    Geiger, Remi

    2016-01-01

    We present the perspective of using atom interferometry for gravitational wave (GW) detection in the mHz to about 10 Hz frequency band. We focus on light-pulse atom interferometers which have been subject to intense developments in the last 25 years. We calculate the effect of the GW on the atom interferometer and present in details the atomic gradiometer configuration which has retained more attention recently. The principle of such a detector is to use free falling atoms to measure the phase of a laser, which is modified by the GW. We highlight the potential benefits of using atom interferometry compared to optical interferometry as well as the challenges which remain for the realization of an atom interferometry based GW detector. We present some of the important noise sources which are expected in such detectors and strategies to cirucumvent them. Experimental techniques related to cold atom interferometers are briefly explained. We finally present the current progress and projects in this rapidly evolvin...

  13. On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers

    Science.gov (United States)

    Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)

    2015-01-01

    A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.

  14. Atomic Steps with tuning-fork-based noncontact atomic force microscopy

    NARCIS (Netherlands)

    Rensen, W.H.J.; Hulst, van N.F.; Ruiter, A.G.T.; West, P.E.

    1999-01-01

    Tuning forks as tip-sample distance detectors are a promising and versatile alternative to conventional cantilevers with optical beam deflection in noncontact atomic force microscopy (AFM). Both theory and experiments are presented to make a comparison between conventional and tuning-fork-based AFM.

  15. Neural network predicts sequence of TP53 gene based on DNA chip

    DEFF Research Database (Denmark)

    Spicker, J.S.; Wikman, F.; Lu, M.L.;

    2002-01-01

    We have trained an artificial neural network to predict the sequence of the human TP53 tumor suppressor gene based on a p53 GeneChip. The trained neural network uses as input the fluorescence intensities of DNA hybridized to oligonucleotides on the surface of the chip and makes between zero...... and four errors in the predicted 1300 bp sequence when tested on wild-type TP53 sequence....

  16. Micromotor-based lab-on-chip immunoassays

    Science.gov (United States)

    García, Miguel; Orozco, Jahir; Guix, Maria; Gao, Wei; Sattayasamitsathit, Sirilak; Escarpa, Alberto; Merkoçi, Arben; Wang, Joseph

    2013-01-01

    Here we describe the first example of using self-propelled antibody-functionalized synthetic catalytic microengines for capturing and transporting target proteins between the different reservoirs of a lab-on-a-chip (LOC) device. A new catalytic polymer/Ni/Pt microtube engine, containing carboxy moieties on its mixed poly(3,4-ethylenedioxythiophene) (PEDOT)/COOH-PEDOT polymeric outermost layer, is further functionalized with the antibody receptor to selectively recognize and capture the target protein. The new motor-based microchip immunoassay operations are carried out without any bulk fluid flow, replacing the common washing steps in antibody-based protein bioassays with the active transport of the captured protein throughout the different reservoirs, where each step of the immunoassay takes place. A first microchip format involving an `on-the-fly' double-antibody sandwich assay (DASA) is used for demonstrating the selective capture of the target protein, in the presence of excess of non-target proteins. A secondary antibody tagged with a polymeric-sphere tracer allows the direct visualization of the binding events. In a second approach the immuno-nanomotor captures and transports the microsphere-tagged antigen through a microchannel network. An anti-protein-A modified microengine is finally used to demonstrate the selective capture, transport and convenient label-free optical detection of a Staphylococcus aureus target bacteria (containing proteinA in its cell wall) in the presence of a large excess of non-target (Saccharomyces cerevisiae) cells. The resulting nanomotor-based microchip immunoassay offers considerable potential for diverse applications in clinical diagnostics, environmental and security monitoring fields.Here we describe the first example of using self-propelled antibody-functionalized synthetic catalytic microengines for capturing and transporting target proteins between the different reservoirs of a lab-on-a-chip (LOC) device. A new catalytic

  17. Nanofiber-based optical trapping of cold neutral atoms

    CERN Document Server

    Vetsch, Eugen; Mitsch, Rudolf; Reitz, Daniel; Schneeweiss, Philipp; Rauschenbeutel, Arno

    2012-01-01

    We present experimental techniques and results related to the optimization and characterization of our nanofiber-based atom trap [Vetsch et al., Phys. Rev. Lett. 104, 203603 (2010)]. The atoms are confined in an optical lattice which is created using a two-color evanescent field surrounding the optical nanofiber. For this purpose, the polarization state of the trapping light fields has to be properly adjusted. We demonstrate that this can be accomplished by analyzing the light scattered by the nanofiber. Furthermore, we show that loading the nanofiber trap from a magneto-optical trap leads to sub-Doppler temperatures of the trapped atomic ensemble and yields a sub-Poissonian distribution of the number of trapped atoms per trapping site.

  18. GEM400: A front-end chip based on capacitor-switch array for pixel-based GEM detector

    Science.gov (United States)

    Li, H. S.; Jiang, X. S.; Liu, G.; Wang, N.; Sheng, H. Y.; Zhuang, B. A.; Zhao, J. W.

    2012-03-01

    The upgrade of Beijing Synchrotron Radiation Facility (BSRF) needs two-dimensional position-sensitive detection equipment to improve the experimental performance. Gas Electron Multiplier (GEM) detector, in particular, pixel-based GEM detector has good application prospects in the domain of synchrotron radiation. The read-out of larger scale pixel-based GEM detector is difficult for the high density of the pixels (PAD for collecting electrons). In order to reduce the number of cables, this paper presents a read-out scheme for pixel-based GEM detector, which is based on System-in-Package technology and ASIC technology. We proposed a circuit structure based on capacitor switch array circuit, and design a chip GEM400, which is a 400 channels ASIC. The proposed circuit can achieve good stability and low power dissipation. The chip is implemented in a 0.35μm CMOS process. The basic functional circuitry in ths chip includes analog switch, analog buffer, voltage amplifier, bandgap and control logic block, and the layout of this chip takes 5mm × 5mm area. The simulation results show that the chip can allow the maximum amount of input charge 70pC on the condition of 100pF external integrator capacitor. Besides, the chip has good channel uniformity (INL is better than 0.1%) and lower power dissipation.

  19. Modification and characterization of an aptamer-based surface plasmon resonance sensor chip

    Directory of Open Access Journals (Sweden)

    Tan Junpeng

    2017-01-01

    Full Text Available Recently, aptamer-based surface plasmon resonance (SPR sensors have become increasingly popular due to their high specificity, high sensitivity, real-time detection capabilities, and label-free features. The core component of an aptamer-based SPR sensor is a chip. This paper presents the modification steps and the characterization results of a sensor chip for the construction of a 2, 4, 6-trinitrotoluene-targeted, aptamer-based, SPR sensor. After cleaning the aptamer-based SPR sensor chip, polyethylene glycol (PEG with functional thiol groups at one end was added to the chip surface by Au-S covalent bonds to form a self-assembled film. Then, the carboxyl groups at the other end of PEG and the carboxyl groups of trinitrophenyl-glycine (TNP-Gly were activated and connected via ethylenediamine (EDA. This effectively completed the chip’s modification. During the modification process, relevant experimental conditions were optimized. The chip’s surface elements, as well as their chemical states, were characterized by X-ray photoelectron spectroscopy (XPS. The results, outlined in the following study, demonstrate that this modification of an aptamer-based SPR sensor chip adhered to normative expectations. Thus, the modification process proposed here establishes an important foundation for subsequent study of TNT detection.

  20. Ion microscopy based on laser-cooled cesium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Viteau, M.; Reveillard, M.; Kime, L.; Rasser, B.; Sudraud, P. [Orsay Physics, TESCAN Orsay, 95 Avenue des Monts Auréliens – ZA Saint-Charles – 13710 Fuveau (France); Bruneau, Y.; Khalili, G.; Pillet, P.; Comparat, D. [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Bât. 505, 91405 Orsay (France); Guerri, I. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Fioretti, A., E-mail: andrea.fioretti@ino.it [Istituto Nazionale di Ottica, INO-CNR, U.O.S. ”Adriano Gozzini”, via Moruzzi 1, 56124 Pisa (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, CNISM, Sezione di Pisa, 56127 Pisa (Italy); Ciampini, D.; Allegrini, M.; Fuso, F. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Istituto Nazionale di Ottica, INO-CNR, U.O.S. ”Adriano Gozzini”, via Moruzzi 1, 56124 Pisa (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, CNISM, Sezione di Pisa, 56127 Pisa (Italy)

    2016-05-15

    We demonstrate a prototype of a Focused Ion Beam machine based on the ionization of a laser-cooled cesium beam and adapted for imaging and modifying different surfaces in the few-tens nanometer range. Efficient atomic ionization is obtained by laser promoting ground-state atoms into a target excited Rydberg state, then field-ionizing them in an electric field gradient. The method allows obtaining ion currents up to 130 pA. Comparison with the standard direct photo-ionization of the atomic beam shows, in our conditions, a 40-times larger ion yield. Preliminary imaging results at ion energies in the 1–5 keV range are obtained with a resolution around 40 nm, in the present version of the prototype. Our ion beam is expected to be extremely monochromatic, with an energy spread of the order of the eV, offering great prospects for lithography, imaging and surface analysis. - Highlights: • We realize a Focused Ion Beam with an ionic source based on laser cooled cesium atoms. • Ionization involves excitation of the laser cooled atoms to Rydberg states. • We use the cesium FIB system to image different materials. • We use the cesium FIB to produce permanent modifications on surfaces. • In the present configuration, the focused probe size of the cesium FIB prototype is about 300 nm for beam energies in the 2–5 keV range.

  1. Integrated magneto-optical traps on a chip

    CERN Document Server

    Pollock, S; Laliotis, A; Hinds, E A

    2009-01-01

    We have integrated magneto-optical traps (MOTs) into an atom chip by etching pyramids into a silicon wafer. These have been used to trap atoms on the chip, directly from a room temperature vapor of rubidium. This new atom trapping method provides a simple way to integrate several atom sources on the same chip. It represents a substantial advance in atom chip technology and offers new possibilities for atom chip applications such as integrated single atom or photon sources and molecules on a chip.

  2. 76 FR 26283 - Blue Chip Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Science.gov (United States)

    2011-05-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Blue Chip Energy LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding of Blue Chip Energy LLC's application for market-based rate authority, with...

  3. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    Science.gov (United States)

    Du, Yingge; Chambers, Scott A.

    2014-10-01

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  4. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%, which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  5. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yingge, E-mail: yingge.du@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Chambers, Scott A. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  6. Tunable Cavity Optomechanics with Ultracold Atoms

    CERN Document Server

    Purdy, T P; Botter, T; Brahms, N; Ma, Z -Y; Stamper-Kurn, D M

    2010-01-01

    We present an atom-chip-based realization of quantum cavity optomechanics with cold atoms localized within a Fabry-Perot cavity. Effective sub-wavelength positioning of the atomic ensemble allows for tuning the linear and quadratic optomechanical coupling parameters, varying the sensitivity to the displacement and strain of a compressible gaseous cantilever. We observe effects of such tuning on cavity optical nonlinearity and optomechanical frequency shifts, providing their first characterization in the quadratic-coupling regime.

  7. Lab-chip HPLC with integrated droplet-based microfluidics for separation and high frequency compartmentalisation.

    Science.gov (United States)

    Kim, Jin-Young; Cho, Soong-Won; Kang, Dong-Ku; Edel, Joshua B; Chang, Soo-Ik; deMello, Andrew J; O'Hare, Danny

    2012-09-21

    We demonstrate the integration of a droplet-based microfluidic device with high performance liquid chromatography (HPLC) in a monolithic format. Sequential operations of separation, compartmentalisation and concentration counter were conducted on a monolithic chip. This describes the use of droplet-based microfluidics for the preservation of chromatographic separations, and its potential application as a high frequency fraction collector.

  8. Real-time tunability of chip-based light source enabled by microfluidic mixing

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Rasmussen, Torben; Balslev, Søren;

    2006-01-01

    We demonstrate real-time tunability of a chip-based liquid light source enabled by microfluidic mixing. The mixer and light source are fabricated in SU-8 which is suitable for integration in SU-8-based laboratory-on-a-chip microsystems. The tunability of the light source is achieved by changing...... the concentration of rhodamine 6G dye inside two integrated vertical resonators, since both the refractive index and the gain profile are influenced by the dye concentration. The effect on the refractive index and the gain profile of rhodamine 6G in ethanol is investigated and the continuous tuning of the laser...

  9. Development of a chip-based ingroove microplasma source: Design, characterization, and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuemei; Meng, Fanying; Yuan, Xin; Yan, Yanyue; Zhao, Zhongjun; Duan, Yixiang, E-mail: yduan@scu.edu.cn [Research Center of Analytical Instrumentation, College of Chemistry and College of Life Science Sichuan University, Chengdu (China); Tang, Jie [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an (China)

    2014-03-10

    A chip-based ingroove microplasma source was designed for molecular emission spectrometry by using a space-confined direct current duct in air. The voltage-current characteristics of different size generators, emission spectroscopy of argon were discussed, respectively. It is found that the emission intensity of excited Ar and N{sub 2} approaches its maximum near the cathode, while OH and O peaks most likely appear close to the anode. The electron density, electronic excitation temperature, rotational temperature, and vibrational temperature of the argon plasma were also calculated. More importantly, the chip-based ingroove microplasma shows much better stability compared with its counterparts.

  10. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hye-Young Park

    2005-12-17

    This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules. The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM. The next study describes a low-level detection of Escherichia coli 0157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal. An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface. The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled {lambda}-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, {lambda}-DNA concentration, and domain size was investigated. This work also revealed

  11. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Young [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules. The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM. The next study describes a low-level detection of Escherichia coli 0157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal. An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface. The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled {lambda}-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, {lambda}-DNA concentration, and domain size was investigated. This work also revealed

  12. Ion microscopy based on laser-cooled cesium atoms.

    Science.gov (United States)

    Viteau, M; Reveillard, M; Kime, L; Rasser, B; Sudraud, P; Bruneau, Y; Khalili, G; Pillet, P; Comparat, D; Guerri, I; Fioretti, A; Ciampini, D; Allegrini, M; Fuso, F

    2016-05-01

    We demonstrate a prototype of a Focused Ion Beam machine based on the ionization of a laser-cooled cesium beam and adapted for imaging and modifying different surfaces in the few-tens nanometer range. Efficient atomic ionization is obtained by laser promoting ground-state atoms into a target excited Rydberg state, then field-ionizing them in an electric field gradient. The method allows obtaining ion currents up to 130pA. Comparison with the standard direct photo-ionization of the atomic beam shows, in our conditions, a 40-times larger ion yield. Preliminary imaging results at ion energies in the 1-5keV range are obtained with a resolution around 40nm, in the present version of the prototype. Our ion beam is expected to be extremely monochromatic, with an energy spread of the order of the eV, offering great prospects for lithography, imaging and surface analysis.

  13. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip.

    Science.gov (United States)

    Ryckeboer, E; Bockstaele, R; Vanslembrouck, M; Baets, R

    2014-05-01

    In this work, we demonstrate in vitro detection of glucose by means of a lab-on-chip absorption spectroscopy approach. This optical method allows label-free and specific detection of glucose. We show glucose detection in aqueous glucose solutions in the clinically relevant concentration range with a silicon-based optofluidic chip. The sample interface is a spiral-shaped rib waveguide integrated on a silicon-on-insulator (SOI) photonic chip. This SOI chip is combined with micro-fluidics in poly(dimethylsiloxane) (PDMS). We apply aqueous glucose solutions with different concentrations and monitor continuously how the transmission spectrum changes due to glucose. Based on these measurements, we derived a linear regression model, to relate the measured glucose spectra with concentration with an error-of-fitting of only 1.14 mM. This paper explains the challenges involved and discusses the optimal configuration for on-chip evanescent absorption spectroscopy. In addition, the prospects for using this sensor for glucose detection in complex physiological media (e.g. serum) is briefly discussed.

  14. Simulation-based Modeling Frameworks for Networked Multi-processor System-on-Chip

    DEFF Research Database (Denmark)

    Mahadevan, Shankar

    2006-01-01

    This thesis deals with modeling aspects of multi-processor system-on-chip (MpSoC) design affected by the on-chip interconnect, also called the Network-on-Chip (NoC), at various levels of abstraction. To begin with, we undertook a comprehensive survey of research and design practices of networked Mp......SoC. The survey presents the challenges of modeling and performance analysis of the hardware and the software components used in such devices. These challenges are further exasperated in a mixed abstraction workspace, which is typical of complex MpSoC design environment. We provide two simulation-based frameworks...... and the RIPE frameworks allows easy incorporation of IP cores from either frameworks, into a new instance of the design. This could pave the way for seamless design evaluation from system-level to cycletrue abstraction in future component-based MpSoC design practice....

  15. Titanium based flat heat pipes for computer chip cooling

    Science.gov (United States)

    Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

    2008-11-01

    We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

  16. Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring.

    Science.gov (United States)

    Liu, Jiang; Zhang, Yu; Jiang, Min; Tian, Liping; Sun, Shiguo; Zhao, Na; Zhao, Feilang; Li, Yingchun

    2017-05-15

    In this work, a novel electrochemical detection platform was established by integrating molecularly imprinting technique with microfluidic chip and applied for trace measurement of three therapeutic drugs. The chip foundation is acrylic panel with designed grooves. In the detection cell of the chip, a Pt wire is used as the counter electrode and reference electrode, and a Au-Ag alloy microwire (NPAMW) with 3D nanoporous surface modified with electro-polymerized molecularly imprinted polymer (MIP) film as the working electrode. Detailed characterization of the chip and the working electrode was performed, and the properties were explored by cyclic voltammetry and electrochemical impedance spectroscopy. Two methods, respectively based on electrochemical catalysis and MIP/gate effect were employed for detecting warfarin sodium by using the prepared chip. The linearity of electrochemical catalysis method was in the range of 5×10(-6)-4×10(-4)M, which fails to meet clinical testing demand. By contrast, the linearity of gate effect was 2×10(-11)-4×10(-9)M with remarkably low detection limit of 8×10(-12)M (S/N=3), which is able to satisfy clinical assay. Then the system was applied for 24-h monitoring of drug concentration in plasma after administration of warfarin sodium in rabbit, and the corresponding pharmacokinetic parameters were obtained. In addition, the microfluidic chip was successfully adopted to analyze cyclophosphamide and carbamazepine, implying its good versatile ability. It is expected that this novel electrochemical microfluidic chip can act as a promising format for point-of-care testing via monitoring different analytes sensitively and conveniently.

  17. Model based control of dynamic atomic force microscope.

    Science.gov (United States)

    Lee, Chibum; Salapaka, Srinivasa M

    2015-04-01

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  18. Model based control of dynamic atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chibum [Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Salapaka, Srinivasa M., E-mail: salapaka@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-04-15

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H{sub ∞} control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  19. Nanoscale Probe of Magnetism Based on Artificial Atoms in Diamond

    Science.gov (United States)

    2014-07-18

    AFRL-OSR-VA-TR-2014-0165 ( YIP 11) Nanoscale probe of magnetism based on artificial atoms in diamond Ania Bleszynski Jayich UNIVERSITY OF CALIFORNIA...center Ania Bleszynski Jayihc (805) 893 8089 AFOSR   YIP  Report     Ania  Bleszynski  Jayich   Nanoscale probe of magnetism based on...dramatically affected by proximal Gd ions. Gd ions are commonly used spin labels for biological imaging. AFOSR   YIP  Report     Ania

  20. Chip, Chip, Hooray!

    Science.gov (United States)

    Kelly, Susan

    2001-01-01

    Presents a science laboratory using different brands of potato chips in which students test their oiliness, size, thickness, saltiness, quality, and cost, then analyze the results to determine the best chip. Gives a brief history of potato chips. (YDS)

  1. Atomic scale behavior of oxygen-based radicals in water

    Science.gov (United States)

    Verlackt, C. C. W.; Neyts, E. C.; Bogaerts, A.

    2017-03-01

    Cold atmospheric pressure plasmas in and in contact with liquids represent a growing field of research for various applications. Understanding the interactions between the plasma generated species and the liquid is crucial. In this work we perform molecular dynamics (MD) simulations based on a quantum mechanical method, i.e. density-functional based tight-binding (DFTB), to examine the interactions of OH radicals and O atoms in bulk water. Our calculations reveal that the transport of OH radicals through water is not only governed by diffusion, but also by an equilibrium reaction of H-abstraction with water molecules. Furthermore, when two OH radicals encounter each other, they either form a stable cluster, or react, resulting in the formation of a new water molecule and an O atom. In addition, the O atoms form either oxywater (when in singlet configuration) or they remain stable in solution (when in triplet configuration), stressing the important role that O atoms can play in aqueous solution, and in contact with biomolecules. Our observations are in line with both experimental and ab initio results from the literature.

  2. The Vienna atomic line data base - a status report

    Energy Technology Data Exchange (ETDEWEB)

    Ryabchikova, T.A. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Astronomii; Piskunov, N.E.; Stempels, H.C. [Uppsala Astronomiska Observatoriet (Sweden); Kupka, F.; Weiss, W.W. [Vienna Univ. (Austria). Inst. fuer Astronomie

    1999-07-01

    Atomic transition parameters are of fundamental importance for many aspects of astrophysical research. But this information is spread over an enormous variety of publications in the fields of, e.g., applied and atomic physics, chemistry, and astronomy. Moreover, they differ in parameters listed and physical units used, as well as in their relative and absolute accuracy. This unfortunate situation led us to create a set of both critically evaluated and more homogeneous lists of astrophysically important atomic transition parameters and of supporting extraction software. This new data base is called the ''Vienna atomic line data base'' (VALD) and contains about 600000 entries for spectral lines with measured energy levels. VALD includes tools for extracting data and references which are particularly suitable for astrophysical applications such as spectrum synthesis and model atmosphere calculations. They are described in papers by Piskunov et al. (1995) and Kupka et al. (1999). We describe in this paper the structure of VALD, present a summary of all available data sets, explain our ranking procedure, in particular for the case of recent data on Fe I and Fe II, and comment briefly on the specific retrieval tools. The electronic-mail interface VALD-EMS allows remote access to VALD and is now extended by the WWW interfaces: http://www.astro.univie.ac.at/{proportional_to}vald http://www.astro.uu.se/{proportional_to}vald (orig.)

  3. M-Sequence-Based Single-Chip UWB-Radar Sensor

    Science.gov (United States)

    Kmec, M.; Helbig, M.; Herrmann, R.; Rauschenbach, P.; Sachs, J.; Schilling, K.

    The article deals with a fully monolithically integrated single-chip M-sequence-based UWB-radar sensor, its architecture, selected design aspects and first measurement results performed on wafer and with packaged IC modules. The discussed chip is equipped with one transmitter and two receivers. The IC was designed and manufactured in commercially available high-performance 0.25 μm SiGe BiCMOS technology (f t = 110 GHz). Due to the combination of fast digital and broadband analogue system blocks in one chip, special emphasis has been placed on the electrical isolation of these functional structures. The manufactured IC is enclosed in a low-cost QFN (quad flat-pack no-leads) package and mounted on a PCB permitting the creation of MIMO-sensor arrays by cascading a number of modules. In spite of its relatively high complexity, the sensor head features a compact design (chip size of 2 × 1 mm2, QFN package size 5 × 5 mm2) and moderate power consumption (below 1 W at -3 V supply). The assembled transceiver chip can handle signals in the frequency range from near DC up to 18 GHz. This leads to an impulse response (IRF) of FWHD ≈ 50 ps (full width at half duration).

  4. Simultaneous detection of lactate and glucose by integrated printed circuit board based array sensing chip.

    Science.gov (United States)

    Li, Xuelian; Zang, Jianfeng; Liu, Yingshuai; Lu, Zhisong; Li, Qing; Li, Chang Ming

    2013-04-10

    An integrated printed circuit board (PCB) based array sensing chip was developed to simultaneously detect lactate and glucose in mouse serum. The novelty of the chip relies on a concept demonstration of inexpensive high-throughput electronic biochip, a chip design for high signal to noise ratio and high sensitivity by construction of positively charged chitosan/redox polymer Polyvinylimidazole-Os (PVI-Os)/carbon nanotube (CNT) composite sensing platform, in which the positively charged chitosan/PVI-Os is mediator and electrostatically immobilizes the negatively charged enzyme, while CNTs function as an essential cross-linker to network PVI-Os and chitosan due to its negative charged nature. Additional electrodes on the chip with the same sensing layer but without enzymes were prepared to correct the interferences for high specificity. Low detection limits of 0.6 μM and 5 μM were achieved for lactate and glucose, respectively. This work could be extended to inexpensive array sensing chips with high sensitivity, good specificity and high reproducibility for various sensor applications.

  5. Modeling and optimizing of the random atomic spin gyroscope drift based on the atomic spin gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Wei; Lv, Lin, E-mail: lvlinlch1990@163.com; Liu, Baiqi [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)

    2014-11-15

    In order to improve the atom spin gyroscope's operational accuracy and compensate the random error caused by the nonlinear and weak-stability characteristic of the random atomic spin gyroscope (ASG) drift, the hybrid random drift error model based on autoregressive (AR) and genetic programming (GP) + genetic algorithm (GA) technique is established. The time series of random ASG drift is taken as the study object. The time series of random ASG drift is acquired by analyzing and preprocessing the measured data of ASG. The linear section model is established based on AR technique. After that, the nonlinear section model is built based on GP technique and GA is used to optimize the coefficients of the mathematic expression acquired by GP in order to obtain a more accurate model. The simulation result indicates that this hybrid model can effectively reflect the characteristics of the ASG's random drift. The square error of the ASG's random drift is reduced by 92.40%. Comparing with the AR technique and the GP + GA technique, the random drift is reduced by 9.34% and 5.06%, respectively. The hybrid modeling method can effectively compensate the ASG's random drift and improve the stability of the system.

  6. Modeling and optimizing of the random atomic spin gyroscope drift based on the atomic spin gyroscope.

    Science.gov (United States)

    Quan, Wei; Lv, Lin; Liu, Baiqi

    2014-11-01

    In order to improve the atom spin gyroscope's operational accuracy and compensate the random error caused by the nonlinear and weak-stability characteristic of the random atomic spin gyroscope (ASG) drift, the hybrid random drift error model based on autoregressive (AR) and genetic programming (GP) + genetic algorithm (GA) technique is established. The time series of random ASG drift is taken as the study object. The time series of random ASG drift is acquired by analyzing and preprocessing the measured data of ASG. The linear section model is established based on AR technique. After that, the nonlinear section model is built based on GP technique and GA is used to optimize the coefficients of the mathematic expression acquired by GP in order to obtain a more accurate model. The simulation result indicates that this hybrid model can effectively reflect the characteristics of the ASG's random drift. The square error of the ASG's random drift is reduced by 92.40%. Comparing with the AR technique and the GP + GA technique, the random drift is reduced by 9.34% and 5.06%, respectively. The hybrid modeling method can effectively compensate the ASG's random drift and improve the stability of the system.

  7. Modeling and optimizing of the random atomic spin gyroscope drift based on the atomic spin gyroscope

    Science.gov (United States)

    Quan, Wei; Lv, Lin; Liu, Baiqi

    2014-11-01

    In order to improve the atom spin gyroscope's operational accuracy and compensate the random error caused by the nonlinear and weak-stability characteristic of the random atomic spin gyroscope (ASG) drift, the hybrid random drift error model based on autoregressive (AR) and genetic programming (GP) + genetic algorithm (GA) technique is established. The time series of random ASG drift is taken as the study object. The time series of random ASG drift is acquired by analyzing and preprocessing the measured data of ASG. The linear section model is established based on AR technique. After that, the nonlinear section model is built based on GP technique and GA is used to optimize the coefficients of the mathematic expression acquired by GP in order to obtain a more accurate model. The simulation result indicates that this hybrid model can effectively reflect the characteristics of the ASG's random drift. The square error of the ASG's random drift is reduced by 92.40%. Comparing with the AR technique and the GP + GA technique, the random drift is reduced by 9.34% and 5.06%, respectively. The hybrid modeling method can effectively compensate the ASG's random drift and improve the stability of the system.

  8. SU-8 as a material for lab-on-a-chip-based mass spectrometry.

    Science.gov (United States)

    Arscott, Steve

    2014-10-07

    This short review focuses on the application of SU-8 for the microchip-based approach to the miniaturization of mass spectrometry. Chip-based mass spectrometry will make the technology commonplace and bring benefits such as lower costs and autonomy. The chip-based miniaturization of mass spectrometry necessitates the use of new materials which are compatible with top-down fabrication involving both planar and non-planar processes. In this context, SU-8 is a very versatile epoxy-based, negative tone resist which is sensitive to ultraviolet radiation, X-rays and electron beam exposure. It has a very wide thickness range, from nanometres to millimetres, enabling the formation of mechanically rigid, very high aspect ratio, vertical, narrow width structures required to form microfluidic slots and channels for laboratory-on-a-chip design. It is also relatively chemically resistant and biologically compatible in terms of the liquid solutions used for mass spectrometry. This review looks at the impact and potential of SU-8 on the different parts of chip-based mass spectrometry - pre-treatment, ionization processes, and ion sorting and detection.

  9. Integrated optical displacement sensor based on asymmetric Mach-Zehnder interferometer chip

    Science.gov (United States)

    Zhao, Ning; Qian, Guang; Fu, Xing-Chang; Zhang, Li-Jiang; Hu, Wei; Li, Ruo-Zhou; Zhang, Tong

    2017-02-01

    Displacement sensor is one of the most important measuring instruments in many automated systems. We demonstrated an integrated optical displacement sensor based on an asymmetric Mach-Zehnder interferometer chip on a flexible substrate. The sensing chip was made of polymer materials and fabricated by lithography and lift-off techniques. Measured results show that the device has a loss of less than 5 dB and a potential sensitivity of about 0.105 rad/μm with quite a large space for promotion. The sensor has advantages of antielectromagnetic interference, high reliability and stability, simple preparing process, and low cost; it will occupy an important place in displacement sensors.

  10. Integrated Surface-enhanced Raman Spectroscopy chip based on liquid core waveguide

    CERN Document Server

    Lai, Chunhong; Chen, Li; Li, Junhui; Liu, Qinghao; Xu, Yi

    2015-01-01

    We propose an integrated surface enhanced Raman scattering (SERS) chip based on liquid-core waveguide with total reflection, through which the depression of leaky mode enable a long propagating distance. An Raman enhancement factor for rhodamine 6G of 2.5*105 is obtained, and a excellent repeatability is shown. The peaks in the SERS spectrum of DNA of silkworm clearly illustrate the information of the molecule structure. The integration of the SERS substrate, micro-fluid, and liquid-core waveguide make such a SERS chip attractive for biochemical detection with high performance.

  11. A novel method to prepare SPR sensor chips based on photografting molecularly imprinted polymer

    Institute of Scientific and Technical Information of China (English)

    Qing Quan Wei; Tian Xin Wei

    2011-01-01

    A novel method to prepare surface plasmon resonance (SPR) sensor chips based on grafted imprinted polymer is explored. Benzophenone photografting system is used to grow molecularly imprinted polymer (MIP) films from the modified surface of gold substrate. The surface morphology and thickness of MIP films were investigated by scanning electronic microscope (SEM). The adsorption properties of sensor chip were studied by SPR spectroscopy. The results demonstrate that nano-MIP films can be constructed on the surface of gold substrate with the good adsorption of template molecules.

  12. On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers

    Science.gov (United States)

    Chattopadhyay, Goutam; Mehdi, Imran; Schlecht, Erich T.; Lee, Choonsup; Siles, Jose V.; Maestrini, Alain E.; Thomas, Bertrand; Jung, Cecile D.

    2013-01-01

    A 1.6-THz power-combined Schottky frequency tripler was designed to handle approximately 30 mW input power. The design of Schottky-based triplers at this frequency range is mainly constrained by the shrinkage of the waveguide dimensions with frequency and the minimum diode mesa sizes, which limits the maximum number of diodes that can be placed on the chip to no more than two. Hence, multiple-chip power-combined schemes become necessary to increase the power-handling capabilities of high-frequency multipliers. The design presented here overcomes difficulties by performing the power-combining directly on-chip. Four E-probes are located at a single input waveguide in order to equally pump four multiplying structures (featuring two diodes each). The produced output power is then recombined at the output using the same concept.

  13. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation

    Directory of Open Access Journals (Sweden)

    Huei-Wen Wu

    2016-07-01

    Full Text Available The conventional hanging drop technique is the most widely used method for embryoid body (EB formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.

  14. Experiment-Based Computational Investigation of Thermomechanical Stresses in Flip Chip BGA Using the ATC4.2 Test Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Burchett, Steven N.; Nguyen, Luu; Peterson, David W.; Sweet, James N.

    1999-08-02

    Stress measurement test chips were flip chip assembled to organic BGA substrates containing micro-vias and epoxy build-up interconnect layers. Mechanical degradation observed during temperature cycling was correlated to a damage theory developed based on 3D finite element method analysis. Degradation included die cracking, edge delamination and radial fillet cracking.

  15. Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Hansen, Michael Søren; Özkapici, V.

    2005-01-01

    We, present a one-step technology for fabrication of Topas-based lab-on-a-chip (LOC) microsysterris by the use of thermal nanoimprint lithography (NIL). The technology is demonstrated by the fabrication of two working devices: a particle separator and a LOC with integrated optics for absorbance...

  16. On-chip Mode Multiplexer Based on a Single Grating Coupler

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing;

    2012-01-01

    A two-mode multiplexer based on a single grating coupler is proposed and demonstrated on a silicon chip. The LP01 and LP11 modes of a few-mode fiber are excited from TE0 and TE1 silicon waveguide modes....

  17. MEMS-Based Quartz Oscillators and Filters for On-Chip Integration

    Science.gov (United States)

    2005-01-01

    frequency RF electronics, and vacuum packaging the resulting chip at wafer level, are not possible with present techniques. Polysilicon surface...and is compatible with MEMS-based wafer-scale vacuum packaging . Fundamental mode operation above 2 GHz has been demonstrated with Q’s of 7,200 in air

  18. The Vienna Atomic Line Data Base - a Status Report

    Science.gov (United States)

    Ryabchikova, T. A.; Piskunov, N. E.; Stempels, H. C.; Kupka, F.; Weiss, W. W.

    Atomic transition parameters are of fundamental importance for many aspects of astrophysical research. But this information is spread over an enormous variety of publications in the fields of, e.g., applied and atomic physics, chemistry, and astronomy. Moreover, they differ in parameters listed and physical units used, as well as in their relative and absolute accuracy. This unfortunate situation led us to create a set of both critically evaluated and more homogeneous lists of astrophysically important atomic transition parameters and of supporting extraction software. This new data base is called the “Vienna Atomic Line Data Base” (VALD) and contains about 600000 entries for spectral lines with measured energy levels. VALD includes tools for extracting data and references which are particularly suitable for astrophysical applications such as spectrum synthesis and model atmosphere calculations. They are described in papers by Piskunov et al. (1995) and Kupka et al. (1999). We describe in this paper the structure of VALD, present a summary of all available data sets, explain our ranking procedure, in particular for the case of recent data on Fe I and Fe II, and comment briefly on the specific retrieval tools. The electronic-mail interface VALD-EMS allows remote access to VALD and is now extended by the WWW interfaces: http://www.astro.univie.ac.at/˜vald http://www.astro.uu.se/˜vald

  19. PDMS based microfluidic chips and their application in material synthesis

    Science.gov (United States)

    Gong, Xiuqing

    Microfluidics is a highly interdisciplinary science which is to deal with the behavior, control and manipulation of fluids that are constrained to sub-milimeter scale. It incorporates the knowledge and technique intersecting physics, chemistry, mechanics, nanoscience and biotechnology, with practical applications to the design of systems in which small volumes of fluids will be used. In this thesis, we started our research from GER fluid synthesis which then is applied to designing different functions of microfluidic devices, valve, pump, and mixer. We built a way to correlate mechanical signal with electric signal by soft matter. The mechanical devices based GER fluid had good operating stability and mechanical performance. We studied how to improve the performance of GER fluid by increasing the yield stress while avoiding the sendimentation of nanoparticles in GER suspension. The meaning of this work is to enhance the stability and mechanical strength of GER fluid when it is applyed to the microfluidc channels. We tried different oils and studied the particle size for the GER effect. The largest yield stress which amounts to 300 kPa is achievable compared to previous GER fluid with 100 kPa. Microfluidic reactor, directing the flow of microliter volumes along microscale channels, offers the advantages of precise control of reagent loading, fast mixing and an enhanced reaction rate, cessation of the reaction at specific stages, and more. Basically, there are two microfluidic flow regimes, continuous flow and segmented flow (suspended droplets, channel-spanning slug, and wall-wetting films). Both flow regimes offer chemical reaction applications, e.g., continuous flow formation of polymer nanospheres and inorganic nanoparticles, size- and shape-control synthesis by segmented flow, and precipitate-forming reactions in droplets, wherein the segmented flow has gained more popularity in that area. The compartmentalization of segmented flow offers advantages to chemical

  20. Secure chip based encrypted search protocol in mobile office environments

    Directory of Open Access Journals (Sweden)

    Hyun-A Park

    2016-05-01

    Full Text Available This paper deals with largely two security problems between the cloud computing service and trusted platform module (TPM chip as a mobile convergent technology. At first, we solve the social issues from inside attackers, which is caused by that we regard server managers as trustworthy. In order to solve this problem, we propose encrypted DB retrieval system whose server manager cannot access on real data (plaintexts in mobile office environments of the cloud datacenter. The other problem is that cloud computing has limitless computing resources; however, it faces with the vulnerability of security. On the other hand, the TPM technology has been known as a symbol of physical security; however, it has the severe limitation of use such as hardware constraints or limited amount of non-volatile memory. To overcome the weakness and produce synergic effects between the two technologies, we combine two applications (cloud datacenter service, TPM chip as a mobile convergent technology. The main methods are TPM-security-client and masked keys. With these methods, the real keys are stored in TPM and the faked keys (masked keys are implemented for computations instead of real keys. Thus, the result of the faked keys is the same as the real keys. Consequently, this system is secure against both of the insiders and outsiders, the cloud computing service can improve security weaknesses.

  1. High performance magnesium anode in paper-based microfluidic battery, powering on-chip fluorescence assay.

    Science.gov (United States)

    Koo, Youngmi; Sankar, Jagannathan; Yun, Yeoheung

    2014-09-01

    A high power density and long-lasting stable/disposable magnesium battery anode was explored for a paper-based fluidic battery to power on-chip functions of various Point of Care (POC) devices. The single galvanic cell with magnesium foil anode and silver foil cathode in Origami cellulose chip provided open circuit potential, 2.2 V, and power density, 3.0 mW/cm(2). A paper-based fluidic galvanic cell was operated with one drop of water (80 μl) and continued to run until it was dry. To prove the concept about powering on-chip POC devices, two-serial galvanic cells are developed and incorporated with a UV-light emitting diode (λ = 365 nm) and fluorescence assay for alkaline phosphatase reaction. Further, detection using smart phones was performed for quantitative measurement of fluorescent density. To conclude, a magnesium-based fluidic battery paper chip was extremely low-cost, required minute sample volumes, was easy to dispose of, light weight, easy to stack, store and transport, easy to fabricate, scalable, and has faster analysis times.

  2. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.

    Science.gov (United States)

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-11-04

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)(-0.1) in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  3. Chip-based Three-dimensional Cell Culture in Perfused Micro-bioreactors

    Science.gov (United States)

    Gottwald, Eric; Lahni, Brigitte; Thiele, David; Giselbrecht, Stefan; Welle, Alexander; Weibezahn, Karl-Friedrich

    2008-01-01

    We have developed a chip-based cell culture system for the three-dimensional cultivation of cells. The chip is typically manufactured from non-biodegradable polymers, e.g., polycarbonate or polymethyl methacrylate by micro injection molding, micro hot embossing or micro thermoforming. But, it can also be manufactured from bio-degradable polymers. Its overall dimensions are 0.7 1 x 20 x 20 x 0.7 1 mm (h x w x l). The main features of the chips used are either a grid of up to 1156 cubic micro-containers (cf-chip) each the size of 120-300 x 300 x 300 μ (h x w x l) or round recesses with diameters of 300 μ and a depth of 300 μ (r-chip). The scaffold can house 10 Mio. cells in a three-dimensional configuration. For an optimal nutrient and gas supply, the chip is inserted in a bioreactor housing. The bioreactor is part of a closed steril circulation loop that, in the simplest configuration, is additionaly comprised of a roller pump and a medium reservoir with a gas supply. The bioreactor can be run in perfusion, superfusion, or even a mixed operation mode. We have successfully cultivated cell lines as well as primary cells over periods of several weeks. For rat primary liver cells we could show a preservation of organotypic functions for more than 2 weeks. For hepatocellular carcinoma cell lines we could show the induction of liver specific genes not or only slightly expressed in standard monolayer culture. The system might also be useful as a stem cell cultivation system since first differentiation experiments with stem cell lines were promising. PMID:19066592

  4. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications

    Directory of Open Access Journals (Sweden)

    Mohtashim Mansoor

    2016-11-01

    Full Text Available An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors, a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  5. Content-based image hashing using wave atoms

    Institute of Scientific and Technical Information of China (English)

    Liu Fang; Leung Hon-Yin; Cheng Lee-Ming; Ji Xiao-Yong

    2012-01-01

    It is well known that robustness,fragility,and security are three important criteria of image hashing; however how to build a system that can strongly meet these three criteria is still a challenge.In this paper,a content-based image hashing scheme using wave atoms is proposed,which satisfies the above criteria.Compared with traditional transforms like wavelet transform and discrete cosine transform (DCT),wave atom transform is adopted for the sparser expansion and better characteristics of texture feature extraction which shows better performance in both robustness and fragility.In addition,multi-frequency detection is presented to provide an application-defined trade-off.To ensure the security of the proposed approach and its resistance to a chosen-plaintext attack,a randomized pixel modulation based on the Rényi chaotic map is employed,combining with the nonliner wave atom transform.The experimental results reveal that the proposed scheme is robust against content-preserving manipulations and has a good discriminative capability to malicious tampering.

  6. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms

    Directory of Open Access Journals (Sweden)

    Piyush Dak

    2016-04-01

    Full Text Available Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with “open” digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.

  7. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms.

    Science.gov (United States)

    Dak, Piyush; Ebrahimi, Aida; Swaminathan, Vikhram; Duarte-Guevara, Carlos; Bashir, Rashid; Alam, Muhammad A

    2016-04-14

    Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC) platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with "open" digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.

  8. Heisenberg-limited atom clocks based on entangled qubits.

    Science.gov (United States)

    Kessler, E M; Kómár, P; Bishof, M; Jiang, L; Sørensen, A S; Ye, J; Lukin, M D

    2014-05-16

    We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time.

  9. Highly stable atomic vector magnetometer based on free spin precession.

    Science.gov (United States)

    Afach, S; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Grujić, Z D; Hayen, L; Hélaine, V; Kasprzak, M; Kirch, K; Knowles, P; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Naviliat-Cuncic, O; Piegsa, F M; Prashanth, P N; Quéméner, G; Rawlik, M; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severjins, N; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zsigmond, G

    2015-08-24

    We present a magnetometer based on optically pumped Cs atoms that measures the magnitude and direction of a 1 μT magnetic field. Multiple circularly polarized laser beams were used to probe the free spin precession of the Cs atoms. The design was optimized for long-time stability and achieves a scalar resolution better than 300 fT for integration times ranging from 80 ms to 1000 s. The best scalar resolution of less than 80 fT was reached with integration times of 1.6 to 6 s. We were able to measure the magnetic field direction with a resolution better than 10 μrad for integration times from 10 s up to 2000 s.

  10. Resonant mode for gravitational wave detectors based on atom interferometry

    Science.gov (United States)

    Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet

    2016-11-01

    We describe an atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wave packets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes. For instance, a binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to ΩGW˜10-14 for a two-satellite space-based detector.

  11. Continuous Jetting of Alginate Microfiber in Atmosphere Based on a Microfluidic Chip

    Directory of Open Access Journals (Sweden)

    Junyi Zhao

    2017-01-01

    Full Text Available We present a method based on a microfluidic chip that produces continuous jetting of alginate microfiber in the atmosphere to facilitate its collection and assembly. Through the analysis of the factors influencing the microfiber jetting, the principle and some microfluidic chip design criteria are discussed. A special nozzle is designed near the chip outlet, and deionized water is introduced into the microchannel through the nozzle to increase the flux and thus to prevent drop formation around the outlet which impedes the continuous jetting of microfiber. The experiments have reported the effectiveness of the proposed structure and shown that the introduction of sheath flow promotes the stability of the flow field in the microchannel and does not affect the morphology of microfiber. Simulations of velocity and pressure distribution in the microchannel are also conducted. Further, the jetting microfibers are collected and assembled into various 3D complex fiber-based macroscopic structures through patterning or reeling. Since the proposed structure is rather simple and can be easily integrated into other complex structures without adding more soft-lithographical steps, microfibers with various morphology and function can be synthesized and collected in a single chip, which can be applied to various fields, such as tissue engineering, biotechnology, and drug discovery.

  12. Design and Fabrication of a Monolithic Optoelectronic Integrated Circuit Chip Based on CMOS Compatible Technology

    Institute of Scientific and Technical Information of China (English)

    GUO Wei-Feng; ZHAO Yong; WANG Wan-Jun; SHAO Hai-Feng; YANG Jian-Yi; JIANG Xiao-Qing

    2012-01-01

    A monolithic optoelectronic integrated circuit chip on a silicon-on-insulator is designed and fabricated based on complementary metal oxide semiconductor compatible technology.The chip integrates an optical Mach-Zehnder modulator (MZM) and a CMOS driving circuit with the amplification function.Test results show that the extinction ratio of the MZM is close to 20dB and the small-signal gain of the CMOS driving circuit is about 26.9dB.A 50m V 10 MHz sine wave signal is amplified by the driving circuit,and then drives the MZM successfully.%A monolithic optoelectronic integrated circuit chip on a silicon-on-insulator is designed and fabricated based on complementary metal oxide semiconductor compatible technology. The chip integrates an optical Mach-Zehnder modulator (MZM) and a CMOS driving circuit with the amplification function. Test results show that the extinction ratio of the MZM is close to 20 dB and the small-signal gain of the CMOS driving circuit is about 26.9dB. A 50mV 10MHz sine wave signal is amplified by the driving circuit, and then drives the MZM successfully.

  13. Cryogel micromechanics unraveled by atomic force microscopy-based nanoindentation.

    Science.gov (United States)

    Welzel, Petra B; Friedrichs, Jens; Grimmer, Milauscha; Vogler, Steffen; Freudenberg, Uwe; Werner, Carsten

    2014-11-01

    Cell-instructive physical characteristics of macroporous scaffolds, developed for tissue engineering applications, often remain difficult to assess. Here, an atomic force microscopy-based nanoindentation approach is adapted to quantify the local mechanical properties of biohybrid glycosaminoglycan-poly(ethylene glycol) cryogels. Resulting from cryoconcentration effects upon gel formation, cryogel struts are observed to feature a higher stiffness compared to the corresponding bulk hydrogel materials. Local Young's moduli, porosity, and integral moduli of the cryogel scaffolds are compared in dependence on gel formation parameters. The results provide valuable insights into the cryogelation process and a base for adjusting physical characteristics of the obtained cryogel scaffolds, which can critically influence the cellular response.

  14. Development of an AOI system for chips with a hole on backside based on a frame imager

    Science.gov (United States)

    Chen, Ming-Fu; Chou, Chih-Chung; Lien, Chun-Chien; Weng, Rui-Cian

    2016-01-01

    Defects exist for a few of IC chips during fabrication and packaging. The cost for follow-up processes can be reduced if chips with defect size of impacting chip quality can be inspected and removed during the earlier sorting process. Products will be more cost-effective and competitive. According to the inspecting requirements for microphone chips, developed AOI system has to detect the boundary flaws and hole-inside defects with size of greater than criteria from chips backside. Both the length and width of chip size are less than 5 mm and there's depth difference between the surface of chip backside and the hole-inside membrance. Thus image acquisition device is designed and implemented by an area scan imager and a telecentric lenses with a coaxial LED lighting module. Therefore we can ignore the image radiometric and geometric calibration, and keep off the shadow inside the rim of hole. An algorithm to detect defects and derive their size based on the edge pixels statistic distribution and binary chip edge image is selected. Developed AOI system then can meet the requirements of real-time defect inspection with high accuracy and performance. Frame opto-mechanical device has the spatial resolution of 5μm and FOV of 6.4 x 5.1 mm. And defect inspection can be completed within 150 ms for the chip size of 2.5 x 3.0 mm. The processes of image acquisition and defect inspection can be accomplished during the chip sorting process to satisfy the real-time online inspection. Inspected chips are placed in GO/NG trays in real-time according to their quality. From the verification results compared with the ones by microscope, the inspection accuracy is better than system requirements. The over kill rate is less than 0.3% and 3% for chip boundary flaws and hole-inside defects respectively. But it still can't be inspected correctly for the hole-inside defects of only one membrance breakage. In the future, we will improve the illumination and detecting algorithm to solve this

  15. Microfluidic chip-based analytical system for rapid screening of photocatalysts.

    Science.gov (United States)

    Zhang, Hao; Wang, Jing-Jing; Fan, Jie; Fang, Qun

    2013-11-15

    A simple and efficient microfluidic chip-based analytical system for rapid screening of photocatalysts was developed. The catalyst screening system consisted of a microchip with multiple channels for parallel reactions, a UV light source, and a CCD camera-based photometric detection system for monitoring the photocatalytic reaction. A novel microfluidic introduction method for loading particle samples into chip microchannels was established using dry sample powders and wedge-structure channel design. With this method, multiple different photocatalyst samples could be quickly introduced into the microchip with good reproducibility without the need of additional pumps or valves. We applied the present system in the rapid screening of doping TiO2 photocatalysts in terms of their activity for methylene blue (MB) degradation under UV light irradiation. Ten parallel photocatalyst screening reactions were achieved within 15 min in the multi-channel chip. We also examined nine element doped TiO2 materials to investigate the doping effects of different elements on TiO2. Compared with conventional systems, the photocatalyst consumption (0.1mg) in the present system was significantly reduced at least 100 times. High reaction rate in chip microreactors was obtained with an increase of two orders of magnitude over bulk reactors. The miniaturization of the photocatalytic reaction on the microchip significantly improves the reaction rates, reduces the sample and reagent consumptions, and increases the throughput of screening for multiple catalyst samples in parallel. The present work provides a novel application for microfluidic chip-based analytical systems, as well as a rapid, highly-efficient and low-consumption method for screening of photocatalysts.

  16. Portable atomic frequency standard based on coherent population trapping

    Science.gov (United States)

    Shi, Fan; Yang, Renfu; Nian, Feng; Zhang, Zhenwei; Cui, Yongshun; Zhao, Huan; Wang, Nuanrang; Feng, Keming

    2015-05-01

    In this work, a portable atomic frequency standard based on coherent population trapping is designed and demonstrated. To achieve a portable prototype, in the system, a single transverse mode 795nm VCSEL modulated by a 3.4GHz RF source is used as a pump laser which generates coherent light fields. The pump beams pass through a vapor cell containing atom gas and buffer gas. This vapor cell is surrounded by a magnetic shield and placed inside a solenoid which applies a longitudinal magnetic field to lift the Zeeman energy levels' degeneracy and to separate the resonance signal, which has no first-order magnetic field dependence, from the field-dependent resonances. The electrical control system comprises two control loops. The first one locks the laser wavelength to the minimum of the absorption spectrum; the second one locks the modulation frequency and output standard frequency. Furthermore, we designed the micro physical package and realized the locking of a coherent population trapping atomic frequency standard portable prototype successfully. The short-term frequency stability of the whole system is measured to be 6×10-11 for averaging times of 1s, and reaches 5×10-12 at an averaging time of 1000s.

  17. Predicting activity approach based on new atoms similarity kernel function.

    Science.gov (United States)

    Abu El-Atta, Ahmed H; Moussa, M I; Hassanien, Aboul Ella

    2015-07-01

    Drug design is a high cost and long term process. To reduce time and costs for drugs discoveries, new techniques are needed. Chemoinformatics field implements the informational techniques and computer science like machine learning and graph theory to discover the chemical compounds properties, such as toxicity or biological activity. This is done through analyzing their molecular structure (molecular graph). To overcome this problem there is an increasing need for algorithms to analyze and classify graph data to predict the activity of molecules. Kernels methods provide a powerful framework which combines machine learning with graph theory techniques. These kernels methods have led to impressive performance results in many several chemoinformatics problems like biological activity prediction. This paper presents a new approach based on kernel functions to solve activity prediction problem for chemical compounds. First we encode all atoms depending on their neighbors then we use these codes to find a relationship between those atoms each other. Then we use relation between different atoms to find similarity between chemical compounds. The proposed approach was compared with many other classification methods and the results show competitive accuracy with these methods.

  18. NI Based System for Seu Testing of Memory Chips for Avionics

    Directory of Open Access Journals (Sweden)

    Boruzdina Anna

    2016-01-01

    Full Text Available This paper presents the results of implementation of National Instrument based system for Single Event Upset testing of memory chips into neutron generator experimental facility, which used for SEU tests for avionics purposes. Basic SEU testing algorithm with error correction and constant errors detection is presented. The issues of radiation shielding of NI based system are discussed and solved. The examples of experimental results show the applicability of the presented system for SEU memory testing under neutrons influence.

  19. Development of single-chip fuzzy controller based on FFSI in binary

    Institute of Scientific and Technical Information of China (English)

    张吉礼; 欧进萍; 孙德兴

    2003-01-01

    Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digitalfuzzy controller based on looking up fuzzy control responding table is only relative to the table and not relative tothe fuzzy control rules in the practical control process. Aiming at above problem and having combined fuzzy log-ic reasoning with digital operational characteristics of a single-chip microcomputer, functioning-fuzzy-subset in-ference (FFSI) in binary, in which triangle membership functions of error and error-in-change are all represen-ted in binary and singleton membership functions of control variable is binary too, has been introduced. The cir-cuit principle plans of a single-chip fuzzy controller have been introduced for development of its hardware, andthe primary program structure, fuzzy logic reasoning subroutine, serial communication subroutine with PC andreliability design of the fuzzy controller are all discussed in detail. The control of indoor temperature by a fuzzycontroller has been conducted using a testing-room thermodynamic system. Research results show that the FFSIin binary can exercise a concise fuzzy control in a single-chip fuzzy controller, and the fuzzy controller is there-fore reliable and possesses a high performance-price ratio.

  20. ViriChip: a solid phase assay for detection and identification of viruses by atomic force microscopy

    Science.gov (United States)

    Nettikadan, Saju R.; Johnson, James C.; Vengasandra, Srikanth G.; Muys, James; Henderson, Eric

    2004-03-01

    Bionanotechnology can be viewed as the integration of tools and concepts in nanotechnology with the attributes of biomolecules. We report here on an atomic force microscopy-immunosensor assay (AFMIA) that couples AFM with solid phase affinity capture of biological entities for the rapid detection and identification of group B coxsackievirus particles. Virus identification is based on type-specific immunocapture and the morphological properties of the captured viruses as obtained by the AFM. Representatives of the six group B coxsackieviruses have been specifically captured from 1 µl volumes of clarified cell lysates, body fluids and environmental samples. Concentration and kinetic profiles for capture indicate that detection is possible at 103 TCID50 µl-1 and the dynamic range of the assay spans three logs. The results demonstrate that the melding of a nanotechnological tool (AFM) with biotechnology (solid phase immunocapture of virus particles) can create a clinically relevant platform, useful for the detection and identification of enterovirus particles in a variety of samples.

  1. Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor

    DEFF Research Database (Denmark)

    El-Ali, Jamil; Perch-Nielsen, Ivan R.; Poulsen, Claus Riber

    2004-01-01

    We present a SU-8 based polymerase chain reaction (PCR) chip with integrated platinum thin film heaters and temperature sensor. The device is fabricated in SU-8 on a glass substrate. The use of SU-8 provides a simple microfabrication process for the PCR chamber, controllable surface properties...... and can allow on chip integration to other SU-8 based functional elements. Finite element modeling (FEM) and experiments show that the temperature distribution in the PCR chamber is homogeneous and that the chip is capable of fast thermal cycling. With heating and cooling rates of up to 50 and 30 degrees...

  2. Debugging systems-on-chip communication-centric and abstraction-based techniques

    CERN Document Server

    Vermeulen, Bart

    2014-01-01

    This book describes an approach and supporting infrastructure to facilitate debugging the silicon implementation of a System-on-Chip (SOC), allowing its associated product to be introduced into the market more quickly.  Readers learn step-by-step the key requirements for debugging a modern, silicon SOC implementation, nine factors that complicate this debugging task, and a new debug approach that addresses these requirements and complicating factors.  The authors’ novel communication-centric, scan-based, abstraction-based, run/stop-based (CSAR) debug approach is discussed in detail, showing how it helps to meet debug requirements and address the nine, previously identified factors that complicate debugging silicon implementations of SOCs. The authors also derive the debug infrastructure requirements to support debugging of a silicon implementation of an SOC with their CSAR debug approach. This debug infrastructure consists of a generic on-chip debug architecture, a configurable automated design-for-debug ...

  3. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  4. Atomic physics and quantum optics using superconducting circuits.

    Science.gov (United States)

    You, J Q; Nori, Franco

    2011-06-29

    Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.

  5. Atomic Structures of Riboflavin (Vitamin B2) and its Reduced Form with Bond Lengths Based on Additivity of Atomic Radii

    CERN Document Server

    Heyrovska, Raji

    2008-01-01

    It has been shown recently that chemical bond lengths, in general, like those in the components of nucleic acids, caffeine related compounds, all essential amino acids, methane, benzene, graphene and fullerene are sums of the radii of adjacent atoms constituting the bond. Earlier, the crystal ionic distances in all alkali halides and lengths of many partially ionic bonds were also accounted for by the additivity of ionic as well as covalent radii. Here, the atomic structures of riboflavin and its reduced form are presented based on the additivity of the same set of atomic radii as for other biological molecules.

  6. Partition-based Low Power DFT Methodology for System-on-chips

    Institute of Scientific and Technical Information of China (English)

    LI Yu-fei; CHEN Jian; FU Yu-zhuo

    2007-01-01

    This paper presents a partition-based Design-forTest (DFT) technique to reduce the power consumption during scan-based testing. This method is based on partitioning the chip into several independent scan domains. By enabling the scan domains alternatively, only a fraction of the entire chip will be active at the same time, leading to Iow power consumption during test. Therefore, it will significantly reduce the possibility of Electronic Migration and Overheating. In order to prevent the drop of fault coverage, wrappers on the boundaries between scan domains are employed. This paper also presents a detailed design flow based on Electronics Design Automation(EDA) tools from Synopsy(s) to implement the proposed test structure. The proposed DFT method is experimented on a state-of-theart System-on-chips (SOC). The simulation results show a significant reduction in both average and peak power dissipation without sacrificing the fault coverage and test time. This SOC has been taped out in TSMC and finished the final test in ADVANTEST.

  7. Signal Detection of Multi-Channel Capillary Electrophoresis Chip Based on CCD

    Science.gov (United States)

    Lv, Hongfeng; Yan, Weiping; Yang, Xiaobo; Li, Jiechao; Zhu, Jieying

    2012-12-01

    A kind of multi-channel capillary electrophoresis (CE) chip signal detection system based on CCD was developed. The output signal of the CCD sensor was processed by a series of pre-processing circuits and ADC, and then it was collected by the Field Programmable Gate Array (FPGA) chip which communicated with a host computer. The core in FPGA was designed to control the signal flow of the CCD and transfer the data to PC based on a Nios II embedded soft-processor. The application of PC was used to store the data and demonstrate the curve. The measurement of the fluorescent signals for different concentration Rhodamine B dyes is presented and the comparison with other detection systems is also discussed.

  8. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Henriksen, Anders Dahl

    2014-01-01

    of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface......We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches....... The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover...

  9. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    Science.gov (United States)

    Rizzi, Giovanni; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F.

    2015-04-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP.

  10. Highly efficient fiber-to-chip evanescent coupling based on subwavelength-diameter optical fibers

    Institute of Scientific and Technical Information of China (English)

    Xiaowei Shen; Xinwan Li; Lijie Zhou; Zehua Hong; Xiaocao Yu; Ying Zhang; Jianping Chen

    2011-01-01

    @@ A novel, compact, and highly efficient fiber-to-chip evanescent coupling structure is proposed based on a subwavelength-diameter fiber.The coupling structure is characterized by a large misalignment tolerance and easy fabrication.The dependence of coupling efficiency on various parameters is calculated and analyzed.%A novel, compact, and highly efficient fiber-to-chip evanescent coupling structure is proposed based on a subwavelength-diameter fiber. The coupling structure is characterized by a large misalignment tolerance and easy fabrication. The dependence of coupling efficiency on various parameters is calculated and analyzed. The simulation results show that a coupling efficiency as high as 95% can be obtained within a coupling length of <4 μm.

  11. An Energy-Efficient High-Throughput Mesh-Based Photonic On-Chip Interconnect for Many-Core Systems

    OpenAIRE

    Achraf Ben Ahmed; Abderazek Ben Abdallah

    2016-01-01

    Future high-performance embedded and general purpose processors and systems-on-chip are expected to combine hundreds of cores integrated together to satisfy the power and performance requirements of large complex applications. As the number of cores continues to increase, the employment of low-power and high-throughput on-chip interconnect fabrics becomes imperative. In this work, we present a novel mesh-based photonic on-chip interconnect, named PHENIC-II, for future high-performance many-co...

  12. Sample processing for DNA chip array-based analysis of enterohemorrhagic Escherichia coli (EHEC)

    OpenAIRE

    Enfors Sven-Olof; Wegrzyn Grzegorz; Basselet Pascal; Gabig-Ciminska Magdalena

    2008-01-01

    Abstract Background Exploitation of DNA-based analyses of microbial pathogens, and especially simultaneous typing of several virulence-related genes in bacteria is becoming an important objective of public health these days. Results A procedure for sample processing for a confirmative analysis of enterohemorrhagic Escherichia coli (EHEC) on a single colony with DNA chip array was developed and is reported here. The protocol includes application of fragmented genomic DNA from ultrasonicated co...

  13. On-site monitoring of atomic density number for an all-optical atomic magnetometer based on atomic spin exchange relaxation.

    Science.gov (United States)

    Zhang, Hong; Zou, Sheng; Chen, Xiyuan; Ding, Ming; Shan, Guangcun; Hu, Zhaohui; Quan, Wei

    2016-07-25

    We present a method for monitoring the atomic density number on site based on atomic spin exchange relaxation. When the spin polarization P ≪ 1, the atomic density numbers could be estimated by measuring magnetic resonance linewidth in an applied DC magnetic field by using an all-optical atomic magnetometer. The density measurement results showed that the experimental results the theoretical predictions had a good consistency in the investigated temperature range from 413 K to 463 K, while, the experimental results were approximately 1.5 ∼ 2 times less than the theoretical predictions estimated from the saturated vapor pressure curve. These deviations were mainly induced by the radiative heat transfer efficiency, which inevitably leaded to a lower temperature in cell than the setting temperature.

  14. Novel definition files for human GeneChips based on GeneAnnot

    Directory of Open Access Journals (Sweden)

    Ferrari Sergio

    2007-11-01

    Full Text Available Abstract Background Improvements in genome sequence annotation revealed discrepancies in the original probeset/gene assignment in Affymetrix microarray and the existence of differences between annotations and effective alignments of probes and transcription products. In the current generation of Affymetrix human GeneChips, most probesets include probes matching transcripts from more than one gene and probes which do not match any transcribed sequence. Results We developed a novel set of custom Chip Definition Files (CDF and the corresponding Bioconductor libraries for Affymetrix human GeneChips, based on the information contained in the GeneAnnot database. GeneAnnot-based CDFs are composed of unique custom-probesets, including only probes matching a single gene. Conclusion GeneAnnot-based custom CDFs solve the problem of a reliable reconstruction of expression levels and eliminate the existence of more than one probeset per gene, which often leads to discordant expression signals for the same transcript when gene differential expression is the focus of the analysis. GeneAnnot CDFs are freely distributed and fully compliant with Affymetrix standards and all available software for gene expression analysis. The CDF libraries are available from http://www.xlab.unimo.it/GA_CDF, along with supplementary information (CDF libraries, installation guidelines and R code, CDF statistics, and analysis results.

  15. Demonstration of a chip-based optical isolator with parametric amplification

    Science.gov (United States)

    Hua, Shiyue; Wen, Jianming; Jiang, Xiaoshun; Hua, Qian; Jiang, Liang; Xiao, Min

    2016-11-01

    Despite being fundamentally challenging in integrated (nano)photonics, achieving chip-based light non-reciprocity becomes increasingly urgent in signal processing and optical communications. Because of material incompatibilities in conventional approaches based on the Faraday effect, alternative solutions have resorted to nonlinear processes to obtain one-way transmission. However, dynamic reciprocity in a recent theoretical analysis has pinned down the functionalities of these nonlinear isolators. To bypass such dynamic reciprocity, we here demonstrate an optical isolator on a silicon chip enforced by phase-matched parametric amplification in four-wave mixing. Using a high-Q microtoroid resonator, we realize highly non-reciprocal transport at the 1,550 nm wavelength when waves are injected from both directions in two different operating configurations. Our design, compatible with current complementary metal-oxide-semiconductor (CMOS) techniques, yields convincing isolation performance with sufficiently low insertion loss for a wide range of input power levels. Moreover, our work demonstrates the possibility of designing chip-based magnetic-free optical isolators for information processing and laser protection.

  16. Sample processing for DNA chip array-based analysis of enterohemorrhagic Escherichia coli (EHEC

    Directory of Open Access Journals (Sweden)

    Enfors Sven-Olof

    2008-10-01

    Full Text Available Abstract Background Exploitation of DNA-based analyses of microbial pathogens, and especially simultaneous typing of several virulence-related genes in bacteria is becoming an important objective of public health these days. Results A procedure for sample processing for a confirmative analysis of enterohemorrhagic Escherichia coli (EHEC on a single colony with DNA chip array was developed and is reported here. The protocol includes application of fragmented genomic DNA from ultrasonicated colonies. The sample processing comprises first 2.5 min of ultrasonic treatment, DNA extraction (2×, and afterwards additional 5 min ultrasonication. Thus, the total sample preparation time for a confirmative analysis of EHEC is nearly 10 min. Additionally, bioinformatic revisions were performed in order to design PCR primers and array probes specific to most conservative regions of the EHEC-associated genes. Six strains with distinct pathogenic properties were selected for this study. At last, the EHEC chip array for a parallel and simultaneous detection of genes etpC-stx1-stx2-eae was designed and examined. This should permit to sense all currently accessible variants of the selected sequences in EHEC types and subtypes. Conclusion In order to implement the DNA chip array-based analysis for direct EHEC detection the sample processing was established in course of this work. However, this sample preparation mode may also be applied to other types of EHEC DNA-based sensing systems.

  17. Development of a compact cold-atom atomic clock based on coherent population trapping

    Science.gov (United States)

    Blanshan, Eric M.

    Field-grade atomic clocks capable of primary standard performance in compact physics packages would be of significant value in a variety of applications ranging from network synchronization and secure communications to GPS hold-over and inertial navigation. A cold-atom coherent population trapping (CACPT) clock featuring laser-cooled atoms and pulsed Ramsey interrogation is a strong candidate for this technology if the principal frequency shifts can be controlled and the performance degradation associated with miniaturization can be overcome. In this thesis, research focused on the development of this type of compact atomic clock is presented. To address the low atom numbers obtained in small cold-atom sources, experiments were performed in which an atomic beam was decelerated with bichromatic stimulated laser forces and loaded into a mm-scale magneto-optical trap, increasing the atom number by a factor of 12.5. A CACPT clock using the high-contrast lin||lin optical interrogation technique was developed and achieved a stability of 7 x 10-13 after one hour of integration. Doppler shifts in the clock are explained using a simple kinematic model and canceled by interrogating the atoms with a counter-propagating CPT configuration. Finally, a thorough characterization of the AC-stark effect in lin||lin CPT was performed. Observed shifts are explained in terms of contributions from coherent CPT-generating couplings and population transfer effects caused by optical pumping from incoherent light. Measurements are compared with existing and new theoretical treatments, and a laser configuration is identified that reduces clock drift from light shifts to less than 10-14 for the current system.

  18. A compact atomic beam based system for Doppler-free laser spectroscopy of Strontium atoms

    OpenAIRE

    Verma, Gunjan; Vishwakarma, Chetan; Dharmadhikari, C. V.; Rapol, Umakant D.

    2016-01-01

    We report the construction of a simple, light weight and compact atomic beam spectroscopy cell for Strontium atoms. The cell is built using glass blowing technique and includes a simple Titanium Sublimation Pump for active pumping of the residual and background gases to maintain ultra-high vacuum. Commercially available and electrically heated dispenser source is used to generate the beam of Sr atoms. We perform spectroscopy on the $5s^2\\ ^1S_0\\longrightarrow 5s\\ 5p\\ ^1P_1$ transition to obta...

  19. The news about Vienna Atomic Line Data Base

    Science.gov (United States)

    Piskunov, N.; Ryabchikova, T. A.; Weiss, W. W.

    We describe the main changes in the ``Vienna Atomic Line Data Base'' (VALD, Piskunov et al., 1995 and Piskunov, 1996) that have been made since the first release in 1994. The original VALD lists have been complemented with critically evaluated data obtained from experimental measurements and theoretical calculations which are necessary for computing state-of-the-art line opacities in stellar atmospheres, as well as for spectral synthesis for high precision studies (e.g. abundances, radial velocities etc.). In this paper we present new and improved data sets for chemical elements that have already been included in VALD, for new elements and for additional higher ionized species. Software modifications allow remote users of VALD to specify individual extraction parameters as an alternative to the default settings of the VALD team and to have direct control over the quality ranking of line data. The new World--Wide--Web interface provides easy access to all new features. The support for the mirror site permitted opening of two additional VALD servers at Hoddard Space Flight Center (USA) and at Uppsala Astronomical Observatory (Sweden). For proper crediting of all authors of atomic data, VALD now includes a compilation of all publications used to any replies.

  20. Extraction, amplification and detection of DNA in microfluidic chip-based assays

    KAUST Repository

    Wu, Jinbo

    2013-12-20

    This review covers three aspects of PCR-based microfluidic chip assays: sample preparation, target amplification, and product detection. We also discuss the challenges related to the miniaturization and integration of each assay and make a comparison between conventional and microfluidic schemes. In order to accomplish these essential assays without human intervention between individual steps, the micro-components for fluid manipulation become critical. We therefore summarize and discuss components such as microvalves (for fluid regulation), pumps (for fluid driving) and mixers (for blending fluids). By combining the above assays and microcomponents, DNA testing of multi-step bio-reactions in microfluidic chips may be achieved with minimal external control. The combination of assay schemes with the use of micro-components also leads to rapid methods for DNA testing via multi-step bioreactions. Contains 259 references.

  1. A superhydrophobic chip based on SU-8 photoresist pillars suspended on a silicon nitride membrane.

    Science.gov (United States)

    Marinaro, Giovanni; Accardo, Angelo; De Angelis, Francesco; Dane, Thomas; Weinhausen, Britta; Burghammer, Manfred; Riekel, Christian

    2014-10-01

    We developed a new generation of superhydrophobic chips optimized for probing ultrasmall sample quantities by X-ray scattering and fluorescence techniques. The chips are based on thin Si3N4 membranes with a tailored pattern of SU-8 photoresist pillars. Indeed, aqueous solution droplets can be evaporated and concentrated at predefined positions using a non-periodic pillar pattern. We demonstrated quantitatively the deposition and aggregation of gold glyconanoparticles from the evaporation of a nanomolar droplet in a small spot by raster X-ray nanofluorescence. Further, raster nanocrystallography of biological objects such as rod-like tobacco mosaic virus nanoparticles reveals crystalline macro-domain formation composed of highly oriented nanorods.

  2. Low latency on chip communication based on hybrid NOC Architecture using X-Y router

    Directory of Open Access Journals (Sweden)

    Tejas wini Deotare

    2014-05-01

    Full Text Available On-chip co mmunication has two different type of architecture which can be classified as Bus and mesh based Networks- on-Chip (No C. Each of them has diffe rent features and applications. In this paper, we construct the hybrid architecture with using bus and mesh NOC architecture. In the hybrid architecture, heavy communication affinity IPcores are placed in the same subsystem. and this large mesh No C get partitioned into several subsystems and one on one individual IPs, so that there is the reduction in the transmission latency of NoC.Efficient partition and mapping algorith m is proposed for reduction of the latency on the hybrid NOC arch itecture.It shows that an average latency improvement of 17.6% and more can be obtained when compared with the conventional mesh No C arch itecture.

  3. Lab-on-chip for liquid biopsy (LoC-LB) based on dielectrophoresis.

    Science.gov (United States)

    Mathew, Bobby; Alazzam, Anas; Khashan, Saud; Abutayeh, Mohammad

    2017-03-01

    This short communication presents the proof-of-concept of a novel dielectrophoretic lab-on-chip for identifying/separating circulating tumor cells for purposes of liquid biopsy. The device consists of a polydimethylsiloxane layer, containing a microchannel, bonded on a glass substrate that holds two sets of planar interdigitated transducer electrodes. The lab-on-chip is operated at a frequency that enables dielectrophoretic force to sort cells, based on type, along the lateral direction. The operating frequency ensures attraction force toward the electrodes on cancer cells and repulsion force toward the center of the microchannel on other cells. Initial tests for demonstrating proof-of-concept have successfully identified/separated green fluorescent protein-labelled MDA-MB-231 breast cancer cells from a mixture of the same and regular blood cells suspended in low conductivity sucrose/dextrose medium.

  4. A CDMA Based Scalable Hierarchical Architecture for Network-On-Chip

    Directory of Open Access Journals (Sweden)

    Mohamed A. Abd El Ghany

    2012-09-01

    Full Text Available A Scalable hierarchical architecture based Code-Division Multiple Access (CDMA is proposed for high performance Network-on-Chip (NoC. This hierarchical architecture provides the integration of a large number of IPs in a single on-chip system. The network encoding and decoding schemes for CDMA transmission are provided. The proposed CDMA NoC architecture is compared to the conventional architecture in terms of latency, area and power dissipation. The overall area required to implement the proposed CDMA NoC design is reduced by 24.2%. The design decreases the latency of the network by 40%. The total power consumption required to achieve the proposed design is also decreased by 25%.

  5. A superhydrophobic chip based on SU-8 photoresist pillars suspended on a silicon nitride membrane

    KAUST Repository

    Marinaro, Giovanni

    2014-07-28

    We developed a new generation of superhydrophobic chips optimized for probing ultrasmall sample quantities by X-ray scattering and fluorescence techniques. The chips are based on thin Si3N4 membranes with a tailored pattern of SU-8 photoresist pillars. Indeed, aqueous solution droplets can be evaporated and concentrated at predefined positions using a non-periodic pillar pattern. We demonstrated quantitatively the deposition and aggregation of gold glyconanoparticles from the evaporation of a nanomolar droplet in a small spot by raster X-ray nanofluorescence. Further, raster nanocrystallography of biological objects such as rod-like tobacco mosaic virus nanoparticles reveals crystalline macro-domain formation composed of highly oriented nanorods. © 2014 the Partner Organisations.

  6. High Speed Terahertz Modulator on the Chip Based on Tunable Terahertz Slot Waveguide

    Science.gov (United States)

    Singh, P. K.; Sonkusale, S.

    2017-01-01

    This paper presents an on-chip device that can perform gigahertz-rate amplitude modulation and switching of broadband terahertz electromagnetic waves. The operation of the device is based on the interaction of confined THz waves in a novel slot waveguide with an electronically tunable two dimensional electron gas (2DEG) that controls the loss of the THz wave propagating through this waveguide. A prototype device is fabricated which shows THz intensity modulation of 96% at 0.25 THz carrier frequency with low insertion loss and device length as small as 100 microns. The demonstrated modulation cutoff frequency exceeds 14 GHz indicating potential for the high-speed modulation of terahertz waves. The entire device operates at room temperature with low drive voltage (power consumption. The device architecture has potential for realization of the next generation of on-chip modulators and switches at THz frequencies.

  7. An all-atom structure-based potential for proteins: bridging minimal models with all-atom empirical forcefields.

    Science.gov (United States)

    Whitford, Paul C; Noel, Jeffrey K; Gosavi, Shachi; Schug, Alexander; Sanbonmatsu, Kevin Y; Onuchic, José N

    2009-05-01

    Protein dynamics take place on many time and length scales. Coarse-grained structure-based (Go) models utilize the funneled energy landscape theory of protein folding to provide an understanding of both long time and long length scale dynamics. All-atom empirical forcefields with explicit solvent can elucidate our understanding of short time dynamics with high energetic and structural resolution. Thus, structure-based models with atomic details included can be used to bridge our understanding between these two approaches. We report on the robustness of folding mechanisms in one such all-atom model. Results for the B domain of Protein A, the SH3 domain of C-Src Kinase, and Chymotrypsin Inhibitor 2 are reported. The interplay between side chain packing and backbone folding is explored. We also compare this model to a C(alpha) structure-based model and an all-atom empirical forcefield. Key findings include: (1) backbone collapse is accompanied by partial side chain packing in a cooperative transition and residual side chain packing occurs gradually with decreasing temperature, (2) folding mechanisms are robust to variations of the energetic parameters, (3) protein folding free-energy barriers can be manipulated through parametric modifications, (4) the global folding mechanisms in a C(alpha) model and the all-atom model agree, although differences can be attributed to energetic heterogeneity in the all-atom model, and (5) proline residues have significant effects on folding mechanisms, independent of isomerization effects. Because this structure-based model has atomic resolution, this work lays the foundation for future studies to probe the contributions of specific energetic factors on protein folding and function.

  8. Quantum repeaters based on atomic ensembles and linear optics

    Science.gov (United States)

    Sangouard, Nicolas; Simon, Christoph; de Riedmatten, Hugues; Gisin, Nicolas

    2011-01-01

    The distribution of quantum states over long distances is limited by photon loss. Straightforward amplification as in classical telecommunications is not an option in quantum communication because of the no-cloning theorem. This problem could be overcome by implementing quantum repeater protocols, which create long-distance entanglement from shorter-distance entanglement via entanglement swapping. Such protocols require the capacity to create entanglement in a heralded fashion, to store it in quantum memories, and to swap it. One attractive general strategy for realizing quantum repeaters is based on the use of atomic ensembles as quantum memories, in combination with linear optical techniques and photon counting to perform all required operations. Here the theoretical and experimental status quo of this very active field are reviewed. The potentials of different approaches are compared quantitatively, with a focus on the most immediate goal of outperforming the direct transmission of photons.

  9. Quantum repeaters based on atomic ensembles and linear optics

    CERN Document Server

    Sangouard, Nicolas; de Riedmatten, Hugues; Gisin, Nicolas

    2009-01-01

    The distribution of quantum states over long distances is limited by photon loss. Straightforward amplification as in classical telecommunications is not an option in quantum communication because of the no-cloning theorem. This problem could be overcome by implementing quantum repeater protocols, which create long-distance entanglement from shorter-distance entanglement via entanglement swapping. Such protocols require the capacity to create entanglement in a heralded fashion, to store it in quantum memories, and to swap it. One attractive general strategy for realizing quantum repeaters is based on the use of atomic ensembles as quantum memories, in combination with linear optical techniques and photon counting to perform all required operations. Here we review the theoretical and experimental status quo of this very active field. We compare the potential of different approaches quantitatively, with a focus on the most immediate goal of outperforming the direct transmission of photons.

  10. Fiber-to-Waveguide and 3D Chip-to-Chip Light Coupling Based on Bent Metal-Clad Waveguides

    CERN Document Server

    Lu, Zhaolin; Shi, Kaifeng

    2016-01-01

    Efficient fiber-to-waveguide light coupling has been a key issue in integrated photonics for many years. The main challenge lies in the huge mode mismatch between an optical fiber and a single mode waveguide. Herein, we present a novel fiber-to-waveguide coupler, named "L-coupler", through which the light fed from the top of a chip can bend 90{\\deg} with low reflection and is then efficiently coupled into an on-chip Si waveguide within a short propagation distance (<20{\\mu}m). The key element is a bent metal-clad waveguide with a big matched input port. According to our finite-difference time-domain (FDTD) simulation, the coupling efficiency is over 80% within a broad range of working wavelengths in the near-infrared regime for a transverse electric input Gaussian wave. The coupler is polarization-dependent, with very low coupling efficiency (6%-9%) for transverse magnetic waves. The coupler can also be used for three-dimensional (3D) chip-to-chip optical interconnection by efficiently coupling light into ...

  11. VLSI design of an RSA encryption/decryption chip using systolic array based architecture

    Science.gov (United States)

    Sun, Chi-Chia; Lin, Bor-Shing; Jan, Gene Eu; Lin, Jheng-Yi

    2016-09-01

    This article presents the VLSI design of a configurable RSA public key cryptosystem supporting the 512-bit, 1024-bit and 2048-bit based on Montgomery algorithm achieving comparable clock cycles of current relevant works but with smaller die size. We use binary method for the modular exponentiation and adopt Montgomery algorithm for the modular multiplication to simplify computational complexity, which, together with the systolic array concept for electric circuit designs effectively, lower the die size. The main architecture of the chip consists of four functional blocks, namely input/output modules, registers module, arithmetic module and control module. We applied the concept of systolic array to design the RSA encryption/decryption chip by using VHDL hardware language and verified using the TSMC/CIC 0.35 m 1P4 M technology. The die area of the 2048-bit RSA chip without the DFT is 3.9 × 3.9 mm2 (4.58 × 4.58 mm2 with DFT). Its average baud rate can reach 10.84 kbps under a 100 MHz clock.

  12. HARDWARE IMPLEMENTATION OF PIPELINE BASED ROUTER DESIGN FOR ON-CHIP NETWORK

    Directory of Open Access Journals (Sweden)

    U. Saravanakumar

    2012-12-01

    Full Text Available As the feature size is continuously decreasing and integration density is increasing, interconnections have become a dominating factor in determining the overall quality of a chip. Due to the limited scalability of system bus, it cannot meet the requirement of current System-on-Chip (SoC implementations where only a limited number of functional units can be supported. Long global wires also cause many design problems, such as routing congestion, noise coupling, and difficult timing closure. Network-on-Chip (NoC architectures have been proposed to be an alternative to solve the above problems by using a packet-based communication network. In this paper, the Circuit-Switched (CS Router was designed and analysed the various parameters such as power, timing and area. The CS router has taken more number of cycles to transfer the data from source to destination. So the pipelining concept was implemented by adding registers in the CS router architecture. The proposed architecture increases the speed of operation and reduces the critical path of the circuit. The router has been implemented using Verilog HDL. The parameters area, power and timing were calculated in 130 nm CMOS technology using Synopsys tool with nominal operating voltage of 1V and packet size is 39 bits. Finally power, area and time of these two routers have been analysed and compared.

  13. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology.

    Science.gov (United States)

    Nguyen, Nam-Trung; Shaegh, Seyed Ali Mousavi; Kashaninejad, Navid; Phan, Dinh-Tuan

    2013-11-01

    Lab-on-a-chip technology is an emerging field evolving from the recent advances of micro- and nanotechnologies. The technology allows the integration of various components into a single microdevice. Microfluidics, the science and engineering of fluid flow in microscale, is the enabling underlying concept for lab-on-a-chip technology. The present paper reviews the design, fabrication and characterization of drug delivery systems based on this amazing technology. The systems are categorized and discussed according to the scales at which the drug is administered. Starting with the fundamentals on scaling laws of mass transfer and basic fabrication techniques, the paper reviews and discusses drug delivery devices for cellular, tissue and organism levels. At the cellular level, a concentration gradient generator integrated with a cell culture platform is the main drug delivery scheme of interest. At the tissue level, the synthesis of smart particles as drug carriers using lab-on-a-chip technology is the main focus of recent developments. At the organism level, microneedles and implantable devices with fluid-handling components are the main drug delivery systems. For drug delivery to a small organism that can fit into a microchip, devices similar to those of cellular level can be used.

  14. Chip implementation with a combined wireless temperature sensor and reference devices based on the DZTC principle.

    Science.gov (United States)

    Chang, Ming-Hui; Huang, Yu-Jie; Huang, Han-Pang; Lu, Shey-Shi

    2011-01-01

    This paper presents a novel CMOS wireless temperature sensor design in order to improve the sensitivity and linearity of our previous work on such devices. Based on the principle of CMOS double zero temperature coefficient (DZTC) points, a combined device is first created at the chip level with two voltage references, one current reference, and one temperature sensor. It was successfully fabricated using the 0.35 μm CMOS process. According to the chip results in a wide temperature range from -20 °C to 120 °C, two voltage references can provide temperature-stable outputs of 823 mV and 1,265 mV with maximum deviations of 0.2 mV and 8.9 mV, respectively. The result for the current reference gives a measurement of 23.5 μA, with a maximum deviation of 1.2 μA. The measurements also show that the wireless temperature sensor has good sensitivity of 9.55 mV/°C and high linearity of 97%. The proposed temperature sensor has 4.15-times better sensitivity than the previous design. Moreover, to facilitate temperature data collection, standard wireless data transmission is chosen; therefore, an 8-bit successive-approximation-register (SAR) analog-to-digital converter (ADC) and a 433 MHz wireless transmitter are also integrated in this chip. Sensing data from different places can be collected remotely avoiding the need for complex wire lines.

  15. Designing quantum-information-processing superconducting qubit circuits that exhibit lasing and other atomic-physics-like phenomena on a chip

    Science.gov (United States)

    Nori, Franco

    2008-03-01

    Superconducting (SC) circuits can behave like atoms making transitions between a few energy levels. Such circuits can test quantum mechanics at macroscopic scales and be used to conduct atomic-physics experiments on a silicon chip. This talk overviews a few of our theoretical studies on SC circuits and quantum information processing (QIP) including: SC qubits for single photon generation and for lasing; controllable couplings among qubits; how to increase the coherence time of qubits using a capacitor in parallel to one of the qubit junctions; hybrid circuits involving both charge and flux qubits; testing Bell's inequality in SC circuits; generation of GHZ states; quantum tomography in SC circuits; preparation of macroscopic quantum superposition states of a cavity field via coupling to a SC qubit; generation of nonclassical photon states using a SC qubit in a microcavity; scalable quantum computing with SC qubits; and information processing with SC qubits in a microwave field. Controllable couplings between qubits can be achieved either directly or indirectly. This can be done with and without coupler circuits, and with and without data-buses like EM fields in cavities (e.g., we will describe both the variable-frequency magnetic flux approach and also a generalized double-resonance approach that we introduced). It is also possible to ``turn a quantum bug into a feature'' by using microscopic defects as qubits, and the macroscopic junction as a controller of it. We have also studied ways to implement radically different approaches to QIP by using ``cluster states'' in SC circuits. For a general overview of this field, see, J.Q. You and F. Nori, Phys. Today 58 (11), 42 (2005)

  16. HPV Direct Flow CHIP: a new human papillomavirus genotyping method based on direct PCR from crude-cell extracts.

    Science.gov (United States)

    Herraez-Hernandez, Elsa; Alvarez-Perez, Martina; Navarro-Bustos, Gloria; Esquivias, Javier; Alonso, Sonia; Aneiros-Fernandez, Jose; Lacruz-Pelea, Cesar; Sanchez-Aguera, Magdalena; Santamaria, Javier Saenz; de Antonio, Jesus Chacon; Rodriguez-Peralto, Jose Luis

    2013-10-01

    HPV Direct Flow CHIP is a newly developed test for identifying 18 high-risk and 18 low-risk human papillomavirus (HPV) genotypes. It is based on direct PCR from crude-cell extracts, automatic flow-through hybridization, and colorimetric detection. The aim of this study was to evaluate the performance of HPV Direct Flow CHIP in the analysis of 947 samples from routine cervical screening or the follow-up of abnormal Pap smears. The specimens were dry swab samples, liquid-based cytology samples, or formalin-fixed paraffin-embedded tissues. The genotype distribution was in agreement with known epidemiological data for the Spanish population. Three different subgroups of the samples were also tested by Linear Array (LA) HPV Genotyping Test (n=108), CLART HPV2 (n=82), or Digene Hybrid Capture 2 (HC2) HPV DNA Test (n=101). HPV positivity was 73.6% by HPV Direct Flow CHIP versus 67% by LA, 65.9% by HPV Direct Flow CHIP versus 59.8% by CLART, and 62.4% by HPV Direct Flow CHIP versus 42.6% by HC2. HPV Direct Flow CHIP showed a positive agreement of 88.6% with LA (k=0.798), 87.3% with CLART (k=0.818), and 68.2% with HC2 (k=0.618). In conclusion, HPV Direct Flow CHIP results were comparable with those of the other methods tested. Although further investigation is needed to compare the performance of this new test with a gold-standard reference method, these preliminary findings evidence the potential value of HPV Direct Flow CHIP in HPV vaccinology and epidemiology studies.

  17. Dispersive Optical Interface Based on Nanofiber-Trapped Atoms

    CERN Document Server

    Dawkins, S T; Reitz, D; Vetsch, E; Rauschenbeutel, A

    2011-01-01

    We dispersively interface an ensemble of one thousand atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally-asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of $\\sim$\\,1\\,mrad at a detuning of six times the natural linewidth, corresponding to an effective resonant optical density per atom of 2.7\\,%. Moreover, we utilize this strong dispersion to non-destructively determine the number of atoms.

  18. Support for Programming Models in Network-on-Chip-based Many-core Systems

    DEFF Research Database (Denmark)

    Rasmussen, Morten Sleth

    and scalability in an image processing application with the aim of providing insight into parallel programming issues. The second part proposes and presents the tile-based Clupea many-core architecture, which has the objective of providing configurable support for programming models to allow different programming......This thesis addresses aspects of support for programming models in Network-on- Chip-based many-core architectures. The main focus is to consider architectural support for a plethora of programming models in a single system. The thesis has three main parts. The first part considers parallelization...

  19. An introduction to Bragg diffraction-based cold atom interferometry gravimeter

    Institute of Scientific and Technical Information of China (English)

    HU; Qingqing; YANG; Jun; LUO; Yukun; JIA; Aiai; WEI; Chunhua; LI; Zehuan

    2015-01-01

    This paper presents a new type of cold atom interferometry gravimeter based on Bragg diffraction,w hich is able to increase the gravity m easurem ent sensitivity and stability of com m on Ram an atom gravim eters significantly. By com paring w ith Ram an transition,the principles and advantages of Bragg diffraction-based atom gravim eters have been introduced. The theoretical m odel for a tim e-dom ain Bragg atom gravim eter has been constructed. Som e key technical requirem ents for an n-order Bragg diffraction-based atom gravim eter have been deduced,including the tem perature of atom cloud,the diam eter,curvature radius,frequency,intensity,and tim ing sequence of Bragg lasers,etc. The analysis results are verified by the existing experim ental data in discussion. The present study provides a good reference for the understanding and construction of a Bragg atom gravim eter.

  20. Atomic structures of Zr-based metallic glasses

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The atomic structures of Zr-Ni and Zr-Ti-Al-Cu-Ni metallic glasses were investigated by using classical molecular dynamic (MD),reverse Monte Carlo (RMC),ab initio MD (AIMD) simulations and high resolution transmission electron microscopy (HRTEM) techniques. We focused on the short-range order (SRO) and medium-range order (MRO) in the glassy structure. It is shown that there are icosahedral,FCC-and BCC-type SROs in the Zr-based metallic glasses. A structural model,characterized by imperfect ordered packing (IOP),was proposed based on the MD simulation and confirmed by the HRTEM observation. Furthermore,the evolution from IOP to nanocrystal during the crystallization of metallic glasses was also ex-plored. It is found that the growth from IOP to nanocrystal proceeds through three distinct stages: the formation of quasi-ordered structure with one-dimensional (1D) periodicity,then 2D periodicity,and finally the formation of 3D nanocrystals. It is also noted that these three growth steps are crosslinked.

  1. Compact atomic clock prototype based on coherent population trapping

    Directory of Open Access Journals (Sweden)

    Danet Jean-Marie

    2014-01-01

    Full Text Available Toward the next generations of compact atomic clocks, clocks based on coherent population trapping (CPT offer a very interesting alternative. Thanks to CPT, a quantum interfering process, this technology has made a decisive step in the miniaturization direction. Fractional frequency stability of 1.5x10-10 at 1 s has been demonstrated in commercial devices of a few cm3. The laboratory prototype presented here intends to explore what could be the ultimate stability of a CPT based device. To do so, an original double-Λ optical scheme and a pulsed interrogation have been implemented in order to get a good compromise between contrast and linewidth. A study of two main sources of noise, the relative intensity and the local oscillator (LO noise, has been performed. By designing simple solutions, it led to a new fractional frequency limitation lower than 4x10-13 at 1 s integration. Such a performance proves that such a technology could rival with classical ones as double resonance clocks.

  2. Differentiation of Wines Treated with Wood Chips Based on Their Phenolic Content, Volatile Composition, and Sensory Parameters.

    Science.gov (United States)

    Kyraleou, Maria; Kallithraka, Stamatina; Chira, Kleopatra; Tzanakouli, Eleni; Ligas, Ioannis; Kotseridis, Yorgos

    2015-12-01

    The effects of both wood chips addition and contact time on phenolic content, volatile composition, color parameters, and organoleptic character of red wine made by a native Greek variety (Agiorgitiko) were evaluated. For this purpose, chips from American, French, Slavonia oak, and Acacia were added in the wine after fermentation. A mixture consisting of 50% French and 50% Americal oak chips was also evaluated. In an attempt to categorize wine samples, various chemical parameters of wines and sensory parameters were studied after 1, 2, and 3 mo of contact time with chips. The results showed that regardless of the type of wood chips added in the wines, it was possible to differentiate the samples according to the contact time based on their phenolic composition and color parameters. In addition, wood-extracted volatile compounds seem to be the critical parameter that could separate the samples according to the wood type. The wines that were in contact with Acacia and Slavonia chips could be separated from the rest mainly due to their distinct sensory characters.

  3. SOI based integrated on-chip photonic pressure sensor

    NARCIS (Netherlands)

    Chakkalakkal Abdulla, S.M.C.; Harmsma, P.J.; Nieuwland, R.A.; Pozo Torres, J.M.; Lemmen, M.H.J.; Sadeghian Marnani, H.; Berg, J.H. van den; Bodis, P.

    2012-01-01

    A compact, mass producible Silicon On Insulator (SOI) based pressure sensor consisting of a folded Micro Ring Resonator (MRR) on a circular diaphragm is successfully designed, fabricated and characterized [1-3]. The MRR is designed to be single mode for TE polarized light at 1550 nm. The folded MRR

  4. Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald; Colston, Jr, Billy W.

    2016-08-09

    An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.

  5. Turbo NOC: a framework for the design of Network On Chip based turbo decoder architectures

    CERN Document Server

    Martina, Maurizio

    2009-01-01

    This work proposes a general framework for the design and simulation of network on chip based turbo decoder architectures. Several parameters in the design space are investigated, namely the network topology, the parallelism degree, the rate at which messages are sent by processing nodes over the network and the routing strategy. The main results of this analysis are: i) the most suited topologies to achieve high throughput with a limited complexity overhead are generalized de-Bruijn and generalized Kautz topologies; ii) depending on the throughput requirements different parallelism degrees, message injection rates and routing algorithms can be used to minimize the network area overhead.

  6. A Novel Magnetic Bead-based Biosensor Using Flip Chip Bonding Techniques

    Institute of Scientific and Technical Information of China (English)

    Bin Wang; Xiang Chen; Qinghui Jin; Jianlong Zhao; Yuansen Xu

    2006-01-01

    Based on flip-chip packaging, a novel approach towards integrated magnetic bio-separator was designed. The magnetic field and the force on the bead were simulated and analyzed, leading to the optimization of the fabrication parameters of the micro-magnetic unit. The planar coil as an electromagnet was fabricated through electroplating on a single seed layer.The PDMS microfluidic channel was bonded on the inverse side after Si etching. The results presented in this paper provide a novel design and fabrication to approach a microfluidic bio-separation system with magnetic beads.

  7. Rapid identification of Yersinia pestis and Brucella melitensis by chip-based continuous flow PCR

    Science.gov (United States)

    Dietzsch, Michael; Hlawatsch, Nadine; Melzer, Falk; Tomaso, Herbert; Gärtner, Claudia; Neubauer, Heinrich

    2012-06-01

    To combat the threat of biological agents like Yersinia pestis and Brucella melitensis in bioterroristic scenarios requires fast, easy-to-use and safe identification systems. In this study we describe a system for rapid amplification of specific genetic markers for the identification of Yersinia pestis and Brucella melitensis. Using chip based PCR and continuous flow technology we were able to amplify the targets simultaneously with a 2-step reaction profile within 20 minutes. The subsequent analysis of amplified fragments by standard gel electrophoresis requires another 45 minutes. We were able to detect both pathogens within 75 minutes being much faster than most other nucleic acid amplification technologies.

  8. Fabrication of thermoplastics chips through lamination based techniques.

    Science.gov (United States)

    Miserere, Sandrine; Mottet, Guillaume; Taniga, Velan; Descroix, Stephanie; Viovy, Jean-Louis; Malaquin, Laurent

    2012-04-24

    In this work, we propose a novel strategy for the fabrication of flexible thermoplastic microdevices entirely based on lamination processes. The same low-cost laminator apparatus can be used from master fabrication to microchannel sealing. This process is appropriate for rapid prototyping at laboratory scale, but it can also be easily upscaled to industrial manufacturing. For demonstration, we used here Cycloolefin Copolymer (COC), a thermoplastic polymer that is extensively used for microfluidic applications. COC is a thermoplastic polymer with good chemical resistance to common chemicals used in microfluidics such as acids, bases and most polar solvents. Its optical quality and mechanical resistance make this material suitable for a large range of applications in chemistry or biology. As an example, the electrokinetic separation of pollutants is proposed in the present study.

  9. Knowledge Representation in KDD Based on Linguistic Atoms

    Institute of Scientific and Technical Information of China (English)

    李德毅

    1997-01-01

    An important issue in Knowledge Discovery in Databases is to allo the discovered knowledge to be as close as possible to natural languages to satisfy user needs with tractability on one hand,and to offer KDD systems robustness on the other hand.At this junction,this paper describes a new concept of linguistic atoms with three digital characteristics:expected value Ex,entropy En,anddeviation D.The mathematical description has effectively integrated the fuzziness and randomness of linguistic terms in a unified way.Based on this model a method of knowledge representation in KDD is developed which bridges the gap between quantitative knowledge and qualitative knowledge.Mapping between quantitatives and qualitatives becomes much easier and interchangeable.In order to discover generalized knowledge from a database,one may use virtual linguistic terms and cloud transforms for the auto-generation of concept hierarchies to attributes.Predictive data mining with the cloud model is given for implementation.This further illustrates the advantages of this linguistic model in KDD.

  10. Towards a mechanical MPI scanner based on atomic magnetometry

    CERN Document Server

    Colombo, Simone; Tonyushkin, Alexey; Grujic, Zoran D; Dolgovskiy, Vladimir; Weis, Antoine

    2016-01-01

    We report on our progress in the development of an atomic magnetometer (AM) based low-frequency X-space MPI scanner, expected to be free from SAR and PNS constraints. We address major challenges in coil and sensor design due to specificAMproperties. Compared to our previous workwe have changed the AM's mode of operation towards its implementation for detecting weak SPIO response fields in the presence of nearby-located strong drive/selection fields. We demonstrate that a pump-probe AM scheme in a buffer gas filled alkali vapour cell can tolerate mT/m gradients while maintaining a sensitivity in the one-digit pT/Hz^(1/2) range over a bandwidth from DC to several kHz. We give a detailed description of the drive/selection coils' geometry and their hardware implementations that will provide both field-free-line (FFL) and field-free-point (FFP) modes of operation, compatible with a best performance AM operation. We estimate the achievable field of view and spatial resolution of the scanner as well as its sensitivi...

  11. Optical precursor with four-wave mixing and storage based on a cold-atom ensemble.

    Science.gov (United States)

    Ding, Dong-Sheng; Jiang, Yun Kun; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2015-03-06

    We observed optical precursors in four-wave mixing based on a cold-atom gas. Optical precursors appear at the edges of pulses of the generated optical field, and propagate through the atomic medium without absorption. Theoretical analysis suggests that these precursors correspond to high-frequency components of the signal pulse, which means the atoms cannot respond quickly to rapid changes in the electromagnetic field. In contrast, the low-frequency signal components are absorbed by the atoms during transmission. We also showed experimentally that the backward precursor can be stored using a Raman transition of the atomic ensemble and retrieved later.

  12. From bioseparation to artificial micro-organs: microfluidic chip based particle manipulation techniques

    Science.gov (United States)

    Stelzle, Martin

    2010-02-01

    Microfluidic device technology provides unique physical phenomena which are not available in the macroscopic world. These may be exploited towards a diverse array of applications in biotechnology and biomedicine ranging from bioseparation of particulate samples to the assembly of cells into structures that resemble the smallest functional unit of an organ. In this paper a general overview of chip-based particle manipulation and separation is given. In the state of the art electric, magnetic, optical and gravitational field effects are utilized. Also, mechanical obstacles often in combination with force fields and laminar flow are employed to achieve separation of particles or molecules. In addition, three applications based on dielectrophoretic forces for particle manipulation in microfluidic systems are discussed in more detail. Firstly, a virus assay is demonstrated. There, antibody-loaded microbeads are used to bind virus particles from a sample and subsequently are accumulated to form a pico-liter sized aggregate located at a predefined position in the chip thus enabling highly sensitive fluorescence detection. Secondly, subcellular fractionation of mitochondria from cell homogenate yields pure samples as was demonstrated by Western Blot and 2D PAGE analysis. Robust long-term operation with complex cell homogenate samples while avoiding electrode fouling is achieved by a set of dedicated technical means. Finally, a chip intended for the dielectrophoretic assembly of hepatocytes and endothelial cells into a structure resembling a liver sinusoid is presented. Such "artificial micro organs" are envisioned as substance screening test systems providing significantly higher predictability with respect to the in vivo response towards a substance under test.

  13. Field programmable gate array–based servo control integrated chip for a six-axis articulated robot manipulator

    Directory of Open Access Journals (Sweden)

    Ying-Shieh Kung

    2016-05-01

    Full Text Available The objective of this article is to build a field programmable gate array–based six-axis servo control integrated chip which can integrate the function of a motion trajectory planning and the function of six position/speed/current servo controllers into one integrated chip. In the work, first, a mathematical modeling of a robot manipulator with the actuator using permanent magnet synchronous motor is derived. Second, the proportional controller in the position loop, a proportional–integral controller in the speed loop and a vector controller in the current loop for each axis are applied. Third, a system on a programmable chip technology which comprises an Altera field programmable gate array chip and an embedded soft-core Nios-II processor is considered to develop the proposed servo control integrated chip. However, in the servo control integrated chip, it has two modules. The first module is an embedded soft-core Nios-II processor which is used to generate the motion trajectory planning by software. The second module presents a six-axis servo controller intellectual property by hardware which is applied to execute six position/speed/current controllers. Therefore, the function of a motion trajectory command and the function of six position/speed/current servo controllers for a six-axis robot manipulator can be integrated into one field programmable gate array. Finally, to verify the effectiveness and correctness of the proposed field programmable gate array–based servo control integrated chip, a six-axis robot manipulator is applied and some experimental results are demonstrated.

  14. Cavity-Based Single-Atom Quantum Memory

    CERN Document Server

    Dilley, Jerome; Shore, Bruce W; Kuhn, Axel

    2011-01-01

    We show how to capture a single photon of arbitrary temporal shape with one atom coupled to an optical cavity. Our model applies to Raman transitions in three-level atoms with one branch of the transition controlled by a (classical) laser pulse, and the other coupled to the cavity. Photons impinging on the cavity normally exhibit partial reflection, transmission, and/or absorption by the atom. Only a control pulse of suitable temporal shape ensures impedance matching throughout the pulse, resulting in complete state mapping from photon to atom. For most possible photon shapes, we derive an unambiguous analytic expression for the temporal shape of the required control pulse. The process is subject to some inherent limitations, which we also discuss briefly.

  15. A Fully On-Chip Gm-Opamp-RC Based Preamplifier for Electret Condenser Microphones

    Science.gov (United States)

    Le, Huy-Binh; Ryu, Seung-Tak; Lee, Sang-Gug

    An on-chip CMOS preamplifier for direct signal readout from an electret capacitor microphone has been designed with high immunity to common-mode and supply noise. The Gm-Opamp-RC based high impedance preamplifier helps to remove all disadvantages of the conventional JFET based amplifier and can drive a following switched-capacitor sigma-delta modulator in order to realize a compact digital electret microphone. The proposed chip is designed based on 0.18µm CMOS technology, and the simulation results show 86dB of dynamic range with 4.5µVrms of input-referred noise for an audio bandwidth of 20kHz and a total harmonic distortion (THD) of 1% at 90mVrms input. Power supply rejection ratio (PSRR) and common-mode rejection ration (CMRR) are more than 95dB at 1kHz. The proposed design dissipates 125µA and can operate over a wide supply voltage range of 1.6V to 3.3V.

  16. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rizzi, Giovanni, E-mail: giori@nanotech.dtu.dk; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F., E-mail: mikkel.hansen@nanotech.dtu.dk

    2015-04-15

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP. - Highlights: • We apply magnetoresistive sensors to study solid-surface hybridization kinetics of DNA. • We measure DNA melting profiles for perfectly matching DNA duplexes and for a single base mismatch. • We present a procedure to correct for temperature dependencies of the sensor output. • We reliably extract melting temperatures for the DNA hybrids. • We demonstrate direct measurement of differential binding signal for two probes on a single sensor.

  17. Fabrication and characterization of SPR chips with the modified bovine serum albumin

    Science.gov (United States)

    Chen, Xing; Zhang, Lu-lu; Cui, Da-fu

    2016-03-01

    A facile surface plasmon resonance (SPR) chip is developed for small molecule determination and analysis. The SPR chip was prepared based on a self assembling principle, in which the modified bovine serum albumin (BSA) was directly self-assembled onto the bare gold surface. The surface morphology of the chip with the modified BSA was investigated by atomic force microscopy (AFM) and its optical properties were characterized. The surface binding capacity of the bare facile SPR chip with a uniform morphology is 8 times of that of the bare control SPR chip. Based on the experiments of immune reaction between cortisol antibody and cortisol derivative, the sensitivity of the facile SPR chip with the modified BSA is much higher than that of the control SPR chip with the un-modified BSA. The facile SPR chip has been successfully used to detect small molecules. The lowest detection limit is 5 ng/mL with a linear range of 5—100 ng/mL for cortisol analysis. The novel facile SPR chip can also be applied to detect other small molecules.

  18. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    Science.gov (United States)

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  19. Paper-Based Digital Microfluidic Chip for Multiple Electrochemical Assay Operated by a Wireless Portable Control System

    DEFF Research Database (Denmark)

    Ruecha, Nipapan; Lee, Jumi; Chae, Heedo

    2017-01-01

    The printing and modular fabrication of a paper-based active microfluidic lab on a chip implemented with electrochemical sensors (ECSs) is developed and integrated on a portable electrical control system. The electrodes of a chip plate for active electrowetting actuation of digital drops and an ECS...... for multiple analysis assays are fabricated by affordable printing techniques. For enhanced sensitivity of the sensor, the working electrode is modified through the electrochemical method, namely by reducing graphene with voltammetry and coating gold nanoparticles by amperometry. Detachable sensor and absorber...... designed portable power supply and wireless control system, the active paper-based chip platform can be utilized as an advanced point-of-care device for multiple assays in digital microfluidics....

  20. Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology.

    Science.gov (United States)

    Akagi, Jin; Zhu, Feng; Hall, Chris J; Crosier, Kathryn E; Crosier, Philip S; Wlodkowic, Donald

    2014-06-01

    Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micromechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo-trapping suction manifold, drug delivery manifold, and optically transparent indium tin oxide heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves, and embedded miniaturized fluorescent USB microscope. Our results showed that the innovative device has 100% embryo-trapping efficiency while supporting normal embryo development for up to 72 hr in a confined microfluidic environment. We also showed data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational antiangiogenic agents in transgenic zebrafish lines. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the lab-on-a-chip systems a step closer to realization of complete analytical automation.

  1. Chip Implementation with a Combined Wireless Temperature Sensor and Reference Devices Based on the DZTC Principle

    Directory of Open Access Journals (Sweden)

    Shey-Shi Lu

    2011-10-01

    Full Text Available This paper presents a novel CMOS wireless temperature sensor design in order to improve the sensitivity and linearity of our previous work on such devices. Based on the principle of CMOS double zero temperature coefficient (DZTC points, a combined device is first created at the chip level with two voltage references, one current reference, and one temperature sensor. It was successfully fabricated using the 0.35 μm CMOS process. According to the chip results in a wide temperature range from −20 °C to 120 °C, two voltage references can provide temperature-stable outputs of 823 mV and 1,265 mV with maximum deviations of 0.2 mV and 8.9 mV, respectively. The result for the current reference gives a measurement of 23.5 µA, with a maximum deviation of 1.2 µA. The measurements also show that the wireless temperature sensor has good sensitivity of 9.55 mV/°C and high linearity of 97%. The proposed temperature sensor has 4.15-times better sensitivity than the previous design. Moreover, to facilitate temperature data collection, standard wireless data transmission is chosen; therefore, an 8-bit successive-approximation-register (SAR analog-to-digital converter (ADC and a 433 MHz wireless transmitter are also integrated in this chip. Sensing data from different places can be collected remotely avoiding the need for complex wire lines.

  2. One-chip electronic detection of DNA hybridization using precision impedance-based CMOS array sensor.

    Science.gov (United States)

    Lee, Kang-Ho; Lee, Jeong-Oen; Sohn, Mi-Jin; Lee, Byunghun; Choi, Suk-Hwan; Kim, Sang Kyu; Yoon, Jun-Bo; Cho, Gyu-Hyeong

    2010-12-15

    This paper describes a label-free and fully electronic detection method of DNA hybridization, which is achieved through the use of a 16×8 microarray sensor in conjunction with a new type of impedance spectroscopy constructed with standard complementary metal-oxide-semiconductor (CMOS) technology. The impedance-based method is based on changes in the reactive capacitance and the charge-transfer resistance after hybridization with complementary DNA targets. In previously published label-free techniques, the measured capacitance presented unstable capacitive properties due to the parallel resistance that is not infinite and can cause a leakage by discharging the charge on the capacitor. This paper presents an impedance extraction method that uses excitation by triangular wave voltage, which enables a reliable measurement of both C and R producing a highly sensitive sensor with a stable operation independent of external variables. The system was fabricated in an industrial 0.35-μm 4-metal 2-poly CMOS process, integrating working electrodes and readout electronics into one chip. The integrated readout, which uses a parasitic insensitive integrator, achieves an enlarged detection range and improved noise performance. The maximum average relative variations of C and R are 31.5% and 68.6%, respectively, after hybridization with a 1 μM target DNA. The proposed sensor allows quantitative evaluation of the molecule densities on the chip with distinguishable variation in the impedance. This fully electronic microsystem has great potential for use with bioanalytical tools and point-of-care diagnosis.

  3. SAD-based stereo vision machine on a System-on-Programmable-Chip (SoPC).

    Science.gov (United States)

    Zhang, Xiang; Chen, Zhangwei

    2013-03-04

    This paper, proposes a novel solution for a stereo vision machine based on the System-on-Programmable-Chip (SoPC) architecture. The SOPC technology provides great convenience for accessing many hardware devices such as DDRII, SSRAM, Flash, etc., by IP reuse. The system hardware is implemented in a single FPGA chip involving a 32-bit Nios II microprocessor, which is a configurable soft IP core in charge of managing the image buffer and users' configuration data. The Sum of Absolute Differences (SAD) algorithm is used for dense disparity map computation. The circuits of the algorithmic module are modeled by the Matlab-based DSP Builder. With a set of configuration interfaces, the machine can process many different sizes of stereo pair images. The maximum image size is up to 512 K pixels. This machine is designed to focus on real time stereo vision applications. The stereo vision machine offers good performance and high efficiency in real time. Considering a hardware FPGA clock of 90 MHz, 23 frames of 640 × 480 disparity maps can be obtained in one second with 5 × 5 matching window and maximum 64 disparity pixels.

  4. SAD-Based Stereo Vision Machine on a System-on-Programmable-Chip (SoPC

    Directory of Open Access Journals (Sweden)

    Zhangwei Chen

    2013-03-01

    Full Text Available This paper, proposes a novel solution for a stereo vision machine based on the System-on-Programmable-Chip (SoPC architecture. The SOPC technology provides great convenience for accessing many hardware devices such as DDRII, SSRAM, Flash, etc., by IP reuse. The system hardware is implemented in a single FPGA chip involving a 32-bit Nios II microprocessor, which is a configurable soft IP core in charge of managing the image buffer and users’ configuration data. The Sum of Absolute Differences (SAD algorithm is used for dense disparity map computation. The circuits of the algorithmic module are modeled by the Matlab-based DSP Builder. With a set of configuration interfaces, the machine can process many different sizes of stereo pair images. The maximum image size is up to 512 K pixels. This machine is designed to focus on real time stereo vision applications. The stereo vision machine offers good performance and high efficiency in real time. Considering a hardware FPGA clock of 90 MHz, 23 frames of 640 × 480 disparity maps can be obtained in one second with 5 × 5 matching window and maximum 64 disparity pixels.

  5. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    Science.gov (United States)

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJ-based microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  6. Nanoneedles based on porous silicon for chip bonding with self assembly capability

    Energy Technology Data Exchange (ETDEWEB)

    Jonnalagadda, Prasad; Mescheder, Ulrich; Kovacs, Andras; Nimoe, Antwi [Institute for Applied Research and Faculty Computer and Electrical Engineering, Hochschule Furtwangen University, Robert-Gerwig-Platz 1, 78120 Furtwangen (Germany)

    2011-06-15

    Needle-like surface structures have been fabricated using a self-organized nanostructuring process based on porous silicon. Optimized surfaces have been used for a novel bonding process in Si-MEMS. The realized needle-like surfaces enable Van-der-Waals based bonding at low temperature with self-assembly capability. The bonding forces depend on the surface topology and can be tailored by the nanostructuring process between permanent and detachable bonding. Bond strength for permanent bonding in the range of 1-10 MPa has been achieved. Multiple bonding of the same surface is possible (Velcro {sup registered} -principle). The capability of needle like surfaces for self aligned bonding of Si-chips or small silicon based systems (''smart dust'') on locally nanostructured areas of silicon wafers (Si-motherboard) has been shown. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. An atom counting and electrophilicity based QSTR approach

    Indian Academy of Sciences (India)

    P K Chattara; D R Roy; S Giri; S Mukherjee; V Subramanian; R Parthasarathi; P Bultinck; S Van Damme

    2007-09-01

    Quantitative-structure-toxicity-relationship (QSTR) models are developed for predicting the toxicity (pIGC50) of 252 aliphatic compounds on Tetrahymena pyriformis. The single parameter models with a simple molecular descriptor, the number of atoms in the molecule, provide reasonable results. Better QSTR models with two parameters result when global electrophilicity is used as the second descriptor. In order to tackle both charge- and frontier-controlled reactions the importance of the local electro (nucleo) philicities and atomic charges is also analysed.

  8. An Integrated Microfabricated Chip with Double Functions as an Ion Source and Air Pump Based on LIGA Technology

    Directory of Open Access Journals (Sweden)

    Hua Li

    2017-01-01

    Full Text Available The injection and ionization of volatile organic compounds (VOA by an integrated chip is experimentally analyzed in this paper. The integrated chip consists of a needle-to-cylinder electrode mounting on the Polymethyl Methacrylate (PMMA substrate. The needle-to-cylinder electrode is designed and fabricated by Lithographie, Galvanoformung and Abformung (LIGA technology. In this paper, the needle is connected to a negative power supply of −5 kV and used as the cathode; the cylinder electrodes are composed of two arrays of cylinders and serve as the anode. The ionic wind is produced based on corona and glow discharges of needle-to-cylinder electrodes. The experimental setup is designed to observe the properties of the needle-to-cylinder discharge and prove its functions as an ion source and air pump. In summary, the main results are as follows: (1 the ionic wind velocity produced by the chip is about 0.79 m/s at an applied voltage of −3300 V; (2 acetic acid and ammonia water can be injected through the chip, which is proved by pH test paper; and (3 the current measured by a Faraday cup is about 10 pA for acetic acid and ammonia with an applied voltage of −3185 V. The integrated chip is promising for portable analytical instruments, such as ion mobility spectrometry (IMS, field asymmetric ion mobility spectrometry (FAIMS, and mass spectrometry (MS.

  9. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a compact, high-precision single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Based on...

  10. Surface Roughness Study on Microchannels of CO2 Laser Fabricating Pmma-Based Microfluidic Chip

    Science.gov (United States)

    Chen, Xueye; Li, Tiechuan; Fu, Baoding

    A novel method named soak sacrificial layer ultrasonic method (SSLUM) has been presented for optimizing the surface roughness of the microchannels of polymethyl methacrylate (PMMA)-based microfluidic chips. CO2 laser was used for ablative microchannels on the PMMA sheet, and the effects of key parameters including laser power, laser ablation speed and solution concentration on the surface roughness of microchannels were estimated and optimized by SSLUM. The experimental observation demonstrates that the surface roughness results mainly from the residues on the channel wall, which are produced by the bubbles movement and bursting. The research results show that the surface roughness can be improved effectively by using SSLUM. In our experiment, the best value was Ra = 110nm with laser power 12W, laser ablation speed 10mm/s, the solution concentration 75%, and the time of ultrasonic vibration 25min. SSLUM is proven to be an effective, simple and rapid method for optimizing the surface roughness of microchannels of microfluidic chips.

  11. Low power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity

    CERN Document Server

    Marpaung, David; Pagani, Mattia; Pant, Ravi; Choi, Duk-Yong; Luther-Davies, Barry; Madden, Steve J; Eggleton, Benjamin J

    2014-01-01

    Highly selective and reconfigurable microwave filters are of great importance in radio-frequency signal processing. Microwave photonic (MWP) filters are of particular interest, as they offer flexible reconfiguration and an order of magnitude higher frequency tuning range than electronic filters. However, all MWP filters to date have been limited by trade-offs between key parameters such as tuning range, resolution, and suppression. This problem is exacerbated in the case of integrated MWP filters, blocking the path to compact, high performance filters. Here we show the first chip-based MWP band-stop filter with ultra-high suppression, high resolution in the MHz range, and 0-30 GHz frequency tuning. This record performance was achieved using an ultra-low Brillouin gain from a compact photonic chip and a novel approach of optical resonance-assisted RF signal cancellation. The results point to new ways of creating energy-efficient and reconfigurable integrated MWP signal processors for wireless communications an...

  12. Investigation of high extraction efficiency flip-chip GaN-based light-emitting diodes

    Institute of Scientific and Technical Information of China (English)

    DA XiaoLi; SHEN GuangDi; XU Chen; ZOU DeShu; ZHU YanXu; ZHANG JianMing

    2009-01-01

    In order to obtain higher light output power, the flip-chip structure Is used. We studied the ratio of the light of GaN sides before and after fabricating metal reflector on p-GaN. The SiO2/SiNx dielectric film reflectors were deposited through plasma enhance chemical vapor deposition following the fabrication of metal reflector, and then the dielectric film reflectors on the electrodes were etched in order to expose the electrodes to the air. It is found that comparing with the flip-chip GaN-LED without dielectric film reflectors, light output power can be increased by as high as 10.2% after the deposition of 2 pairs of SiO2/SiNx dielectric film reflectors on GaN-LEDs, which cover the sidewalls and the areas without the metal reflector. This result indicates that the high reflector formed by multi-layer dielectric films is useful to enhance the light output power of GaN-based LED, which reflects light from step sidewalls and p-GaN without metal reflector to internal, and then light emits from the surface.

  13. Continuous Sensing Photonic Lab-on-a-Chip Platform Based on Cross-Linked Enzyme Crystals.

    Science.gov (United States)

    Conejero-Muriel, Mayte; Rodríguez-Ruiz, Isaac; Verdugo-Escamilla, Cristóbal; Llobera, Andreu; Gavira, José A

    2016-12-06

    Microfluidics or lab-on-a-chip technology offer clear advantages over conventional systems such as a dramatic reduction of reagent consumption or a shorter analysis time, which are translated into cost-effective systems. In this work, we present a photonic enzymatic lab-on-a-chip reactor based on cross-linked enzyme crystals (CLECs), able to work in continuous flow, as a highly sensitive, robust, reusable, and stable platform for continuous sensing with superior performance as compared to the state of the art. The microreactor is designed to facilitate the in situ crystallization and crystal cross-linking generating enzymatically active material that can be stored for months/years. Thus, and by means of monolithically integrated micro-optics elements, continuous enzymatic reactions can be spectrophotometrically monitored. Lipase, an enzyme with industrial significance for catalyzed transesterification, hydrolysis, and esterification reactions, is used to demonstrate the potential of the microplatforms as both a continuous biosensor and a microreactor for the synthesis of high value compounds.

  14. Electrochemical chip-based genomagnetic assay for detection of high-risk human papillomavirus DNA.

    Science.gov (United States)

    Bartosik, Martin; Durikova, Helena; Vojtesek, Borivoj; Anton, Milan; Jandakova, Eva; Hrstka, Roman

    2016-09-15

    Cervical cancer, being the fourth leading cause of cancer death in women worldwide, predominantly originates from a persistent infection with a high-risk human papillomavirus (HPV). Detection of DNA sequences from these high-risk strains, mostly HPV-16 and HPV-18, represents promising strategy for early screening, which would help to identify women with higher risk of cervical cancer. In developing countries, inadequate screening options lead to disproportionately high mortality rates, making a fast and inexpensive detection schemes highly important. Electrochemical sensors and assays offer an alternative to current methods of detection. We developed an electrochemical-chip based assay, in which target HPV DNA is captured via magnetic bead-modified DNA probes, followed by an antidigoxigenin-peroxidase detection system at screen-printed carbon electrode chips, enabling parallel measurements of eight samples simultaneously. We show sensitive detection in attomoles of HPV DNA, selective discrimination between HPV-16 and HPV-18 and good reproducibility. Most importantly, we show application of the assay into both cancer cell lines and cervical smears from patients. The electrochemical results correlated well with standard methods, making this assay potentially applicable in clinical practice.

  15. Plastic-Chip-Based Magnetophoretic Immunoassay for Point-of-Care Diagnosis of Tuberculosis.

    Science.gov (United States)

    Kim, Jeonghyo; Jang, Minji; Lee, Kyoung G; Lee, Kil-Soo; Lee, Seok Jae; Ro, Kyung-Won; Kang, In Sung; Jeong, Byung Do; Park, Tae Jung; Kim, Hwa-Jung; Lee, Jaebeom

    2016-09-14

    Tuberculosis (TB) remains a relevant infectious disease in the 21st century, and its extermination is still far from being attained. Due to the extreme infectivity of incipient TB patients, a rapid sensing system for proficient point-of-care (POC) diagnostics is required. In our study, a plastic-chip-based magnetophoretic immunoassay (pcMPI) is introduced using magnetic and gold nanoparticles (NPs) modified with Mycobacterium tuberculosis (MTB) antibodies. This pcMPI offers an ultrasensitive limit of detection (LOD) of 1.8 pg·ml(-1) for the detection of CFP-10, an MTB-secreted antigen, as a potential TB biomarker with high specificity. In addition, by combining the plastic chip with an automated spectrophotometer setup, advantages include ease of operation, rapid time to results (1 h), and cost-effectiveness. Furthermore, the pcMPI results using clinical sputum culture filtrate samples are competitively compared with and integrated with clinical data collected from conventional tools such as the acid-fast bacilli (AFB) test, mycobacteria growth indicator tube (MGIT), polymerase chain reaction (PCR), and physiological results. CFP-10 concentrations were consistently higher in patients diagnosed with MTB infection than those seen in patients infected with nontuberculosis mycobacteria (NTM) (P < 0.05), and this novel test can distinguish MTB and NTM while MGIT cannot. All these results indicate that this pcMPI has the potential to become a new commercial TB diagnostic POC platform in view of its sensitivity, portability, and affordability.

  16. Phonon-based scalable platform for chip-scale quantum computing

    Science.gov (United States)

    Reinke, Charles M.; El-Kady, Ihab

    2016-12-01

    We present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.

  17. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Da Ros, Francesco;

    2013-01-01

    Abstract: We demonstrate a novel on-chip two-mode division multiplexing circuit using a tapered directional coupler-based TE0&TE1 mode multiplexer and demultiplexer on the silicon-on-insulator platform. A low insertion loss (0.3 dB), low mode crosstalk (...), and large fabrication tolerance (20 nm) are measured. An on-chip mode multiplexing experiment is carried out on the fabricated circuit with non return-to-zero (NRZ) on-off keying (OOK) signals at 40 Gbit/s. The experimental results show clear eye diagrams and moderate power penalty for both TE0 and TE1...... modes....

  18. An integrated one-chip-sensor system for microRNA quantitative analysis based on digital droplet polymerase chain reaction

    Science.gov (United States)

    Tsukuda, Masahiko; Wiederkehr, Rodrigo Sergio; Cai, Qing; Majeed, Bivragh; Fiorini, Paolo; Stakenborg, Tim; Matsuno, Toshinobu

    2016-04-01

    A silicon microfluidic chip was developed for microRNA (miRNA) quantitative analysis. It performs sequentially reverse transcription and polymerase chain reaction in a digital droplet format. Individual processes take place on different cavities, and reagent and sample mixing is carried out on a chip, prior to entering each compartment. The droplets are generated on a T-junction channel before the polymerase chain reaction step. Also, a miniaturized fluorescence detector was developed, based on an optical pick-up head of digital versatile disc (DVD) and a micro-photomultiplier tube. The chip integrated in the detection system was tested using synthetic miRNA with known concentrations, ranging from 300 to 3,000 templates/µL. Results proved the functionality of the system.

  19. Holographic optical traps for atom-based topological Kondo devices

    Science.gov (United States)

    Buccheri, F.; Bruce, G. D.; Trombettoni, A.; Cassettari, D.; Babujian, H.; Korepin, V. E.; Sodano, P.

    2016-07-01

    The topological Kondo (TK) model has been proposed in solid-state quantum devices as a way to realize non-Fermi liquid behaviors in a controllable setting. Another motivation behind the TK model proposal is the demand to demonstrate the quantum dynamical properties of Majorana fermions, which are at the heart of their potential use in topological quantum computation. Here we consider a junction of crossed Tonks-Girardeau gases arranged in a star-geometry (forming a Y-junction), and we perform a theoretical analysis of this system showing that it provides a physical realization of the TK model in the realm of cold atom systems. Using computer-generated holography, we experimentally implement a Y-junction suitable for atom trapping, with controllable and independent parameters. The junction and the transverse size of the atom waveguides are of the order of 5 μm, leading to favorable estimates for the Kondo temperature and for the coupling across the junction. Since our results show that all the required theoretical and experimental ingredients are available, this provides the demonstration of an ultracold atom device that may in principle exhibit the TK effect.

  20. Chip Multithreaded Consistency Model

    Institute of Scientific and Technical Information of China (English)

    Zu-Song Li; Dan-Dan Huan; Wei-Wu Hu; Zhi-Min Tang

    2008-01-01

    Multithreaded technique is the developing trend of high performance processor. Memory consistency model is essential to the correctness, performance and complexity of multithreaded processor. The chip multithreaded consistency model adapting to multithreaded processor is proposed in this paper. The restriction imposed on memory event ordering by chip multithreaded consistency is presented and formalized. With the idea of critical cycle built by Wei-Wu Hu, we prove that the proposed chip multithreaded consistency model satisfies the criterion of correct execution of sequential consistency model. Chip multithreaded consistency model provides a way of achieving high performance compared with sequential consistency model and ensures the compatibility of software that the execution result in multithreaded processor is the same as the execution result in uniprocessor. The implementation strategy of chip multithreaded consistency model in Godson-2 SMT processor is also proposed. Godson-2 SMT processor supports chip multithreaded consistency model correctly by exception scheme based on the sequential memory access queue of each thread.

  1. On-Chip Scan-Based Test Strategy for a Dependable Many-Core Processor Using a NoC as a Test Access Mechanism

    NARCIS (Netherlands)

    Zhang, Xiao; Kerkhoff, Hans G.; Vermeulen, Bart

    2010-01-01

    Periodic on-chip scan-based tests have to be applied to a many-core processor SoC to improve its dependability. An infrastructural IP module has been designed and incorporated into the SoC to function as an ATE. This paper introduces the reuse of a Network-on-Chip as a test access mechanism. Since t

  2. UW VLSI chip tester

    Science.gov (United States)

    McKenzie, Neil

    1989-12-01

    We present a design for a low-cost, functional VLSI chip tester. It is based on the Apple MacIntosh II personal computer. It tests chips that have up to 128 pins. All pin drivers of the tester are bidirectional; each pin is programmed independently as an input or an output. The tester can test both static and dynamic chips. Rudimentary speed testing is provided. Chips are tested by executing C programs written by the user. A software library is provided for program development. Tests run under both the Mac Operating System and A/UX. The design is implemented using Xilinx Logic Cell Arrays. Price/performance tradeoffs are discussed.

  3. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Y., E-mail: yingge.du@pnnl.gov, E-mail: scott.chambers@pnnl.gov; Liyu, A. V. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Droubay, T. C.; Chambers, S. A., E-mail: yingge.du@pnnl.gov, E-mail: scott.chambers@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Li, G. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-04-21

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  4. Self-corrected Sensors Based On Atomic Absorption Spectroscopy For Atom Flux Measurements In Molecular Beam Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yingge; Droubay, Timothy C.; Liyu, Andrey V.; Li, Guosheng; Chambers, Scott A.

    2014-04-24

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device (CCD) detector in a double-beam configuration, we employ a non-resonant line or a resonant line with lower absorbance from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  5. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    Science.gov (United States)

    Du, Y.; Droubay, T. C.; Liyu, A. V.; Li, G.; Chambers, S. A.

    2014-04-01

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  6. Analysis of on-chip distributed interconnects based on Pade expansion

    Institute of Scientific and Technical Information of China (English)

    Xiaopeng JI; Long GE; Zhiquan WANG

    2009-01-01

    In this paper,on-chip interconnects are modeled as distributed parameter RLCG transmission lines,based on which the matrix ABCD of interconnects is deduced.With help of the ABCD matrix,a voltage transfer function of an interconnect system,consisting of a driver,interconnect line and load,is obtained analytically in the form of a transcen-dental function,and it is reduced to a finite order system based on high order Pade approximation.With the reduced-order transfer function,response waveforms with step input can be obtained,and signal delay can be calculated consequently.Two numerical experiments are conducted to demonstrate its efficiency.

  7. Optimizing design of triplexer chip with low insert loss and high isolation based on planar lightwave circuit

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Design optimization of a novel integrated triplexer based on planar lightwave circuit (PLC) for fiber-to-the-home applications is described. The two-mode interference coupler and Mach-Zehnder interference are used to construct the filter chip.Simulation results of high isolation and low insertion loss are gotten for proposed design. Technique tolerance is improved for fabricating device.

  8. Compact atomic gravimeter based on a pulsed and accelerated optical lattice

    CERN Document Server

    Andia, Manuel; Nez, François; Biraben, François; Guellati-Khélifa, Saïda; Cladé, Pierre

    2013-01-01

    We present a new scheme of compact atomic gravimeter based on atom interferometry. Atoms are maintained against gravity using a sequence of coherent accelerations performed by the Bloch oscillations technique. We demonstrate a sensitivity of 4.8$\\times 10^{-8}$ with an integration time of 4 min. Combining this method with an atomic elevator allows to measure the local gravity at different positions in the vacuum chamber. This method can be of relevance to improve the measurement of the Newtonian gravitational constant $G$.

  9. Initiating Heavy-atom Based Phasing by Multi-Dimensional Molecular Replacement

    DEFF Research Database (Denmark)

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu;

    2014-01-01

    To obtain an electron-density map from a macromolecular crystal the phase-problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitantly the determination of the heavy atom substructure. This is customarily done by direct methods or Patterson-based ap......To obtain an electron-density map from a macromolecular crystal the phase-problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitantly the determination of the heavy atom substructure. This is customarily done by direct methods or Patterson...

  10. Immersing carbon nano-tubes in cold atomic gases

    OpenAIRE

    2013-01-01

    We investigate the sympathetic relaxation of a free-standing, vibrating carbon nano-tube that is mounted on an atom chip and is immersed in a cloud of ultra-cold atoms. Gas atoms colliding with the nano-tube excite phonons via a Casimir-Polder potential. We use Fermi's Golden Rule to estimate the relaxation rates for relevant experimental parameters and develop a fully dynamic theory of relaxation for the multi-mode phononic field embedded in a thermal atomic reservoir. Based on currently ava...

  11. Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables.

    Science.gov (United States)

    Liu, Wei; Kou, Juan; Xing, Huizhong; Li, Baoxin

    2014-02-15

    Paper chromatography was a big breakthrough in the early of 20th century but it is rarely used due to the long separation time and the diffusion on the sample spots. In this work, for the first time, a paper-based chemiluminescence (CL) analytical device combined with paper chromatography was developed for the determination of dichlorvos (DDV) in vegetables without complicated sample pretreatment. The paper chromatography separation procedure can be accomplished in 12 min on a paper support (0.8 × 7.0 cm(2)) by using 5 µL sample spotted on it. After sample developing, the detection area (0.8 × 1.0 cm(2)) was cut and inserted between two layers of water-impermeable single-sided adhesive tapes. The paper-based chip was made by attaching the middle layer of paper onto the bottom layer. Then it was covered by another tape layer, which was patterned by the cutting method to form a square hole (0.8 × 1.0 cm(2)) in it. 10 μL mixed solution of luminol and H2O2 was dropped on the detection area to produce CL. A linear relationship was obtained between the CL intensity and the concentrations of DDV in the range between 10.0 ng mL(-1) and 1.0 μg mL(-1)and the detection limit was 3.6 ng mL(-1). Water-soluble metal ions and vitamins can be developed at different spatial locations relative to DDV, eliminating interference with DDV during detection. The paper-based chromatographic chip can be successfully used for the determination of DDV without complicated sample preparation in vegetables. This study should, therefore, be suitable for rapid and sensitive detection of trace levels of organophosphate pesticides in environmental and food samples.

  12. Functional group based Ligand binding affinity scoring function at atomic environmental level

    OpenAIRE

    Varadwaj, Pritish Kumar; Lahiri, Tapobrata

    2009-01-01

    Use of knowledge based scoring function (KBSF) for virtual screening and molecular docking has become an established method for drug discovery. Lack of a precise and reliable free energy function that describes several interactions including water-mediated atomic interaction between amino-acid residues and ligand makes distance based statistical measure as the only alternative. Till now all the distance based scoring functions in KBSF arena use atom singularity concept, which neglects the env...

  13. A Smart Mobile Lab-on-Chip-Based Medical Diagnostics System Architecture Designed For Evolvability

    DEFF Research Database (Denmark)

    Patou, François; Dimaki, Maria; Svendsen, Winnie Edith

    2015-01-01

    Unprecedented knowledge levels in life sciences along with technological advances in micro- and nanotechnologies and microfluidics have recently conditioned the advent of Lab-on-Chip (LoC) devices for In-Vitro Medical Testing (IVMT). Combined with smart-mobile technologies, LoCs are pervasively...... giving rise to opportunities to better diagnose disease, predict and monitor personalised treatment efficacy, or provide healthcare decision-making support at the Point-of-Care (PoC). Although made increasingly available to the consumer market, the adoption of LoC-based PoC In-Vitro Medical Testing (IVMT......) systems is still in its infancy. This attrition partly pertains to the intricacy of designing and developing complex systems, destined to be used sporadically, in a fast-pace evolving technological paradigm. System evolvability is therefore key in the design process and constitutes the main motivation...

  14. Chip-integrated all-optical diode based on nonlinear plasmonic nanocavities covered with multicomponent nanocomposite

    Science.gov (United States)

    Chai, Zhen; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2017-01-01

    Ultracompact chip-integrated all-optical diode is realized experimentally in a plasmonic microstructure, consisting of a plasmonic waveguide side-coupled two asymmetric plasmonic composite nanocavities covered with a multicomponent nanocomposite layer, formed directly in a plasmonic circuit. Extremely large optical nonlinearity enhancement is obtained for the multicomponent nanocomposite cover layer, originating from resonant excitation, slow-light effect, and field enhancement effect. Nonreciprocal transmission was achieved based on the difference in the shift magnitude of the transparency window centers of two asymmetric plasmonic nanocavities induced by the signal light, itself, for the forward and backward propagation cases. An ultralow threshold incident light power of 145 μW (corresponding to a threshold intensity of 570 kW/cm2) is realized, which is reduced by seven orders of magnitude compared with previous reports. An ultrasmall feature size of 2 μm and a transmission contrast ratio of 15 dB are obtained simultaneously.

  15. Scheduling method based on virtual flattened architecture for Hierarchical system-on-chip

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dong; ZHANG Jin-yi; YANG Xiao-dong; YANG Yi

    2009-01-01

    As the technology of IP-core-reused has been widely used, a lot of intellectual property (IP) cores have been embedded in different layers of system-on-chip (SOC). Although the cycles of development and overhead are reduced by this method, it is a challenge to the SOC test. This paper proposes a scheduling method based on the virtual flattened architecture for hierarchical SOC, which breaks the hierarchical architecture to the virtual flattened one. Moreover, this method has more advantages compared with the traditional one, which tests the parent cores and child cores separately. Finally, the method is verified by the ITC'02 benchmark, and gives good results that reduce the test time and overhead effectively.

  16. Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoyu; Chai, Zhen; Lu, Cuicui; Yang, Hong [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn, E-mail: qhgong@pku.edu.cn; Gong, Qihuang, E-mail: xiaoyonghu@pku.edu.cn, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-06-02

    Nanoscale multichannel filter is realized in plasmonic circuits directly, which consists of four plasmonic nanocavities coupled via a plasmonic waveguide etched in a gold film. The feature device size is only 1.35 μm, which is reduced by five orders of magnitude compared with previous reports. The optical channels are formed by transparency windows of plasmon-induced transparencies. A shift of 45 nm in the central wavelengths of optical channels is obtained when the plasmonic coupled-nanocavities are covered with a 100-nm-thick poly(methyl methacrylate) layer. This work opens up the possibility for the realization of solid quantum chips based on plasmonic circuits.

  17. On-chip dual-comb based on quantum cascade laser frequency combs

    Energy Technology Data Exchange (ETDEWEB)

    Villares, G., E-mail: gustavo.villares@phys.ethz.ch; Wolf, J.; Kazakov, D.; Süess, M. J.; Beck, M.; Faist, J., E-mail: jfaist@phys.ethz.ch [Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich (Switzerland); Hugi, A. [IRsweep GmbH, CH-8093 Zürich (Switzerland)

    2015-12-21

    Dual-comb spectroscopy is emerging as an appealing application of mid-infrared frequency combs for high-resolution molecular spectroscopy, as it leverages on the unique coherence properties of frequency combs. Here, we present an on-chip dual-comb source based on mid-infrared quantum cascade laser frequency combs. Control of the combs repetition and offset frequencies is obtained by integrating micro-heaters next to each laser. We show that a full control of the dual-comb system is possible, by measuring a multi-heterodyne beating corresponding to an optical bandwidth of 32 cm{sup −1} centered at 1330 cm{sup −1} (7.52 μm), demonstrating that this device represents a critical step towards compact dual-comb systems.

  18. Silicon-based on-chip electrically tunable sidewall Bragg grating Fabry-Perot filter.

    Science.gov (United States)

    Zhang, Weifeng; Ehteshami, Nasrin; Liu, Weilin; Yao, Jianping

    2015-07-01

    We report the design, fabrication, and testing of a silicon-based on-chip electrically tunable sidewall Bragg grating Fabry-Perot filter. Spectral measurement shows that the filter has a narrow notch in reflection of approximately 46 pm, a Q-factor of 33,500, and an extinction ratio of 16.4 dB. DC measurement shows that the average central wavelength shift rates with forward and reverse bias are -1.15  nm/V and 4.2  pm/V, respectively. Due to strong light confinement in the Fabry-Perot cavity, the electro-optic frequency response shows that the filter has a 3-dB modulation bandwidth of ∼5.6  GHz. The performance of using the filter to perform modulation of a 3.5  Gb/s2(7)-1 nonreturn-to-zero pseudorandom binary sequence is evaluated.

  19. Rational design of on-chip refractive index sensors based on lattice plasmon resonances (Presentation Recording)

    Science.gov (United States)

    Lin, Linhan; Zheng, Yuebing

    2015-08-01

    Lattice plasmon resonances (LPRs), which originate from the plasmonic-photonic coupling in gold or silver nanoparticle arrays, possess ultra-narrow linewidth by suppressing the radiative damping and provide the possibility to develop the plasmonic sensors with high figure of merit (FOM). However, the plasmonic-photonic coupling is greatly suppressed when the nanoparticles are immobilized on substrates because the diffraction orders are cut off at the nanoparticle-substrate interfaces. Here, we develop the rational design of LPR structures for the high-performance, on-chip plasmonic sensors based on both orthogonal and parallel coupling. Our finite-difference time-domain simulations in the core/shell SiO2/Au nanocylinder arrays (NCAs) reveal that new modes of localized surface plasmon resonances (LSPRs) show up when the aspect ratio of the NCAs is increased. The height-induced LSPRs couple with the superstrate diffraction orders to generate the robust LPRs in asymmetric environment. The high wavelength sensitivity and narrow linewidth in these LPRs lead to the plasmonic sensors with high FOM and high signal-to-noise ratio (SNR). Wide working wavelengths from visible to near-infrared are also achieved by tuning the parameters of the NCAs. Moreover, the wide detection range of refractive index is obtained in the parallel LPR structure. The electromagnetic field distributions in the NCAs demonstrate the height-enabled tunability of the plasmonic "hot spots" at the sub-nanoparticles resolution and the coupling between these "hot spots" with the superstrate diffraction waves, which are responsible for the high performance LPRs-based on-chip refractive index sensors.

  20. Graphene-Boron Nitride Heterostructure Based Optoelectronic Devices for On-Chip Optical Interconnects

    Science.gov (United States)

    Gao, Yuanda

    Graphene has emerged as an appealing material for a variety of optoelectronic applications due to its unique electrical and optical characteristics. In this thesis, I will present recent advances in integrating graphene and graphene-boron nitride (BN) heterostructures with confined optical architectures, e.g. planar photonic crystal (PPC) nanocavities and silicon channel waveguides, to make this otherwise weakly absorbing material optically opaque. Based on these integrations, I will further demonstrate the resulting chip-integrated optoelectronic devices for optical interconnects. After transferring a layer of graphene onto PPC nanocavities, spectral selectivity at the resonance frequency and orders-of-magnitude enhancement of optical coupling with graphene have been observed in infrared spectrum. By applying electrostatic potential to graphene, electro-optic modulation of the cavity reflection is possible with contrast in excess of 10 dB. And furthermore, a novel and complex modulator device structure based on the cavity-coupled and BN-encapsulated dual-layer graphene capacitor is demonstrated to operate at a speed of 1.2 GHz. On the other hand, an enhanced broad-spectrum light-graphene interaction coupled with silicon channel waveguides is also demonstrated with ?0.1 dB/?m transmission attenuation due to graphene absorption. A waveguide-integrated graphene photodetector is fabricated and shown 0.1 A/W photoresponsivity and 20 GHz operation speed. An improved version of a similar photodetector using graphene-BN heterostructure exhibits 0.36 A/W photoresponsivity and 42 GHz response speed. The integration of graphene and graphene-BN heterostructures with nanophotonic architectures promises a new generation of compact, energy-efficient, high-speed optoelectronic device concepts for on-chip optical communications that are not yet feasible or very difficult to realize using traditional bulk semiconductors.

  1. DNA mutation detection with chip-based temperature gradient capillary electrophoresis using a slantwise radiative heating system.

    Science.gov (United States)

    Zhang, Hui-Dan; Zhou, Jing; Xu, Zhang-Run; Song, Jin; Dai, Jing; Fang, Jin; Fang, Zhao-Lun

    2007-09-01

    A simple and robust chip-based temperature gradient capillary electrophoresis (TGCE) system was developed for DNA mutation/single-nucleotide polymorphism (SNP) analysis using a radiative heating system. Reproducible, stable and uniform temperature gradients were established along a 3 cm length of the electrophoretic separation channel using a single thermostated aluminium heater plate. The heater was slightly slanted relative to the plane of the glass chip at 0.2-1.3 degrees by inserting thin spacers between the plate and chip at one end to produce differences in radiative heating that created the temperature gradient. On-chip TGCE analyses of 4 mutant DNA model samples amplified from plasmid templates, each containing a single base substitution, with a wide range of melting temperatures, showed that mutations were successfully detected under a wide temperature gradient of 10 degrees C and within a short gradient region of about 3 cm (3.3 degrees C cm(-1) gradient). The radiative heating system was able to establish stable spatial temperature gradients along short microfluidic separation channels using simple peripheral equipment and manipulation while ensuring good resolution for detecting a wide range of mutations. Effectiveness of the system was demonstrated by the successful detection of K-ras gene mutations in 6 colon cancer cell lines.

  2. Three-axis atomic magnetometer based on spin precession modulation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. C.; Dong, H. F., E-mail: hfdong@buaa.edu.cn; Hu, X. Y.; Chen, L.; Gao, Y. [School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)

    2015-11-02

    We demonstrate a three-axis atomic magnetometer with one intensity-modulated pump beam and one orthogonal probe beam. The main field component is measured using the resonance of the pumping light, while the transverse field components are measured simultaneously using the optical rotation of the probe beam modulated by the spin precession. It is an all-optical magnetometer without using any modulation field or radio frequency field. Magnetic field sensitivity of 0.8 pT/Hz{sup 1∕2} is achieved under a bias field of 2 μT.

  3. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a compact, high-precision, single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Our...

  4. Avoiding Message-Dependent Deadlock in Network-Based Systems on Chip

    NARCIS (Netherlands)

    Hansson, A.; Goossens, K.; Rãdulescu, A.

    2007-01-01

    Networks on chip (NoCs) are an essential component of systems on chip (SoCs) and much research is devoted to deadlock avoidance in NoCs. Prior work focuses on the router network while protocol interactions between NoC and intellectual property (IP) modules are not considered. These interactions intr

  5. The optimal time-frequency atom search based on a modified ant colony algorithm

    Institute of Scientific and Technical Information of China (English)

    GUO Jun-feng; LI Yan-jun; YU Rui-xing; ZHANG Ke

    2008-01-01

    In this paper,a new optimal time-frequency atom search method based on a modified ant colony algorithm is proposed to improve the precision of the traditional methods.First,the discretization formula of finite length time-frequency atom is inferred at length.Second; a modified ant colony algorithm in continuous space is proposed.Finally,the optimal timefrequency atom search algorithm based on the modified ant colony algorithm is described in detail and the simulation experiment is carried on.The result indicates that the developed algorithm is valid and stable,and the precision of the method is higher than that of the traditional method.

  6. ADME evaluation in drug discovery. 2. Prediction of partition coefficient by atom-additive approach based on atom-weighted solvent accessible surface areas.

    Science.gov (United States)

    Hou, T J; Xu, X J

    2003-01-01

    A novel method for the calculations of 1-octanol/water partition coefficient (log P) of organic molecules has been presented here. The method, SLOGP v1.0, estimates the log P values by summing the contribution of atom-weighted solvent accessible surface areas (SASA) and correction factors. Altogether 100 atom/group types were used to classify atoms with different chemical environments, and two correlation factors were used to consider the intermolecular hydrophobic interactions and intramolecular hydrogen bonds. Coefficient values for 100 atom/group and two correction factors have been derived from a training set of 1850 compounds. The parametrization procedure for different kinds of atoms was performed as follows: first, the atoms in a molecule were defined to different atom/group types based on SMARTS language, and the correction factors were determined by substructure searching; then, SASA for each atom/group type was calculated and added; finally, multivariate linear regression analysis was applied to optimize the hydrophobic parameters for different atom/group types and correction factors in order to reproduce the experimental log P. The correlation based on the training set gives a model with the correlation coefficient (r) of 0.988, the standard deviation (SD) of 0.368 log units, and the absolute unsigned mean error of 0.261. Comparison of various procedures of log P calculations for the external test set of 138 organic compounds demonstrates that our method bears very good accuracy and is comparable or even better than the fragment-based approaches. Moreover, the atom-additive approach based on SASA was compared with the simple atom-additive approach based on the number of atoms. The calculated results show that the atom-additive approach based on SASA gives better predictions than the simple atom-additive one. Due to the connection between the molecular conformation and the molecular surface areas, the atom-additive model based on SASA may be a more

  7. AC electric field induced dipole-based on-chip 3D cell rotation.

    Science.gov (United States)

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-01

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  8. Comparative Sensitivities of Gravitational Wave Detectors Based on Atom Interferometers and Light Interferometers

    Science.gov (United States)

    Baker, John G.; Thorpe, J. I.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.

  9. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Jana Vlachova

    2015-01-01

    Full Text Available Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH. It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  10. Immobilization of zebrafish larvae on a chip-based device for environmental scanning electron microscopy (ESEM) imaging

    Science.gov (United States)

    Akagi, Jin; Hall, Chris J.; Crosier, Kathryn E.; Crosier, Philip S.; Wlodkowic, Donald

    2013-12-01

    Small vertebrate model organisms have recently gained popularity as attractive experimental models that enhance our understanding of human tissue and organ development. Laser microsurgery on zebrafish larvae combined with Scanning Electron Microscopy (SEM) imaging can in particular provide accelerated insights into the tissue regeneration phenomena. Conventional SEM exposes, however, specimens to high vacuum environments, and often requires laborintensive and time-consuming pretreatments and manual positioning. Moreover, there are virtually no technologies available that can quickly immobilize the zebrafish larvae for high definition SEM imaging. This work describes the proof-of-concept design and validation of a microfluidic chip-based system for immobilizing zebrafish larvae and it's interfacing with Environmental Scanning Electron Microscope (ESEM) imaging. The Lab-on-a-Chip (LOC) device was fabricated using a high-speed infrared laser micromachining and consists of a reservoir with multiple semispherical microwells, which hold the yolk of zebrafish larvae, and drain channels that allow removing excess of medium during SEM imaging. Paper filter is used to actuate the chip and immobilization of the larvae by gentle suction that occurs during water drainage. The trapping region allows multiple specimens to be positioned on the chip. The device is then inserted directly inside the ESEM and imaged in a near 100% humidity atmosphere. This facilitates ESEM imaging of untreated biological samples.

  11. Hybrid statistics-simulations based method for atom-counting from ADF STEM images.

    Science.gov (United States)

    De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra

    2017-01-25

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials.

  12. Spectral fine structure of the atomic ground states based on full relativistic theory

    Institute of Scientific and Technical Information of China (English)

    Zhenghe Zhu; Yongjian Tang

    2011-01-01

    @@ We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.%We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.

  13. Some issues on atomic force microscopy based surface characterization

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-hang; HUANG Wen-hao

    2007-01-01

    Influences of tip radius and sampling interval on applying atomic force microscopy(AFM)in quantitative surface evaluations are investigated by numerical simulations and experiments. Several evaluation parameters of surfaces ranging from amplitude to functional parameters are studied. Numerical and experimental results are in good agreements. The accuracy of estimating tip radius on random rough surface with Gaussian distribution of heights using a blind reconstruction method is also discussed theoretically. It is found that the accuracy is greatly depending on the ratio of actual tip radius to rootmean-square (rms) radius of curvature. To obtain an accurate estimation of tip radius under Gaussian rough surface, the ratio has to be larger than 3/2.

  14. Mercury Atomic Frequency Standards for Space Based Navigation and Timekeeping

    Science.gov (United States)

    Tjoelker, R. L.; Burt, E. A.; Chung, S.; Hamell, R. L.; Prestage, J. D.; Tucker, B.; Cash, P.; Lutwak, R.

    2012-01-01

    A low power Mercury Atomic Frequency Standard (MAFS) has been developed and demonstrated on the path towards future space clock applications. A self contained mercury ion breadboard clock: emulating flight clock interfaces, steering a USO local oscillator, and consuming approx 40 Watts has been operating at JPL for more than a year. This complete, modular ion clock instrument demonstrates that key GNSS size, weight, and power (SWaP) requirements can be achieved while still maintaining short and long term performance demonstrated in previous ground ion clocks. The MAFS breadboard serves as a flexible platform for optimizing further space clock development and guides engineering model design trades towards fabrication of an ion clock for space flight.

  15. Fully integrated system-on-chip for pixel-based 3D depth and scene mapping

    Science.gov (United States)

    Popp, Martin; De Coi, Beat; Thalmann, Markus; Gancarz, Radoslav; Ferrat, Pascal; Dürmüller, Martin; Britt, Florian; Annese, Marco; Ledergerber, Markus; Catregn, Gion-Pol

    2012-03-01

    We present for the first time a fully integrated system-on-chip (SoC) for pixel-based 3D range detection suited for commercial applications. It is based on the time-of-flight (ToF) principle, i.e. measuring the phase difference of a reflected pulse train. The product epc600 is fabricated using a dedicated process flow, called Espros Photonic CMOS. This integration makes it possible to achieve a Quantum Efficiency (QE) of >80% in the full wavelength band from 520nm up to 900nm as well as very high timing precision in the sub-ns range which is needed for exact detection of the phase delay. The SoC features 8x8 pixels and includes all necessary sub-components such as ToF pixel array, voltage generation and regulation, non-volatile memory for configuration, LED driver for active illumination, digital SPI interface for easy communication, column based 12bit ADC converters, PLL and digital data processing with temporary data storage. The system can be operated at up to 100 frames per second.

  16. Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning.

    Science.gov (United States)

    Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P

    2015-12-01

    The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data.

  17. Site of metabolism prediction based on ab initio derived atom representations.

    Science.gov (United States)

    Finkelmann, Arndt R; Göller, Andreas H; Schneider, Gisbert

    2017-03-21

    Machine learning models for site of metabolism (SoM) prediction offer the ability to identify metabolic soft spots in low molecular weight drug molecules at low computational cost and enable data-based reactivity prediction. SoM prediction is an atom classification problem. Successful construction of machine learning models requires atom representations that capture the reactivity-determining features of a potential reaction site. We have developed a descriptor scheme that characterizes an atom's steric and electronic environment and its relative location in the molecular structure. The partial charge distributions were obtained from fast quantum mechanical calculations. We successfully trained machine learning classifiers on curated cytochrome p450 metabolism data. The models based on the new atom descriptors showed sustained accuracy for retrospective analyses of metabolism optimization campaigns and lead optimization projects from Bayer Pharmaceuticals. The results obtained demonstrate the practicality of quantum-chemistry-supported machine learning models for hit-to-lead optimization.

  18. Network on Chip: a New Approach of QoS Metric Modeling Based on Calculus Theory

    Directory of Open Access Journals (Sweden)

    Salem NASRI

    2011-10-01

    Full Text Available According to ITRS, in 2018, ICs will be able to integrate billions of transistors, with feature sizes around 18 nm and clock frequencies near to 10 GHz. In this context, Network on Chip (NoC appears as an attractive solution to implement future high performance networks and more QoS management. A NoC is composed by IP cores (Intellectual Propriety and switches connected among themselves by communicationchannels. End-to-End Delay (EED communication is accomplished by the exchange of data among IP cores.Often, the structure of particular messages is not adequate for the communication purposes. This leads to the concept of packet switching. In the context of NoCs, packets are composed by header, payload, and trailer. Packets are divided into small pieces called Flits. It appears of importance, to meet the required performance in NoC hardware resources. It should be specified in an earlier step of the system design. The main attention should be given to the choice of some network parameters such as the physical buffer size in the node. The EED and packet loss are some of the critical QoS metrics. Some real-time and multimedia applications bound up these parameters and require specific hardware resources and particular management approaches in the NoC switch.A traffic contract (SLA, Service Level Agreement specifies the ability of a network or protocol to give guaranteed performance, throughput or latency bounds based on mutually agreed measures, usually by prioritizing traffic. A defined Quality of Service (QoS may be required for some types of network real time traffic or multimedia applications. The main goal of this paper is, using the Network on Chip modeling architecture, to define a QoS metric. We focus on the network delay bound and packet losses. This approach is based on the Network Calculus theory, a mathematical model to represent the data flows behavior between IPs interconnected over NoC.We propose an approach of QoS-metric based on Qo

  19. Accelerating Atomic Orbital-based Electronic Structure Calculation via Pole Expansion plus Selected Inversion

    OpenAIRE

    Lin, Lin

    2012-01-01

    We describe how to apply the recently developed pole expansion plus selected inversion (PEpSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham...

  20. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites

    OpenAIRE

    Li, Z K; Fu, H. M.; Sha, P. F.; Zhu, Z. W.; A. M. Wang; Li, H.; Zhang, H. W.; Zhang, H. F.; Hu, Z. Q.

    2015-01-01

    The interaction between active element Zr and W damages the W fibers and the interface and decreases the mechanical properties, especially the tensile strength of the W fibers reinforced Zr-based bulk metallic glass composites (BMGCs). From the viewpoint of atomic interaction, the W-Zr interaction can be restrained by adding minor elements that have stronger interaction with W into the alloy. The calculation about atomic interaction energy indicates that Ta and Nb preferred to segregate on th...

  1. Sensitivity enhancement of a grating-based surface plasmon-coupled emission (SPCE) biosensor chip using gold thickness

    Science.gov (United States)

    Yuk, Jong Seol; Guignon, Ernest F.; Lynes, Michael A.

    2014-01-01

    We describe a novel approach to enhance the sensitivity of a grating-based surface plasmon-coupled emission (SPCE) sensor by increasing the thickness of the metal film used in this system. The calculated optical properties of grating-based SPR spectra were significantly affected by both grating depth and by gold thickness. Higher angular sensitivity could be achieved at short wavelengths and under in situ measurement (analysis under aqueous condition). We confirmed the predicated enhancements of SPCE response using Alexa Fluor 647-labeled anti-mouse IgG immobilized on the SPCE sensor chips. Grating-coupled SPCE sensor chips can be used as a useful tool for high contents analysis of chemical and biomolecular interactions.

  2. Chip-Based Measurements of Brownian Relaxation of Magnetic Beads Using a Planar Hall Effect Magnetic Field Sensor

    Science.gov (United States)

    Østerberg, Frederik W.; Dalslet, Bjarke T.; Snakenborg, Detlef; Johansson, Christer; Hansen, Mikkel F.

    2010-12-01

    We present a simple `click-on' fluidic system with integrated electrical contacts, which is suited for electrical measurements on chips in microfluidic systems. We show that microscopic magnetic field sensors based on the planar Hall effect can be used for detecting the complex magnetic response using only the self-field arising from the bias current applied to the sensors as excitation field. We present measurements on a suspension of magnetic beads with a nominal diameter of 250 nm vs. temperature and find that the observations are consistent with the Cole-Cole model for Brownian relaxation with a constant hydrodynamic bead diameter when the temperature dependence of the viscosity of water is taken into account. These measurements demonstrate the feasibility of performing measurements of the Brownian relaxation response in a lab-on-a-chip system and constitute the first step towards an integrated biosensor based on the detection of the dynamic response of magnetic beads.

  3. Design and experimental verification of CMOS magnetic-based microbead detection using an asynchronous intra-chip inductive-coupling transceiver

    Science.gov (United States)

    Niitsu, Kiichi; Kobayashi, Atsuki; Yoshida, Kohei; Nakazato, Kazuo

    2017-01-01

    In this study, an asynchronous intra-chip inductive-coupling transceiver was used to design and experimentally verify a CMOS magnetic-based microbeads detection system. Magnetic microbeads were employed for the surrounding living cells. These microbeads increased the magnetic flux and enabled the operation of an intra-chip inductive-coupling transceiver with a low transmitter supply voltage. Thus, by sensing the change in transmitter supply voltage, the system detected the living cells surrounded by microbeads. To verify the effectiveness of the proposed approach, a test chip was fabricated using 0.25 µm CMOS technology. The measured results successfully demonstrated the detection of microbeads.

  4. Patterned Fibers Embedded Microfluidic Chips Based on PLA and PDMS for Ag Nanoparticle Safety Testing

    Directory of Open Access Journals (Sweden)

    Yaowen Liu

    2016-11-01

    Full Text Available A new method to integrate poly-dl-lactide (PLA patterned electrospun fibers with a polydimethylsiloxane (PDMS microfluidic chip was successfully developed via lithography. Hepatocyte behavior under static and dynamic conditions was investigated. Immunohistochemical analyses indicated good hepatocyte survival under the dynamic culture system with effective hepatocyte spheroid formation in the patterned microfluidic chip vs. static culture conditions and tissue culture plate (TCP. In particular, hepatocytes seeded in this microfluidic chip under a flow rate of 10 μL/min could re-establish hepatocyte polarity to support biliary excretion and were able to maintain high levels of albumin and urea secretion over 15 days. Furthermore, the optimized system could produce sensitive and consistent responses to nano-Ag-induced hepatotoxicity during culture. Thus, this microfluidic chip device provides a new means of fabricating complex liver tissue-engineered scaffolds, and may be of considerable utility in the toxicity screening of nanoparticles.

  5. A PRIORITY-BASED POLLING SCHEDULING ALGORITHM FOR ARBITRATION POLICY IN NETWORK ON CHIP

    Institute of Scientific and Technical Information of China (English)

    Bao Liyong; Zhao Dongfeng; Zhao Yifan

    2012-01-01

    A solution is imperatively expected to meet the efficient contention resolution schemes for managing simultaneous access requests to the communication resources on the Network on Chip (NoC).Based on the ideas of conflict-free transmission,priority-based service,and dynamic self-adaptation to loading,this paper presents a novel scheduling algorithm for Medium Access Control (MAC) in NoC with the researches of the communication structure features of 2D mesh.The algorithm gives priority to guarantee the Quality of Service (QoS) for local input port as well as dynamic adjustment of the performance of the other ports along with input load change.The theoretical model of this algorithm is established with Markov chain and probability generating function.Mathematical analysis is made on the mean queue length and the mean inquiry cyclic time of the system.Simulated experiments are conducted to test the accuracy of the model.It turns out that the findings from theoretical analysis correspond well with those from simulated experiments.Further more,the analytical findings of the system performance demonstrate that the algorithm enables effectively strengthen the fairness and stability of data transmissions in NoC.

  6. SERS-based multiple biomarker detection using a gold-patterned microarray chip

    Science.gov (United States)

    Kim, Insup; Junejo, Inam-ur-Rehman; Lee, Moonkwon; Lee, Sangyeop; Lee, Eun Kyu; Chang, Soo-Ik; Choo, Jaebum

    2012-09-01

    We report a highly sensitive surface-enhanced Raman scattering (SERS)-based immunoassay platform for the multiplex detection of biomarkers. For this purpose, a gold-patterned microarray chip has been fabricated and used as a SERS detection template. Here, a typical sandwich immunocomplex protocol was adopted. Monoclonal antibodies were immobilized on gold patterned substrates, and then antigen solutions and polyclonal antibody-conjugated hollow gold nanospheres (HGNs) were sequentially added for the formation of sandwich immunocomplexes. Antigen biomarkers can be quantitatively assayed by monitoring the intensity change of a characteristic SERS peak of a reporter molecule adsorbed on the surfaces of HGNs. Under optimized assay conditions, the limits of detections (LODs) were determined to be 10 fg/mL for human IgG and 10-100 fg/mL for rabbit IgG. In addition, the SERS-based immunoassay technique can be applied in a wider dynamic concentration range with a good sensitivity compared to ELISA. The proposed method fulfills the current needs of high sensitivity and selectivity which are essential for the clinical diagnosis of a disease.

  7. Desigen of Vehicle Information Terminal Based on Intel Processor ATOM-510%基于凌动处理器ATOM-510的车载信息终端设计

    Institute of Scientific and Technical Information of China (English)

    黄丽莲; 杜楠

    2012-01-01

    随着人们对汽车安全性、舒适性要求的不断提高,汽车电子控制功能逐渐增多,针对使用传统单片机控制方法功能单一、灵活性差等缺点,提出基于intel凌动处理器ATOM- 510平台和嵌入式操作系统ubuntu的车载信息终端解决方案;实现了GPS(全球卫星定位系统)定位信息采集与解析、GPRS(通用无线分组业务)数据传输以及多媒体娱乐等功能,并基于嵌入式GUI(图形用户界面)Qt设计了良好的人机交互界面;应用结果表明,该方案运行稳定可靠、功能丰富、操作简便、易于扩展.%With people' s increasing demands for vehicle' s safety and comfort, the electronic control function of vehicle are increasing and more complex. In order to resolve the poor function and flexibility of traditional methods for vehicle information terminal on a single-chip, a solution based on Intel processor ATOM-510 and embedded Ubuntu was proposed. The acquisition and analysis of location information based on global position system (GPS), the data transmission based on general packed radio service (GPRS), and a friendly man-machine interface based on embedded graph user interface (GUI) Qt are achieved by the method proposed. The application shows that this system runs stably and accurately. It can provide abundant function, easy operation, and can be improved easily.

  8. A Subfemtotesla Atomic Magnetometer Based on Hybrid Optical Pumping of Potassium and Rubidium

    Science.gov (United States)

    Li, Yang; Cai, Hongwei; Ding, Ming; Quan, Wei; Fang, Jiancheng

    2016-05-01

    Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have been researched and applied extensively. Higher sensitivity and spatial resolution combined with no cryogenic cooling of atomic magnetometers would enable many applications with low cost, including the magnetoencephalography (MEG). Ultrahigh sensitivity atomic magnetometer is considered to be the main development direction for the future. Hybrid optical pumping has been proposed to improve the efficiency of nuclear polarization. But it can also be used for magnetic field measurement. This method can control absorption of optical pumping light, which is benefit for improving the uniformity of alkali metal atoms polarization and the sensitivity of atomic magnetometer. In addition, it allows optical pumping in the absence of quenching gas. We conduct experiments with a hybrid optically pumped atomic magnetometer using a cell containing potassium and rubidium. By adjusting the density ratio of alkali metal and the pumping laser conditions, we measured the magnetic field sensitivity better than 0.7 fT/sqrt(Hz).

  9. Silicon-nanowire based attachment of silicon chips for mouse embryo labelling.

    Science.gov (United States)

    Durán, S; Novo, S; Duch, M; Gómez-Martínez, R; Fernández-Regúlez, M; San Paulo, A; Nogués, C; Esteve, J; Ibañez, E; Plaza, J A

    2015-03-21

    The adhesion of small silicon chips to cells has many potential applications as direct interconnection of the cells to the external world can be accomplished. Hence, although some typical applications of silicon nanowires integrated into microsystems are focused on achieving a cell-on-a-chip strategy, we are interested in obtaining chip-on-a-cell systems. This paper reports the design, technological development and characterization of polysilicon barcodes featuring silicon nanowires as nanoscale attachment to identify and track living mouse embryos during their in vitro development. The chips are attached to the outer surface of the Zona Pellucida, the cover that surrounds oocytes and embryos, to avoid the direct contact between the chip and the embryo cell membrane. Two attachment methodologies, rolling and pushpin, which allow two entirely different levels of applied forces to attach the chips to living embryos, are evaluated. The former consists of rolling the mouse embryos over one barcode with the silicon nanowires facing upwards, while in the latter, the barcode is pushed against the embryo with a micropipette. The effect on in vitro embryo development and the retention rate related to the calculated applied forces are stated. Field emission scanning electron microscopy inspection, which allowed high-resolution imaging, also confirms the physical attachment of the nanowires with some of them piercing or wrapped by the Zona Pellucida and revealed extraordinary bent silicon nanowires.

  10. [Atomic force microscopy fishing of gp120 on immobilized aptamer and its mass spectrometry identification].

    Science.gov (United States)

    Bukharina, N S; Ivanov, Yu D; Pleshakova, T O; Frantsuzov, P A; Andreeva, E Yu; Kaysheva, A L; Izotov, A A; Pavlova, T I; Ziborov, V S; Radko, S P; Archakov, A I

    2015-01-01

    A method of atomic force microscopy-based fishing (AFM fishing) has been developed for protein detection in the analyte solution using a chip with an immobilized aptamer. This method is based on the biospecific fishing of a target protein from a bulk solution onto the small AFM chip area with the immobilized aptamer to this protein used as the molecular probe. Such aptamer-based approach allows to increase an AFM image contrast compared to the antibody-based approach. Mass spectrometry analysis used after the biospecific fishing to identify the target protein on the AFM chip has proved complex formation. Use of the AFM chip with the immobilized aptamer avoids interference of the antibody and target protein peaks in a mass spectrum.

  11. Parametric adaptive time-frequency representation based on time-sheared Gabor atoms

    Institute of Scientific and Technical Information of China (English)

    Ma Shiwei; Zhu Xiaojin; Chen Guanghua; Wang Jian; Cao Jialin

    2007-01-01

    A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.

  12. Comparison of atom interferometers and light interferometers as space-based gravitational wave detectors.

    Science.gov (United States)

    Baker, John G; Thorpe, J I

    2012-05-25

    We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  13. Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors

    Science.gov (United States)

    Baker, John G.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  14. Chip-Based Measurements of Brownian Relaxation of Magnetic Beads Using a Planar Hall Effect Magnetic Field Sensor

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Dalslet, Bjarke Thomas; Snakenborg, Detlef

    2010-01-01

    We present a simple 'click-on' fluidic system with integrated electrical contacts, which is suited for electrical measurements on chips in microfluidic systems. We show that microscopic magnetic field sensors based on the planar Hall effect can be used for detecting the complex magnetic response...... with a constant hydrodynamic bead diameter when the temperature dependence of the viscosity of water is taken into account. These measurements demonstrate the feasibility of performing measurements of the Brownian relaxation response in a lab-on-a-chip system and constitute the first step towards an integrated...... using only the self-field arising from the bias current applied to the sensors as excitation field. We present measurements on a suspension of magnetic beads with a nominal diameter of 250 nm vs. temperature and find that the observations are consistent with the Cole-Cole model for Brownian relaxation...

  15. On-Chip Built-in Jitter Measurement Circuit for PLL Based on Duty-Cycle Modulation Vernier Delay Line

    Institute of Scientific and Technical Information of China (English)

    YU Fei; Chung Len Lee; ZHANG Jingkai

    2007-01-01

    Phase-locked loops (PLLs) are essential wherever a local event is synchronized with a periodic external event. They are utilized as on-chip clock frequency generators to synthesize a low skew and higher internal frequency clock from an external lower frequency signal and its characterization and measurement have recently been calling for more and more attention. In this paper, a built-in on-chip circuit for measuring jitter of PLL based on a duty cycle modulation vernier delay line is proposed and demonstrated. The circuit employs two delay lines to measure the timing difference and transform the difference signal into digital words. The vernier lines are composed of delay cells whose duty cycle can be adjusted by a feedback voltage. It enables the circuit to have a self calibration capability which eliminates the mismatch problem caused by the process variation.

  16. Design and Implementation of Embedded Transmission Control Protocol/Internet Protocol Network Based on System-on-programmable Chip

    Institute of Scientific and Technical Information of China (English)

    LUO Yong; HAN Xiao-jun

    2008-01-01

    A scheme of transmission control protocol/Internet protocol(TCP/IP) network system based on system-on-programmable chip(SOPC) is proposed for the embedded network communication. In this system, Nios processor, Ethernet controller and other peripheral logic circuits are all integrated on a Stratix Ⅱ field programmable gate array(FPGA) chip by using SOPC builder design software. And the network communication is realized by transplanting MicroC/OS Ⅱ(μC/OS Ⅱ) operation system and light weight Internet protocol(LwIP). The design idea, key points and the structures of both software and hardware of the system are presented and ran with a telecommunication example. The experiment shows that the embedded TCP/IP network system has high reliability and real-time performance.

  17. A Phase Change Memory Chip Based on TiSbTe Alloy in 40-nm Standard CMOS Technology

    Institute of Scientific and Technical Information of China (English)

    Zhitang Song; YiPeng Zhan; Daolin Cai; Bo Liu; Yifeng Chen; Jiadong Ren

    2015-01-01

    In this letter, a phase change random access memory (PCRAM) chip based on Ti0.4Sb2Te3 alloy material was fabricated in a 40-nm 4-metal level complementary metal-oxide semiconductor (CMOS) technology. The phase change resistor was then integrated after CMOS logic fabrication. The PCRAM was successfully embedded without changing any logic device and process, in which 1.1 V negative-channel metal-oxide semiconductor device was used as the memory cell selector. The currents and the time of SET and RESET operations were found to be 0.2 and 0.5 mA, 100 and 10 ns, respectively. The high speed performance of this chip may highlight the design advantages in many embedded applications.

  18. A system-on-chip and paper-based inkjet printed electrodes for a hybrid wearable bio-sensing system.

    Science.gov (United States)

    Xie, Li; Yang, Geng; Mäntysalo, Matti; Jonsson, Fredrik; Zheng, Li-Rong

    2012-01-01

    This paper presents a hybrid wearable bio-sensing system, which combines traditional small-area low-power and high-performance System-on-Chip (SoC), flexible paper substrate and cost-effective Printed Electronics. Differential bio-signals are measured, digitized, stored and transmitted by the SoC. The total area of the chip is 1.5 × 3.0 mm(2). This enables the miniaturization of the wearable system. The electrodes and interconnects are inkjet printed on paper substrate and the performance is verified in in-vivo tests. The quality of electrocardiogram signal sensed by printed electrodes is comparable with commercial electrodes, with noise level slightly increased. The paper-based inkjet printed system is flexible, light and thin, which makes the final system comfortable for end-users. The hybrid bio-sensing system offers a potential solution to the next generation wearable healthcare technology.

  19. A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays.

    Science.gov (United States)

    Wang, Yuzhen; Zhu, Guixian; Qi, Wenjin; Li, Ying; Song, Yujun

    2016-11-15

    Platinum nanoparticles incorporated volumetric bar-chart chip (PtNPs-V-Chip) is able to be used for point-of-care tests by providing quantitative and visualized readout without any assistance from instruments, data processing, or graphic plotting. To improve the sensitivity of PtNPs-V-Chip, hybridization chain reaction was employed in this quantitation platform for highly sensitive assays that can detect as low as 16 pM Ebola Virus DNA, 0.01ng/mL carcinoembryonic antigen (CEA), and the 10 HER2-expressing cancer cells. Based on this amplified strategy, a 100-fold decrease of detection limit was achieved for DNA by improving the number of platinum nanoparticle catalyst for the captured analyte. This quantitation platform can also distinguish single base mismatch of DNA hybridization and observe the concentration threshold of CEA. The new strategy lays the foundation for this quantitation platform to be applied in forensic analysis, biothreat detection, clinical diagnostics and drug screening.

  20. Applications of stereolithography for rapid prototyping of biologically compatible chip-based physiometers

    Science.gov (United States)

    Fuad, Nurul Mohd; Zhu, Feng; Kaslin, Jan; Wlodkowic, Donald

    2016-12-01

    Despite the growing demand and numerous applications for the biomedical community, the developments in millifluidic devices for small model organisms are limited compared to other fields of biomicrofluidics. The main reasons for this stagnanation are difficulties in prototyping of millimeter scale and high aspect ratio devices needed for large metazoan organisms. Standard photolithography is in this context a time consuming procedure not easily adapted for fabrication of molds with vertical dimensions above 1 mm. Moreover, photolithography is still largely unattainable to a gross majority of biomedical laboratories willing to pursue custom development of their own chip-based platforms due to costs and need for dedicated clean room facilities. In this work, we present application of high-definition additive manufacturing systems for fabrication of 3D printed moulds used in soft lithography. Combination of 3D printing with PDMS replica molding appears to be an alternative for millifluidic systems that yields rapid and cost effective prototyping pipeline. We investigated the important aspects on both 3D printed moulds and PDMS replicas such as geometric accuracies and surface topology. Our results demonstrated that SLA technologies could be applied for rapid and accurate fabrication of millifluidic devices for trapping of millimetre-sized specimens such as living zebrafish larvae. We applied the new manufacturing method in a proof-of-concept prototype device capable of trapping and immobilizing living zebrafish larvae for recording heart rate variation in cardio-toxicity experiments.

  1. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.

    Science.gov (United States)

    Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi

    2015-02-21

    We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.

  2. Chip-integrated optical power limiter based on an all-passive micro-ring resonator.

    Science.gov (United States)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-20

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  3. A programming environment to control switching networks based on STC104 packet routing chip

    Science.gov (United States)

    Legrand, I. C.; Schwendicke, U.; Leich, H.; Medinnis, M.; Koehler, A.; Wegner, P.; Sulanke, K.; Dippel, R.; Gellrich, A.

    1997-02-01

    The software environment used to control a large switching architecture based on SGS-Thomson STC104 (an asynchronous 32-way dynamic packet routing chip) is presented. We are evaluating this switching technology for large scale, real-time parallel systems. A Graphical User Interface (GUI) written as a multi-thread application in Java allows to set the switch configuration and to continuously monitor the state of each link. This GUI connects to a multi-thread server via TCP/IP sockets. The server is running on a PC-Linux system and implements the virtual channel protocol in communicating with the STC104 switching units using the Data Strobe link or the VME bus. Linux I/O drivers to control the Data Strobe link parallel adaptor (STC101) were developed. For each client the server creates a new thread and allocates a new socket for communications. The Java code of the GUI may be transferred to any client using the http protocol providing a user friendly interface to the system with real-time monitoring which is also platform independent.

  4. Lab-on-a-chip-based high-throughput screening of the genotoxicity of engineered nanomaterials.

    Science.gov (United States)

    Vecchio, Giuseppe; Fenech, Michael; Pompa, Pier Paolo; Voelcker, Nicolas H

    2014-07-09

    The continuous increasing of engineered nanomaterials (ENMs) in our environment, their combinatorial diversity, and the associated genotoxic risks, highlight the urgent need to better define the possible toxicological effects of ENMs. In this context, we present a new high-throughput screening (HTS) platform based on the cytokinesis-block micronucleus (CBMN) assay, lab-on-chip cell sorting, and automated image analysis. This HTS platform has been successfully applied to the evaluation of the cytotoxic and genotoxic effects of silver nanoparticles (AgNPs) and silica nanoparticles (SiO2NPs). In particular, our results demonstrate the high cyto- and genotoxicity induced by AgNPs and the biocompatibility of SiO2NPs, in primary human lymphocytes. Moreover, our data reveal that the toxic effects are also dependent on size, surface coating, and surface charge. Most importantly, our HTS platform shows that AgNP-induced genotoxicity is lymphocyte sub-type dependent and is particularly pronounced in CD2+ and CD4+ cells.

  5. Construction of a multidimensional plane network-on-chip architecture based on the hypercube structure

    Institute of Scientific and Technical Information of China (English)

    Chang Wu; Yubai Li; Qicong Peng; Song Chai; Zhongming Yang

    2009-01-01

    In current network-on-chip (NOC) studies and in practical applications,the mesh structure is the most widely used and deeply researched structure.However,the hypercube structure is more symmetrical and regular than the mesh or torus structures.This paper compares the network characteristics of these three direct topologies and proposes a method to compress the hypercube into a plane structure.This structure,which has the multidimensional property based on the hypercube,is called the multidimensional plane (MDP) NOC.The compression process is divided into two steps:the transformation of router denotations and the connection of channels.Then,SystemC is used to implement the MDP NOC and it is compared with the mesh and torus NOCs in terms of four aspects of performance,including average latency time,normalization throughput,energy consumption and area cost.(C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences.Published by Elsevier Limited and Science in China Press.All rights reserved.

  6. On-chip native gel electrophoresis-based immunoassays for tetanus antibody and toxin.

    Science.gov (United States)

    Herr, Amy E; Throckmorton, Daniel J; Davenport, Andrew A; Singh, Anup K

    2005-01-15

    By integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device, we have developed a microanalytical platform for performing electrophoresis-based immunoassays. The microfluidic immunoassays are performed by gel electrophoretic separation and quantitation of bound and unbound antibody or antigen. To retain biological activity of proteins and maintain intact immune complexes, nondenaturing polyacrylamide gel electrophoresis conditions were investigated. Both direct (noncompetitive) and competitive immunoassay formats are demonstrated in microchips. A direct immunoassay was developed for detection of tetanus antibodies in buffer as well as diluted serum samples. After an off-chip incubation step, the immunoassay was completed in less than 3 min and the sigmoidal dose-response curve spanned an antibody concentration range from 0.17 to 260 nM. The minimum detectable antibody concentration was 0.68 nM. A competitive immunoassay was also developed for tetanus toxin C-fragment by allowing unlabeled and fluorescently labeled tetanus toxin C-fragment compete to bind to a limited fixed concentration of tetanus antibody. The immunoassay technique described in this work shows promise as a component of an integrated microfluidic device amenable to automation and relevant to development of clinical diagnostic devices.

  7. Silicon-chip-based mid-infrared dual-comb spectroscopy

    CERN Document Server

    Yu, Mengjie; Griffith, Austin G; Picqué, Nathalie; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    On-chip spectroscopy that could realize real-time fingerprinting with label-free and high-throughput detection of trace molecules is one of the 'holy grails" of sensing. Such miniaturized spectrometers would greatly enable applications in chemistry, bio-medicine, material science or space instrumentation, such as hyperspectral microscopy of live cells or pharmaceutical quality control. Dual-comb spectroscopy (DCS), a recent technique of Fourier transform spectroscopy without moving parts, is particularly promising since it measures high-precision spectra in the gas phase using only a single detector. Here, we present a microresonator-based platform designed for mid-infrared (mid-IR) DCS. A single continuous-wave (CW) low-power pump source generates two mutually coherent mode-locked frequency combs spanning from 2.6 $\\mu$m to 4.1 $\\mu$m in two silicon micro-resonators. Thermal control and free-carrier injection control modelocking of each comb and tune the dual-comb parameters. The large line spacing of the co...

  8. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    Science.gov (United States)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  9. System on chip thermal vacuum sensor based on standard CMOS process

    Institute of Scientific and Technical Information of China (English)

    Li Jinfeng; Tang Zhen'an; Wang Jiaqi

    2009-01-01

    An on-chip microelectromechanical system was fabricated in a 0.5μm standard CMOS process for gas pressure detection. The sensor was based on a micro-hotplate (MHP) and had been integrated with a rail to rail operational amplifier and an 8-bit successive approximation register (SAR) A/D converter. A tungsten resistor was manufactured on the MHP as the sensing element, and the sacrificial layer of the sensor was made from polysilicon and etched by surface-micromachining technology. The operational amplifier was configured to make the sensor operate in constant current mode. A digital bit stream was provided as the system output. The measurement results demonstrate that the gas pressure sensitive range of the vacuum sensor extends from 1 to 105 Pa. In the gas pressure range from 1 to 100 Pa, the sensitivity of the sensor is 0.23 mV/Pa, the linearity is 4.95%, and the hysteresis is 8.69%. The operational amplifier can drive 200 Ω resistors distortionlessly, and the SAR A/D converter achieves a resolution of 7.4 bit with 100 kHz sample rate. The performance of the operational amplifier and the SAR A/D converter meets the requirements of the sensor system.

  10. Efficient polarization insensitive complex wavefront control using Huygens' metasurfaces based on dielectric resonant meta-atoms

    CERN Document Server

    Chong, Katie E; Staude, Isabelle; James, Anthony; Dominguez, Jason; Liu, Sheng; Subramania, Ganapathi S; Decker, Manuel; Neshev, Dragomir N; Brener, Igal; Kivshar, Yuri S

    2016-01-01

    Subwavelength-thin metasurfaces have shown great promises for the control of optical wavefronts, thus opening new pathways for the development of efficient flat optics. In particular, Huygens' metasurfaces based on all-dielectric resonant meta-atoms have already shown a huge potential for practical applications with their polarization insensitivity and high transmittance efficiency. Here, we experimentally demonstrate a polarization insensitive holographic Huygens' metasurface based on dielectric resonant meta-atoms capable of complex wavefront control at telecom wavelengths. Our metasurface produces a hologram image in the far-field with 82% transmittance efficiency and 40% imaging efficiency. Such efficient complex wavefront control shows that Huygens' metasurfaces based on resonant dielectric meta-atoms are a big step towards practical applications of metasurfaces in wavefront design related technologies, including computer-generated holograms, ultra-thin optics, security and data storage devices.

  11. Global Location-Based Access to Web Applications Using Atom-Based Automatic Update

    Science.gov (United States)

    Singh, Kulwinder; Park, Dong-Won

    We propose an architecture which enables people to enquire about information available in directory services by voice using regular phones. We implement a Virtual User Agent (VUA) which mediates between the human user and a business directory service. The system enables the user to search for the nearest clinic, gas station by price, motel by price, food / coffee, banks/ATM etc. and fix an appointment, or automatically establish a call between the user and the business party if the user prefers. The user also has an option to receive appointment confirmation by phone, SMS, or e-mail. The VUA is accessible by a toll free DID (Direct Inward Dialing) number using a phone by anyone, anywhere, anytime. We use the Euclidean formula for distance measurement. Since, shorter geodesic distances (on the Earth’s surface) correspond to shorter Euclidean distances (measured by a straight line through the Earth). Our proposed architecture uses Atom XML syndication format protocol for data integration, VoiceXML for creating the voice user interface (VUI) and CCXML for controlling the call components. We also provide an efficient algorithm for parsing Atom feeds which provide data to the system. Moreover, we describe a cost-effective way for providing global access to the VUA based on Asterisk (an open source IP-PBX). We also provide some information on how our system can be integrated with GPS for locating the user coordinates and therefore efficiently and spontaneously enhancing the system response. Additionally, the system has a mechanism for validating the phone numbers in its database, and it updates the number and other information such as daily price of gas, motel etc. automatically using an Atom-based feed. Currently, the commercial directory services (Example 411) do not have facilities to update the listing in the database automatically, so that why callers most of the times get out-of-date phone numbers or other information. Our system can be integrated very easily

  12. Functional group based Ligand binding affinity scoring function at atomic environmental level

    Science.gov (United States)

    Varadwaj, Pritish Kumar; Lahiri, Tapobrata

    2009-01-01

    Use of knowledge based scoring function (KBSF) for virtual screening and molecular docking has become an established method for drug discovery. Lack of a precise and reliable free energy function that describes several interactions including water-mediated atomic interaction between amino-acid residues and ligand makes distance based statistical measure as the only alternative. Till now all the distance based scoring functions in KBSF arena use atom singularity concept, which neglects the environmental effect of the atom under consideration. We have developed a novel knowledge-based statistical energy function for protein-ligand complexes which takes atomic environment in to account hence functional group as a singular entity. The proposed knowledge based scoring function is fast, simple to construct, easy to use and moreover it tackle the existing problem of handling molecular orientation in active site pocket. We have designed and used Functional group based Ligand retrieval (FBLR) system which can identify and detect the orientation of functional groups in ligand. This decoy searching was used to build the above KBSF to quantify the activity and affinity of high resolution protein-ligand complexes. We have proposed the probable use of these decoys in molecular build-up as a de-novo drug designing approach. We have also discussed the possible use of the said KSBF in pharmacophore fragment detection and pseudo center based fragment alignment procedure. PMID:19255647

  13. Design for a compact CW atom laser

    Science.gov (United States)

    Power, Erik; Raithel, Georg

    2011-05-01

    We present a design for a compact continuous-wave atom laser on a chip. A 2D spiral-shaped quadrupole guide is formed by two 0.5 mm × 0.5 mm wires carrying 5 A each embedded in a Si wafer; a 1.5 mm × 0.5 mm wire on the bottom layer carries -10 A, producing a horizontal B-field that pushes the guiding channel center above the chip surface. The center-to-center separation between the top wires is varied from 1.6 mm at the start of the guide to 1 mm at the end, decreasing the guide height from ~ 500 μm to ~ 25 μm above the surface as the atoms travel the 70 cm-long guide. The magnetic gradient of the guiding channel gradually increases from ~ 100 G /cm to ~ 930 G /cm . These features result in continuous surface adsorption evaporative cooling and progressive magnetic compression. Spin flip losses are mitigated by a solenoid sewn around the guide to produce a longitudinal B-field. 87Rb atoms are gravitationally loaded into the guide. A far off-resonant light shift barrier at the end of the guide traps the atoms and allows formation of a BEC. Tuning the barrier height to create a non-zero tunneling rate equal to the loading rate completes the implementation of a CW atom laser. Two options for atom interferometry are implemented on the first-generation chip (matter-wave Fabry-Perot interferometer and guide-based Mach-Zehnder interferometer). Current construction status and challenges will be discussed, along with preliminary results.

  14. Intermolecular orientations in liquid acetonitrile: new insights based on diffraction measurements and all-atom simulations

    CERN Document Server

    Pothoczki, Szilvia

    2016-01-01

    Intermolecular correlations in liquid acetonitrile (CH3CN) have been revisited by calculating orientational correlation functions. In the present approach, hydrogen atoms are included, so that a concept applicable for molecules of (nearly) tetrahedral shape can be exploited. In this way molecular arrangements are elucidated not only for closest neighbours but also extending well beyond the first coordination sphere. Thus a complementary viewpoint is provided to the more popular dipole-dipole correlations. Our calculations are based on large structural models that were obtained by applying diffraction data and partial radial distribution functions from potential-based (all-atom) molecular dynamics simulation simultaneously, within the framework of the Reverse Monte Carlo method.

  15. Reducing the Edge Chipping for Capillary End Face Grinding and Polishing

    Directory of Open Access Journals (Sweden)

    Hošek J.

    2013-05-01

    Full Text Available This paper presents results of glass capillary end face grinding and polishing by approach that reduces the edge chipping. Brittle materials have natural tendency for edge chipping what leads to beveling the sharp edges. Not beveled sharp edges on glass capillary are important for special applications like surface tension measurement of small liquid samples. We use common grinding and polishing process for capillary end face machining modified with gradual decreasing of grinding load based on the relation of the critical chipping load. Achieved surface roughness is measured using atomic force microscopy (AFM. Capillary inner edge quality is checked both with optical microscopes and electron microscope too. We achieved a non-chipped capillary inner edge with radius down to 100 nm.

  16. Nanophotonic quantum computer based on atomic quantum transistor

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, S N [Institute of Advanced Research, Academy of Sciences of the Republic of Tatarstan, Kazan (Russian Federation); Moiseev, S A [Kazan E. K. Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences, Kazan (Russian Federation)

    2015-10-31

    We propose a scheme of a quantum computer based on nanophotonic elements: two buses in the form of nanowaveguide resonators, two nanosized units of multiatom multiqubit quantum memory and a set of nanoprocessors in the form of photonic quantum transistors, each containing a pair of nanowaveguide ring resonators coupled via a quantum dot. The operation modes of nanoprocessor photonic quantum transistors are theoretically studied and the execution of main logical operations by means of them is demonstrated. We also discuss the prospects of the proposed nanophotonic quantum computer for operating in high-speed optical fibre networks. (quantum computations)

  17. Add-Drop Filter Based on Wavelength-Dependent Light Interlink between Lithium-Niobate Microwaveguide Chip and Microfiber Knot Ring

    Directory of Open Access Journals (Sweden)

    Suxu Zhou

    2016-06-01

    Full Text Available In this paper, we experimentally demonstrate an add-drop filter based on wavelength-dependent light coupling between a lithium-niobate (LN microwaveguide chip and a microfiber knot ring (MKR. The MKR was fabricated from a standard single-mode fiber, and the LN microwaveguide chip works as a robust substrate to support the MKR. The guided light can be transmitted through add and drop functionality and the behaviors of the add-drop filter can be clearly observed. Furthermore, its performance dependence on the MKR diameter is also studied experimentally. The approach, using a LN microwaveguide chip as a platform to couple and integrate the MKR, may enable us to realize an optical interlink between the microstructured chip and the micro/nano fiber-optic device.

  18. Off surface matrix based on-chip electrochemical biosensor platform for protein biomarker detection in undiluted serum.

    Science.gov (United States)

    Arya, Sunil K; Kongsuphol, Patthara; Park, Mi Kyoung

    2017-06-15

    The manuscript describes a concept of using off surface matrix modified with capturing biomolecule for on-chip electrochemical biosensing. 3D matrix made by laser engraving of polymethyl methacrylate (PMMA) sheet as off surface matrix was integrated in very close vicinity of the electrode surface. Laser engraving and holes in PMMA along with spacing from surface provide fluidic channel and incubation chamber. Covalent binding of capturing biomolecule (anti-TNF-α antibody) on off-surface matrix was achieved via azide group activity of 4-fluoro-3-nitro-azidobenzene (FNAB), which act as cross-linker and further covalently binds to anti-TNF-α antibody via thermal reaction. Anti-TNF-α/FNAB/PMMA matrix was then integrated over comb structured gold electrode array based sensor chip. Separate surface modification followed by integration of sensor helped to prevent the sensor chip surface from fouling during functionalization. Nonspecific binding was prevented using starting block T20 (PBS). Results for estimating protein biomarker (TNF-α) in undiluted serum using Anti-TNF-α/FNAB/PMMA/Au reveal that system can detect TNF-α in 100pg/ml to 100ng/ml range with high sensitivity of 119nA/(ng/ml), with negligible interference from serum proteins and other cytokines. Thus, use of off surface matrix may provide the opportunity to electrochemically sense biomarkers sensitively to ng/ml range with negligible nonspecific binding and false signal in undiluted serum.

  19. Experimental determination of the nucleation rates of undercooled micron-sized liquid droplets based on fast chip calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Christian, E-mail: ch.simon@uni-muenster.de; Peterlechner, Martin; Wilde, Gerhard

    2015-03-10

    Highlights: • Fast scanning calorimeter calibration with position dependence. • Calibration of fast scanning calorimeter during cooling. • Quantitative determination of nucleation rates by treating the undercooling as stochastic parameter - Abstract: Accurate thermal analyzes and calorimetry measurements depend on careful calibration measurements. For conventional differential scanning calorimeters (DSC) the calibration procedure is well known. The melting point of different pure metals is measured and compared with literature data to adjust the temperature reading of the calorimeter. Likewise, the measured melting enthalpies of standard reference substances serve for enthalpy calibration. Yet for fast chip calorimetry, new procedures need to be established. For the medium-area and large-area calorimeter chips, this procedure needs to be modified, because the calibration behavior depends on the position of the sample on the measurement area. Additionally, a way to calibrate the calorimeter for measurements performed during cooling will also be shown. For this second aspect, the athermal and diffusionless martensitic phase transformation of Ni{sub 49.9}–Ti{sub 50.1} at% was used. The well-calibrated sensor chips are ideally suited to perform nucleation rate density analyzes based on a statistical approach. Here, the nucleation rate densities of micron-sized pure Sn droplets that had been coated with a non-catalytic coating have been determined by experimental analysis of the statistical variance of the undercooling response.

  20. S-Mesh: a Mesh-based on-chip network with separation of control and transmission

    Institute of Scientific and Technical Information of China (English)

    LIU Hao; ZOU Xue-cheng; JI Li-xin; CAI Meng; ZHANG Ke-feng

    2009-01-01

    The current network-on-chip (NoC) topology cannot predict subsequent switch node status promptly. Switch nodes have to perform various functions such as routing decision, data forwarding, packet buffering, congestion control and properties of an NoC system. Therefore, these make switch architecture far more complex. This article puts forward a separating on-chip network architecture based on Mesh (S-Mesh). S-Mesh is an on-chip network that separates routing decision flow from the switches. It consists of two types of networks: datapath network (DN) and control network (CN). The CN establishes data paths for data transferring in DN. Meanwhile, the CN also transfers instructions between different resources. This property makes switch architecture simple, and eliminates conflicts in network interface units between the resource and switch. Compared with 2D-Mesh, Torus Mesh, Fat-tree and Butterfly, the average packet latency in S-Mesh is the shortest when the packet length is more than 53 B. Compared with 2D-Mesh, the areas savings of S-Mesh is about 3%--7%, and the power dissipation is decreased by approximate 2%.

  1. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  2. On-chip preparation of calcium alginate particles based on droplet templates formed by using a centrifugal microfluidic technique.

    Science.gov (United States)

    Liu, Mei; Sun, Xiao-Ting; Yang, Chun-Guang; Xu, Zhang-Run

    2016-03-15

    A novel chip-based approach for the fabrication of oblate spheriodal calcium alginate particles was developed by combining the droplet template method and the centrifugal microfluidic strategy. Circular chips with multiple radial channels were designed. Sodium alginate solutions in radial channels were flung into CaCl2 solutions in the form of droplets under centrifugal force, and the droplets transformed into particles through cross-linking reaction. The size and morphology of particles could be controlled by regulating the centrifugal force, the channel geometry and the distance between the channel outlet and the CaCl2 solution. The throughput of particle production was evidently enhanced by increasing the number of radial channels to 48 and 64. The coefficients of variation of particle sizes were in the range of 5.2-5.6%, which indicated the monodisperse particles could be prepared by using the present method. With the chip configuration readily modified, the same platform could be used to produce Janus particles. The Janus particles showed clear interfaces owing to the high flight speed and the rapid gelling process of the droplets. This method would be capable of generating particles with complicated morphology and multifunction from diverse polymeric materials.

  3. Coupling paper-based microfluidics and lab on a chip technologies for confirmatory analysis of trinitro aromatic explosives.

    Science.gov (United States)

    Pesenti, Alessandra; Taudte, Regina Verena; McCord, Bruce; Doble, Philip; Roux, Claude; Blanes, Lucas

    2014-05-20

    A new microfluidic paper-based analytical device (μPAD) in conjunction with confirmation by a lab on chip analysis was developed for detection of three trinitro aromatic explosives. Potassium hydroxide was deposited on the μPADs (0.5 μL, 1.5 M), creating a color change reaction when explosives are present, with detection limits of approximately 7.5 ± 1.0 ng for TNB, 12.5 ± 2.0 ng for TNT and 15.0 ± 2.0 ng for tetryl. For confirmatory analysis, positive μPADs were sampled using a 5 mm hole-punch, followed by extraction of explosives from the punched chad in 30 s using 20 μL borate/SDS buffer. The extractions had efficiencies of 96.5 ± 1.7%. The extracted explosives were then analyzed with the Agilent 2100 Bioanalyzer lab on a chip device with minimum detectable amounts of 3.8 ± 0.1 ng for TNB, 7.0 ± 0.9 ng for TNT, and 4.7 ± 0.2 ng for tetryl. A simulated in-field scenario demonstrated the feasibility of coupling the μPAD technique with the lab on a chip device to detect and identify 1 μg of explosives distributed on a surface of 100 cm(2).

  4. Single-photon absorber based on strongly interacting Rydberg atoms

    CERN Document Server

    Tresp, Christoph; Mirgorodskiy, Ivan; Gorniaczyk, Hannes; Paris-Mandoki, Asaf; Hofferberth, Sebastian

    2016-01-01

    Removing exactly one photon from an arbitrary input pulse is an elementary operation in quantum optics and enables applications in quantum information processing and quantum simulation. Here we demonstrate a deterministic single-photon absorber based on the saturation of an optically thick free-space medium by a single photon due to Rydberg blockade. Single-photon subtraction adds a new component to the Rydberg quantum optics toolbox, which already contains photonic logic building-blocks such as single-photon sources, switches, transistors, and conditional $\\pi$-phase shifts. Our approach is scalable to multiple cascaded absorbers, essential for preparation of non-classical light states for quantum information and metrology applications, and, in combination with the single-photon transistor, high-fidelity number-resolved photon detection.

  5. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites

    Science.gov (United States)

    Li, Z. K.; Fu, H. M.; Sha, P. F.; Zhu, Z. W.; Wang, A. M.; Li, H.; Zhang, H. W.; Zhang, H. F.; Hu, Z. Q.

    2015-03-01

    The interaction between active element Zr and W damages the W fibers and the interface and decreases the mechanical properties, especially the tensile strength of the W fibers reinforced Zr-based bulk metallic glass composites (BMGCs). From the viewpoint of atomic interaction, the W-Zr interaction can be restrained by adding minor elements that have stronger interaction with W into the alloy. The calculation about atomic interaction energy indicates that Ta and Nb preferred to segregate on the W substrate surface. Sessile drop experiment proves the prediction and corresponding in-situ coating appears at the interface. Besides, the atomic interaction mechanism was proven to be effective in many other systems by the sessile drop technique. Considering the interfacial morphology, Nb was added into the alloy to fabricate W/Zr-based BMGCs. As expected, the Nb addition effectively suppressed the W-Zr reaction and damage to W fibers. Both the compressive and tensile properties are improved obviously.

  6. Protein functionalized carbon nanotubes-based smart lab-on-a-chip.

    Science.gov (United States)

    Ali, Md Azahar; Solanki, Pratima R; Srivastava, Saurabh; Singh, Samer; Agrawal, Ved V; John, Renu; Malhotra, Bansi D

    2015-03-18

    A label-free impedimetric lab on a chip (iLOC) is fabricated using protein (bovine serum albumin) and antiapolipoprotein B functionalized carbon nanotubes-nickel oxide (CNT-NiO) nanocomposite for low-density lipoprotein (LDL) detection. The antiapolipoprotein B (AAB) functionalized CNT-NiO microfluidic electrode is assembled with polydimethylsiloxane rectangular microchannels (cross section: 100 × 100 μm). Cytotoxicity of the synthesized CNTs, NiO nanoparticles, and CNT-NiO nanocomposite has been investigated in the presence of lung epithelial cancer A549 cell line using MTT assay. The CNT-NiO nanocomposite shows higher cell viability at a concentration of 6.5 μg/mL compared to those using individual CNTs. The cell viability and proliferation studies reveal that the toxicity increases with increasing CNTs concentration. The X-ray photoelectron spectroscopy studies have been used to quantify the functional groups present on the CNT-NiO electrode surface before and after proteins functionalization. The binding kinetic and electrochemical activities of CNT-NiO based iLOC have been conducted using chronocoulometry and impedance spectroscopic techniques. This iLOC shows excellent sensitivity of 5.37 kΩ (mg/dL)(-1) and a low detection limit of 0.63 mg/dL in a wide concentration range (5-120 mg/dL) of LDL. The binding kinetics of antigen-antibody interaction of LDL molecules reveal a high association rate constant (8.13 M(-1) s(-1)). Thus, this smart nanocomposite (CNT-NiO) based iLOC has improved stability and reproducibility and has implications toward in vivo diagnostics.

  7. Lab on a chip genotyping for Brucella spp. based on 15-loci multi locus VNTR analysis

    Directory of Open Access Journals (Sweden)

    Marianelli Cinzia

    2009-04-01

    Full Text Available Abstract Background Brucellosis is an important zoonosis caused by the genus Brucella. In addition Brucella represents potential biological warfare agents due to the high contagious rates for humans and animals. Therefore, the strain typing epidemiological tool may be crucial for tracing back source of infection in outbreaks and discriminating naturally occurring outbreaks versus bioterroristic event. A Multiple Locus Variable-number tandem repeats (VNTR Analysis (MLVA assay based on 15 polymorphic markers was previously described. The obtained MLVA band profiles may be resolved by techniques ranging from low cost manual agarose gels to the more expensive capillary electrophoresis sequencing. In this paper a rapid, accurate and reproducible system, based on the Lab on a chip technology was set up for Brucella spp. genotyping. Results Seventeen DNA samples of Brucella strains isolated in Sicily, previously genotyped, and twelve DNA samples, provided by MLVA Brucella VNTR ring trial, were analyzed by MLVA-15 on Agilent 2100. The DNA fragment sizes produced by Agilent, compared with those expected, showed discrepancies; therefore, in order to assign the correct alleles to the Agilent DNA fragment sizes, a conversion table was produced. In order to validate the system twelve unknown DNA samples were analyzed by this method obtaining a full concordance with the VNTR ring trial results. Conclusion In this paper we described a rapid and specific detection method for the characterization of Brucella isolates. The comparison of the MLVA typing data produced by Agilent system with the data obtained by standard sequencing or ethidium bromide slab gel electrophoresis showed a general concordance of the results. Therefore this platform represents a fair compromise among costs, speed and specificity compared to any conventional molecular typing technique.

  8. An Integrated Circuit for Chip-Based Analysis of Enzyme Kinetics and Metabolite Quantification.

    Science.gov (United States)

    Cheah, Boon Chong; Macdonald, Alasdair Iain; Martin, Christopher; Streklas, Angelos J; Campbell, Gordon; Al-Rawhani, Mohammed A; Nemeth, Balazs; Grant, James P; Barrett, Michael P; Cumming, David R S

    2016-06-01

    We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 2(16) sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2-12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM-231 mM, encompassing glucose's physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine.

  9. Design of a CMOS-based multichannel integrated biosensor chip for bioelectronic interface with neurons.

    Science.gov (United States)

    Zhang, Xin; Wong, Wai Man; Zhang, Yulong; Zhang, Yandong; Gao, Fei; Nelson, Richard D; Larue, John C

    2009-01-01

    In this paper we present the design and prototyping of a 24-channel mixed signal full-customized CMOS integrated biosensor chip for in vitro extracellular recording of neural signals. Design and implementation of hierarchical modules including microelectrode electrophysiological sensors, analog signal buffers, high gain amplifier and control/interface units are presented in detail. The prototype chip was fabricated by MOSIS with AMI C5 0.5 microm, double poly, triple metal layer CMOS technology. The electroless gold plating process is used to replace the aluminum material obtained from the standard CMOS process with biocompatible metal gold in the planner microelectrode array sensors to prevent cell poisoning and undesirable electrochemical corrosion. The biosensor chip provides a satisfactory signal-to-noise ratio for neural signals with amplitudes and frequencies within the range of 600microV - 2mV and 100 Hz to 10KHz, respectively.

  10. Development of collisional data base for elementary processes of electron scattering by atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Marinković, Bratislav P., E-mail: bratislav.marinkovic@ipb.ac.rs [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); School of Electrical and Computer Engineering of Applied Studies, Vojvode Stepe 283, 11000 Belgrade (Serbia); Vujčić, Veljko [Astronomical Observatory Belgade, Volgina 7, 11050 Belgrade (Serbia); Faculty of Organizational Sciences, University of Belgrade, Jove Ilića 154, 11000 Belgrade (Serbia); Sushko, Gennady [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); Vudragović, Dušan [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Marinković, Dara B. [Faculty of Organizational Sciences, University of Belgrade, Jove Ilića 154, 11000 Belgrade (Serbia); Đorđević, Stefan; Ivanović, Stefan; Nešić, Milutin [School of Electrical and Computer Engineering of Applied Studies, Vojvode Stepe 283, 11000 Belgrade (Serbia); Jevremović, Darko [Astronomical Observatory Belgade, Volgina 7, 11050 Belgrade (Serbia); Solov’yov, Andrey V. [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); Mason, Nigel J. [The Open University, Department of Physical Sciences, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2015-07-01

    Highlights: • BEAMDB database maintaining electron/atom-molecule collisional data has been created. • The DB is MySQL, the web server is Nginx and Python application server is Gunicorn. • Only data that have been previously published and formally refereed are included. • Data protocol for exchanging and representing data is in the “xsams” xml format. • BEAMDB becomes a node within the VAMDC consortium and radiation damage RADAM basis. - Abstract: We present a progress report on the development of the Belgrade electron/molecule data base which is hosted by The Institute of Physics, University of Belgrade and The Astronomical Observatory Belgrade. The data base has been developed under the standards of Virtual Atomic Molecular Data Centre (VAMDC) project which provides a common portal for several European data bases that maintain atomic and molecular data. The Belgrade data base (BEAMDB) covers collisional data of electron interactions with atoms and molecules in the form of differential (DCS) and integrated cross sections as well as energy loss spectra. The final goal of BEAMDB becoming both a node within the VAMDC consortium and within the radiation damage RADAM data base has been achieved.

  11. Initiating heavy-atom-based phasing by multi-dimensional molecular replacement.

    Science.gov (United States)

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul

    2016-03-01

    To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts.

  12. Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal

    DEFF Research Database (Denmark)

    Vo, T.D.; Hu, Hao; Galili, Michael;

    2010-01-01

    We demonstrate chip-based Tbaud optical signal processing for all-optical performance monitoring, switching and demultiplexing based on the instantaneous Kerr nonlinearity in a dispersion-engineered As_2S_3 planar waveguide. At the Tbaud transmitter, we use a THz bandwidth radio-frequency spectrum...... analyzer to perform all-optical performance monitoring and to optimize the optical time division multiplexing stages as well as mitigate impairments, for example, dispersion. At the Tbaud receiver, we demonstrate error-free demultiplexing of a 1.28 Tbit/s single wavelength, return-to-zero signal to 10 Gbit...

  13. A Methodology for Platform Based High—Level System—on—Chip Verification

    Institute of Scientific and Technical Information of China (English)

    GAOFeng; LIUPeng; YAOQingdong

    2003-01-01

    The time-to-market challenge has increased the need for shortening the co-verification time in system-on-chip development.In this article,a new methodology of high-level hardware/software coverification is introduced.With the help of the real-time operating system,the application program can easily be migrated from the software simulator to the hardware emulation board.The hierarchical architecture can be used to separate application program from the implementation of the platform during the veriflaction process.The highlevel verification platform is successfully used in developing the HDTV decoding chip.

  14. Atom counting in HAADF STEM using a statistical model-based approach: methodology, possibilities, and inherent limitations.

    Science.gov (United States)

    De Backer, A; Martinez, G T; Rosenauer, A; Van Aert, S

    2013-11-01

    In the present paper, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. In order to count the number of atoms, it is assumed that the total scattered intensity scales with the number of atoms per atom column. These intensities are quantitatively determined using model-based statistical parameter estimation theory. The distribution describing the probability that intensity values are generated by atomic columns containing a specific number of atoms is inferred on the basis of the experimental scattered intensities. Finally, the number of atoms per atom column is quantified using this estimated probability distribution. The number of atom columns available in the observed STEM image, the number of components in the estimated probability distribution, the width of the components of the probability distribution, and the typical shape of a criterion to assess the number of components in the probability distribution directly affect the accuracy and precision with which the number of atoms in a particular atom column can be estimated. It is shown that single atom sensitivity is feasible taking the latter aspects into consideration.

  15. Microfabrication of MEMS alkali metal vapor cells for chip-scale atomic devices%芯片级原子器件MEMS碱金属蒸气腔室制作

    Institute of Scientific and Technical Information of China (English)

    尤政; 马波; 阮勇; 陈硕; 张高飞

    2013-01-01

    提出了基于两步低温阳极键合工艺的碱金属蒸气腔室制作方法,用于实现原子钟、原子磁力计及原子陀螺仪等器件的芯片级集成.由微机电系统(MEMS)体硅工艺制备了腔室结构.首先采用标准工艺将刻蚀有腔室的硅圆片与Pyrex玻璃阳极键合成预成型腔室,然后引入氮缓冲气体和由惰性石蜡包覆的微量碱金属铷或铯.通过两步阳极键合来密封腔室,键合温度低于石蜡燃点198℃.第一步键合预封装腔室,键合电压小于缓冲气体的击穿电压.第二步键合在大气氛围中进行,电压增至1 200 V来增强封装质量.通过高功率激光器局部加热释放碱金属,同时在腔壁上形成均匀的石蜡镀层以延长极化原子寿命.本文实现了160℃的低温阳极键合封装,键合率达到95%以上.封装的碱金属铷释放后仍具有金属光泽,实现的最小双腔室体积为6.5 mm×4.5 mm×2 mm.铷的吸收光谱表明铷有效地封装在腔室中,证明两步低温阳极键合工艺制作碱金属蒸气腔室是可行的.%This paper reported on the microfabrication of alkali metal vapor cells based on the two-step low temperature anodic bonding for the chip-scale integration of atomic clock,atomic magnetometer,atomic gyroscope and other atomic devices.Cell structures were fabricated by Micro-electromechanical System (MEMS) bulk silicon process,and the etched silicon with cells was firstly bonded to Pyrex glass to fabricate preformed chambers by the standard anodic bonding process.Then,nitrogen buffer gas and micro-scale alkali metal (rubidium or cesium) were introduced into the preformed cells.The two-step anodic bonding process was used to seal the cells at a temperature lower than the paraffin flash point (198 ℃).In the first step,bonding voltage was lower than the breakdown voltage of nitrogen buffer gas to pre-seal the cells.In the second step,the bonding was in air atmosphere,and the bonding voltage increased up to 1

  16. Use of atomic force microscopy to quantify slip irreversibility in a nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Risbet, M.; Feaugas, X.; Guillemer-Neel, C.; Clavel, M

    2003-09-15

    Atomic force microscopy was used to study the evolution of surface deformation during cyclic loading in a nickel-base superalloy. Cyclic slip irreversibility has been investigated using quantitative evaluation of extrusion heights and inter-band spacing. This approach is applied to formulate a microscopic crack initiation law, compared to a classical Manson-Coffin relationship.

  17. Design of a dual species atom interferometer for space

    CERN Document Server

    Schuldt, Thilo; Krutzik, Markus; Bote, Lluis Gesa; Gaaloul, Naceur; Hartwig, Jonas; Ahlers, Holger; Herr, Waldemar; Posso-Trujillo, Katerine; Rudolph, Jan; Seidel, Stephan; Wendrich, Thijs; Ertmer, Wolfgang; Herrmann, Sven; Kubelka-Lange, André; Milke, Alexander; Rievers, Benny; Rocco, Emanuele; Hinton, Andrew; Bongs, Kai; Oswald, Markus; Franz, Matthias; Hauth, Matthias; Peters, Achim; Bawamia, Ahmad; Wicht, Andreas; Battelier, Baptiste; Bertoldi, Andrea; Bouyer, Philippe; Landragin, Arnaud; Massonnet, Didier; Lévèque, Thomas; Wenzlawski, Andre; Hellmig, Ortwin; Windpassinger, Patrick; Sengstock, Klaus; von Klitzing, Wolf; Chaloner, Chris; Summers, David; Ireland, Philip; Mateos, Ignacio; Sopuerta, Carlos F; Sorrentino, Fiodor; Tino, Guglielmo M; Williams, Michael; Trenkel, Christian; Gerardi, Domenico; Chwalla, Michael; Burkhardt, Johannes; Johann, Ulrich; Heske, Astrid; Wille, Eric; Gehler, Martin; Cacciapuoti, Luigi; Gürlebeck, Norman; Braxmaier, Claus; Rasel, Ernst

    2014-01-01

    Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earth's gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gravitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species $^{85}$Rb/$^{87}$Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry...

  18. Cell Monitoring and Manipulation Systems (CMMSs based on Glass Cell-Culture Chips (GC3s

    Directory of Open Access Journals (Sweden)

    Sebastian M. Buehler

    2016-06-01

    Full Text Available We developed different types of glass cell-culture chips (GC3s for culturing cells for microscopic observation in open media-containing troughs or in microfluidic structures. Platinum sensor and manipulation structures were used to monitor physiological parameters and to allocate and permeabilize cells. Electro-thermal micro pumps distributed chemical compounds in the microfluidic systems. The integrated temperature sensors showed a linear, Pt1000-like behavior. Cell adhesion and proliferation were monitored using interdigitated electrode structures (IDESs. The cell-doubling times of primary murine embryonic neuronal cells (PNCs were determined based on the IDES capacitance-peak shifts. The electrical activity of PNC networks was detected using multi-electrode arrays (MEAs. During seeding, the cells were dielectrophoretically allocated to individual MEAs to improve network structures. MEA pads with diameters of 15, 20, 25, and 35 µm were tested. After 3 weeks, the magnitudes of the determined action potentials were highest for pads of 25 µm in diameter and did not differ when the inter-pad distances were 100 or 170 µm. Using 25-µm diameter circular oxygen electrodes, the signal currents in the cell-culture media were found to range from approximately −0.08 nA (0% O2 to −2.35 nA (21% O2. It was observed that 60-nm thick silicon nitride-sensor layers were stable potentiometric pH sensors under cell-culture conditions for periods of days. Their sensitivity between pH 5 and 9 was as high as 45 mV per pH step. We concluded that sensorized GC3s are potential animal replacement systems for purposes such as toxicity pre-screening. For example, the effect of mefloquine, a medication used to treat malaria, on the electrical activity of neuronal cells was determined in this study using a GC3 system.

  19. Quantitation of Cotinine in Nonsmoker Saliva Using Chip Based Nanoelectrospray Tandem Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL; Jenkins, Roger A [ORNL; Counts, Richard Wayne [ORNL

    2006-01-01

    A new analytical procedure was developed for the quantitation of nonsmoker salivary cotinine. Small volumes of saliva were diluted with water, fortified with cotinine-d{sub 3} (internal standard), then passed through small extraction columns. The analyte and internal standard were eluted with 0.1% (v/v) acetic acid/acetonitrile. Aliquots of each extract were analyzed directly, without chromatographic separation, using chip-based (NanoMate{sup TM}) nanospray tandem mass spectrometry. The calculated detection limit was 0.49 ng cotinine/mL saliva. This method was used to quantify salivary cotinine collected from nonsmoking human subjects living in one of three environmental tobacco smoke (ETS) exposure categories or 'cells': 1. smoking home/smoking workplace; 2. smoking home/nonsmoking workplace; and 3. nonsmoking home/smoking workplace. Samples were collected during five sequential days, including Saturday, as part of a larger study to evaluate potential variability in exposure to ETS. Salivary cotinine measurements were made for the purpose of excluding misclassified smokers and for comparison with known levels of exposure to airborne nicotine in each exposure category. The concentrations observed were consistent with those reported from other large studies reported elsewhere. A non-parametric statistical test was applied to the data within each cell. No statistically significant differences were found between the mean cotinine concentrations collected on a weekday as compared to those collected on a weekend day. When the non-parametric test was applied to the three cells, a statistically significant difference was observed between cell 1 compared to cells 2 and 3. The salivary cotinine concentrations were thus statistically invariant over a five-day exposure period, and they were greatest under the conditions of smoking home and smoking workplace.

  20. Magnetometer suitable for Earth field measurement based on transient atomic response

    CERN Document Server

    Lenci, L; Valente, P; Failache, H; Lezama, A

    2015-01-01

    We describe the development of a simple atomic magnetometer using $^{87}$Rb vapor suitable for Earth magnetic field monitoring. The magnetometer is based on time-domain determination of the transient precession frequency of the atomic alignment around the measured field. A sensitivity of 1.5 nT/$\\sqrt{Hz}$ is demonstrated on the measurement of the Earth magnetic field in the laboratory. We discuss the different parameters determining the magnetometer precision and accuracy and predict a sensitivity of 30 pT/$\\sqrt{Hz}$

  1. Sub-Half-Wavelength Atom Localization Based on Phase-Dependent Electromagnetically Induced Transparency

    Institute of Scientific and Technical Information of China (English)

    GONG cheng; HU Xiang-Ming; PENG Yan-Dong

    2008-01-01

    We present a realistic and efficient scheme for sub-half-wavelength atom localization.This scheme is based on the phase-dependent elecaromagnetically induced transparency in a four-level system in the double-Λ configuration.We use a strong bichromatic field(one component of which is standing-wave field)as the driving components,and a weak bichromatic field as the probe components.By choosing the collective phase of the four applied components,the atom js localized in either of the two half-wavelength regions with 50% detecting probability when the absorption to the probe fields is detected.

  2. A compact microchip atomic clock based on all-optical interrogation of ultra-cold trapped Rb atoms

    Science.gov (United States)

    Farkas, D. M.; Zozulya, A.; Anderson, D. Z.

    2010-12-01

    We propose a compact atomic clock that uses all-optical interrogation of ultra-cold Rb atoms that are magnetically trapped near the surface of an atom microchip. The interrogation scheme, which combines electromagnetically induced transparency with Ramsey's method of separated oscillatory fields, can achieve an atomic shot-noise-level performance better than 10^{-13}/sqrt{tau} for 106 atoms. A two-color Mach-Zehnder interferometer can detect a 100-pW probe beam at the optical shot-noise level using conventional photodetectors. This measurement scheme is nondestructive and therefore can be used to increase the operational duty cycle by reusing the trapped atoms for multiple clock cycles. Numerical calculations of the density matrix equations are used to identify realistic operating parameters at which AC Stark shifts are eliminated. By considering fluctuations in these parameters, we estimate that AC Stark shifts can be canceled to a level better than 2×10-14. An overview of the apparatus is presented with estimates of cycle time and power consumption.

  3. Enhanced light-vapor interactions and all optical switching in a chip scale micro-ring resonator coupled with atomic vapor

    CERN Document Server

    Stern, Liron; Mazurski, Noa; Levy, Uriel

    2016-01-01

    The coupling of atomic and photonic resonances serves as an important tool for enhancing light-matter interactions and enables the observation of multitude of fascinating and fundamental phenomena. Here, by exploiting the platform of atomic-cladding wave guides, we experimentally demonstrate the resonant coupling of rubidium vapor and an atomic cladding micro ring resonator. Specifically, we observed cavity-atom coupling in the form of Fano resonances having a distinct dependency on the relative frequency detuning between the photonic and the atomic resonances. Moreover, we were able to significantly enhance the efficiency of all optical switching in the V-type pump-probe scheme. The coupled system of micro-ring resonator and atomic vapor is a promising building block for a variety of light vapor experiments, as it offers a very small footprint, high degree of integration and extremely strong confinement of light and vapor. As such it may be used for important applications, such as all optical switching, disp...

  4. Characterization of a Rydberg atom-based streak camera operating in synchroscan mode

    Science.gov (United States)

    Rella, C. W.; van der Meer, A. F. G.; Noordam, L. D.

    2000-06-01

    A streak camera that operates in synchroscan mode has been developed with a spectral response throughout the infrared. A gas-phase sample of Rydberg atoms is used as a photocathode. This compact device possesses 5 ps time resolution and can be used with a total infrared energy of about 1 nJ, or 10 -7 of the total macropulse energy of the FELIX free electron laser. This combination of characteristics makes it not only an attractive device for use in a variety of infrared experiments, but also a powerful tool for the study of photo-induced electron emission in atomic systems. As an example, a Rydberg-atom based electron gun which produces about 20 pulses of electrons at a 70 GHz repetition frequency has been characterized using this synchroscan streak camera.

  5. Towards a Re-definition of the Second Based on Optical Atomic Clocks

    CERN Document Server

    Riehle, Fritz

    2015-01-01

    The rapid increase in accuracy and stability of optical atomic clocks compared to the caesium atomic clock as primary standard of time and frequency asks for a future re-definition of the second in the International System of Units (SI). The status of the optical clocks based on either single ions in radio-frequency traps or on neutral atoms stored in an optical lattice is described with special emphasis of the current work at the Physikalisch-Technische Bundesanstalt (PTB). Besides the development and operation of different optical clocks with estimated fractional uncertainties in the 10^-18 range, the supporting work on ultra-stable lasers as core elements and the means to compare remote optical clocks via transportable standards, optical fibers, or transportable clocks is reported. Finally, the conditions, methods and next steps are discussed that are the prerequisites for a future re-definition of the second.

  6. Accelerating Atomic Orbital-based Electronic Structure Calculation via Pole Expansion plus Selected Inversion

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lin; Chen, Mohan; Yang, Chao; He, Lixin

    2012-02-10

    We describe how to apply the recently developed pole expansion plus selected inversion (PEpSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham eigenvalues. The advantage of using PEpSI is that it has a much lower computational complexity than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEpSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEpSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundreds. Both the wall clock time and the memory requirement of PEpSI is modest. This makes it even possible to perform Kohn-Sham DFT calculations for 10,000-atom nanotubes on a single processor. We also show that the use of PEpSI does not lead to loss of accuracy required in a practical DFT calculation.

  7. Nanoscale guiding for cold atoms based on surface plasmons along the tips of metallic wedges

    Institute of Scientific and Technical Information of China (English)

    Wang Zheng-Ling; Tang Wei-Min; Zhou Ming; Gao Chuan-Yu

    2013-01-01

    We propose a novel scheme to guide neutral cold atoms in a nanoscale region based on surface plasmons (SPs) of one pair and two pairs of tips of metallic wedges with locally enhanced light intensity and sub-optical wavelength resolution.We analyze the near-field intensity distribution of the tip of the metallic wedge by the FDTD method,and study the total intensity as well as the total potential of optical potentials and van der Waals potentials for 87Rb atoms in the light field of one pair and two pairs of tips of metallic wedges.It shows that the total potentials of one pair and two pairs of tips of metallic wedges can generate a gravito-optical trap and a dark closed trap for nanoscale guiding of neutral cold atoms.Guided atoms can be cooled with efficient intensity-gradient Sisyphus cooling by blue-detuned light field.This provides an important step towards the generation of hybrid systems consisting of isolated atoms and solid devices.

  8. Human cell chips: adapting DNA microarray spotting technology to cell-based imaging assays.

    Science.gov (United States)

    Hart, Traver; Zhao, Alice; Garg, Ankit; Bolusani, Swetha; Marcotte, Edward M

    2009-10-28

    Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the dsRNA-activated protein kinase PKR), subcellular localization (nuclear translocation of NFkappaB) and activation state (phosphorylation of STAT1 and of the p38 and JNK stress kinases) in response to treatment by several chemical effectors (anisomycin, TNFalpha, and interferon), and we demonstrate scalability by printing a chip with approximately 4,700 discrete samples of HeLa cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability.

  9. Human cell chips: adapting DNA microarray spotting technology to cell-based imaging assays.

    Directory of Open Access Journals (Sweden)

    Traver Hart

    Full Text Available Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the dsRNA-activated protein kinase PKR, subcellular localization (nuclear translocation of NFkappaB and activation state (phosphorylation of STAT1 and of the p38 and JNK stress kinases in response to treatment by several chemical effectors (anisomycin, TNFalpha, and interferon, and we demonstrate scalability by printing a chip with approximately 4,700 discrete samples of HeLa cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability.

  10. On-Chip Supercapacitor Electrode Based On Polypyrrole Deposited Into Nanoporous Au Scaffold

    Science.gov (United States)

    Lu, P.; Ohlckers, P.; Chen, X. Y.

    2016-11-01

    On-chip supercapacitors hold the potential promise for serving as the energy storage units in integrated circuit system, due to their much higher energy density in comparison with conventional dielectric capacitors, high power density and long-term cycling stability. In this study, nanoporous Au (NP-Au) film on-chip was employed as the electrode scaffold to help increase the electrolyte-accessible area for active material. Pseudo-capacitive polypyrrole (PPY) with high theoretical capacitance was deposited into the NP-Au scaffold, to construct the tailored NP-Au/PPY hybrid on-chip electrode with improved areal capacitance. Half cell test in three- electrode system revealed the improved capacitor performance of nanoporous Au supported PPY electrode, compared to the densely packed PPY nanowire film electrode on planer Au substrate (Au/PPY). The areal capacitance of 37 mF/cm2∼10 mV/s, 32 mF/cm2∼50 mV/s, 28 mF/cm2∼100 mV/s, 16 mF/cm2∼500 mV/s, were offered by NP-Au/PPY. Also, the cycling performance was enhanced via using NP-Au scaffold. The developed NP-Au/PPY on-chip electrode demonstrated herein paves a feasible pathway to employ dealloying derived porous metal as the scaffold for improving both the energy density and cycling performance for supercapacitor electrodes.

  11. Design and implementation of a microfluidic half adder chip based on double-stranded DNA.

    Science.gov (United States)

    Wang, Jing; Huang, Yourui

    2014-06-01

    In recent years, DNA computing has gained significant research interest. The design of a biochip with DNA computing as a carrier has become a key area in the development of a DNA molecular computer. The half adder, as the basic unit of various arithmetic units, has a complex structure that directly affects the overall complexity of a computer's structure. In this study, a half adder on a microfluidic chip is developed by means of bio-reaction. This technology is combined with a biochip and adopts glass and polydimethylsiloxane to fabricate a microscale hybrid chip. Using a DNA strand as an operand, realization of the half adder on a microfluidic chip is achieved by controlling the annealing and denaturation of double-stranded DNA. The computing results are rapidly and accurately obtained by detecting the presence of double-stranded DNA in a solution by agarose gel electrophoresis. The microfluidic half-adder chip accurately realizes half-adder computations and overcomes the shortcomings of traditional integrated circuit half adders, optical half adders, and chemical molecule half adders, such as complex structure, limited component size, and low accuracy.

  12. On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Weirich, Johannes; Alkeskjold, Thomas Tanggaard;

    2009-01-01

    We design and fabricate an on-chip tunable long-period grating device by integrating a liquid crystal photonic bandgap fiber on silicon structures. The transmission axis of the device can be electrically rotated in steps of 45° as well as switched on and off with the response time in the millisec...

  13. Validation of a fully autonomous phosphate analyser based on a microfluidic lab-on-a-chip

    DEFF Research Database (Denmark)

    Slater, Conor; Cleary, J.; Lau, K.T.

    2010-01-01

    This work describes the design of a phosphate analyser that utilises a microfluidic lab-on-a-chip. The analyser contains all the required chemical storage, pumping and electronic components to carry out a complete phosphate assay. The system is self-calibrating and self-cleaning, thus capable...

  14. Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator

    NARCIS (Netherlands)

    Marpaung, David; Chevalier, Ludovic; Burla, Maurizio; Roeloffzen, Chris

    2011-01-01

    We report and experimentally demonstrate the generation of impulse radio ultrawideband (UWB) pulses using a photonic chip frequency discriminator. The discriminator consists of three add-drop optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. This discriminator

  15. Tuning Acid-Base Properties Using Mg-Al Oxide Atomic Layer Deposition.

    Science.gov (United States)

    Jackson, David H K; O'Neill, Brandon J; Lee, Jechan; Huber, George W; Dumesic, James A; Kuech, Thomas F

    2015-08-01

    Atomic layer deposition (ALD) was used to coat γ-Al2O3 particles with oxide films of varying Mg/Al atomic ratios, which resulted in systematic variation of the acid and base site areal densities. Variation of Mg/Al also affected morphological features such as crystalline phase, pore size distribution, and base site proximity. Areal base site density increased with increasing Mg content, while acid site density went through a maximum with a similar number of Mg and Al atoms in the coating. This behavior leads to nonlinearity in the relationship between Mg/Al and acid/base site ratio. The physical and chemical properties were elucidated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 physisorption, and CO2 and NH3 temperature-programmed desorption (TPD). Fluorescence emission spectroscopy of samples grafted with 1-pyrenebutyric acid (PBA) was used for analysis of base site proximity. The degree of base site clustering was correlated to acid site density. Catalytic activity in the self-condensation of acetone was dependent on sample base site density and independent of acid site density.

  16. Extended QoS modelling based on multi-application environment in network on chip

    Science.gov (United States)

    Saadaoui, Abdelkader; Nasri, Salem

    2015-01-01

    Until now, there is no standard method of the quality of service (QoS) measurement and fewer techniques have been used to provide its definition. Therefore, researchers are looking for a projection of QoS on quantifiable space, since it is qualitative, subjective and not measurable. However, a few tentatives have studied QoS parameter estimation. Many applications in network on chip (NoC) present variable QoS parameters such as packet loss rate (PLR), end-to-end delay (EED) and throughput (Thp). However, there are a few papers that have developed different methods to modelise QoS in NoC. Their QoS presentation does not provide a multi-application parameter arbiter. Independently of the approach used, an important challenge associated with QoS provision is the development of an efficient and flexible way to monitor QoS. The originality of our approach is based on a proposition of a QoS-intellectual property module in NoC architecture to improve network performances. We implement an extended approach of QoS metrics modelling for NoC on multi-parameter and multi-application environment. The QoS metrics model is based on QoS parameters such as PLR, EED and Thp for different applications. To validate this work, a dynamic routing simulation for 4 × 4 mesh NoC behaviour under three different applications, namely transmission control protocol, variable bit rate and constant bit rate, is considered. To achieve an ideal network behaviour, load balancing on NoC with multiple concurrent applications is improved using QoS metrics measurement based on dynamic routing. The results have shown that extended QoS modelling approach is easy and cheap to implement in hardware-software quantifiable representation. Thus, implementing a quantifiable representation of QoS can be used to provide a NoC services arbiter. QoS arbiter interacts with other routers to ensure flit flow and QoS modelling to provide a QoS value.

  17. Designing coarse grained-and atom based-potentials for protein-protein docking

    Directory of Open Access Journals (Sweden)

    Tobi Dror

    2010-11-01

    Full Text Available Abstract Background Protein-protein docking is a challenging computational problem in functional genomics, particularly when one or both proteins undergo conformational change(s upon binding. The major challenge is to define a scoring function soft enough to tolerate these changes and specific enough to distinguish between near-native and "misdocked" conformations. Results Using a linear programming (LP technique, we developed two types of potentials: (i Side chain-based and (ii Heavy atom-based. To achieve this we considered a set of 161 transient complexes and generated a large set of putative docked structures (decoys, based on a shape complementarity criterion, for each complex. The demand on the potentials was to yield, for the native (correctly docked structure, a potential energy lower than those of any of the non-native (misdocked structures. We show that the heavy atom-based potentials were able to comply with this requirement but not the side chain-based one. Thus, despite the smaller number of parameters, the capability of heavy atom-based potentials to discriminate between native and "misdocked" conformations is improved relative to those of the side chain-based potentials. The performance of the atom-based potentials was evaluated by a jackknife test on a set of 50 complexes taken from the Zdock2.3 decoys set. Conclusions Our results show that, using the LP approach, we were able to train our potentials using a dataset of transient complexes only the newly developed potentials outperform three other known potentials in this test.

  18. Interaction-based nonlinear quantum metrology with a cold atomic ensemble

    OpenAIRE

    2014-01-01

    In this manuscript we present an experimental and theoretical investigation of quantum-noise-limited measurement by nonlinear interferometry, or from another perspective, quantum-noise-limited interaction-based measurement. The experimental work is performed using a polarization-based quantum interface between propagating light pulses and cold rubidium-87 atoms trapped in an optical dipole trap. We first review the theory of quantum metrology and estimation theory, and we describe theor...

  19. An OCP Compliant Network Adapter for GALS-based SoC Design Using the MANGO Network-on-Chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Mahadevan, Shankar; Olsen, Rasmus Grøndahl

    2005-01-01

    decouples communication and computation, providing memory-mapped OCP transactions based on primitive message-passing services of the network. Also, it facilitates GALS-type systems, by adapting to the clockless network. This helps leverage a modular SoC design flow. We evaluate performance and cost of 0......The demand for IP reuse and system level scalability in System-on-Chip (SoC) designs is growing. Network-onchip (NoC) constitutes a viable solution space to emerging SoC design challenges. In this paper we describe an OCP compliant network adapter (NA) architecture for the MANGO NoC. The NA...

  20. One Step Quick Detection of Cancer Cell Surface Marker by Integrated NiFe-based Magnetic Biosensing Cell Cultural Chip

    Institute of Scientific and Technical Information of China (English)

    Chenchen Bao; Lei Chen; Tao Wang; Chong Lei; Furong Tian; Daxiang Cui; Yong Zhou

    2013-01-01

    RGD peptides has been used to detect cell surface integrin and direct clinical effective therapeutic drug selection. Herein we report that a quick one step detection of cell surface marker that was realized by a specially designed NiFe-based magnetic biosensing cell chip combined with functionalized magnetic nanoparti-cles. Magnetic nanoparticles with 20-30 nm in diameter were prepared by coprecipitation and modified with RGD-4C, and the resultant RGD-functionalized magnetic nanoparticles were used for targeting cancer cells cul-tured on the NiFe-based magnetic biosensing chip and distinguish the amount of cell surface receptor-integrin. Cell lines such as Calu3, Hela, A549, CaFbr, HEK293 and HUVEC exhibiting different integrin expression were chosen as test samples. Calu3, Hela, HEK293 and HUVEC cells were successfully identified. This approach has advantages in the qualitative screening test. Compared with traditional method, it is fast, sensitive, low cost, easy-operative, and needs very little human intervention. The novel method has great potential in applications such as fast clinical cell surface marker detection, and diagnosis of early cancer, and can be easily extended to other biomedical applications based on molecular recognition.

  1. Raman-Spectroscopy Based Cell Identification on a Microhole Array Chip

    Directory of Open Access Journals (Sweden)

    Ute Neugebauer

    2014-04-01

    Full Text Available Circulating tumor cells (CTCs from blood of cancer patients are valuable prognostic markers and enable monitoring responses to therapy. The extremely low number of CTCs makes their isolation and characterization a major technological challenge. For label-free cell identification a novel combination of Raman spectroscopy with a microhole array platform is described that is expected to support high-throughput and multiplex analyses. Raman spectra were registered from regularly arranged cells on the chip with low background noise from the silicon nitride chip membrane. A classification model was trained to distinguish leukocytes from myeloblasts (OCI-AML3 and breast cancer cells (MCF-7 and BT-20. The model was validated by Raman spectra of a mixed cell population. The high spectral quality, low destructivity and high classification accuracy suggests that this approach is promising for Raman activated cell sorting.

  2. TOT01, a time-over-threshold based readout chip in 180nm CMOS technology for silicon strip detectors

    Science.gov (United States)

    Kasinski, K.; Szczygiel, R.; Gryboś, P.

    2011-01-01

    This work is focused on the development of the TOT01 prototype front-end ASIC for the readout of long silicon strip detectors in the STS (Silicon Tracking System) of the CBM experiment at FAIR - GSI. The deposited charge measurement is based on the Time-over-Threshold method which allows integration of a low-power ADC into each channel. The TOT01 chip comprises 30 identical channels and 1 test channel which is supplied with additional test pads. The major blocks of each channel are the CSA (charge sensitive amplifier) with two switchable constant-current discharge circuits and additional test features. The architecture of the CSA core is based on the folded cascode. The input p-channel MOSFET device, biased at a drain current 500 μA, was optimized for 30 pF detector capacitance while keeping in mind the area constraints — W/L = 1800 μm / 0.180 μm. The main advantage of this solution is high gain (GBW = 1.2 GHz) and low power consumption at the same time. The amplifier is followed by the discriminator circuit. The discriminator allows for a global (multi-channel) differential threshold setting and independent compensation for the CSA output DC-level deviations in each channel by means of a 6-bit digital to analog converter (DAC). The output pulse of this processing chain is fed through a 31:1 multiplexer structure to the output of the chip for further processing. The TOT01 chip has been fabricated in the UMC 0.18 μm CMOS process (Europractice mini@sic). It has 78 pads, measures approximately 1.5x3.2 mm2 and dissipates 33 mW. The channels have 50 μm pitch and each consumes 1.05 mW of power. The chip has been successfully tested. Charge sensitivity parameters, noise performance and first X-ray acquisitions are presented.

  3. Atomic orbital-based SOS-MP2 with tensor hypercontraction. I. GPU-based tensor construction and exploiting sparsity

    Science.gov (United States)

    Song, Chenchen; Martínez, Todd J.

    2016-05-01

    We present a tensor hypercontracted (THC) scaled opposite spin second order Møller-Plesset perturbation theory (SOS-MP2) method. By using THC, we reduce the formal scaling of SOS-MP2 with respect to molecular size from quartic to cubic. We achieve further efficiency by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs) to accelerate integral construction and matrix multiplication. The practical scaling of GPU-accelerated atomic orbital-based THC-SOS-MP2 calculations is found to be N2.6 for reference data sets of water clusters and alanine polypeptides containing up to 1600 basis functions. The errors in correlation energy with respect to density-fitting-SOS-MP2 are less than 0.5 kcal/mol for all systems tested (up to 162 atoms).

  4. Wave-atoms-based multipurpose scheme via perceptual image hashing and watermarking.

    Science.gov (United States)

    Liu, Fang; Fu, Qi-Kai; Cheng, Lee-Ming

    2012-09-20

    This paper presents a novel multipurpose scheme for content-based image authentication and copyright protection using a perceptual image hashing and watermarking strategy based on a wave atom transform. The wave atom transform is expected to outperform other transforms because it gains sparser expansion and better representation for texture than other traditional transforms, such as wavelet and curvelet transforms. Images are decomposed into multiscale bands with a number of tilings using the wave atom transform. Perceptual hashes are then extracted from the features of tiling in the third scale band for the purpose of content-based authentication; simultaneously, part of the selected hashes are designed as watermarks, which are embedded into the original images for the purpose of copyright protection. The experimental results demonstrate that the proposed scheme shows great performance in content-based authentication by distinguishing the maliciously attacked images from the nonmaliciously attacked images. Moreover, watermarks extracted from the proposed scheme also achieve high robustness against common malicious and nonmalicious image-processing attacks, which provides excellent copyright protection for images.

  5. Liquid-phase microextraction in a microfluidic-chip

    DEFF Research Database (Denmark)

    Payán, María D. Ramos; Jensen, Henrik; Petersen, Nickolaj J.

    2012-01-01

    In this work, a microfluidic-chip based system for liquid-phase microextraction (LPME-chip) was developed. Sample solutions were pumped into the LPME-chip with a micro-syringe pump at a flow rate of 3-4µLmin(-1). Inside the LPME chip, the sample was in direct contact with a supported liquid...

  6. Human Cell Chips: Adapting DNA Microarray Spotting Technology to Cell-Based Imaging Assays

    OpenAIRE

    Traver Hart; Alice Zhao; Ankit Garg; Swetha Bolusani; Marcotte, Edward M.

    2009-01-01

    Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential ap...

  7. Single-bead arrays for fluorescence-based immunoassays on capillary-driven microfluidic chips

    Science.gov (United States)

    Temiz, Yuksel; Lim, Michel; Delamarche, Emmanuel

    2016-03-01

    We report a concept for the simple fabrication of easy-to-use chips for immunoassays in the context of point-of-care diagnostics. The chip concept comprises mainly three features: (1) the efficient integration of reagents using beads functionalized with receptors, (2) the generation of capillary-driven liquid flows without using external pumps, and (3) a high-sensitivity detection of analytes using fluorescence microscopy. We fabricated prototype chips using dry etching of Si wafers. 4.5-μm-diameter beads were integrated into hexagonal arrays by sedimentation and removing the excess using a stream of water. We studied the effect of different parameters and showed that array occupancies from 30% to 50% can be achieved by pipetting a 250 nL droplet of 1% bead solution and allowing the beads sediment for 3 min. Chips with integrated beads were sealed using a 50-μm-thick dry-film resist laminated at 45 °C. Liquids pipetted to loading pads were autonomously pulled by capillary pumps at a rate of 0.35 nL s-1 for about 30 min. We studied ligand-receptor interactions and binding kinetics using time-lapse fluorescence microscopy and demonstrated a 5 pM limit of detection (LOD) for an anti-biotin immunoassay. As a clinically-relevant example, we implemented an immunoassay to detect prostate specific antigen (PSA) and showed an LOD of 108 fM (i.e. 3.6 pg mL-1). While a specific implementation is provided here for the detection of PSA, we believe that combining capillary-driven microfluidics with arrays of single beads and fluorescence readout to be very flexible and sufficiently sensitive for the detection of other clinically-relevant analytes.

  8. Accessible morphohistochemical labs-on-a-chip based on different counting chambers' grids: microfluidic morphodynamical workstations

    OpenAIRE

    Gradov O.V.; Notchenko A.V.

    2012-01-01

    An accessible design of autonomous labs on the chip which do not require a special reader is developed. The proposed device uses hemocytometric counting chambers for determinati on of concentration of cells, isolated by a special device for cell sedimentation. A system of automated Rf-identification of chambers in the long-term storage is proposed which provides new morphometric data at various stages of cultivation or biomonitoring. A ne w diffraction method of calcu-lation and fingerprinti...

  9. High-sensitivity high-throughput chip based biosensor array for multiplexed detection of heavy metals

    Science.gov (United States)

    Yan, Hai; Tang, Naimei; Jairo, Grace A.; Chakravarty, Swapnajit; Blake, Diane A.; Chen, Ray T.

    2016-03-01

    Heavy metal ions released into the environment from industrial processes lead to various health hazards. We propose an on-chip label-free detection approach that allows high-sensitivity and high-throughput detection of heavy metals. The sensing device consists of 2-dimensional photonic crystal microcavities that are combined by multimode interferometer to form a sensor array. We experimentally demonstrate the detection of cadmium-chelate conjugate with concentration as low as 5 parts-per-billion (ppb).

  10. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids

    Science.gov (United States)

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm2 area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10-1 to 4 × 10-3 copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005

  11. Reclamation Of Plant Wastes (Straw And Obtaining (Nano Chips With Bactericidal Properties Based On Them

    Directory of Open Access Journals (Sweden)

    Leonidovna Voropaeva Nadezda

    2015-09-01

    Full Text Available Rape, camelina, wheat and Jerusalem artichoke vegetable wastes (straw as annually renewable raw materials were processed into activated carbons, which were modified with silver nanoparticles for carbonaceous sorbents to acquire specific properties, since carbonaceous sorbents are usually widely used in the food industry, agriculture, medicine and other fields of human activity. The technology to obtain active carbons from agricultural crop residues has been developed, active carbon physico-chemical and adsorption properties, textural characteristics have been studied, new functional carbon (nano materials with antibacterial activity containing (nano particles of silver have been obtained, their influence within (nano chip composition on rape crop growth, development and yield has been studied. In the conducted field tests, the highest activity was noted when using the (nano chip whose structure included RAC - camelina and silver nanoparticles. Besides, when nano chips are used for seed treatment, the yield increase makes up 11.6 % for nanoparticles containing Ag, for plant active carbons (PAC (rape with Ag this index makes up 28.1 %, for RAC (Camelina with Ag it makes up 55.8 % (compared to the control variant, which can be explained by the differences in the sorption characteristics of the studied radio activated carbons. Our results and the previous studies of other authors can prove the fact that silver nanoparticles (including those being a part of (nano chips “get” into the biochemical processes and have a pronounced phytostimulating effect on plants, which was especially obvious when suppressing the activity of plant pathogenic microflora by silver nanoparticles.

  12. Defense Against Chip Cloning Attacks Based on Fractional Hopfield Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2017-06-01

    This paper presents a state-of-the-art application of fractional hopfield neural networks (FHNNs) to defend against chip cloning attacks, and provides insight into the reason that the proposed method is superior to physically unclonable functions (PUFs). In the past decade, PUFs have been evolving as one of the best types of hardware security. However, the development of the PUFs has been somewhat limited by its implementation cost, its temperature variation effect, its electromagnetic interference effect, the amount of entropy in it, etc. Therefore, it is imperative to discover, through promising mathematical methods and physical modules, some novel mechanisms to overcome the aforementioned weaknesses of the PUFs. Motivated by this need, in this paper, we propose applying the FHNNs to defend against chip cloning attacks. At first, we implement the arbitrary-order fractor of a FHNN. Secondly, we describe the implementation cost of the FHNNs. Thirdly, we propose the achievement of the constant-order performance of a FHNN when ambient temperature varies. Fourthly, we analyze the electrical performance stability of the FHNNs under electromagnetic disturbance conditions. Fifthly, we study the amount of entropy of the FHNNs. Lastly, we perform experiments to analyze the pass-band width of the fractor of an arbitrary-order FHNN and the defense against chip cloning attacks capability of the FHNNs. In particular, the capabilities of defense against chip cloning attacks, anti-electromagnetic interference, and anti-temperature variation of a FHNN are illustrated experimentally in detail. Some significant advantages of the FHNNs are that their implementation cost is considerably lower than that of the PUFs, their electrical performance is much more stable than that of the PUFs under different temperature conditions, their electrical performance stability of the FHNNs under electromagnetic disturbance conditions is much more robust than that of the PUFs, and their amount of

  13. Cytotoxicity of cadmium-containing quantum dots based on a study using a microfluidic chip

    Science.gov (United States)

    Zheng, Xiannuo; Tian, Jing; Weng, Lixing; Wu, Lei; Jin, Qinghui; Zhao, Jianlong; Wang, Lianhui

    2012-02-01

    There is a lack of reliable nanotoxicity assays available for monitoring and quantifying multiple cellular events in cultured cells. In this study, we used a microfluidic chip to systematically investigate the cytotoxicity of three kinds of well-characterized cadmium-containing quantum dots (QDs) with the same core but different shell structures, including CdTe core QDs, CdTe/CdS core-shell QDs, and CdTe/CdS/ZnS core-shell-shell QDs, in HEK293 cells. Using the microfluidic chip combined with fluorescence microscopy, multiple QD-induced cellular events including cell morphology, viability, proliferation, and QD uptake were simultaneously analysed. The three kinds of QDs showed significantly different cytotoxicities. The CdTe QDs, which are highly toxic to HEK293 cells, resulted in remarkable cellular and nuclear morphological changes, a dose-dependent decrease in cell viability, and strong inhibition of cell proliferation; the CdTe/CdS QDs were moderately toxic but did not significantly affect the proliferation of HEK293 cells; while the CdTe/CdS/ZnS QDs had no detectable influence on cytotoxicity with respect to cell morphology, viability, and proliferation. Our data indicated that QD cytotoxicity was closely related to their surface structures and specific physicochemical properties. This study also demonstrated that the microfluidic chip could serve as a powerful tool to systematically evaluate the cytotoxicity of nanoparticles in multiple cellular events.

  14. Integrated lab-on-chip biosensing systems based on magnetic particle actuation--a comprehensive review.

    Science.gov (United States)

    van Reenen, Alexander; de Jong, Arthur M; den Toonder, Jaap M J; Prins, Menno W J

    2014-06-21

    The demand for easy to use and cost effective medical technologies inspires scientists to develop innovative lab-on-chip technologies for point-of-care in vitro diagnostic testing. To fulfill medical needs, the tests should be rapid, sensitive, quantitative, and miniaturizable, and need to integrate all steps from sample-in to result-out. Here, we review the use of magnetic particles actuated by magnetic fields to perform the different process steps that are required for integrated lab-on-chip diagnostic assays. We discuss the use of magnetic particles to mix fluids, to capture specific analytes, to concentrate analytes, to transfer analytes from one solution to another, to label analytes, to perform stringency and washing steps, and to probe biophysical properties of the analytes, distinguishing methodologies with fluid flow and without fluid flow (stationary microfluidics). Our review focuses on efforts to combine and integrate different magnetically actuated assay steps, with the vision that it will become possible in the future to realize integrated lab-on-chip biosensing assays in which all assay process steps are controlled and optimized by magnetic forces.

  15. Low-voltage coherent electron imaging based on a single-atom electron

    CERN Document Server

    Chang, Wei-Tse; Hsu, Wei-Hao; Chang, Mu-Tung; Chen, Yi-Sheng; Hwu, En-Te; Hwang, Ing-Shouh

    2015-01-01

    It has been a general trend to develop low-voltage electron microscopes due to their high imaging contrast of the sample and low radiation damage. Atom-resolved transmission electron microscopes with voltages as low as 15-40 kV have been demonstrated. However, achieving atomic resolution at voltages lower than 10 kV is extremely difficult. An alternative approach is coherent imaging or phase retrieval imaging, which requires a sufficiently coherent source and an adequately small detection area on the sample as well as the detection of high-angle diffracted patterns with a sufficient resolution. In this work, we propose several transmission-type schemes to achieve coherent imaging of thin materials (less than 5 nm thick) with atomic resolution at voltages lower than 10 kV. Experimental schemes of both lens-less and lens-containing designs are presented and the advantages and challenges of these schemes are discussed. Preliminary results based on a highly coherent single-atom electron source are presented. The ...

  16. Accelerating Atomic Orbital-based Electronic Structure Calculation via Pole Expansion plus Selected Inversion

    CERN Document Server

    Lin, Lin; Yang, Chao; He, Lixin

    2012-01-01

    We describe how to apply the recently developed pole expansion plus selected inversion (PEpSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham eigenvalues. The advantage of using PEpSI is that it has a much lower computational complexity than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEpSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEpSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundr...

  17. Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography.

    Science.gov (United States)

    Prosa, Ty J; Larson, David J

    2017-02-06

    Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.

  18. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    Directory of Open Access Journals (Sweden)

    Chinthaka P. Gooneratne

    2016-08-01

    Full Text Available The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA for the manipulation of superparamagnetic beads (SPBs, and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.

  19. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization.

    Science.gov (United States)

    Gooneratne, Chinthaka P; Kodzius, Rimantas; Li, Fuquan; Foulds, Ian G; Kosel, Jürgen

    2016-08-26

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads(®) demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead(®) SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads(®) travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.

  20. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    KAUST Repository

    Gooneratne, Chinthaka P.

    2016-08-26

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device

  1. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    Science.gov (United States)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  2. Radical zinc-atom-transfer-based carbozincation of haloalkynes with dialkylzincs

    Directory of Open Access Journals (Sweden)

    Fabrice Chemla

    2013-02-01

    Full Text Available The formation of alkylidenezinc carbenoids by 1,4-addition/carbozincation of dialkylzincs or alkyl iodides based on zinc atom radical transfer, in the presence of dimethylzinc with β-(propargyloxyenoates having pendant iodo- and bromoalkynes, is disclosed. Formation of the carbenoid intermediate is fully stereoselective at −30 °C and arises from a formal anti-selective carbozincation reaction. Upon warming, the zinc carbenoid is stereochemically labile and isomerizes to its more stable form.

  3. Comparison between experiments and predictions based on maximum entropy for sprays from a pressure atomizer

    Science.gov (United States)

    Li, X.; Chin, L. P.; Tankin, R. S.; Jackson, T.; Stutrud, J.; Switzer, G.

    1991-07-01

    Measurements were made of the droplet size and velocity distributions in a hollow cone spray from a pressure atomizer using a phase/Doppler particle analyzer. The maximum entropy principle is used to predict these distributions. The constraints imposed in this model involve conversation of mass, momentum, and energy. Estimates of the source terms associated with these constraints are made based on physical reasoning. Agreement between the measurements and the predictions is very good.

  4. Atom-probe tomography of tribological boundary films resulting from boron-based oil additives

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon-Jun; Baik, Sung-Il; Bertolucci-Coelho, Leonardo; Mazzaferro, Lucca; Ramirez, Giovanni; Erdemir, Ali; Seidman, D K

    2016-01-15

    Correlative characterization using atom-probe tomography (APT) and transmission electron microscopy (TEM) was performed on a tribofilm formed during sliding frictional testing with a fully formulated engine oil, which also contains a boron-based additive. The tribofilm formed is ~15 nm thick and consists of oxides of iron and compounds of B, Ca, P, and S, which are present in the additive. This study provides strong evidence for boron being embedded in the tribofilm, which effectively reduces friction and wear losses.

  5. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reininger, Charlotte; Woodfield, Kellie [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States); Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M. [Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332 (United States); Farnsworth, Paul B., E-mail: paul_farnsworth@byu.edu [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States)

    2014-10-01

    The absolute number densities of helium atoms in the 2s {sup 3}S{sub 1} metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 10{sup 12} cm{sup −3} and 0.011 × 10{sup 12} cm{sup −3}, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 10{sup 12} cm{sup −3} and 0.97 × 10{sup 12} cm{sup −3} were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges. - Highlights: • We determine He metastable number densities for four plasma types • The highest number densities were observed in a dielectric barrier discharge • No helium metastable atoms were observed downstream from the exits of glow discharges.

  6. Low Frequency Gravitational Wave Detection With Ground Based Atom Interferometer Arrays

    CERN Document Server

    Chaibi, W; Canuel, B; Bertoldi, A; Landragin, A; Bouyer, P

    2016-01-01

    We propose a new detection strategy for gravitational waves (GWs) below few Hertz based on a correlated array of atom interferometers (AIs). Our proposal allows to reduce the Newtonian Noise (NN) which limits all ground based GW detectors below few Hertz, including previous atom interferometry-based concepts. Using an array of long baseline AI gradiometers yields several estimations of the NN, whose effect can thus be reduced via statistical averaging. Considering the km baseline of current optical detectors, a NN rejection of factor 2 could be achieved, and tested with existing AI array geometries. Exploiting the correlation properties of the gravity acceleration noise, we show that a 10-fold or more NN rejection is possible with a dedicated configuration. Considering a conservative NN model and the current developments in cold atom technology, we show that strain sensitivities below $1\\times 10^{-19}/ \\sqrt{\\text{Hz}}$ in the $ 0.3-3 \\ \\text{Hz}$ frequency band can be within reach, with a peak sensitivity o...

  7. Separation of large DNA molecules by size exclusion chromatography-based microchip with on-chip concentration structure

    Science.gov (United States)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2016-06-01

    The separation of DNA molecules according to their size represents a fundamental bioanalytical procedure. Here, we report the development of a chip-sized device, consisting of micrometer-sized fence structures fabricated in a microchannel, for the separation of large DNA molecules (over 10 kbp) based on the principle of size exclusion chromatography (SEC). In order to achieve separation, two approaches were utilized: first, the DNA samples were concentrated immediately prior to separation using nanoslit structures, with the aim of improving the resolution. Second, a theoretical model of SEC-based separation was established and applied in order to predict the optimal voltage range for separation. In this study, we achieved separation of λ DNA (48.5 kbp) and T4 DNA (166 kbp) using the present SEC-based microchip.

  8. Testing General Relativity and Alternative Theories of Gravity with Space-based Atomic Clocks and Atom Interferometers

    CERN Document Server

    Bondarescu, Ruxandra; Jetzer, Philippe; Angélil, Raymond; Saha, Prasenjit; Lundgren, Andrew

    2015-01-01

    The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft's reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth's gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of $\\Delta f/f \\sim 10^{-16}$ in an elliptic orbit around the Earth would constrain the PPN parameters $|\\beta -1|, |\\gamma-1| \\lesssim 10^{-6}$. We also briefly revi...

  9. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    Science.gov (United States)

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  10. Microfabrication of gold wires for atom guides

    OpenAIRE

    Kukharenka, Elena; Moktadir, Zak; Kraft, Michael; Abdelsalam, M.E.; Bagnall, Darren; Vale, C.; Jones, M. P. A.; Hinds, E.A.

    2004-01-01

    Miniaturised atom optics is a new field allowing the control of cold atoms in microscopic magnetic traps and waveguides. Using microstructures (hereafter referred to as atom chips), the control of cold atoms on the micrometer scale becomes possible. Applications range from integrated atom interferometers to the realisation of quantum gates. The implementation of such structures requires high magnetic field gradients.\\ud The motivation of this work was to develop a suitable fabrication process...

  11. Testing general relativity and alternative theories of gravity with space-based atomic clocks and atom interferometers

    Directory of Open Access Journals (Sweden)

    Bondarescu Ruxandra

    2015-01-01

    Full Text Available The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft’s reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth’s gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of Δ f / f ∼ 10−16 in an elliptic orbit around the Earth would constrain the PPN parameters |β − 1|, |γ − 1| ≲ 10−6. We also briefly review potential constraints by atom interferometers on scalar tensor theories and in particular on Chameleon and dilaton models.

  12. Enzymic colorimetry-based DNA chip: a rapid and accurate assay for detecting mutations for clarithromycin resistance in the 23S rRNA gene of Helicobacter pylori.

    Science.gov (United States)

    Xuan, Shi-Hai; Zhou, Yu-Gui; Shao, Bo; Cui, Ya-Lin; Li, Jian; Yin, Hong-Bo; Song, Xiao-Ping; Cong, Hui; Jing, Feng-Xiang; Jin, Qing-Hui; Wang, Hui-Min; Zhou, Jie

    2009-11-01

    Macrolide drugs, such as clarithromycin (CAM), are a key component of many combination therapies used to eradicate Helicobacter pylori. However, resistance to CAM is increasing in H. pylori and is becoming a serious problem in H. pylori eradication therapy. CAM resistance in H. pylori is mostly due to point mutations (A2142G/C, A2143G) in the peptidyltransferase-encoding region of the 23S rRNA gene. In this study an enzymic colorimetry-based DNA chip was developed to analyse single-nucleotide polymorphisms of the 23S rRNA gene to determine the prevalence of mutations in CAM-related resistance in H. pylori-positive patients. The results of the colorimetric DNA chip were confirmed by direct DNA sequencing. In 63 samples, the incidence of the A2143G mutation was 17.46 % (11/63). The results of the colorimetric DNA chip were concordant with DNA sequencing in 96.83 % of results (61/63). The colorimetric DNA chip could detect wild-type and mutant signals at every site, even at a DNA concentration of 1.53 x 10(2) copies microl(-1). Thus, the colorimetric DNA chip is a reliable assay for rapid and accurate detection of mutations in the 23S rRNA gene of H. pylori that lead to CAM-related resistance, directly from gastric tissues.

  13. Facile synthesis of Prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips.

    Science.gov (United States)

    Yang, Pengqi; Peng, Jingmeng; Chu, Zhenyu; Jiang, Danfeng; Jin, Wanqin

    2017-06-15

    The large-scale fabrication of nanocomposite based biosensors is always a challenge in the technology commercialization from laboratory to industry. In order to address this issue, we have designed a facile chemical method of fabricated nanocomposite ink applied to the screen-printed biosensor chip. This ink can be derived in the water through the in-situ growth of Prussian blue nanocubes (PBNCs) on the silver nanowires (AgNWs) to construct a composite nanostructure by a facile chemical method. Then a miniature flexible biosensor chip was screen-printed by using the prepared nanocomposite ink. Due to the synergic effects of the large specific surface area, high conductivity and electrocatalytic activity from AgNWs and PBNCs, the as-prepared biosensor chip exhibited a fast response (biosensor chip exhibited excellent stability, good reproducibility and high anti-interference ability towards physiological substances under a very low working potential of -0.05. Hence, the proposed biosensor chip also showed a promising potential for the application in practical analysis.

  14. Energy transfer phenomena and radiative processes in silicon nitride based materials for on-chip photonics applications

    Science.gov (United States)

    Li, Rui

    Rare-earth (RE) doping of silicon-based structures provides a valuable approach for light-emitting devices which could be monolithically integrated atop the widespread silicon electronics platform and enables inexpensive integration of on-chip optical components. However, the small excitable fraction of RE ions and the substantial free carrier losses in Si nanostructures severely limit the possibility to achieve net optical gain using traditional Er doped materials, such as Er doped Si-rich oxides (Er:SRO). On the other hand, a novel material platform based on RE-doped silicon nitride (RE:Six) materials has recently revealed unique advantages for on-chip light source. Based on a variety of light emission spectroscopic techniques and rate equation modeling, light emission and energy transfer phenomena were studied to quantitatively assess the benefits of the novel Er and Nd doped SiNx (Er: SiN x and Nd:SiNx) material platform compared to the standard Er:SRO. Efficient energy transfer and nanosecond-time dynamics from SiN x matrices to RE ions with two orders of magnitude larger coupling coefficient than Er:SRO were demonstrated for the first time. The origin of this energy transfer was shown to consist of non-resonant phonon-mediated coupling by temperature-dependent experiments. In addition, a tradeoff between excitation efficiency by energy transfer and emission efficiency, determined by excess Si concentration, was discovered and studied. Although carrier absorption and non-radiative recombination jeopardize the observation of optical gain, differential loss measurements under femtosecond pulsed excitation resulted in the bleaching of the Er ground state absorption by energy transfer in Er:SiN x materials, which bears great hope for the engineering of Si-based lasers. On the other hand, with a superior 4-level system, Nd:SiNx is promising to lase with a lower threshold. To make use of the better field confinement in SiNx due to its higher refractive index, RE

  15. A hearing aid on-chip system based on accuracy optimized front- and back-end blocks

    Science.gov (United States)

    Fanyang, Li; Hao, Jiang

    2014-03-01

    A hearing aid on-chip system based on accuracy optimized front- and back-end blocks is presented for enhancing the signal processing accuracy of the hearing aid. Compared with the conventional system, the accuracy optimized system is characterized by the dual feedback network and the gain compensation technique used in the front- and back-end blocks, respectively, so as to alleviate the nonlinearity distortion caused by the output swing. By using the technique, the accuracy of the whole hearing aid system can be significantly improved. The prototype chip has been designed with a 0.13 μm standard CMOS process and tested with 1 V supply voltage. The measurement results show that, for driving a 16 Ω loudspeaker with a normalized output level of 300 mVp-p, the total harmonic distortion reached about -60 dB, achieving at least three times reduction compared to the previously reported works. In addition, the typical input referred noise is only about 5 μVrms.

  16. Combining SDM-Based Circuit Switching with Packet Switching in a Router for On-Chip Networks

    Directory of Open Access Journals (Sweden)

    Angelo Kuti Lusala

    2012-01-01

    Full Text Available A Hybrid router architecture for Networks-on-Chip “NoC” is presented, it combines Spatial Division Multiplexing “SDM” based circuit switching and packet switching in order to efficiently and separately handle both streaming and best-effort traffic generated in real-time applications. Furthermore the SDM technique is combined with Time Division Multiplexing “TDM” technique in the circuit switching part in order to increase path diversity, thus improving throughput while sharing communication resources among multiple connections. Combining these two techniques allows mitigating the poor resource usage inherent to circuit switching. In this way Quality of Service “QoS” is easily provided for the streaming traffic through the circuit-switched sub-router while the packet-switched sub-router handles best-effort traffic. The proposed hybrid router architectures were synthesized, placed and routed on an FPGA. Results show that a practicable Network-on-Chip “NoC” can be built using the proposed router architectures. 7 × 7 mesh NoCs were simulated in SystemC. Simulation results show that the probability of establishing paths through the NoC increases with the number of sub-channels and has its highest value when combining SDM with TDM, thereby significantly reducing contention in the NoC.

  17. A lab-on-chip cell-based biosensor for label-free sensing of water toxicants.

    Science.gov (United States)

    Liu, F; Nordin, A N; Li, F; Voiculescu, I

    2014-04-07

    This paper presents a lab-on-chip biosensor containing an enclosed fluidic cell culturing well seeded with live cells for rapid screening of toxicants in drinking water. The sensor is based on the innovative placement of the working electrode for the electrical cell-substrate impedance sensing (ECIS) technique as the top electrode of a quartz crystal microbalance (QCM) resonator. Cell damage induced by toxic water will cause a decrease in impedance, as well as an increase in the resonant frequency. For water toxicity tests, the biosensor's unique capabilities of performing two complementary measurements simultaneously (impedance and mass-sensing) will increase the accuracy of detection while decreasing the false-positive rate. Bovine aortic endothelial cells (BAECs) were used as toxicity sensing cells. The effects of the toxicants, ammonia, nicotine and aldicarb, on cells were monitored with both the QCM and the ECIS technique. The lab-on-chip was demonstrated to be sensitive to low concentrations of toxicants. The responses of BAECs to toxic samples occurred during the initial 5 to 20 minutes depending on the type of chemical and concentrations. Testing the multiparameter biosensor with aldicarb also demonstrated the hypothesis that using two different sensors to monitor the same cell monolayer provides cross validation and increases the accuracy of detection. For low concentrations of aldicarb, the variations in impedance measurements are insignificant in comparison with the shifts of resonant frequency monitored using the QCM resonator. A highly linear correlation between signal shifts and chemical concentrations was demonstrated for each toxicant.

  18. Bayesian-based aberration correction and numerical diffraction for improved lensfree on-chip microscopy of biological specimens

    CERN Document Server

    Wong, Alexander; Jin, Chao; Wang, Xiao Yu

    2015-01-01

    Lensfree on-chip microscopy is an emerging imaging technique that can be used to visualize and study biological specimens without the need for imaging lens systems. Important issues that can limit the performance of lensfree on-chip microscopy include interferometric aberrations, acquisition noise, and image reconstruction artifacts. In this study, we introduce a Bayesian-based method for performing aberration correction and numerical diffraction that accounts for all three of these issues to improve the effective numerical aperture (NA) and signal-to-noise ratio (SNR) of the reconstructed microscopic image. The proposed method was experimentally validated using the USAF resolution target as well as real waterborne Anabaena flos-aquae samples, demonstrating improvements in NA by ~25% over the standard method, and improvements in SNR of 2.3 dB and 3.8 dB in the reconstructed image when compared to the reconstructed images produced using the standard method and a maximum likelihood estimation method, respective...

  19. A wearable, low-power, health-monitoring instrumentation based on a Programmable System-on-Chip.

    Science.gov (United States)

    Massot, Bertrand; Gehin, Claudine; Nocua, Ronald; Dittmar, Andre; McAdams, Eric

    2009-01-01

    Improvement in quality and efficiency of health and medicine, at home and in hospital, has become of paramount importance. The solution of this problem would require the continuous monitoring of several key patient parameters, including the assessment of autonomic nervous system (ANS) activity using non-invasive sensors, providing information for emotional, sensorial, cognitive and physiological analysis of the patient. Recent advances in embedded systems, microelectronics, sensors and wireless networking enable the design of wearable systems capable of such advanced health monitoring. The subject of this article is an ambulatory system comprising a small wrist device connected to several sensors for the detection of the autonomic nervous system activity. It affords monitoring of skin resistance, skin temperature and heart activity. It is also capable of recording the data on a removable media or sending it to computer via a wireless communication. The wrist device is based on a Programmable System-on-Chip (PSoC) from Cypress: PSoCs are mixed-signal arrays, with dynamic, configurable digital and analogical blocks and an 8-bit Microcontroller unit (MCU) core on a single chip. In this paper we present first of all the hardware and software architecture of the device, and then results obtained from initial experiments.

  20. Poly(dimethylsiloxane) microchip-based immunoassay with multiple reaction zones: Toward on-chip multiplex detection platform

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guocheng; Wang, Jun; Li, Zhaohui; Saraf, Laxmikant V.; Wang, Wanjun; Lin, Yuehe

    2011-09-20

    In this work, a poly(dimethylsiloxane) (PDMS) microchip-based immuno-sensing platform with integrated pneumatic micro valves is described. The microchip was fabricated with multiple layer soft lithography technology. By controlling the activation status of corresponding valves, reagent flows in the microchannel network can be well manipulated so that immuno-reactions only take place at designated reaction zones (DRZs). Four DRZs are included in the prototype microchip. Since these DRZs are all isolated from each other by micro valves, cross contamination is prevented. Using the inner surface of the all-PDMS microchannel as immunoassay substrate, on-chip sandwich format solid phase immunoassay was performed to demonstrate the feasibility of this immuno-sensing platform. Mouse IgG and fluorescein isothiocyanate (FITC) were used as the model analyte and the signal reporter respectively. Only 10 ul sample is needed for the assay and low detection limit of 5 ng/ml (≈33 pM) was achieved though low-cost polyclonal antibodies were used in our experiment for feasibility study only. The encouraging results from mouse IgG immunoassay proved the feasibility of our microchip design. With slight modification of the assay protocol, the same chip design can be used for multi-target detection and can provide a simple, cost-effective and integrated microchip solution for multiplex immunoassay applications.

  1. Central-force decomposition of spline-based modified embedded atom method potential

    Science.gov (United States)

    Winczewski, S.; Dziedzic, J.; Rybicki, J.

    2016-10-01

    Central-force decompositions are fundamental to the calculation of stress fields in atomic systems by means of Hardy stress. We derive expressions for a central-force decomposition of the spline-based modified embedded atom method (s-MEAM) potential. The expressions are subsequently simplified to a form that can be readily used in molecular-dynamics simulations, enabling the calculation of the spatial distribution of stress in systems treated with this novel class of empirical potentials. We briefly discuss the properties of the obtained decomposition and highlight further computational techniques that can be expected to benefit from the results of this work. To demonstrate the practicability of the derived expressions, we apply them to calculate stress fields due to an edge dislocation in bcc Mo, comparing their predictions to those of linear elasticity theory.

  2. Coherent and dynamic beam splitting based on light storage in cold atoms

    Science.gov (United States)

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-01-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing. PMID:27677457

  3. Double-negative acoustic metamaterial based on hollow steel tube meta-atom

    CERN Document Server

    Chen, Huaijun; Ding, Changlin; Luo, Chunrong; Zhao, Xiaopeng

    2012-01-01

    We presented an acoustic 'meta-atom' model of hollow steel tube (HST). The simulated and experimental results demonstrated that the resonant frequency is closely related to the length of the HST. Based on the HST model, we fabricated a two-dimensional (2D) acoustic metamaterial (AM) with negative effective mass density, which put up the transmission dip and accompanied inverse phase in experiment. By coupling the HST with split hollow sphere (SHS), another kind of 'meta-atom' with negative effective modulus in the layered sponge matrix, a three-dimensional (3D) AM was fabricated with simultaneously negative modulus and negative mass density. From the experiment, it is shown that the transmission peak similar to the electromagnetic metamaterials exhibited in the double-negative region of the AM. We also demonstrated that this kind of doble-negative AM can faithfully distinguish the acoustic sub-wavelength details ({\\lambda}/7) at the resonance frequency of 1630Hz.

  4. A highly stable atomic vector magnetometer based on free spin precession

    CERN Document Server

    Afach, S; Bison, G; Bodek, K; Chowdhuri, Z; Grujic, Z D; Hayen, L; Helaine, V; Kasprzak, M; Kirch, K; Knowles, P; Koch, H -C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemiere, Y; Mtchedlishvili, A; Naviliat-Cuncic, O; Piegsa, F M; Prashanth, P N; Quemener, G; Rawlik, M; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severjins, N; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zsigmond, G

    2015-01-01

    We present a magnetometer based on optically pumped Cs atoms that measures the magnitude and direction of a 1 $\\mu$T magnetic field. Multiple circularly polarized laser beams were used to probe the free spin precession of the Cs atoms. The design was optimized for long-time stability and achieves a scalar resolution better than 300 fT for integration times ranging from 80 ms to 1000 s. The best scalar resolution of less than 80 fT was reached with integration times of 1.6 to 6 s. We were able to measure the magnetic field direction with a resolution better than 10 $\\mu$rad for integration times from 10 s up to 2000 s.

  5. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P.J. [University of California, Department of Applied Mechanics and Engineering Science, Urey Hall, Mali Code 0339, San Diego, La Jolla, CA (United States)

    2000-03-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  6. Building a multi-walled carbon nanotube-based mass sensor with the atomic force microscope

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Kuhle, A.; Marie, Rodolphe Charly Willy;

    2005-01-01

    We report an approach for building a mass sensor based on multi-walled carbon nanotubes (MWCNT). We propose a method with a great potential for the positioning of MWCNTs based on self-assembly onto patterned hydrophilic areas. For the experiments ultra flat mica substrates covered with gold...... are used. The gold substrate is first covered with hydrophobic thiol molecules: octadecanthiol. The octadecanthiol molecules are then selectively removed from small areas by nanoshaving the gold substrate with the tip of an atomic force microscope (AFM) operating in contact mode. Hydrophilic thiols (2...

  7. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids.

    Science.gov (United States)

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm(2) area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10(-1) to 4 × 10(-3) copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings.

  8. Multiple-input multiple-output based high density on-chip optical interconnect

    Science.gov (United States)

    Shen, Po-Kuan; Xu, Xiaochuan; Hosseini, Amir; Pan, Zeyu; Chen, Ray T.

    2015-03-01

    In on-chip optical interconnect, dielectric waveguide arrays are usually designed with pitches of a few wavelengths to avoid crosstalk, which greatly limits the integration density. In this paper, we for the first time propose to use multipleinput multiple-output (MIMO), a well-known technique in wireless communication, to recover the data from entangled signals and reduce the waveguide pitch to subwavelength range. In the proposed on-chip MIMO system, there is significant coupling among the adjacent waveguides in the high density waveguide region. In order to recover signals, the N×N transmission matrix of N high-density waveguides is calculated to describe the relation between each input ports and output ports. In the receiving part, homodyne coherent receivers are used to receive the transmitted signals, and obtain the signal in phase and ?/2 out of phase with local oscillator. In the electrical signal processing, the inverse transmission matrix is utilized to recover the signals in the electronic domain. To verify the proposed on-chip MIMO, we used the INTERCONNECT package in Lumerical software to simulate a 10x10 MIMO system. The cross section of each waveguide is 500 nm x 220 nm. The spacing is 250 nm. The simulation verifies the possibility of recovering 10 Gbps data from the heavily coupled 10 waveguides with a BER better than 10-12. The minimum input optical power for a BER of 10-12 is greater than -18.1 dBm, and the maximum phase shift between input laser and local oscillator can reach to 73.5˚.

  9. 39 fJ/bit On-Chip Identification ofWireless Sensors Based on Manufacturing Variation

    Directory of Open Access Journals (Sweden)

    Jonathan F. Bolus

    2014-09-01

    Full Text Available A 39 fJ/bit IC identification system based on FET mismatch is presented and implemented in a 130 nm CMOS process. ID bits are generated based on the ΔVT between identically drawn NMOS devices due to manufacturing variation, and the ID cell structure allows for the characterization of ID bit reliability by characterizing ΔVT . An addressing scheme is also presented that allows for reliable on-chip identification of ICs in the presence of unreliable ID bits. An example implementation is presented that can address 1000 unique ICs, composed of 31 ID bits and having an error rate less than 10-6, with up to 21 unreliable bits.

  10. Chip scale mechanical spectrum analyzers based on high quality factor overmoded bulk acouslic wave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, R. H., III

    2012-03-01

    The goal of this project was to develop high frequency quality factor (fQ) product acoustic resonators matched to a standard RF impedance of 50 {Omega} using overmoded bulk acoustic wave (BAW) resonators. These resonators are intended to serve as filters in a chip scale mechanical RF spectrum analyzer. Under this program different BAW resonator designs and materials were studied theoretically and experimentally. The effort resulted in a 3 GHz, 50 {Omega}, sapphire overmoded BAW with a fQ product of 8 x 10{sup 13}, among the highest values ever reported for an acoustic resonator.

  11. Manipulating ultracold atoms with a reconfigurable nanomagnetic system of domain walls

    CERN Document Server

    West, Adam D; Hayward, Thomas J; Fry, Paul W; Schrefl, Thomas; Gibbs, Mike R J; Adams, Charles S; Allwood, Dan A; Hughes, Ifan G

    2011-01-01

    The divide between the realms of atomic-scale quantum particles and lithographically-defined nanostructures is rapidly being bridged. Hybrid quantum systems comprising ultracold gas-phase atoms and substrate-bound devices already offer exciting prospects for quantum sensors, quantum information and quantum control. Ideally, such devices should be scalable, versatile and support quantum interactions with long coherence times. Fulfilling these criteria is extremely challenging as it demands a stable and tractable interface between two disparate regimes. Here we demonstrate an architecture for atomic control based on domain walls (DWs) in planar magnetic nanowires that provides a tunable atomic interaction, manifested experimentally as the reflection of ultracold atoms from a nanowire array. We exploit the magnetic reconfigurability of the nanowires to quickly and remotely tune the interaction with high reliability. This proof-of-principle study shows the practicability of more elaborate atom chips based on magn...

  12. Nanoscale structure and atomic disorder in the iron-based chalcogenides.

    Science.gov (United States)

    Saini, Naurang Lal

    2013-02-01

    The multiband iron-based superconductors have layered structure with a phase diagram characterized by a complex interplay of charge, spin and lattice excitations, with nanoscale atomic structure playing a key role in their fundamental electronic properties. In this paper, we briefly review nanoscale structure and atomic disorder in iron-based chalcogenide superconductors. We focus on the Fe(Se,S)1-x Te x (11-type) and K0.8Fe1.6Se2 (122-type) systems, discussing their local structure obtained by extended x-ray absorption fine structure. Local structure studies on the Fe(Se,S)1-x Te x system reveal clear nanoscale phase separation characterized by coexisting components of different atomic configurations, similar to the case of random alloys. In fact, the Fe-Se/S and Fe-Te distances in the ternary Fe(Se,S)1-x Te x are found to be closer to the respective distances in the binary FeSe/FeS and FeTe systems, showing significant divergence of the local structure from the average one. The observed features are characteristic of ternary random alloys, indicating breaking of the local symmetry in these materials. On the other hand, K0.8Fe1.6Se2 is known for phase separation in an iron-vacancy ordered phase and an in-plane compressed lattice phase. The local structure of these 122-type chalcogenides shows that this system is characterized by a large local disorder. Indeed, the experiments suggest a nanoscale glassy phase in K0.8Fe1.6Se2, with the superconductivity being similar to the granular materials. While the 11-type structure has no spacer layer, the 122-type structure contains intercalated atoms unlike the 1111-type REFeAsO (RE = rare earth) oxypnictides, having well-defined REO spacer layers. It is clear that the interlayer atomic correlations in these iron-based superconducting structures play an important role in structural stability as well as superconductivity and magnetism.

  13. Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction.

    Science.gov (United States)

    Chae, Myong-Ho; Krull, Florian; Knapp, Ernst-Walter

    2015-05-01

    The DOcking decoy-based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance-dependent atom-pair interactions. To optimize the atom-pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand-receptor systems (or just pairs). Thus, a total of 8609 ligand-receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand-receptor systems, 1000 evenly sampled docking decoys with 0-10 Å interface root-mean-square-deviation (iRMSD) were generated with a method used before for protein-protein docking. A neural network-based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel-like energy landscape for the interaction between these hypothetical ligand-receptor systems. Thus, our method hierarchically models the overall funnel-like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom-pair-based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation-dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand-receptor systems and their decoys are freely available at http://agknapp.chemie.fu-berlin.de/doop/.

  14. Implementing oxygen control in chip-based cell and tissue culture systems.

    Science.gov (United States)

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  15. Compact Shorted Stacked-Patch Antenna Integrated with Chip-Package Based on LTCC Technology

    Directory of Open Access Journals (Sweden)

    Yongjiu Li

    2014-01-01

    Full Text Available A low profile chip-package stacked-patch antenna is proposed by using low temperature cofired ceramic (LTCC technology. The proposed antenna employs a stacked-patch to achieve two operating frequency bands and enhance the bandwidth. The height of the antenna is decreased to 4.09 mm (about λ/25 at 2.45 GHz due to the shorted pin. The package is mounted on a 44 × 44 mm2 ground plane to miniaturize the volume of the system. The design parameters of the antenna and the effect of the antenna on chip-package cavity are carefully analyzed. The designed antenna operates at a center frequency of 2.45 GHz and its impedance bandwidth (S11< -10 dB is 200 MHz, resulting from two neighboring resonant frequencies at 2.41 and 2.51 GHz, respectively. The average gain across the frequency band is about 5.28 dBi.

  16. Controlled rephasing of single spin-waves in a quantum memory based on cold atoms

    Science.gov (United States)

    Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team

    2015-05-01

    Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.

  17. An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method

    CERN Document Server

    Nouranian, S; Gwaltney, S R; Baskes, M I; Horstemeyer, M F

    2013-01-01

    In this work, we developed an interatomic potential for saturated hydrocarbons using the modified embedded-atom method (MEAM), a semi-empirical many-body potential based on density functional theory and pair potentials. We parameterized the potential by fitting to a large experimental and first-principles (FP) database consisting of 1) bond distances, bond angles, and atomization energies at 0 K of a homologous series of alkanes and their select isomers from methane to n-octane, 2) the potential energy curves of H2, CH, and C2 diatomics, 3) the potential energy curves of hydrogen, methane, ethane, and propane dimers, i.e., (H2)2, (CH4)2, (C2H6)2, and (C3H8)2, respectively, and 5) pressure-volume-temperature (PVT) data of a dense high-pressure methane system with the density of 0.5534 g/cc. We compared the atomization energies and geometries of a range of linear alkanes, cycloalkanes, and free radicals calculated from the MEAM potential to those calculated by other commonly used potentials for hydrocarbons, i....

  18. Infrared image recognition based on structure sparse and atomic sparse parallel

    Science.gov (United States)

    Wu, Yalu; Li, Ruilong; Xu, Yi; Wang, Liping

    2015-12-01

    Use the redundancy of the super complete dictionary can capture the structural features of the image effectively, can achieving the effective representation of the image. However, the commonly used atomic sparse representation without regard the structure of the dictionary and the unrelated non-zero-term in the process of the computation, though structure sparse consider the structure feature of dictionary, the majority coefficients of the blocks maybe are non-zero, it may affect the identification efficiency. For the disadvantages of these two sparse expressions, a weighted parallel atomic sparse and sparse structure is proposed, and the recognition efficiency is improved by the adaptive computation of the optimal weights. The atomic sparse expression and structure sparse expression are respectively, and the optimal weights are calculated by the adaptive method. Methods are as follows: training by using the less part of the identification sample, the recognition rate is calculated by the increase of the certain step size and t the constraint between weight. The recognition rate as the Z axis, two weight values respectively as X, Y axis, the resulting points can be connected in a straight line in the 3 dimensional coordinate system, by solving the highest recognition rate, the optimal weights can be obtained. Through simulation experiments can be known, the optimal weights based on adaptive method are better in the recognition rate, weights obtained by adaptive computation of a few samples, suitable for parallel recognition calculation, can effectively improve the recognition rate of infrared images.

  19. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    Science.gov (United States)

    Reininger, Charlotte; Woodfield, Kellie; Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M.; Farnsworth, Paul B.

    2014-10-01

    The absolute number densities of helium atoms in the 2s 3S1 metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 1012 cm- 3 and 0.011 × 1012 cm- 3, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 1012 cm- 3 and 0.97 × 1012 cm- 3 were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges.

  20. Statistical mechanics-based method to extract atomic distance-dependent potentials from protein structures.

    Science.gov (United States)

    Huang, Sheng-You; Zou, Xiaoqin

    2011-09-01

    In this study, we have developed a statistical mechanics-based iterative method to extract statistical atomic interaction potentials from known, nonredundant protein structures. Our method circumvents the long-standing reference state problem in deriving traditional knowledge-based scoring functions, by using rapid iterations through a physical, global convergence function. The rapid convergence of this physics-based method, unlike other parameter optimization methods, warrants the feasibility of deriving distance-dependent, all-atom statistical potentials to keep the scoring accuracy. The derived potentials, referred to as ITScore/Pro, have been validated using three diverse benchmarks: the high-resolution decoy set, the AMBER benchmark decoy set, and the CASP8 decoy set. Significant improvement in performance has been achieved. Finally, comparisons between the potentials of our model and potentials of a knowledge-based scoring function with a randomized reference state have revealed the reason for the better performance of our scoring function, which could provide useful insight into the development of other physical scoring functions. The potentials developed in this study are generally applicable for structural selection in protein structure prediction.

  1. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  2. Atomic phase diagram

    Institute of Scientific and Technical Information of China (English)

    LI Shichun

    2004-01-01

    Based on the Thomas-Fermi-Dirac-Cheng model, atomic phase diagram or electron density versus atomic radius diagram describing the interaction properties of atoms of different kinds in equilibrium state is developed. Atomic phase diagram is established based on the two-atoms model. Besides atomic radius, electron density and continuity condition for electron density on interfaces between atoms, the lever law of atomic phase diagram involving other physical parameters is taken into account, such as the binding energy, for the sake of simplicity.

  3. Fast generation of three-dimensional entanglement between two spatially separated atoms via invariant-based shortcut

    Science.gov (United States)

    Wu, Jin-Lei; Song, Chong; Ji, Xin; Zhang, Shou

    2016-10-01

    A scheme is proposed for the fast generation of three-dimensional entanglement between two atoms trapped in two cavities connected by a fiber via invariant-based shortcut to adiabatic passage. With the help of quantum Zeno dynamics, the technique of invariant-based shortcut to adiabatic passage is applied for the generation of two-atom three-dimensional entanglement. The numerical simulation results show that, within a short time, the scheme has a high fidelity and is robust against the decoherence caused by the atomic spontaneous emission, photon leakage, and the variations in the parameters selected. Moreover, the scheme may be possible to be implemented with the current experimental technology.

  4. The Phase Transformations and Magnetoresistive Properties of Diluted Film Solid Solutions Based on Fe and Ge Atoms

    Directory of Open Access Journals (Sweden)

    O.V. Vlasenko

    2014-06-01

    Full Text Available In the article, the structure, phase composition and magnetoresistive properties of single- and three-layer films based on Fe and Ge were studied. It is established that in such films eutectic is formed based on diluted solid solutions of Ge atoms in -Fe layers and of Fe atoms in -Ge layers at the total concentration of Ge atoms from 3 to 20 at.% in the temperature range of 300-870 K. It is shown that magnetoresistive properties of the films with eutectic composition are not significantly different from the properties of -Fe films.

  5. Bridged single-walled carbon nanotube-based atomic-scale mass sensors

    Science.gov (United States)

    Ali-Akbari, H. R.; Shaat, M.; Abdelkefi, A.

    2016-08-01

    The potentials of carbon nanotubes (CNTs) as mechanical resonators for atomic-scale mass sensing are presented. To this aim, a nonlocal continuum-based model is proposed to study the dynamic behavior of bridged single-walled carbon nanotube-based mass nanosensors. The carbon nanotube (CNT) is considered as an elastic Euler-Bernoulli beam with von Kármán type geometric nonlinearity. Eringen's nonlocal elastic field theory is utilized to model the interatomic long-range interactions within the structure of the CNT. This developed model accounts for the arbitrary position of the deposited atomic-mass. The natural frequencies and associated mode shapes are determined based on an eigenvalue problem analysis. An atom of xenon (Xe) is first considered as a specific case where the results show that the natural frequencies and mode shapes of the CNT are strongly dependent on the location of the deposited Xe and the nonlocal parameter of the CNT. It is also indicated that the first vibrational mode is the most sensitive when the mass is deposited at the middle of a single-walled carbon nanotube. However, when deposited in other locations, it is demonstrated that the second or third vibrational modes may be more sensitive. To investigate the sensitivity of bridged single-walled CNTs as mass sensors, different noble gases are considered, namely Xe, argon (Ar), and helium (He). It is shown that the sensitivity of the single-walled CNT to the Ar and He gases is much lower than the Xe gas due to the significant decrease in their masses. The derived model and performed analysis are so needed for mass sensing applications and particularly when the detected mass is randomly deposited.

  6. Microelectromechanical system-based electrochemical seismic sensors with an anode and a cathode integrated on one chip

    Science.gov (United States)

    Deng, T.; Sun, Z.; Li, G.; Chen, J.; Chen, D.; Wang, J.

    2017-02-01

    This paper presents a microelectromechanical system (MEMS)-based electrochemical seismic sensor with an anode and a cathode integrated on a single chip. The proposed approach decreases the number of requested wafers as the sensing unit from seven to two. In addition, no alignment and no bonding among the electrodes are needed, significantly simplifying the fabrication process. The experimental results indicate that the proposed device produced a sensitivity of 5771.7 V (m s-1)-1 at 1.4 Hz and a noise level of  -163 dB (i.e. 7.1 (nm s-1)/Hz1/2) at 1 Hz. Moreover, the proposed device effectively responds to random ground motions, enabling the detection of low-frequency seismic motions caused by earthquake events.

  7. Capillary-driven microfluidic paper-based analytical devices for lab on a chip screening of explosive residues in soil.

    Science.gov (United States)

    Ueland, Maiken; Blanes, Lucas; Taudte, Regina V; Stuart, Barbara H; Cole, Nerida; Willis, Peter; Roux, Claude; Doble, Philip

    2016-03-04

    A novel microfluidic paper-based analytical device (μPAD) was designed to filter, extract, and pre-concentrate explosives from soil for direct analysis by a lab on a chip (LOC) device. The explosives were extracted via immersion of wax-printed μPADs directly into methanol soil suspensions for 10min, whereby dissolved explosives travelled upwards into the μPAD circular sampling reservoir. A chad was punched from the sampling reservoir and inserted into a LOC well containing the separation buffer for direct analysis, avoiding any further extraction step. Eight target explosives were separated and identified by fluorescence quenching. The minimum detectable amounts for all eight explosives were between 1.4 and 5.6ng with recoveries ranging from 53-82% from the paper chad, and 12-40% from soil. This method provides a robust and simple extraction method for rapid identification of explosives in complex soil samples.

  8. Microfluidic Chip-based Nucleic Acid Testing using Gingival Crevicular Fluid as a New Technique for Detecting HIV-1 Infection

    Directory of Open Access Journals (Sweden)

    Alex Willyandre

    2013-05-01

    Full Text Available Transmission of HIV-1 infection by individuals in window period who are tested negative in conventional HIV-1 detection would pose the community with serious problems. Several diagnostic tools require specific labora-tory equipment, perfect timing of diagnosis, antibody to HIV-1, and invasive technique to get sample for examination, until high amount of time to process the sample as well as accessibility of remote areas. Many attempts have been made to solve those problems to come to a new detection technique. This review aims to give information about the current development technique for detection of HIV infection. Microfluidic Chip-based Nucleic Acid Testing is currently introduced for detection of HIV-1 infection. This review also cover the possible usage of gingival crevicular fluid as sample specimen that could be taken noninvasively from the individual.DOI: 10.14693/jdi.v18i2.63

  9. Graph of atomic orbitals and the molecular structure-descriptors based on it

    Directory of Open Access Journals (Sweden)

    ANDREY A. TOROPOV

    2005-04-01

    Full Text Available The graph of atomic orbitals (GAO is a novel type of molecular graph, recently proposed by one of the authors. Various molecular structure-descriptors computed for GAO are compared with their analogs computed for ordinary molecular graphs. The quality of these structure-descriptors was tested for correlation with the normal boiling points of alkanes and cycloalkanes. In all the studied cases, the results based on GAO are similar to, and usually slightly better than, those obtained by means of ordinary molecular graps.

  10. Amplified light storage with high fidelity based on electromagnetically induced transparency in rubidium atomic vapor

    Science.gov (United States)

    Zhou, Wei; Wang, Gang; Tang, Guoyu; Xue, Yan

    2016-06-01

    By using slow and stored light based on electromagnetically induced transparency (EIT), we theoretically realize the storage of optical pulses with enhanced efficiency and high fidelity in ensembles of warm atoms in 85Rb vapor cells. The enhancement of storage efficiency is achieved by introducing a pump field beyond three-level configuration to form a N-type scheme, which simultaneously inhibits the undesirable four-wave mixing effect while preserves its fidelity. It is shown that the typical storage efficiency can be improved from 29% to 53% with the application of pump field. Furthermore, we demonstrate that this efficiency decreases with storage time and increases over unity with optical depth.

  11. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    Science.gov (United States)

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  12. Time gap for temporal cloak based on spectral hole burning in atomic medium

    Science.gov (United States)

    Jabar, M. S. Abdul; Bacha, Bakht Amin; Ahmad, Iftikhar

    2016-08-01

    We demonstrate the possibility of creating a time gap in the slow light based on spectral hole burning in a four-level Doppler broadened sodium atomic system. A time gap is also observed between the slow and the fast light in the hole burning region and near the burnt hole region, respectively. A cloaking time gap is attained in microseconds and no distortion is observed in the transmitted pulse. The width of the time gap is observed to vary with the inverse Doppler effect in this system. Our results may provide a way to create multiple time gaps for a temporal cloak. Project supported by the Higher Education Commission (HEC) of Pakistan.

  13. Atomic-ensemble-based quantum repeater against general polarization and phase noise

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Binbin [Department of Electronical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Xu Yaqiong [Department of Electronical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)

    2011-07-15

    We present a quantum repeater architecture based on atomic ensembles, which is free of polarization and phase noise. With only simple optical elements, we can obtain the uncorrupted entanglement in the noisy channel. Even if the channel suffers from the general polarization and phase noise, the fidelity of transmitted qubits in our protocol can be stable and have no dependence on the noise parameter, which is a significant advantage compared with previous protocols. Moveover, we can even improve the fidelity by using time delayers. The proposed quantum repeater is feasible and useful in the long-distance quantum entanglement distribution and may be promising in other quantum-information applications.

  14. Development of novel and sensitive sensors based on microcantilever of atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    JIN Yan; WANG Kemin; JIN Rong

    2006-01-01

    Recently, the development of sensors based on microfabricated cantilevers of atomic force microscope (AFM) has attracted considerable attention from the designers of novel physical, chemical, and biological sensors. Many kinds of sensors have been developed taking the advantages of its high-resolution imaging, force measurement and force sensitivity, such as immunosensor and DNA biosensor and the sensors for detection of intermolecular interaction. This paper reviews the progress made in this field and discusses the signal transfer principles by which the design of the sensors is achieved.

  15. Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xiaoning; Tittmann, Bernhard [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Kim, Seong H. [Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-01-14

    An atomic force microscopy based nanoindentation method was employed to study how the structure of cellulose microfibril packing and matrix polymers affect elastic modulus of fully hydrated primary plant cell walls. The isolated, single-layered abaxial epidermis cell wall of an onion bulb was used as a test system since the cellulose microfibril packing in this cell wall is known to vary systematically from inside to outside scales and the most abundant matrix polymer, pectin, can easily be altered through simple chemical treatments such as ethylenediaminetetraacetic acid and calcium ions. Experimental results showed that the pectin network variation has significant impacts on the cell wall modulus, and not the cellulose microfibril packing.

  16. A superradiant laser based on two-photon Raman transition of caesium atoms

    CERN Document Server

    Liu, Pengfei

    2013-01-01

    We propose a superradiant laser based on two-photon Raman transition of caesium-133 atoms which collectively emit photons on an ultra narrow transition into the mode of a low Q resonator known as optical bad-cavity regime. The spin-spin correlation which characterizes the collective effect is demonstrated. We theoretically predict that the optical radiation has an extremely narrow linewidth in the 98 (1) *10-2 mHz range, smaller than the transition itself due to collective effects, and a power level of 7 (1)*10-10 W is possible, which can provide a possible new way to realize an optical clock with a millihertz linewidth.

  17. Atomically thin spherical shell-shaped superscatterers based on a Bohr model.

    Science.gov (United States)

    Li, Rujiang; Lin, Xiao; Lin, Shisheng; Liu, Xu; Chen, Hongsheng

    2015-12-18

    Graphene monolayers can be used for atomically thin three-dimensional shell-shaped superscatterer designs. Due to the excitation of the first-order resonance of transverse magnetic (TM) graphene plasmons, the scattering cross section of the bare subwavelength dielectric particle is enhanced significantly by five orders of magnitude. The superscattering phenomenon can be intuitively understood and interpreted with a Bohr model. In addition, based on the analysis of the Bohr model, it is shown that contrary to the TM case, superscattering is hard to achieve by exciting the resonance of transverse electric (TE) graphene plasmons due to their poor field confinements.

  18. Reusable and mediator-free cholesterol biosensor based on cholesterol oxidase immobilized onto TGA-SAM modified smart bio-chips.

    Science.gov (United States)

    Rahman, Mohammed M

    2014-01-01

    A reusable and mediator-free cholesterol biosensor based on cholesterol oxidase (ChOx) was fabricated based on self-assembled monolayer (SAM) of thioglycolic acid (TGA) (covalent enzyme immobilization by dropping method) using bio-chips. Cholesterol was detected with modified bio-chip (Gold/Thioglycolic-acid/Cholesterol-oxidase i.e., Au/TGA/ChOx) by reliable cyclic voltammetric (CV) technique at room conditions. The Au/TGA/ChOx modified bio-chip sensor demonstrates good linearity (1.0 nM to 1.0 mM; R = 0.9935), low-detection limit (∼0.42 nM, SNR∼3), and higher sensitivity (∼74.3 µA µM(-1) cm(-2)), lowest-small sample volume (50.0 μL), good stability, and reproducibility. To the best of our knowledge, this is the first statement with a very high sensitivity, low-detection limit, and low-sample volumes are required for cholesterol biosensor using Au/TGA/ChOx-chips assembly. The result of this facile approach was investigated for the biomedical applications for real samples at room conditions with significant assembly (Au/TGA/ChOx) towards the development of selected cholesterol biosensors, which can offer analytical access to a large group of enzymes for wide range of biomedical applications in health-care fields.

  19. Miniature Optical Atomic Clock: Stabilization of a Kerr Comb Oscillator

    CERN Document Server

    Savchenkov, A A; Liang, W; Ilchenko, V S; Byrd, J; Matsko, A B; Seidel, D; Maleki, L

    2013-01-01

    Mechanical clocks consist of a pendulum and a clockwork that translates the pendulum period to displayed time. The most advanced clocks utilize optical transitions in atoms in place of the pendulum and an optical frequency comb generated by a femtosecond laser as the clockwork. The comb must be stabilized at two points along its frequency spectrum: one with a laser to lock a comb line to a transition in the atom, and another through self referencing to stabilize the frequency interval between the comb lines. This approach requires advanced techniques, so optical atomic clocks are currently laboratory devices in specialized labs. In this paper we leverage unique properties of Kerr comb oscillators for realization of optical atomic clocks in miniature form factors. In particular, we describe a clock based on D1 transition of 87Rb that fits in the palm of the hand, and can be further miniaturized to chip scale.

  20. A ground-based radio frequency inductively coupled plasma apparatus for atomic oxygen simulation in low Earth orbit.

    Science.gov (United States)

    Huang, Yongxian; Tian, Xiubo; Yang, Shiqin; Chu, Paul K

    2007-10-01

    A radio frequency (rf) inductively coupled plasma apparatus has been developed to simulate the atomic oxygen environment encountered in low Earth orbit (LEO). Basing on the novel design, the apparatus can achieve stable, long lasting operation, pure and high density oxygen plasma beam. Furthermore, the effective atomic oxygen flux can be regulated. The equivalent effective atomic oxygen flux may reach (2.289-2.984) x 10(16) at.cm(2) s at an oxygen pressure of 1.5 Pa and rf power of 400 W. The equivalent atomic oxygen flux is about 100 times than that in the LEO environment. The mass loss measured from the polyimide sample changes linearly with the exposure time, while the density of the eroded holes becomes smaller. The erosion mechanism of the polymeric materials by atomic oxygen is complex and involves initial reactions at the gas-surface interface as well as steady-state material removal.

  1. Subshell fitting of relativistic atomic core electron densities for use in QTAIM analyses of ECP-based wave functions.

    Science.gov (United States)

    Keith, Todd A; Frisch, Michael J

    2011-11-17

    Scalar-relativistic, all-electron density functional theory (DFT) calculations were done for free, neutral atoms of all elements of the periodic table using the universal Gaussian basis set. Each core, closed-subshell contribution to a total atomic electron density distribution was separately fitted to a spherical electron density function: a linear combination of s-type Gaussian functions. The resulting core subshell electron densities are useful for systematically and compactly approximating total core electron densities of atoms in molecules, for any atomic core defined in terms of closed subshells. When used to augment the electron density from a wave function based on a calculation using effective core potentials (ECPs) in the Hamiltonian, the atomic core electron densities are sufficient to restore the otherwise-absent electron density maxima at the nuclear positions and eliminate spurious critical points in the neighborhood of the atom, thus enabling quantum theory of atoms in molecules (QTAIM) analyses to be done in the neighborhoods of atoms for which ECPs were used. Comparison of results from QTAIM analyses with all-electron, relativistic and nonrelativistic molecular wave functions validates the use of the atomic core electron densities for augmenting electron densities from ECP-based wave functions. For an atom in a molecule for which a small-core or medium-core ECPs is used, simply representing the core using a simplistic, tightly localized electron density function is actually sufficient to obtain a correct electron density topology and perform QTAIM analyses to obtain at least semiquantitatively meaningful results, but this is often not true when a large-core ECP is used. Comparison of QTAIM results from augmenting ECP-based molecular wave functions with the realistic atomic core electron densities presented here versus augmenting with the limiting case of tight core densities may be useful for diagnosing the reliability of large-core ECP models in

  2. Bead-based immunoassays using a micro-chip flow cytometer.

    Science.gov (United States)

    Holmes, David; She, Joseph K; Roach, Peter L; Morgan, Hywel

    2007-08-01

    A microfabricated flow cytometer has been developed for the analysis of micron-sized polymer beads onto which fluorescently labelled proteins have been immobilised. Fluorescence measurements were made on the beads as they flowed through the chip. Binding of antibodies to surface-immobilised antigens was quantitatively assayed using the device. Particles were focused through a detection zone in the centre of the flow channel using negative dielectrophoresis. Impedance measurements of the particles (at 703 kHz) were used to determine particle size and to trigger capture of the fluorescence signal. Antibody binding was measured by fluorescence at single and dual excitation wavelengths (532 nm and 633 nm). Fluorescence compensation techniques were implemented to correct for spectral overspill between optical detection channels. The data from the microfabricated flow cytometer was shown to be comparable to that of a commercial flow cytometer (BD-FACSAria).

  3. Chalcogenide glass planar MIR couplers for future chip based Bracewell interferometers

    CERN Document Server

    Goldsmith, Harry-Dean Kenchington; Ireland, Michael; Ma, Pan; Tuthill, Peter; Eggleton, Ben; Lawrence, John S; Debbarma, Sukanta; Luther-Davies, Barry; Madden, Stephen J

    2016-01-01

    Photonic integrated circuits are established as the technique of choice for a number of astronomical processing functions due to their compactness, high level of integration, low losses, and stability. Temperature control, mechanical vibration and acoustic noise become controllable for such a device enabling much more complex processing than can realistically be considered with bulk optics. To date the benefits have mainly been at wavelengths around 1550 nm but in the important Mid-Infrared region, standard photonic chips absorb light strongly. Chalcogenide glasses are well known for their transparency to beyond 10000 nm, and the first results from coupler devices intended for use in an interferometric nuller for exoplanetary observation in the Mid-Infrared L band (3800-4200 nm) are presented here showing that suitable performance can be obtained both theoretically and experimentally for the first fabricated devices operating at 4000 nm.

  4. Large-field-of-view Chip-scale Talbot-grid-based Fluorescence Microscopy

    CERN Document Server

    Pang, Shuo; Kato, Mihoko; Sternberg, Paul W; Yang, Changhuei

    2012-01-01

    The fluorescence microscope is one of the most important tools in modern clinical diagnosis and biological science. However, its expense, size and limited field-of-view (FOV) are becoming bottlenecks in key applications such as large-scale phenotyping and low-resource-setting diagnostics. Here we report a low-cost, compact chip-scale fluorescence-imaging platform, termed the Fluorescence Talbot Microscopy (FTM), which utilizes the Talbot self-imaging effect to enable efficient fluorescence imaging over a large and directly-scalable FOV. The FTM prototype has a resolution of 1.2 microns and an FOV of 3.9 mm x 3.5 mm. We demonstrate the imaging capability of FTM on fluorescently labeled breast cancer cells (SK-BR-3) and HEK cells expressing green fluorescent protein.

  5. Silicon Based Solid Oxide Fuel Cell Chip for Portable Consumer Electronics -- Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Alan Ludwiszewski

    2009-06-29

    LSI’s fuel cell uses efficient Solid Oxide Fuel Cell (“SOFC”) technology, is manufactured using Micro Electrical Mechanical System (“MEMS”) fabrication methods, and runs on high energy fuels, such as butane and ethanol. The company’s Fuel Cell on a Chip™ technology enables a form-factor battery replacement for portable electronic devices that has the potential to provide an order-of-magnitude run-time improvement over current batteries. Further, the technology is clean and environmentally-friendly. This Department of Energy funded project focused on accelerating the commercialization and market introduction of this technology through improvements in fuel cell chip power output, lifetime, and manufacturability.

  6. Interfacial tension based on-chip extraction of microparticles confined in microfluidic Stokes flows

    Science.gov (United States)

    Huang, Haishui; He, Xiaoming

    2014-10-01

    Microfluidics involving two immiscible fluids (oil and water) has been increasingly used to produce hydrogel microparticles with wide applications. However, it is difficult to extract the microparticles out of the microfluidic Stokes flows of oil that have a Reynolds number (the ratio of inertia to viscous force) much less than one, where the dominant viscous force tends to drive the microparticles to move together with the surrounding oil. Here, we present a passive method for extracting hydrogel microparticles in microfluidic Stokes flow from oil into aqueous extracting solution on-chip by utilizing the intrinsic interfacial tension between oil and the microparticles. We further reveal that the thickness of an "extended confining layer" of oil next to the interface between oil and aqueous extracting solution must be smaller than the radius of microparticles for effective extraction. This method uses a simple planar merging microchannel design that can be readily fabricated and further integrated into a fluidic system to extract microparticles for wide applications.

  7. Generation of high-stability solitons at microwave rates on a silicon chip

    CERN Document Server

    Yi, Xu; Yang, Ki Youl; Suh, Myoung-Gyun; Vahala, Kerry

    2015-01-01

    Because they coherently link radio/microwave-rate electrical signals with optical-rate signals derived from lasers and atomic transitions, frequency combs are having a remarkably broad impact on science and technology. Integrating these systems on a photonic chip would revolutionize instrumentation, time keeping, spectroscopy, navigation and potentially create new mass-market applications. A key element of such a system-on-a-chip will be a mode-locked comb that can be self-referenced. The recent demonstration of soliton pulses from a microresonator has placed this goal within reach. However, to provide the requisite link between microwave and optical rate signals soliton generation must occur within the bandwidth of electronic devices. So far this is possible in crytalline devices, but not chip-based devices. Here, a monolithic comb that generates electronic-rate soliton pulses is demonstrated.

  8. Fiber-optic based in situ atomic spectroscopy for manufacturing of x-ray optics

    Science.gov (United States)

    Atanasoff, George; Metting, Christopher J.; von Bredow, Hasso

    2016-09-01

    The manufacturing of multilayer Laue (MLL) components for X-ray optics by physical vapor deposition (PVD) requires high precision and accuracy that presents a significant process control challenge. Currently, no process control system provides the accuracy, long-term stability and broad capability for adoption in the manufacturing of X-ray optics. In situ atomic absorption spectroscopy is a promising process control solution, capable of monitoring the deposition rate and chemical composition of extremely thin metal silicide films during deposition and overcoming many limitations of the traditional methods. A novel in situ PVD process control system for the manufacturing of high-precision thin films, based on combined atomic absorption/emission spectrometry in the vicinity of the deposited substrate, is described. By monitoring the atomic concentration in the plasma region independently from the film growth on the deposited substrate, the method allows deposition control of extremely thin films, compound thin films and complex multilayer structures. It provides deposition rate and film composition measurements that can be further utilized for dynamic feedback process control. The system comprises a reconfigurable hardware module located outside the deposition chamber with hollow cathode light sources and a fiber-optic-based frame installed inside the deposition chamber. Recent experimental results from in situ monitoring of Al and Si thin films deposited by DC and RF magnetron sputtering at a variety of plasma conditions and monitoring configurations are presented. The results validate the operation of the system in the deposition of compound thin films and provide a path forward for use in manufacturing of X-Ray optics.

  9. Fiber‐free coupling between bulk laser beams and on‐chip polymer‐based multimode waveguides

    DEFF Research Database (Denmark)

    Jensen, Thomas Glasdam; Nielsen, Lars Bue; Kutter, Jörg Peter

    2011-01-01

    In this paper, we demonstrate the design of a virtually alignment‐free optical setup for use with microfluidic applications involving a layered glass/SU‐8/PDMS (polydimethylsiloxane) chip. We show how inexpensive external lenses combined with carefully designed on‐chip lenses can be used to couple...

  10. Large-area photodetector with high-sensitivity and broadband spectral response based on composition-graded CdSSe nanowire-chip

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shuai; Li, Zhishuang; Song, Guangli; Zou, Bingsuo; Wang, Xiaoxu; Liu, Ruibin, E-mail: liuruibin8@gmail.com

    2015-11-15

    The nanowire-chip based large-area and broad-band-response photodetector was realized by integrating the ternary bandgap-graded CdS{sub 1−x}Se{sub x} nanowire-chip on proper substrate and optimizing electrode pattern. The actual light-to-dark current ratio (I{sub light}/I{sub dark}) is subject to the substrate type and the electrode pattern, as well the thickness of nanowires. Up to 10{sup 6} light-to-dark current ratio was obtained for the nanowire-chip photodetector with the optimized interdigital electrode parameters (0.5 mm in width, 0.5 mm in pitch), the suitable substrate – mica and appropriate nanowire thickness (70um). Although the carriers transmit from light-generated carrier centers to the electrodes through a complicated and long pathway, the photodetector of as-fabricated nanowire-chip shows much higher photocurrent and photoconductivity due to a higher photocarrier densities exist in the ternary compounds than that in binary CdS and CdSe nanowire and the intersection trap state existing between nanowires enhances the separation of electrons and holes. Uniform and broad photoresponse covering from ultraviolet to around 700 nm is attributed to the graded bandgap of different composition nanowires/nanobelts in the chip-type detector. Especially, the I{sub light}/I{sub dark} of nanowire-chip detector increases with the temperature decrease due to the dark noise and the scattering become lower. The chip detector with composition-graded nanowires shows good photoconductivity at room temperature and low temperature. More important, it can be fabricated by a commercial CVD route, which will satisfy the requirements in many application fields instead of Si-based detector. - Highights: • Macroscale photodetector based on CdS{sub 1−x}Se{sub x} nanowire was fabricated. • Broad-spectrum uniform response and high-sensitivity are presented. • At low temperature the photodetector has better photoconductive property. • Photoconductive property dependent

  11. Chips 2020

    CERN Document Server

    2016-01-01

    The release of this second volume of CHIPS 2020 coincides with the 50th anniversary of Moore’s Law, a critical year marked by the end of the nanometer roadmap and by a significantly reduced annual rise in chip performance. At the same time, we are witnessing a data explosion in the Internet, which is consuming 40% more electrical power every year, leading to fears of a major blackout of the Internet by 2020. The messages of the first CHIPS 2020, published in 2012, concerned the realization of quantum steps for improving the energy efficiency of all chip functions. With this second volume, we review these messages and amplify upon the most promising directions: ultra-low-voltage electronics, nanoscale monolithic 3D integration, relevant-data, brain- and human-vision-inspired processing, and energy harvesting for chip autonomy. The team of authors, enlarged by more world leaders in low-power, monolithic 3D, video, and Silicon brains, presents new vistas in nanoelectronics, promising  Moore-like exponential g...

  12. Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding

    Science.gov (United States)

    Chen, Xueye; Shen, Jienan; Zhou, Mengde

    2016-10-01

    A smart design method to transform the original two-layer microfluidic chip into a four-layer 3D microfluidic chip is proposed. A novel fabrication method is established to rapidly and effectively produce a four-layer microfluidic chip device made entirely from polymethylmethacrylate (PMMA). Firstly, the CO2-laser cuts the PMMA sheets by melting and blowing away vaporized material from the parent material to obtain high-quality channels of the microfluidic chip. An orthogonal experimental method is used to study its processing stability. In addition, a simple, rapid thermal bonding technique is successfully applied in fabricating the four-layer microfluidic chip, which has a bond strength of 1.3 MPa. A wooden pole is used to improve the accuracy of the alignment. Finally, a mixing experiment with blue ink and water is carried out, which proves that this smart design method and rapid manufacturing technology are successful.

  13. Phases and Interfaces from Real Space Atomically Resolved Data: Physics-Based Deep Data Image Analysis.

    Science.gov (United States)

    Vasudevan, Rama K; Ziatdinov, Maxim; Jesse, Stephen; Kalinin, Sergei V

    2016-09-14

    Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ∼1-10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysis is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. This method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure-property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.

  14. Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques

    Science.gov (United States)

    Wang, Zhile; Zong, Shenfei; Wang, Zhuyuan; Wu, Lei; Chen, Peng; Yun, Binfeng; Cui, Yiping

    2017-03-01

    We present a novel microfluidic chip based method for the detection of micro RNA (miRNA) via the combination of fluorescence and surface enhanced Raman scattering (SERS) spectroscopies. First, silver nanoparticles (Ag NPs) are immobilized onto a glass slide, forming a SERS enhancing substrate. Then a specificially designed molecular beacon (MB) is attached to the SERS substrate. The 3‧ end of the MB is decorated with a thiol group to facilitate the attachment of the MB, while the 5‧ end of the MB is labeled with an organic dye 6-FAM, which is used both as the fluorophore and SERS reporter. In the absence of target miRNA, the MB will form a hairpin structure, making 6-FAM close to the Ag NPs. Hence, the fluorescence of 6-FAM will be quenched and the Raman signal of 6-FAM will be enhanced. On the contrary, with target miRNA present, hybridization between the miRNA and MB will unfold the MB and increase the distance between 6-FAM and the Ag NPs. Thus the fluorescence of 6-FAM will recover and the SERS signal of 6-FAM will decrease. So the target miRNA will simultaneously introduce opposite changing trends in the intensities of the fluorescence and SERS signals. By combining the opposite changes in the two optical spectra, an improved sensitivity and linearity toward the target miRNA is achieved as compared with using solely fluorescence or SERS. Moreover, introducing the microfluidic chip can reduce the reaction time, reagent dosage and complexity of detection. With the improved sensitivity and simplicity, we anticipate that the presented method can have great potential in the investigation of miRNA related diseases.

  15. High-Throughput Assessment of Drug Cardiac Safety Using a High-Speed Impedance Detection Technology-Based Heart-on-a-Chip

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2016-07-01

    Full Text Available Drug cardiac safety assessments play a significant role in drug discovery. Drug-induced cardiotoxicity is one of the main reasons for drug attrition, even when antiarrhythmic drugs can otherwise effectively treat the arrhythmias. Consequently, efficient drug preclinical assessments are needed in the drug industry. However, most drug efficacy assessments are performed based on electrophysiological tests of cardiomyocytes in vitro and cannot effectively provide information on drug-induced dysfunction of cardiomyocyte beating. Here we present a heart-on-a-chip device for evaluating the drug cardiac efficacy using a high-speed impedance detection technology. Verapamil and doxorubicin were utilized to test this heart-on-a-chip, and multiple parameters of cardiomyocyte beating status are used to reveal the effects of drugs. The results show that drug efficacy or cardiotoxicity can be determined by this heart-on-a-chip. We believe this heart-on-a-chip will be a promising tool for the preclinical assessment of drug cardiac efficacy.

  16. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kistrup, Kasper, E-mail: kkis@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Skotte Sørensen, Karen, E-mail: karen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Center for Integrated Point of Care Technologies (CiPoC), DELTA, Venlighedsvej 4, DK-2870 Hørsholm (Denmark); Wolff, Anders, E-mail: anders.wolff@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Fougt Hansen, Mikkel, E-mail: mikkel.hansen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark)

    2015-04-15

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution.

  17. 基于MSP430的硒鼓芯片复位装置的设计%Design of Cartridge Chip Reset Device Based on MSP430

    Institute of Scientific and Technical Information of China (English)

    高广; 何美玲; 俎全高; 周敏

    2011-01-01

    Aiming at that the printing supplies for laser toner cartridge manufacturer in the production process are needed to resolve the problem of cartridge chip re-use issues, a cartridge chip reset device based on MSP430 is designed. Different types of toner cartridge chips can be reset by the device, so that the cartridge chips can be recycled in order to achieving production cost savings, protecting the environment. The device also has a good reset effect, the advantages of easy operation.%针对激光打印耗材生产厂家硒鼓生产过程中需对硒鼓芯片进行再利用的问题,设计了一种基于MSP430的硒鼓芯片复位装置.利用该装置可以复位不同型号的硒鼓芯片,从而使硒鼓芯片可循环利用,以达到节约生产成本、保护环境的目的.该装置同时具有复位效果好、易于操作的优点.

  18. [Oil atomic spectrometric feature selection by Parzen window based vague sets theory].

    Science.gov (United States)

    Xu, Chao; Zhang, Pei-Lin; Ren, Guo-Quan; Zhang, Xiao-Dong; Yang, Yu-Dong

    2011-02-01

    Large quantity and ambiguity of oil atomic spectrometric information greatly affects the applicable efficiency and accuracy in fault diagnosis. A novel method for choosing less and effective spectrometric features is presented. Based on gearbox test bed, we simulated the normal wear state and two typical faults to acquire the lubricant samples. The three wear states are regarded as three vague sets, and spectrometric feature values are vague values on vague sets. Based on similarity between vague values, mean vague sensibility (MVS) is defined to describe the sensitive degree of spectrometric feature to wear state. Besides, the membership degrees of vague sets greatly depend on human experience. The probability density distribution of spectrometric data of three wear states was estimated with Parzen window. Combined with Bayesian formula, the range of vague sets membership was calculated. Experimental results verify that the proposed method is of efficient help in choosing high fault-sensitive features from so many spectrometric features.

  19. Role of valence changes and nanoscale atomic displacements in BiS2-based superconductors.

    Science.gov (United States)

    Cheng, Jie; Zhai, Huifei; Wang, Yu; Xu, Wei; Liu, Shengli; Cao, Guanghan

    2016-11-22

    Superconductivity within layered crystal structures has attracted sustained interest among condensed matter community, primarily due to their exotic superconducting properties. EuBiS2F is a newly discovered member in the BiS2-based superconducting family, which shows superconductivity at 0.3 K without extrinsic doping. With 50 at.% Ce substitution for Eu, superconductivity is enhanced with Tc increased up to 2.2 K. However, the mechanisms for the Tc enhancement have not yet been elucidated. In this study, the Ce-doping effect on the self-electron-doped superconductor EuBiS2F was investigated by X-ray absorption spectroscopy (XAS). We have established a relationship between Ce-doping and the Tc enhancement in terms of Eu valence changes and nanoscale atomic displacements. The new finding sheds light on the interplay among superconductivity, charge and local structure in BiS2-based superconductors.

  20. Role of valence changes and nanoscale atomic displacements in BiS2-based superconductors

    Science.gov (United States)

    Cheng, Jie; Zhai, Huifei; Wang, Yu; Xu, Wei; Liu, Shengli; Cao, Guanghan

    2016-11-01

    Superconductivity within layered crystal structures has attracted sustained interest among condensed matter community, primarily due to their exotic superconducting properties. EuBiS2F is a newly discovered member in the BiS2-based superconducting family, which shows superconductivity at 0.3 K without extrinsic doping. With 50 at.% Ce substitution for Eu, superconductivity is enhanced with Tc increased up to 2.2 K. However, the mechanisms for the Tc enhancement have not yet been elucidated. In this study, the Ce-doping effect on the self-electron-doped superconductor EuBiS2F was investigated by X-ray absorption spectroscopy (XAS). We have established a relationship between Ce-doping and the Tc enhancement in terms of Eu valence changes and nanoscale atomic displacements. The new finding sheds light on the interplay among superconductivity, charge and local structure in BiS2-based superconductors.

  1. Optical dipole mirror for cold atoms based on a metallic diffraction grating

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Bartoszek-Bober, Dobroslawa; Panas, Roman

    2014-01-01

    and numerically determined mirror efficiencies are close to 100%. The intensity of SPPs above a real grating coupler and the atomic trajectories, as well as the momentum dispersion of the atom cloud being reflected, are computed. A suggestion is given as to how the plasmonic mirror might serve as an optical atom...

  2. Recent developments in trapping and manipulation of atoms with adiabatic potentials

    Science.gov (United States)

    Garraway, Barry M.; Perrin, Hélène

    2016-09-01

    A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

  3. Ground-based Investigations of Atomic Oxygen Erosion Behaviors of Silver and Ion-implanted Silver

    Institute of Scientific and Technical Information of China (English)

    DUO Shu-wang; LI Mei-shuan; YIN Xiao-hui; LI Wen-kui; LI Ming-sheng

    2006-01-01

    Silver foils and ion-implanted silver foils exposed to atomic oxygen (AO) generated in a ground simulation facility were investigated by the quartz crystal microbalance (QCM), the scanning electron microscopy (SEM) and the X-ray photoelectron spectroscopy (XPS). The experimental results show the presence of Ag2O and AgO in an oxidation process of the silver foil having exposure to AO. As soon as silver comes under the bombardment of atomic oxygen, the oxidation process starts with a thick film forming on the silver surface. Because of the development of stresses, the oxide layer gets cracked and spalled, which leads to appearance of a new silver surface intensifying further oxidation. At last, AgO begins to form on the outer surface of the oxide film. The analytical results of the XPS and the AES attest to formation of a continuous high-quality protective oxide-based layer on the surface of ion-implanted silver films after exposure to AO. This layer can well protect materials in question from erosion.

  4. Noncancer mortality based on the Hiroshima Atomic Bomb survivors registry over 30 years, 1968-1997

    Energy Technology Data Exchange (ETDEWEB)

    Kasagi, Keiko [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine

    2002-04-01

    The relation of radiation exposure with noncancer mortality was examined on 44,514 atomic bomb survivors (17,935 males, 26,579 females, and mean age 22.8{+-}15.7 yrs at the time of bombing) registered at Research Institute for Radiation Biology and Medicine, Hiroshima University, based on mortality follow-up over 30 years, 1968-1997. Noncancer mortality was significantly related to radiation dose with relative risk of 1.06 at 1 Sv radiation dose, although weaker than the dose response in solid cancer mortality. The significant dose responses were observed especially in circulatory disease, stroke and urinary organ disease, and suggestive dose response in pneumonia. The temporal pattern in dose response by age at the time of bombing indicated that the relative risk of noncancer mortality was higher with follow-up period, which is contrary to a decreasing dose response in solid cancer mortality with follow-up period. The tendency was remarkable in those survivors younger at the time of bombing. These findings suggest that the significant radiation risk observed in noncancer mortality might increase as the proportion of younger survivors among atomic bomb survivors increases. (author)

  5. Atom probe tomography of Ni-base superalloys Allvac 718Plus and Alloy 718.

    Science.gov (United States)

    Viskari, L; Stiller, K

    2011-05-01

    Atom probe tomography (APT) allows near atomic scale compositional- and morphological studies of, e.g. matrix, precipitates and interfaces in a wide range of materials. In this work two Ni-base superalloys with similar compositions, Alloy 718 and its derivative Allvac 718Plus, are subject for investigation with special emphasis on the latter alloy. The structural and chemical nuances of these alloys are important for their properties. Of special interest are grain boundaries as their structure and chemistry are important for the materials' ability to resist rapid environmentally induced crack propagation. APT has proved to be suitable for analyses of these types of alloys using voltage pulsed APT. However, for investigations of specimens containing grain boundaries and other interfaces the risk for early specimen fracture is high. Analyses using laser pulsing impose lower electrical field on the specimen thereby significantly increasing the success rate of investigations. Here, the effect of laser pulsing was studied and the derived appropriate acquisition parameters were then applied for microstructural studies, from which initial results are shown. Furthermore, the influence of the higher evaporation field experienced by the hardening γ' Ni(3)(Al,Nb) precipitates on the obtained results is discussed.

  6. Determination of selenium in human spermatozoa and prostasomes using base digestion and electrothermal atomic absorption spectrophotometry.

    Science.gov (United States)

    Suistomaa, U; Saaranen, M; Vanha-Perttula, T

    1987-10-15

    A method for the determination of selenium in human spermatozoa and prostasomes is described. The samples were digested with 25% (w/v) tetramethylammonium hydroxide (TMAH) in methanol and analyzed by atomic absorption spectrometry with electrothermal atomization and Zeeman background correction (ET-AAS). Nickel was used as a matrix modifier. Calibration was performed using the matrix-based calibration curve. The TMAH-digestion method agreed well with a conventional digestion procedure using concentrated nitric acid. The TMAH-digestion does not require heating or strong acids and it was suitable for small biological samples. The average recovery of added selenium in spermatozoan digests was 95.1 +/- 5.2% (n = 5). The coefficient of variation was 9.1% (n = 21). The accuracy of the method tested with the NBS standard 1577 (bovine liver, certified at 1.1 +/- 0.1 micrograms Se/g) resulted in a value of 0.98 +/- 0.10 micrograms Se/g (n = 16). The method was further tested in an interlaboratory comparison study.

  7. Paper-Based Analytical Biosensor Chip Designed from Graphene-Nanoplatelet-Amphiphilic-diblock-co-Polymer Composite for Cortisol Detection in Human Saliva.

    Science.gov (United States)

    Khan, Muhammad S; Misra, Santosh K; Wang, Zhen; Daza, Enrique; Schwartz-Duval, Aaron S; Kus, Joseph M; Pan, Debanjan; Pan, Dipanjan

    2017-02-07

    Cortisol has been identified as a biomarker in saliva to monitor psychological stress. In this work, we report a label-free paper-based electrical biosensor chip to quantify salivary cortisol at a point-of-care (POC) level. A high specificity of the sensor chip to detect cortisol with a detection limit of 3 pg/mL was achieved by conjugating anticortisol antibody (anti-CAB) on top of gold (Au) microelectrodes using 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester (DTSP) as a self-assembled monolayer (SAM) agent. The electrode design utilized poly(styrene)-block-poly(acrylic acid) (PS67-b-PAA27) polymer and graphene nanoplatelets (GP) suspension coated on filter paper to increase the sensitivity of the immune response. A biosensor chip was then integrated with a lab-built low-cost miniaturized printed circuit board (PCB) to provide an electrical connection and to wirelessly transmit/receive electrical signals using MATLAB. This fully integrated proposed hand-held device successfully exhibited a wide cortisol-detection range from 3 pg/mL to 10 μg/mL, with a sensitivity of 50 Ω (pg mL(-1))(-1). The performance of the proposed cortisol sensor chip was validated using an enzyme-linked immunosorbent assay (ELISA) technique with a regression value of 0.9951. The advantages of the newly developed cortisol immune biosensor over previously reported chips include an improved limit of detection, no need for additional redox medium for electron exchange, faster response to achieve stable data, excellent shelf life, and its economical production.

  8. SU-E-T-108: Development of a Novel Clinical Neutron Dose Monitor for Proton Therapy Based On Twin TLD500 Chips in a Small PE Moderator

    Energy Technology Data Exchange (ETDEWEB)

    Hentschel, R; Mukherjee, B [Westdeutsches Protonentherapiezentrum Essen (WPE)gGmbH, Essen (Germany)

    2014-06-01

    Purpose: In proton therapy, it could be desirable to measure out-of-field fast neutron doses at critical locations near and outside the patient body. Methods: The working principle of a novel clinical neutron dose monitor is verified by MCNPX simulation. The device is based on a small PE moderator of just 5.5cm side length for easy handling covered with a thermal neutron suppression layer. In the simulation, a polystyrene phantom is bombarded with a standard proton beam. The secondary thermal neutron flux produced inside the moderator by the impinging fast neutrons from the treatment volume is estimated by pairs of α-Al2O3:C (TLD500) chips which are evaluated offline after the treatment either by TL or OSL methods. The first chip is wrapped with 0.5mm natural Gadolinium foil converting the thermal neutrons to gammas via (n,γ) reaction. The second chip is wrapped with a dummy material. The chip centers have a distance of 2cm from each other. Results: The simulation shows that the difference of gamma doses in the TLD500 chips is correlated to the mean fast neutron dose delivered to the moderator material. Different outer shielding materials have been studied. 0.5mm Cadmium shielding is preferred for cost reasons and convenience. Replacement of PE moderator material by other materials like lead or iron at any place is unfavorable. The spatial orientation of the moderator cube is uncritical. Using variance reduction techniques like splitting/Russian roulette, the TLD500 gamma dose simulation give positive differences up to distances of 0.5m from the treatment volume. Conclusion: Applicability and basic layout of a novel clinical neutron dose monitor are demonstrated. The monitor measures PE neutron doses at locations outside the patient body up to distances of 0.5m from the treatment volume. Tissue neutron doses may be calculated using neutron kerma factors.

  9. Chip-based in situ hybridization for identification of bacteria from the human microbiome.

    Energy Technology Data Exchange (ETDEWEB)

    Light, Yooli Kim; Meagher, Robert J.; Singh, Anup K.; Liu, Peng

    2010-11-01

    The emerging field of metagenomics seeks to assess the genetic diversity of complex mixed populations of bacteria, such as those found at different sites within the human body. A single person's mouth typically harbors up to 100 bacterial species, while surveys of many people have found more than 700 different species, of which {approx}50% have never been cultivated. In typical metagenomics studies, the cells themselves are destroyed in the process of gathering sequence information, and thus the connection between genotype and phenotype is lost. A great deal of sequence information may be generated, but it is impossible to assign any given sequence to a specific cell. We seek non-destructive, culture-independent means of gathering sequence information from selected individual cells from mixed populations. As a first step, we have developed a microfluidic device for concentrating and specifically labeling bacteria from a mixed population. Bacteria are electrophoretically concentrated against a photopolymerized membrane element, and then incubated with a specific fluorescent label, which can include antibodies as well as specific or non-specific nucleic acid stains. Unbound stain is washed away, and the labeled bacteria are released from the membrane. The stained cells can then be observed via epifluorescence microscopy, or counted via flow cytometry. We have tested our device with three representative bacteria from the human microbiome: E. coli (gut, Gram-negative), Lactobacillus acidophilus (mouth, Gram-positive), and Streptococcus mutans (mouth, Gram-positive), with results comparable to off-chip labeling techniques.

  10. Microfluidic chip-based silver nanoparticles aptasensor for colorimetric detection of thrombin.

    Science.gov (United States)

    Zhao, Yaju; Liu, Xiaohui; Li, Jie; Qiang, Weibing; Sun, Liang; Li, Hui; Xu, Danke

    2016-04-01

    In this paper, a colorimetric silver nanoparticles aptasensor (aptamer-AgNPs) was developed for simple and straightforward detection of protein in microfluidic chip. Surface-functionalized microfluidic channels were employed as the capture platform. Then the mixture of target protein and aptamer-AgNPs were injected into the microfluidic channels for colorimetric detection. To demonstrate the performance of this detection platform, thrombin was chosen as a model target protein. Introduction of thrombin could form a sandwich-type complex involving immobilized AgNPs. The amount of aptamer-AgNPs on the complex augmented along with the increase of the thrombin concentration causing different color change that can be analyzed both by naked eyes and a flatbed scanner. This method is featured with low sample consumption, simple processes of microfluidic platform and straightforward colorimetric detection with aptamer-AgNPs. Thrombin at concentrations as low as 20pM can be detected using this aptasensor without signal amplification. This work demonstrated that it had good selectivity over other proteins and it could be a useful strategy to detect other targets with two affinity binding sites for ligands as well.

  11. Chip-integrated plasmonic Schottky photodetection based on hybrid silicon waveguides

    Science.gov (United States)

    Lu, Hua; Gu, Min

    2017-03-01

    We numerically and theoretically investigate the plasmonic Schottky photodetection in a novel hybrid silicon-on-insulator waveguide system, which consists of the silicon waveguides and detection area with the metal stripes and doped silicon film on the silicon dioxide substrate. The results illustrate that the fundamental TE mode in the silicon waveguide can be effectively coupled into the metal/silicon waveguide with the excitation of surface plasmon polaritons (SPPs). The coupling is suppressed for the TM mode due to the mismatch between the electric field distributions of the TM and SPP modes. It is found that the coupling efficiency from the TE to SPP mode is dependent on the width and height of the silicon waveguide and can significantly approach 36.1%. The ultracompact configuration yields a high responsivity of 21.7 mA/W and low dark current of 0.45 μA for the photodetection at the communication wavelength. The plasmonic Schottky photodetector could find favorable applications in the chip-integrated optical interconnects and signal processing.

  12. Energy Efficient On-Chip Communications Implementation Based on Power Slacks

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yu Xia; Wen-Ming Pan; Jia-Chong Kan

    2014-01-01

    ¾The quest for energy efficiency has growing importance in high performance many-core systems. However, in current practices, the power slacks, which are the differences observed between the input power budget and the actual power consumed in the many-core systems, are typically ignored, thus leading to poor energy efficiency. In this paper, we propose a scheme to effectively power the on-chip communications by exploiting the available power slack that is totally wasted in current many-core systems. As so, the demand for extra energy from external power sources (e.g., batteries) is minimized, which helps improve the overall energy efficiency. In essence, the power slack is stored at each node and the proposed routing algorithm uses a dynamic programming network to find the globally optimal path, along which the total energy stored on the nodes is the maximum. Experimental results have confirmed that the proposed scheme, with low hardware overhead, can reduce latency and extra energy consumption by 44% and 48%, respectively, compared with the two competing routing methods.

  13. The System Power Control Unit Based on the On-Chip Wireless Communication System

    Directory of Open Access Journals (Sweden)

    Tiefeng Li

    2013-01-01

    Full Text Available Currently, the on-chip wireless communication system (OWCS includes 2nd-generation (2G, 3rd-generation (3G, and long-term evolution (LTE communication subsystems. To improve the power consumption of OWCS, a typical architecture design of system power control unit (SPCU is given in this paper, which can not only make a 2G, a 3G, and an LTE subsystems enter sleep mode, but it can also wake them up from sleep mode via the interrupt. During the sleep mode period, either the real-time sleep timer or the global system for mobile (GSM communication sleep timer can be used individually to arouse the corresponding subsystem. Compared to previous sole voltage supplies on the OWCS, a 2G, a 3G, or an LTE subsystem can be independently configured with three different voltages and frequencies in normal work mode. In the meantime, the voltage supply monitor, which is an important part in the SPCU, can significantly guard the voltage of OWCS in real time. Finally, the SPCU may implement dynamic voltage and frequency scaling (DVFS for a 2G, a 3G, or an LTE subsystem, which is automatically accomplished by the hardware.

  14. The system power control unit based on the on-chip wireless communication system.

    Science.gov (United States)

    Li, Tiefeng; Ma, Caiwen; Li, WenHua

    2013-01-01

    Currently, the on-chip wireless communication system (OWCS) includes 2nd-generation (2G), 3rd-generation (3G), and long-term evolution (LTE) communication subsystems. To improve the power consumption of OWCS, a typical architecture design of system power control unit (SPCU) is given in this paper, which can not only make a 2G, a 3G, and an LTE subsystems enter sleep mode, but it can also wake them up from sleep mode via the interrupt. During the sleep mode period, either the real-time sleep timer or the global system for mobile (GSM) communication sleep timer can be used individually to arouse the corresponding subsystem. Compared to previous sole voltage supplies on the OWCS, a 2G, a 3G, or an LTE subsystem can be independently configured with three different voltages and frequencies in normal work mode. In the meantime, the voltage supply monitor, which is an important part in the SPCU, can significantly guard the voltage of OWCS in real time. Finally, the SPCU may implement dynamic voltage and frequency scaling (DVFS) for a 2G, a 3G, or an LTE subsystem, which is automatically accomplished by the hardware.

  15. The System Power Control Unit Based on the On-Chip Wireless Communication System

    Science.gov (United States)

    Li, Tiefeng; Ma, Caiwen; Li, WenHua

    2013-01-01

    Currently, the on-chip wireless communication system (OWCS) includes 2nd-generation (2G), 3rd-generation (3G), and long-term evolution (LTE) communication subsystems. To improve the power consumption of OWCS, a typical architecture design of system power control unit (SPCU) is given in this paper, which can not only make a 2G, a 3G, and an LTE subsystems enter sleep mode, but it can also wake them up from sleep mode via the interrupt. During the sleep mode period, either the real-time sleep timer or the global system for mobile (GSM) communication sleep timer can be used individually to arouse the corresponding subsystem. Compared to previous sole voltage supplies on the OWCS, a 2G, a 3G, or an LTE subsystem can be independently configured with three different voltages and frequencies in normal work mode. In the meantime, the voltage supply monitor, which is an important part in the SPCU, can significantly guard the voltage of OWCS in real time. Finally, the SPCU may implement dynamic voltage and frequency scaling (DVFS) for a 2G, a 3G, or an LTE subsystem, which is automatically accomplished by the hardware. PMID:23818835

  16. The study on the atomic force microscopy base nanoscale electrical discharge machining.

    Science.gov (United States)

    Huang, Jen-Ching; Chen, Chung-Ming

    2012-01-01

    This study proposes an innovative atomic force microscopy (AFM) based nanoscale electrical discharge machining (AFM-based nanoEDM) system which combines an AFM with a self-produced metallic probe and a high-voltage generator to create an atmospheric environment AFM-based nanoEDM system and a deionized water (DI water) environment AFM-based nanoEDM system. This study combines wire-cut processing and electrochemical tip sharpening techniques on a 40-µm thick stainless steel sheet to produce a high conductive AFM probes, the production can withstand high voltage and large current. The tip radius of these probes is approximately 40 nm. A probe test was executed on the AFM using probes to obtain nanoscales morphology of Si wafer surface. The silicon wafer was as a specimen to carry out AFM-base nanoEDM process in atmospheric and DI water environments by AFM-based nanoEDM system. After experiments, the results show that the atmospheric and DI water environment AFM-based nanoEDM systems operate smoothly. From experimental results, it can be found that the electric discharge depth of the silicon wafer at atmospheric environments is a mere 14.54 nm. In a DI water environment, the depth of electric discharge of the silicon wafer can reach 25.4 nm. This indicates that the EDM ability of DI water environment AFM-based nanoEDM system is higher than that of atmospheric environment AFM-based nanoEDM system. After multiple nanoEDM process, the tips become blunt. After applying electrochemical tip sharpening techniques, the tip radius can return to approximately 40 nm. Therefore, AFM probes produced in this study can be reused.

  17. Development of a photosensitive, high-throughput chip-based superoxide dismutase (SOD) assay to explore the radioprotective activity of herbal plants.

    Science.gov (United States)

    Naoghare, Pravin K; Kwon, Ho Taik; Song, Joon Myong

    2009-08-15

    Appropriate pharmacological interventions and modalities are needed to protect humans against the deleterious effects of ionizing radiation. We disclose a rapid chip-based approach to elucidate the radioprotective/antioxidant potential of herbal plants using a photodiode array (PDA) microchip system. Red light absorption property of nitroblue tetrazolium (NBT) formazan was applied to chip-based superoxide dismutase (SOD) activity measurements of six herbal plant extracts in a high-throughput manner. SOD activities obtained via gel-based assays were in line with the data obtained through the chip-based assay and hence validated our approach. Compared to amifostine, all the tested herbal plant extracts, except apricot kernel, demonstrated greater radioprotective properties. Among the tested herbal extracts, pueraria root showed the highest antioxidant/radioprotective activity and can be considered a preferred radioprotector candidate. Low standard deviations and high statistical confidence obtained during the assay prove the sensitivity and consistency of this approach. The developed approach has several advantages (simplicity, rapidness and portability) over existing methods and can be applied to high-throughput screening of the radioprotective properties of various unexplored plants species.

  18. Atomic Scale Plasmonic Switch.

    Science.gov (United States)

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level.

  19. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning.

    Science.gov (United States)

    Kim, Uksu; Morita, Noboru; Lee, Deug; Jun, Martin; Park, Jeong Woo

    2017-03-27

    Pulse electrochemical nanopatterning (PECN), a non-contact scanning probe lithography (NC-SPL) process using ultrashort voltage pulses, is based primarily on an electrochemical machining (ECM) process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.

  20. Quantum repeaters based on deterministic storage of a single photon in distant atomic ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Aghamalyan, D. [Institute for Physical Research, Armenian National Academy of Sciences, Ashtarak-2 0203 (Armenia); Malakyan, Yu. [Institute for Physical Research, Armenian National Academy of Sciences, Ashtarak-2 0203 (Armenia); Centre of Strong Field Physics, Yerevan State University, 1 A. Manukian Street, Yerevan 0025 (Armenia)

    2011-10-15

    Quantum repeaters hold the promise to prevent the photon losses in communication channels. Most recently, the serious efforts have been applied to achieve scalable distribution of entanglement over long distances. However, the probabilistic nature of entanglement generation and realistic quantum memory storage times make the implementation of quantum repeaters an outstanding experimental challenge. We propose a quantum repeater protocol based on the deterministic storage of a single photon in atomic ensembles confined in distant high-finesse cavities and show that this system is capable of distributing the entanglement over long distances with a much higher rate as compared to previous protocols, thereby alleviating the limitations on the quantum memory lifetime by several orders of magnitude. Our scheme is robust with respect to phase fluctuations in the quantum channel, while the fidelity imperfection is fixed and negligibly small at each step of entanglement swapping.