WorldWideScience

Sample records for atmospherically correct awifs

  1. Assessment of different topographic corrections in AWiFS satellite ...

    Indian Academy of Sciences (India)

    Snow and Avalanche Study Establishment, Defence Research and Development Organisation,. Chandigarh 160 ... IRS P6 satellite images and the qualitative and quantitative comparative analysis in detail. Both .... Top: AWiFS satellite image of Western Himalaya and bottom: zoom image of the study area shown with white.

  2. Atmospheric correction of satellite data

    Science.gov (United States)

    Shmirko, Konstantin; Bobrikov, Alexey; Pavlov, Andrey

    2015-11-01

    Atmosphere responses for more than 90% of all radiation measured by satellite. Due to this, atmospheric correction plays an important role in separating water leaving radiance from the signal, evaluating concentration of various water pigments (chlorophyll-A, DOM, CDOM, etc). The elimination of atmospheric intrinsic radiance from remote sensing signal referred to as atmospheric correction.

  3. Atmospheric correction of APEX hyperspectral data

    Directory of Open Access Journals (Sweden)

    Sterckx Sindy

    2016-03-01

    Full Text Available Atmospheric correction plays a crucial role among the processing steps applied to remotely sensed hyperspectral data. Atmospheric correction comprises a group of procedures needed to remove atmospheric effects from observed spectra, i.e. the transformation from at-sensor radiances to at-surface radiances or reflectances. In this paper we present the different steps in the atmospheric correction process for APEX hyperspectral data as applied by the Central Data Processing Center (CDPC at the Flemish Institute for Technological Research (VITO, Mol, Belgium. The MODerate resolution atmospheric TRANsmission program (MODTRAN is used to determine the source of radiation and for applying the actual atmospheric correction. As part of the overall correction process, supporting algorithms are provided in order to derive MODTRAN configuration parameters and to account for specific effects, e.g. correction for adjacency effects, haze and shadow correction, and topographic BRDF correction. The methods and theory underlying these corrections and an example of an application are presented.

  4. Monitoring the long term stability of the IRS-P6 AWiFS sensor using the Sonoran and RVPN sites

    Science.gov (United States)

    Chander, Gyanesh; Sampath, Aparajithan; Angal, Amit; Choi, Taeyoung; Xiong, Xiaoxiong

    2010-10-01

    This paper focuses on radiometric and geometric assessment of the Indian Remote Sensing (IRS-P6) Advanced Wide Field Sensor (AWiFS) sensor using the Sonoran desert and Railroad Valley Playa, Nevada (RVPN) ground sites. Imageto- Image (I2I) accuracy and relative band-to-band (B2B) accuracy were measured. I2I accuracy of the AWiFS imagery was assessed by measuring the imagery against Landsat Global Land Survey (GLS) 2000. The AWiFS images were typically registered to within one pixel to the GLS 2000 mosaic images. The B2B process used the same concepts as the I2I, except instead of a reference image and a search image; the individual bands of a multispectral image are tested against each other. The B2B results showed that all the AWiFS multispectral bands are registered to sub-pixel accuracy. Using the limited amount of scenes available over these ground sites, the reflective bands of AWiFS sensor indicate a long-term drift in the top-of-atmosphere (TOA) reflectance. Because of the limited availability of AWiFS scenes over these ground sites, a comprehensive evaluation of the radiometric stability using these sites is not possible. In order to overcome this limitation, a cross-comparison between AWiFS and Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) was performed using image statistics based on large common areas observed by the sensors within 30 minutes. Regression curves and coefficients of determination for the TOA trends from these sensors were generated to quantify the uncertainty in these relationships and to provide an assessment of the calibration differences between these sensors.

  5. Atmospheric monitoring in MAGIC and data corrections

    Directory of Open Access Journals (Sweden)

    Fruck Christian

    2015-01-01

    Full Text Available A method for analyzing returns of a custom-made “micro”-LIDAR system, operated alongside the two MAGIC telescopes is presented. This method allows for calculating the transmission through the atmospheric boundary layer as well as thin cloud layers. This is achieved by applying exponential fits to regions of the back-scattering signal that are dominated by Rayleigh scattering. Making this real-time transmission information available for the MAGIC data stream allows to apply atmospheric corrections later on in the analysis. Such corrections allow for extending the effective observation time of MAGIC by including data taken under adverse atmospheric conditions. In the future they will help reducing the systematic uncertainties of energy and flux.

  6. Atmospheric Correction Inter-Comparison Exercise

    Directory of Open Access Journals (Sweden)

    Georgia Doxani

    2018-02-01

    Full Text Available The Atmospheric Correction Inter-comparison eXercise (ACIX is an international initiative with the aim to analyse the Surface Reflectance (SR products of various state-of-the-art atmospheric correction (AC processors. The Aerosol Optical Thickness (AOT and Water Vapour (WV are also examined in ACIX as additional outputs of AC processing. In this paper, the general ACIX framework is discussed; special mention is made of the motivation to initiate the experiment, the inter-comparison protocol, and the principal results. ACIX is free and open and every developer was welcome to participate. Eventually, 12 participants applied their approaches to various Landsat-8 and Sentinel-2 image datasets acquired over sites around the world. The current results diverge depending on the sensors, products, and sites, indicating their strengths and weaknesses. Indeed, this first implementation of processor inter-comparison was proven to be a good lesson for the developers to learn the advantages and limitations of their approaches. Various algorithm improvements are expected, if not already implemented, and the enhanced performances are yet to be assessed in future ACIX experiments.

  7. Atmospheric scattering corrections to solar radiometry

    International Nuclear Information System (INIS)

    Box, M.A.; Deepak, A.

    1979-01-01

    Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. In this paper we shall discuss the correction factors needed to account for the diffuse (i.e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle 0 ) and relatively clear skies (optical depths <0.4), it is shown that the total diffuse contributions represents approximately l% of the total intensity. It is assumed here that the main contributions to the diffuse radiation within the detector's view cone are due to single scattering by molecules and aerosols and multiple scattering by molecules alone, aerosol multiple scattering contributions being treated as negligibly small. The theory and the numerical results discussed in this paper will be helpful not only in making corrections to the measured optical depth data but also in designing improved solar radiometers

  8. Atmospheric Correction Inter-comparison Exercise (ACIX)

    Science.gov (United States)

    Vermote, E.; Doxani, G.; Gascon, F.; Roger, J. C.; Skakun, S.

    2017-12-01

    The free and open data access policy to Landsat-8 (L-8) and Sentinel-2 (S-2) satellite imagery has encouraged the development of atmospheric correction (AC) approaches for generating Bottom-of-Atmosphere (BOA) products. Several entities have started to generate (or plan to generate in the short term) BOA reflectance products at global scale for L-8 and S-2 missions. To this end, the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) have initiated an exercise on the inter-comparison of the available AC processors. The results of the exercise are expected to point out the strengths and weaknesses, as well as communalities and discrepancies of various AC processors, in order to suggest and define ways for their further improvement. In particular, 11 atmospheric processors from five different countries participate in ACIX with the aim to inter-compare their performance when applied to L-8 and S-2 data. All the processors should be operational without requiring parametrization when applied on different areas. A protocol describing in details the inter-comparison metrics and the test dataset based on the AERONET sites has been agreed unanimously during the 1st ACIX workshop in June 2016. In particular, a basic and an advanced run of each of the processor were requested in the frame of ACIX, with the aim to draw robust and reliable conclusions on the processors' performance. The protocol also describes the comparison metrics of the aerosol optical thickness and water vapour products of the processors with the corresponding AERONET measurements. Moreover, concerning the surface reflectances, the inter-comparison among the processors is defined, as well as the comparison with the MODIS surface reflectance and with a reference surface reflectance product. Such a reference product will be obtained using the AERONET characterization of the aerosol (size distribution and refractive indices) and an accurate radiative transfer code. The inter

  9. Assessing atmospheric bias correction for dynamical consistency using potential vorticity

    International Nuclear Information System (INIS)

    Rocheta, Eytan; Sharma, Ashish; Evans, Jason P

    2014-01-01

    Correcting biases in atmospheric variables prior to impact studies or dynamical downscaling can lead to new biases as dynamical consistency between the ‘corrected’ fields is not maintained. Use of these bias corrected fields for subsequent impact studies and dynamical downscaling provides input conditions that do not appropriately represent intervariable relationships in atmospheric fields. Here we investigate the consequences of the lack of dynamical consistency in bias correction using a measure of model consistency—the potential vorticity (PV). This paper presents an assessment of the biases present in PV using two alternative correction techniques—an approach where bias correction is performed individually on each atmospheric variable, thereby ignoring the physical relationships that exists between the multiple variables that are corrected, and a second approach where bias correction is performed directly on the PV field, thereby keeping the system dynamically coherent throughout the correction process. In this paper we show that bias correcting variables independently results in increased errors above the tropopause in the mean and standard deviation of the PV field, which are improved when using the alternative proposed. Furthermore, patterns of spatial variability are improved over nearly all vertical levels when applying the alternative approach. Results point to a need for a dynamically consistent atmospheric bias correction technique which results in fields that can be used as dynamically consistent lateral boundaries in follow-up downscaling applications. (letter)

  10. Atmospheric Error Correction of the Laser Beam Ranging

    Directory of Open Access Journals (Sweden)

    J. Saydi

    2014-01-01

    Full Text Available Atmospheric models based on surface measurements of pressure, temperature, and relative humidity have been used to increase the laser ranging accuracy by ray tracing. Atmospheric refraction can cause significant errors in laser ranging systems. Through the present research, the atmospheric effects on the laser beam were investigated by using the principles of laser ranging. Atmospheric correction was calculated for 0.532, 1.3, and 10.6 micron wavelengths through the weather conditions of Tehran, Isfahan, and Bushehr in Iran since March 2012 to March 2013. Through the present research the atmospheric correction was computed for meteorological data in base of monthly mean. Of course, the meteorological data were received from meteorological stations in Tehran, Isfahan, and Bushehr. Atmospheric correction was calculated for 11, 100, and 200 kilometers laser beam propagations under 30°, 60°, and 90° rising angles for each propagation. The results of the study showed that in the same months and beam emission angles, the atmospheric correction was most accurate for 10.6 micron wavelength. The laser ranging error was decreased by increasing the laser emission angle. The atmospheric correction with two Marini-Murray and Mendes-Pavlis models for 0.532 nm was compared.

  11. Coastal Zone Color Scanner atmospheric correction - Influence of El Chichon

    Science.gov (United States)

    Gordon, Howard R.; Castano, Diego J.

    1988-01-01

    The addition of an El Chichon-like aerosol layer in the stratosphere is shown to have very little effect on the basic CZCS atmospheric correction algorithm. The additional stratospheric aerosol is found to increase the total radiance exiting the atmosphere, thereby increasing the probability that the sensor will saturate. It is suggested that in the absence of saturation the correction algorithm should perform as well as in the absence of the stratospheric layer.

  12. On the Atmospheric Correction of Antarctic Airborne Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Martin Black

    2014-05-01

    Full Text Available The first airborne hyperspectral campaign in the Antarctic Peninsula region was carried out by the British Antarctic Survey and partners in February 2011. This paper presents an insight into the applicability of currently available radiative transfer modelling and atmospheric correction techniques for processing airborne hyperspectral data in this unique coastal Antarctic environment. Results from the Atmospheric and Topographic Correction version 4 (ATCOR-4 package reveal absolute reflectance values somewhat in line with laboratory measured spectra, with Root Mean Square Error (RMSE values of 5% in the visible near infrared (0.4–1 µm and 8% in the shortwave infrared (1–2.5 µm. Residual noise remains present due to the absorption by atmospheric gases and aerosols, but certain parts of the spectrum match laboratory measured features very well. This study demonstrates that commercially available packages for carrying out atmospheric correction are capable of correcting airborne hyperspectral data in the challenging environment present in Antarctica. However, it is anticipated that future results from atmospheric correction could be improved by measuring in situ atmospheric data to generate atmospheric profiles and aerosol models, or with the use of multiple ground targets for calibration and validation.

  13. Synchronous atmospheric radiation correction of GF-2 satellite multispectral image

    Science.gov (United States)

    Bian, Fuqiang; Fan, Dongdong; Zhang, Yan; Wang, Dandan

    2018-02-01

    GF-2 remote sensing products have been widely used in many fields for its high-quality information, which provides technical support for the the macroeconomic decisions. Atmospheric correction is the necessary part in the data preprocessing of the quantitative high resolution remote sensing, which can eliminate the signal interference in the radiation path caused by atmospheric scattering and absorption, and reducting apparent reflectance into real reflectance of the surface targets. Aiming at the problem that current research lack of atmospheric date which are synchronization and region matching of the surface observation image, this research utilize the MODIS Level 1B synchronous data to simulate synchronized atmospheric condition, and write programs to implementation process of aerosol retrieval and atmospheric correction, then generate a lookup table of the remote sensing image based on the radioactive transfer model of 6S (second simulation of a satellite signal in the solar spectrum) to correct the atmospheric effect of multispectral image from GF-2 satellite PMS-1 payload. According to the correction results, this paper analyzes the pixel histogram of the reflectance spectrum of the 4 spectral bands of PMS-1, and evaluates the correction results of different spectral bands. Then conducted a comparison experiment on the same GF-2 image based on the QUAC. According to the different targets respectively statistics the average value of NDVI, implement a comparative study of NDVI from two different results. The degree of influence was discussed by whether to adopt synchronous atmospheric date. The study shows that the result of the synchronous atmospheric parameters have significantly improved the quantitative application of the GF-2 remote sensing data.

  14. High-speed atmospheric correction for spectral image processing

    Science.gov (United States)

    Perkins, Timothy; Adler-Golden, Steven; Cappelaere, Patrice; Mandl, Daniel

    2012-06-01

    Land and ocean data product generation from visible-through-shortwave-infrared multispectral and hyperspectral imagery requires atmospheric correction or compensation, that is, the removal of atmospheric absorption and scattering effects that contaminate the measured spectra. We have recently developed a prototype software system for automated, low-latency, high-accuracy atmospheric correction based on a C++-language version of the Spectral Sciences, Inc. FLAASH™ code. In this system, pre-calculated look-up tables replace on-the-fly MODTRAN® radiative transfer calculations, while the portable C++ code enables parallel processing on multicore/multiprocessor computer systems. The initial software has been installed on the Sensor Web at NASA Goddard Space Flight Center, where it is currently atmospherically correcting new data from the EO-1 Hyperion and ALI sensors. Computation time is around 10 s per data cube per processor. Further development will be conducted to implement the new atmospheric correction software on board the upcoming HyspIRI mission's Intelligent Payload Module, where it would generate data products in nearreal time for Direct Broadcast to the ground. The rapid turn-around of data products made possible by this software would benefit a broad range of applications in areas of emergency response, environmental monitoring and national defense.

  15. Cross-comparison of the IRS-P6 AWiFS sensor with the L5 TM, L7 ETM+, & Terra MODIS sensors

    Science.gov (United States)

    Chander, G.; Xiong, X.; Angal, A.; Choi, T.; Malla, R.

    2009-01-01

    As scientists and decision makers increasingly rely on multiple Earth-observing satellites to address urgent global issues, it is imperative that they can rely on the accuracy of Earth-observing data products. This paper focuses on the crosscomparison of the Indian Remote Sensing (IRS-P6) Advanced Wide Field Sensor (AWiFS) with the Landsat 5 (L5) Thematic Mapper (TM), Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+), and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The cross-comparison was performed using image statistics based on large common areas observed by the sensors within 30 minutes. Because of the limited availability of simultaneous observations between the AWiFS and the Landsat and MODIS sensors, only a few images were analyzed. These initial results are presented. Regression curves and coefficients of determination for the top-of-atmosphere (TOA) trends from these sensors were generated to quantify the uncertainty in these relationships and to provide an assessment of the calibration differences between these sensors. ?? 2009 SPIE.

  16. Applicability of Current Atmospheric Correction Techniques in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash; Ouhssain, Mustapha; Jones, Burton

    2016-01-01

    Much of the Red Sea is considered to be a typical oligotrophic sea having very low chlorophyll-a concentrations. Few existing studies describe the variability of phytoplankton biomass in the Red Sea. This study evaluates the resulting chlorophyll-a values computed with different chlorophyll algorithms (e.g., Chl_OCI, Chl_Carder, Chl_GSM, and Chl_GIOP) using radiances derived from two different atmospheric correction algorithms (NASA standard and Singh and Shanmugam (2014)). The resulting satellite derived chlorophyll-a concentrations are compared with in situ chlorophyll values measured using the High-Performance Liquid Chromatography (HPLC). Statistical analyses are used to assess the performances of algorithms using the in situ measurements obtain in the Red Sea, to evaluate the approach to atmospheric correction and algorithm parameterization.

  17. Applicability of Current Atmospheric Correction Techniques in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash

    2016-10-26

    Much of the Red Sea is considered to be a typical oligotrophic sea having very low chlorophyll-a concentrations. Few existing studies describe the variability of phytoplankton biomass in the Red Sea. This study evaluates the resulting chlorophyll-a values computed with different chlorophyll algorithms (e.g., Chl_OCI, Chl_Carder, Chl_GSM, and Chl_GIOP) using radiances derived from two different atmospheric correction algorithms (NASA standard and Singh and Shanmugam (2014)). The resulting satellite derived chlorophyll-a concentrations are compared with in situ chlorophyll values measured using the High-Performance Liquid Chromatography (HPLC). Statistical analyses are used to assess the performances of algorithms using the in situ measurements obtain in the Red Sea, to evaluate the approach to atmospheric correction and algorithm parameterization.

  18. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  19. Atmospheric correction over coastal waters using multilayer neural networks

    Science.gov (United States)

    Fan, Y.; Li, W.; Charles, G.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. H.

    2017-12-01

    Standard atmospheric correction (AC) algorithms work well in open ocean areas where the water inherent optical properties (IOPs) are correlated with pigmented particles. However, the IOPs of turbid coastal waters may independently vary with pigmented particles, suspended inorganic particles, and colored dissolved organic matter (CDOM). In turbid coastal waters standard AC algorithms often exhibit large inaccuracies that may lead to negative water-leaving radiances (Lw) or remote sensing reflectance (Rrs). We introduce a new atmospheric correction algorithm for coastal waters based on a multilayer neural network (MLNN) machine learning method. We use a coupled atmosphere-ocean radiative transfer model to simulate the Rayleigh-corrected radiance (Lrc) at the top of the atmosphere (TOA) and the Rrs just above the surface simultaneously, and train a MLNN to derive the aerosol optical depth (AOD) and Rrs directly from the TOA Lrc. The SeaDAS NIR algorithm, the SeaDAS NIR/SWIR algorithm, and the MODIS version of the Case 2 regional water - CoastColour (C2RCC) algorithm are included in the comparison with AERONET-OC measurements. The results show that the MLNN algorithm significantly improves retrieval of normalized Lw in blue bands (412 nm and 443 nm) and yields minor improvements in green and red bands. These results indicate that the MLNN algorithm is suitable for application in turbid coastal waters. Application of the MLNN algorithm to MODIS Aqua images in several coastal areas also shows that it is robust and resilient to contamination due to sunglint or adjacency effects of land and cloud edges. The MLNN algorithm is very fast once the neural network has been properly trained and is therefore suitable for operational use. A significant advantage of the MLNN algorithm is that it does not need SWIR bands, which implies significant cost reduction for dedicated OC missions. A recent effort has been made to extend the MLNN AC algorithm to extreme atmospheric conditions

  20. Multiangle Implementation of Atmospheric Correction (MAIAC): 2. Aerosol Algorithm

    Science.gov (United States)

    Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J. S.

    2011-01-01

    An aerosol component of a new multiangle implementation of atmospheric correction (MAIAC) algorithm is presented. MAIAC is a generic algorithm developed for the Moderate Resolution Imaging Spectroradiometer (MODIS), which performs aerosol retrievals and atmospheric correction over both dark vegetated surfaces and bright deserts based on a time series analysis and image-based processing. The MAIAC look-up tables explicitly include surface bidirectional reflectance. The aerosol algorithm derives the spectral regression coefficient (SRC) relating surface bidirectional reflectance in the blue (0.47 micron) and shortwave infrared (2.1 micron) bands; this quantity is prescribed in the MODIS operational Dark Target algorithm based on a parameterized formula. The MAIAC aerosol products include aerosol optical thickness and a fine-mode fraction at resolution of 1 km. This high resolution, required in many applications such as air quality, brings new information about aerosol sources and, potentially, their strength. AERONET validation shows that the MAIAC and MOD04 algorithms have similar accuracy over dark and vegetated surfaces and that MAIAC generally improves accuracy over brighter surfaces due to the SRC retrieval and explicit bidirectional reflectance factor characterization, as demonstrated for several U.S. West Coast AERONET sites. Due to its generic nature and developed angular correction, MAIAC performs aerosol retrievals over bright deserts, as demonstrated for the Solar Village Aerosol Robotic Network (AERONET) site in Saudi Arabia.

  1. Coastal Zone Color Scanner atmospheric correction algorithm - Multiple scattering effects

    Science.gov (United States)

    Gordon, Howard R.; Castano, Diego J.

    1987-01-01

    Errors due to multiple scattering which are expected to be encountered in application of the current Coastal Zone Color Scanner (CZCS) atmospheric correction algorithm are analyzed. The analysis is based on radiative transfer computations in model atmospheres, in which the aerosols and molecules are distributed vertically in an exponential manner, with most of the aerosol scattering located below the molecular scattering. A unique feature of the analysis is that it is carried out in scan coordinates rather than typical earth-sun coordinates, making it possible to determine the errors along typical CZCS scan lines. Information provided by the analysis makes it possible to judge the efficacy of the current algorithm with the current sensor and to estimate the impact of the algorithm-induced errors on a variety of applications.

  2. Precision Photometric Extinction Corrections from Direct Atmospheric Measurements

    Science.gov (United States)

    McGraw, John T.; Zimmer, P.; Linford, J.; Simon, T.; Measurement Astrophysics Research Group

    2009-01-01

    For decades astronomical extinction corrections have been accomplished using nightly mean extinction coefficients derived from Langley plots measured with the same telescope used for photometry. Because this technique results in lost time on program fields, observers only grudgingly made sporadic extinction measurements. Occasionally extinction corrections are not measured nightly but are made using tabulated mean monthly or even quarterly extinction coefficients. Any observer of the sky knows that Earth's atmosphere is an ever-changing fluid in which is embedded extinction sources ranging from Rayleigh (molecular) scattering to aerosol, smoke and dust scattering and absorption, to "just plain cloudy.” Our eyes also tell us that the type, direction and degree of extinction changes on time scales of minutes or less - typically shorter than many astronomical observations. Thus, we should expect that atmospheric extinction can change significantly during a single observation. Mean extinction coefficients might be well-defined nightly means, but those means have high variance because they do not accurately record the wavelength-, time-, and angle-dependent extinction actually affecting each observation. Our research group is implementing lidar measurements made in the direction of observation with one minute cadence, from which the absolute monochromatic extinction can be measured. Simultaneous spectrophotometry of nearby bright standard stars allows derivation and MODTRAN modeling atmospheric transmission as a function of wavelength for the atmosphere through which an observation is made. Application of this technique is demonstrated. Accurate real-time extinction measurements are an enabling factor for sub-1% photometry. This research is supported by NSF Grant 0421087 and AFRL Grant #FA9451-04-2-0355.

  3. Nearshore Water Quality Estimation Using Atmospherically Corrected AVIRIS Data

    Directory of Open Access Journals (Sweden)

    Sima Bagheri

    2011-02-01

    Full Text Available The objective of the research is to characterize the surface spectral reflectance of the nearshore waters using atmospheric correction code—Tafkaa for retrieval of the marine water constituent concentrations from hyperspectral data. The study area is the nearshore waters of New York/New Jersey considered as a valued ecological, economic and recreational resource within the New York metropolitan area. Comparison of the Airborne Visible Infrared Imaging Spectrometer (AVIRIS measured radiance and in situ reflectance measurement shows the effect of the solar source and atmosphere in the total upwelling spectral radiance measured by AVIRIS. Radiative transfer code, Tafkaa was applied to remove the effects of the atmosphere and to generate accurate reflectance (R(0 from the AVIRIS radiance for retrieving water quality parameters (i.e., total chlorophyll. Chlorophyll estimation as index of phytoplankton abundance was optimized using AVIRIS band ratio at 675 nm and 702 nm resulting in a coefficient of determination of R2 = 0.98. Use of the radiative transfer code in conjunction with bio optical model is the main tool for using ocean color remote sensing as an operational tool for monitoring of the key nearshore ecological communities of phytoplankton important in global change studies.

  4. Accounting for Chromatic Atmospheric Effects on Barycentric Corrections

    Energy Technology Data Exchange (ETDEWEB)

    Blackman, Ryan T.; Szymkowiak, Andrew E.; Fischer, Debra A.; Jurgenson, Colby A., E-mail: ryan.blackman@yale.edu [Department of Astronomy, Yale University, 52 Hillhouse Avenue, New Haven, CT 06511 (United States)

    2017-03-01

    Atmospheric effects on stellar radial velocity measurements for exoplanet discovery and characterization have not yet been fully investigated for extreme precision levels. We carry out calculations to determine the wavelength dependence of barycentric corrections across optical wavelengths, due to the ubiquitous variations in air mass during observations. We demonstrate that radial velocity errors of at least several cm s{sup −1} can be incurred if the wavelength dependence is not included in the photon-weighted barycentric corrections. A minimum of four wavelength channels across optical spectra (380–680 nm) are required to account for this effect at the 10 cm s{sup −1} level, with polynomial fits of the barycentric corrections applied to cover all wavelengths. Additional channels may be required in poor observing conditions or to avoid strong telluric absorption features. Furthermore, consistent flux sampling on the order of seconds throughout the observation is necessary to ensure that accurate photon weights are obtained. Finally, we describe how a multiple-channel exposure meter will be implemented in the EXtreme PREcision Spectrograph (EXPRES).

  5. Cross-sensor comparisons between Landsat 5 TM and IRS-P6 AWiFS and disturbance detection using integrated Landsat and AWiFS time-series images

    Science.gov (United States)

    Chen, Xuexia; Vogelmann, James E.; Chander, Gyanesh; Ji, Lei; Tolk, Brian; Huang, Chengquan; Rollins, Matthew

    2013-01-01

    Routine acquisition of Landsat 5 Thematic Mapper (TM) data was discontinued recently and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) has an ongoing problem with the scan line corrector (SLC), thereby creating spatial gaps when covering images obtained during the process. Since temporal and spatial discontinuities of Landsat data are now imminent, it is therefore important to investigate other potential satellite data that can be used to replace Landsat data. We thus cross-compared two near-simultaneous images obtained from Landsat 5 TM and the Indian Remote Sensing (IRS)-P6 Advanced Wide Field Sensor (AWiFS), both captured on 29 May 2007 over Los Angeles, CA. TM and AWiFS reflectances were compared for the green, red, near-infrared (NIR), and shortwave infrared (SWIR) bands, as well as the normalized difference vegetation index (NDVI) based on manually selected polygons in homogeneous areas. All R2 values of linear regressions were found to be higher than 0.99. The temporally invariant cluster (TIC) method was used to calculate the NDVI correlation between the TM and AWiFS images. The NDVI regression line derived from selected polygons passed through several invariant cluster centres of the TIC density maps and demonstrated that both the scene-dependent polygon regression method and TIC method can generate accurate radiometric normalization. A scene-independent normalization method was also used to normalize the AWiFS data. Image agreement assessment demonstrated that the scene-dependent normalization using homogeneous polygons provided slightly higher accuracy values than those obtained by the scene-independent method. Finally, the non-normalized and relatively normalized ‘Landsat-like’ AWiFS 2007 images were integrated into 1984 to 2010 Landsat time-series stacks (LTSS) for disturbance detection using the Vegetation Change Tracker (VCT) model. Both scene-dependent and scene-independent normalized AWiFS data sets could generate disturbance maps similar to

  6. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2012-10-01

    CAU 104 comprises the following corrective action sites (CASs): • 07-23-03, Atmospheric Test Site T-7C • 07-23-04, Atmospheric Test Site T7-1 • 07-23-05, Atmospheric Test Site • 07-23-06, Atmospheric Test Site T7-5a • 07-23-07, Atmospheric Test Site - Dog (T-S) • 07-23-08, Atmospheric Test Site - Baker (T-S) • 07-23-09, Atmospheric Test Site - Charlie (T-S) • 07-23-10, Atmospheric Test Site - Dixie • 07-23-11, Atmospheric Test Site - Dixie • 07-23-12, Atmospheric Test Site - Charlie (Bus) • 07-23-13, Atmospheric Test Site - Baker (Buster) • 07-23-14, Atmospheric Test Site - Ruth • 07-23-15, Atmospheric Test Site T7-4 • 07-23-16, Atmospheric Test Site B7-b • 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.

  7. Improved PPP Ambiguity Resolution Considering the Stochastic Characteristics of Atmospheric Corrections from Regional Networks

    Science.gov (United States)

    Li, Yihe; Li, Bofeng; Gao, Yang

    2015-01-01

    With the increased availability of regional reference networks, Precise Point Positioning (PPP) can achieve fast ambiguity resolution (AR) and precise positioning by assimilating the satellite fractional cycle biases (FCBs) and atmospheric corrections derived from these networks. In such processing, the atmospheric corrections are usually treated as deterministic quantities. This is however unrealistic since the estimated atmospheric corrections obtained from the network data are random and furthermore the interpolated corrections diverge from the realistic corrections. This paper is dedicated to the stochastic modelling of atmospheric corrections and analyzing their effects on the PPP AR efficiency. The random errors of the interpolated corrections are processed as two components: one is from the random errors of estimated corrections at reference stations, while the other arises from the atmospheric delay discrepancies between reference stations and users. The interpolated atmospheric corrections are then applied by users as pseudo-observations with the estimated stochastic model. Two data sets are processed to assess the performance of interpolated corrections with the estimated stochastic models. The results show that when the stochastic characteristics of interpolated corrections are properly taken into account, the successful fix rate reaches 93.3% within 5 min for a medium inter-station distance network and 80.6% within 10 min for a long inter-station distance network. PMID:26633400

  8. Atmospheric correction of Earth-observation remote sensing images

    Indian Academy of Sciences (India)

    In earth observation, the atmospheric particles contaminate severely, through absorption and scattering, the reflected electromagnetic signal from the earth surface. It will be greatly beneficial for land surface characterization if we can remove these atmospheric effects from imagery and retrieve surface reflectance that ...

  9. Atmospheric correction of Earth-observation remote sensing images ...

    Indian Academy of Sciences (India)

    The physics underlying the problem of solar radiation propagations that takes into account ... SART code (Spherical Atmosphere Radiation. Transfer) ... The use of Monte Carlo sampling ..... length because this soil is formed by clay and sand.

  10. Corrections to the Predicitions for Atmospheric Neutrino Observations

    OpenAIRE

    Poirier, J.

    2000-01-01

    The theoretical Monte Carlo calculations of the production of neutrinos via cosmic rays incident upon the earth's atmosphere are examined. The calculations are sensitive to the assumed ratio of pi+ / pi- production cross sections; this ratio appears to be underestimated in the theory relative to the experimentally measured ratio. Since the neutrino detection cross section is three times larger than that for the antineutrino, the theoretical predicted detection ratio (nu_mu / nu_e) is correspo...

  11. ATMOSPHERIC PHASE DELAY CORRECTION OF D-INSAR BASED ON SENTINEL-1A

    Directory of Open Access Journals (Sweden)

    X. Li

    2018-04-01

    Full Text Available In this paper, we used the Generic Atmospheric Correction Online Service for InSAR (GACOS tropospheric delay maps to correct the atmospheric phase delay of the differential interferometric synthetic aperture radar (D-InSAR monitoring, and we improved the accuracy of subsidence monitoring using D-InSAR technology. Atmospheric phase delay, as one of the most important errors that limit the monitoring accuracy of InSAR, would lead to the masking of true phase in subsidence monitoring. For the problem, this paper used the Sentinel-1A images and the tropospheric delay maps got from GACOS to monitor the subsidence of the Yellow River Delta in Shandong Province. The conventional D-InSAR processing was performed using the GAMMA software. The MATLAB codes were used to correct the atmospheric delay of the D-InSAR results. The results before and after the atmospheric phase delay correction were verified and analyzed in the main subsidence area. The experimental results show that atmospheric phase influences the deformation results to a certain extent. After the correction, the measurement error of vertical deformation is reduced by about 18 mm, which proves that the removal of atmospheric effects can improve the accuracy of the D-InSAR monitoring.

  12. Corrective Action Decision Document/Closure Report for Corrective Action Unit 370: T-4 Atmospheric Test Site, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2009-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 370, T-4 Atmospheric Test Site, located in Area 4 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 370 is comprised of Corrective Action Site (CAS) 04-23-01, Atmospheric Test Site T-4. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 370 due to the implementation of the corrective action of closure in place with administrative controls. To achieve this, corrective action investigation (CAI) activities were performed from June 25, 2008, through April 2, 2009, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 370: T-4 Atmospheric Test Site and Record of Technical Change No. 1.

  13. Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes

    Directory of Open Access Journals (Sweden)

    Vitor Souza Martins

    2017-03-01

    Full Text Available Satellite data provide the only viable means for extensive monitoring of remote and large freshwater systems, such as the Amazon floodplain lakes. However, an accurate atmospheric correction is required to retrieve water constituents based on surface water reflectance ( R W . In this paper, we assessed three atmospheric correction methods (Second Simulation of a Satellite Signal in the Solar Spectrum (6SV, ACOLITE and Sen2Cor applied to an image acquired by the MultiSpectral Instrument (MSI on-board of the European Space Agency’s Sentinel-2A platform using concurrent in-situ measurements over four Amazon floodplain lakes in Brazil. In addition, we evaluated the correction of forest adjacency effects based on the linear spectral unmixing model, and performed a temporal evaluation of atmospheric constituents from Multi-Angle Implementation of Atmospheric Correction (MAIAC products. The validation of MAIAC aerosol optical depth (AOD indicated satisfactory retrievals over the Amazon region, with a correlation coefficient (R of ~0.7 and 0.85 for Terra and Aqua products, respectively. The seasonal distribution of the cloud cover and AOD revealed a contrast between the first and second half of the year in the study area. Furthermore, simulation of top-of-atmosphere (TOA reflectance showed a critical contribution of atmospheric effects (>50% to all spectral bands, especially the deep blue (92%–96% and blue (84%–92% bands. The atmospheric correction results of the visible bands illustrate the limitation of the methods over dark lakes ( R W < 1%, and better match of the R W shape compared with in-situ measurements over turbid lakes, although the accuracy varied depending on the spectral bands and methods. Particularly above 705 nm, R W was highly affected by Amazon forest adjacency, and the proposed adjacency effect correction minimized the spectral distortions in R W (RMSE < 0.006. Finally, an extensive validation of the methods is required for

  14. Evaluation of atmospheric corrections on hyperspectral data with special reference to mineral mapping

    Directory of Open Access Journals (Sweden)

    Nisha Rani

    2017-07-01

    Full Text Available Hyperspectral images have wide applications in the fields of geology, mineral exploration, agriculture, forestry and environmental studies etc. due to their narrow band width with numerous channels. However, these images commonly suffer from atmospheric effects, thereby limiting their use. In such a situation, atmospheric correction becomes a necessary pre-requisite for any further processing and accurate interpretation of spectra of different surface materials/objects. In the present study, two very advance atmospheric approaches i.e. QUAC and FLAASH have been applied on the hyperspectral remote sensing imagery. The spectra of vegetation, man-made structure and different minerals from the Gadag area of Karnataka, were extracted from the raw image and also from the QUAC and FLAASH corrected images. These spectra were compared among themselves and also with the existing USGS and JHU spectral library. FLAASH is rigorous atmospheric algorithm and requires various parameters to perform but it has capability to compensate the effects of atmospheric absorption. These absorption curves in any spectra play an important role in identification of the compositions. Therefore, the presence of unwanted absorption features can lead to wrong interpretation and identification of mineral composition. FLAASH also has an advantage of spectral polishing which provides smooth spectral curves which helps in accurate identification of composition of minerals. Therefore, this study recommends that FLAASH is better than QUAC for atmospheric correction and correct interpretation and identification of composition of any object or minerals.

  15. ASSESSMENT OF ATMOSPHERIC CORRECTION METHODS FOR OPTIMIZING HAZY SATELLITE IMAGERIES

    Directory of Open Access Journals (Sweden)

    Umara Firman Rizidansyah

    2015-04-01

    Full Text Available The purpose of this research is to examine suitability of three types of haze correction methods toward distinctness of surface objects in land cover. Considering the formation of haze therefore the main research are divided into both region namely rural assumed as vegetation and urban assumed as non vegetation area. Region of interest for rural selected Balaraja and urban selected Penjaringan. Haze imagery reduction utilized techniques such as Dark Object Substration, Virtual Cloud Point and Histogram Match. By applying an equation of Haze Optimized Transformation HOT = DNbluesin(∂-DNredcos(∂, the main result of this research includes: in the case of AVNIR-Rural, VCP has good results on Band 1 while the HM has good results on band 2, 3 and 4, therefore in the case of Avnir-Rural can be applied to HM. in the case of AVNIR-Urban, DOS has good result on band 1, 2 and 3 meanwhile HM has good results on band 4, therefore in the case of AVNIR-Urban can be applied to DOS. In the case of Landsat-Rural, DOS has good result on band 1, 2 and 6 meanwhile VCP has good results on band 4 and 5 and the smallest average value of HOT is 106.547 by VCP, therefore in the case of Lansat-Rural can be applied to DOS and VCP. In the case of Landsat-Urban, DOS has good result on band 1, 2 and 6 meanwhile VCP has good results on band 3, 4 and 5, therefore in the case of Landsat-Urban can be applied to VCP.   Tujuan penelitian ini untuk menguji kesesuaian tiga jenis metode koreksi haze terhadap kejelasan obyek permukaan di wilayah tutupan vegetasi dan non vegetasi, berkenaan menghilangkan haze di wilayah citra satelit optis yang memiliki karakteristik tertentu dan diduga proses pembentukan partikel hazenya berbeda. Sehingga daerah penelitian dibagi menjadi wilayah rural yang diasumsikan sebagai daerah vegetasi dan urban sebagai non vegetasi. Pedesaan terpilih kecamatan Balaraja dan Perkotaan terpilih kecamatan Penjaringan. Tiap lokasi menggunakan Avnir-2 dan Landsat

  16. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Science.gov (United States)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  17. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2013-09-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  18. Effects of Atmospheric Refraction on an Airborne Weather Radar Detection and Correction Method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-01-01

    Full Text Available This study investigates the effect of atmospheric refraction, affected by temperature, atmospheric pressure, and humidity, on airborne weather radar beam paths. Using three types of typical atmospheric background sounding data, we established a simulation model for an actual transmission path and a fitted correction path of an airborne weather radar beam during airplane take-offs and landings based on initial flight parameters and X-band airborne phased-array weather radar parameters. Errors in an ideal electromagnetic beam propagation path are much greater than those of a fitted path when atmospheric refraction is not considered. The rates of change in the atmospheric refraction index differ with weather conditions and the radar detection angles differ during airplane take-off and landing. Therefore, the airborne radar detection path must be revised in real time according to the specific sounding data and flight parameters. However, an error analysis indicates that a direct linear-fitting method produces significant errors in a negatively refractive atmosphere; a piecewise-fitting method can be adopted to revise the paths according to the actual atmospheric structure. This study provides researchers and practitioners in the aeronautics and astronautics field with updated information regarding the effect of atmospheric refraction on airborne weather radar detection and correction methods.

  19. Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery

    Directory of Open Access Journals (Sweden)

    Chinsu Lin

    2015-05-01

    Full Text Available Changes of Land Use and Land Cover (LULC affect atmospheric, climatic, and biological spheres of the earth. Accurate LULC map offers detail information for resources management and intergovernmental cooperation to debate global warming and biodiversity reduction. This paper examined effects of pansharpening and atmospheric correction on LULC classification. Object-Based Support Vector Machine (OB-SVM and Pixel-Based Maximum Likelihood Classifier (PB-MLC were applied for LULC classification. Results showed that atmospheric correction is not necessary for LULC classification if it is conducted in the original multispectral image. Nevertheless, pansharpening plays much more important roles on the classification accuracy than the atmospheric correction. It can help to increase classification accuracy by 12% on average compared to the ones without pansharpening. PB-MLC and OB-SVM achieved similar classification rate. This study indicated that the LULC classification accuracy using PB-MLC and OB-SVM is 82% and 89% respectively. A combination of atmospheric correction, pansharpening, and OB-SVM could offer promising LULC maps from WorldView-2 multispectral and panchromatic images.

  20. Solving for the Surface: An Automated Approach to THEMIS Atmospheric Correction

    Science.gov (United States)

    Ryan, A. J.; Salvatore, M. R.; Smith, R.; Edwards, C. S.; Christensen, P. R.

    2013-12-01

    Here we present the initial results of an automated atmospheric correction algorithm for the Thermal Emission Imaging System (THEMIS) instrument, whereby high spectral resolution Thermal Emission Spectrometer (TES) data are queried to generate numerous atmospheric opacity values for each THEMIS infrared image. While the pioneering methods of Bandfield et al. [2004] also used TES spectra to atmospherically correct THEMIS data, the algorithm presented here is a significant improvement because of the reduced dependency on user-defined inputs for individual images. Additionally, this technique is particularly useful for correcting THEMIS images that have captured a range of atmospheric conditions and/or surface elevations, issues that have been difficult to correct for using previous techniques. Thermal infrared observations of the Martian surface can be used to determine the spatial distribution and relative abundance of many common rock-forming minerals. This information is essential to understanding the planet's geologic and climatic history. However, the Martian atmosphere also has absorptions in the thermal infrared which complicate the interpretation of infrared measurements obtained from orbit. TES has sufficient spectral resolution (143 bands at 10 cm-1 sampling) to linearly unmix and remove atmospheric spectral end-members from the acquired spectra. THEMIS has the benefit of higher spatial resolution (~100 m/pixel vs. 3x5 km/TES-pixel) but has lower spectral resolution (8 surface sensitive spectral bands). As such, it is not possible to isolate the surface component by unmixing the atmospheric contribution from the THEMIS spectra, as is done with TES. Bandfield et al. [2004] developed a technique using atmospherically corrected TES spectra as tie-points for constant radiance offset correction and surface emissivity retrieval. This technique is the primary method used to correct THEMIS but is highly susceptible to inconsistent results if great care in the

  1. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    Science.gov (United States)

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-07-31

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development.

  2. Reflectance of Antarctic surfaces from multispectral radiometers: The correction of atmospheric effects

    International Nuclear Information System (INIS)

    Zibordi, G.; Maracci, G.

    1993-01-01

    Monitoring reflectance of polar icecaps has relevance in climate studies. In fact, climate changes produce variations in the morphology of ice and snow covers, which are detectable as surface reflectance change. Surface reflectance can be retrieved from remotely sensed data. However, absolute values independent of atmospheric turbidity and surface altitude can only be obtained after removing masking effects of the atmosphere. An atmospheric correction model, accounting for surface and sensor altitudes above sea level, is described and validated through data detected over Antarctic surfaces with a Barnes Modular Multispectral Radiometer having bands overlapping those of the Landsat Thematic Mapper. The model is also applied in a sensitivity analysis to investigate error induced in reflectance obtained from satellite data by indeterminacy in optical parameters of atmospheric constituents. Results show that indeterminacy in the atmospheric water vapor optical thickness is the main source of nonaccuracy in the retrieval of surface reflectance from data remotely sensed over Antarctic regions

  3. Evaluation of Shortwave Infrared Atmospheric Correction for Ocean Color Remote Sensing of Chesapeake Bay

    Science.gov (United States)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.

    2010-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODIS-Aqua) provides a viable data stream for operational water quality monitoring of Chesapeake Bay. Marine geophysical products from MODIS-Aqua depend on the efficacy of the atmospheric correction process, which can be problematic in coastal environments. The operational atmospheric correction algorithm for MODIS-Aqua requires an assumption of negligible near-infrared water-leaving radiance, nL(sub w)(NIR). This assumption progressively degrades with increasing turbidity and, as such, methods exist to account for non-negligible nL(sub w)(NIR) within the atmospheric correction process or to use alternate radiometric bands where the assumption is satisfied, such as those positioned within shortwave infrared (SWIR) region of the spectrum. We evaluated a decade-long time-series of nL(sub w)(lambda) from MODIS-Aqua in Chesapeake Bay derived using NIR and SWIR bands for atmospheric correction. Low signal-to-noise ratios (SNR) for the SWIR bands of MODIS-Aqua added noise errors to the derived radiances, which produced broad, flat frequency distributions of nL(sub w)(lambda) relative to those produced using the NIR bands. The SWIR approach produced an increased number of negative nL(sub w)(lambda) and decreased sample size relative to the NIR approach. Revised vicarious calibration and regional tuning of the scheme to switch between the NIR and SWIR approaches may improve retrievals in Chesapeake Bay, however, poor SNR values for the MODIS-Aqua SWIR bands remain the primary deficiency of the SWIR-based atmospheric correction approach.

  4. Atmospheric and Radiometric Correction Algorithms for the Multitemporal Assessment of Grasslands Productivity

    Directory of Open Access Journals (Sweden)

    Jesús A. Prieto-Amparan

    2018-02-01

    Full Text Available A key step in the processing of satellite imagery is the radiometric correction of images to account for reflectance that water vapor, atmospheric dust, and other atmospheric elements add to the images, causing imprecisions in variables of interest estimated at the earth’s surface level. That issue is important when performing spatiotemporal analyses to determine ecosystems’ productivity. In this study, three correction methods were applied to satellite images for the period 2010–2014. These methods were Atmospheric Correction for Flat Terrain 2 (ATCOR2, Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH, and Dark Object Substract 1 (DOS1. The images included 12 sub-scenes from the Landsat Thematic Mapper (TM and the Operational Land Imager (OLI sensors. The images corresponded to three Permanent Monitoring Sites (PMS of grasslands, ‘Teseachi’, ‘Eden’, and ‘El Sitio’, located in the state of Chihuahua, Mexico. After the corrections were applied to the images, they were evaluated in terms of their precision for biomass estimation. For that, biomass production was measured during the study period at the three PMS to calibrate production models developed with simple and multiple linear regression (SLR and MLR techniques. When the estimations were made with MLR, DOS1 obtained an R2 of 0.97 (p < 0.05 for 2012 and values greater than 0.70 (p < 0.05 during 2013–2014. The rest of the algorithms did not show significant results and DOS1, which is the simplest algorithm, resulted in the best biomass estimator. Thus, in the multitemporal analysis of grassland based on spectral information, it is not necessary to apply complex correction procedures. The maps of biomass production, elaborated from images corrected with DOS1, can be used as a reference point for the assessment of the grassland condition, as well as to determine the grazing capacity and thus the potential animal production in such ecosystems.

  5. Atmospheric Correction Performance of Hyperspectral Airborne Imagery over a Small Eutrophic Lake under Changing Cloud Cover

    Directory of Open Access Journals (Sweden)

    Lauri Markelin

    2016-12-01

    Full Text Available Atmospheric correction of remotely sensed imagery of inland water bodies is essential to interpret water-leaving radiance signals and for the accurate retrieval of water quality variables. Atmospheric correction is particularly challenging over inhomogeneous water bodies surrounded by comparatively bright land surface. We present results of AisaFENIX airborne hyperspectral imagery collected over a small inland water body under changing cloud cover, presenting challenging but common conditions for atmospheric correction. This is the first evaluation of the performance of the FENIX sensor over water bodies. ATCOR4, which is not specifically designed for atmospheric correction over water and does not make any assumptions on water type, was used to obtain atmospherically corrected reflectance values, which were compared to in situ water-leaving reflectance collected at six stations. Three different atmospheric correction strategies in ATCOR4 was tested. The strategy using fully image-derived and spatially varying atmospheric parameters produced a reflectance accuracy of ±0.002, i.e., a difference of less than 15% compared to the in situ reference reflectance. Amplitude and shape of the remotely sensed reflectance spectra were in general accordance with the in situ data. The spectral angle was better than 4.1° for the best cases, in the spectral range of 450–750 nm. The retrieval of chlorophyll-a (Chl-a concentration using a popular semi-analytical band ratio algorithm for turbid inland waters gave an accuracy of ~16% or 4.4 mg/m3 compared to retrieval of Chl-a from reflectance measured in situ. Using fixed ATCOR4 processing parameters for whole images improved Chl-a retrieval results from ~6 mg/m3 difference to reference to approximately 2 mg/m3. We conclude that the AisaFENIX sensor, in combination with ATCOR4 in image-driven parametrization, can be successfully used for inland water quality observations. This implies that the need for in situ

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-01-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  7. Relative Radiometric Normalization and Atmospheric Correction of a SPOT 5 Time Series

    Directory of Open Access Journals (Sweden)

    Matthieu Rumeau

    2008-04-01

    Full Text Available Multi-temporal images acquired at high spatial and temporal resolution are an important tool for detecting change and analyzing trends, especially in agricultural applications. However, to insure a reliable use of this kind of data, a rigorous radiometric normalization step is required. Normalization can be addressed by performing an atmospheric correction of each image in the time series. The main problem is the difficulty of obtaining an atmospheric characterization at a given acquisition date. In this paper, we investigate whether relative radiometric normalization can substitute for atmospheric correction. We develop an automatic method for relative radiometric normalization based on calculating linear regressions between unnormalized and reference images. Regressions are obtained using the reflectances of automatically selected invariant targets. We compare this method with an atmospheric correction method that uses the 6S model. The performances of both methods are compared using 18 images from of a SPOT 5 time series acquired over Reunion Island. Results obtained for a set of manually selected invariant targets show excellent agreement between the two methods in all spectral bands: values of the coefficient of determination (r² exceed 0.960, and bias magnitude values are less than 2.65. There is also a strong correlation between normalized NDVI values of sugarcane fields (r² = 0.959. Despite a relative error of 12.66% between values, very comparable NDVI patterns are observed.

  8. An Empirical Study of Atmospheric Correction Procedures for Regional Infrasound Amplitudes with Ground Truth.

    Science.gov (United States)

    Howard, J. E.

    2014-12-01

    This study focusses on improving methods of accounting for atmospheric effects on infrasound amplitudes observed on arrays at regional distances in the southwestern United States. Recordings at ranges of 150 to nearly 300 km from a repeating ground truth source of small HE explosions are used. The explosions range in actual weight from approximately 2000-4000 lbs. and are detonated year-round which provides signals for a wide range of atmospheric conditions. Three methods of correcting the observed amplitudes for atmospheric effects are investigated with the data set. The first corrects amplitudes for upper stratospheric wind as developed by Mutschlecner and Whitaker (1999) and uses the average wind speed between 45-55 km altitudes in the direction of propagation to derive an empirical correction formula. This approach was developed using large chemical and nuclear explosions and is tested with the smaller explosions for which shorter wavelengths cause the energy to be scattered by the smaller scale structure of the atmosphere. The second approach isa semi-empirical method using ray tracing to determine wind speed at ray turning heights where the wind estimates replace the wind values in the existing formula. Finally, parabolic equation (PE) modeling is used to predict the amplitudes at the arrays at 1 Hz. The PE amplitudes are compared to the observed amplitudes with a narrow band filter centered at 1 Hz. An analysis is performed of the conditions under which the empirical and semi-empirical methods fail and full wave methods must be used.

  9. Automated Burned Area Delineation Using IRS AWiFS satellite data

    Science.gov (United States)

    Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.

    2014-12-01

    spectral data from the IRS AWiFS sensor. The method is intended to be used by non-specialist users for diagnostic rapid burnt area mapping.

  10. Atmospheric Attenuation Correction Based on a Constant Reference for High-Precision Infrared Radiometry

    Directory of Open Access Journals (Sweden)

    Zhiguo Huang

    2017-11-01

    Full Text Available Infrared (IR radiometry technology is an important method for characterizing the IR signature of targets, such as aircrafts or rockets. However, the received signal of targets could be reduced by a combination of atmospheric molecule absorption and aerosol scattering. Therefore, atmospheric correction is a requisite step for obtaining the real radiance of targets. Conventionally, the atmospheric transmittance and the air path radiance are calculated by an atmospheric radiative transfer calculation software. In this paper, an improved IR radiometric method based on constant reference correction of atmospheric attenuation is proposed. The basic principle and procedure of this method are introduced, and then the linear model of high-speed calibration in consideration of the integration time is employed and confirmed, which is then applicable in various complex conditions. To eliminate stochastic errors, radiometric experiments were conducted for multiple integration times. Finally, several experiments were performed on a mid-wave IR system with Φ600 mm aperture. The radiometry results indicate that the radiation inversion precision of the novel method is 4.78–4.89%, while the precision of the conventional method is 10.86–13.81%.

  11. Case study of atmospheric correction on CCD data of HJ-1 satellite based on 6S model

    International Nuclear Information System (INIS)

    Xue, Xiaoiuan; Meng, Oingyan; Xie, Yong; Sun, Zhangli; Wang, Chang; Zhao, Hang

    2014-01-01

    In this study, atmospheric radiative transfer model 6S was used to simulate the radioactive transfer process in the surface-atmosphere-sensor. An algorithm based on the look-up table (LUT) founded by 6S model was used to correct (HJ-1) CCD image pixel by pixel. Then, the effect of atmospheric correction on CCD data of HJ-1 satellite was analyzed in terms of the spectral curves and evaluated against the measured reflectance acquired during HJ-1B satellite overpass, finally, the normalized difference vegetation index (NDVI) before and after atmospheric correction were compared. The results showed: (1) Atmospheric correction on CCD data of HJ-1 satellite can reduce the ''increase'' effect of the atmosphere. (2) Apparent reflectance are higher than those of surface reflectance corrected by 6S model in band1∼band3, but they are lower in the near-infrared band; the surface reflectance values corrected agree with the measured reflectance values well. (3)The NDVI increases significantly after atmospheric correction, which indicates the atmospheric correction can highlight the vegetation information

  12. Specificity of Atmospheric Correction of Satellite Data on Ocean Color in the Far East

    Science.gov (United States)

    Aleksanin, A. I.; Kachur, V. A.

    2017-12-01

    Calculation errors in ocean-brightness coefficients in the Far Eastern are analyzed for two atmospheric correction algorithms (NIR and MUMM). The daylight measurements in different water types show that the main error component is systematic and has a simple dependence on the magnitudes of the coefficients. The causes of the error behavior are considered. The most probable explanation for the large errors in ocean-color parameters in the Far East is a high concentration of continental aerosol absorbing light. A comparison between satellite and in situ measurements at AERONET stations in the United States and South Korea has been made. It is shown the errors in these two regions differ by up to 10 times upon close water turbidity and relatively high aerosol optical-depth computation precision in the case of using the NIR correction of the atmospheric effect.

  13. A New High-Precision Correction Method of Temperature Distribution in Model Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2013-06-01

    Full Text Available The main features of the temperature correction methods, suggested and used in modeling of plane-parallel stellar atmospheres, are discussed. The main features of the new method are described. Derivation of the formulae for a version of the Unsöld-Lucy method, used by us in the SMART (Stellar Model Atmospheres and Radiative Transport software for modeling stellar atmospheres, is presented. The method is based on a correction of the model temperature distribution based on minimizing differences of flux from its accepted constant value and on the requirement of the lack of its gradient, meaning that local source and sink terms of radiation must be equal. The final relative flux constancy obtainable by the method with the SMART code turned out to have the precision of the order of 0.5 %. Some of the rapidly converging iteration steps can be useful before starting the high-precision model correction. The corrections of both the flux value and of its gradient, like in Unsöld-Lucy method, are unavoidably needed to obtain high-precision flux constancy. A new temperature correction method to obtain high-precision flux constancy for plane-parallel LTE model stellar atmospheres is proposed and studied. The non-linear optimization is carried out by the least squares, in which the Levenberg-Marquardt correction method and thereafter additional correction by the Broyden iteration loop were applied. Small finite differences of temperature (δT/T = 10−3 are used in the computations. A single Jacobian step appears to be mostly sufficient to get flux constancy of the order 10−2 %. The dual numbers and their generalization – the dual complex numbers (the duplex numbers – enable automatically to get the derivatives in the nilpotent part of the dual numbers. A version of the SMART software is in the stage of refactorization to dual and duplex numbers, what enables to get rid of the finite differences, as an additional source of lowering precision of the

  14. Practical Atmospheric Correction Algorithms for a Multi-Spectral Sensor From the Visible Through the Thermal Spectral Regions

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Villeneuve, P.V.; Clodium, W.B.; Szymenski, J.J.; Davis, A.B.

    1999-04-04

    Deriving information about the Earth's surface requires atmospheric corrections of the measured top-of-the-atmosphere radiances. One possible path is to use atmospheric radiative transfer codes to predict how the radiance leaving the ground is affected by the scattering and attenuation. In practice the atmosphere is usually not well known and thus it is necessary to use more practical methods. The authors will describe how to find dark surfaces, estimate the atmospheric optical depth, estimate path radiance and identify thick clouds using thresholds on reflectance and NDVI and columnar water vapor. The authors describe a simple method to correct a visible channel contaminated by a thin cirrus clouds.

  15. Spatial heterogeneity in geothermally-influenced lakes derived from atmospherically corrected Landsat thermal imagery and three-dimensional hydrodynamic modelling

    DEFF Research Database (Denmark)

    Allan, Mathew G; Hamilton, David P.; Trolle, Dennis

    2016-01-01

    Atmospheric correction of Landsat 7 thermal data was carried out for the purpose of retrieval of lake skin water temperature in Rotorua lakes, and Lake Taupo, North Island, New Zealand. The effect of the atmosphere was modelled using four sources of atmospheric profile data as input to the MODera...

  16. Renormalisation group corrections to the littlest seesaw model and maximal atmospheric mixing

    International Nuclear Information System (INIS)

    King, Stephen F.; Zhang, Jue; Zhou, Shun

    2016-01-01

    The Littlest Seesaw (LS) model involves two right-handed neutrinos and a very constrained Dirac neutrino mass matrix, involving one texture zero and two independent Dirac masses, leading to a highly predictive scheme in which all neutrino masses and the entire PMNS matrix is successfully predicted in terms of just two real parameters. We calculate the renormalisation group (RG) corrections to the LS predictions, with and without supersymmetry, including also the threshold effects induced by the decoupling of heavy Majorana neutrinos both analytically and numerically. We find that the predictions for neutrino mixing angles and mass ratios are rather stable under RG corrections. For example we find that the LS model with RG corrections predicts close to maximal atmospheric mixing, θ_2_3=45"∘±1"∘, in most considered cases, in tension with the latest NOvA results. The techniques used here apply to other seesaw models with a strong normal mass hierarchy.

  17. Renormalisation group corrections to the littlest seesaw model and maximal atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Zhang, Jue [Center for High Energy Physics, Peking University,Beijing 100871 (China); Zhou, Shun [Center for High Energy Physics, Peking University,Beijing 100871 (China); Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China)

    2016-12-06

    The Littlest Seesaw (LS) model involves two right-handed neutrinos and a very constrained Dirac neutrino mass matrix, involving one texture zero and two independent Dirac masses, leading to a highly predictive scheme in which all neutrino masses and the entire PMNS matrix is successfully predicted in terms of just two real parameters. We calculate the renormalisation group (RG) corrections to the LS predictions, with and without supersymmetry, including also the threshold effects induced by the decoupling of heavy Majorana neutrinos both analytically and numerically. We find that the predictions for neutrino mixing angles and mass ratios are rather stable under RG corrections. For example we find that the LS model with RG corrections predicts close to maximal atmospheric mixing, θ{sub 23}=45{sup ∘}±1{sup ∘}, in most considered cases, in tension with the latest NOvA results. The techniques used here apply to other seesaw models with a strong normal mass hierarchy.

  18. GEO-LEO reflectance band inter-comparison with BRDF and atmospheric scattering corrections

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong Jack; Keller, Graziela; Wu, Xiangqian

    2017-09-01

    The inter-comparison of the reflective solar bands between the instruments onboard a geostationary orbit satellite and onboard a low Earth orbit satellite is very helpful to assess their calibration consistency. GOES-R was launched on November 19, 2016 and Himawari 8 was launched October 7, 2014. Unlike the previous GOES instruments, the Advanced Baseline Imager on GOES-16 (GOES-R became GOES-16 after November 29 when it reached orbit) and the Advanced Himawari Imager (AHI) on Himawari 8 have onboard calibrators for the reflective solar bands. The assessment of calibration is important for their product quality enhancement. MODIS and VIIRS, with their stringent calibration requirements and excellent on-orbit calibration performance, provide good references. The simultaneous nadir overpass (SNO) and ray-matching are widely used inter-comparison methods for reflective solar bands. In this work, the inter-comparisons are performed over a pseudo-invariant target. The use of stable and uniform calibration sites provides comparison with appropriate reflectance level, accurate adjustment for band spectral coverage difference, reduction of impact from pixel mismatching, and consistency of BRDF and atmospheric correction. The site in this work is a desert site in Australia (latitude -29.0 South; longitude 139.8 East). Due to the difference in solar and view angles, two corrections are applied to have comparable measurements. The first is the atmospheric scattering correction. The satellite sensor measurements are top of atmosphere reflectance. The scattering, especially Rayleigh scattering, should be removed allowing the ground reflectance to be derived. Secondly, the angle differences magnify the BRDF effect. The ground reflectance should be corrected to have comparable measurements. The atmospheric correction is performed using a vector version of the Second Simulation of a Satellite Signal in the Solar Spectrum modeling and BRDF correction is performed using a semi

  19. Correction

    DEFF Research Database (Denmark)

    Pinkevych, Mykola; Cromer, Deborah; Tolstrup, Martin

    2016-01-01

    [This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.].......[This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.]....

  20. Study on fitness functions of genetic algorithm for dynamically correcting nuclide atmospheric diffusion model

    International Nuclear Information System (INIS)

    Ji Zhilong; Ma Yuanwei; Wang Dezhong

    2014-01-01

    Background: In radioactive nuclides atmospheric diffusion models, the empirical dispersion coefficients were deduced under certain experiment conditions, whose difference with nuclear accident conditions is a source of deviation. A better estimation of the radioactive nuclide's actual dispersion process could be done by correcting dispersion coefficients with observation data, and Genetic Algorithm (GA) is an appropriate method for this correction procedure. Purpose: This study is to analyze the fitness functions' influence on the correction procedure and the forecast ability of diffusion model. Methods: GA, coupled with Lagrange dispersion model, was used in a numerical simulation to compare 4 fitness functions' impact on the correction result. Results: In the numerical simulation, the fitness function with observation deviation taken into consideration stands out when significant deviation exists in the observed data. After performing the correction procedure on the Kincaid experiment data, a significant boost was observed in the diffusion model's forecast ability. Conclusion: As the result shows, in order to improve dispersion models' forecast ability using GA, observation data should be given different weight in the fitness function corresponding to their error. (authors)

  1. On-sky Closed-loop Correction of Atmospheric Dispersion for High-contrast Coronagraphy and Astrometry

    Science.gov (United States)

    Pathak, P.; Guyon, O.; Jovanovic, N.; Lozi, J.; Martinache, F.; Minowa, Y.; Kudo, T.; Kotani, T.; Takami, H.

    2018-02-01

    Adaptive optic (AO) systems delivering high levels of wavefront correction are now common at observatories. One of the main limitations to image quality after wavefront correction comes from atmospheric refraction. An atmospheric dispersion compensator (ADC) is employed to correct for atmospheric refraction. The correction is applied based on a look-up table consisting of dispersion values as a function of telescope elevation angle. The look-up table-based correction of atmospheric dispersion results in imperfect compensation leading to the presence of residual dispersion in the point spread function (PSF) and is insufficient when sub-milliarcsecond precision is required. The presence of residual dispersion can limit the achievable contrast while employing high-performance coronagraphs or can compromise high-precision astrometric measurements. In this paper, we present the first on-sky closed-loop correction of atmospheric dispersion by directly using science path images. The concept behind the measurement of dispersion utilizes the chromatic scaling of focal plane speckles. An adaptive speckle grid generated with a deformable mirror (DM) that has a sufficiently large number of actuators is used to accurately measure the residual dispersion and subsequently correct it by driving the ADC. We have demonstrated with the Subaru Coronagraphic Extreme AO (SCExAO) system on-sky closed-loop correction of residual dispersion to instruments which require sub-milliarcsecond correction.

  2. An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters

    Science.gov (United States)

    Kuzmiakova, Adele; Dillner, Ann M.; Takahama, Satoshi

    2016-06-01

    A growing body of research on statistical applications for characterization of atmospheric aerosol Fourier transform infrared (FT-IR) samples collected on polytetrafluoroethylene (PTFE) filters (e.g., Russell et al., 2011; Ruthenburg et al., 2014) and a rising interest in analyzing FT-IR samples collected by air quality monitoring networks call for an automated PTFE baseline correction solution. The existing polynomial technique (Takahama et al., 2013) is not scalable to a project with a large number of aerosol samples because it contains many parameters and requires expert intervention. Therefore, the question of how to develop an automated method for baseline correcting hundreds to thousands of ambient aerosol spectra given the variability in both environmental mixture composition and PTFE baselines remains. This study approaches the question by detailing the statistical protocol, which allows for the precise definition of analyte and background subregions, applies nonparametric smoothing splines to reproduce sample-specific PTFE variations, and integrates performance metrics from atmospheric aerosol and blank samples alike in the smoothing parameter selection. Referencing 794 atmospheric aerosol samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011, we start by identifying key FT-IR signal characteristics, such as non-negative absorbance or analyte segment transformation, to capture sample-specific transitions between background and analyte. While referring to qualitative properties of PTFE background, the goal of smoothing splines interpolation is to learn the baseline structure in the background region to predict the baseline structure in the analyte region. We then validate the model by comparing smoothing splines baseline-corrected spectra with uncorrected and polynomial baseline (PB)-corrected equivalents via three statistical applications: (1) clustering analysis, (2) functional group quantification

  3. Improved Atmospheric Correction Over the Indian Subcontinent Using Fast Radiative Transfer and Optimal Estimation

    Science.gov (United States)

    Natraj, V.; Thompson, D. R.; Mathur, A. K.; Babu, K. N.; Kindel, B. C.; Massie, S. T.; Green, R. O.; Bhattacharya, B. K.

    2017-12-01

    Remote Visible / ShortWave InfraRed (VSWIR) spectroscopy, typified by the Next-Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG), is a powerful tool to map the composition, health, and biodiversity of Earth's terrestrial and aquatic ecosystems. These studies must first estimate surface reflectance, removing the atmospheric effects of absorption and scattering by water vapor and aerosols. Since atmospheric state varies spatiotemporally, and is insufficiently constrained by climatological models, it is important to estimate it directly from the VSWIR data. However, water vapor and aerosol estimation is a significant ongoing challenge for existing atmospheric correction models. Conventional VSWIR atmospheric correction methods evolved from multi-band approaches and do not fully utilize the rich spectroscopic data available. We use spectrally resolved (line-by-line) radiative transfer calculations, coupled with optimal estimation theory, to demonstrate improved accuracy of surface retrievals. These spectroscopic techniques are already pervasive in atmospheric remote sounding disciplines but have not yet been applied to imaging spectroscopy. Our analysis employs a variety of scenes from the recent AVIRIS-NG India campaign, which spans various climes, elevation changes, a wide range of biomes and diverse aerosol scenarios. A key aspect of our approach is joint estimation of surface and aerosol parameters, which allows assessment of aerosol distortion effects using spectral shapes across the entire measured interval from 380-2500 nm. We expect that this method would outperform band ratio approaches, and enable evaluation of subtle aerosol parameters where in situ reference data is not available, or for extreme aerosol loadings, as is observed in the India scenarios. The results are validated using existing in-situ reference spectra, reflectance measurements from assigned partners in India, and objective spectral quality metrics for scenes without any

  4. Corrections for hydrostatic atmospheric models: radii and effective temperatures of Wolf Rayet stars

    International Nuclear Information System (INIS)

    Loore, C. de; Hellings, P.; Lamers, H.J.G.L.M.

    1982-01-01

    With the assumption of plane-parallel hydrostatic atmospheres, used generally for the computation of evolutionary models, the radii of WR stars are seriously underestimated. The true atmospheres may be very extended, due to the effect of the stellar wind. Instead of these hydrostatic atmospheres the authors consider dynamical atmospheres adopting a velocity law. The equation of the optical depth is integrated outwards using the equation of continuity. The ''hydrostatic'' radii are to be multiplied with a factor 2 to 8, and the effective temperatures with a factor 0.8 to 0.35 when Wolf Rayet characteristics for the wind are considered, and WR mass loss rates are used. With these corrections the effective temperatures of the theoretical models, which are helium burning Roche lobe overflow remnants, range between 30,000 K and 50,000 K. Effective temperatures calculated in the hydrostatic hypothesis can be as high as 150,000 K for helium burning RLOF-remnants with WR mass loss rates. (Auth.)

  5. Atmospheric Pressure Corrections in Geodesy and Oceanography: a Strategy for Handling Air Tides

    Science.gov (United States)

    Ponte, Rui M.; Ray, Richard D.

    2003-01-01

    Global pressure data are often needed for processing or interpreting modern geodetic and oceanographic measurements. The most common source of these data is the analysis or reanalysis products of various meteorological centers. Tidal signals in these products can be problematic for several reasons, including potentially aliased sampling of the semidiurnal solar tide as well as the presence of various modeling or timing errors. Building on the work of Van den Dool and colleagues, we lay out a strategy for handling atmospheric tides in (re)analysis data. The procedure also offers a method to account for ocean loading corrections in satellite altimeter data that are consistent with standard ocean-tide corrections. The proposed strategy has immediate application to the on-going Jason-1 and GRACE satellite missions.

  6. Remote Sensing of Tropical Ecosystems: Atmospheric Correction and Cloud Masking Matter

    Science.gov (United States)

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Sellers, Piers J.; Hall, Forrest G.; Wang, Yujie

    2012-01-01

    Tropical rainforests are significant contributors to the global cycles of energy, water and carbon. As a result, monitoring of the vegetation status over regions such as Amazonia has been a long standing interest of Earth scientists trying to determine the effect of climate change and anthropogenic disturbance on the tropical ecosystems and its feedback on the Earth's climate. Satellite-based remote sensing is the only practical approach for observing the vegetation dynamics of regions like the Amazon over useful spatial and temporal scales, but recent years have seen much controversy over satellite-derived vegetation states in Amazônia, with studies predicting opposite feedbacks depending on data processing technique and interpretation. Recent results suggest that some of this uncertainty could stem from a lack of quality in atmospheric correction and cloud screening. In this paper, we assess these uncertainties by comparing the current standard surface reflectance products (MYD09, MYD09GA) and derived composites (MYD09A1, MCD43A4 and MYD13A2 - Vegetation Index) from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to results obtained from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. MAIAC uses a new cloud screening technique, and novel aerosol retrieval and atmospheric correction procedures which are based on time-series and spatial analyses. Our results show considerable improvements of MAIAC processed surface reflectance compared to MYD09/MYD13 with noise levels reduced by a factor of up to 10. Uncertainties in the current MODIS surface reflectance product were mainly due to residual cloud and aerosol contamination which affected the Normalized Difference Vegetation Index (NDVI): During the wet season, with cloud cover ranging between 90 percent and 99 percent, conventionally processed NDVI was significantly depressed due to undetected clouds. A smaller reduction in NDVI due to increased

  7. Correction of detector nonlinearity for the balloonborne Michelson Interferometer for Passive Atmospheric Sounding.

    Science.gov (United States)

    Kleinert, Anne

    2006-01-20

    The detectors used in the cryogenic limb-emission sounder MIPAS-B2 (Michelson Interferometer for Passive Atmospheric Sounding) show a nonlinear response, which leads to radiometric errors in the calibrated spectra if the nonlinearity is not taken into account. In the case of emission measurements, the dominant error that arises from the nonlinearity is the changing detector responsivity as the incident photon load changes. The effect of the distortion of a single interferogram can be neglected. A method to characterize the variable responsivity and to correct for this effect is proposed. Furthermore, a detailed error estimation is presented.

  8. Setting of cloud albedo in the atmospheric correction procedure to generate the ocean colour data products from OCM-2

    Digital Repository Service at National Institute of Oceanography (India)

    Nagamani, P.V.; Latha, T.P.; Rao, K.H.; Suresh, T.; Choudhury, S.B.; Dutt, C.B.S.; Dadhwal, V.K.

    Cloud masking is one of the primary and important steps in the atmospheric correction procedure in particular to coastal ocean waters. Cloud masking for ocean colour data processing is based on the assumption that the water reflectance is close...

  9. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques

    Directory of Open Access Journals (Sweden)

    Francisco Eugenio

    2017-11-01

    Full Text Available Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2, can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones.

  10. Specificity of Atmosphere Correction of Satellite Ocean Color Data in Far-Eastern Region

    Science.gov (United States)

    Trusenkova, O.; Kachur, V.; Aleksanin, A. I.

    2016-02-01

    It was carried out an error analysis of satellite reflectance coefficients (Rrs) of MODIS/AQUA colour data for two atmospheric correction algorithms (NIR, MUMM) in the Far-Eastern region. Some sets of unique data of in situ and satellite measurements have been analysed. A set has some measurements with ASD spectroradiometer for each satellite pass. The measurement allocations were selected so the Chlorophyll-a concentration has high variability. Analysis of arbitrary set demonstrated that the main error component is systematic error, and it has simple relations on Rrs values. The reasons of such error behavior are considered. The most probable explanation of the large errors of oceanic color parameters in the Far-Eastern region is the ability of high concentrations of continental aerosol. A comparison of satellite and in situ measurements at AERONET stations of USA and South Korea regions has been made. It was shown that for NIR-correction of the atmosphere influence the error values in these two regions have differences up to 10 times for almost the same water turbidity and relatively good accuracy of computation of aerosol optical thickness. The study was supported by grant Russian Scientific Foundation No. 14-50-00034, by grant of Russian Foundation of Basic Research No.15-35-21032-mol-a-ved, and by Program of Basic Research "Far East" of Far Eastern Branch of Russian Academy of Sciences.

  11. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region.

    Science.gov (United States)

    Wang, Menghua; Shi, Wei; Jiang, Lide

    2012-01-16

    A regional near-infrared (NIR) ocean normalized water-leaving radiance (nL(w)(λ)) model is proposed for atmospheric correction for ocean color data processing in the western Pacific region, including the Bohai Sea, Yellow Sea, and East China Sea. Our motivation for this work is to derive ocean color products in the highly turbid western Pacific region using the Geostationary Ocean Color Imager (GOCI) onboard South Korean Communication, Ocean, and Meteorological Satellite (COMS). GOCI has eight spectral bands from 412 to 865 nm but does not have shortwave infrared (SWIR) bands that are needed for satellite ocean color remote sensing in the turbid ocean region. Based on a regional empirical relationship between the NIR nL(w)(λ) and diffuse attenuation coefficient at 490 nm (K(d)(490)), which is derived from the long-term measurements with the Moderate-resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, an iterative scheme with the NIR-based atmospheric correction algorithm has been developed. Results from MODIS-Aqua measurements show that ocean color products in the region derived from the new proposed NIR-corrected atmospheric correction algorithm match well with those from the SWIR atmospheric correction algorithm. Thus, the proposed new atmospheric correction method provides an alternative for ocean color data processing for GOCI (and other ocean color satellite sensors without SWIR bands) in the turbid ocean regions of the Bohai Sea, Yellow Sea, and East China Sea, although the SWIR-based atmospheric correction approach is still much preferred. The proposed atmospheric correction methodology can also be applied to other turbid coastal regions.

  12. Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System

    Science.gov (United States)

    Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Todling, Ricardo; Verter, Frances

    2006-01-01

    In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.

  13. Implementation of Coupled Skin Temperature Analysis and Bias Correction in a Global Atmospheric Data Assimilation System

    Science.gov (United States)

    Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo

    2004-01-01

    The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.

  14. Corrective Action Decision Document/Closure Report for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2013-11-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The purpose of the CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed.

  15. Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2011-08-01

    CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16, Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison

  16. InSAR atmospheric correction using Himawari-8 Geostationary Meteorological Satellite

    Science.gov (United States)

    Kinoshita, Y.; Nimura, T.; Furuta, R.

    2017-12-01

    The atmospheric delay effect is one of the limitations for the accurate surface displacement detection by Synthetic Aperture Radar Interferometry (InSAR). Many previous studies have attempted to mitigate the neutral atmospheric delay in InSAR (e.g. Jolivet et al. 2014; Foster et al. 2006; Kinoshita et al. 2013). Hanssen et al. (2001) investigated the relationship between the 27 hourly observations of GNSS precipitable water vapor (PWV) and the infrared brightness temperature derived from visible satellite imagery, and showed a good correlation. Here we showed a preliminary result of the newly developed method for the neutral atmospheric delay correction using the Himawari-8 Japanese geostationary meteorological satellite data. The Himawari-8 satellite is the Japanese state-of-the-art geostationary meteorological satellite that has 16 observation channels and has spatial resolutions of 0.5 km (visible) and 2.0 km (near-infrared and infrared) with an time interval of 2.5 minutes around Japan. To estimate the relationship between the satellite brightness temperature and the atmospheric delay amount. Since the InSAR atmospheric delay is principally the same as that in GNSS, we at first compared the Himawari-8 data with the GNSS zenith tropospheric delay data derived from the Japanese dense GNSS network. The comparison of them showed that the band with the wavelength of 6.9 μm had the highest correlation to the GNSS observation. Based on this result, we developed an InSAR atmospheric delay model that uses the Himawari-8 6.9 μm band data. For the model validation, we generated InSAR images from the ESA's C-band Sentinel-1 SLC data with the GAMMA SAR software. We selected two regions around Tokyo and Sapporo (both in Japan) as the test sites because of the less temporal decorrelation. The validation result showed that the delay model reasonably estimate large scale phase variation whose spatial scale was on the order of over 20 km. On the other hand, phase variations of

  17. Iterative atmospheric correction scheme and the polarization color of alpine snow

    Science.gov (United States)

    Ottaviani, Matteo; Cairns, Brian; Ferrare, Rich; Rogers, Raymond

    2012-07-01

    Characterization of the Earth's surface is crucial to remote sensing, both to map geomorphological features and because subtracting this signal is essential during retrievals of the atmospheric constituents located between the surface and the sensor. Current operational algorithms model the surface total reflectance through a weighted linear combination of a few geometry-dependent kernels, each devised to describe a particular scattering mechanism. The information content of these measurements is overwhelmed by that of instruments with polarization capabilities: proposed models in this case are based on the Fresnel reflectance of an isotropic distribution of facets. Because of its remarkable lack of spectral contrast, the polarized reflectance of land surfaces in the shortwave infrared spectral region, where atmospheric scattering is minimal, can be used to model the surface also at shorter wavelengths, where aerosol retrievals are attempted based on well-established scattering theories.In radiative transfer simulations, straightforward separation of the surface and atmospheric contributions is not possible without approximations because of the coupling introduced by multiple reflections. Within a general inversion framework, the problem can be eliminated by linearizing the radiative transfer calculation, and making the Jacobian (i.e., the derivative expressing the sensitivity of the reflectance with respect to model parameters) available at output. We present a general methodology based on a Gauss-Newton iterative search, which automates this procedure and eliminates de facto the need of an ad hoc atmospheric correction.In this case study we analyze the color variations in the polarized reflectance measured by the NASA Goddard Institute of Space Studies Research Scanning Polarimeter during a survey of late-season snowfields in the High Sierra. This insofar unique dataset presents challenges linked to the rugged topography associated with the alpine environment and

  18. Iterative atmospheric correction scheme and the polarization color of alpine snow

    International Nuclear Information System (INIS)

    Ottaviani, Matteo; Cairns, Brian; Ferrare, Rich; Rogers, Raymond

    2012-01-01

    Characterization of the Earth's surface is crucial to remote sensing, both to map geomorphological features and because subtracting this signal is essential during retrievals of the atmospheric constituents located between the surface and the sensor. Current operational algorithms model the surface total reflectance through a weighted linear combination of a few geometry-dependent kernels, each devised to describe a particular scattering mechanism. The information content of these measurements is overwhelmed by that of instruments with polarization capabilities: proposed models in this case are based on the Fresnel reflectance of an isotropic distribution of facets. Because of its remarkable lack of spectral contrast, the polarized reflectance of land surfaces in the shortwave infrared spectral region, where atmospheric scattering is minimal, can be used to model the surface also at shorter wavelengths, where aerosol retrievals are attempted based on well-established scattering theories. In radiative transfer simulations, straightforward separation of the surface and atmospheric contributions is not possible without approximations because of the coupling introduced by multiple reflections. Within a general inversion framework, the problem can be eliminated by linearizing the radiative transfer calculation, and making the Jacobian (i.e., the derivative expressing the sensitivity of the reflectance with respect to model parameters) available at output. We present a general methodology based on a Gauss-Newton iterative search, which automates this procedure and eliminates de facto the need of an ad hoc atmospheric correction. In this case study we analyze the color variations in the polarized reflectance measured by the NASA Goddard Institute of Space Studies Research Scanning Polarimeter during a survey of late-season snowfields in the High Sierra. This insofar unique dataset presents challenges linked to the rugged topography associated with the alpine environment

  19. Corrective Action Decision Document/Closure Report for Corrective Action Unit 106: Area 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    Matthews, Patrick; Peterson, Dawn

    2011-01-01

    Corrective Action Unit 106 comprises four corrective action sites (CASs): (1) 05-20-02, Evaporation Pond; (2) 05-23-05, Atmospheric Test Site - Able; (3) 05-45-04, 306 GZ Rad Contaminated Area; (4) 05-45-05, 307 GZ Rad Contaminated Area. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 106 based on the implementation of corrective actions. The corrective action of clean closure was implemented at CASs 05-45-04 and 05-45-05, while no corrective action was necessary at CASs 05-20-02 and 05-23-05. Corrective action investigation (CAI) activities were performed from October 20, 2010, through June 1, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of other releases (mechanical displacement and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 106 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Industrial Area exposure scenario (2,250 hours of annual exposure). The only radiological dose exceeding the FAL was at CAS 05-45-05 and was associated with potential source material (PSM). It is also assumed that additional PSM in the form of depleted uranium (DU) and DU-contaminated debris at CASs 05-45-04 and 05-45-05 exceed the FAL. Therefore, corrective actions were undertaken at these CASs that consisted of removing PSM and collecting verification

  20. Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2012-09-01

    Corrective Action Unit (CAU) 105 is located in Area 2 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 105 is a geographical grouping of sites where there has been a suspected release of contamination associated with atmospheric nuclear testing. This document describes the planned investigation of CAU 105, which comprises the following corrective action sites (CASs): • 02-23-04, Atmospheric Test Site - Whitney • 02-23-05, Atmospheric Test Site T-2A • 02-23-06, Atmospheric Test Site T-2B • 02-23-08, Atmospheric Test Site T-2 • 02-23-09, Atmospheric Test Site - Turk These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 105. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with all CAU 105 CASs are from atmospheric nuclear testing activities. The presence and nature of contamination at CAU

  1. Corrective Action Investigation Plan for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2012-08-01

    CAU 570 comprises the following six corrective action sites (CASs): • 02-23-07, Atmospheric Test Site - Tesla • 09-23-10, Atmospheric Test Site T-9 • 09-23-11, Atmospheric Test Site S-9G • 09-23-14, Atmospheric Test Site - Rushmore • 09-23-15, Eagle Contamination Area • 09-99-01, Atmospheric Test Site B-9A These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 570. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The presence and nature of contamination at CAU 570 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological

  2. Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data

    Directory of Open Access Journals (Sweden)

    Pablito M. López-Serrano

    2016-04-01

    Full Text Available Solar radiation is affected by absorption and emission phenomena during its downward trajectory from the Sun to the Earth’s surface and during the upward trajectory detected by satellite sensors. This leads to distortion of the ground radiometric properties (reflectance recorded by satellite images, used in this study to estimate aboveground forest biomass (AGB. Atmospherically-corrected remote sensing data can be used to estimate AGB on a global scale and with moderate effort. The objective of this study was to evaluate four atmospheric correction algorithms (for surface reflectance, ATCOR2 (Atmospheric Correction for Flat Terrain, COST (Cosine of the Sun Zenith Angle, FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes and 6S (Second Simulation of Satellite Signal in the Solar, and one radiometric correction algorithm (for reflectance at the sensor ToA (Apparent Reflectance at the Top of Atmosphere to estimate AGB in temperate forest in the northeast of the state of Durango, Mexico. The AGB was estimated from Landsat 5 TM imagery and ancillary information from a digital elevation model (DEM using the non-parametric multivariate adaptive regression splines (MARS technique. Field reference data for the model training were collected by systematic sampling of 99 permanent forest growth and soil research sites (SPIFyS established during the winter of 2011. The following predictor variables were identified in the MARS model: Band 7, Band 5, slope (β, Wetness Index (WI, NDVI and MSAVI2. After cross-validation, 6S was found to be the optimal model for estimating AGB (R2 = 0.71 and RMSE = 33.5 Mg·ha−1; 37.61% of the average stand biomass. We conclude that atmospheric and radiometric correction of satellite images can be used along with non-parametric techniques to estimate AGB with acceptable accuracy.

  3. Revisiting Short-Wave-Infrared (SWIR) Bands for Atmospheric Correction in Coastal Waters

    Science.gov (United States)

    Pahlevan, Nima; Roger, Jean-Claude; Ahmad, Ziauddin

    2017-01-01

    The shortwave infrared (SWIR) bands on the existing Earth Observing missions like MODIS have been designed to meet land and atmospheric science requirements. The future geostationary and polar-orbiting ocean color missions, however, require highly sensitive SWIR bands (greater than 1550nm) to allow for a precise removal of aerosol contributions. This will allow for reasonable retrievals of the remote sensing reflectance (R(sub rs)) using standard NASA atmospheric corrections over turbid coastal waters. Design, fabrication, and maintaining high-performance SWIR bands at very low signal levels bear significant costs on dedicated ocean color missions. This study aims at providing a full analysis of the utility of alternative SWIR bands within the 1600nm atmospheric window if the bands within the 2200nm window were to be excluded due to engineering/cost constraints. Following a series of sensitivity analyses for various spectral band configurations as a function of water vapor amount, we chose spectral bands centered at 1565 and 1675nm as suitable alternative bands within the 1600nm window for a future geostationary imager. The sensitivity of this band combination to different aerosol conditions, calibration uncertainties, and extreme water turbidity were studied and compared with that of all band combinations available on existing polar-orbiting missions. The combination of the alternative channels was shown to be as sensitive to test aerosol models as existing near-infrared (NIR) band combinations (e.g., 748 and 869nm) over clear open ocean waters. It was further demonstrated that while in extremely turbid waters the 1565/1675 band pair yields R(sub rs) retrievals as good as those derived from all other existing SWIR band pairs (greater than 1550nm), their total calibration uncertainties must be less than 1% to meet current science requirements for ocean color retrievals (i.e., delta R(sub rs) (443) less than 5%). We further show that the aerosol removal using the

  4. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Theory and Simulations

    Science.gov (United States)

    Borel, Christoph C.; Schlaepfer, Daniel

    1996-01-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels; (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels. (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an "Atmospheric Pre-corrected Differential Absorption" (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than +5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  5. Use of the Vis-SWIR to Aid Atmospheric Correction of Multispectral and Hyperspectral Thermal Infrared (TIR) Imagery: The TIR Model

    National Research Council Canada - National Science Library

    Gruninger, John; Fox, Marsha; Lee, Jamine; Ratkowski, Anthony J; Hoke, Michael L

    2006-01-01

    The atmospheric correction of thermal infrared (TIR) imagery involves the combined tasks of separation of atmospheric transmittance, downwelling flux and upwelling radiance from the surface material spectral emissivity and temperature...

  6. Correction

    CERN Multimedia

    2002-01-01

    Tile Calorimeter modules stored at CERN. The larger modules belong to the Barrel, whereas the smaller ones are for the two Extended Barrels. (The article was about the completion of the 64 modules for one of the latter.) The photo on the first page of the Bulletin n°26/2002, from 24 July 2002, illustrating the article «The ATLAS Tile Calorimeter gets into shape» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.

  7. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Schlaepfer, D.

    1996-03-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  8. Correction

    Directory of Open Access Journals (Sweden)

    2012-01-01

    Full Text Available Regarding Gorelik, G., & Shackelford, T.K. (2011. Human sexual conflict from molecules to culture. Evolutionary Psychology, 9, 564–587: The authors wish to correct an omission in citation to the existing literature. In the final paragraph on p. 570, we neglected to cite Burch and Gallup (2006 [Burch, R. L., & Gallup, G. G., Jr. (2006. The psychobiology of human semen. In S. M. Platek & T. K. Shackelford (Eds., Female infidelity and paternal uncertainty (pp. 141–172. New York: Cambridge University Press.]. Burch and Gallup (2006 reviewed the relevant literature on FSH and LH discussed in this paragraph, and should have been cited accordingly. In addition, Burch and Gallup (2006 should have been cited as the originators of the hypothesis regarding the role of FSH and LH in the semen of rapists. The authors apologize for this oversight.

  9. Correction

    CERN Multimedia

    2002-01-01

    The photo on the second page of the Bulletin n°48/2002, from 25 November 2002, illustrating the article «Spanish Visit to CERN» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.   The Spanish delegation, accompanied by Spanish scientists at CERN, also visited the LHC superconducting magnet test hall (photo). From left to right: Felix Rodriguez Mateos of CERN LHC Division, Josep Piqué i Camps, Spanish Minister of Science and Technology, César Dopazo, Director-General of CIEMAT (Spanish Research Centre for Energy, Environment and Technology), Juan Antonio Rubio, ETT Division Leader at CERN, Manuel Aguilar-Benitez, Spanish Delegate to Council, Manuel Delfino, IT Division Leader at CERN, and Gonzalo León, Secretary-General of Scientific Policy to the Minister.

  10. A comparison of the effectiveness of 6S and SMAC in correcting for atmospheric interference of meteosat second generation images

    DEFF Research Database (Denmark)

    Proud, Simon Richard; Fensholt, R.; Rasmussen, M.O.

    2010-01-01

    Atmospheric perturbations are a large source of uncertainty in remotely sensed imagery of the Earth's surface. This paper explores the effectiveness of the simplified method for atmospheric correction (SMAC) in reducing the effects of these perturbations in images of the African Continent gathered...... by the Spinning Enhanced Visible & InfraRed Imager (SEVIRI) aboard Meteosat Second Generation (MSG). In order to examine the accuracy of the SMAC we compare its results to those computed by the Second Simulation of the Satellite Signal in the Solar Spectrum (6SV1.1), a highly accurate radiative transfer code......, for a wide range of atmospheric conditions. We find that the SMAC does not offer a high level of accuracy under many sets of atmospheric conditions with under 20% of observations in channels 1 and 2 providing a relative error of less than 10% when compared to 6SV1.1. Those observations involving medium...

  11. Correction

    Directory of Open Access Journals (Sweden)

    2014-01-01

    Full Text Available Regarding Tagler, M. J., and Jeffers, H. M. (2013. Sex differences in attitudes toward partner infidelity. Evolutionary Psychology, 11, 821–832: The authors wish to correct values in the originally published manuscript. Specifically, incorrect 95% confidence intervals around the Cohen's d values were reported on page 826 of the manuscript where we reported the within-sex simple effects for the significant Participant Sex × Infidelity Type interaction (first paragraph, and for attitudes toward partner infidelity (second paragraph. Corrected values are presented in bold below. The authors would like to thank Dr. Bernard Beins at Ithaca College for bringing these errors to our attention. Men rated sexual infidelity significantly more distressing (M = 4.69, SD = 0.74 than they rated emotional infidelity (M = 4.32, SD = 0.92, F(1, 322 = 23.96, p < .001, d = 0.44, 95% CI [0.23, 0.65], but there was little difference between women's ratings of sexual (M = 4.80, SD = 0.48 and emotional infidelity (M = 4.76, SD = 0.57, F(1, 322 = 0.48, p = .29, d = 0.08, 95% CI [−0.10, 0.26]. As expected, men rated sexual infidelity (M = 1.44, SD = 0.70 more negatively than they rated emotional infidelity (M = 2.66, SD = 1.37, F(1, 322 = 120.00, p < .001, d = 1.12, 95% CI [0.85, 1.39]. Although women also rated sexual infidelity (M = 1.40, SD = 0.62 more negatively than they rated emotional infidelity (M = 2.09, SD = 1.10, this difference was not as large and thus in the evolutionary theory supportive direction, F(1, 322 = 72.03, p < .001, d = 0.77, 95% CI [0.60, 0.94].

  12. Atmospheric correction at AERONET locations: A new science and validation data set

    Science.gov (United States)

    Wang, Y.; Lyapustin, A.I.; Privette, J.L.; Morisette, J.T.; Holben, B.

    2009-01-01

    This paper describes an Aerosol Robotic Network (AERONET)-based Surface Reflectance Validation Network (ASRVN) and its data set of spectral surface bidirectional reflectance and albedo based on Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50 ?? 50 km2; subsets of MODIS level 1B (L1B) data from MODIS adaptive processing system and AERONET aerosol and water-vapor information. Then, it performs an atmospheric correction (AC) for about 100 AERONET sites based on accurate radiative-transfer theory with complex quality control of the input data. The ASRVN processing software consists of an L1B data gridding algorithm, a new cloud-mask (CM) algorithm based on a time-series analysis, and an AC algorithm using ancillary AERONET aerosol and water-vapor data. The AC is achieved by fitting the MODIS top-of-atmosphere measurements, accumulated for a 16-day interval, with theoretical reflectance parameterized in terms of the coefficients of the Li SparseRoss Thick (LSRT) model of the bidirectional reflectance factor (BRF). The ASRVN takes several steps to ensure high quality of results: 1) the filtering of opaque clouds by a CM algorithm; 2) the development of an aerosol filter to filter residual semitransparent and subpixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing the requirement of the consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of a seasonal backup spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixel. The ASRVN products include three parameters of the LSRT model (kL, kG, and kV), surface albedo

  13. Estimating the marine signal in the near infrared for atmospheric correction of satellite ocean-color imagery over turbid waters

    Science.gov (United States)

    Bourdet, Alice; Frouin, Robert J.

    2014-11-01

    The classic atmospheric correction algorithm, routinely applied to second-generation ocean-color sensors such as SeaWiFS, MODIS, and MERIS, consists of (i) estimating the aerosol reflectance in the red and near infrared (NIR) where the ocean is considered black (i.e., totally absorbing), and (ii) extrapolating the estimated aerosol reflectance to shorter wavelengths. The marine reflectance is then retrieved by subtraction. Variants and improvements have been made over the years to deal with non-null reflectance in the red and near infrared, a general situation in estuaries and the coastal zone, but the solutions proposed so far still suffer some limitations, due to uncertainties in marine reflectance modeling in the near infrared or difficulty to extrapolate the aerosol signal to the blue when using observations in the shortwave infrared (SWIR), a spectral range far from the ocean-color wavelengths. To estimate the marine signal (i.e., the product of marine reflectance and atmospheric transmittance) in the near infrared, the proposed approach is to decompose the aerosol reflectance in the near infrared to shortwave infrared into principal components. Since aerosol scattering is smooth spectrally, a few components are generally sufficient to represent the perturbing signal, i.e., the aerosol reflectance in the near infrared can be determined from measurements in the shortwave infrared where the ocean is black. This gives access to the marine signal in the near infrared, which can then be used in the classic atmospheric correction algorithm. The methodology is evaluated theoretically from simulations of the top-of-atmosphere reflectance for a wide range of geophysical conditions and angular geometries and applied to actual MODIS imagery acquired over the Gulf of Mexico. The number of discarded pixels is reduced by over 80% using the PC modeling to determine the marine signal in the near infrared prior to applying the classic atmospheric correction algorithm.

  14. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model

    KAUST Repository

    Li, Z. W.; Xu, Wenbin; Feng, G. C.; Hu, J.; Wang, C. C.; Ding, X. L.; Zhu, J. J.

    2012-01-01

    The propagation delay when radar signals travel from the troposphere has been one of the major limitations for the applications of high precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR). In this paper, we first present an elevation-dependent atmospheric correction model for Advanced Synthetic Aperture Radar (ASAR—the instrument aboard the ENVISAT satellite) interferograms with Medium Resolution Imaging Spectrometer (MERIS) integrated water vapour (IWV) data. Then, using four ASAR interferometric pairs over Southern California as examples, we conduct the atmospheric correction experiments with cloud-free MERIS IWV data. The results show that after the correction the rms differences between InSAR and GPS have reduced by 69.6 per cent, 29 per cent, 31.8 per cent and 23.3 per cent, respectively for the four selected interferograms, with an average improvement of 38.4 per cent. Most importantly, after the correction, six distinct deformation areas have been identified, that is, Long Beach–Santa Ana Basin, Pomona–Ontario, San Bernardino and Elsinore basin, with the deformation velocities along the radar line-of-sight (LOS) direction ranging from −20 mm yr−1 to −30 mm yr−1 and on average around −25 mm yr−1, and Santa Fe Springs and Wilmington, with a slightly low deformation rate of about −10 mm yr−1 along LOS. Finally, through the method of stacking, we generate a mean deformation velocity map of Los Angeles over a period of 5 yr. The deformation is quite consistent with the historical deformation of the area. Thus, using the cloud-free MERIS IWV data correcting synchronized ASAR interferograms can significantly reduce the atmospheric effects in the interferograms and further better capture the ground deformation and other geophysical signals.

  15. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model

    KAUST Repository

    Li, Z. W.

    2012-05-01

    The propagation delay when radar signals travel from the troposphere has been one of the major limitations for the applications of high precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR). In this paper, we first present an elevation-dependent atmospheric correction model for Advanced Synthetic Aperture Radar (ASAR—the instrument aboard the ENVISAT satellite) interferograms with Medium Resolution Imaging Spectrometer (MERIS) integrated water vapour (IWV) data. Then, using four ASAR interferometric pairs over Southern California as examples, we conduct the atmospheric correction experiments with cloud-free MERIS IWV data. The results show that after the correction the rms differences between InSAR and GPS have reduced by 69.6 per cent, 29 per cent, 31.8 per cent and 23.3 per cent, respectively for the four selected interferograms, with an average improvement of 38.4 per cent. Most importantly, after the correction, six distinct deformation areas have been identified, that is, Long Beach–Santa Ana Basin, Pomona–Ontario, San Bernardino and Elsinore basin, with the deformation velocities along the radar line-of-sight (LOS) direction ranging from −20 mm yr−1 to −30 mm yr−1 and on average around −25 mm yr−1, and Santa Fe Springs and Wilmington, with a slightly low deformation rate of about −10 mm yr−1 along LOS. Finally, through the method of stacking, we generate a mean deformation velocity map of Los Angeles over a period of 5 yr. The deformation is quite consistent with the historical deformation of the area. Thus, using the cloud-free MERIS IWV data correcting synchronized ASAR interferograms can significantly reduce the atmospheric effects in the interferograms and further better capture the ground deformation and other geophysical signals.

  16. Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination

    International Nuclear Information System (INIS)

    Shangguan Ming-Jia; Xia Hai-Yun; Dou Xian-Kang; Wang Chong; Qiu Jia-Wei; Zhang Yun-Peng; Shu Zhi-Feng; Xue Xiang-Hui

    2015-01-01

    A correction considering the effects of atmospheric temperature, pressure, and Mie contamination must be performed for wind retrieval from a Rayleigh Doppler lidar (RDL), since the so-called Rayleigh response is directly related to the convolution of the optical transmission of the frequency discriminator and the Rayleigh–Brillouin spectrum of the molecular backscattering. Thus, real-time and on-site profiles of atmospheric pressure, temperature, and aerosols should be provided as inputs to the wind retrieval. Firstly, temperature profiles under 35 km and above the altitude are retrieved, respectively, from a high spectral resolution lidar (HSRL) and a Rayleigh integration lidar (RIL) incorporating to the RDL. Secondly, the pressure profile is taken from the European Center for Medium range Weather Forecast (ECMWF) analysis, while radiosonde data are not available. Thirdly, the Klett–Fernald algorithms are adopted to estimate the Mie and Rayleigh components in the atmospheric backscattering. After that, the backscattering ratio is finally determined in a nonlinear fitting of the transmission of the atmospheric backscattering through the Fabry–Perot interferometer (FPI) to a proposed model. In the validation experiments, wind profiles from the lidar show good agreement with the radiosonde in the overlapping altitude. Finally, a continuous wind observation shows the stability of the correction scheme. (paper)

  17. TransCom satellite intercomparison experiment: construction of a bias corrected atmospheric CO2 climatology

    NARCIS (Netherlands)

    Saito, R.; Houweling, S.; Patra, P. K.; Belikov, D.; Lokupitiya, R.; Niwa, Y.; Chevallier, F.; Saeki, T.; Maksyutov, S.

    2011-01-01

    A model-based three-dimensional (3-D) climatology of atmospheric CO2 concentrations has been constructed for the analysis of satellite observations, as a priori information in retrieval calculations, and for preliminary evaluation of remote sensing products. The locations of ground-based instruments

  18. Atmospheric correction for JPSS-2 VIIRS response versus scan angle measurements

    Science.gov (United States)

    McIntire, Jeffrey; Moeller, Chris; Oudrari, Hassan; Xiong, Xiaoxiong

    2017-09-01

    The Joint Polar Satellite System 2 (JPSS-2) Visible Infrared Imaging Radiometer Suite (VIIRS) includes one spectral band centered in a strong atmospheric absorption region. As much of the pre-launch calibration is performed under laboratory ambient conditions, accurately accounting for the absorption, and thereby ensuring the transfer of the sensor calibration to on-orbit operations, is necessary to generate science quality data products. This work is focused on the response versus scan angle (RVS) measurements, which characterize the relative scan angle dependent reflectance of the JPSS-2 VIIRS instrument optics. The spectral band of interest, centered around 1378 nm, is within a spectral region strongly effected by water vapor absorption. The methodology used to model the absolute humidity and the atmospheric transmittance under the laboratory conditions is detailed. The application of this transmittance to the RVS determination is then described including an uncertainty estimate; a comparison to the pre-launch measurements from earlier sensor builds is also performed.

  19. The Ocean Colour Climate Change Initiative: I. A Methodology for Assessing Atmospheric Correction Processors Based on In-Situ Measurements

    Science.gov (United States)

    Muller, Dagmar; Krasemann, Hajo; Brewin, Robert J. W.; Deschamps, Pierre-Yves; Doerffer, Roland; Fomferra, Norman; Franz, Bryan A.; Grant, Mike G.; Groom, Steve B.; Melin, Frederic; hide

    2015-01-01

    The Ocean Colour Climate Change Initiative intends to provide a long-term time series of ocean colour data and investigate the detectable climate impact. A reliable and stable atmospheric correction procedure is the basis for ocean colour products of the necessary high quality. In order to guarantee an objective selection from a set of four atmospheric correction processors, the common validation strategy of comparisons between in-situ and satellite derived water leaving reflectance spectra, is extended by a ranking system. In principle, the statistical parameters such as root mean square error, bias, etc. and measures of goodness of fit, are transformed into relative scores, which evaluate the relationship of quality dependent on the algorithms under study. The sensitivity of these scores to the selected database has been assessed by a bootstrapping exercise, which allows identification of the uncertainty in the scoring results. Although the presented methodology is intended to be used in an algorithm selection process, this paper focusses on the scope of the methodology rather than the properties of the individual processors.

  20. The effect of meteorological data on atmospheric pressure loading corrections in VLBI data analysis

    Science.gov (United States)

    Balidakis, Kyriakos; Glaser, Susanne; Karbon, Maria; Soja, Benedikt; Nilsson, Tobias; Lu, Cuixian; Anderson, James; Liu, Li; Andres Mora-Diaz, Julian; Raposo-Pulido, Virginia; Xu, Minghui; Heinkelmann, Robert; Schuh, Harald

    2015-04-01

    Earth's crustal deformation is a manifestation of numerous geophysical processes, which entail the atmosphere and ocean general circulation and tidal attraction, climate change, and the hydrological circle. The present study deals with the elastic deformations induced by atmospheric pressure variations. At geodetic sites, APL (Atmospheric Pressure Loading) results in displacements covering a wide range of temporal scales which is undesirable when rigorous geodetic/geophysical analysis is intended. Hence, it is of paramount importance that the APL signal are removed at the observation level in the space geodetic data analysis. In this study, elastic non-tidal components of loading displacements were calculated in the local topocentric frame for all VLBI (Very Long Baseline Interferometry) stations with respect to the center-of-figure of the solid Earth surface and the center-of-mass of the total Earth system. The response of the Earth to the load variation at the surface was computed by convolving Farrell Green's function with the homogenized in situ surface pressure observations (in the time span 1979-2014) after the subtraction of the reference pressure and the S1, S2 and S3 thermal tidal signals. The reference pressure was calculated through a hypsometric adjustment of the absolute pressure level determined from World Meteorological Organization stations in the vicinity of each VLBI observatory. The tidal contribution was calculated following the 2010 International Earth Rotation and Reference Systems Service conventions. Afterwards, this approach was implemented into the VLBI software VieVS@GFZ and the entirety of available VLBI sessions was analyzed. We rationalize our new approach on the basis that the potential error budget is substantially reduced, since several common errors are not applicable in our approach, e.g. those due to the finite resolution of NWM (Numerical Weather Models), the accuracy of the orography model necessary for adjusting the former as

  1. Towards PACE Atmospheric Correction, Aerosol and Cloud Products: Making Use of Expanded Spectral, Angular and Polarimetric Information.

    Science.gov (United States)

    Remer, L. A.; Boss, E.; Ahmad, Z.; Cairns, B.; Chowdhary, J.; Coddington, O.; Davis, A. B.; Dierssen, H. M.; Diner, D. J.; Franz, B. A.; Frouin, R.; Gao, B. C.; Garay, M. J.; Heidinger, A.; Ibrahim, A.; Kalashnikova, O. V.; Knobelspiesse, K. D.; Levy, R. C.; Omar, A. H.; Meyer, K.; Platnick, S. E.; Seidel, F. C.; van Diedenhoven, B.; Werdell, J.; Xu, F.; Zhai, P.; Zhang, Z.

    2017-12-01

    NASA's Science Team for the Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) mission is concluding three years of study exploring the science potential of expanded spectral, angular and polarization capability for space-based retrievals of water leaving radiance, aerosols and clouds. The work anticipates future development of retrievals to be applied to the PACE Ocean Color Instrument (OCI) and/or possibly a PACE Multi-Angle Polarimeter (MAP). In this presentation we will report on the Science Team's accomplishments associated with the atmosphere (significant efforts are also directed by the ST towards the ocean). Included in the presentation will be sensitivity studies that explore new OCI capabilities for aerosol and cloud layer height, aerosol absorption characterization, cloud property retrievals, and how we intend to move from heritage atmospheric correction algorithms to make use of and adjust to OCI's hyperspectral and UV wavelengths. We will then address how capabilities will improve with the PACE MAP, how these capabilities from both OCI and MAP correspond to specific societal benefits from the PACE mission, and what is still needed to close the gaps in our understanding before the PACE mission can realize its full potential.

  2. Caracterisation, modelisation et validation du transfert radiatif d'atmospheres non standard; impact sur les corrections atmospheriques d'images de teledetection

    Science.gov (United States)

    Zidane, Shems

    This study is based on data acquired with an airborne multi-altitude sensor on July 2004 during a nonstandard atmospheric event in the region of Saint-Jean-sur-Richelieu, Quebec. By non-standard atmospheric event we mean an aerosol atmosphere that does not obey the typical monotonic, scale height variation employed in virtually all atmospheric correction codes. The surfaces imaged during this field campaign included a diverse variety of targets : agricultural land, water bodies, urban areas and forests. The multi-altitude approach employed in this campaign allowed us to better understand the altitude dependent influence of the atmosphere over the array of ground targets and thus to better characterize the perturbation induced by a non-standard (smoke) plume. The transformation of the apparent radiance at 3 different altitudes into apparent reflectance and the insertion of the plume optics into an atmospheric correction model permitted an atmospheric correction of the apparent reflectance at the two higher altitudes. The results showed consistency with the apparent validation reflectances derived from the lowest altitude radiances. This approach effectively confirmed the accuracy of our non-standard atmospheric correction approach. This test was particularly relevant at the highest altitude of 3.17 km : the apparent reflectances at this altitude were above most of the plume and therefore represented a good test of our ability to adequately correct for the influence of the perturbation. Standard atmospheric disturbances are obviously taken into account in most atmospheric correction models, but these are based on monotonically decreasing aerosol variations with increasing altitude. When the atmospheric radiation is affected by a plume or a local, non-standard pollution event, one must adapt the existing models to the radiative transfer constraints of the local perturbation and to the reality of the measurable parameters available for ingestion into the model. The

  3. Assessment of capabilities of multiangle imaging photo-polarimetry for atmospheric correction in presence of absorbing aerosols

    Science.gov (United States)

    Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F. C.; Diner, D. J.

    2015-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard

  4. Evaluation of applicability of high-resolution multiangle imaging photo-polarimetric observations for aerosol atmospheric correction

    Science.gov (United States)

    Kalashnikova, Olga; Garay, Michael; Xu, Feng; Diner, David; Seidel, Felix

    2016-07-01

    Multiangle spectro-polarimetric measurements have been advocated as an additional tool for better understanding and quantifying the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of this work is the assessment of the effects of absorbing aerosol properties on remote sensing reflectance measurement uncertainty caused by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. In this work a vector Markov Chain radiative transfer code including bio-optical models was used to quantitatively evaluate in water leaving radiances between atmospheres containing realistic UV-enhanced and non-spherical aerosols and the SEADAS carbonaceous and dust-like aerosol models. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach developed for modeling dust for the AERONET network of ground-based sunphotometers. As a next step, we have developed a retrieval code that employs a coupled Markov Chain (MC) and adding/doubling radiative transfer method for joint retrieval of aerosol properties and water leaving radiance from Airborne Multiangle SpectroPolarimetric Imager-1 (AirMSPI-1) polarimetric observations. The AirMSPI-1 instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI typically acquires observations of a target area at 9 view angles between ±67° at 10 m resolution. AirMSPI spectral channels are centered at 355, 380, 445, 470, 555, 660, and 865 nm, with 470, 660, and 865 reporting linear polarization. We

  5. Spectral relationships for atmospheric correction. I. Validation of red and near infra-red marine reflectance relationships.

    Science.gov (United States)

    Goyens, C; Jamet, C; Ruddick, K G

    2013-09-09

    The present study provides an extensive overview of red and near infra-red (NIR) spectral relationships found in the literature and used to constrain red or NIR-modeling schemes in current atmospheric correction (AC) algorithms with the aim to improve water-leaving reflectance retrievals, ρw(λ), in turbid waters. However, most of these spectral relationships have been developed with restricted datasets and, subsequently, may not be globally valid, explaining the need of an accurate validation exercise. Spectral relationships are validated here with turbid in situ data for ρw(λ). Functions estimating ρw(λ) in the red were only valid for moderately turbid waters (ρw(λNIR) turbidity ranges presented in the in situ dataset. In the NIR region of the spectrum, the constant NIR reflectance ratio suggested by Ruddick et al. (2006) (Limnol. Oceanogr. 51, 1167-1179), was valid for moderately to very turbid waters (ρw(λNIR) turbid waters (ρw(λNIR) > 10(-2)). The results of this study suggest to use the red bounding equations and the polynomial NIR function to constrain red or NIR-modeling schemes in AC processes with the aim to improve ρw(λ) retrievals where current AC algorithms fail.

  6. A time series approach to the correction for atmosphere effects and the significance of a semi-diurnal variation in corrected intensities of secondary cosmic ray neutrons and mesons (NM64 and MT64)

    International Nuclear Information System (INIS)

    Huijsmans, D.P.

    1982-01-01

    The aim of this research was to distinguish as accurately as possible between two mechanisms behind a half-daily variation in detected numbers of neutrons and mesons in the secondary cosmic ray particles at sea level. These two mechanisms are due to air pressure variations at sea level and affect the number of primary particles with a certain arrival direction. The distribution among arrival directions in the ecliptic plane varies if a gradient exists in the guiding centre density of primaries in directions perpendicular to the neutral sheet. Chapter 2 is devoted to the calculation of a physically and statistically justifiable determination of the barometric coefficient for neutron measurements and air pressures. Chapter 3 deals with the estimation of atmospheric correction coefficients for the elimination of the influence of changing atmospheric conditions on the number of detected mesons. For mesons the variation of total mass, and also the variations in mass-distribution along the trajectory of the mesons are important. After correction for atmospheric variations using the resulting atmospheric correction coefficients from chapter 2 and 3, the influence of the structure of the interplanetary magnetic field near the earth is examined in chapter 4. 0inally, in chapter 5, a power spectral analysis of variations in corrected intensities of neutrons and mesons is carried out. Such an analysis distinguishes the variance of a time series into contributions within small frequency intervals. From the power spectra of variations on a yearly basis, a statistically fundamented judgement can be given as to the significance of the semi-diurnal variation during the different phases of the solar magnetic activity cycle. (Auth.)

  7. Corrective Action Decision Document/Closure Report for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada with ROTC 1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Sloop, Christy

    2013-04-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 569: Area 3 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 569 comprises the following nine corrective action sites (CASs): • 03-23-09, T-3 Contamination Area • 03-23-10, T-3A Contamination Area • 03-23-11, T-3B Contamination Area • 03-23-12, T-3S Contamination Area • 03-23-13, T-3T Contamination Area • 03-23-14, T-3V Contamination Area • 03-23-15, S-3G Contamination Area • 03-23-16, S-3H Contamination Area • 03-23-21, Pike Contamination Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 569 based on the implementation of the corrective actions listed in Table ES-2.

  8. Corrective Action Investigation Plan for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews; Christy Sloop

    2012-02-01

    Corrective Action Unit (CAU) 569 is located in Area 3 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 569 comprises the nine numbered corrective action sites (CASs) and one newly identified site listed below: (1) 03-23-09, T-3 Contamination Area (hereafter referred to as Annie, Franklin, George, and Moth); (2) 03-23-10, T-3A Contamination Area (hereafter referred to as Harry and Hornet); (3) 03-23-11, T-3B Contamination Area (hereafter referred to as Fizeau); (4) 03-23-12, T-3S Contamination Area (hereafter referred to as Rio Arriba); (5) 03-23-13, T-3T Contamination Area (hereafter referred to as Catron); (6) 03-23-14, T-3V Contamination Area (hereafter referred to as Humboldt); (7) 03-23-15, S-3G Contamination Area (hereafter referred to as Coulomb-B); (8) 03-23-16, S-3H Contamination Area (hereafter referred to as Coulomb-A); (9) 03-23-21, Pike Contamination Area (hereafter referred to as Pike); and (10) Waste Consolidation Site 3A. Because CAU 569 is a complicated site containing many types of releases, it was agreed during the data quality objectives (DQO) process that these sites will be grouped. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the DQOs developed on September 26, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO

  9. Instrumentation for the observation of atmospheric parameters, relevant for IACTs, for site-search and correction of the energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fruck, Christian; Hose, Juergen; Engelhardt, Toni; Mirzoyan, Razmik; Schweizer, Thomas; Teshima, Masahiro [Max Plank Institut fuer Physik, Muenchen (Germany)

    2010-07-01

    The atmospheric conditions have impact on the measured data by imaging atmospheric Cherenkov telescopes (IACT). Cherenkov light from air showers traverses 5-25 km distance in the atmosphere before reaching the telescopes. This light becomes attenuated because of absorption by oxigen and ozone as well as because of the Rayleigh and the Mie scatterings. The latter is the variable component in the atmosphere that depends on the momentary distribution of aerosols, their size and types and distribution heights. We have developed a micro-LIDAR system for parametrising these losses and plan to locate it next to the MAGIC telescopes for simultaneous operation. This shall allow us to improve the energy resolution of the telescopes for the data taken at non-ideal weather conditions. Also, we are working on developing diverse instrumentation for paramerising the atmosphere and for the searching proper sites for the CTA project. In our presentation we plan to report about the above-mentioned activities.

  10. A Big Data Approach for Situation-Aware estimation, correction and prediction of aerosol effects, based on MODIS Joint Atmosphere product (collection 6) time series data

    Science.gov (United States)

    Singh, A. K.; Toshniwal, D.

    2017-12-01

    The MODIS Joint Atmosphere product, MODATML2 and MYDATML2 L2/3 provided by LAADS DAAC (Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center) re-sampled from medium resolution MODIS Terra /Aqua Satellites data at 5km scale, contains Cloud Reflectance, Cloud Top Temperature, Water Vapor, Aerosol Optical Depth/Thickness, Humidity data. These re-sampled data, when used for deriving climatic effects of aerosols (particularly in case of cooling effect) still exposes limitations in presence of uncertainty measures in atmospheric artifacts such as aerosol, cloud, cirrus cloud etc. The effect of uncertainty measures in these artifacts imposes an important challenge for estimation of aerosol effects, adequately affecting precise regional weather modeling and predictions: Forecasting and recommendation applications developed largely depend on these short-term local conditions (e.g. City/Locality based recommendations to citizens/farmers based on local weather models). Our approach inculcates artificial intelligence technique for representing heterogeneous data(satellite data along with air quality data from local weather stations (i.e. in situ data)) to learn, correct and predict aerosol effects in the presence of cloud and other atmospheric artifacts, defusing Spatio-temporal correlations and regressions. The Big Data process pipeline consisting correlation and regression techniques developed on Apache Spark platform can easily scale for large data sets including many tiles (scenes) and over widened time-scale. Keywords: Climatic Effects of Aerosols, Situation-Aware, Big Data, Apache Spark, MODIS Terra /Aqua, Time Series

  11. E-Collaboration for Earth Observation (E-CEO) with the example of Contest #3 that focuses on the Atmospheric Correction of Ocean Colour data

    Science.gov (United States)

    Lavender, Samantha; Brito, Fabrice; Aas, Christina; Casu, Francesco; Ribeiro, Rita; Farres, Jordi

    2014-05-01

    Data challenges are becoming the new method to promote innovation within data-intensive applications; building or evolving user communities and potentially developing sustainable commercial services. These can utilise the vast amount of information (both in scope and volume) that's available online, and profits from reduced processing costs. Data Challenges are also closely related to the recent paradigm shift towards e-Science, also referred to as "data-intensive science'. The E-CEO project aims to deliver a collaborative platform that, through Data Challenge Contests, will improve the adoption and outreach of new applications and methods to processes Earth Observation (EO) data. Underneath, the backbone must be a common environment where the applications can be developed, deployed and executed. Then, the results need to be easily published in a common visualization platform for their effective validation, evaluation and transparent peer comparisons. Contest #3 is based around the atmospheric correction (AC) of ocean colour data with a particular focus on the use of auxiliary data files for processing Level 1 (Top of Atmosphere, TOA, calibrated radiances/reflectances) to Level 2 products (Bottom of Atmosphere, BOA, calibrated radiances/reflectance and derived products). Scientific researchers commonly accept the auxiliary inputs that they've been provided with and/or use the climatological data that accompanies the processing software; often because it can be difficult to obtain multiple data sources and convert them into a format the software accepts. Therefore, it's proposed to compare various ocean colour AC approaches and in the process study the uncertainties associated with using different meteorological auxiliary products for the processing of Medium Resolution Imaging Spectrometer (MERIS) i.e. the sensitivity of different atmospheric correction input assumptions.

  12. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Application to AVIRIS 91/95 Data

    Science.gov (United States)

    Schlaepfer, Daniel; Borel, Christoph C.; Keller, Johannes; Itten, Klaus I.

    1996-01-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 nm resolution. This data includes the information on constituents of the earth's surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various ratioing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, the spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. The objective of this work is to test the best performing differential absorption techniques for imaging spectrometry of

  13. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Application to AVIRIS 91/95 data

    Energy Technology Data Exchange (ETDEWEB)

    Schlaepfer, D. [Univ. of Zuerich (Switzerland). Dept. of Geography; Borel, C.C. [Los Alamos National Lab., NM (United States); Keller, J. [Paul Scherrer Institut, Villigen (Switzerland)] [and others

    1996-03-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 run resolution. This data includes information on constituents of the earth`s surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various rationing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. This work testS the best performing differential absorption techniques for imaging spectrometry of tropospheric water vapor.

  14. Surface roughness considerations for atmospheric correction of ocean color sensors. I - The Rayleigh-scattering component. II - Error in the retrieved water-leaving radiance

    Science.gov (United States)

    Gordon, Howard R.; Wang, Menghua

    1992-01-01

    The first step in the Coastal Zone Color Scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering (RS) contribution, L sub r, to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm, L sub r is computed by assuming that the ocean surface is flat. Calculations of the radiance leaving an RS atmosphere overlying a rough Fresnel-reflecting ocean are presented to evaluate the radiance error caused by the flat-ocean assumption. Simulations are carried out to evaluate the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct sun glitter, it is concluded that the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness. This suggests that, in refining algorithms for future sensors, more effort should be focused on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.

  15. Joint release rate estimation and measurement-by-measurement model correction for atmospheric radionuclide emission in nuclear accidents: An application to wind tunnel experiments.

    Science.gov (United States)

    Li, Xinpeng; Li, Hong; Liu, Yun; Xiong, Wei; Fang, Sheng

    2018-03-05

    The release rate of atmospheric radionuclide emissions is a critical factor in the emergency response to nuclear accidents. However, there are unavoidable biases in radionuclide transport models, leading to inaccurate estimates. In this study, a method that simultaneously corrects these biases and estimates the release rate is developed. Our approach provides a more complete measurement-by-measurement correction of the biases with a coefficient matrix that considers both deterministic and stochastic deviations. This matrix and the release rate are jointly solved by the alternating minimization algorithm. The proposed method is generic because it does not rely on specific features of transport models or scenarios. It is validated against wind tunnel experiments that simulate accidental releases in a heterogonous and densely built nuclear power plant site. The sensitivities to the position, number, and quality of measurements and extendibility of the method are also investigated. The results demonstrate that this method effectively corrects the model biases, and therefore outperforms Tikhonov's method in both release rate estimation and model prediction. The proposed approach is robust to uncertainties and extendible with various center estimators, thus providing a flexible framework for robust source inversion in real accidents, even if large uncertainties exist in multiple factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. THE CARMA PAIRED ANTENNA CALIBRATION SYSTEM: ATMOSPHERIC PHASE CORRECTION FOR MILLIMETER WAVE INTERFEROMETRY AND ITS APPLICATION TO MAPPING THE ULTRALUMINOUS GALAXY ARP 193

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B. Ashley; Bolatto, Alberto D.; Vogel, Stuart N.; Curley, Roger; Pound, Marc W.; Mundy, Lee G.; Teng, Stacy H.; Teuben, Peter J. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Carpenter, John M. [California Institute of Technology, Department of Astronomy, MC 249-17, Pasadena, CA 91125 (United States); Peréz, Laura M. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Lamb, James W.; Woody, David P.; Leitch, Erik M.; Muchovej, Stephen J.; Volgenau, Nikolaus H. [California Institute of Technology, Owens Valley Radio Observatory, Big Pine, CA 93513 (United States); Bock, Douglas C.-J. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW 1710 (Australia); Carlstrom, John E.; Culverhouse, Thomas L. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Plambeck, Richard L. [Radio Astronomy Laboratory, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Marrone, Daniel P. [Department of Astronomy, Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); and others

    2016-01-15

    Phase fluctuations introduced by the atmosphere are the main limiting factor in attaining diffraction limited performance in extended interferometric arrays at millimeter and submillimeter wavelengths. We report the results of C-PACS, the Combined Array for Research in Millimeter-Wave Astronomy Paired Antenna Calibration System. We present a systematic study of several hundred test observations taken during the 2009–2010 winter observing season where we utilize CARMA's eight 3.5 m antennas to monitor an atmospheric calibrator while simultaneously acquiring science observations with 6.1 and 10.4 m antennas on baselines ranging from a few hundred meters to ∼2 km. We find that C-PACS is systematically successful at improving coherence on long baselines under a variety of atmospheric conditions. We find that the angular separation between the atmospheric calibrator and target source is the most important consideration, with consistently successful phase correction at CARMA requiring a suitable calibrator located ≲6° away from the science target. We show that cloud cover does not affect the success of C-PACS. We demonstrate C-PACS in typical use by applying it to the observations of the nearby very luminous infrared galaxy Arp 193 in {sup 12}CO(2-1) at a linear resolution of ≈70 pc (0.″12 × 0.″18), 3 times better than previously published molecular maps of this galaxy. We resolve the molecular disk rotation kinematics and the molecular gas distribution and measure the gas surface densities and masses on 90 pc scales. We find that molecular gas constitutes ∼30% of the dynamical mass in the inner 700 pc of this object with a surface density ∼10{sup 4} M{sub ⊙} pc{sup −2}; we compare these properties to those of the starburst region of NGC 253.

  17. The Ocean Colour Climate Change Initiative: II. Spatial and Temporal Homogeneity of Satellite Data Retrieval Due to Systematic Effects in Atmospheric Correction Processors

    Science.gov (United States)

    Muller, Dagmar; Krasemann, Hajo; Brewin, Robert J. W.; Brockmann, Carsten; Deschamps, Pierre-Yves; Fomferra, Norman; Franz, Bryan A.; Grant, Mike G.; Groom, Steve B.; Melin, Frederic; hide

    2015-01-01

    The established procedure to access the quality of atmospheric correction processors and their underlying algorithms is the comparison of satellite data products with related in-situ measurements. Although this approach addresses the accuracy of derived geophysical properties in a straight forward fashion, it is also limited in its ability to catch systematic sensor and processor dependent behaviour of satellite products along the scan-line, which might impair the usefulness of the data in spatial analyses. The Ocean Colour Climate Change Initiative (OC-CCI) aims to create an ocean colour dataset on a global scale to meet the demands of the ecosystem modelling community. The need for products with increasing spatial and temporal resolution that also show as little systematic and random errors as possible, increases. Due to cloud cover, even temporal means can be influenced by along-scanline artefacts if the observations are not balanced and effects cannot be cancelled out mutually. These effects can arise from a multitude of results which are not easily separated, if at all. Among the sources of artefacts, there are some sensor-specific calibration issues which should lead to similar responses in all processors, as well as processor-specific features which correspond with the individual choices in the algorithms. A set of methods is proposed and applied to MERIS data over two regions of interest in the North Atlantic and the South Pacific Gyre. The normalised water leaving reflectance products of four atmospheric correction processors, which have also been evaluated in match-up analysis, is analysed in order to find and interpret systematic effects across track. These results are summed up with a semi-objective ranking and are used as a complement to the match-up analysis in the decision for the best Atmospheric Correction (AC) processor. Although the need for discussion remains concerning the absolutes by which to judge an AC processor, this example demonstrates

  18. NWS Corrections to Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Form B-14 is the National Weather Service form entitled 'Notice of Corrections to Weather Records.' The forms are used to make corrections to observations on forms...

  19. Linear versus Nonlinear Filtering with Scale-Selective Corrections for Balanced Dynamics in a Simple Atmospheric Model

    KAUST Repository

    Subramanian, Aneesh C.

    2012-11-01

    This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.

  20. Linear versus Nonlinear Filtering with Scale-Selective Corrections for Balanced Dynamics in a Simple Atmospheric Model

    KAUST Repository

    Subramanian, Aneesh C.; Hoteit, Ibrahim; Cornuelle, Bruce; Miller, Arthur J.; Song, Hajoon

    2012-01-01

    This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.

  1. Phytoextraction of arsenic-contaminated soil with Pteris vittata in Henan Province, China: comprehensive evaluation of remediation efficiency correcting for atmospheric depositions.

    Science.gov (United States)

    Lei, Mei; Wan, Xiaoming; Guo, Guanghui; Yang, Junxing; Chen, Tongbin

    2018-01-01

    Research on the appropriate method for evaluating phytoremediation efficiency is limited. A 2-year field experiment was conducted to investigate phytoremediation efficiency using the hyperaccumulator Pteris vittata on an arsenic (As)-contaminated site. The remediation efficiency was evaluated through the removal rate of As in soils and extraction rate of heavy metals in plants. After 2 years of remediation, the concentration of total As in soils decreased from 16.27 mg kg -1 in 2012 to 14.58 mg kg -1 in 2014. The total remediation efficiency of As was 10.39% in terms of the removal rate of heavy metals calculated for soils, whereas the remediation efficiency calculated from As uptake by P. vittata was 16.09%. Such a discrepancy aroused further consideration on the potential input of As. A large amount of As was brought in by atmospheric emissions, which possibly biased the calculation of remediation efficiency. In fact, considering also the atmospheric depositions of As, the corrected removal rate of As from soil was 16.57%. Therefore, the results of this work suggest that (i) when evaluating the phytoextraction efficiency, the whole input and output cycle of the element of interest in the targeted ecosystem must be considered, and (ii) P. vittata has the potential to be used to remediate As-contaminated soils in Henan Province, China.

  2. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters

    Directory of Open Access Journals (Sweden)

    Stéfani Novoa

    2017-01-01

    Full Text Available The accurate measurement of suspended particulate matter (SPM concentrations in coastal waters is of crucial importance for ecosystem studies, sediment transport monitoring, and assessment of anthropogenic impacts in the coastal ocean. Ocean color remote sensing is an efficient tool to monitor SPM spatio-temporal variability in coastal waters. However, near-shore satellite images are complex to correct for atmospheric effects due to the proximity of land and to the high level of reflectance caused by high SPM concentrations in the visible and near-infrared spectral regions. The water reflectance signal (ρw tends to saturate at short visible wavelengths when the SPM concentration increases. Using a comprehensive dataset of high-resolution satellite imagery and in situ SPM and water reflectance data, this study presents (i an assessment of existing atmospheric correction (AC algorithms developed for turbid coastal waters; and (ii a switching method that automatically selects the most sensitive SPM vs. ρw relationship, to avoid saturation effects when computing the SPM concentration. The approach is applied to satellite data acquired by three medium-high spatial resolution sensors (Landsat-8/Operational Land Imager, National Polar-Orbiting Partnership/Visible Infrared Imaging Radiometer Suite and Aqua/Moderate Resolution Imaging Spectrometer to map the SPM concentration in some of the most turbid areas of the European coastal ocean, namely the Gironde and Loire estuaries as well as Bourgneuf Bay on the French Atlantic coast. For all three sensors, AC methods based on the use of short-wave infrared (SWIR spectral bands were tested, and the consistency of the retrieved water reflectance was examined along transects from low- to high-turbidity waters. For OLI data, we also compared a SWIR-based AC (ACOLITE with a method based on multi-temporal analyses of atmospheric constituents (MACCS. For the selected scenes, the ACOLITE-MACCS difference was

  3. Cross sections for atmospheric corrections

    International Nuclear Information System (INIS)

    Meyer, J.P.; Casse, M.; Westergaard, N.

    1975-01-01

    A set of cross sections for spallation of relativistic nuclei is proposed based on (i) the best available proton cross sections, (ii) an extrapolation to heavier nuclei of the dependence on the number of nucleons lost of the 'target factor' observed for C 12 and O 16 by Lindstrom et al. (1975), in analogy with Rudstam's formalism, and (iii) on a normalization of all cross sections to the total cross sections for production of fragments with Asub(f) >= 6. The obtained cross sections for peripheral interactions are not inconsistent with simple geometrical considerations. (orig.) [de

  4. Atmospheric correction of SeaWiFS ocean color imagery in the presence of absorbing aerosols off the Indian coast using a neuro-variational method

    Science.gov (United States)

    Brajard, J.; Moulin, C.; Thiria, S.

    2008-10-01

    This paper presents a comparison of the atmospheric correction accuracy between the standard sea-viewing wide field-of-view sensor (SeaWiFS) algorithm and the NeuroVaria algorithm for the ocean off the Indian coast in March 1999. NeuroVaria is a general method developed to retrieve aerosol optical properties and water-leaving reflectances for all types of aerosols, including absorbing ones. It has been applied to SeaWiFS images of March 1999, during an episode of transport of absorbing aerosols coming from pollutant sources in India. Water-leaving reflectances and aerosol optical thickness estimated by the two methods were extracted along a transect across the aerosol plume for three days. The comparison showed that NeuroVaria allows the retrieval of oceanic properties in the presence of absorbing aerosols with a better spatial and temporal stability than the standard SeaWiFS algorithm. NeuroVaria was then applied to the available SeaWiFS images over a two-week period. NeuroVaria algorithm retrieves ocean products for a larger number of pixels than the standard one and eliminates most of the discontinuities and artifacts associated with the standard algorithm in presence of absorbing aerosols.

  5. Fault of the correction factor for pressure and temperature kPT in the atmospheric conditions of Dosimetric Calibration Lab. - LSCD of ININ - Mexico

    International Nuclear Information System (INIS)

    Alvarez R, Jose T.; Jesus Cejudo, A.; La Cruz H., Daniel de; Tovar M, Victor M.

    2013-01-01

    The realization of the operational quantities H*, Hp y/0 H'(0.07) for estimating the effective dose E, usually is done by measuring the air kerma Ka air within the field of ionizing radiation of interest and was subsequently applied appropriate conversion factors for both the quality of radiation and the operational quantity of interest. However, the SSDL in performing the Ka to environmental conditions of ININ (3000 m above sea level, P ∼ 710 hPa) with ionization chambers has found that the pressure correction factor and kPT temperature is not sufficient to correct the change in air density. Indeed, in the case of 60 Co the discrepancy between the measurement of a primary standard graphite walls Ka (BEV CC01 be 131) and a side of the plastic walls (Exradin A12) is on the order of 0.4% for the case of the RX BIPM qualities to 100,135, 180 and 250 kV. It was found that for a camera model 30001 PTW (PMMA graphite wall) is needed an additional correction factor k PT ranging from 0.4% to 1.5%, correction factor calculated by MC simulation. For Sk of 125 I brachytherapy sources was given an additional correction lower in 11% compared to conventional k PT value measured with a well chamber Standard Imaging HDR 1000 plus. Finally, it is in the process of studying the behavior of this additional correction factor to the case of 137 Cs

  6. Using the CIFIST grid of CO5BOLD 3D model atmospheres to study the effects of stellar granulation on photometric colours. I. Grids of 3D corrections in the UBVRI, 2MASS, HIPPARCOS, Gaia, and SDSS systems

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Ludwig, H.-G.; Steffen, M.; Castelli, F.; Gallagher, A. J.; Kučinskas, A.; Prakapavičius, D.; Cayrel, R.; Freytag, B.; Plez, B.; Homeier, D.

    2018-03-01

    Context. The atmospheres of cool stars are temporally and spatially inhomogeneous due to the effects of convection. The influence of this inhomogeneity, referred to as granulation, on colours has never been investigated over a large range of effective temperatures and gravities. Aim. We aim to study, in a quantitative way, the impact of granulation on colours. Methods: We use the CIFIST (Cosmological Impact of the FIrst Stars) grid of CO5BOLD (COnservative COde for the COmputation of COmpressible COnvection in a BOx of L Dimensions, L = 2, 3) hydrodynamical models to compute emerging fluxes. These in turn are used to compute theoretical colours in the UBV RI, 2MASS, HIPPARCOS, Gaia and SDSS systems. Every CO5BOLD model has a corresponding one dimensional (1D) plane-parallel LHD (Lagrangian HydroDynamics) model computed for the same atmospheric parameters, which we used to define a "3D correction" that can be applied to colours computed from fluxes computed from any 1D model atmosphere code. As an example, we illustrate these corrections applied to colours computed from ATLAS models. Results: The 3D corrections on colours are generally small, of the order of a few hundredths of a magnitude, yet they are far from negligible. We find that ignoring granulation effects can lead to underestimation of Teff by up to 200 K and overestimation of gravity by up to 0.5 dex, when using colours as diagnostics. We have identified a major shortcoming in how scattering is treated in the current version of the CIFIST grid, which could lead to offsets of the order 0.01 mag, especially for colours involving blue and UV bands. We have investigated the Gaia and HIPPARCOS photometric systems and found that the (G - Hp), (BP - RP) diagram is immune to the effects of granulation. In addition, we point to the potential of the RVS photometry as a metallicity diagnostic. Conclusions: Our investigation shows that the effects of granulation should not be neglected if one wants to use colours as

  7. Publisher Correction

    DEFF Research Database (Denmark)

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M

    2018-01-01

    In the published version of this paper, the name of author Emanuele Di Angelantonio was misspelled. This error has now been corrected in the HTML and PDF versions of the article.......In the published version of this paper, the name of author Emanuele Di Angelantonio was misspelled. This error has now been corrected in the HTML and PDF versions of the article....

  8. Author Correction

    DEFF Research Database (Denmark)

    Grundle, D S; Löscher, C R; Krahmann, G

    2018-01-01

    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.......A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper....

  9. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...

  10. Publisher Correction

    DEFF Research Database (Denmark)

    Stokholm, Jakob; Blaser, Martin J.; Thorsen, Jonathan

    2018-01-01

    The originally published version of this Article contained an incorrect version of Figure 3 that was introduced following peer review and inadvertently not corrected during the production process. Both versions contain the same set of abundance data, but the incorrect version has the children...

  11. Publisher Correction

    DEFF Research Database (Denmark)

    Flachsbart, Friederike; Dose, Janina; Gentschew, Liljana

    2018-01-01

    The original version of this Article contained an error in the spelling of the author Robert Häsler, which was incorrectly given as Robert Häesler. This has now been corrected in both the PDF and HTML versions of the Article....

  12. Correction to

    DEFF Research Database (Denmark)

    Roehle, Robert; Wieske, Viktoria; Schuetz, Georg M

    2018-01-01

    The original version of this article, published on 19 March 2018, unfortunately contained a mistake. The following correction has therefore been made in the original: The names of the authors Philipp A. Kaufmann, Ronny Ralf Buechel and Bernhard A. Herzog were presented incorrectly....

  13. Jovian atmospheres

    International Nuclear Information System (INIS)

    Allison, M.; Travis, L.D.

    1986-10-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers

  14. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment of jaws ... out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment of jaws ...

  15. Electroweak corrections

    International Nuclear Information System (INIS)

    Beenakker, W.J.P.

    1989-01-01

    The prospect of high accuracy measurements investigating the weak interactions, which are expected to take place at the electron-positron storage ring LEP at CERN and the linear collider SCL at SLAC, offers the possibility to study also the weak quantum effects. In order to distinguish if the measured weak quantum effects lie within the margins set by the standard model and those bearing traces of new physics one had to go beyond the lowest order and also include electroweak radiative corrections (EWRC) in theoretical calculations. These higher-order corrections also can offer the possibility of getting information about two particles present in the Glashow-Salam-Weinberg model (GSW), but not discovered up till now, the top quark and the Higgs boson. In ch. 2 the GSW standard model of electroweak interactions is described. In ch. 3 some special techniques are described for determination of integrals which are responsible for numerical instabilities caused by large canceling terms encountered in the calculation of EWRC effects, and methods necessary to get hold of the extensive algebra typical for EWRC. In ch. 4 various aspects related to EWRC effects are discussed, in particular the dependence of the unknown model parameters which are the masses of the top quark and the Higgs boson. The processes which are discussed are production of heavy fermions from electron-positron annihilation and those of the fermionic decay of the Z gauge boson. (H.W.). 106 refs.; 30 figs.; 6 tabs.; schemes

  16. Atmospheric contamination

    International Nuclear Information System (INIS)

    Gruetter, Juerg

    1997-01-01

    It is about the levels of contamination in center America, the population's perception on the problem, effects of the atmospheric contamination, effects in the environment, causes of the atmospheric contamination, possibilities to reduce the atmospheric contamination and list of Roeco Swisscontac in atmospheric contamination

  17. Pluto's atmosphere

    International Nuclear Information System (INIS)

    Elliot, J.L.; Dunham, E.W.; Bosh, A.S.; Slivan, S.M.; Young, L.A.

    1989-01-01

    Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references

  18. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  19. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...

  20. Atmospheric electrodynamics

    International Nuclear Information System (INIS)

    Volland, H.

    1984-01-01

    The book Atmospheric Electrodynamics, by Hans Voland is reviewed. The book describes a wide variety of electrical phenomena occurring in the upper and lower atmosphere and develops the mathematical models which simulate these processes. The reviewer finds that the book is of interest to researchers with a background in electromagnetic theory but is of only limited use as a reference work

  1. Urban atmospheres.

    Science.gov (United States)

    Gandy, Matthew

    2017-07-01

    What is an urban atmosphere? How can we differentiate an 'atmosphere' from other facets of urban consciousness and experience? This essay explores some of the wider cultural, political, and philosophical connotations of atmospheres as a focal point for critical reflections on space and subjectivity. The idea of an 'affective atmosphere' as a distinctive kind of mood or shared corporeal phenomenon is considered in relation to recent developments in phenomenology, extended conceptions of agency, and new understandings of materialism. The essay draws in particular on the changing characteristics of air and light to reflect on different forms of sensory experience and their wider cultural and political connotations. The argument highlights some of the tensions and anomalies that permeate contemporary understandings of urban atmospheres.

  2. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... and Craniofacial Surgery Cleft Lip/Palate and Craniofacial Surgery A cleft lip may require one or more ... find out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment ...

  3. Atmospheric Electricity

    Science.gov (United States)

    Aplin, Karen; Fischer, Georg

    2018-02-01

    Electricity occurs in atmospheres across the Solar System planets and beyond, spanning spectacular lightning displays in clouds of water or dust, to more subtle effects of charge and electric fields. On Earth, lightning is likely to have existed for a long time, based on evidence from fossilized lightning strikes in ancient rocks, but observations of planetary lightning are necessarily much more recent. The generation and observations of lightning and other atmospheric electrical processes, both from within-atmosphere measurements, and spacecraft remote sensing, can be readily studied using a comparative planetology approach, with Earth as a model. All atmospheres contain charged molecules, electrons, and/or molecular clusters created by ionization from cosmic rays and other processes, which may affect an atmosphere's energy balance both through aerosol and cloud formation, and direct absorption of radiation. Several planets are anticipated to host a "global electric circuit" by analogy with the circuit occurring on Earth, where thunderstorms drive current of ions or electrons through weakly conductive parts of the atmosphere. This current flow may further modulate an atmosphere's radiative properties through cloud and aerosol effects. Lightning could potentially have implications for life through its effects on atmospheric chemistry and particle transport. It has been observed on many of the Solar System planets (Earth, Jupiter, Saturn, Uranus, and Neptune) and it may also be present on Venus and Mars. On Earth, Jupiter, and Saturn, lightning is thought to be generated in deep water and ice clouds, but discharges can be generated in dust, as for terrestrial volcanic lightning, and on Mars. Other, less well-understood mechanisms causing discharges in non-water clouds also seem likely. The discovery of thousands of exoplanets has recently led to a range of further exotic possibilities for atmospheric electricity, though lightning detection beyond our Solar System

  4. Mars: Atmosphere

    Science.gov (United States)

    Moroz, V.; Murdin, P.

    2001-07-01

    The atmosphere of MARS is much thinner than the terrestrial one. However, even the simplest visual telescopic observations show a set of atmospheric events such as seasonal exchange of material between polar caps, temporal appearance of clouds and changes of visibility of dark regions on the disk of the planet. In 1947 the prominent CO2 bands in the near-infrared part of the Martian spectrum were...

  5. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Boehlecke, Robert

    2004-01-01

    The six bunkers included in CAU 204 were primarily used to monitor atmospheric testing or store munitions. The 'Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada' (NNSA/NV, 2002a) provides information relating to the history, planning, and scope of the investigation; therefore, it will not be repeated in this CADD. This CADD identifies potential corrective action alternatives and provides a rationale for the selection of a recommended corrective action alternative for each CAS within CAU 204. The evaluation of corrective action alternatives is based on process knowledge and the results of investigative activities conducted in accordance with the CAIP (NNSA/NV, 2002a) that was approved prior to the start of the Corrective Action Investigation (CAI). Record of Technical Change (ROTC) No. 1 to the CAIP (approval pending) documents changes to the preliminary action levels (PALs) agreed to by the Nevada Division of Environmental Protection (NDEP) and DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This ROTC specifically discusses the radiological PALs and their application to the findings of the CAU 204 corrective action investigation. The scope of this CADD consists of the following: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of corrective action alternatives in relation to corrective action objectives and screening criteria; and (5) Recommend and justify a preferred corrective action alternative for each CAS within CAU 204

  6. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  7. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  8. Atmospheric pollution

    International Nuclear Information System (INIS)

    Lambrozo, J.; Guillossou, G.

    2008-01-01

    The atmosphere is the reservoir of numerous pollutants (nitrogen oxides, sulfur oxides, carbon oxides, particulates, volatile organic compounds, polycyclic aromatic hydrocarbons) from natural origin or anthropogenic origin ( industry, transport, agriculture, district heating). With epidemiologic studies the atmospheric pollution is associated with an increase of respiratory and cardiovascular diseases. At the european level, the technological progress, the legislation have allowed a reduction of pollutant emissions, however these efforts have to be continued because the sanitary impact of atmospheric pollution must not be underestimated, even if the risks appear less important that these ones in relation with tobacco, inside pollution or others factors of cardiovascular risks. Indeed, on these last factors an individual action is possible for the exposure to air pollution people have no control. (N.C.)

  9. Alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2014-01-01

    Nurses working in the Neuro-Intensive Care Unit at Aarhus University Hospital lack the tools to prepare children for the alarming atmosphere they will enter when visiting a hospitalised relative. The complex soundscape dominated by alarms and sounds from equipment is mentioned as the main stressor...

  10. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... more surgeries depending on the extent of the repair needed. Click here to find out more. Corrective ... more surgeries depending on the extent of the repair needed. Click here to find out more. Corrective ...

  11. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... Jaw Surgery Download Download the ebook for further information Corrective jaw, or orthognathic surgery is performed by ... your treatment. Correction of Common Dentofacial Deformities ​ ​ The information provided here is not intended as a substitute ...

  12. Methods to Increase Educational Effectiveness in an Adult Correctional Setting.

    Science.gov (United States)

    Kuster, Byron

    1998-01-01

    A correctional educator reflects on methods that improve instructional effectiveness. These include teacher-student collaboration, clear goals, student accountability, positive classroom atmosphere, high expectations, and mutual respect. (SK)

  13. 78 FR 21911 - Proposed Information Collection; Comment Request; Fish and Seafood Promotion; Correction

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Fish and Seafood Promotion; Correction AGENCY: National Oceanic and Atmospheric... Federal Register (78 FR 20092) on the proposed information collection, Fish and Seafood Promotion. The...

  14. Atmospheric neutrons

    International Nuclear Information System (INIS)

    Preszler, A.M.; Moon, S.; White, R.S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron and additional analysis corrections lead to the slightly changed neutron fluxes reported here. The theoretical angular distributions of Merker (1975) are in general agreement with our experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current J 2 /sub pi/ (Merker, 1972; Armstrong et al., 1973) is in agreement with the experimental values from 10 to 100 MeV. Our experimental fluxes agree with those of the Kanbach et al. (1974) in the overlap region from 70 to 100 MeV

  15. Corrections to primordial nucleosynthesis

    International Nuclear Information System (INIS)

    Dicus, D.A.; Kolb, E.W.; Gleeson, A.M.; Sudarshan, E.C.G.; Teplitz, V.L.; Turner, M.S.

    1982-01-01

    The changes in primordial nucleosynthesis resulting from small corrections to rates for weak processes that connect neutrons and protons are discussed. The weak rates are corrected by improved treatment of Coulomb and radiative corrections, and by inclusion of plasma effects. The calculations lead to a systematic decrease in the predicted 4 He abundance of about ΔY = 0.0025. The relative changes in other primoridal abundances are also 1 to 2%

  16. LEDAPS Landsat Calibration, Reflectance, Atmospheric Correction Preprocessing Code

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) is a NASA project to map disturbance, regrowth, and permanent forest conversion...

  17. Next Generation MODTRAN for Improved Atmospheric Correction of Spectral Imagery

    Science.gov (United States)

    2016-01-29

    Generic Node Data Type of Figure 37 ................... 49 39. Sample New Input JSON Format...lines, i.e., those centered more than 25 cm-1 from the calculational frequency, are modeled via temperature- dependent continua databases . Given a...transition database [5] contains 27,651 lines centered within 25 cm-1 of 1000.05 cm-1 (~10 µm) for the default MODTRAN band model species, the first 12

  18. Publisher Correction: Predicting unpredictability

    Science.gov (United States)

    Davis, Steven J.

    2018-06-01

    In this News & Views article originally published, the wrong graph was used for panel b of Fig. 1, and the numbers on the y axes of panels a and c were incorrect; the original and corrected Fig. 1 is shown below. This has now been corrected in all versions of the News & Views.

  19. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    Robert Boehlecke

    2004-04-01

    The six bunkers included in CAU 204 were primarily used to monitor atmospheric testing or store munitions. The ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada'' (NNSA/NV, 2002a) provides information relating to the history, planning, and scope of the investigation; therefore, it will not be repeated in this CADD. This CADD identifies potential corrective action alternatives and provides a rationale for the selection of a recommended corrective action alternative for each CAS within CAU 204. The evaluation of corrective action alternatives is based on process knowledge and the results of investigative activities conducted in accordance with the CAIP (NNSA/NV, 2002a) that was approved prior to the start of the Corrective Action Investigation (CAI). Record of Technical Change (ROTC) No. 1 to the CAIP (approval pending) documents changes to the preliminary action levels (PALs) agreed to by the Nevada Division of Environmental Protection (NDEP) and DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This ROTC specifically discusses the radiological PALs and their application to the findings of the CAU 204 corrective action investigation. The scope of this CADD consists of the following: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of corrective action alternatives in relation to corrective action objectives and screening criteria; and (5) Recommend and justify a preferred corrective action alternative for each CAS within CAU 204.

  20. Correction of Neonatal Hypovolemia

    Directory of Open Access Journals (Sweden)

    V. V. Moskalev

    2007-01-01

    Full Text Available Objective: to evaluate the efficiency of hydroxyethyl starch solution (6% refortane, Berlin-Chemie versus fresh frozen plasma used to correct neonatal hypovolemia.Materials and methods. In 12 neonatal infants with hypoco-agulation, hypovolemia was corrected with fresh frozen plasma (10 ml/kg body weight. In 13 neonates, it was corrected with 6% refortane infusion in a dose of 10 ml/kg. Doppler echocardiography was used to study central hemodynamic parameters and Doppler study was employed to examine regional blood flow in the anterior cerebral and renal arteries.Results. Infusion of 6% refortane and fresh frozen plasma at a rate of 10 ml/hour during an hour was found to normalize the parameters of central hemodynamics and regional blood flow.Conclusion. Comparative analysis of the findings suggests that 6% refortane is the drug of choice in correcting neonatal hypovolemia. Fresh frozen plasma should be infused in hemostatic disorders. 

  1. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... surgery. It is important to understand that your treatment, which will probably include orthodontics before and after ... to realistically estimate the time required for your treatment. Correction of Common Dentofacial Deformities ​ ​ The information provided ...

  2. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... misalignment of jaws and teeth. Surgery can improve chewing, speaking and breathing. While the patient's appearance may ... indicate the need for corrective jaw surgery: Difficulty chewing, or biting food Difficulty swallowing Chronic jaw or ...

  3. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... It can also invite bacteria that lead to gum disease. Click here to find out more. Who We ... It can also invite bacteria that lead to gum disease. Click here to find out more. Corrective Jaw ...

  4. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... is performed by an oral and maxillofacial surgeon (OMS) to correct a wide range of minor and ... when sleeping, including snoring) Your dentist, orthodontist and OMS will work together to determine whether you are ...

  5. Atmospheric chemistry and climate

    OpenAIRE

    Satheesh, SK

    2012-01-01

    Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian reg...

  6. ICT: isotope correction toolbox.

    Science.gov (United States)

    Jungreuthmayer, Christian; Neubauer, Stefan; Mairinger, Teresa; Zanghellini, Jürgen; Hann, Stephan

    2016-01-01

    Isotope tracer experiments are an invaluable technique to analyze and study the metabolism of biological systems. However, isotope labeling experiments are often affected by naturally abundant isotopes especially in cases where mass spectrometric methods make use of derivatization. The correction of these additive interferences--in particular for complex isotopic systems--is numerically challenging and still an emerging field of research. When positional information is generated via collision-induced dissociation, even more complex calculations for isotopic interference correction are necessary. So far, no freely available tools can handle tandem mass spectrometry data. We present isotope correction toolbox, a program that corrects tandem mass isotopomer data from tandem mass spectrometry experiments. Isotope correction toolbox is written in the multi-platform programming language Perl and, therefore, can be used on all commonly available computer platforms. Source code and documentation can be freely obtained under the Artistic License or the GNU General Public License from: https://github.com/jungreuc/isotope_correction_toolbox/ {christian.jungreuthmayer@boku.ac.at,juergen.zanghellini@boku.ac.at} Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Thomson scattering measurements in atmospheric plasma jets

    International Nuclear Information System (INIS)

    Gregori, G.; Schein, J.; Schwendinger, P.; Kortshagen, U.; Heberlein, J.; Pfender, E.

    1999-01-01

    Electron temperature and electron density in a dc plasma jet at atmospheric pressure have been obtained using Thomson laser scattering. Measurements performed at various scattering angles have revealed effects that are not accounted for by the standard scattering theory. Differences between the predicted and experimental results suggest that higher order corrections to the theory may be required, and that corrections to the form of the spectral density function may play an important role. copyright 1999 The American Physical Society

  8. Geological Corrections in Gravimetry

    Science.gov (United States)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  9. Robust Active Label Correction

    DEFF Research Database (Denmark)

    Kremer, Jan; Sha, Fei; Igel, Christian

    2018-01-01

    for the noisy data lead to different active label correction algorithms. If loss functions consider the label noise rates, these rates are estimated during learning, where importance weighting compensates for the sampling bias. We show empirically that viewing the true label as a latent variable and computing......Active label correction addresses the problem of learning from input data for which noisy labels are available (e.g., from imprecise measurements or crowd-sourcing) and each true label can be obtained at a significant cost (e.g., through additional measurements or human experts). To minimize......). To select labels for correction, we adopt the active learning strategy of maximizing the expected model change. We consider the change in regularized empirical risk functionals that use different pointwise loss functions for patterns with noisy and true labels, respectively. Different loss functions...

  10. Generalised Batho correction factor

    International Nuclear Information System (INIS)

    Siddon, R.L.

    1984-01-01

    There are various approximate algorithms available to calculate the radiation dose in the presence of a heterogeneous medium. The Webb and Fox product over layers formulation of the generalised Batho correction factor requires determination of the number of layers and the layer densities for each ray path. It has been shown that the Webb and Fox expression is inefficient for the heterogeneous medium which is expressed as regions of inhomogeneity rather than layers. The inefficiency of the layer formulation is identified as the repeated problem of determining for each ray path which inhomogeneity region corresponds to a particular layer. It has been shown that the formulation of the Batho correction factor as a product over inhomogeneity regions avoids that topological problem entirely. The formulation in terms of a product over regions simplifies the computer code and reduces the time required to calculate the Batho correction factor for the general heterogeneous medium. (U.K.)

  11. THE SECONDARY EXTINCTION CORRECTION

    Energy Technology Data Exchange (ETDEWEB)

    Zachariasen, W. H.

    1963-03-15

    It is shown that Darwin's formula for the secondary extinction correction, which has been universally accepted and extensively used, contains an appreciable error in the x-ray diffraction case. The correct formula is derived. As a first order correction for secondary extinction, Darwin showed that one should use an effective absorption coefficient mu + gQ where an unpolarized incident beam is presumed. The new derivation shows that the effective absorption coefficient is mu + 2gQ(1 + cos/sup 4/2 theta )/(1 plus or minus cos/sup 2/2 theta )/s up 2/, which gives mu + gQ at theta =0 deg and theta = 90 deg , but mu + 2gQ at theta = 45 deg . Darwin's theory remains valid when applied to neutron diffraction. (auth)

  12. Bryant J. correction formula

    International Nuclear Information System (INIS)

    Tejera R, A.; Cortes P, A.; Becerril V, A.

    1990-03-01

    For the practical application of the method proposed by J. Bryant, the authors carried out a series of small corrections, related with the bottom, the dead time of the detectors and channels, with the resolution time of the coincidences, with the accidental coincidences, with the decay scheme and with the gamma efficiency of the beta detector beta and the beta efficiency beta of the gamma detector. The calculation of the correction formula is presented in the development of the present report, being presented 25 combinations of the probability of the first existent state at once of one disintegration and the second state at once of the following disintegration. (Author)

  13. Model Correction Factor Method

    DEFF Research Database (Denmark)

    Christensen, Claus; Randrup-Thomsen, Søren; Morsing Johannesen, Johannes

    1997-01-01

    The model correction factor method is proposed as an alternative to traditional polynomial based response surface techniques in structural reliability considering a computationally time consuming limit state procedure as a 'black box'. The class of polynomial functions is replaced by a limit...... of the model correction factor method, is that in simpler form not using gradient information on the original limit state function or only using this information once, a drastic reduction of the number of limit state evaluation is obtained together with good approximations on the reliability. Methods...

  14. Laser Radar: A Technique for Studying the Atmosphere

    Indian Academy of Sciences (India)

    article focuses on two specific examples of ground-based ... niques, which study the atmosphere indirectly by investigating the. Nimmi C Parikh ... research interests include .... overlap correction may be determined, which is then applied to.

  15. Attenuation correction for SPECT

    International Nuclear Information System (INIS)

    Hosoba, Minoru

    1986-01-01

    Attenuation correction is required for the reconstruction of a quantitative SPECT image. A new method for detecting body contours, which are important for the correction of tissue attenuation, is presented. The effect of body contours, detected by the newly developed method, on the reconstructed images was evaluated using various techniques for attenuation correction. The count rates in the specified region of interest in the phantom image by the Radial Post Correction (RPC) method, the Weighted Back Projection (WBP) method, Chang's method were strongly affected by the accuracy of the contours, as compared to those by Sorenson's method. To evaluate the effect of non-uniform attenuators on the cardiac SPECT, computer simulation experiments were performed using two types of models, the uniform attenuator model (UAM) and the non-uniform attenuator model (NUAM). The RPC method showed the lowest relative percent error (%ERROR) in UAM (11 %). However, 20 to 30 percent increase in %ERROR was observed for NUAM reconstructed with the RPC, WBP, and Chang's methods. Introducing an average attenuation coefficient (0.12/cm for Tc-99m and 0.14/cm for Tl-201) in the RPC method decreased %ERROR to the levels for UAM. Finally, a comparison between images, which were obtained by 180 deg and 360 deg scans and reconstructed from the RPC method, showed that the degree of the distortion of the contour of the simulated ventricles in the 180 deg scan was 15 % higher than that in the 360 deg scan. (Namekawa, K.)

  16. Text Induced Spelling Correction

    NARCIS (Netherlands)

    Reynaert, M.W.C.

    2004-01-01

    We present TISC, a language-independent and context-sensitive spelling checking and correction system designed to facilitate the automatic removal of non-word spelling errors in large corpora. Its lexicon is derived from a very large corpus of raw text, without supervision, and contains word

  17. Ballistic deficit correction

    International Nuclear Information System (INIS)

    Duchene, G.; Moszynski, M.; Curien, D.

    1991-01-01

    The EUROGAM data-acquisition has to handle a large number of events/s. Typical in-beam experiments using heavy-ion fusion reactions assume the production of about 50 000 compound nuclei per second deexciting via particle and γ-ray emissions. The very powerful γ-ray detection of EUROGAM is expected to produce high-fold event rates as large as 10 4 events/s. Such high count rates introduce, in a common dead time mode, large dead times for the whole system associated with the processing of the pulse, its digitization and its readout (from the preamplifier pulse up to the readout of the information). In order to minimize the dead time the shaping time constant τ, usually about 3 μs for large volume Ge detectors has to be reduced. Smaller shaping times, however, will adversely affect the energy resolution due to ballistic deficit. One possible solution is to operate the linear amplifier, with a somewhat smaller shaping time constant (in the present case we choose τ = 1.5 μs), in combination with a ballistic deficit compensator. The ballistic deficit can be corrected in different ways using a Gated Integrator, a hardware correction or even a software correction. In this paper we present a comparative study of the software and hardware corrections as well as gated integration

  18. Correctness of concurrent processes

    NARCIS (Netherlands)

    E.R. Olderog (Ernst-Rüdiger)

    1989-01-01

    textabstractA new notion of correctness for concurrent processes is introduced and investigated. It is a relationship P sat S between process terms P built up from operators of CCS [Mi 80], CSP [Ho 85] and COSY [LTS 79] and logical formulas S specifying sets of finite communication sequences as in

  19. Error Correcting Codes -34 ...

    Indian Academy of Sciences (India)

    information and coding theory. A large scale relay computer had failed to deliver the expected results due to a hardware fault. Hamming, one of the active proponents of computer usage, was determined to find an efficient means by which computers could detect and correct their own faults. A mathematician by train-.

  20. Measured attenuation correction methods

    International Nuclear Information System (INIS)

    Ostertag, H.; Kuebler, W.K.; Doll, J.; Lorenz, W.J.

    1989-01-01

    Accurate attenuation correction is a prerequisite for the determination of exact local radioactivity concentrations in positron emission tomography. Attenuation correction factors range from 4-5 in brain studies to 50-100 in whole body measurements. This report gives an overview of the different methods of determining the attenuation correction factors by transmission measurements using an external positron emitting source. The long-lived generator nuclide 68 Ge/ 68 Ga is commonly used for this purpose. The additional patient dose from the transmission source is usually a small fraction of the dose due to the subsequent emission measurement. Ring-shaped transmission sources as well as rotating point or line sources are employed in modern positron tomographs. By masking a rotating line or point source, random and scattered events in the transmission scans can be effectively suppressed. The problems of measured attenuation correction are discussed: Transmission/emission mismatch, random and scattered event contamination, counting statistics, transmission/emission scatter compensation, transmission scan after administration of activity to the patient. By using a double masking technique simultaneous emission and transmission scans become feasible. (orig.)

  1. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... their surgery, orthognathic surgery is performed to correct functional problems. Jaw Surgery can have a dramatic effect on many aspects of life. Following are some of the conditions that may ... front, or side Facial injury Birth defects Receding lower jaw and ...

  2. Error Correcting Codes

    Indian Academy of Sciences (India)

    successful consumer products of all time - the Compact Disc. (CD) digital audio .... We can make ... only 2 t additional parity check symbols are required, to be able to correct t .... display information (contah'ling music related data and a table.

  3. Error Correcting Codes

    Indian Academy of Sciences (India)

    Science and Automation at ... the Reed-Solomon code contained 223 bytes of data, (a byte ... then you have a data storage system with error correction, that ..... practical codes, storing such a table is infeasible, as it is generally too large.

  4. Error Correcting Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  5. 10. Correctness of Programs

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 4. Algorithms - Correctness of Programs. R K Shyamasundar. Series Article Volume 3 ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.

  6. Atmospheric Monitoring at the Site of the MAGIC Telescopes

    Directory of Open Access Journals (Sweden)

    Will Martin

    2017-01-01

    Full Text Available The MAGIC telescopes in La Palma, Canary Islands, measure the Cherenkov light emitted by gamma ray-induced extended air showers in the atmosphere. The good knowledge of the atmospheric parameters is important, both for the correct and safe operations of the telescopes, but also for subsequent data analysis. A weather station measures the state variables of the atmosphere, temperature, humidity and wind, an elastic Lidar system and an infrared pyrometer determine the optical transmission of the atmosphere. Using an AllSky camera, the cloud cover can be estimated. The measured values are completed by data from global atmospheric models based on numeric weather forecasts.

  7. Correction of refractive errors

    Directory of Open Access Journals (Sweden)

    Vladimir Pfeifer

    2005-10-01

    Full Text Available Background: Spectacles and contact lenses are the most frequently used, the safest and the cheapest way to correct refractive errors. The development of keratorefractive surgery has brought new opportunities for correction of refractive errors in patients who have the need to be less dependent of spectacles or contact lenses. Until recently, RK was the most commonly performed refractive procedure for nearsighted patients.Conclusions: The introduction of excimer laser in refractive surgery has given the new opportunities of remodelling the cornea. The laser energy can be delivered on the stromal surface like in PRK or deeper on the corneal stroma by means of lamellar surgery. In LASIK flap is created with microkeratome in LASEK with ethanol and in epi-LASIK the ultra thin flap is created mechanically.

  8. PS Booster Orbit Correction

    CERN Document Server

    Chanel, M; Rumolo, G; Tomás, R; CERN. Geneva. AB Department

    2008-01-01

    At the end of the 2007 run, orbit measurements were carried out in the 4 rings of the PS Booster (PSB) for different working points and beam energies. The aim of these measurements was to provide the necessary input data for a PSB realignment campaign during the 2007/2008 shutdown. Currently, only very few corrector magnets can be operated reliably in the PSB; therefore the orbit correction has to be achieved by displacing (horizontally and vertically) and/or tilting some of the defocusing quadrupoles (QDs). In this report we first describe the orbit measurements, followed by a detailed explanation of the orbit correction strategy. Results and conclusions are presented in the last section.

  9. Error-correction coding

    Science.gov (United States)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  10. Nearly degenerate neutrinos, supersymmetry and radiative corrections

    International Nuclear Information System (INIS)

    Casas, J.A.; Espinosa, J.R.; Ibarra, A.; Navarro, I.

    2000-01-01

    If neutrinos are to play a relevant cosmological role, they must be essentially degenerate with a mass matrix of the bimaximal mixing type. We study this scenario in the MSSM framework, finding that if neutrino masses are produced by a see-saw mechanism, the radiative corrections give rise to mass splittings and mixing angles that can accommodate the atmospheric and the (large angle MSW) solar neutrino oscillations. This provides a natural origin for the Δm 2 sol 2 atm hierarchy. On the other hand, the vacuum oscillation solution to the solar neutrino problem is always excluded. We discuss also in the SUSY scenario other possible effects of radiative corrections involving the new neutrino Yukawa couplings, including implications for triviality limits on the Majorana mass, the infrared fixed point value of the top Yukawa coupling, and gauge coupling and bottom-tau unification

  11. Corrective Action Investigation Plan for Corrective Action Unit 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-05-01

    Corrective Action Unit (CAU) 573 is located in Area 5 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 573 is a grouping of sites where there has been a suspected release of contamination associated with non-nuclear experiments and nuclear testing. This document describes the planned investigation of CAU 573, which comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives.

  12. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  13. Our shared atmosphere

    Science.gov (United States)

    Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...

  14. Atmospheric refraction : a history

    NARCIS (Netherlands)

    Lehn, WH; van der Werf, S

    2005-01-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of

  15. RCRA corrective action and closure

    International Nuclear Information System (INIS)

    1995-02-01

    This information brief explains how RCRA corrective action and closure processes affect one another. It examines the similarities and differences between corrective action and closure, regulators' interests in RCRA facilities undergoing closure, and how the need to perform corrective action affects the closure of DOE's permitted facilities and interim status facilities

  16. Rethinking political correctness.

    Science.gov (United States)

    Ely, Robin J; Meyerson, Debra E; Davidson, Martin N

    2006-09-01

    Legal and cultural changes over the past 40 years ushered unprecedented numbers of women and people of color into companies' professional ranks. Laws now protect these traditionally underrepresented groups from blatant forms of discrimination in hiring and promotion. Meanwhile, political correctness has reset the standards for civility and respect in people's day-to-day interactions. Despite this obvious progress, the authors' research has shown that political correctness is a double-edged sword. While it has helped many employees feel unlimited by their race, gender, or religion,the PC rule book can hinder people's ability to develop effective relationships across race, gender, and religious lines. Companies need to equip workers with skills--not rules--for building these relationships. The authors offer the following five principles for healthy resolution of the tensions that commonly arise over difference: Pause to short-circuit the emotion and reflect; connect with others, affirming the importance of relationships; question yourself to identify blind spots and discover what makes you defensive; get genuine support that helps you gain a broader perspective; and shift your mind-set from one that says, "You need to change," to one that asks, "What can I change?" When people treat their cultural differences--and related conflicts and tensions--as opportunities to gain a more accurate view of themselves, one another, and the situation, trust builds and relationships become stronger. Leaders should put aside the PC rule book and instead model and encourage risk taking in the service of building the organization's relational capacity. The benefits will reverberate through every dimension of the company's work.

  17. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Jack S.; Palmer, Paul I. [School of GeoSciences, University of Edinburgh (United Kingdom); Biller, Beth; Cockell, Charles S., E-mail: j.s.yates@ed.ac.uk [Centre for Exoplanet Science, University of Edinburgh (United Kingdom)

    2017-02-20

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  18. Atmospheric turbulence effects on the performance of the laser wireless power transfer system

    Science.gov (United States)

    Kapranov, V. V.; Matsak, I. S.; Tugaenko, V. Yu.; Blank, A. V.; Suhareva, N. A.

    2017-02-01

    Application of adaptive correction is necessary to control wandering of the laser beam in wireless power transfer (WPT) system. In this paper we describe experimental results of using different adaptive correction techniques for both weak and strong turbulence conditions. All experiments were performed over a 1.5 km near-horizontal atmospheric path. Some criteria for choosing parameters of adaptive correction are given.

  19. The Innsbruck/ESO sky models and telluric correction tools*

    Directory of Open Access Journals (Sweden)

    Kimeswenger S.

    2015-01-01

    While the ground based astronomical observatories just have to correct for the line-of-sight integral of these effects, the Čerenkov telescopes use the atmosphere as the primary detector. The measured radiation originates at lower altitudes and does not pass through the entire atmosphere. Thus, a decent knowledge of the profile of the atmosphere at any time is required. The latter cannot be achieved by photometric measurements of stellar sources. We show here the capabilities of our sky background model and data reduction tools for ground-based optical/infrared telescopes. Furthermore, we discuss the feasibility of monitoring the atmosphere above any observing site, and thus, the possible application of the method for Čerenkov telescopes.

  20. Fault of the correction factor for pressure and temperature k{sub PT} in the atmospheric conditions of Dosimetric Calibration Lab. - LSCD of ININ - Mexico; Falla del factor de correcion por presion y temperatura k{sub PT} a las condiciones atmosfericas del LSCD-ININ-Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, Jose T.; Jesus Cejudo, A.; La Cruz H., Daniel de; Tovar M, Victor M., E-mail: trinidad.alvarez@inin.gob.mx, E-mail: jesus.cejudo@inin.gob.mx, E-mail: daniel.delacruz@inin.gob.mx, E-mail: victor.tovar@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares (LSCD/ININ), Ocoyoacac (Mexico). Laboratorio Secundario de Calibracion Dosimetrica

    2013-07-01

    The realization of the operational quantities H*, Hp y/0 H'(0.07) for estimating the effective dose E, usually is done by measuring the air kerma Ka air within the field of ionizing radiation of interest and was subsequently applied appropriate conversion factors for both the quality of radiation and the operational quantity of interest. However, the SSDL in performing the Ka to environmental conditions of ININ (3000 m above sea level, P ∼ 710 hPa) with ionization chambers has found that the pressure correction factor and kPT temperature is not sufficient to correct the change in air density. Indeed, in the case of {sup 60}Co the discrepancy between the measurement of a primary standard graphite walls Ka (BEV CC01 be 131) and a side of the plastic walls (Exradin A12) is on the order of 0.4% for the case of the RX BIPM qualities to 100,135, 180 and 250 kV. It was found that for a camera model 30001 PTW (PMMA graphite wall) is needed an additional correction factor k PT ranging from 0.4% to 1.5%, correction factor calculated by MC simulation. For Sk of {sup 125}I brachytherapy sources was given an additional correction lower in 11% compared to conventional k{sub PT} value measured with a well chamber Standard Imaging HDR 1000 plus. Finally, it is in the process of studying the behavior of this additional correction factor to the case of {sup 137}Cs.

  1. Correction to toporek (2014).

    Science.gov (United States)

    2015-01-01

    Reports an error in "Pedagogy of the privileged: Review of Deconstructing Privilege: Teaching and Learning as Allies in the Classroom" by Rebecca L. Toporek (Cultural Diversity and Ethnic Minority Psychology, 2014[Oct], Vol 20[4], 621-622). This article was originally published online incorrectly as a Brief Report. The article authored by Rebecca L. Toporek has been published correctly as a Book Review in the October 2014 print publication (Vol. 20, No. 4, pp. 621-622. http://dx.doi.org/10.1037/a0036529). (The following abstract of the original article appeared in record 2014-42484-006.) Reviews the book, Deconstructing Privilege: Teaching and Learning as Allies in the Classroom edited by Kim A. Case (2013). The purpose of this book is to provide a collection of resources for those teaching about privilege directly, much of this volume may be useful for expanding the context within which educators teach all aspects of psychology. Understanding the history and systems of psychology, clinical practice, research methods, assessment, and all the core areas of psychology could be enhanced by consideration of the structural framework through which psychology has developed and is maintained. The book presents a useful guide for educators, and in particular, those who teach about systems of oppression and privilege directly. For psychologists, this guide provides scholarship and concrete strategies for facilitating students' awareness of multiple dimensions of privilege across content areas. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  2. Radiation protection: A correction

    International Nuclear Information System (INIS)

    1972-01-01

    An error in translation inadvertently distorted the sense of a paragraph in the article entitled 'Ecological Aspects of Radiation Protection', by Dr. P. Recht, which appeared in the Bulletin, Volume 14, No. 2 earlier this year. In the English text the error appears on Page 28, second paragraph, which reads, as published: 'An instance familiar to radiation protection specialists, which has since come to be regarded as a classic illustration of this approach, is the accidental release at the Windscale nuclear centre in the north of England.' In the French original of this text no reference was made, or intended, to the accidental release which took place in 1957; the reference was to the study of the critical population group exposed to routine releases from the centre, as the footnote made clear. A more correct translation of the relevant sentence reads: 'A classic example of this approach, well-known to radiation protection specialists, is that of releases from the Windscale nuclear centre, in the north of England.' A second error appeared in the footnote already referred to. In all languages, the critical population group studied in respect of the Windscale releases is named as that of Cornwall; the reference should be, of course, to that part of the population of Wales who eat laver bread. (author)

  3. Thermodynamics of Error Correction

    Directory of Open Access Journals (Sweden)

    Pablo Sartori

    2015-12-01

    Full Text Available Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  4. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  5. Ground-Based Correction of Remote-Sensing Spectral Imagery

    Science.gov (United States)

    Alder-Golden, Steven M.; Rochford, Peter; Matthew, Michael; Berk, Alexander

    2007-01-01

    Software has been developed for an improved method of correcting for the atmospheric optical effects (primarily, effects of aerosols and water vapor) in spectral images of the surface of the Earth acquired by airborne and spaceborne remote-sensing instruments. In this method, the variables needed for the corrections are extracted from the readings of a radiometer located on the ground in the vicinity of the scene of interest. The software includes algorithms that analyze measurement data acquired from a shadow-band radiometer. These algorithms are based on a prior radiation transport software model, called MODTRAN, that has been developed through several versions up to what are now known as MODTRAN4 and MODTRAN5 . These components have been integrated with a user-friendly Interactive Data Language (IDL) front end and an advanced version of MODTRAN4. Software tools for handling general data formats, performing a Langley-type calibration, and generating an output file of retrieved atmospheric parameters for use in another atmospheric-correction computer program known as FLAASH have also been incorporated into the present soft-ware. Concomitantly with the soft-ware described thus far, there has been developed a version of FLAASH that utilizes the retrieved atmospheric parameters to process spectral image data.

  6. 75 FR 23189 - Fisheries of the Exclusive Economic Zone Off Alaska; Individual Fishing Quota Program; Correction

    Science.gov (United States)

    2010-05-03

    ... Atmospheric Administration (NOAA), Commerce. ACTION: Final rule; correction. SUMMARY: This action corrects the SUPPLEMENTARY INFORMATION section to a final rule published in the Federal Register on April 20, 2010, which erroneously waived the 30 day delay in effective date. A 30-day delay in effectiveness will allow fishermen to...

  7. CASPER: Concordia Atmospheric SPectroscopy of Emitted Radiation

    Science.gov (United States)

    de Petris, M.; Catalano, A.; de Gregori, S.; Lamagna, L.; Lattanzi, V.; Luzzi, G.; Maoli, R.; Melchiorri, A.; Melchiorri, F.; Savini, G.; Vetrani, G. G.; Battistelli, E. S.; Valenziano, L.; Mandolesi, N.; Villa, F.; Cuttaia, F.; Ade, P. A. R.; Mauskopf, P.; Orlando, A.; Encrenaz, P.; Pardo, J. R.; Cernicharo, J.

    CASPER (Concordia Atmospheric SPectroscopy of Emitted Radiation) is a spectrometer proposed for installation at Dome C, devoted to measurements of atmospheric emission in the spectral region between 180 μm and 3 mm (3 55 cm-1). This instrument will be able to perform continuous spectral sampling at different altitudes at angular scales of 1°. From the recorded data it is possible to extract atmospheric transmittance within 1% in the whole wide operating band, together with water vapour content and O{2} and O{3} concentrations. CASPER will allow us to characterize the site for future FIR/mm telescopes. Atmospheric data recorded by CASPER will allow for correction of astrophysical and cosmological observations without the need for telescope-specific procedures and further loss of observation time with more precision in the observations themselves. Calibration of ground-based telescopes on known sky sources is strongly affected by atmospheric absorption. CASPER has this as its primary goal. The spectrometer is based on a Martin-Puplett interferometer. Two data sampling solutions will be performed: phase modulation & fast scan strategy. Sky radiation is collected towards the interferometer by an optical setup that allows the field of view, to explore the full 0° div 90° range of elevation angles. With a low spurious polarization instrument, monitoring of polarized atmospheric contribution will be possible.

  8. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  9. Atmosphere physics and chemistry

    International Nuclear Information System (INIS)

    Delmas, R.; Megie, G.; Peuch, V.H.

    2005-10-01

    Since the 1970's, the awareness about the atmospheric pollution threat has led to a spectacular development of the researches on the complex interactions between the chemical composition of the atmosphere and the climate. This book makes a synthesis of the state-of-the-art in this very active domain of research. Content: introduction, atmosphere dynamics and transport, matter-radiation interaction and radiant transfer, physico-chemical processes, atmospheric aerosol and heterogenous chemistry, anthropic and natural emissions and deposition, stratospheric chemical system, tropospheric chemical system, polluted boundary layer, paleo-environments and ice archives, role of atmospheric chemistry in global changes, measurement principles and instruments, numerical modeling, experimental strategy, regulation and management of the atmospheric environment, index. (J.S.)

  10. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data

    International Nuclear Information System (INIS)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.; Sanuki, T.

    2007-01-01

    Using the 'modified DPMJET-III' model explained in the previous paper [T. Sanuki et al., preceding Article, Phys. Rev. D 75, 043005 (2007).], we calculate the atmospheric neutrino flux. The calculation scheme is almost the same as HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).], but the usage of the 'virtual detector' is improved to reduce the error due to it. Then we study the uncertainty of the calculated atmospheric neutrino flux summarizing the uncertainties of individual components of the simulation. The uncertainty of K-production in the interaction model is estimated using other interaction models: FLUKA'97 and FRITIOF 7.02, and modifying them so that they also reproduce the atmospheric muon flux data correctly. The uncertainties of the flux ratio and zenith angle dependence of the atmospheric neutrino flux are also studied

  11. Food systems in correctional settings

    DEFF Research Database (Denmark)

    Smoyer, Amy; Kjær Minke, Linda

    management of food systems may improve outcomes for incarcerated people and help correctional administrators to maximize their health and safety. This report summarizes existing research on food systems in correctional settings and provides examples of food programmes in prison and remand facilities......Food is a central component of life in correctional institutions and plays a critical role in the physical and mental health of incarcerated people and the construction of prisoners' identities and relationships. An understanding of the role of food in correctional settings and the effective......, including a case study of food-related innovation in the Danish correctional system. It offers specific conclusions for policy-makers, administrators of correctional institutions and prison-food-service professionals, and makes proposals for future research....

  12. Phytoremediation of Atmospheric Methane

    Science.gov (United States)

    2013-04-15

    REPORT Phytoremediation of Atmospheric Methane 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have transformed a plant, Arabidopsis thaliana, with the...298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Mar-2012 Phytoremediation of Atmospheric Methane Report Title ABSTRACT We have transformed a...DD882) Scientific Progress See attachment Technology Transfer 1    Final Report for DARPA project W911NF1010027  Phytoremediation  of Atmospheric

  13. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  14. Corrective justice and contract law

    Directory of Open Access Journals (Sweden)

    Martín Hevia

    2010-06-01

    Full Text Available This article suggests that the central aspects of contract law in various jurisdictions can be explained within the idea of corrective justice. The article is divided into three parts. The first part distinguishes between corrective justice and distributive justice. The second part describes contract law. The third part focuses on actions for breach of contract and within that context reflects upon the idea of corrective justice.

  15. Corrective justice and contract law

    OpenAIRE

    Martín Hevia

    2010-01-01

    This article suggests that the central aspects of contract law in various jurisdictions can be explained within the idea of corrective justice. The article is divided into three parts. The first part distinguishes between corrective justice and distributive justice. The second part describes contract law. The third part focuses on actions for breach of contract and within that context reflects upon the idea of corrective justice.

  16. Nucleation in the atmosphere

    International Nuclear Information System (INIS)

    Hegg, D A; Baker, M B

    2009-01-01

    Small particles play major roles in modulating radiative and hydrological fluxes in the atmosphere and thus they impact both climate (IPCC 2007) and weather. Most atmospheric particles outside clouds are created in situ through nucleation from gas phase precursors and most ice particles within clouds are formed by nucleation, usually from the liquid. Thus, the nucleation process is of great significance in the Earth's atmosphere. The theoretical examination of nucleation in the atmosphere has been based mostly on classical nucleation theory. While diagnostically very useful, the prognostic skill demonstrated by this approach has been marginal. Microscopic approaches such as molecular dynamics and density functional theory have also proven useful in elucidating various aspects of the process but are not yet sufficiently refined to offer a significant prognostic advantage to the classical approach, due primarily to the heteromolecular nature of atmospheric nucleation. An important aspect of the nucleation process in the atmosphere is that the degree of metastability of the parent phase for the nucleation is modulated by a number of atmospheric processes such as condensation onto pre-existing particles, updraft velocities that are the main driving force for supersaturation of water (a major factor in all atmospheric nucleation), and photochemical production rates of nucleation precursors. Hence, atmospheric nucleation is both temporally and spatially inhomogeneous

  17. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  18. A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery.

    Science.gov (United States)

    Tan, Kok Chooi; Lim, Hwee San; Matjafri, Mohd Zubir; Abdullah, Khiruddin

    2012-06-01

    Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.

  19. Atmospheric Phase Delay in Sentinel SAR Interferometry

    Science.gov (United States)

    Krishnakumar, V.; Monserrat, O.; Crosetto, M.; Crippa, B.

    2018-04-01

    The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR) Interferometry (InSAR) has been a widely used geodetic technique for observing the Earth's surface, especially for mapping the Earth's topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth's atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere) are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC) of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR). To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET) and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC) images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate height and deformation

  20. ATMOSPHERIC PHASE DELAY IN SENTINEL SAR INTERFEROMETRY

    Directory of Open Access Journals (Sweden)

    V. Krishnakumar

    2018-04-01

    Full Text Available The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR Interferometry (InSAR has been a widely used geodetic technique for observing the Earth’s surface, especially for mapping the Earth’s topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth’s atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR. To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate

  1. Deuterium in atmospheric cycle

    International Nuclear Information System (INIS)

    Pontikis, M.C.

    Interest of the study concerning the deuterium content variation (HDO) in the atmospheric water. Standards and measurement methods. Molecule HDO cycle in the atmospheric water. Application to the study of hail-generating cumulus-nimbus and of the mantle of snow [fr

  2. Urban atmospheric contamination

    International Nuclear Information System (INIS)

    Baldasano Jose, M.

    1997-01-01

    The problems of contamination are not only limited to this century, pale pathology evidences of the effects of the contamination of the air exist in interiors in the health of the old ones; the article mention the elements that configure the problem of the atmospheric contamination, atmospheric pollutants and emission sources, orography condition and effects induced by the urbanization process

  3. Controlled Atmosphere Stunning

    NARCIS (Netherlands)

    Lambooij, E.; Gerritzen, M.A.

    2009-01-01

    Controlled atmosphere (CAS) stunning includes several variations of gaseous mixtures given to induce an anaesthetic state before slaughter poultry. One method of multi phase CAS is to unload the birds out of the crate on a conveyor belt and subject the birds to an atmosphere of 30% O2, 40% CO2 and

  4. Unpacking Corrections in Mobile Instruction

    DEFF Research Database (Denmark)

    Levin, Lena; Cromdal, Jakob; Broth, Mathias

    2017-01-01

    that the practice of unpacking the local particulars of corrections (i) provides for the instructional character of the interaction, and (ii) is highly sensitive to the relevant physical and mobile contingencies. These findings contribute to the existing literature on the interactional organisation of correction...

  5. Stress Management in Correctional Recreation.

    Science.gov (United States)

    Card, Jaclyn A.

    Current economic conditions have created additional sources of stress in the correctional setting. Often, recreation professionals employed in these settings also add to inmate stress. One of the major factors limiting stress management in correctional settings is a lack of understanding of the value, importance, and perceived freedom, of leisure.…

  6. Atmosphere Impact Losses

    Science.gov (United States)

    Schlichting, Hilke E.; Mukhopadhyay, Sujoy

    2018-02-01

    Determining the origin of volatiles on terrestrial planets and quantifying atmospheric loss during planet formation is crucial for understanding the history and evolution of planetary atmospheres. Using geochemical observations of noble gases and major volatiles we determine what the present day inventory of volatiles tells us about the sources, the accretion process and the early differentiation of the Earth. We further quantify the key volatile loss mechanisms and the atmospheric loss history during Earth's formation. Volatiles were accreted throughout the Earth's formation, but Earth's early accretion history was volatile poor. Although nebular Ne and possible H in the deep mantle might be a fingerprint of this early accretion, most of the mantle does not remember this signature implying that volatile loss occurred during accretion. Present day geochemistry of volatiles shows no evidence of hydrodynamic escape as the isotopic compositions of most volatiles are chondritic. This suggests that atmospheric loss generated by impacts played a major role during Earth's formation. While many of the volatiles have chondritic isotopic ratios, their relative abundances are certainly not chondritic again suggesting volatile loss tied to impacts. Geochemical evidence of atmospheric loss comes from the {}3He/{}^{22}Ne, halogen ratios (e.g., F/Cl) and low H/N ratios. In addition, the geochemical ratios indicate that most of the water could have been delivered prior to the Moon forming impact and that the Moon forming impact did not drive off the ocean. Given the importance of impacts in determining the volatile budget of the Earth we examine the contributions to atmospheric loss from both small and large impacts. We find that atmospheric mass loss due to impacts can be characterized into three different regimes: 1) Giant Impacts, that create a strong shock transversing the whole planet and that can lead to atmospheric loss globally. 2) Large enough impactors (m_{cap} ≳ √{2

  7. Absolute density measurements in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2001-05-01

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  8. Absolute density measurements in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. Rapp

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

    Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  9. Dynamics of Massive Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Chemke, Rei; Kaspi, Yohai, E-mail: rei.chemke@weizmann.ac.il [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel)

    2017-08-10

    The many recently discovered terrestrial exoplanets are expected to hold a wide range of atmospheric masses. Here the dynamic-thermodynamic effects of atmospheric mass on atmospheric circulation are studied using an idealized global circulation model by systematically varying the atmospheric surface pressure. On an Earth analog planet, an increase in atmospheric mass weakens the Hadley circulation and decreases its latitudinal extent. These changes are found to be related to the reduction of the convective fluxes and net radiative cooling (due to the higher atmospheric heat capacity), which, respectively, cool the upper troposphere at mid-low latitudes and warm the troposphere at high latitudes. These together decrease the meridional temperature gradient, tropopause height and static stability. The reduction of these parameters, which play a key role in affecting the flow properties of the tropical circulation, weakens and contracts the Hadley circulation. The reduction of the meridional temperature gradient also decreases the extraction of mean potential energy to the eddy fields and the mean kinetic energy, which weakens the extratropical circulation. The decrease of the eddy kinetic energy decreases the Rhines wavelength, which is found to follow the meridional jet scale. The contraction of the jet scale in the extratropics results in multiple jets and meridional circulation cells as the atmospheric mass increases.

  10. Reference Atmosphere for Mercury

    Science.gov (United States)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  11. Photochemistry of Planetary Atmospheres

    Science.gov (United States)

    Yung, Y. L.

    2005-12-01

    The Space Age started half a century ago. Today, with the completion of a fairly detailed study of the planets of the Solar System, we have begun studying exoplanets (or extrasolar planets). The overriding question in is to ask whether an exoplanet is habitable and harbors life, and if so, what the biosignatures ought to be. This forces us to confront the fundamental question of what controls the composition of an atmosphere. The composition of a planetary atmosphere reflects a balance between thermodynamic equilibrium chemistry (as in the interior of giant planets) and photochemistry (as in the atmosphere of Mars). The terrestrial atmosphere has additional influence from life (biochemistry). The bulk of photochemistry in planetary atmospheres is driven by UV radiation. Photosynthesis may be considered an extension of photochemistry by inventing a molecule (chlorophyll) that can harvest visible light. Perhaps the most remarkable feature of photochemistry is catalytic chemistry, the ability of trace amounts of gases to profoundly affect the composition of the atmosphere. Notable examples include HOx (H, OH and HO2) chemistry on Mars and chlorine chemistry on Earth and Venus. Another remarkable feature of photochemistry is organic synthesis in the outer solar system. The best example is the atmosphere of Titan. Photolysis of methane results in the synthesis of more complex hydrocarbons. The hydrocarbon chemistry inevitably leads to the formation of high molecular weight products, giving rise to aerosols when the ambient atmosphere is cool enough for them to condense. These results are supported by the findings of the recent Cassini mission. Lastly, photochemistry leaves a distinctive isotopic signature that can be used to trace back the evolutionary history of the atmosphere. Examples include nitrogen isotopes on Mars and sulfur isotopes on Earth. Returning to the question of biosignatures on an exoplanet, our Solar System experience tells us to look for speciation

  12. Radar Rainfall Bias Correction based on Deep Learning Approach

    Science.gov (United States)

    Song, Yang; Han, Dawei; Rico-Ramirez, Miguel A.

    2017-04-01

    Radar rainfall measurement errors can be considerably attributed to various sources including intricate synoptic regimes. Temperature, humidity and wind are typically acknowledged as critical meteorological factors in inducing the precipitation discrepancies aloft and on the ground. The conventional practices mainly use the radar-gauge or geostatistical techniques by direct weighted interpolation algorithms as bias correction schemes whereas rarely consider the atmospheric effects. This study aims to comprehensively quantify those meteorological elements' impacts on radar-gauge rainfall bias correction based on a deep learning approach. The deep learning approach employs deep convolutional neural networks to automatically extract three-dimensional meteorological features for target recognition based on high range resolution profiles. The complex nonlinear relationships between input and target variables can be implicitly detected by such a scheme, which is validated on the test dataset. The proposed bias correction scheme is expected to be a promising improvement in systematically minimizing the synthesized atmospheric effects on rainfall discrepancies between radar and rain gauges, which can be useful in many meteorological and hydrological applications (e.g., real-time flood forecasting) especially for regions with complex atmospheric conditions.

  13. New atmospheric program

    Science.gov (United States)

    The National Science Foundation's Division of Atmospheric Sciences has established an Upper Atmospheric Facilities program within its Centers and Facilities section. The program will support the operation of and the scientific research that uses the longitudinal chain of incoherent scatter radars. The program also will ensure that the chain is maintained as a state-of-the-art research tool available to all interested and qualified scientists.For additional information, contact Richard A. Behnke, Division of Atmospheric Sciences, National Science Foundation, 1800 G Street, N.W., Washington, DC 20550 (telephone: 202-357-7390).

  14. Atmospheric ionisation in Snowdonia

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH UK (United Kingdom); Williams, J H, E-mail: k.aplin1@physics.ox.ac.uk [Envirodata-Eyri, Bryn Goleu, Penmaen Park, Llanfairfechan, Gwynedd LL33 0RL (United Kingdom)

    2011-06-23

    Atmospheric ionisation from natural radioactivity and cosmic rays has been measured at several sites in Snowdonia from 2005-present. The motivation for this project was a combination of public engagement with science, and research into the effects of ionisation on climate. A four-component atmospheric radiometer instrument is co-located with the ionisation detectors and the data is remotely logged and displayed on the Web. Atmospheric ionisation from natural radioactivity varies with local geology, and the cosmic ray ionisation component is modulated by solar activity and altitude. Variations due to all these effects have been identified and are described.

  15. Linear network error correction coding

    CERN Document Server

    Guang, Xuan

    2014-01-01

    There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences?similar to algebraic coding,?and also briefly discuss the main results following the?other approach,?that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances an

  16. Atmospheres of Brown Dwarfs

    Science.gov (United States)

    Wang, Ruoyan; Seay, Christopher

    2018-01-01

    We construct a grid of brown dwarf model atmospheres spanning a wide range of atmospheric metallicity (0.3x ≤ met ≤ 100x), C/O ratios (0.25x ≤ C/O ≤ 2.5x), and cloud properties, encompassing atmospheres of effective temperatures 200 ≤ Teff ≤ 2400 K and gravities 2.5 ≤ log g ≤ 5.5. We produce the expected temperature-pressure profiles and emergent spectra from an atmosphere in radiative-convective equilibrium. We can then compare our predicted spectra to observations and retrieval results to aid in their predictions and influence future missions and telescopic observations. In our poster we briefly describe our modeling methodology and present our progress on model grid construction, spanning solar and subsolar C/O and metallicity.

  17. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    Africa and South India first detected the natural neutrinos and observed .... lucky coincidences, such as the angular diameter of the moon and sun being ... (where there is some peaking due to longer flight paths for pions in the atmosphere).

  18. Students 'Weigh' Atmospheric Pollution.

    Science.gov (United States)

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  19. CARBON NEUTRON STAR ATMOSPHERES

    International Nuclear Information System (INIS)

    Suleimanov, V. F.; Klochkov, D.; Werner, K.; Pavlov, G. G.

    2014-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in the chemical composition of their atmospheres. For example, the atmospheres of thermally emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in Cas A, a pure carbon atmosphere has recently been suggested by Ho and Heinke. To test this composition for other similar sources, a publicly available detailed grid of the carbon model atmosphere spectra is needed. We have computed this grid using the standard local thermodynamic equilibrium approximation and assuming that the magnetic field does not exceed 10 8  G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra

  20. Exoplanet atmospheres physical processes

    CERN Document Server

    Seager, Sara

    2010-01-01

    Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introduction, examples that combine the relevant physics equations with real data, and exercises. Topics range from foundational knowledge, such as the origin of atmospheric composition and planetary spectra, to more advanced concepts, such as solutions to the radiative transfer equation, polarization, and molecular and condensate opacities. Since planets vary widely in their atmospheric properties, Seager emphasizes the major p...

  1. Origin of atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Marx, Gy [Eotvos Lorand Tudomanyegyetem, Budapest (Hungary). Atomfizikai Tanszek

    1975-01-01

    The evolution of the atmosphere of the Earth is described. Starting from the hot Universe the main steps of the ''cooling-down'' process as the different states of the condensation of the matter are discussed. After this nuclear evolution the chemical evolution could start on the solid Earth's crust. In the reductive primordial atmosphere mainly due to ultraviolet rays the basic molecules for life as sugars and amino acids were formed. The photosynthesis of the plants has later produced the oxygen being present in the recent atmosphere. The question whether pollution could affect the auto-stabilization loop of the atmosphere is also discussed. Finally the possibility of life on the Mars is studied.

  2. The origin of atmosphere

    International Nuclear Information System (INIS)

    Marx, Gy.

    1975-01-01

    The evolution of the atmosphere of the Earth is described. Starting from the hot Universe the main steps of the ''cooling-down'' process as the different states of the condensation of the matter are discussed. After this nuclear evolution the chemical evolution could start on the solid Earth's crust. In the reductive primordial atmosphere mainly due to ultraviolet rays the basic molecules for life as sugars and amino acids were formed. The photosynthesis of the plants has later produced the oxygen being present in the recent atmosphere. The question whether the pollution could affect the auto-stabilization loop of the atmosphere is also discussed. Finally the possibility of life on the Mars is studied. (Sz.Z.)

  3. Automatic computation of radiative corrections

    International Nuclear Information System (INIS)

    Fujimoto, J.; Ishikawa, T.; Shimizu, Y.; Kato, K.; Nakazawa, N.; Kaneko, T.

    1997-01-01

    Automated systems are reviewed focusing on their general structure and requirement specific to the calculation of radiative corrections. Detailed description of the system and its performance is presented taking GRACE as a concrete example. (author)

  4. Publisher Correction: On our bookshelf

    Science.gov (United States)

    Karouzos, Marios

    2018-03-01

    In the version of this Books and Arts originally published, the book title Spectroscopy for Amateur Astronomy was incorrect; it should have read Spectroscopy for Amateur Astronomers. This has now been corrected.

  5. Self-correcting quantum computers

    International Nuclear Information System (INIS)

    Bombin, H; Chhajlany, R W; Horodecki, M; Martin-Delgado, M A

    2013-01-01

    Is the notion of a quantum computer (QC) resilient to thermal noise unphysical? We address this question from a constructive perspective and show that local quantum Hamiltonian models provide self-correcting QCs. To this end, we first give a sufficient condition on the connectedness of excitations for a stabilizer code model to be a self-correcting quantum memory. We then study the two main examples of topological stabilizer codes in arbitrary dimensions and establish their self-correcting capabilities. Also, we address the transversality properties of topological color codes, showing that six-dimensional color codes provide a self-correcting model that allows the transversal and local implementation of a universal set of operations in seven spatial dimensions. Finally, we give a procedure for initializing such quantum memories at finite temperature. (paper)

  6. Correcting AUC for Measurement Error.

    Science.gov (United States)

    Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang

    2015-12-01

    Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.

  7. Libertarian Anarchism Is Apodictically Correct

    OpenAIRE

    Redford, James

    2011-01-01

    James Redford, "Libertarian Anarchism Is Apodictically Correct", Social Science Research Network (SSRN), Dec. 15, 2011, 9 pp., doi:10.2139/ssrn.1972733. ABSTRACT: It is shown that libertarian anarchism (i.e., consistent liberalism) is unavoidably true.

  8. Corrective Action Decision Document/Closure Report for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick K. [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2015-02-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 550: Smoky Contamination Area, Nevada National Security Site, Nevada. CAU 550 includes 19 corrective action sites (CASs), which consist of one weapons-related atmospheric test (Smoky), three safety experiments (Ceres, Oberon, Titania), and 15 debris sites (Table ES-1). The CASs were sorted into the following study groups based on release potential and technical similarities: • Study Group 1, Atmospheric Test • Study Group 2, Safety Experiments • Study Group 3, Washes • Study Group 4, Debris The purpose of this document is to provide justification and documentation supporting the conclusion that no further corrective action is needed for CAU 550 based on implementation of the corrective actions listed in Table ES-1. Corrective action investigation (CAI) activities were performed between August 2012 and October 2013 as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area; and in accordance with the Soils Activity Quality Assurance Plan. The approach for the CAI was to investigate and make data quality objective (DQO) decisions based on the types of releases present. The purpose of the CAI was to fulfill data needs as defined during the DQO process. The CAU 550 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs.

  9. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  10. Global atmospheric changes.

    OpenAIRE

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...

  11. Intensifying the Atmospheric

    DEFF Research Database (Denmark)

    Liebst, Lasse Suonperä

    2012-01-01

    The phenomenological concept of urban atmospheres is more often applied as an aesthetic description of the metropolitan space as such. This conceptualization is supported in this paper; however, I strive to give the concept a post-phenomenological axial turn. While phenomenology, due to its under...... sufficiently intense. All things considered, the paper should be read as a sociological contribution to theoretically reconstruct the concept of urban atmospheres in the light of spatial morphology....

  12. Atmospheric release advisory capability

    International Nuclear Information System (INIS)

    Sullivan, T.J.

    1981-01-01

    The ARAC system (Atmospheric Release Advisory Capability) is described. The system is a collection of people, computers, computer models, topographic data and meteorological input data that together permits a calculation of, in a quasi-predictive sense, where effluent from an accident will migrate through the atmosphere, where it will be deposited on the ground, and what instantaneous and integrated dose an exposed individual would receive

  13. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 573: Alpha Contaminated Sites Nevada National Security Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Matthews, Patrick

    2016-01-01

    CAU 573 comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These two CASs include the release at the Hamilton weapons-related tower test and a series of 29 atmospheric experiments conducted at GMX. The two CASs are located in two distinctly separate areas within Area 5. To facilitate site investigation and data quality objective (DQO) decisions, all identified releases (i.e., CAS components) were organized into study groups. The reporting of investigation results and the evaluation of DQO decisions are at the release level. The corrective action alternatives (CAAs) were evaluated at the FFACO CAS level. The purpose of this CADD/CAP is to evaluate potential CAAs, provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 573. Corrective action investigation (CAI) activities were performed from January 2015 through November 2015, as set forth in the CAU 573 Corrective Action Investigation Plan (CAIP). Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the contaminants of concern. Assessment of the data generated from investigation activities conducted at CAU 573 revealed the following: • Radiological contamination within CAU 573 does not exceed the FALs (based on the Occasional Use Area exposure scenario). • Chemical contamination within CAU 573 does not exceed the FALs. • Potential source material - including lead plates, lead bricks, and lead-shielded cables was removed during the investigation and requires no additional corrective action.

  14. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 573: Alpha Contaminated Sites Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Nevada Site Office, Las Vegas, NV (United States)

    2016-02-01

    CAU 573 comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These two CASs include the release at the Hamilton weapons-related tower test and a series of 29 atmospheric experiments conducted at GMX. The two CASs are located in two distinctly separate areas within Area 5. To facilitate site investigation and data quality objective (DQO) decisions, all identified releases (i.e., CAS components) were organized into study groups. The reporting of investigation results and the evaluation of DQO decisions are at the release level. The corrective action alternatives (CAAs) were evaluated at the FFACO CAS level. The purpose of this CADD/CAP is to evaluate potential CAAs, provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 573. Corrective action investigation (CAI) activities were performed from January 2015 through November 2015, as set forth in the CAU 573 Corrective Action Investigation Plan (CAIP). Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the contaminants of concern. Assessment of the data generated from investigation activities conducted at CAU 573 revealed the following: • Radiological contamination within CAU 573 does not exceed the FALs (based on the Occasional Use Area exposure scenario). • Chemical contamination within CAU 573 does not exceed the FALs. • Potential source material—including lead plates, lead bricks, and lead-shielded cables—was removed during the investigation and requires no additional corrective action.

  15. Error correcting coding for OTN

    DEFF Research Database (Denmark)

    Justesen, Jørn; Larsen, Knud J.; Pedersen, Lars A.

    2010-01-01

    Forward error correction codes for 100 Gb/s optical transmission are currently receiving much attention from transport network operators and technology providers. We discuss the performance of hard decision decoding using product type codes that cover a single OTN frame or a small number...... of such frames. In particular we argue that a three-error correcting BCH is the best choice for the component code in such systems....

  16. Spelling Correction in User Interfaces.

    Science.gov (United States)

    1982-12-20

    conventional typescript -oriented command language, where most com- mands consist of a verb followed by a sequence of arguments. Most user terminals are...and explanations. not part of the typescripts . 2 SPFE.LING CORRLC1iON IN USR IN"RFAC’S 2. Design Issues We were prompted to look for a new correction...remaining 73% led us to wonder what other mechanisms might permit further corrections while retaining the typescript -style interface. Most of the other

  17. Quantum error correction for beginners

    International Nuclear Information System (INIS)

    Devitt, Simon J; Nemoto, Kae; Munro, William J

    2013-01-01

    Quantum error correction (QEC) and fault-tolerant quantum computation represent one of the most vital theoretical aspects of quantum information processing. It was well known from the early developments of this exciting field that the fragility of coherent quantum systems would be a catastrophic obstacle to the development of large-scale quantum computers. The introduction of quantum error correction in 1995 showed that active techniques could be employed to mitigate this fatal problem. However, quantum error correction and fault-tolerant computation is now a much larger field and many new codes, techniques, and methodologies have been developed to implement error correction for large-scale quantum algorithms. In response, we have attempted to summarize the basic aspects of quantum error correction and fault-tolerance, not as a detailed guide, but rather as a basic introduction. The development in this area has been so pronounced that many in the field of quantum information, specifically researchers who are new to quantum information or people focused on the many other important issues in quantum computation, have found it difficult to keep up with the general formalisms and methodologies employed in this area. Rather than introducing these concepts from a rigorous mathematical and computer science framework, we instead examine error correction and fault-tolerance largely through detailed examples, which are more relevant to experimentalists today and in the near future. (review article)

  18. Atmospheric pollution in Lisbon urban atmosphere

    Science.gov (United States)

    Oliveira, C.

    2009-04-01

    Lisbon is the capital city of Portugal with about 565,000 residents in 2008 and a population density of 6,600 inhabitants per square kilometre. Like several other major metropolis, the town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants, a quarter of the overall Portuguese population. Besides their local residents, it is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams, with important consequences on air pollution levels and obvious negative impacts on human health. Airborne particulate matter limit values are frequently exceeded, making urgent the existence of consistent programs to monitor and help taking measures to control them. Within the Portuguese project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere) financed by the Portuguese Science Foundation ("Fundação para a Ciência e a Tecnologia"), an aerosol and vapour phase sampling program is being implemented in the city of Lisbon at two selected contrasting zones, namely a typically busy area with intense road traffic and frequent exceedences of the particulate matter standard for the maximum allowable concentration, and a residential quieter area, thus with a cleaner atmosphere characterised as an urban background site. An one month-long sampling campaign was performed during the summer of 2008, where particulate matter was collected in two fractions (coarse 2.5µmwork are expected to cover a lack of reliable information regarding sources of atmospheric pollutants in Portugal and present, for the first time, systematic data of PAHs levels in Lisbon. Acknowledgement: This work was performed under Project PAHLIS (PTDC/AMB/65699/2006) financed by "Fundação para a Ciência e a Tecnologia". C. Oliveira thanks Project PAHLIS his scholarship.

  19. Frontiers in Atmospheric Chemistry Modelling

    Science.gov (United States)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frederik; Rouïl, Laurence

    2013-04-01

    The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA). Besides the technical challenge, which demonstrated the robustness of the selected air quality model, we discuss the added value in terms of air pollution modelling and decision support. The comparison with in-situ observations shows that model biases are significantly improved despite some spurious added spatial variability attributed to shortcomings in the emission downscaling process and coarse resolution of the meteorological fields. The increased spatial resolution is clearly beneficial for the detection of exceedances and exposure modelling. We reveal small scale air pollution patterns that highlight the contribution of city plumes to background air pollution levels. Up to a factor 5 underestimation of the fraction of population exposed to detrimental levels of pollution can be obtained with a coarse simulation if subgrid scale correction such as urban increments are ignored. This experiment opens new perspectives for environmental decision making. After two decades of efforts to reduce air pollutant emissions across Europe, the challenge is now to find the optimal trade-off between national and local air quality management strategies. While the first approach is based on sectoral strategies and energy policies, the later builds upon new alternatives such as urban development. The strategies, the decision pathways and the involvement of individual citizen differ, and a compromise based on cost and efficiency must be found. We illustrated how high performance computing in atmospheric science can contribute to this

  20. Lithium spectral line formation in stellar atmospheres. The impact of convection and NLTE effects

    OpenAIRE

    Klevas, J.; Kučinskas, A.; Steffen, M.; Caffau, E.; Ludwig, H. -G.

    2015-01-01

    Different simplified approaches are used to account for the non-local thermodynamic equilibrium (NLTE) effects with 3D hydrodynamical model atmospheres. In certain cases, chemical abundances are derived in 1D NLTE and corrected for the 3D effects by adding 3D-1D LTE abundance corrections (3D+NLTE approach). Alternatively, average model atmospheres are sometimes used to substitute for the full 3D hydrodynamical models. We tested whether the results obtained using these simplified schemes (i.e...

  1. Surgical correction of postoperative astigmatism

    Directory of Open Access Journals (Sweden)

    Lindstrom Richard

    1990-01-01

    Full Text Available The photokeratoscope has increased the understanding of the aspheric nature of the cornea as well as a better understanding of normal corneal topography. This has significantly affected the development of newer and more predictable models of surgical astigmatic correction. Relaxing incisions effectively flatten the steeper meridian an equivalent amount as they steepen the flatter meridian. The net change in spherical equivalent is, therefore, negligible. Poor predictability is the major limitation of relaxing incisions. Wedge resection can correct large degrees of postkeratoplasty astigmatism, Resection of 0.10 mm of tissue results in approximately 2 diopters of astigmatic correction. Prolonged postoperative rehabilitation and induced irregular astigmatism are limitations of the procedure. Transverse incisions flatten the steeper meridian an equivalent amount as they steepen the flatter meridian. Semiradial incisions result in two times the amount of flattening in the meridian of the incision compared to the meridian 90 degrees away. Combination of transverse incisions with semiradial incisions describes the trapezoidal astigmatic keratotomy. This procedure may correct from 5.5 to 11.0 diopters dependent upon the age of the patient. The use of the surgical keratometer is helpful in assessing a proper endpoint during surgical correction of astigmatism.

  2. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2015-01-01

    Full Text Available This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind speed predictions. Finally we separately use the original and improved wind speed series to predict the related wind power. This proves that the corrected wind speed provides higher precision wind power predictions. This research presents a totally new direction in the wind prediction field and has profound theoretical research value and practical guiding significance.

  3. Corrections.

    Science.gov (United States)

    1994-05-27

    In "Women in Science: Some Books of the Year" (11 March, p. 1458) the name of the senior editor of second edition of The History of Women and Science, Health, and Technology should have been given as Phyllis Holman Weisbard, and the name of the editor of the first edition should have been given as Susan Searing. Also, the statement that the author of A Matter of Choices: Memoirs of a Female Physicist, Fay Ajzenberg-Selove, is now retired was incorrect.

  4. Corrections.

    Science.gov (United States)

    2016-02-01

    In the October In Our Unit article by Cooper et al, “Against All Odds: Preventing Pressure Ulcers in High-Risk Cardiac Surgery Patients” (Crit Care Nurse. 2015;35[5]:76–82), there was an error in the reference citation on page 82. At the top of that page, reference 18 cited on the second line should be reference 23, which also should be added to the References list: 23. AHRQ website. Prevention and treatment program integrates actionable reports into practice, significantly reducing pressure ulcers in nursing home residents. November 2008. https://innovations.ahrq.gov/profiles/prevention-and-treatment-program-integrates-actionable-reports-practice-significantly. Accessed November 18, 2015

  5. Correction.

    Science.gov (United States)

    2015-06-01

    Gillon R. Defending the four principles approach as a good basis for good medical practice and therefore for good medical ethics. J Med Ethics 2015;41:111–6. The author misrepresented Beauchamp and Childress when he wrote: ‘My own view (unlike Beauchamp and Childress who explicitly state that they make no such claim ( p. 421)1, is that all moral agents whether or not they are doctors or otherwise involved in healthcare have these prima facie moral obligations; but in the context of answering the question ‘what is it to do good medical ethics ?’ my claim is limited to the ethical obligations of doctors’. The author intended and should have written the following: ‘My own view, unlike Beauchamp and Childress who explicitly state that they make no such claim (p.421)1 is that these four prima facie principles can provide a basic moral framework not only for medical ethics but for ethics in general’.

  6. Correction.

    Science.gov (United States)

    2015-03-01

    In the January 2015 issue of Cyberpsychology, Behavior, and Social Networking (vol. 18, no. 1, pp. 3–7), the article "Individual Differences in Cyber Security Behaviors: An Examination of Who Is Sharing Passwords." by Prof. Monica Whitty et al., has an error in wording in the abstract. The sentence in question was originally printed as: Contrary to our hypotheses, we found older people and individuals who score high on self-monitoring were more likely to share passwords. It should read: Contrary to our hypotheses, we found younger people and individuals who score high on self-monitoring were more likely to share passwords. The authors wish to apologize for the error.

  7. Correction

    CERN Multimedia

    2007-01-01

    From left to right: Luis, Carmen, Mario, Christian and José listening to speeches by theorists Alvaro De Rújula and Luis Alvarez-Gaumé (right) at their farewell gathering on 15 May.We unfortunately cut out a part of the "Word of thanks" from the team retiring from Restaurant No. 1. The complete message is published below: Dear friends, You are the true "nucleus" of CERN. Every member of this extraordinary human mosaic will always remain in our affections and in our thoughts. We have all been very touched by your spontaneous generosity. Arrivederci, Mario Au revoir,Christian Hasta Siempre Carmen, José and Luis PS: Lots of love to the theory team and to the hidden organisers. So long!

  8. Correction

    Science.gov (United States)

    2014-01-01

    In the meeting report "Strategies to observe and understand processes and drivers in the biogeosphere," published in the 14 January 2014 issue of Eos (95(2), 16, doi:10.1002/2014EO020004), an incorrect affiliation was listed for one coauthor. Michael Young is with the University of Texas at Austin.

  9. Temperature variability over the tropical middle atmosphere

    Directory of Open Access Journals (Sweden)

    K. Mohanakumar

    1994-04-01

    Full Text Available A study on the variability of temperature in the tropical middle atmosphere over Thumba (8 32' N, 76 52' E, located at the southern part of India, has been carried out based on rocket observations for a period of 20 years, extending from 1970 to 1990. The rocketsonde-derived mean temperatures over Thumba are corrected prior to 1978 and then compared with the middle atmospheric reference model developed from satellite observations and Solar Mesosphere Explorer (SME satellite data. Temperature variability at every 1 km interval in the 25-75 km region was analysed. The tropical stratosphere is found to be highly stable, whereas considerable variability is noted in the middle mesosphere. The effect of seasonal cycle is least in the lower stratosphere. Annual and semi-annual oscillations in temperature are the primary oscillations in the tropical middle atmosphere. Annual temperature oscillations are dominant in the mesosphere and semi-annual oscillations are strong in the stratosphere. The stratopause region is noted to be the part of the middle atmosphere least sensitive to the changes in solar activity and long-term variability.

  10. Universality of quantum gravity corrections.

    Science.gov (United States)

    Das, Saurya; Vagenas, Elias C

    2008-11-28

    We show that the existence of a minimum measurable length and the related generalized uncertainty principle (GUP), predicted by theories of quantum gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to the Lamb shift, the Landau levels, and the tunneling current in a scanning tunneling microscope. We show that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the future should either be able to test these predictions, or further tighten the above bounds and predict an intermediate length scale between the electroweak and the Planck scale.

  11. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  12. Atmospheric ions and pollution

    International Nuclear Information System (INIS)

    Renoux, A.

    1977-01-01

    The various types of atmospheric ions are defined, the main sources of natural atmospheric radioactivity inducing the formation of radioactive ions in the air are then recalled. The basic equations governing the formation of these ions are indicated and the most current experimental methods used for detecting them are described (Zeleny tubes, Erikson tubes). The special properties of these ions are examined, they are particularly emphasized for the smaller ones. The existence of a discret spectrum of mobilities is shown and the presence of big negative radioactive ions is investigated. Indicative information are given on the granulometric distribution of the atmospheric radioactivity in the air, from small positive Ra A ion fixation on aerosols [fr

  13. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  14. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  15. SELF CORRECTION WORKS BETTER THAN TEACHER CORRECTION IN EFL SETTING

    Directory of Open Access Journals (Sweden)

    Azizollah Dabaghi

    2012-11-01

    Full Text Available Learning a foreign language takes place step by step, during which mistakes are to be expected in all stages of learning. EFL learners are usually afraid of making mistakes which prevents them from being receptive and responsive. Overcoming fear of mistakes depends on the way mistakes are rectified. It is believed that autonomy and learner-centeredness suggest that in some settings learner's self-correction of mistakes might be more beneficial for language learning than teacher's correction. This assumption has been the subject of debates for some time. Some researchers believe that correction whether that of teacher's or on behalf of learners is effective in showing them how their current interlanguage differs from the target (Long &Robinson, 1998. Others suggest that correcting the students whether directly or through recasts are ambiguous and may be perceived by the learner as confirmation of meaning rather than feedback on form (Lyster, 1998a. This study is intended to investigate the effects of correction on Iranian intermediate EFL learners' writing composition in Payam Noor University. For this purpose, 90 English majoring students, studying at Isfahan Payam Noor University were invited to participate at the experiment. They all received a sample of TOFEL test and a total number of 60 participants whose scores were within the range of one standard deviation below and above the mean were divided into two equal groups; experimental and control. The experimental group went through some correction during the experiment while the control group remained intact and the ordinary processes of teaching went on. Each group received twelve sessions of two hour classes every week on advanced writing course in which some activities of Modern English (II were selected. Then after the treatment both groups received an immediate test as post-test and the experimental group took the second post-test as the delayed recall test with the same design as the

  16. Composition of Estonian atmosphere

    International Nuclear Information System (INIS)

    Punning, J. M.; Karindi, A.

    1996-01-01

    Atmospheric study, particularly that of its chemical composition, has a long tradition in Estonia. Since middle of this century, in addition to meteorological observations, some chemical compounds in precipitations have been regularly measured in many meteorological stations. The main aim was to acquire information about the state and dynamics of the atmosphere. Therefore, main attention was paid to monitoring chemical compounds which have a direct impact on the human environment. As energy production developed intensively and SO 2 and NO x increased drastically in the atmosphere in acidic rock areas, like Scandinavia, the problem of acid rain became the most important environmental problem in Europe and North-America. As a consequence, monitoring the compounds of sulphur in precipitation was organized in Estonia. In the 1970 s, as related to large operating oil shale-based power plants, Estonia became a country , where emissions of sulphur compounds per capita were extremely high. In 1979, Estonia became a participant in the European Monitoring and Evaluation Programme - the network created to study transboundary air pollution. The aims of the precipitation chemistry study and the related problems of the formation and transformation of the atmospheric composition have varied over the years. But monitoring of pollutant (in particular, sulphur compound) loads has been a central issue. Over recent years, an attempt was made to estimate the spatial regularities of atmospheric impurities and their impact on the pH of mean monthly precipitations. Furthermore, calculations were provided to find out the origin of atmospheric impurities washed out in Estonia. Until the 1990 s, CO 2 , and some other greenhouse gas (GHG) emissions were not studied in Estonia. The first inventory of GHG for Estonia was provided in 1995 using the Intergovernmental Panel on Climate Change (IPCC) methodology

  17. Correcting quantum errors with entanglement.

    Science.gov (United States)

    Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-10-20

    We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.

  18. Self-correcting Multigrid Solver

    International Nuclear Information System (INIS)

    Lewandowski, Jerome L.V.

    2004-01-01

    A new multigrid algorithm based on the method of self-correction for the solution of elliptic problems is described. The method exploits information contained in the residual to dynamically modify the source term (right-hand side) of the elliptic problem. It is shown that the self-correcting solver is more efficient at damping the short wavelength modes of the algebraic error than its standard equivalent. When used in conjunction with a multigrid method, the resulting solver displays an improved convergence rate with no additional computational work

  19. Brane cosmology with curvature corrections

    International Nuclear Information System (INIS)

    Kofinas, Georgios; Maartens, Roy; Papantonopoulos, Eleftherios

    2003-01-01

    We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflation field or negative pressures. At late times, conventional cosmology is recovered. (author)

  20. Natural atmospheric radioactivity

    International Nuclear Information System (INIS)

    Renoux, A.

    1986-01-01

    After having summed up the different old or new units, used in radioactivity and radioprotection, the origins of atmospheric radioactivity are reported. Next the authors deal with the air content in radon, thoron and their radioactive descendants, insisting on the variations of the radon air content and on the radioactive balance between radon and its descendants. Then a few notions concerning the natural radioactive aerosol are developed: electric charge state, granulometric distribution. The possible effects of natural atmospheric radioactivity on man are studied with a distinction between inner irradiation and outer irradiation, an average assessment is shown. Finally the important problem of radon in inhabitations is approached [fr

  1. Atmosphere beyond Poetics

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2014-01-01

    Defined by German philosopher Gernot Böhme as a ‘fundamental concept of a new aesthetics’ (Böhme 2003), the notion of atmosphere has been widely discussed across many disciplinary fields over the last few decades. It has taken a central stage also in architectural debate, leading to both conceptual......, the notion of atmosphere is presented as parallactic for designing experience in architectural fields, since it transgresses formal and material boundaries of bodies, opening a new gap that exposes the orthodox space-body-environment relationships to questions. It leads to the dissolution...

  2. Global atmospheric changes.

    Science.gov (United States)

    Piver, W T

    1991-12-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation.

  3. Atmospheric transport of radionuclides

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1977-01-01

    The chairman and contributors are members of the Working Group on Atmospheric Dispersion, Deposition, and Resuspension. This group examined the mathematical approaches for determining the direct and indirect pathways to man of releases of pollutants to the atmosphere. The dose-to-man limitations promulgated by the Nuclear Regulatory Commission, the Environmental Protection Agency, and the Energy Research and Development Administration were presented. The present status of research was discussed, and recommendations for future work were made. Particular emphasis was placed on the need for additional experimental work to develop confidence limits leading to acceptable probability statements of critical pathways for determining the dose-to-man

  4. Atmospheric transport of radionuclides

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1978-01-01

    The chairman and contributors are members of the Working Group on Atmospheric Dispersion, Deposition, and Resuspension. This group examined the mathematical approaches for determining the direct and indirect pathways to man of releases of pollutants to the atmosphere. The dose-to-man limitations promulgated by the Nuclear Regulatory Commission, the Environmental Protection Agency, and the Energy Research and Development Administration were presented. The present status of research was discussed, and recommendations for future work were made. Particular emphasis was placed on the need for additional experimental work to develop confidence limits leading to acceptable probability statements of critical pathways for determining the dose-to-man

  5. A Generalized Correction for Attenuation.

    Science.gov (United States)

    Petersen, Anne C.; Bock, R. Darrell

    Use of the usual bivariate correction for attenuation with more than two variables presents two statistical problems. This pairwise method may produce a covariance matrix which is not at least positive semi-definite, and the bivariate procedure does not consider the possible influences of correlated errors among the variables. The method described…

  6. Entropic corrections to Newton's law

    International Nuclear Information System (INIS)

    Setare, M R; Momeni, D; Myrzakulov, R

    2012-01-01

    In this short paper, we calculate separately the generalized uncertainty principle (GUP) and self-gravitational corrections to Newton's gravitational formula. We show that for a complete description of the GUP and self-gravity effects, both the temperature and entropy must be modified. (paper)

  7. 'Correction of unrealizable service choreographies’

    NARCIS (Netherlands)

    Mancioppi, M.

    2015-01-01

    This thesis is devoted to the detection and correction of design flaws affecting service choreographies. Service choreographies are models that specify how software services are composed in a decentralized, message-driven fashion. In particular, this work focuses on flaws that compromise the

  8. Multilingual text induced spelling correction

    NARCIS (Netherlands)

    Reynaert, M.W.C.

    2004-01-01

    We present TISC, a multilingual, language-independent and context-sensitive spelling checking and correction system designed to facilitate the automatic removal of non-word spelling errors in large corpora. Its lexicon is derived from raw text corpora, without supervision, and contains word unigrams

  9. The correct "ball bearings" data.

    Science.gov (United States)

    Caroni, C

    2002-12-01

    The famous data on fatigue failure times of ball bearings have been quoted incorrectly from Lieblein and Zelen's original paper. The correct data include censored values, as well as non-fatigue failures that must be handled appropriately. They could be described by a mixture of Weibull distributions, corresponding to different modes of failure.

  10. Interaction and self-correction

    DEFF Research Database (Denmark)

    Satne, Glenda Lucila

    2014-01-01

    and acquisition. I then criticize two models that have been dominant in thinking about conceptual competence, the interpretationist and the causalist models. Both fail to meet NC, by failing to account for the abilities involved in conceptual self-correction. I then offer an alternative account of self...

  11. CORRECTIVE ACTION IN CAR MANUFACTURING

    Directory of Open Access Journals (Sweden)

    H. Rohne

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: In this paper the important .issues involved in successfully implementing corrective action systems in quality management are discussed. The work is based on experience in implementing and operating such a system in an automotive manufacturing enterprise in South Africa. The core of a corrective action system is good documentation, supported by a computerised information system. Secondly, a systematic problem solving methodology is essential to resolve the quality related problems identified by the system. In the following paragraphs the general corrective action process is discussed and the elements of a corrective action system are identified, followed by a more detailed discussion of each element. Finally specific results from the application are discussed.

    AFRIKAANSE OPSOMMING: Belangrike oorwegings by die suksesvolle implementering van korrektiewe aksie stelsels in gehaltebestuur word in hierdie artikel bespreek. Die werk is gebaseer op ondervinding in die implementering en bedryf van so 'n stelsel by 'n motorvervaardiger in Suid Afrika. Die kern van 'n korrektiewe aksie stelsel is goeie dokumentering, gesteun deur 'n gerekenariseerde inligtingstelsel. Tweedens is 'n sistematiese probleemoplossings rnetodologie nodig om die gehalte verwante probleme wat die stelsel identifiseer aan te spreek. In die volgende paragrawe word die algemene korrektiewe aksie proses bespreek en die elemente van die korrektiewe aksie stelsel geidentifiseer. Elke element word dan in meer besonderhede bespreek. Ten slotte word spesifieke resultate van die toepassing kortliks behandel.

  12. Rank error-correcting pairs

    DEFF Research Database (Denmark)

    Martinez Peñas, Umberto; Pellikaan, Ruud

    2017-01-01

    Error-correcting pairs were introduced as a general method of decoding linear codes with respect to the Hamming metric using coordinatewise products of vectors, and are used for many well-known families of codes. In this paper, we define new types of vector products, extending the coordinatewise ...

  13. Seasonal atmospheric extinction

    International Nuclear Information System (INIS)

    Mikhail, J.S.

    1979-01-01

    Mean monochromatic extinction coefficients at various wavelengths at the Kottamia Observatory site have shown the existence of a seasonal variation of atmospheric extinction. The extinction of aerosol compontnts with wavelengths at winter represent exceedingly good conditions. Spring gives the highest extinction due to aerosol. (orig.)

  14. Atmospheric and aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering; Ariya, Parisa A. (ed.) [McGill Univ. Montreal, QC (Canada). Dept. of Chemistry; McGill Univ. Montreal, QC (Canada). Dept. of Atmospheric and Oceanic Sciences

    2014-09-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  15. Atmospheric muons in Hanoi

    International Nuclear Information System (INIS)

    Pham Ngoc Diep; Pham thi Tuyet Nhung; Pierre Darriulat; Nguyen Thi Thao; Dang Quang Thieu; Vo Van Thuan

    2006-01-01

    Recent measurements of the atmospheric muon flux in Hanoi were reviewed. As the measurements were carried out in a region of maximal geomagnetic rigidity cutoff, they provided a sensitive test of air shower models used in the interpretation of neutrino oscillation experiments. The measured data were found to be in a very good agreement with the prediction from the model of M. Honda. (author)

  16. Climate and atmospheric research

    International Nuclear Information System (INIS)

    Kramer, G.; Schumacher, R.

    1992-01-01

    This issue of the scientific journal of the Humboldt university is dedicated to results of research work carried out to the greatest extent at the meteorological institute in the last two years on the area of climate and atmospheric research. The traditional research areas of the institute are climatology and the dynamics of the atmosphere, in particular the atmospherical boundary layer. Considering the high probability of a global climatic fluctuation due to the anthropogenic change of composition of the atmosphere and other climate-relevant factors imminent in the next century, climatological research today is an important part of global and regional environmental research. From the necessity of determination and evaluation of the effect of climatic fluctuations on nature and society the contours of a new interdisciplinary research area are already visible now. This is suitable as hardly any other area to be the supporting idea of environmental research at universities. The contributions contained in the issue already consider, in addition to results on climate diagnosis, also results on aspects of climate effect research. (orig./KW) [de

  17. Astronomy and Atmospheric Optics

    Science.gov (United States)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  18. Contaminants in the Atmosphere

    DEFF Research Database (Denmark)

    Skov, H.; Bossi, R.; Wåhlin, P.

    This report presents the results of atmospheric monitoring in Nuuk, Greenland. A long series of heavy metals and persistent organic Pollutants (POPs) have been measured and model calculations have been carried out supporting the interpretation of the results. Financially, the Danish Environmental...

  19. Atmospheric neutrino challenges

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2005-08-15

    We briefly review the improvements in the predictions of atmospheric neutrino fluxes since the NOW2000 workshop. In spite of the great progress of the calculational technique the predictions are still not exact because of the uncertainties in the two major sets of input - cosmic ray flux and hadronic interactions on light nuclei.

  20. Atmosphere as colloid

    International Nuclear Information System (INIS)

    Kutsenogij, K.P.; Kutsenogij, P.K.

    2008-01-01

    In the paper review the results of experimental and theoretical investigations on space-time variability of physical, chemical and biological atmospheric characteristics and its influence on climate, ecology and environmental quality under the impact of natural processes and anthropogenic load is submitted

  1. Atmospheric and aerosol chemistry

    International Nuclear Information System (INIS)

    McNeill, V. Faye; Ariya, Parisa A.; McGill Univ. Montreal, QC

    2014-01-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  2. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Perkins, D.H.

    1984-01-01

    The atmospheric neutrino fluxes, which are responsible for the main background in proton decay experiments, have been calculated by two independent methods. There are discrepancies between the two sets of results regarding latitude effects and up-down asymmetries, especially for neutrino energies Esub(ν) < 1 GeV. (author)

  3. Atoms and atmosphere

    International Nuclear Information System (INIS)

    Megie, G.

    1994-01-01

    The ozone sources, roles and distribution are reviewed, and the atmosphere dynamic effects on ozone circulation are discussed; chlorine and CFC are the two main perturbative agents of the ozone layer and their effects are described and analyzed; impacts of the limitation of the CFC and chlorine utilization are discussed. 5 figs., 9 tabs

  4. ESA Atmospheric Toolbox

    Science.gov (United States)

    Niemeijer, Sander

    2017-04-01

    The ESA Atmospheric Toolbox (BEAT) is one of the ESA Sentinel Toolboxes. It consists of a set of software components to read, analyze, and visualize a wide range of atmospheric data products. In addition to the upcoming Sentinel-5P mission it supports a wide range of other atmospheric data products, including those of previous ESA missions, ESA Third Party missions, Copernicus Atmosphere Monitoring Service (CAMS), ground based data, etc. The toolbox consists of three main components that are called CODA, HARP and VISAN. CODA provides interfaces for direct reading of data from earth observation data files. These interfaces consist of command line applications, libraries, direct interfaces to scientific applications (IDL and MATLAB), and direct interfaces to programming languages (C, Fortran, Python, and Java). CODA provides a single interface to access data in a wide variety of data formats, including ASCII, binary, XML, netCDF, HDF4, HDF5, CDF, GRIB, RINEX, and SP3. HARP is a toolkit for reading, processing and inter-comparing satellite remote sensing data, model data, in-situ data, and ground based remote sensing data. The main goal of HARP is to assist in the inter-comparison of datasets. By appropriately chaining calls to HARP command line tools one can pre-process datasets such that two datasets that need to be compared end up having the same temporal/spatial grid, same data format/structure, and same physical unit. The toolkit comes with its own data format conventions, the HARP format, which is based on netcdf/HDF. Ingestion routines (based on CODA) allow conversion from a wide variety of atmospheric data products to this common format. In addition, the toolbox provides a wide range of operations to perform conversions on the data such as unit conversions, quantity conversions (e.g. number density to volume mixing ratios), regridding, vertical smoothing using averaging kernels, collocation of two datasets, etc. VISAN is a cross-platform visualization and

  5. Comets, impacts, and atmospheres

    Science.gov (United States)

    Owen, Tobias; Bar-Nun, Akiva

    Studies of element abundances and values of D/H in the atmospheres of the giant planets and Titan have emphasized the important role of icy planetesimals in the formation of these bodies. In these atmospheres, C/H and D/H increase as the relative masses of the 'cores' of the planets increase. N/H appears to deviate from this trend in an interesting way. In the inner solar system, the traditional approach of using carbonaceous chondrites as the source of planetary volatiles is in serious trouble because of the depletion of xenon and the unusual pattern of xenon isotopes found in the atmospheres of Earth and Mars, and because of the solar-type abundance ratios of argon, krypton and xenon and the large amounts of neon and argon on Venus. Recent studies of elemental abundances in comets, especially P/Halley, coupled with laboratory studies of the trapping of gas in ice formed at low temperatures by A. Bar-Nun et al. provide a consistent interpretation of all of these results. This interpretation emphasizes the fundamental importance of icy planetesimals (comets) and the randomness of early impacts in the formation of planetary systems. Cometary delivery by itself will not explain the noble gas abundances on the inner planets. There is good evidence for at least one additional source, which presumably consists of the rocky material making up the bulk of the planets. The existence of this rocky reservoir is manifested in the nucleogenic isotopes and in the neon which is found in all these atmospheres and is also present in the Earth's mantle. This neon may well be a relic of the planets' earliest, accretional atmospheres.

  6. Atmosphere Refraction Effects in Object Locating for Optical Satellite Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    YAN Ming

    2015-09-01

    Full Text Available The collinear rigorous geometric model contains the atmosphere refraction geometric error in off-nadir observation. In order to estimate and correct the atmosphere refraction geometric error, the ISO international standard atmospheric model and Owens atmosphere refractive index algorithm are applied to calculate the index of atmosphere refraction in different latitude and altitude. The paper uses the weighted mean algorithm to reduce the eight layers ISO standard atmospheric model into a simple troposphere and stratosphere two layers spherical atmosphere. And the LOS vector track geometric algorithm is used to estimate the atmosphere refraction geometric error in different observation off-nadir angle. The results show that the atmosphere refraction will introduce about 2.5 m or 9 m geometric displacement in 30 or 45 degree off-nadir angle individual. Therefore, during geo-location processing of agile platform and extra wide high spatial resolution imagery, there is need to take into account the influence of atmosphere refraction and correct the atmosphere refraction geometric error to enhance the geo-location precision without GCPs.

  7. Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2012-05-01

    Corrective Action Unit (CAU) 550 is located in Areas 7, 8, and 10 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 550, Smoky Contamination Area, comprises 19 corrective action sites (CASs). Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plumes, it was determined that some of the CAS releases are co-located and will be investigated as study groups. This document describes the planned investigation of the following CASs (by study group): (1) Study Group 1, Atmospheric Test - CAS 08-23-04, Atmospheric Test Site T-2C; (2) Study Group 2, Safety Experiments - CAS 08-23-03, Atmospheric Test Site T-8B - CAS 08-23-06, Atmospheric Test Site T-8A - CAS 08-23-07, Atmospheric Test Site T-8C; (3) Study Group 3, Washes - Potential stormwater migration of contaminants from CASs; (4) Study Group 4, Debris - CAS 08-01-01, Storage Tank - CAS 08-22-05, Drum - CAS 08-22-07, Drum - CAS 08-22-08, Drums (3) - CAS 08-22-09, Drum - CAS 08-24-03, Battery - CAS 08-24-04, Battery - CAS 08-24-07, Batteries (3) - CAS 08-24-08, Batteries (3) - CAS 08-26-01, Lead Bricks (200) - CAS 10-22-17, Buckets (3) - CAS 10-22-18, Gas Block/Drum - CAS 10-22-19, Drum; Stains - CAS 10-22-20, Drum - CAS 10-24-10, Battery. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed

  8. Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    Evenson, Grant

    2012-01-01

    Corrective Action Unit (CAU) 550 is located in Areas 7, 8, and 10 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 550, Smoky Contamination Area, comprises 19 corrective action sites (CASs). Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plumes, it was determined that some of the CAS releases are co-located and will be investigated as study groups. This document describes the planned investigation of the following CASs (by study group): (1) Study Group 1, Atmospheric Test - CAS 08-23-04, Atmospheric Test Site T-2C; (2) Study Group 2, Safety Experiments - CAS 08-23-03, Atmospheric Test Site T-8B - CAS 08-23-06, Atmospheric Test Site T-8A - CAS 08-23-07, Atmospheric Test Site T-8C; (3) Study Group 3, Washes - Potential stormwater migration of contaminants from CASs; (4) Study Group 4, Debris - CAS 08-01-01, Storage Tank - CAS 08-22-05, Drum - CAS 08-22-07, Drum - CAS 08-22-08, Drums (3) - CAS 08-22-09, Drum - CAS 08-24-03, Battery - CAS 08-24-04, Battery - CAS 08-24-07, Batteries (3) - CAS 08-24-08, Batteries (3) - CAS 08-26-01, Lead Bricks (200) - CAS 10-22-17, Buckets (3) - CAS 10-22-18, Gas Block/Drum - CAS 10-22-19, Drum; Stains - CAS 10-22-20, Drum - CAS 10-24-10, Battery. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed

  9. Correcting ligands, metabolites, and pathways

    Directory of Open Access Journals (Sweden)

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  10. Calculation of infrared radiation in the atmosphere by a numerical method

    International Nuclear Information System (INIS)

    Nunes, G.S.S.; Viswanadham, Y.

    1981-01-01

    A numerical method is described for the calculations of the atmospheric infrared flux and radiative cooling rate in the atmosphere. It is suitable for use at all levels below lower stratosphere. The square root pressure correction factor is incorporated in the computation of the corrected optical depth. The water vapour flux emissivity data of Staley and Jurica are used in the model. The versatility of the computing scheme sugests that this method is adequate to evaluate infrared flux and flux divergence in the problems involving a large amount of atmospheric data. (Author) [pt

  11. Modeling of spectral atmosphere transmission for infrared radiation

    International Nuclear Information System (INIS)

    Wiecek, B.; Olbrycht, R.

    2009-01-01

    IR radiation transmission of the atmosphere is an important factor during the thermovision remote sensing and measurement. Transmission coefficient of the atmosphere depends on its content and it is attenuated mainly due to the vapor concentration. Every calibrated thermal camera should be equipped with the digital system which implements the transmission model of the atmosphere. The model presented in this work is based on Beer and Bouguer laws. The proposed simplified model of transmission atmosphere is suitable for implementation in the thermal cameras. A simple digital controller of the camera can calculate the transmission coefficient and correct the temperature measurement. The model takes in account both scattering and absorption due the quantum effects when the photons are interacting with the molecules. (author)

  12. On atmospheric stability in the dynamic wake meandering model

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.

    2014-01-01

    The present study investigates a new approach for capturing the effects of atmospheric stability on wind turbine wake evolution and wake meandering by using the dynamic wake meandering model. The most notable impact of atmospheric stability on the wind is the changes in length and velocity scales...... spectra and applied to the dynamic wake meandering model to capture the correct wake meandering behaviour. The ambient turbulence in all stability classes is generated using the Mann turbulence model, where the effects of non-neutral atmospheric stability are approximated by the selection of input...... in the computational domain. The changes in the turbulent length scales due to the various atmospheric stability states impact the wake meandering characteristics and thus the power generation by the individual turbines. The proposed method is compared with results from both large-eddy simulation coupled...

  13. Video Error Correction Using Steganography

    Science.gov (United States)

    Robie, David L.; Mersereau, Russell M.

    2002-12-01

    The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.

  14. Personalized recommendation with corrected similarity

    International Nuclear Information System (INIS)

    Zhu, Xuzhen; Tian, Hui; Cai, Shimin

    2014-01-01

    Personalized recommendation has attracted a surge of interdisciplinary research. Especially, similarity-based methods in applications of real recommendation systems have achieved great success. However, the computations of similarities are overestimated or underestimated, in particular because of the defective strategy of unidirectional similarity estimation. In this paper, we solve this drawback by leveraging mutual correction of forward and backward similarity estimations, and propose a new personalized recommendation index, i.e., corrected similarity based inference (CSI). Through extensive experiments on four benchmark datasets, the results show a greater improvement of CSI in comparison with these mainstream baselines. And a detailed analysis is presented to unveil and understand the origin of such difference between CSI and mainstream indices. (paper)

  15. Video Error Correction Using Steganography

    Directory of Open Access Journals (Sweden)

    Robie David L

    2002-01-01

    Full Text Available The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.

  16. Corrective action program reengineering project

    International Nuclear Information System (INIS)

    Vernick, H.R.

    1996-01-01

    A series of similar refueling floor events that occurred during the early 1990s prompted Susquehanna steam electric station (SSES) management to launch a broad-based review of how the Nuclear Department conducts business. This was accomplished through the formation of several improvement initiative teams. Clearly, one of the key areas that benefited from this management initiative was the corrective action program. The corrective action improvement team was charged with taking a comprehensive look at how the Nuclear Department identified and resolved problems. The 10-member team included management and bargaining unit personnel as well as an external management consultant. This paper provides a summary of this self-assessment initiative, including a discussion of the issues identified, opportunities for improvement, and subsequent completed or planned actions

  17. Corrected body surface potential mapping.

    Science.gov (United States)

    Krenzke, Gerhard; Kindt, Carsten; Hetzer, Roland

    2007-02-01

    In the method for body surface potential mapping described here, the influence of thorax shape on measured ECG values is corrected. The distances of the ECG electrodes from the electrical heart midpoint are determined using a special device for ECG recording. These distances are used to correct the ECG values as if they had been measured on the surface of a sphere with a radius of 10 cm with its midpoint localized at the electrical heart midpoint. The equipotential lines of the electrical heart field are represented on the virtual surface of such a sphere. It is demonstrated that the character of a dipole field is better represented if the influence of the thorax shape is reduced. The site of the virtual reference electrode is also important for the dipole character of the representation of the electrical heart field.

  18. Interaction and Self-Correction

    Directory of Open Access Journals (Sweden)

    Glenda Lucila Satne

    2014-07-01

    Full Text Available In this paper I address the question of how to account for the normative dimension involved in conceptual competence in a naturalistic framework. First, I present what I call the Naturalist Challenge (NC, referring to both the phylogenetic and ontogenetic dimensions of conceptual possession and acquisition. I then criticize two models that have been dominant in thinking about conceptual competence, the interpretationist and the causalist models. Both fail to meet NC, by failing to account for the abilities involved in conceptual self-correction. I then offer an alternative account of self-correction that I develop with the help of the interactionist theory of mutual understanding arising from recent developments in Phenomenology and Developmental Psychology.

  19. Lichens and atmospheric pollution

    Energy Technology Data Exchange (ETDEWEB)

    Tallis, J H

    1964-09-01

    The extreme sensitivity of lichens, particularly the larger ones, to industrialization has been recognized for many years. Most people attribute the absence of lichens from urban areas to the atmospheric pollution prevailing, and a few attribute it to climatic dryness, resulting from efficient drainage systems in towns. The two main components of air pollution are solid matter, or soot, and gaseous sulfur dioxide. The main effects of pollution appear to be: a direct reduction of light intensity by smoke haze, a deposit of soot on the plant surface, an acidification of the soil, and direct damage to plants. A body of evidence indicates that SO/sub 2/ may be the main harmful component for lichens. The distribution of lichens thus might be used to determine the limits within which atmospheric pollution is operating. 5 references.

  20. Atmospheric Release Advisory Capability

    International Nuclear Information System (INIS)

    Dickerson, M.H.; Gudiksen, P.H.; Sullivan, T.J.

    1983-02-01

    The Atmospheric Release Advisory Capability (ARAC) project is a Department of Energy (DOE) sponsored real-time emergency response service available for use by both federal and state agencies in case of a potential or actual atmospheric release of nuclear material. The project, initiated in 1972, is currently evolving from the research and development phase to full operation. Plans are underway to expand the existing capability to continuous operation by 1984 and to establish a National ARAC Center (NARAC) by 1988. This report describes the ARAC system, its utilization during the past two years, and plans for its expansion during the next five to six years. An integral part of this expansion is due to a very important and crucial effort sponsored by the Defense Nuclear Agency to extend the ARAC service to approximately 45 Department of Defense (DOD) sites throughout the continental US over the next three years

  1. Outer atmospheric research

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1988-01-01

    The region above the earth from about 90 km to 150 km is a major part of the upper or outer atmosphere. It is relatively unexplored, being too high for balloons or aircraft and too low for persistent orbiting spacecraft. However, the concept of a tethered subsatellite, deployed downward from an orbiting, more massive craft such as the Space Shuttle, opens the possibility of a research capability that could provide global mapping of this region. The need for research in this thick spherical shell above the earth falls into two major categories: (1) scientific data for understanding and modeling the global atmosphere and thereby determining its role in the earth system, and (2) engineering data for the design of future aerospace vehicles that will operate there. This paper presents an overview and synthesis of the currently perceived research needs and the state-of-the-art of the proposed tethered research capability. 16 references

  2. EPS Young Physicist Prize - CORRECTION

    CERN Multimedia

    2009-01-01

    The original text for the article 'Prizes aplenty in Krakow' in Bulletin 30-31 assigned the award of the EPS HEPP Young Physicist Prize to Maurizio Pierini. In fact he shared the prize with Niki Saoulidou of Fermilab, who was rewarded for her contribution to neutrino physics, as the article now correctly indicates. We apologise for not having named Niki Saoulidou in the original article.

  3. Publisher Correction: Eternal blood vessels

    Science.gov (United States)

    Hindson, Jordan

    2018-05-01

    This article was originally published with an incorrect reference for the original article. The reference has been amended. Please see the correct reference below. Qiu, Y. et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-018-0224-z (2018)

  4. Atmospheric Science Without Borders

    Science.gov (United States)

    Panday, Arnico; Praveen, Ps; Adhikary, Bhupesh; Bhave, Prakash; Surapipith, Vanisa; Pradhan, Bidya; Karki, Anita; Ghimire, Shreta; Thapa, Alpha; Shrestha, Sujan

    2016-04-01

    The Indo-Gangetic Plains (IGP) in northern South Asia are among the most polluted and most densely populated places in the world, and they are upwind of vulnerable ecosystems in the Himalaya mountains. They are also fragmented across 5 countries between which movement of people, data, instruments and scientific understanding have been very limited. ICIMOD's Atmosphere Initiative has for the past three years been working on filling data gaps in the region, while facilitating collaborations across borders. It has established several atmospheric observatories at low and mid elevations in Bhutan and Nepal that provide new data on the inflow of pollutants from the IGP towards the mountains, as well as quantify the effects of local emissions on air quality in mountain cities. EGU will be the first international conference where these data will be presented. ICIMOD is in the process of setting up data servers through which data from the region will be shared with scientists and the general public across borders. Meanwhile, to promote cross-border collaboration among scientists in the region, while addressing an atmospheric phenomenon that affects the lives of the several hundred million people, ICIMOD' Atmosphere Initiative has been coordinating an interdisciplinary multi-year study of persistent winter fog over the Indo-Gangetic Plains, with participation by researchers from Pakistan, India, China, Nepal, Bhutan and Bangladesh. Using a combination of in-situ measurements and sample collection, remote sensing, modeling and community based research, the researchers are studying how changing moisture availability and air pollution have led to increases in fog frequency and duration, as well as the fog's impacts on local communities and energy demand that may affect air pollution emissions. Preliminary results of the Winter 2015-2016 field campaign will be shown.

  5. Atmospheric tides on Neptune

    International Nuclear Information System (INIS)

    Dement'ev, M.S.; Morozhenko, A.V.

    1989-01-01

    The dependence of the equivalent width of the methane absorption band at 619 nm in the Neptune's spectrum upon the Triton's orbital position is discovered. It is assumed that observed changes of the equivalent width of the band and colour index (J - K) (Belton et al., 1981; Brown et al., 1981; Cruikshank, 1978) are due to atmospheric tides (period 2 d .9375) and Neptune's rotation (period 10 h .14)

  6. An overview of correctional psychiatry.

    Science.gov (United States)

    Metzner, Jeffrey; Dvoskin, Joel

    2006-09-01

    Supermax facilities may be an unfortunate and unpleasant necessity in modern corrections. Because of the serious dangers posed by prison gangs, they are unlikely to disappear completely from the correctional landscape any time soon. But such units should be carefully reserved for those inmates who pose the most serious danger to the prison environment. Further, the constitutional duty to provide medical and mental health care does not end at the supermax door. There is a great deal of common ground between the opponents of such environments and those who view them as a necessity. No one should want these expensive beds to be used for people who could be more therapeutically and safely managed in mental health treatment environments. No one should want people with serious mental illnesses to be punished for their symptoms. Finally, no one wants these units to make people more, instead of less, dangerous. It is in everyone's interests to learn as much as possible about the potential of these units for good and for harm. Corrections is a profession, and professions base their practices on data. If we are to avoid the most egregious and harmful effects of supermax confinement, we need to understand them far better than we currently do. Though there is a role for advocacy from those supporting or opposed to such environments, there is also a need for objective, scientifically rigorous study of these units and the people who live there.

  7. Assessing the implementation of bias correction in the climate prediction

    Science.gov (United States)

    Nadrah Aqilah Tukimat, Nurul

    2018-04-01

    An issue of the climate changes nowadays becomes trigger and irregular. The increment of the greenhouse gases (GHGs) emission into the atmospheric system day by day gives huge impact to the fluctuated weather and global warming. It becomes significant to analyse the changes of climate parameters in the long term. However, the accuracy in the climate simulation is always be questioned to control the reliability of the projection results. Thus, the Linear Scaling (LS) as a bias correction method (BC) had been applied to treat the gaps between observed and simulated results. About two rainfall stations were selected in Pahang state there are Station Lubuk Paku and Station Temerloh. Statistical Downscaling Model (SDSM) used to perform the relationship between local weather and atmospheric parameters in projecting the long term rainfall trend. The result revealed the LS was successfully to reduce the error up to 3% and produced better climate simulated results.

  8. Dreaming of Atmospheres

    Science.gov (United States)

    Waldmann, I. P.

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  9. Atmospheric benzene and toluene

    International Nuclear Information System (INIS)

    Rasmussen, R.A.; Khalil, M.A.K.

    1983-01-01

    Atmospheric concentrations of benzene (C 6 H 6 ) and toluene (C 7 H 8 )have been observed at nine remote locations of the world ranging in latitude from inside the arctic circle to the south pole. The observations span all seasons at each location. In the northern hemisphere it is observed that C 6 H 6 and C 7 H 8 are most abundant during winter and least abundant during summer. Based on the limited data available, such cycles are not observed in the tropics. These findings are consistent with the expected latitudinal and seasonal variations of OH radicals which cause benzene and toluene to be removed from the atmosphere. The latitude distribution shows high concentrations at mid latitude and low levels in the southern hemisphere. This finding is consistent with the present understanding that the sources of benzene and toluene are primarily anthropogenic. The observed concentration distribution and varibility are consistent with the short expected atmospheric lifetime of the order of months for benzene and days for toluene

  10. DREAMING OF ATMOSPHERES

    International Nuclear Information System (INIS)

    Waldmann, I. P.

    2016-01-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process

  11. Atmospheric radiation monitor

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.A. Leigui de; Peixoto, C.J. Todero; Leao, M.S.A.B.; Luzio, V.P. [Universidade Federal do ABC (UFABC), SP (Brazil); Barbosa, A.F.; Lima Junior, H.P.; Vilar, A.B.; Gama, R.G.; Ferraz, V.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: The Atmospheric Radiation Monitor (MonRAt) is a compact telescope designed to detect fluorescence photons generated in the atmosphere by ultra-high energy cosmic rays showers with energies in the interval between 10{sup 17} eV and 10{sup 18} eV. It is composite by a 64 pixels MultiAnodic PhotoMultiplier Tube (MAPMT) placed at the focus of a parabolic mirror mounted in a Newtonian telescope setup and the data acquisition system. In front of the MAPMT photocathode, filters will be positioned to select light with wavelength in the near ultraviolet region (300 nm < {lambda} < 450 nm) where the nitrogen fluorescent emissions occurs. The data acquisition system consists of a set of pre-amplifiers and FPGA-based boards able to record trigger times and waveforms from each channel and send the data to a computer by USB ports. MonRAt will be used to detect fluorescence photons under different atmospheric conditions (pressure, temperature, humidity, local geomagnetic field, etc) and will contribute with a detailed study of the fluorescence radiation yield. The assembly of the telescope is under way and we present in this work the status of the experiment and its first measurements in the laboratory. (author)

  12. Atmospheric radiation monitor

    International Nuclear Information System (INIS)

    Oliveira, M.A. Leigui de; Peixoto, C.J. Todero; Leao, M.S.A.B.; Luzio, V.P.; Barbosa, A.F.; Lima Junior, H.P.; Vilar, A.B.; Gama, R.G.; Ferraz, V.A.

    2011-01-01

    Full text: The Atmospheric Radiation Monitor (MonRAt) is a compact telescope designed to detect fluorescence photons generated in the atmosphere by ultra-high energy cosmic rays showers with energies in the interval between 10 17 eV and 10 18 eV. It is composite by a 64 pixels MultiAnodic PhotoMultiplier Tube (MAPMT) placed at the focus of a parabolic mirror mounted in a Newtonian telescope setup and the data acquisition system. In front of the MAPMT photocathode, filters will be positioned to select light with wavelength in the near ultraviolet region (300 nm < λ < 450 nm) where the nitrogen fluorescent emissions occurs. The data acquisition system consists of a set of pre-amplifiers and FPGA-based boards able to record trigger times and waveforms from each channel and send the data to a computer by USB ports. MonRAt will be used to detect fluorescence photons under different atmospheric conditions (pressure, temperature, humidity, local geomagnetic field, etc) and will contribute with a detailed study of the fluorescence radiation yield. The assembly of the telescope is under way and we present in this work the status of the experiment and its first measurements in the laboratory. (author)

  13. The Atmospheric Boundary Layer

    Science.gov (United States)

    Garratt, J. R.

    1994-05-01

    A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.

  14. DREAMING OF ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT (United Kingdom)

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  15. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Discovery Bay Marine Laboratory, Univ. of the West Indies (JM))

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  16. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T J [Discovery Bay Marine Laboratory, Univ. of the West Indies (JM)

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  17. Determination of the Atmospheric Neutrino Fluxes from Atmospheric Neutrino Data

    NARCIS (Netherlands)

    Gonzalez-Garcia, M. C.; Maltoni, M.; Rojo, J.

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based

  18. Wind turbine wake in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P -E

    2009-10-15

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)

  19. Wind turbine wake in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P.-E.

    2009-10-15

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)

  20. Aerosols radioactivity in the Bratislava atmosphere

    International Nuclear Information System (INIS)

    Sykora, I.; Chudy, M.; Durana, L.; Holy, K.; Meresova, J.

    2001-01-01

    In our laboratory we measured temporal variation of 7 Be concentration in the atmosphere in period 1977 -1994 years. The aerosols were collected through every month at Hydrometeorological Institute in Bratislava-Koliba, latitude 48 grad 10' and altitude 286 m above sea level. Since end of year 2000 we have started to continue monitoring radioactivity of atmosphere aerosols in new locality in Bratislava-Mlynska dolina. Beside 7 Be we measured also 210 Pb radionuclide aerosols concentration. For measured values 7 Be concentrations are considered corrections for decay radionuclide during the time of filters collection, time between end of collection and measurement and decay during the time of measurement. Obtained results for 7 Be concentrations in aerosols shows seasonal summer maximum, but for 210 Pb concentration in aerosols the seasonal variations are not evident. The temporal variations of this radionuclide which is originated in ground-level atmosphere are more sensitive on meteorological factors and can be also influenced by the industrial activity. For better understanding is needed long term monitoring. (authors)

  1. The nitrogen cycle: Atmosphere interactions

    Science.gov (United States)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  2. Heat transfer in the atmosphere

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    The atmosphere is almost transparent to solar radiation and almost opaque to terrestrial radiation. This implies that in the mean the atmosphere cools while the earth's surface is heated. Convection in the lower atmosphere must therefore occur. The upward flux of energy associated with it

  3. Atmospheric tritium. Measurement and application

    International Nuclear Information System (INIS)

    Frejaville, Gerard

    1967-02-01

    The possible origins of atmospheric tritium are reviewed and discussed. A description is given of enrichment (electrolysis and thermal diffusion) and counting (gas counters and liquid scintillation counters) processes which can be used for determining atmospheric tritium concentrations. A series of examples illustrates the use of atmospheric tritium for resolving a certain number of hydrological and glaciological problems. (author) [fr

  4. UFOMOD - atmospheric dispersion and deposition

    International Nuclear Information System (INIS)

    Panitz, H.J.; Matzerath, C.; Paesler-Sauer, J.

    1989-10-01

    The report gives an introduction into the modelling of atmospheric dispersion and deposition which has been implemented in the new program system UFOMOD for assessing the consequences after nuclear accidents. According to the new structure of UFOMOD, different trajectory models with ranges of validity near to the site and at far distances are applied. Emphasis is laid on the description of the segmented plume model MUSEMET and its affilated submodels, being the removal of activity from the cloud by dry and wet deposition, and special effects like plume rise and the behaviour of plumes released into building wakes. In addition, the evaluation of γ-dose correction factors to take account of the finite extent of the radioactive plume in the near range (up to about 20 km) are described. Only brief introductions are given into the principles of the other models available: the puff model RIMPUFF, the long-range puff model MESOS, and the special straight-line Gaussian model ISOLA which are used if low-level long-duration releases are considered. To define starting times of weather sequences and the probabilities of occurrence of these sequences, it is convenient to perform stratified sampling. Therefore, the preprocessing program package METSAM has been developed to perform for generic ACAs a random sampling of weather sequences out off a population of classified weather conditions. The sampling procedure and a detailed input/output (I/O) description is presented and an additional appendix, respectively. A general overview on the I/O structure of MUSEMET as well as a brief user guide to run the KfK version of the MESOS code are also given in the appendix. (orig.) [de

  5. Biogeosystem Technique as a method to correct the climate

    Science.gov (United States)

    Kalinitchenko, Valery; Batukaev, Abdulmalik; Batukaev, Magomed; Minkina, Tatiana

    2017-04-01

    The climate change and uncertainties of biosphere are on agenda. Correction o the climate drivers will make the climate and biosphere more predictable and certain. Direct sequestration of fossil industrial hydrocarbons and natural methane excess for greenhouse effect reduction is a dangerous mistake. Most quantity of carbon now exists in the form of geological deposits and further reduction of carbon content in biosphere and atmosphere leads to degradation of life. We propose the biological management of the greenhouse gases changing the ratio of biological and atmospheric phases of carbon and water cycle. The biological correction of carbon cycle is the obvious measure because the biological alterations of the Earth's climate have ever been an important peculiarity of the Planet's history. At the first stage of the Earth's climate correction algorithm we use the few leading obvious principal as follows: The more greenhouse amount in atmosphere, the higher greenhouse effect; The more biological production of terrestrial ecosystem, the higher carbon dioxide biological sequestration from atmosphere; The more fresh ionized active oxygen biological production, the higher rate of methane and hydrogen sulfide oxidation in atmosphere, water and soil; The more quantity of carbon in the form of live biological matter in soil and above-ground biomass, the less quantity of carbon in atmosphere; The less sink of carbon to water system, the less emission of greenhouse gases from water system; The less rate of water consumption per unit of biological production, the less transpiration rate of water vapor as a greenhouse gas; The higher intra-soil utilization of mortal biomass, biological and mineral wastes into the plant nutrition instead of its mineralization to greenhouse gases, the less greenhouse effect; The more fossil industrial hydrocarbons are used, the higher can be Earth's biomass; The higher biomass on the Earth, the more of ecology safe food, raw material and biofuel

  6. Misalignment corrections in optical interconnects

    Science.gov (United States)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or

  7. Correcting slightly less simple movements

    Directory of Open Access Journals (Sweden)

    M.P. Aivar

    2005-01-01

    Full Text Available Many studies have analysed how goal directed movements are corrected in response to changes in the properties of the target. However, only simple movements to single targets have been used in those studies, so little is known about movement corrections under more complex situations. Evidence from studies that ask for movements to several targets in sequence suggests that whole sequences of movements are planned together. Planning related segments of a movement together makes it possible to optimise the whole sequence, but it means that some parts are planned quite long in advance, so that it is likely that they will have to be modified. In the present study we examined how people respond to changes that occur while they are moving to the first target of a sequence. Subjects moved a stylus across a digitising tablet. They moved from a specified starting point to two targets in succession. The first of these targets was always at the same position but it could have one of two sizes. The second target could be in one of two different positions and its size was different in each case. On some trials the first target changed size, and on some others the second target changed size and position, as soon as the subject started to move. When the size of the first target changed the subjects slowed down the first segment of their movements. Even the peak velocity, which was only about 150 ms after the change in size, was lower. Beside this fast response to the change itself, the dwell time at the first target was also affected: its duration increased after the change. Changing the size and position of the second target did not influence the first segment of the movement, but also increased the dwell time. The dwell time was much longer for a small target, irrespective of its initial size. If subjects knew in advance which target could change, they moved faster than if they did not know which could change. Taken together, these

  8. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies....... For maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce...

  9. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  10. Neutron borehole logging correction technique

    International Nuclear Information System (INIS)

    Goldman, L.H.

    1978-01-01

    In accordance with an illustrative embodiment of the present invention, a method and apparatus is disclosed for logging earth formations traversed by a borehole in which an earth formation is irradiated with neutrons and gamma radiation produced thereby in the formation and in the borehole is detected. A sleeve or shield for capturing neutrons from the borehole and producing gamma radiation characteristic of that capture is provided to give an indication of the contribution of borehole capture events to the total detected gamma radiation. It is then possible to correct from those borehole effects the total detected gamma radiation and any earth formation parameters determined therefrom

  11. Titan's hydrodynamically escaping atmosphere

    Science.gov (United States)

    Strobel, Darrell F.

    2008-02-01

    The upper atmosphere of Titan is currently losing mass at a rate ˜(4-5)×10 amus, by hydrodynamic escape as a high density, slow outward expansion driven principally by solar UV heating by CH 4 absorption. The hydrodynamic mass loss is essentially CH 4 and H 2 escape. Their combined escape rates are restricted by power limitations from attaining their limiting rates (and limiting fluxes). Hence they must exhibit gravitational diffusive separation in the upper atmosphere with increasing mixing ratios to eventually become major constituents in the exosphere. A theoretical model with solar EUV heating by N 2 absorption balanced by HCN rotational line cooling in the upper thermosphere yields densities and temperatures consistent with the Huygens Atmospheric Science Investigation (HASI) data [Fulchignoni, M., and 42 colleagues, 2005. Nature 438, 785-791], with a peak temperature of ˜185-190 K between 3500-3550 km. This model implies hydrodynamic escape rates of ˜2×10 CHs and 5×10 Hs, or some other combination with a higher H 2 escape flux, much closer to its limiting value, at the expense of a slightly lower CH 4 escape rate. Nonthermal escape processes are not required to account for the loss rates of CH 4 and H 2, inferred by the Cassini Ion Neutral Mass Spectrometer (INMS) measurements [Yelle, R.V., Borggren, N., de la Haye, V., Kasprzak, W.T., Niemann, H.B., Müller-Wodarg, I., Waite Jr., J.H., 2006. Icarus 182, 567-576].

  12. Atmospheric natural radioactivity outdoors

    International Nuclear Information System (INIS)

    Renoux, A.

    1985-01-01

    Following a short account of natural atmospheric radioactivity, radon concentrations are given as well as their variations with time obtained by means of a original apparatus developped in Brest. The radioactive equilibrium of radon and its daughters is then considered, many experiments demonstrating that equilibrium is seldom reached even for 218 Po (RaA). Finally, some characteristics of natural radioactive aerosols are studied: charge, particle size distribution (demonstrating they are fine aerosols since only 30 per cent are made of particles with radii exceeding 0,1 μm) [fr

  13. Atmospheres of central stars

    International Nuclear Information System (INIS)

    Hummer, D.G.

    1978-01-01

    The author presents a brief summary of atmospheric models that are of possible relevance to the central stars of planetary nebulae, and then discusses the extent to which these models accord with the observations of both nebulae and central stars. Particular attention is given to the significance of the very high Zanstra temperature implied by the nebulae He II lambda 4686 A line, and to the discrepancy between the Zanstra He II temperature and the considerably lower temperatures suggested by the appearance of the visual spectrum for some of these objects. (Auth.)

  14. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Honda, M.; Kasahara, K.; Hidaka, K.; Midorikawa, S.

    1990-02-01

    A detailed Monte Carlo simulation of neutrino fluxes of atmospheric origin is made taking into account the muon polarization effect on neutrinos from muon decay. We calculate the fluxes with energies above 3 MeV for future experiments. There still remains a significant discrepancy between the calculated (ν e +antiν e )/(ν μ +antiν μ ) ratio and that observed by the Kamiokande group. However, the ratio evaluated at the Frejus site shows a good agreement with the data. (author)

  15. Rectenna related atmospheric effects

    Science.gov (United States)

    Lee, J.

    1980-01-01

    Possible meteorological effects arising from the existence and operations of a solar power satellite (SPS) system rectenna are examined. Analysis and model simulations in some chosen site situations and meteorological conditions indicate that the meteorological effects of the construction and operation of a rectenna are small, particularly outside the boundary of the structure. From weather and climate points of view, installation of an SPS rectenna seems likely to have effects comparable with those due to other nonindustrial land use changes covering the same area. The absorption and scattering of microwave radiation in the troposphere would have negligible atmospheric effects.

  16. Boomerang pattern correction of gynecomastia.

    Science.gov (United States)

    Hurwitz, Dennis J

    2015-02-01

    After excess skin and fat are removed, a body-lift suture advances skin and suspends ptotic breasts, the mons pubis, and buttocks. For women, the lift includes sculpturing adiposity. While some excess fat may need removal, muscular men should receive a deliberate effort to achieve generalized tight skin closure to reveal superficial muscular bulk. For skin to be tightly bound to muscle, the excess needs to be removed both horizontally and vertically. To aesthetically accomplish that goal, a series of oblique elliptical excisions have been designed. Twenty-four consecutive patients received boomerang pattern correction of gynecomastia. In the last 12 patients, a J torsoplasty extension replaced the transverse upper body lift. Indirect undermining and the opposing force of a simultaneous abdominoplasty obliterate the inframammary fold. To complete effacement of the entire torso in 11 patients, an abdominoplasty was extended by oblique excisions over bulging flanks. Satisfactory improvement was observed in all 24 boomerang cases. A disgruntled patient was displeased with distorted nipples after revision surgery. Scar maturation in the chest is lengthy, with scars taking years to flatten and fade. Complications were limited and no major revisions were needed. In selected patients, comprehensive body contouring surgery consists of a boomerang correction of gynecomastia. J torsoplasty with an abdominoplasty and oblique excisions of the flanks has proven to be a practical means to achieve aesthetic goals. Gender-specific body lift surgery that goes far beyond the treatment of gynecomastia best serves the muscular male patient after massive weight loss. Therapeutic, IV.

  17. Modeling Effectivity of Atmospheric Advection-Diffusion Processes

    International Nuclear Information System (INIS)

    Brojewski, R.

    1999-01-01

    Some methods of solving the advection-diffusion problems useful in the field of atmospheric physics are presented and analyzed in the paper. The most effective one ( from the point of view of computer applications) was chosen. This is the method of problem decomposition with respect to the directions followed by secondary decomposition of the problem with respect to the physical phenomena. Introducing some corrections to the classical numerical methods of solving the problems, a hybrid composed of the finite element method for the advection problems and the implicit method with averaging for the diffusion processes was achieved. This hybrid method and application of the corrections produces a very effective means for solving the problems of substance transportation in atmosphere. (author)

  18. Automatic Power Factor Correction Using Capacitive Bank

    OpenAIRE

    Mr.Anant Kumar Tiwari,; Mrs. Durga Sharma

    2014-01-01

    The power factor correction of electrical loads is a problem common to all industrial companies. Earlier the power factor correction was done by adjusting the capacitive bank manually [1]. The automated power factor corrector (APFC) using capacitive load bank is helpful in providing the power factor correction. Proposed automated project involves measuring the power factor value from the load using microcontroller. The design of this auto-adjustable power factor correction is ...

  19. IMPACT OF ATMOSPHERIC CHROMATIC EFFECTS ON WEAK LENSING MEASUREMENTS

    International Nuclear Information System (INIS)

    Meyers, Joshua E.; Burchat, Patricia R.

    2015-01-01

    Current and future imaging surveys will measure cosmic shear with statistical precision that demands a deeper understanding of potential systematic biases in galaxy shape measurements than has been achieved to date. We use analytic and computational techniques to study the impact on shape measurements of two atmospheric chromatic effects for ground-based surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope (LSST): (1) atmospheric differential chromatic refraction and (2) wavelength dependence of seeing. We investigate the effects of using the point-spread function (PSF) measured with stars to determine the shapes of galaxies that have different spectral energy distributions than the stars. We find that both chromatic effects lead to significant biases in galaxy shape measurements for current and future surveys, if not corrected. Using simulated galaxy images, we find a form of chromatic “model bias” that arises when fitting a galaxy image with a model that has been convolved with a stellar, instead of galactic, PSF. We show that both forms of atmospheric chromatic biases can be predicted (and corrected) with minimal model bias by applying an ordered set of perturbative PSF-level corrections based on machine-learning techniques applied to six-band photometry. Catalog-level corrections do not address the model bias. We conclude that achieving the ultimate precision for weak lensing from current and future ground-based imaging surveys requires a detailed understanding of the wavelength dependence of the PSF from the atmosphere, and from other sources such as optics and sensors. The source code for this analysis is available at https://github.com/DarkEnergyScienceCollaboration/chroma

  20. IMPACT OF ATMOSPHERIC CHROMATIC EFFECTS ON WEAK LENSING MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Joshua E.; Burchat, Patricia R., E-mail: jmeyers314@gmail.com [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2015-07-10

    Current and future imaging surveys will measure cosmic shear with statistical precision that demands a deeper understanding of potential systematic biases in galaxy shape measurements than has been achieved to date. We use analytic and computational techniques to study the impact on shape measurements of two atmospheric chromatic effects for ground-based surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope (LSST): (1) atmospheric differential chromatic refraction and (2) wavelength dependence of seeing. We investigate the effects of using the point-spread function (PSF) measured with stars to determine the shapes of galaxies that have different spectral energy distributions than the stars. We find that both chromatic effects lead to significant biases in galaxy shape measurements for current and future surveys, if not corrected. Using simulated galaxy images, we find a form of chromatic “model bias” that arises when fitting a galaxy image with a model that has been convolved with a stellar, instead of galactic, PSF. We show that both forms of atmospheric chromatic biases can be predicted (and corrected) with minimal model bias by applying an ordered set of perturbative PSF-level corrections based on machine-learning techniques applied to six-band photometry. Catalog-level corrections do not address the model bias. We conclude that achieving the ultimate precision for weak lensing from current and future ground-based imaging surveys requires a detailed understanding of the wavelength dependence of the PSF from the atmosphere, and from other sources such as optics and sensors. The source code for this analysis is available at https://github.com/DarkEnergyScienceCollaboration/chroma.

  1. 9 CFR 416.15 - Corrective Actions.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Corrective Actions. 416.15 Section 416... SANITATION § 416.15 Corrective Actions. (a) Each official establishment shall take appropriate corrective... the procedures specified therein, or the implementation or maintenance of the Sanitation SOP's, may...

  2. Working toward Literacy in Correctional Education ESL

    Science.gov (United States)

    Gardner, Susanne

    2014-01-01

    Correctional Education English as a Second Language (ESL) literacy programs vary from state to state, region to region. Some states enroll their correctional ESL students in adult basic education (ABE) classes; other states have separate classes and programs. At the Maryland Correctional Institution in Jessup, the ESL class is a self-contained…

  3. 78 FR 59798 - Small Business Subcontracting: Correction

    Science.gov (United States)

    2013-09-30

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 125 RIN 3245-AG22 Small Business Subcontracting: Correction AGENCY: U.S. Small Business Administration. ACTION: Correcting amendments. SUMMARY: This document... business subcontracting to implement provisions of the Small Business Jobs Act of 2010. This correction...

  4. Correction magnet power supplies for APS machine

    International Nuclear Information System (INIS)

    Kang, Y.G.

    1991-04-01

    A number of correction magnets are required for the advanced photon source (APS) machine to correct the beam. There are five kinds of correction magnets for the storage ring, two for the injector synchrotron, and two for the positron accumulator ring (PAR). Table I shoes a summary of the correction magnet power supplies for the APS machine. For the storage ring, the displacement of the quadrupole magnets due to the low frequency vibration below 25 Hz has the most significant effect on the stability of the positron closed orbit. The primary external source of the low frequency vibration is the ground motion of approximately 20 μm amplitude, with frequency components concentrated below 10 Hz. These low frequency vibrations can be corrected by using the correction magnets, whose field strengths are controlled individually through the feedback loop comprising the beam position monitoring system. The correction field require could be either positive or negative. Thus for all the correction magnets, bipolar power supplies (BPSs) are required to produce both polarities of correction fields. Three different types of BPS are used for all the correction magnets. Type I BPSs cover all the correction magnets for the storage ring, except for the trim dipoles. The maximum output current of the Type I BPS is 140 Adc. A Type II BPS powers a trim dipole, and its maximum output current is 60 Adc. The injector synchrotron and PAR correction magnets are powered form Type III BPSs, whose maximum output current is 25 Adc

  5. Forward induction reasoning and correct beliefs

    NARCIS (Netherlands)

    Perea y Monsuwé, Andrés

    2017-01-01

    All equilibrium concepts implicitly make a correct beliefs assumption, stating that a player believes that his opponents are correct about his first-order beliefs. In this paper we show that in many dynamic games of interest, this correct beliefs assumption may be incompatible with a very basic form

  6. A quantum correction to chaos

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A. Liam [Department of Physics, Boston University,590 Commonwealth Avenue, Boston, MA 02215 (United States); Kaplan, Jared [Department of Physics and Astronomy, Johns Hopkins University,3400 N. Charles St, Baltimore, MD 21218 (United States)

    2016-05-12

    We use results on Virasoro conformal blocks to study chaotic dynamics in CFT{sub 2} at large central charge c. The Lyapunov exponent λ{sub L}, which is a diagnostic for the early onset of chaos, receives 1/c corrections that may be interpreted as λ{sub L}=((2π)/β)(1+(12/c)). However, out of time order correlators receive other equally important 1/c suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on λ{sub L} that emerges at large c, focusing on CFT{sub 2} and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.

  7. Radiative corrections in bumblebee electrodynamics

    Directory of Open Access Journals (Sweden)

    R.V. Maluf

    2015-10-01

    Full Text Available We investigate some quantum features of the bumblebee electrodynamics in flat spacetimes. The bumblebee field is a vector field that leads to a spontaneous Lorentz symmetry breaking. For a smooth quadratic potential, the massless excitation (Nambu–Goldstone boson can be identified as the photon, transversal to the vacuum expectation value of the bumblebee field. Besides, there is a massive excitation associated with the longitudinal mode and whose presence leads to instability in the spectrum of the theory. By using the principal-value prescription, we show that no one-loop radiative corrections to the mass term is generated. Moreover, the bumblebee self-energy is not transverse, showing that the propagation of the longitudinal mode cannot be excluded from the effective theory.

  8. A quantum correction to chaos

    International Nuclear Information System (INIS)

    Fitzpatrick, A. Liam; Kaplan, Jared

    2016-01-01

    We use results on Virasoro conformal blocks to study chaotic dynamics in CFT_2 at large central charge c. The Lyapunov exponent λ_L, which is a diagnostic for the early onset of chaos, receives 1/c corrections that may be interpreted as λ_L=((2π)/β)(1+(12/c)). However, out of time order correlators receive other equally important 1/c suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on λ_L that emerges at large c, focusing on CFT_2 and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.

  9. Electromagnetic corrections to baryon masses

    International Nuclear Information System (INIS)

    Durand, Loyal; Ha, Phuoc

    2005-01-01

    We analyze the electromagnetic contributions to the octet and decuplet baryon masses using the heavy-baryon approximation in chiral effective field theory and methods we developed in earlier analyses of the baryon masses and magnetic moments. Our methods connect simply to Morpurgo's general parametrization of the electromagnetic contributions and to semirelativistic quark models. Our calculations are carried out including the one-loop mesonic corrections to the basic electromagnetic interactions, so to two loops overall. We find that to this order in the chiral loop expansion there are no three-body contributions. The Coleman-Glashow relation and other sum rules derived in quark models with only two-body terms therefore continue to hold, and violations involve at least three-loop processes and can be expected to be quite small. We present the complete formal results and some estimates of the matrix elements here. Numerical calculations will be presented separately

  10. [Surgical correction of cleft palate].

    Science.gov (United States)

    Kimura, F T; Pavia Noble, A; Soriano Padilla, F; Soto Miranda, A; Medellín Rodríguez, A

    1990-04-01

    This study presents a statistical review of corrective surgery for cleft palate, based on cases treated at the maxillo-facial surgery units of the Pediatrics Hospital of the Centro Médico Nacional and at Centro Médico La Raza of the National Institute of Social Security of Mexico, over a five-year period. Interdisciplinary management as performed at the Cleft-Palate Clinic, in an integrated approach involving specialists in maxillo-facial surgery, maxillar orthopedics, genetics, social work and mental hygiene, pursuing to reestablish the stomatological and psychological functions of children afflicted by cleft palate, is amply described. The frequency and classification of the various techniques practiced in that service are described, as well as surgical statistics for 188 patients, which include a total of 256 palate surgeries performed from March 1984 to March 1989, applying three different techniques and proposing a combination of them in a single surgical time, in order to avoid complementary surgery.

  11. Atmospheric detritiation system performance

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Jalbert, R.A.; Rossmassler, R.L.

    1989-01-01

    An investigation of the performance of atmospheric detritiation systems and of possible ways for improving their performance was undertaken. Small-scale experiments demonstrated that system performance is strongly dependent on catalyst bed temperature. That may be helped by addition of protium to the process gas stream, but added protium at constant temperature does not increase conversion to HTO. Collection of the HTO on dry sieve with residual HTO fraction of less than one part in 10/sup 7/ was observed. Ways suggested for improvement in collection of HTO on molecular sieve beds include adding H/sub 2/O to the stream entering the molecular sieve and premoistening of the sieve with H/sub 2/O. While these improvement schemes may reduce HTO emissions they increase the amount of tritiated waste that must be handled

  12. Atmospheric chemistry of peroxynitrates

    International Nuclear Information System (INIS)

    Hendry, D.G.; Kenley, R.A.

    1979-01-01

    The thermochemistry and kinetics of the various types of peroxy nitrates are discussed, and the influence of these compounds on smog formation is evaluated. The heats of formation and of two dissociation reactions for various peroxyalkyl nitrates are calculated and it is shown that dissociation into nitrogen dioxide is more favorable than into nitrogen trioxide for the peroxyalkyl and peroxyacetyl nitrates (PANs). The atmospheric lifetimes of peroxynitric acid, peroxyalkyl nitrates and peroxyacyl nitrates are estimated as a function of temperature and it is found that PANs can exhibit lifetimes greater than a day at low temperatures, resulting in significant concentrations. In the presence of NO, PANs are shown to be an important source of OH radicals in the early morning and at night. A computer simulation reveals the contribution of PANs to ozone formation by the oxidation of NO to NO2

  13. 13. Atmosphere and climate

    International Nuclear Information System (INIS)

    Mock, G.; Hammond, A.

    1992-01-01

    This chapter reports on past and current trends in the major forms of atmospheric pollution and on the relative contributions of the countries of the world to these emissions. It also reports on emissions of carbon dioxide from industrial processes - principally the combustion of fossil fuels - which is the largest single source of greenhouse gases and an appropriate target for initial efforts to limit emissions. Discussions are presented on the following: urban air pollution - sources, trends and effects (particulates, sulfur dioxide, smog and its precursors, indoor air pollution, carbon monoxide, lead); regional air pollution - sources, trends and effects (acid deposition, ground-level ozone, regional responses and emission trends, acceleration of ozone depletion); solutions (cleaning up stationary sources, corporate responsibility movement, reducing vehicle pollution); global climate treaty talks proceed; greenhouse gas emissions; and targets for limiting emissions

  14. Atmospheric detritiation system performance

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Jalbert, R.A.; Rossmassler, R.L.; Los Alamos National Lab., NM; Princeton Univ., NJ

    1988-01-01

    An investigation of the performance of atmospheric detritiation systems and of possible ways for improving their performance was undertaken. Small-scale experiments demonstrated that system performance is strongly dependent on catalyst bed temperature. That may be helped by addition of protium to the process gas stream, but added protium at constant temperature does not increase conversion to HTO. Collection of the HTO on dry sieve with residual HTO fraction of less than one part in 10 7 was observed. Ways suggested for improvement in collection of HTO on molecular sieve beds include adding H 2 O to the stream entering the molecular sieve and premoistening of the sieve with H 2 O. While these improvement schemes may reduce HTO emissions they increase the amount of tritiated waste that must be handled. 13 refs., 4 figs

  15. Habituating alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie

    This paper proposes embodied rhythmic sound habituation as a possible resource when designing contextualized technologies in critical atmospheres. The main contribution is collating the concept of rhythm as presented by Henri Lefebvre with the concept of sound habituation to help operationalize...... functionality for the staff, but are stressful for visitors and patients, as they are designed to demand attention even though they have no direct functional meaning to them. By introducing sounds from the ward, integrated in the furniture as simple sound sample triggers, KidKit invites children to become...... accustomed to the alarming sounds through rhythmic interaction in the waiting room, and bringing the furniture with them afterwards as a secure anchor, when entering the ward. This rhythmic habituation can enable the child to focus her attention on the meeting with the hospitalized relative....

  16. Impact of MODIS SWIR Band Calibration Improvements on Level-3 Atmospheric Products

    Science.gov (United States)

    Wald, Andrew; Levy, Robert; Angal, Amit; Geng, Xu; Xiong, Jack; Hoffman, Kurt

    2016-01-01

    The spectral reflectance measured by the MODIS reflective solar bands (RSB) is used for retrieving many atmospheric science products. The accuracy of these products depends on the accuracy of the calibration of the RSB. To this end, the RSB of the MODIS instruments are primarily calibrated on-orbit using regular solar diffuser (SD) observations. For lambda 0.94 microns, the MODIS Characterization Support Team (MCST) developed, in MODIS Collection 6 (C6), a time-dependent correction using observations from pseudo-invariant earth-scene targets. This correction has been implemented in C6 for the Terra MODIS 1.24 micron band over the entire mission, and for the 1.375 micron band in the forward processing. As the instruments continue to operate beyond their design lifetime of six years, a similar correction is planned for other short-wave infrared (SWIR) bands as well. MODIS SWIR bands are used in deriving atmosphere products, including aerosol optical thickness, atmospheric total column water vapor, cloud fraction and cloud optical depth. The SD degradation correction in Terra bands 5 and 26 impact the spectral radiance and therefore the retrieval of these atmosphere products. Here, we describe the corrections to Bands 5 (1.24 microns) and 26 (1.375 microns), and produce three sets (B5, B26 correction on/on, on/off, and off/off) of Terra-MODIS Level 1B (calibrated radiance product) data. By comparing products derived from these corrected and uncorrected Terra MODIS Level 1B (L1B) calibrations, dozens of L3 atmosphere products are surveyed for changes caused by the corrections, and representative results are presented. Aerosol and water vapor products show only small local changes, while some cloud products can change locally by > 10%, which is a large change.

  17. The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array

    Science.gov (United States)

    Daniel, M. K.; CTA Consortium

    2015-04-01

    The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23 m), Medium (12 m) and Small (4 m) sized telescopes spread over an area of order ~km2. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of the candidate sites and the atmospheric calibration strategy. CTA will utilise a suite of instrumentation and analysis techniques for atmospheric modelling and monitoring regarding pointing forecasts, intelligent pointing selection for the observatory operations and for offline data correction.

  18. Improving InSAR geodesy using Global Atmospheric Models

    Science.gov (United States)

    Jolivet, Romain; Agram, Piyush Shanker; Lin, Nina Y.; Simons, Mark; Doin, Marie-Pierre; Peltzer, Gilles; Li, Zhenghong

    2014-03-01

    Spatial and temporal variations of pressure, temperature, and water vapor content in the atmosphere introduce significant confounding delays in interferometric synthetic aperture radar (InSAR) observations of ground deformation and bias estimates of regional strain rates. Producing robust estimates of tropospheric delays remains one of the key challenges in increasing the accuracy of ground deformation measurements using InSAR. Recent studies revealed the efficiency of global atmospheric reanalysis to mitigate the impact of tropospheric delays, motivating further exploration of their potential. Here we explore the effectiveness of these models in several geographic and tectonic settings on both single interferograms and time series analysis products. Both hydrostatic and wet contributions to the phase delay are important to account for. We validate these path delay corrections by comparing with estimates of vertically integrated atmospheric water vapor content derived from the passive multispectral imager Medium-Resolution Imaging Spectrometer, onboard the Envisat satellite. Generally, the performance of the prediction depends on the vigor of atmospheric turbulence. We discuss (1) how separating atmospheric and orbital contributions allows one to better measure long-wavelength deformation and (2) how atmospheric delays affect measurements of surface deformation following earthquakes, and (3) how such a method allows us to reduce biases in multiyear strain rate estimates by reducing the influence of unevenly sampled seasonal oscillations of the tropospheric delay.

  19. Interactions of cosmic rays in the atmosphere: growth curves revisited

    Energy Technology Data Exchange (ETDEWEB)

    Obermeier, A.; Boyle, P.; Müller, D. [Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States); Hörandel, J., E-mail: a.obermeier@astro.ru.nl [Radboud Universiteit Nijmegen, 6525-HP Nijmegen (Netherlands)

    2013-12-01

    Measurements of cosmic-ray abundances on balloons are affected by interactions in the residual atmosphere above the balloon. Corrections for such interactions are particularly important for observations of rare secondary particles such as boron, antiprotons, and positrons. These corrections either can be calculated if the relevant cross sections in the atmosphere are known or may be empirically determined by extrapolation of the 'growth curves', i.e., the individual particle intensities as functions of atmospheric depth. The growth-curve technique is particularly attractive for long-duration balloon flights where the periodic daily altitude variations permit rather precise determinations of the corresponding particle intensity variations. We determine growth curves for nuclei from boron (Z = 5) to iron (Z = 26) using data from the 2006 Arctic balloon flight of the TRACER detector for cosmic-ray nuclei, and we compare the growth curves with predictions from published cross section values. In general, good agreement is observed. We then study the boron/carbon abundance ratio and derive a simple and energy-independent correction term for this ratio. We emphasize that the growth-curve technique can be developed further to provide highly accurate tests of published interaction cross section values.

  20. a Semi-Empirical Topographic Correction Model for Multi-Source Satellite Images

    Science.gov (United States)

    Xiao, Sa; Tian, Xinpeng; Liu, Qiang; Wen, Jianguang; Ma, Yushuang; Song, Zhenwei

    2018-04-01

    Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85 % for near infrared bands and the classification overall accuracy of classification increased 14 % after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.

  1. Atmospheric turbulence and diffusion research

    International Nuclear Information System (INIS)

    Hosker, R.P. Jr.

    1993-01-01

    The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange

  2. Manual of dose evaluation from atmospheric releases

    Energy Technology Data Exchange (ETDEWEB)

    Shirvaikar, V V; Abrol, V [Health Physics Division, Bhabha Atomic Research Centre, Bombay (India)

    1978-07-01

    The problem of dose evaluation from atmospheric releases is reduced to simple arithmetic by giving tables of concentrations and time integrated concentrations for instantaneous plumes and long time (1 year), sector averaged plumes for distances upto 10 km, effective release heights of upto 200 m and the six Pasquill stability classes. Correction factors for decay, depletion due to deposition and rainout are also given. Inhalation doses, immersion doses and contamination levels can be obtained from these by using multiplicative factors tabulated for various isotopes of significance. Tables of external gamma doses from plume are given separately for various gamma energies. Tables are also given to evaluate external beta and gamma dose rates from contaminated surfaces. The manual also discusses the basic diffusion model relevant to the problem. (author)

  3. Tau appearance in atmospheric neutrino interactions

    International Nuclear Information System (INIS)

    Hall, Lawrence J.; Murayama, Hitoshi

    1998-01-01

    If the correct interpretation of the Super-Kamiokande atmospheric neutrino data is ν μ → ν τ oscillation, the contained data sample should already have more than 10 τ appearance events. We study the challenging task of detecting the τ, focusing on the decay chain τ ± → ρ ± → π ± π 0 in events with quasi-elastic τ production. The background level, which is currently quite uncertain because of a lack of relevant neutral current data, can be measured by the near detector in the K2K experiment. Our estimates of the background suggest that it may be possible to detect τ appearance in Super-Kamiokande with 5-10 years of running

  4. Stochastic background of atmospheric cascades

    International Nuclear Information System (INIS)

    Wilk, G.; Wlodarczyk, Z.

    1993-01-01

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions

  5. Planetary Surface-Atmosphere Interactions

    Science.gov (United States)

    Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.

    2013-09-01

    Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.

  6. Photometric Lambert Correction for Global Mosaicking of HRSC Data

    Science.gov (United States)

    Walter, Sebastian; Michael, Greg; van Gasselt, Stephan; Kneissl, Thomas

    2015-04-01

    The High Resolution Stereo Camera (HRSC) is a push-broom image sensor onboard Mars Express recording the Martian surface in 3D and color. Being in orbit since 2004, the camera has obtained over 3,600 panchromatic image sequences covering about 70% of the planet's surface at 10-20 m/pixel. The composition of an homogenous global mosaic is a major challenge due to the strong elliptical and highly irregular orbit of the spacecraft, which often results in large variations of illumination and atmospheric conditions between individual images. For the purpose of a global mosaic in the full Nadir resolution of 12.5 m per pixel we present a first-order systematic photometric correction for the individual image sequences based on a Lambertian reflection model. During the radiometric calibration of the HRSC data, values for the reflectance scaling factor and the reflectance offset are added to the individual image labels. These parameters can be used for a linear transformation from the original DN values into spectral reflectance values. The spectral reflectance varies with the solar incidence angle, topography (changing the local incidence angle and therefore adding an exta geometry factor for each ground pixel), the bi-directional reflectance distribution function (BRDF) of the surface, and atmospheric effects. Mosaicking the spectral values together as images sometimes shows large brightness differences. One major contributor to the brightness differences between two images is the differing solar geometry due to the varying time of day when the individual images were obtained. This variation causes two images of the same or adjacent areas to have different image brightnesses. As a first-order correction for the varying illumination conditions and resulting brightness variations, the images are corrected for the solar incidence angle by assuming an ideal diffusely reflecting behaviour of the surface. This correction requires the calculation of the solar geometry for each

  7. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  8. Simplified correction of g-value measurements

    DEFF Research Database (Denmark)

    Duer, Karsten

    1998-01-01

    been carried out using a detailed physical model based on ISO9050 and prEN410 but using polarized data for non-normal incidence. This model is only valid for plane, clear glazings and therefor not suited for corrections of measurements performed on complex glazings. To investigate a more general...... correction procedure the results from the measurements on the Interpane DGU have been corrected using the principle outlined in (Rosenfeld, 1996). This correction procedure is more general as corrections can be carried out without a correct physical model of the investigated glazing. On the other hand...... the way this “general” correction procedure is used is not always in accordance to the physical conditions....

  9. A glossary of atmospheric science

    International Nuclear Information System (INIS)

    1996-09-01

    This book concentrates on the glossary of atmospheric science, which contains summary, for enactment and deliberation on choosing special glossary on atmospheric science in Korea, examiner for the glossary on atmospheric science, reference, explanatory notes and a lot of glossary on atmospheric science. It also has an appendix on commercial abbreviation, prefix, unit, wavelength and the number o vibrations of electromagnetic waves, ICAO classified catalogue on cloud, list of varietal cloud and list of local wind. It has explanation of the glossary in English, Korea, China and Japan.

  10. Kajian Pustaka Mengenai Restaurant Atmosphere

    Directory of Open Access Journals (Sweden)

    Adeline Agoes

    2015-05-01

    Full Text Available Restaurant is one of the businesses that support tourism development. Restaurants nowadays don’t only provide food, but also the service and atmosphere to their customers. The purpose of this study is to discover theaspects defining restaurant atmosphere and the implications of restaurant atmosphere to other particular aspects related to restaurant business. This article is written based on a study conducted through a literature review. Through the examination, it is found that the atmosphere of a restaurant is one important aspect and can be considered as a competitive advantage as well as one of the determinants of customer satisfaction.

  11. The STARTWAVE atmospheric water database

    Directory of Open Access Journals (Sweden)

    J. Morland

    2006-01-01

    water vapour variations, we investigated a front which crossed Switzerland between 18 November 2004 and 19 November 2004. During the frontal passage, the GPS and microwave radiometers at Bern and Payerne showed an increase in IWV of between 7 and 9 mm. The GPS IWV measurements were corrected to a standard height of 500 m, using an empirically derived exponential relationship between IWV and altitude. A qualitative comparison was made between plots of the IWV distribution measured by the GPS and the 6.2 µm water vapour channel on the Meteosat Second Generation (MSG satellite. Both showed that the moist air moved in from a northerly direction, although the MSG showed an increase in water vapour several hours before increases in IWV were detected by GPS or microwave radiometer. This is probably due to the fact that the satellite instrument is sensitive to an atmospheric layer at around 320 hPa, which makes a contribution of one percent or less to the IWV.

  12. Assessing the Application of Cloud-Shadow Atmospheric Correction Algorithm on HICO

    Science.gov (United States)

    2014-05-01

    August 30, 2011, and over northern Gulf of Mexico on March 13, 2012, for which in situ AERONET-OC data were also acquired from the Acqua Alta...chlorophyll fluorescence in eutrophic turbid waters is to fill the 670-nm reflectance trough and to augment the shorter wavelength shoulder of the 690...also be used for chlorophyll estimation in the turbid waters [26]. For the July 13, 2010, Azov Sea scene, Gitelson <?/«/. [16] determined the

  13. Pulse compressor with aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States)

    2015-11-30

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  14. Anthropogenous modifications of the atmosphere. The atmospheric ozone threat

    International Nuclear Information System (INIS)

    Aimedieu, P.

    1991-01-01

    Ozone role and atmospheric chemistry are first reviewed: chemical reactions and vertical distribution of ozone in the atmosphere. The origins of chlorofluorocarbon air pollution and the role of the various types of CFC on ozone depletion, greenhouse effect, cancer, etc. are then discussed. The political and environmental discussions concerning these phenomena are also reviewed

  15. Theoretical oscillation frequencies for solar-type dwarfs from stellar models with <3D >-atmospheres

    DEFF Research Database (Denmark)

    Jørgensen, Andreas Christ Sølvsten; Weiss, Achim; Mosumgaard, Jakob Rorsted

    2017-01-01

    We present a new method for replacing the outermost layers of stellar models with interpolated atmospheres based on results from 3D simulations, in order to correct for structural inadequacies of these layers. This replacement is known as patching. Tests, based on 3D atmospheres from three......, and the mismatch in T-eff and log g between the un-patched model and patched 3D atmosphere. We find the eigen frequencies to be unaltered by the patching depth deep within the adiabatic region, while changing the patching quantity or the employed atmosphere grid leads to frequency shifts that may exceed 1 mu Hz....... Likewise, the eigen frequencies are sensitive to mismatches in T-eff or log g. A thorough investigation of the accuracy of a new scheme, for interpolating mean 3D stratifications within the atmosphere grids, is furthermore performed. Throughout large parts of the atmosphere grids, our interpolation scheme...

  16. ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS

    International Nuclear Information System (INIS)

    Perez-Becker, Daniel; Showman, Adam P.

    2013-01-01

    Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiation exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ wave , plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ wave ∼√(τ rad /Ω), where τ rad is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ rad ∼ τ vert , where τ vert is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ rad and the horizontal day-night advection timescale, τ adv . Only

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V D Mishra. Articles written in Journal of Earth System Science. Volume 118 Issue 1 February 2009 pp 11-26. Assessment of different topographic corrections in AWiFS satellite imagery of Himalaya terrain · V D Mishra J K Sharma K K Singh N K Thakur M Kumar.

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. N K Thakur. Articles written in Journal of Earth System Science. Volume 118 Issue 1 February 2009 pp 11-26. Assessment of different topographic corrections in AWiFS satellite imagery of Himalaya terrain · V D Mishra J K Sharma K K Singh N K Thakur M Kumar.

  19. Atmospheric effects on the NDVI - Strategies for its removal. [Normalized Difference Vegetation Index

    Science.gov (United States)

    Kaufman, Y. J.; Tanre, D.; Holben, B. N.; Markham, B.; Gitelson, A.

    1992-01-01

    The compositing technique used to derive global vegetation index (NDVI) from the NOAA AVHRR radiances reduces the residual effect of water vapor and aerosol on the NDVI. The reduction in the atmospheric effect is shown using a comprehensive measured data set for desert conditions, and a simulation for grass with continental aerosol. A statistical analaysis of the probability of occurrence of aerosol optical thickness and precipitable water vapor measured in different climatic regimes is used for this simulation. It is concluded that for a long compositing period (e.g., 27 days), the residual aerosol optical thickness and precipitable water vapor are usually too small to be corrected. For a 9-day compositing, the residual average aerosol effect may be about twice the correction uncertainty. For Landsat TM or Earth Observing System Moderate Resolution Imaging Spectrometer (EOS-MODIS) data, the newly defined atmospherically resistant vegetation index (ARVI) is more promising than possible direct atmospheric correction schemes, except for heavy desert dust conditions.

  20. Jets in Planetary Atmospheres

    Science.gov (United States)

    Dowling, Tim

    2018-05-01

    Jet streams, "jets" for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet's global circulation, and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. The study of jets, including what processes affect their size, strength, direction, shear stability, and predictability, are active areas of research in geophysical fluid dynamics. Jet research is multidisciplinary and global, involving collaborations between observers, experimentalists, numerical modelers, and applied mathematicians. Jets in atmospheres have strong analogies with shear instability in nonneutral plasmas, and these connections are highlighted throughout the article. The article begins with a description of four major challenges that jet researchers face: nonlinearity, non-intuitive wave physics, non-constant-coefficients, and copious nondimensional numbers. Then, two general fluid-dynamical tenets, the practice of rendering expressions dimensionally homogeneous (nondimensional), and the universal properties of shocks are applied to the open question of what controls the on-off switch of shear instability. The discussion progresses to how the physics of jets varies in equatorial, midlatitude, and polar regions, and how jets are observed to behave in each of these settings. The all-in-one conservation law of potential vorticity (PV), which combines the conservation laws of mass, momentum, and thermal energy into a single expression, is the common language of jet research. Earth and Uranus have weak retrograde equatorial jets, but most planets exhibit super-rotating equatorial jets, which require eddies to transport momentum up gradient in a non-intuitive manner. Jupiter and Saturn exhibit multiple alternating jets in their midlatitudes. The theory for why jets are invariably zonal (east-west orientated) is reviewed, and the particular challenges that Jupiter's sharp westward jets present to existing

  1. Strategy implementation for the CTA Atmospheric monitoring program

    Directory of Open Access Journals (Sweden)

    Doro Michele

    2015-01-01

    Full Text Available The Cherenkov Telescope Array (CTA is the next generation facility of Imaging Atmospheric Cherenkov Telescopes. It reaches unprecedented sensitivity and energy resolution in very-high-energy gamma-ray astronomy. CTA detects Cherenkov light emitted within an atmospheric shower of particles initiated by cosmic-gamma rays or cosmic rays entering the Earth's atmosphere. From the combination of images the Cherenkov light produces in the telescopes, one is able to infer the primary particle energy and direction. A correct energy estimation can be thus performed only if the local atmosphere is well characterized. The atmosphere not only affects the shower development itself, but also the Cherenkov photon transmission from the emission point in the particle shower, at about 10–20 km above the ground, to the detector. Cherenkov light on the ground is peaked in the UV-blue region, and therefore molecular and aerosol extinction phenomena are important. The goal of CTA is to control systematics in energy reconstruction to better than 10%. For this reason, a careful and continuous monitoring and characterization of the atmosphere is required. In addition, CTA will be operated as an observatory, with data made public along with appropriate analysis tools. High-level data quality can only be ensured if the atmospheric properties are consistently and continuously taken into account. In this contribution, we concentrate on discussing the implementation strategy for the various atmospheric monitoring instruments currently under discussion in CTA. These includes Raman lidars and ceilometers, stellar photometers and others available both from commercial providers and public research centers.

  2. Rulison Site corrective action report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Project Rulison was a joint US Atomic Energy Commission (AEC) and Austral Oil Company (Austral) experiment, conducted under the AEC`s Plowshare Program, to evaluate the feasibility of using a nuclear device to stimulate natural gas production in low-permeability gas-producing geologic formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 40-kiloton nuclear device at a depth of 2,568 m below ground surface (BGS). This Corrective Action Report describes the cleanup of petroleum hydrocarbon- and heavy-metal-contaminated sediments from an old drilling effluent pond and characterization of the mud pits used during drilling of the R-EX well at the Rulison Site. The Rulison Site is located approximately 65 kilometers (40 miles) northeast of Grand Junction, Colorado. The effluent pond was used for the storage of drilling mud during drilling of the emplacement hole for the 1969 gas stimulation test conducted by the AEC. This report also describes the activities performed to determine whether contamination is present in mud pits used during the drilling of well R-EX, the gas production well drilled at the site to evaluate the effectiveness of the detonation in stimulating gas production. The investigation activities described in this report were conducted during the autumn of 1995, concurrent with the cleanup of the drilling effluent pond. This report describes the activities performed during the soil investigation and provides the analytical results for the samples collected during that investigation.

  3. Rulison Site corrective action report

    International Nuclear Information System (INIS)

    1996-09-01

    Project Rulison was a joint US Atomic Energy Commission (AEC) and Austral Oil Company (Austral) experiment, conducted under the AEC's Plowshare Program, to evaluate the feasibility of using a nuclear device to stimulate natural gas production in low-permeability gas-producing geologic formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 40-kiloton nuclear device at a depth of 2,568 m below ground surface (BGS). This Corrective Action Report describes the cleanup of petroleum hydrocarbon- and heavy-metal-contaminated sediments from an old drilling effluent pond and characterization of the mud pits used during drilling of the R-EX well at the Rulison Site. The Rulison Site is located approximately 65 kilometers (40 miles) northeast of Grand Junction, Colorado. The effluent pond was used for the storage of drilling mud during drilling of the emplacement hole for the 1969 gas stimulation test conducted by the AEC. This report also describes the activities performed to determine whether contamination is present in mud pits used during the drilling of well R-EX, the gas production well drilled at the site to evaluate the effectiveness of the detonation in stimulating gas production. The investigation activities described in this report were conducted during the autumn of 1995, concurrent with the cleanup of the drilling effluent pond. This report describes the activities performed during the soil investigation and provides the analytical results for the samples collected during that investigation

  4. Metrics with vanishing quantum corrections

    International Nuclear Information System (INIS)

    Coley, A A; Hervik, S; Gibbons, G W; Pope, C N

    2008-01-01

    We investigate solutions of the classical Einstein or supergravity equations that solve any set of quantum corrected Einstein equations in which the Einstein tensor plus a multiple of the metric is equated to a symmetric conserved tensor T μν (g αβ , ∂ τ g αβ , ∂ τ ∂ σ g αβ , ...,) constructed from sums of terms, the involving contractions of the metric and powers of arbitrary covariant derivatives of the curvature tensor. A classical solution, such as an Einstein metric, is called universal if, when evaluated on that Einstein metric, T μν is a multiple of the metric. A Ricci flat classical solution is called strongly universal if, when evaluated on that Ricci flat metric, T μν vanishes. It is well known that pp-waves in four spacetime dimensions are strongly universal. We focus attention on a natural generalization; Einstein metrics with holonomy Sim(n - 2) in which all scalar invariants are zero or constant. In four dimensions we demonstrate that the generalized Ghanam-Thompson metric is weakly universal and that the Goldberg-Kerr metric is strongly universal; indeed, we show that universality extends to all four-dimensional Sim(2) Einstein metrics. We also discuss generalizations to higher dimensions

  5. Sources of atmospheric acidity

    International Nuclear Information System (INIS)

    Clarke, A.G.

    1992-01-01

    The emissions of acid gases from anthropogenic sources and their impact on the environment are the main concern of this book. However, that impact can only be assessed if all the naturally occurring sources of these gases are also known and can be quantified. Given the widely dispersed nature of the natural sources and the problems of measurement of trace species at low concentrations, often in remote regions, the quantification is a very difficult task. Nevertheless, considerable progress has been made over the last decade. In this chapter both man-made and natural sources of atmospheric acidity will be reviewed, but the emphasis will be placed not so much on the global balances as on the scale of the natural sources in relation to the man-made sources. This requires that the very uneven geographical distribution of emissions and the lifetime of individual chemical species be taken into account. The emissions considered are sulphur compounds, nitrogen compounds, chlorine compounds and organic acids. The anthropogenic sources discussed are the combustion of fossil fuels and certain industrial processes. Emissions data for anthropogenic sources are given for the United Kingdom, Europe, USA and globally. A list of 95 references is given. (Author)

  6. Measurement of atmospheric pollutants

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Studies of simplified methods of determining various atmospheric pollutants were performed. Measurements with Kitagawa detecting tubes were made in front of Shibuya Station in Tokyo on October 27, 1973. The number of cars that passed the site was counted then the nitrogen dioxide, sulfur dioxide, hydrocarbons and carbon monoxide content was determined. The number of cars was about 7000-12,000 between 9 AM and 6 PM. The heaviest traffic occurred around 10 am, and the least traffic occurred around 1 pm. A simulation experiment of smoking was also performed. A simplified model of smoking indicated that the concentration of CO in the mouth is as high as 10,000-15,000 ppM. The simplified measurement of sulfur dioxide and nitrogen dioxide by the use of a small piece of an alkaline filter was also investigated. A photoelectric colorimeter gave an excellent demonstration of the pollution due to SO/sub 2/ and NO/sub 2/. A simplified determination of NO/sub 2/ by the Saltzman method was also performed.

  7. Sugarcane leaf area estimate obtained from the corrected Normalized Difference Vegetation Index (NDVI

    Directory of Open Access Journals (Sweden)

    Rodrigo Moura Pereira

    2016-06-01

    Full Text Available Large farmland areas and the knowledge on the interaction between solar radiation and vegetation canopies have increased the use of data from orbital remote sensors in sugarcane monitoring. However, the constituents of the atmosphere affect the reflectance values obtained by imaging sensors. This study aimed at improving a sugarcane Leaf Area Index (LAI estimation model, concerning the Normalized Difference Vegetation Index (NDVI subjected to atmospheric correction. The model generated by the NDVI with atmospheric correction showed the best results (R2 = 0.84; d = 0.95; MAE = 0.44; RMSE = 0.55, in relation to the other models compared. LAI estimation with this model, during the sugarcane plant cycle, reached a maximum of 4.8 at the vegetative growth phase and 2.3 at the end of the maturation phase. Thus, the use of atmospheric correction to estimate the sugarcane LAI is recommended, since this procedure increases the correlations between the LAI estimated by image and by plant parameters.

  8. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  9. Third family corrections to tri-bimaximal lepton mixing and a new sum rule

    International Nuclear Information System (INIS)

    Antusch, Stefan; King, Stephen F.; Malinsky, Michal

    2009-01-01

    We investigate the theoretical stability of the predictions of tri-bimaximal neutrino mixing with respect to third family wave-function corrections. Such third family wave-function corrections can arise from either the canonical normalisation of the kinetic terms or renormalisation group running effects. At leading order both sorts of corrections can be subsumed into a single universal parameter. For hierarchical neutrinos, this leads to a new testable lepton mixing sum rule s=rcosδ+2/3 a (where s,r,a describe the deviations of solar, reactor and atmospheric mixing angles from their tri-bimaximal values, and δ is the observable Dirac CP phase) which is stable under all leading order third family wave-function corrections, as well as Cabibbo-like charged lepton mixing effects

  10. Error Correction of Meteorological Data Obtained with Mini-AWSs Based on Machine Learning

    Directory of Open Access Journals (Sweden)

    Ji-Hun Ha

    2018-01-01

    Full Text Available Severe weather events occur more frequently due to climate change; therefore, accurate weather forecasts are necessary, in addition to the development of numerical weather prediction (NWP of the past several decades. A method to improve the accuracy of weather forecasts based on NWP is the collection of more meteorological data by reducing the observation interval. However, in many areas, it is economically and locally difficult to collect observation data by installing automatic weather stations (AWSs. We developed a Mini-AWS, much smaller than AWSs, to complement the shortcomings of AWSs. The installation and maintenance costs of Mini-AWSs are lower than those of AWSs; Mini-AWSs have fewer spatial constraints with respect to the installation than AWSs. However, it is necessary to correct the data collected with Mini-AWSs because they might be affected by the external environment depending on the installation area. In this paper, we propose a novel error correction of atmospheric pressure data observed with a Mini-AWS based on machine learning. Using the proposed method, we obtained corrected atmospheric pressure data, reaching the standard of the World Meteorological Organization (WMO; ±0.1 hPa, and confirmed the potential of corrected atmospheric pressure data as an auxiliary resource for AWSs.

  11. Microwave Atmospheric-Pressure Sensor

    Science.gov (United States)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1986-01-01

    Report describes tests of microwave pressure sounder (MPS) for use in satellite measurements of atmospheric pressure. MPS is multifrequency radar operating between 25 and 80 GHz. Determines signal absorption over vertical path through atmosphere by measuring strength of echoes from ocean surface. MPS operates with cloud cover, and suitable for use on current meteorological satellites.

  12. Geologic data on atmospheric history

    NARCIS (Netherlands)

    Rutten, M.G.

    1966-01-01

    Attention is focussed on the possible existence of an anoxygenic, primeval atmosphere and on the history of atmospheric O2 and CO2. For this purpose, geologic data can be divided into those on fossil remains, on biogenic deposits formed by early life, on “chemicofossils”, and on deposits formed

  13. Remote measurement of atmospheric pollutants

    Science.gov (United States)

    Allario, F.; Hoell, J.; Seals, R. K.

    1979-01-01

    The concentration and vertical distribution of atmospheric ammonia and ozone are remotely sensed, using dual-C02-laser multichannel infrared Heterodyne Spectrometer (1HS). Innovation makes atmospheric pollution measurements possible with nearly-quantum-noise-limited sensitivity and ultrafine spectral resolution.

  14. Pathlength distributions of atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor

    1999-01-01

    We discuss the distribution of the production heights of atmospheric neutrinos as a function of zenith angle and neutrino energy. The distributions can be used as the input for evaluation of neutrino propagation under various hypotheses for neutrino flavor oscillations. Their use may alter substantially the estimates of the oscillation parameters for almost horizontal atmospheric neutrinos.

  15. Criteria for controlled atmosphere chambers

    International Nuclear Information System (INIS)

    Robinson, J.N.

    1980-03-01

    The criteria for design, construction, and operation of controlled atmosphere chambers intended for service at ORNL are presented. Classification of chambers, materials for construction, design criteria, design, controlled atmosphere chamber systems, and operating procedures are presented. ORNL Safety Manual Procedure 2.1; ORNL Health Physics Procedure Manual Appendix A-7; and Design of Viewing Windows are included in 3 appendices

  16. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  17. Atmospheric Research 2012 Technical Highlights

    Science.gov (United States)

    Lau, William K -M.

    2013-01-01

    This annual report, as before, is intended for a broad audience. Our readers include colleagues within NASA, scientists outside the Agency, science graduate students, and members of the general public. Inside are descriptions of atmospheric research science highlights and summaries of our education and outreach accomplishments for calendar year 2012.The report covers research activities from the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office under the Office of Deputy Director for Atmospheres, Earth Sciences Division in the Sciences and Exploration Directorate of NASAs Goddard Space Flight Center. The overall mission of the office is advancing knowledge and understanding of the Earths atmosphere. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential to our continuing research.

  18. High order corrections to the renormalon

    International Nuclear Information System (INIS)

    Faleev, S.V.

    1997-01-01

    High order corrections to the renormalon are considered. Each new type of insertion into the renormalon chain of graphs generates a correction to the asymptotics of perturbation theory of the order of ∝1. However, this series of corrections to the asymptotics is not the asymptotic one (i.e. the mth correction does not grow like m.). The summation of these corrections for the UV renormalon may change the asymptotics by a factor N δ . For the traditional IR renormalon the mth correction diverges like (-2) m . However, this divergence has no infrared origin and may be removed by a proper redefinition of the IR renormalon. On the other hand, for IR renormalons in hadronic event shapes one should naturally expect these multiloop contributions to decrease like (-2) -m . Some problems expected upon reaching the best accuracy of perturbative QCD are also discussed. (orig.)

  19. The influence of the atmosphere on geoid and potential coefficient determinations from gravity data

    Science.gov (United States)

    Rummel, R.; Rapp, R. H.

    1976-01-01

    For the precise computation of geoid undulations the effect of the attraction of the atmosphere on the solution of the basic boundary value problem of gravimetric geodesy must be considered. This paper extends the theory of Moritz for deriving an atmospheric correction to the case when the undulations are computed by combining anomalies in a cap surrounding the computation point with information derived from potential coefficients. The correction term is a function of the cap size and the topography within the cap. It reaches a value of 3.0 m for a cap size of 30 deg, variations on the decimeter level being caused by variations in the topography. The effect of the atmospheric correction terms on potential coefficients is found to be small, reaching a maximum of 0.0055 millionths at n = 2, m = 2 when terrestrial gravity data are considered. The magnitude of this correction indicates that in future potential coefficient determination from gravity data the atmospheric correction should be made to such data.

  20. Correction magnet power supplies for APS machine

    International Nuclear Information System (INIS)

    Kang, Y.G.

    1991-01-01

    The Advanced Photon Source machine requires a number of correction magnets; five kinds for the storage ring, two for the injector synchrotron, and two for the positron accumulator ring. Three types of bipolar power supply will be used for all the correction magnets. This paper describes the design aspects and considerations for correction magnet power supplies for the APS machine. 3 refs., 3 figs., 1 tab

  1. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, C.; Maltoni, M.; Rojo, J.

    2006-06-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation. (author)

  2. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, Concepcion; Maltoni, Michele; Rojo, Joan

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation

  3. Atmospheric stability and atmospheric circulation in Athens, Greece

    International Nuclear Information System (INIS)

    Synodinou, B.M.; Petrakis, M.; Kassomenos, P.; Lykoudis, S.

    1996-01-01

    In the evaluation and study of atmospheric pollution reference is always made to the stability criteria. These criteria, usually represented as functions of different meteorological data such as wind speed and direction, temperature, solar radiation, etc., play a very important role in the investigation of different parameters that affect the build up of pollution episodes mainly in urban areas. In this paper an attempt is made to evaluate the atmospheric stability criteria based on measurements obtained from two locations in and nearby Athens. The atmospheric stability is then examined along with the other meteorological parameters

  4. Quantum corrections to Schwarzschild black hole

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Xavier; El-Menoufi, Basem Kamal [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-04-15

    Using effective field theory techniques, we compute quantum corrections to spherically symmetric solutions of Einstein's gravity and focus in particular on the Schwarzschild black hole. Quantum modifications are covariantly encoded in a non-local effective action. We work to quadratic order in curvatures simultaneously taking local and non-local corrections into account. Looking for solutions perturbatively close to that of classical general relativity, we find that an eternal Schwarzschild black hole remains a solution and receives no quantum corrections up to this order in the curvature expansion. In contrast, the field of a massive star receives corrections which are fully determined by the effective field theory. (orig.)

  5. Towards Compensation Correctness in Interactive Systems

    Science.gov (United States)

    Vaz, Cátia; Ferreira, Carla

    One fundamental idea of service-oriented computing is that applications should be developed by composing already available services. Due to the long running nature of service interactions, a main challenge in service composition is ensuring correctness of failure recovery. In this paper, we use a process calculus suitable for modelling long running transactions with a recovery mechanism based on compensations. Within this setting, we discuss and formally state correctness criteria for compensable processes compositions, assuming that each process is correct with respect to failure recovery. Under our theory, we formally interpret self-healing compositions, that can detect and recover from failures, as correct compositions of compensable processes.

  6. Class action litigation in correctional psychiatry.

    Science.gov (United States)

    Metzner, Jeffrey L

    2002-01-01

    Class action litigation has been instrumental in jail and prison reform during the past two decades. Correctional mental health systems have significantly benefited from such litigation. Forensic psychiatrists have been crucial in the litigation process and the subsequent evolution of correctional mental health care systems. This article summarizes information concerning basic demographics of correctional populations and costs of correctional health care and provides a brief history of such litigation. The role of psychiatric experts, with particular reference to standards of care, is described. Specifically discussed are issues relevant to suicide prevention, the prevalence of mentally ill inmates in supermax prisons, and discharge planning.

  7. Correctional Practitioners on Reentry: A Missed Perspective

    Directory of Open Access Journals (Sweden)

    Elaine Gunnison

    2015-06-01

    Full Text Available Much of the literature on reentry of formerly incarcerated individuals revolves around discussions of failures they incur during reintegration or the identification of needs and challenges that they have during reentry from the perspective of community corrections officers. The present research fills a gap in the reentry literature by examining the needs and challenges of formerly incarcerated individuals and what makes for reentry success from the perspective of correctional practitioners (i.e., wardens and non-wardens. The views of correctional practitioners are important to understand the level of organizational commitment to reentry and the ways in which social distance between correctional professionals and their clients may impact reentry success. This research reports on the results from an email survey distributed to a national sample of correctional officials listed in the American Correctional Association, 2012 Directory. Specifically, correctional officials were asked to report on needs and challenges facing formerly incarcerated individuals, define success, identify factors related to successful reentry, recount success stories, and report what could be done to assist them in successful outcomes. Housing and employment were raised by wardens and corrections officials as important needs for successful reentry. Corrections officials adopted organizational and systems perspectives in their responses and had differing opinions about social distance. Policy implications are presented.

  8. Performance evaluation and bias correction of DBS measurements for a 1290-MHz boundary layer profiler.

    Science.gov (United States)

    Liu, Zhao; Zheng, Chaorong; Wu, Yue

    2018-02-01

    Recently, the government installed a boundary layer profiler (BLP), which is operated under the Doppler beam swinging mode, in a coastal area of China, to acquire useful wind field information in the atmospheric boundary layer for several purposes. And under strong wind conditions, the performance of the BLP is evaluated. It is found that, even though the quality controlled BLP data show good agreement with the balloon observations, a systematic bias can always be found for the BLP data. For the low wind velocities, the BLP data tend to overestimate the atmospheric wind. However, with the increment of wind velocity, the BLP data show a tendency of underestimation. In order to remove the effect of poor quality data on bias correction, the probability distribution function of the differences between the two instruments is discussed, and it is found that the t location scale distribution is the most suitable probability model when compared to other probability models. After the outliers with a large discrepancy, which are outside of 95% confidence interval of the t location scale distribution, are discarded, the systematic bias can be successfully corrected using a first-order polynomial correction function. The methodology of bias correction used in the study not only can be referred for the correction of other wind profiling radars, but also can lay a solid basis for further analysis of the wind profiles.

  9. Correction of sun glint effect on MIVIS data of the Sicily campaign in July 2000

    Directory of Open Access Journals (Sweden)

    E. Zappitelli

    2006-06-01

    Full Text Available To assess the suspended and dissolved matter in water in the visible and near infrared spectral regions it is necessary to estimate with adequate accuracy the water leaving radiance. Consequently radiance measured by a remote sensor has to be corrected from the atmospheric and the sea surface effects consisting in the path radiance and the sun and sky glitter radiance contributions. This paper describes the application of the sun glint correction scheme on to airborne hyperspectral MIVIS measurements acquired on the area of the Straits of Messina during the campaign in July 2000. In the Messina case study data have been corrected for the atmospheric effects and for the sun-glitter contribution evaluated following the method proposed by Cox and Munk (1954, 1956. Comparison between glitter contaminated and glitter free data has been made taking into account the radiance profiles relevant to selected scan lines and the spectra of different pixels belonging to the same scan line and located out and inside the sun glitter area. The results show that spectra after correction have the same profile as the contaminated ones, although, at this stage, free glint data have not yet been used in water constituent retrieval and consequently the reliability of such correction cannot be completely evaluated.

  10. Performance evaluation and bias correction of DBS measurements for a 1290-MHz boundary layer profiler

    Science.gov (United States)

    Liu, Zhao; Zheng, Chaorong; Wu, Yue

    2018-02-01

    Recently, the government installed a boundary layer profiler (BLP), which is operated under the Doppler beam swinging mode, in a coastal area of China, to acquire useful wind field information in the atmospheric boundary layer for several purposes. And under strong wind conditions, the performance of the BLP is evaluated. It is found that, even though the quality controlled BLP data show good agreement with the balloon observations, a systematic bias can always be found for the BLP data. For the low wind velocities, the BLP data tend to overestimate the atmospheric wind. However, with the increment of wind velocity, the BLP data show a tendency of underestimation. In order to remove the effect of poor quality data on bias correction, the probability distribution function of the differences between the two instruments is discussed, and it is found that the t location scale distribution is the most suitable probability model when compared to other probability models. After the outliers with a large discrepancy, which are outside of 95% confidence interval of the t location scale distribution, are discarded, the systematic bias can be successfully corrected using a first-order polynomial correction function. The methodology of bias correction used in the study not only can be referred for the correction of other wind profiling radars, but also can lay a solid basis for further analysis of the wind profiles.

  11. Correcting attenuated total reflection-fourier transform infrared spectra for water vapor and carbon dioxide

    DEFF Research Database (Denmark)

    Bruun, Susanne Wrang; Kohler, Achim; Adt, Isabelle

    2006-01-01

    an absorption band from either water vapor or CO(2). From two calibration data sets, gas model spectra were estimated in each of the four spectral regions, and these model spectra were applied for correction of gas absorptions in two independent test sets (spectra of aqueous solutions and a yeast biofilm (C...... of the growing yeast biofilm, the gas correction revealed otherwise hidden variations of relevance for modeling the growth dynamics. As the presented method improved the interpretation of the principle component analysis (PCA) models, it has proven to be a valuable tool for filtering atmospheric variation in ATR...

  12. Radiation transfer and stellar atmospheres

    Science.gov (United States)

    Swihart, T. L.

    This is a revised and expanded version of the author's Basic Physics of Stellar Atmospheres, published in 1971. The equation of transfer is considered, taking into account the intensity and derived quantities, the absorption coefficient, the emission coefficient, the source function, and special integrals for plane media. The gray atmosphere is discussed along with the nongray atmosphere, and aspects of line formation. Topics related to polarization are explored, giving attention to pure polarized radiation, general polarized radiation, transfer in a magnetic plasma, and Rayleigh scattering and the sunlit sky. Physical and astronomical constants, and a number of problems related to the subjects of the book are presented in an appendix.

  13. Atmospheres of the terrestrial planets

    International Nuclear Information System (INIS)

    Kivelson, M.G.; Schubert, G.

    1986-01-01

    Properties of the planets are identified - such as size, spin rate, and distance from the sun - that are important in understanding the characteristics of their atmospheres. Venus, earth and Mars have surface-temperature differences only partly explained by the decrease of solar radiation flux with distance from the sun. More significant effects arise from the variations in the degree to which the atmospheres act as absorbers of planetary thermal reradiation. Atmospheric circulation on a global scale also varies markedly among the three planets. 5 references

  14. Hydrodynamics of oceans and atmospheres

    CERN Document Server

    Eckart, Carl

    1960-01-01

    Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear

  15. Corrective Action Investigation Plan for Corrective Action Unit 571: Area 9 Yucca Flat Plutonium Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Bernadine; Matthews, Patrick

    2013-07-01

    CAU 571 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 571, which comprises the following corrective action sites (CASs): • 09-23-03, Atmospheric Test Site S-9F • 09-23-04, Atmospheric Test Site T9-C • 09-23-12, Atmospheric Test Site S-9E • 09-23-13, Atmospheric Test Site T-9D • 09-45-01, Windrows Crater These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on March 6, 2013, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (now the Nevada Field Office). The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 571. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CAU 571 CASs are from nuclear testing activities. The DQO process resulted in an assumption that total effective dose (TED) within a default contamination boundary exceeds the final action level (FAL) and requires corrective action. The presence and nature of contamination outside the default

  16. Corrective Action Investigation Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada with ROTC 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2014-09-01

    Corrective Action Unit (CAU) 541 is co-located on the boundary of Area 5 of the Nevada National Security Site and Range 65C of the Nevada Test and Training Range, approximately 65 miles northwest of Las Vegas, Nevada. CAU 541 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 541, which comprises the following corrective action sites (CASs): 05-23-04, Atmospheric Tests (6) - BFa Site; 05-45-03, Atmospheric Test Site - Small Boy. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on April 1, 2014, by representatives of the Nevada Division of Environmental Protection; U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 541. The site investigation process also will be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CASs 05-23-04 and 05-45-03 are from nuclear testing activities conducted at the Atmospheric Tests (6) - BFa Site and Atmospheric Test Site - Small Boy sites. The presence and nature of

  17. 7 CFR 1730.25 - Corrective action.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Corrective action. 1730.25 Section 1730.25... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Operations and Maintenance Requirements § 1730.25 Corrective action. (a) For any items on the RUS Form 300 rated unsatisfactory (i.e., 0 or 1) by the borrower...

  18. Fluorescence correction in electron probe microanalysis

    International Nuclear Information System (INIS)

    Castellano, Gustavo; Riveros, J.A.

    1987-01-01

    In this work, several expressions for characteristic fluorescence corrections are computed, for a compilation of experimental determinations on standard samples. Since this correction does not take significant values, the performance of the different models is nearly the same; this fact suggests the use of the simplest available expression. (Author) [es

  19. 9 CFR 417.3 - Corrective actions.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Corrective actions. 417.3 Section 417.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS § 417.3 Corrective actions. (a) The written HACCP plan...

  20. Iterative optimization of quantum error correcting codes

    International Nuclear Information System (INIS)

    Reimpell, M.; Werner, R.F.

    2005-01-01

    We introduce a convergent iterative algorithm for finding the optimal coding and decoding operations for an arbitrary noisy quantum channel. This algorithm does not require any error syndrome to be corrected completely, and hence also finds codes outside the usual Knill-Laflamme definition of error correcting codes. The iteration is shown to improve the figure of merit 'channel fidelity' in every step

  1. Publisher Correction: Invisible Trojan-horse attack

    DEFF Research Database (Denmark)

    Sajeed, Shihan; Minshull, Carter; Jain, Nitin

    2017-01-01

    A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.......A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper....

  2. 75 FR 17167 - Sunshine Act Meetings; Correction

    Science.gov (United States)

    2010-04-05

    ... NATIONAL COUNCIL ON DISABILITY Sunshine Act Meetings; Correction AGENCY: National Council on Disability. ACTION: Notice; correction. Type: Quarterly meeting. SUMMARY: NCD published a Sunshine Act Meeting Notice in the Federal Register on March 11, 2010, notifying the public of a quarterly meeting in...

  3. A correction to the Watanabe potential

    International Nuclear Information System (INIS)

    Abul-Magd, A.Y.; Rabie, A.; El-Gazzar, M.A.

    1980-10-01

    Using the adiabatic approximation, an analytic expression for the correction to the Watanabe potential was obtained. In addition, we have corrected through a proper choice of the energy at which the potential parameters of the constituents of 6 Li should be taken. (author)

  4. 21 CFR 123.7 - Corrective actions.

    Science.gov (United States)

    2010-04-01

    ... of their HACCP plans in accordance with § 123.6(c)(5), by which they predetermine the corrective... in accordance with § 123.10, to determine whether the HACCP plan needs to be modified to reduce the risk of recurrence of the deviation, and modify the HACCP plan as necessary. (d) All corrective actions...

  5. Leading quantum correction to the Newtonian potential

    International Nuclear Information System (INIS)

    Donoghue, J.F.

    1994-01-01

    I argue that the leading quantum corrections, in powers of the energy or inverse powers of the distance, may be computed in quantum gravity through knowledge of only the low-energy structure of the theory. As an example, I calculate the leading quantum corrections to the Newtonian gravitational potential

  6. Proving correctness of compilers using structured graphs

    DEFF Research Database (Denmark)

    Bahr, Patrick

    2014-01-01

    it into a compiler implementation using a graph type along with a correctness proof. The implementation and correctness proof of a compiler using a tree type without explicit jumps is simple, but yields code duplication. Our method provides a convenient way of improving such a compiler without giving up the benefits...

  7. Correcting Poor Posture without Awareness or Willpower

    Science.gov (United States)

    Wernik, Uri

    2012-01-01

    In this article, a new technique for correcting poor posture is presented. Rather than intentionally increasing awareness or mobilizing willpower to correct posture, this approach offers a game using randomly drawn cards with easy daily assignments. A case using the technique is presented to emphasize the subjective experience of living with poor…

  8. Euphemism and political correctness in contemporary English

    Directory of Open Access Journals (Sweden)

    Н Б Рубина

    2011-12-01

    Full Text Available The presented article is devoted to the consideration of such linguistic category as the political correctness which was widely adopted in the English-speaking countries and made considerable impact on modern English language. Linguistic political correctness is the most curious language theme to ignore which, means to miss the major aspect of modern English language.

  9. Opportunistic Error Correction for WLAN Applications

    NARCIS (Netherlands)

    Shao, X.; Schiphorst, Roelof; Slump, Cornelis H.

    2008-01-01

    The current error correction layer of IEEE 802.11a WLAN is designed for worst case scenarios, which often do not apply. In this paper, we propose a new opportunistic error correction layer based on Fountain codes and a resolution adaptive ADC. The key part in the new proposed system is that only

  10. A universal PWR spectral history correction

    International Nuclear Information System (INIS)

    Hutt, P.K.; Nunn, D.L.

    1989-01-01

    The accuracy of a form of universal correction for the difference between depletion conditions assumed in PWR assembly lattice calculations and those experienced in a reactor burn-up is investigated. The correction is based on lattice calculations in which only one such depletion history difference, depletion at two different water densities, is explicitly represented by lattice calculations. The assumption is made that other historical effects bear the same relationship to an appropriate time-average of the two-group neutron flux spectrum. The correction is shown to be accurate for the most important historical effects, depletion with burnable absorbers inserted, control rods inserted or at a different soluble boron level, in addition to density itself. The correction is less accurate for representing depletion at a different fuel or coolant temperature but even in these cases gives an improvement over no correction. In addition it is argued that these historic temperature effects are likely to be of minor importance. (author)

  11. Mechanism for Corrective Action on Budget Imbalances

    Directory of Open Access Journals (Sweden)

    Ion Lucian CATRINA

    2014-02-01

    Full Text Available The European Fiscal Compact sets the obligation for the signatory states to establish an automatic mechanism for taking corrective action on budget imbalances. Nevertheless, the European Treaty says nothing about the tools that should be used in order to reach the desired equilibrium of budgets, but only that it should aim at correcting deviations from the medium-term objective or the adjustment path, including their cumulated impact on government debt dynamics. This paper is aiming at showing that each member state has to build the correction mechanism according to the impact of the chosen tools on economic growth and on general government revenues. We will also emphasize that the correction mechanism should be built not only exacerbating the corrective action through spending/ tax based adjustments, but on a high quality package of economic policies as well.

  12. Chromaticity correction for the SSC collider rings

    International Nuclear Information System (INIS)

    Sen, T.; Nosochkov, Y.; Pilat, F.; Stiening, R.; Ritson, D.M.

    1993-01-01

    The authors address the issue of correcting higher order chromaticities of the collider with one or more low β insertions. The chromaticity contributed by the interaction regions (IRs) depends crucially on the maximum value of β in the two IRs in a cluster, the phase advance between adjacent interaction points (IPs), and the choice of global tune. They propose a correction scheme in which the linear chromaticity is corrected by a global distribution of sextupoles and the second order chromaticity of each IR is corrected by a more local set of sextupoles. Compared to the case where only the linear chromaticity is corrected, this configuration increases the momentum aperture more than three times and also reduces the β beat by this factor. With this scheme, the tune can be chosen to satisfy other constraints and the two IRs in a cluster can be operated independently at different luminosities without affecting the chromatic properties of the ring

  13. Chromaticity correction for the SSC Collider Rings

    International Nuclear Information System (INIS)

    Sen, T.; Nosochkov, Y.; Pilat, F.; Stiening, R.; Ritson, D.M.

    1993-05-01

    We address the issue of correcting higher order chromaticities of the collider with one or more low β insertions. The chromaticity contributed by the interaction regions (IRS) depends crucially on the maximum value of β in the two IRs in a cluster, the phase advance between adjacent interaction points (IPs), and the choice of global tune. We propose a correction scheme in which the linear chromaticity is corrected by a global distribution of sextupoles and the second order chromaticity of each IR is corrected by a more local set of sextupoles. Compared to the case where only the linear chromaticity is corrected, this configuration increases the momentum aperture more than three times and also reduces the β beat by this factor. With this scheme, the tune can be chosen to satisfy other constraints and the two IRs in a cluster can be operated independently at different luminosities without affecting the chromatic properties of the ring

  14. Atmospheric Entry Studies for Uranus

    Science.gov (United States)

    Agrawal, P.; Allen, G. A.; Hwang, H. H.; Marley, M. S.; McGuire, M. K.; Garcia, J. A.; Sklyanskiy, E.; Huynh, L. C.; Moses, R. W.

    2014-07-01

    To better understand the technology requirements for Uranus atmospheric entry probe, Entry Vehicle Technology project funded an internal study with a multidisciplinary team from NASA Ames, Langley and JPL. The results of this study are communicated.

  15. The bibliometrics of atmospheric environment

    Science.gov (United States)

    Brimblecombe, Peter; Grossi, Carlota M.

    Bibliometric analysis is an important tool in the management of a journal. SCOPUS output is used to assess the increase in the quantity of material in Atmospheric Environment and stylistic changes in the way authors choose words and punctuation in titles and assemble their reference lists. Citation analysis is used to consider the impact factor of the journal, but perhaps more importantly the way in which it reflects the importance authors give to papers published in Atmospheric Environment. The impact factor of Atmospheric Environment (2.549 for 2007) from the Journal Citation Reports suggests it performs well within the atmospheric sciences, but it conceals the long term value authors place on papers appearing in the journal. Reference lists show that a fifth come through citing papers more than a decade old.

  16. Atmospheric pressure plasma vapour coatings

    NARCIS (Netherlands)

    Sanden, van de M.C.M.; Starostine, S.; Premkumar, P.A.; Creatore, M.; Vries, de H.W.; Kondruweit, S.; Szyszka, B.; Pütz, J.

    2010-01-01

    The dielectric barrier discharge (DBD) is recognized as a promising tool of thin films deposition on various substrates at atmospheric pressure. Emerging applications including encapsulation of flexible solar cells and flexible displays require large scale low costs production cif transparent

  17. (Chemistry of the global atmosphere)

    Energy Technology Data Exchange (ETDEWEB)

    Marland, G.

    1990-09-27

    The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

  18. Exploring the Atmosphere with Lidars

    Indian Academy of Sciences (India)

    the source is beyond the control of the observer, e.g. radiometer, photometer ... of the atmosphere, environmental monitoring, measurement of air quality ... able for the development of mobile systems for vehicles, aircraft and spacecraft ...

  19. Atmospheric Research 2014 Technical Highlights

    Science.gov (United States)

    Platnick, Steven

    2015-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Division's goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various Laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  20. Uranus atmospheric dynamics and circulation

    Science.gov (United States)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    1991-01-01

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  1. Atmospheres in a Test Tube

    Science.gov (United States)

    Claudi, R.; Erculiani, M. S.; Giro, E.; D'Alessandro, M.; Galletta, G.

    2013-09-01

    The "Atmosphere in a Test Tube" project is a laboratory experiment that will be able to reproduce condition of extreme environments by means of a simulator. These conditions span from those existing inside some parts of the human body to combinations of temperatures, pressures, irradiation and atmospheric gases present on other planets. In this latter case the experiments to be performed will be useful as preliminary tests for both simulation of atmosphere of exoplanets and Solar System planets and Astrobiology experiments that should be performed by planetary landers or by instruments to be launched in the next years. In particular at INAF Astronomical Observatory of Padova Laboratory we are approaching the characterization of extrasolar planet atmospheres taking advantage by innovative laboratory experiments with a particular focus on low mass Neptunes and Super earths and low mass M dwarfs primaries.

  2. NLO corrections to the photon impact factor: Combining real and virtual corrections

    International Nuclear Information System (INIS)

    Bartels, J.; Colferai, D.; Kyrieleis, A.; Gieseke, S.

    2002-08-01

    In this third part of our calculation of the QCD NLO corrections to the photon impact factor we combine our previous results for the real corrections with the singular pieces of the virtual corrections and present finite analytic expressions for the quark-antiquark-gluon intermediate state inside the photon impact factor. We begin with a list of the infrared singular pieces of the virtual correction, obtained in the first step of our program. We then list the complete results for the real corrections (longitudinal and transverse photon polarization). In the next step we defined, for the real corrections, the collinear and soft singular regions and calculate their contributions to the impact factor. We then subtract the contribution due to the central region. Finally, we combine the real corrections with the singular pieces of the virtual corrections and obtain our finite results. (orig.)

  3. Atmospheric science and power production

    Energy Technology Data Exchange (ETDEWEB)

    Randerson, D. (ed.)

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  4. Radionuclide dispersion in the atmosphere

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Amorim, E.S. do; Panetta, J.

    1979-05-01

    The instantaneous liberation of radionuclides in the atmosphere is studied in three dimensions, according to the formalism of the diffusion theory. The analytical solution, expose to gravitational and an atmospherical effects, is combined with the discretization of space and time in the calculation of levels of exposure. A typical inventory (for a PWR) was considered in the calculation of immersion doses, and the results permitted a comparative analysis among the different existing models. (Author) [pt

  5. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available using state of the art Light Detection And Ranging (LiDAR) instrumentation and other active and passive remote sensing tools. First “Lidar Field Campaign” • 2-day measurement campaign at University of Pretoria • First 23-hour continuous measurement... head2rightCirrus cloud morphology and dynamics. Atmospheric Research in Southern Africa and Indian Ocean (ARSAIO) Slide 24 © CSIR 2008 www.csir.co.za Middle atmosphere dynamics and thermal structure: comparative studies from...

  6. Atmospheric Research 2016 Technical Highlights

    Science.gov (United States)

    Platnick, Steven

    2017-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  7. Clouds in the Martian Atmosphere

    Science.gov (United States)

    Määttänen, Anni; Montmessin, Franck

    2018-01-01

    Although resembling an extremely dry desert, planet Mars hosts clouds in its atmosphere. Every day somewhere on the planet a part of the tiny amount of water vapor held by the atmosphere can condense as ice crystals to form cirrus-type clouds. The existence of water ice clouds has been known for a long time, and they have been studied for decades, leading to the establishment of a well-known climatology and understanding of their formation and properties. Despite their thinness, they have a clear impact on the atmospheric temperatures, thus affecting the Martian climate. Another, more exotic type of clouds forms as well on Mars. The atmospheric temperatures can plunge to such frigid values that the major gaseous component of the atmosphere, CO2, condenses as ice crystals. These clouds form in the cold polar night where they also contribute to the formation of the CO2 ice polar cap, and also in the mesosphere at very high altitudes, near the edge of space, analogously to the noctilucent clouds on Earth. The mesospheric clouds are a fairly recent discovery and have put our understanding of the Martian atmosphere to a test. On Mars, cloud crystals form on ice nuclei, mostly provided by the omnipresent dust. Thus, the clouds link the three major climatic cycles: those of the two major volatiles, H2O and CO2; and that of dust, which is a major climatic agent itself.

  8. Water vapor retrieval from near-IR measurements of polarized scanning atmospheric corrector

    Science.gov (United States)

    Qie, Lili; Ning, Yuanming; Zhang, Yang; Chen, Xingfeng; Ma, Yan; Li, Zhengqiang; Cui, Wenyu

    2018-02-01

    Water vapor and aerosol are two key atmospheric factors effecting the remote sensing image quality. As water vapor is responsible for most of the solar radiation absorption occurring in the cloudless atmosphere, accurate measurement of water content is important to not only atmospheric correction of remote sensing images, but also many other applications such as the study of energy balance and global climate change, land surface temperature retrieval in thermal remote sensing. A multi-spectral, single-angular, polarized radiometer called Polarized Scanning Atmospheric Corrector (PSAC) were developed in China, which are designed to mount on the same satellite platform with the principle payload and provide essential parameters for principle payload image atmospheric correction. PSAC detect water vapor content via measuring atmosphere reflectance at water vapor absorbing channels (i.e. 0.91 μm) and nearby atmospheric window channel (i.e. 0.865μm). A near-IR channel ratio method was implemented to retrieve column water vapor (CWV) amount from PSAC measurements. Field experiments were performed at Yantai, in Shandong province of China, PSAC aircraft observations were acquired. The comparison between PSAC retrievals and ground-based Sun-sky radiometer measurements of CWV during the experimental flights illustrates that this method retrieves CWV with relative deviations ranging from 4% 13%. This method retrieve CWV more accurate over land than over ocean, as the water reflectance is low.

  9. Using BRDFs for accurate albedo calculations and adjacency effect corrections

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Gerstl, S.A.W.

    1996-09-01

    In this paper the authors discuss two uses of BRDFs in remote sensing: (1) in determining the clear sky top of the atmosphere (TOA) albedo, (2) in quantifying the effect of the BRDF on the adjacency point-spread function and on atmospheric corrections. The TOA spectral albedo is an important parameter retrieved by the Multi-angle Imaging Spectro-Radiometer (MISR). Its accuracy depends mainly on how well one can model the surface BRDF for many different situations. The authors present results from an algorithm which matches several semi-empirical functions to the nine MISR measured BRFs that are then numerically integrated to yield the clear sky TOA spectral albedo in four spectral channels. They show that absolute accuracies in the albedo of better than 1% are possible for the visible and better than 2% in the near infrared channels. Using a simplified extensive radiosity model, the authors show that the shape of the adjacency point-spread function (PSF) depends on the underlying surface BRDFs. The adjacency point-spread function at a given offset (x,y) from the center pixel is given by the integral of transmission-weighted products of BRDF and scattering phase function along the line of sight.

  10. Advanced Corrections for InSAR Using GPS and Numerical Weather Models

    Science.gov (United States)

    Cossu, F.; Foster, J. H.; Amelung, F.; Varugu, B. K.; Businger, S.; Cherubini, T.

    2017-12-01

    We present results from an investigation into the application of numerical weather models for generating tropospheric correction fields for Interferometric Synthetic Aperture Radar (InSAR). We apply the technique to data acquired from a UAVSAR campaign as well as from the CosmoSkyMed satellites. The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting InSAR's potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric models covering the Big Island of Hawaii and an even higher, 300 m resolution grid over the Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate heterogeneous information from the GPS data into the atmospheric models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. Comparison of the InSAR data, our atmospheric analyses, and assessments of the active local and mesoscale

  11. Atmosphere-Ionosphere Electrodynamic Coupling

    Science.gov (United States)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally

  12. Correction for near vision in pseudophakic patients

    Directory of Open Access Journals (Sweden)

    Dujić Mirjana

    2004-01-01

    Full Text Available Objective of the study was to show the mean values of correction for near vision and to discuss the presbyopic correction in pseudophakic patients. Setting was the Eye department where authors work. Inclusion criteria for 55 patients were native or corrected distant vision of 0.8-1.0 on Snellen's chart; 0,6 on Jagger's chart for near vision; round pupil and good position of the implant. Biometry of the anterior chamber depth with Alcon biophysics during distant and near vision was performed in our study. „Hi square" test was carried out and it was concluded that patients younger than 59 years (41 eyes had median correction of +2.0 dsph, while patients older than 60 years (36 eyes had correction of+3.0 dsph, but it was not statistically significant. There was no statistically significant difference of the correction between pseudophakic (41 and phakic (19 eyes in patients younger than 59 years. The anterior movement of the IOL was 0.18 mm in the younger group and 0.15 mm in the older group. With good IOL movement and new materials which could have changeable refractive power, the problem of pseudophakic correction for near vision might be solved.

  13. Nonperturbative QCD corrections to electroweak observables

    Energy Technology Data Exchange (ETDEWEB)

    Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-12-01

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we will examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We will then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we will mention applications to the Adler function, the determination of the strong coupling constant and QCD corrections to muonic-hydrogen.

  14. Nonperturbative QCD corrections to electroweak observables

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus)

    2012-06-15

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements, effective field theory techniques and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we mention applications to the Adler function, which can be used to determine the strong coupling constant, and QCD corrections to muonic-hydrogen.

  15. Inflationary power spectra with quantum holonomy corrections

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, Cracow, 30-059 Poland (Poland)

    2014-03-01

    In this paper we study slow-roll inflation with holonomy corrections from loop quantum cosmology. It was previously shown that, in the Planck epoch, these corrections lead to such effects as singularity avoidance, metric signature change and a state of silence. Here, we consider holonomy corrections affecting the phase of cosmic inflation, which takes place away from the Planck epoch. Both tensor and scalar power spectra of primordial inflationary perturbations are computed up to the first order in slow-roll parameters and V/ρ{sub c}, where V is a potential of the scalar field and ρ{sub c} is a critical energy density (expected to be of the order of the Planck energy density). Possible normalizations of modes at short scales are discussed. In case the normalization is performed with use of the Wronskian condition applied to adiabatic vacuum, the tensor and scalar spectral indices are not quantum corrected in the leading order. However, by choosing an alternative method of normalization one can obtain quantum corrections in the leading order. Furthermore, we show that the holonomy-corrected equations of motion for tensor and scalar modes can be derived based on effective background metrics. This allows us to show that the classical Wronskian normalization condition is well defined for the cosmological perturbations with holonomy corrections.

  16. Quantum gravitational corrections for spinning particles

    International Nuclear Information System (INIS)

    Fröb, Markus B.

    2016-01-01

    We calculate the quantum corrections to the gauge-invariant gravitational potentials of spinning particles in flat space, induced by loops of both massive and massless matter fields of various types. While the corrections to the Newtonian potential induced by massless conformal matter for spinless particles are well known, and the same corrections due to massless minimally coupled scalars http://dx.doi.org/10.1088/0264-9381/27/24/245008, massless non-conformal scalars http://dx.doi.org/10.1103/PhysRevD.87.104027 and massive scalars, fermions and vector bosons http://dx.doi.org/10.1103/PhysRevD.91.064047 have been recently derived, spinning particles receive additional corrections which are the subject of the present work. We give both fully analytic results valid for all distances from the particle, and present numerical results as well as asymptotic expansions. At large distances from the particle, the corrections due to massive fields are exponentially suppressed in comparison to the corrections from massless fields, as one would expect. However, a surprising result of our analysis is that close to the particle itself, on distances comparable to the Compton wavelength of the massive fields running in the loops, these corrections can be enhanced with respect to the massless case.

  17. English Learners Perception on Lecturers’ Corrective Feedback

    Directory of Open Access Journals (Sweden)

    Titien Fatmawaty Mohammad

    2016-04-01

    Full Text Available The importance of written corrective feedback (CF has been an issue of substantial debate in the literature and this controversial issue has led to a development in latest studies to draw on foreign language acquisition (FLA research as a way to further comprehend the complexities of this issue particularly how students and teachers perceive the effectiveness of written corrective feedback. This research has largely focused on students’ perception on Lecturers’ corrective feedback, perceives the usefulness of different types of corrective feedback and the reasons they have for their preferences. Qualitative data was collected from 40 EFL students in 6th semester, by means of written questionnaires, interview and observation. Four feedback strategies were employed in this research and ranked each statement by using five-point Likert scale. Findings showed that almost all students 81.43 % want correction or feedback from lecturers for the mistakes on their writing. For the type of written corrective feedback, students prefer lecturers mark their mistakes and give comment on their work with the percentage as follows: 93% students found that giving clues or comment about how to fix errors can improve their writing ability, 76.69% of the students found that error identification is the most useful type of feedback, and 57.50% of students have a positive opinion for the provision of correction which is accompanied by comment. Those percentages of students perspective is supported by students’ explanation in an open ended question of questionnaire. Pedagogical implications of the study are also discussed.

  18. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada, Revision 0 with ROTC 1, 2, and Errata

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2004-04-01

    This Corrective Action Decision Document (CADD) has been prepared for Corrective Action Unit (CAU) 204 Storage Bunkers, Nevada Test Site (NTS), Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE); and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) north of Las Vegas, Nevada (Figure 1-1). The Corrective Action Sites (CASs) within CAU 204 are located in Areas 1, 2, 3, and 5 of the NTS, in Nye County, Nevada (Figure 1-2). Corrective Action Unit 204 is comprised of the six CASs identified in Table 1-1. As shown in Table 1-1, the FFACO describes four of these CASs as bunkers one as chemical exchange storage and one as a blockhouse. Subsequent investigations have identified four of these structures as instrumentation bunkers (CASs 01-34-01, 02-34-01, 03-34-01, 05-33-01), one as an explosives storage bunker (CAS 05-99-02), and one as both (CAS 05-18-02). The six bunkers included in CAU 204 were primarily used to monitor atmospheric testing or store munitions. The ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada'' (NNSA/NV, 2002a) provides information relating to the history, planning, and scope of the investigation; therefore, it will not be repeated in this CADD. This CADD identifies potential corrective action alternatives and provides a rationale for the selection of a recommended corrective action alternative for each CAS within CAU 204. The evaluation of corrective action alternatives is based on process knowledge and the results of investigative activities conducted in accordance with the CAIP (NNSA/NV, 2002a) that was approved prior to the start of the Corrective Action Investigation (CAI). Record of Technical Change (ROTC) No. 1 to the CAIP (approval pending) documents changes to the preliminary action levels

  19. Problems in global atmospheric chemistry

    Science.gov (United States)

    Crutzen, Paul J.

    1993-02-01

    The chemistry of the atmosphere is substantially influenced by a wide range of chemical processes which are primarily driven by the action of ultraviolet radiation of wavelengths shorter than 320 nm (UV-B) on ozone and water vapor. This leads to the formation of hydroxyl (OH) radicals which, despite very low tropospheric concentrations, remove most gases that are emitted into the atmosphere by natural and anthropogenic processes. Therefore, although only about 10% of all atmospheric ozone is located in the troposphere, through the formation of OH, it determines the oxidation efficiency of the atmosphere and is, therefore, of the utmost importance for maintaining its chemical composition. Due to a variety of human activities, especially through increasing emissions of CH4, CO, and NOx, the concentrations of tropospheric ozone and hydroxyl are expected to be increasing in polluted and decreasing in clean tropospheric environments. Altogether, this may be leading to an overall decrease in the oxidation efficiency of the atmosphere, contributing to a gradual buildup of several longlived trace gases that are primarily removed by reaction with OH. In the stratosphere, especially due to catalytic reactions of chlorine-containing gases of industrial origin, ozone is being depleted, most drastically noted during the early spring months over Antarctica. Because ozone is the only atmospheric constituent that can significantly absorb solar radiation in the wavelength region 240 - 320 nm, this loss of ozone enhances the penetration of biologically harmful UV-B radiation to the earth's surface with ensuing negative consequences for the biosphere. Several of the aforementioned chemically active trace gases with growing trends in the atmosphere are also efficient greenhouse gases. Together they can exert a warming effect on the earth's climate about equal to that of carbon dioxide.

  20. Perimeter security for Minnesota correctional facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crist, D. [Minnesota Department of Corrections, St. Paul, MN (United States); Spencer, D.D. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    For the past few years, the Minnesota Department of Corrections, assisted by Sandia National Laboratories, has developed a set of standards for perimeter security at medium, close, and maximum custody correctional facilities in the state. During this process, the threat to perimeter security was examined and concepts about correctional perimeter security were developed. This presentation and paper will review the outcomes of this effort, some of the lessons learned, and the concepts developed during this process and in the course of working with architects, engineers and construction firms as the state upgraded perimeter security at some facilities and planned new construction at other facilities.

  1. Deferred correction approach on generic transport equation

    International Nuclear Information System (INIS)

    Shah, I.A.; Ali, M.

    2004-01-01

    In this study, a two dimensional Steady Convection-Diffusion was solved, using Deferred correction approach, and results were compared with standard spatial discretization schemes. Numerical investigations were carried out based on the velocity and flow direction, for various diffusivity coefficients covering a range from diffusive to convective flows. The results show that the Deferred Ted Correction Approach gives more accurate and stable results in relation to UDS and CDs discretization of convective terms. Deferred Correction Approach caters for the wiggles for convective flows in case of central difference discretization of the equation and also caters for the dissipative error generated by the first order upwind discretization of convective fluxes. (author)

  2. Analysis of corrections to the eikonal approximation

    Science.gov (United States)

    Hebborn, C.; Capel, P.

    2017-11-01

    Various corrections to the eikonal approximations are studied for two- and three-body nuclear collisions with the goal to extend the range of validity of this approximation to beam energies of 10 MeV/nucleon. Wallace's correction does not improve much the elastic-scattering cross sections obtained at the usual eikonal approximation. On the contrary, a semiclassical approximation that substitutes the impact parameter by a complex distance of closest approach computed with the projectile-target optical potential efficiently corrects the eikonal approximation. This opens the possibility to analyze data measured down to 10 MeV/nucleon within eikonal-like reaction models.

  3. Leading gravitational corrections and a unified universe

    DEFF Research Database (Denmark)

    Codello, Alessandro; Jain, Rajeev Kumar

    2016-01-01

    Leading order gravitational corrections to the Einstein-Hilbert action can lead to a consistent picture of the universe by unifying the epochs of inflation and dark energy in a single framework. While the leading local correction induces an inflationary phase in the early universe, the leading...... nonlocal term leads to an accelerated expansion of the universe at the present epoch. We argue that both the leading UV and IR terms can be obtained within the framework of a covariant effective field theory of gravity. The perturbative gravitational corrections therefore provide a fundamental basis...

  4. Hologram production and representation for corrected image

    Science.gov (United States)

    Jiao, Gui Chao; Zhang, Rui; Su, Xue Mei

    2015-12-01

    In this paper, a CCD sensor device is used to record the distorted homemade grid images which are taken by a wide angle camera. The distorted images are corrected by using methods of position calibration and correction of gray with vc++ 6.0 and opencv software. Holography graphes for the corrected pictures are produced. The clearly reproduced images are obtained where Fresnel algorithm is used in graph processing by reducing the object and reference light from Fresnel diffraction to delete zero-order part of the reproduced images. The investigation is useful in optical information processing and image encryption transmission.

  5. Power corrections to exclusive processes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mankiewicz, Lech

    2002-02-01

    In practice applicability of twist expansion crucially depends on the magnitude to power corrections to the leading-twist amplitude. I illustrate this point by considering explicit examples of two hard exclusive processes in QCD. In the case of {gamma}{sup *}{gamma} {yields} {pi}{pi} amplitude power corrections are small enough such that it should be possible to describe current experimental data by the leading-twist QCD prediction. The photon helicity-flip amplitude in DVCS on a nucleon receives large kinematical power corrections which screen the leading-twist prediction up to large values of the hard photon virtuality.

  6. Peripheral refractive correction and automated perimetric profiles.

    Science.gov (United States)

    Wild, J M; Wood, J M; Crews, S J

    1988-06-01

    The effect of peripheral refractive error correction on the automated perimetric sensitivity profile was investigated on a sample of 10 clinically normal, experienced observers. Peripheral refractive error was determined at eccentricities of 0 degree, 20 degrees and 40 degrees along the temporal meridian of the right eye using the Canon Autoref R-1, an infra-red automated refractor, under the parametric conditions of the Octopus automated perimeter. Perimetric sensitivity was then undertaken at these eccentricities (stimulus sizes 0 and III) with and without the appropriate peripheral refractive correction using the Octopus 201 automated perimeter. Within the measurement limits of the experimental procedures employed, perimetric sensitivity was not influenced by peripheral refractive correction.

  7. An application of the baseline correction technique for correcting distorted seismic acceleration time histories

    International Nuclear Information System (INIS)

    Lee, Gyu Mahn; Kim, Jong Wook; Jeoung, Kyeong Hoon; Kim, Tae Wan; Park, Keun Bae; Kim, Keung Koo

    2008-03-01

    Three kinds of baseline correction techniques named as 'Newmark', 'Zero-VD' and 'Newmark and Zero-VD' were introduced to correct the distorted physical characteristics of a seismic time history accelogram. The corrected seismic accelerations and distorted raw acceleration showed an identical response spectra in frequency domains, but showed various time history profiles in velocity and displacement domains. The referred correction techniques were programmed with UNIX-HP Fortran. The verification of the baseline corrected seismic data in terms of frequency response spectrum were performed by ANSYS of a commerical FEM software

  8. Mexico Terrain Corrected Free Air Anomalies (97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' gravity anomaly grid for Mexico, North-Central America and the Western Caribbean Sea is NOT the input data set used in the development of the MEXICO97 model....

  9. DECEMBER JMBR 13 - 2 correction.cdr

    African Journals Online (AJOL)

    Fine Print

    ... family history, pedigree development and its relevant to health care providers especially nurses was also .... a genetic disorder in a family. ... be carried out in a relaxed atmosphere with sufficient .... reporting a family history of mental illness,.

  10. UAV-borne coherent doppler lidar for marine atmospheric boundary layer observations

    Science.gov (United States)

    Wu, Songhua; Wang, Qichao; Liu, Bingyi; Liu, Jintao; Zhang, Kailin; Song, Xiaoquan

    2018-04-01

    A compact UAV-borne Coherent Doppler Lidar (UCDL) has been developed at the Ocean University of China for the observation of wind profile and boundary layer structure in Marine Atmospheric Boundary Layer (MABL). The design, specifications and motion-correction methodology of the UCDL are presented. Preliminary results of the first flight campaign in Hailing Island in December 2016 is discussed.

  11. Operator quantum error-correcting subsystems for self-correcting quantum memories

    International Nuclear Information System (INIS)

    Bacon, Dave

    2006-01-01

    The most general method for encoding quantum information is not to encode the information into a subspace of a Hilbert space, but to encode information into a subsystem of a Hilbert space. Recently this notion has led to a more general notion of quantum error correction known as operator quantum error correction. In standard quantum error-correcting codes, one requires the ability to apply a procedure which exactly reverses on the error-correcting subspace any correctable error. In contrast, for operator error-correcting subsystems, the correction procedure need not undo the error which has occurred, but instead one must perform corrections only modulo the subsystem structure. This does not lead to codes which differ from subspace codes, but does lead to recovery routines which explicitly make use of the subsystem structure. Here we present two examples of such operator error-correcting subsystems. These examples are motivated by simple spatially local Hamiltonians on square and cubic lattices. In three dimensions we provide evidence, in the form a simple mean field theory, that our Hamiltonian gives rise to a system which is self-correcting. Such a system will be a natural high-temperature quantum memory, robust to noise without external intervening quantum error-correction procedures

  12. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  13. Atmospheric Chemistry Over Southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  14. Hydrodynamic escape from planetary atmospheres

    Science.gov (United States)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early

  15. Atmospheric turbulence affects wind turbine nacelle transfer functions

    Directory of Open Access Journals (Sweden)

    C. M. St. Martin

    2017-06-01

    Full Text Available Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE 1.5sle model, we calculate empirical nacelle transfer functions (NTFs and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a steeper NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence

  16. 4SM: A Novel Self-Calibrated Algebraic Ratio Method for Satellite-Derived Bathymetry and Water Column Correction.

    Science.gov (United States)

    Morel, Yann G; Favoretto, Fabio

    2017-07-21

    All empirical water column correction methods have consistently been reported to require existing depth sounding data for the purpose of calibrating a simple depth retrieval model; they yield poor results over very bright or very dark bottoms. In contrast, we set out to (i) use only the relative radiance data in the image along with published data, and several new assumptions; (ii) in order to specify and operate the simplified radiative transfer equation (RTE); (iii) for the purpose of retrieving both the satellite derived bathymetry (SDB) and the water column corrected spectral reflectance over shallow seabeds. Sea truth regressions show that SDB depths retrieved by the method only need tide correction. Therefore it shall be demonstrated that, under such new assumptions, there is no need for (i) formal atmospheric correction; (ii) conversion of relative radiance into calibrated reflectance; or (iii) existing depth sounding data, to specify the simplified RTE and produce both SDB and spectral water column corrected radiance ready for bottom typing. Moreover, the use of the panchromatic band for that purpose is introduced. Altogether, we named this process the Self-Calibrated Supervised Spectral Shallow-sea Modeler (4SM). This approach requires a trained practitioner, though, to produce its results within hours of downloading the raw image. The ideal raw image should be a "near-nadir" view, exhibit homogeneous atmosphere and water column, include some coverage of optically deep waters and bare land, and lend itself to quality removal of haze, atmospheric adjacency effect, and sun/sky glint.

  17. Lord Kelvin's atmospheric electricity measurements

    Science.gov (United States)

    Aplin, Karen; Harrison, R. Giles; Trainer, Matthew; Hough, James

    2013-04-01

    Lord Kelvin (William Thomson), one of the greatest Victorian scientists, made a substantial but little-recognised contribution to geophysics through his work on atmospheric electricity. He developed sensitive instrumentation for measuring the atmospheric electric field, including invention of a portable electrometer, which made mobile measurements possible for the first time. Kelvin's measurements of the atmospheric electric field in 1859, made during development of the portable electrometer, can be used to deduce the substantial levels of particulate pollution blown over the Scottish island of Arran from the industrial mainland. Kelvin was also testing the electrometer during the largest solar flare ever recorded, the "Carrington event" in the late summer of 1859. Subsequently, Lord Kelvin also developed a water dropper sensor, and employed photographic techniques for "incessant recording" of the atmospheric electric field, which led to the long series of measurements recorded at UK observatories for the remainder of the 19th and much of the 20th century. These data sets have been valuable in both studies of historical pollution and cosmic ray effects on atmospheric processes.

  18. Atmosphere in a Test Tube

    Science.gov (United States)

    Claudi, R.; Pace, E.; Ciaravella, A.; Micela, G.; Piccioni, G.; Billi, D.; Cestelli Guidi, M.; Coccola, L.; Erculiani, M. S.; Fedel, M.; Galletta, G.; Giro, E.; La Rocca, N.; Morosinotto, T.; Poletto, L.; Schierano, D.; Stefani, S.

    The ancestor philosophers' dream of thousand of new world is finally realised: more than 1800 extrasolar planets have been discovered in the neighborhood of our Sun. Most of them are very different from those we used to know in our Solar System. Others orbit the Habitable Zone (HZ) of their parent stars. Space missions, as JWST and the very recently proposed ARIEL, or ground based instruments, like SPHERE@VLT, GPI@GEMINI and EPICS@ELT, have been proposed and built to measure the atmospheric transmission, reflection and emission spectra over a wide wavelength range of these new worlds. In order to interpret the spectra coming out by this new instrumentation, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how those characteristics could be affected by radiation driven photochemical and bio-chemical reaction. Insights in this direction can be achieved from laboratory studies of simulated planetary atmosphere of different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. ''Atmosphere in a Test Tube'' is a collaboration among several Italian astronomical, biological and engineering institutes in order to share their experiencece in performing laboratory experiments on several items concerning extrasolar planet atmospheres.

  19. A General Approach to Enhance Short Wave Satellite Imagery by Removing Background Atmospheric Effects

    Directory of Open Access Journals (Sweden)

    Ronald Scheirer

    2018-04-01

    Full Text Available Atmospheric interaction distorts the surface signal received by a space-borne instrument. Images derived from visible channels appear often too bright and with reduced contrast. This hampers the use of RGB imagery otherwise useful in ocean color applications and in forecasting or operational disaster monitoring, for example forest fires. In order to correct for the dominant source of atmospheric noise, a simple, fast and flexible algorithm has been developed. The algorithm is implemented in Python and freely available in PySpectral which is part of the PyTroll family of open source packages, allowing easy access to powerful real-time image-processing tools. Pre-calculated look-up tables of top of atmosphere reflectance are derived by off-line calculations with RTM DISORT as part of the LibRadtran package. The approach is independent of platform and sensor bands, and allows it to be applied to any band in the visible spectral range. Due to the use of standard atmospheric profiles and standard aerosol loads, it is possible just to reduce the background disturbance. Thus signals from excess aerosols become more discernible. Examples of uncorrected and corrected satellite images demonstrate that this flexible real-time algorithm is a useful tool for atmospheric correction.

  20. Passive sampling for the isotopic fingerprinting of atmospheric mercury

    Science.gov (United States)

    Bergquist, B. A.; MacLagan, D.; Spoznar, N.; Kaplan, R.; Chandan, P.; Stupple, G.; Zimmerman, L.; Wania, F.; Mitchell, C. P. J.; Steffen, A.; Monaci, F.; Derry, L. A.

    2017-12-01

    Recent studies show that there are variations in the mercury (Hg) isotopic signature of atmospheric Hg, which demonstrates the potential for source tracing and improved understanding of atmospheric cycling of Hg. However, current methods for both measuring atmospheric Hg and collecting enough atmospheric Hg for isotopic analyses require expensive instruments that need power and expertise. Additionally, methods for collecting enough atmospheric Hg for isotopic analysis require pumping air through traps for long periods (weeks and longer). Combining a new passive atmospheric sampler for mercury (Hg) with novel Hg isotopic analyses will allow for the application of stable Hg isotopes to atmospheric studies of Hg. Our group has been testing a new passive sampler for gaseous Hg that relies on the diffusion of Hg through a diffusive barrier and adsorption onto a sulphur-impregnated activated carbon sorbent. The benefit of this passive sampler is that it is low cost, requires no power, and collects gaseous Hg for up to one year with linear, well-defined uptake, which allows for reproducible and accurate measurements of atmospheric gaseous Hg concentrations ( 8% uncertainty). As little as one month of sampling is often adequate to collect sufficient Hg for isotopic analysis at typical background concentrations. Experiments comparing the isotopic Hg signature in activated carbon samples using different approaches (i.e. by passive diffusion, by passive diffusion through diffusive barriers of different thickness, by active pumping) and at different temperatures confirm that the sampling process itself does not impose mass-independent fractionation (MIF). However, sampling does result in a consistent and thus correctable mass-dependent fractionation (MDF) effect. Therefore, the sampler preserves Hg MIF with very high accuracy and precision, which is necessary for atmospheric source tracing, and reasonable MDF can be estimated with some increase in error. In addition to