WorldWideScience

Sample records for atmospheric surface layer

  1. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  2. Turbulent transport in the atmospheric surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)

    2012-04-15

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect

  3. Exploring Scintillometry in the Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.

    2006-01-01

    The main objective of this thesis is to investigate observation methods of heat and momentum exchange and key variables that characterise turbulence in the atmospheric stable surface layer (SSL), a layer defined as the lower part of the stable boundary layer (SBL) where surface fluxes do not change

  4. Aspects of the atmospheric surface layers on Mars and Earth

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Landberg, L.

    2002-01-01

    and mean flow on Mars is found to obey the same scaling laws as on Earth. The largest micrometeorological differences between the two atmospheres are associated with the low air density of the Martian atmosphere. Together with the virtual absence of water vapour, it reduces the importance...... of the atmospheric heat flux in the surface energy budget. This increases the temperature variation of the surface forcing the near-surface temperature gradient and thereby the diabatic heat flux to higher values than are typical on the Earth, resulting in turn in a deeper daytime boundary layer. As wind speed...... is much like that of the Earth, this larger diabatic heat flux is carried mostly by larger maximal values of T-*, the surface scale temperature. The higher kinematic viscosity yields a Kolmogorov scale of the order of ten times larger than on Earth, influencing the transition between rough and smooth flow...

  5. Interaction between surface and atmosphere in a convective boundary layer

    Science.gov (United States)

    Garai, Anirban

    Solar heating of the surface causes the near surface air to warm up and with sufficient buoyancy it ascends through the atmosphere as surface-layer plumes and thermals. The cold fluid from the upper part of the boundary layer descends as downdrafts. The downdrafts and thermals form streamwise roll vortices. All these turbulent coherent structures are important because they contribute most of the momentum and heat transport. While these structures have been studied in depth, their imprint on the surface through energy budget in a convective atmospheric boundary layer has received little attention. The main objective of the present study is to examine the turbulence-induced surface temperature fluctuations for different surface properties and stratification. Experiments were performed to measure atmospheric turbulence using sonic anemometers, fine wire thermocouples and LIDAR; and surface temperature using an infra-red camera over grass and artificial turf fields. The surface temperature fluctuations were found to be highly correlated to the turbulent coherent structures and follow the processes postulated in the surface renewal theory. The spatio-temporal scales and advection speed of the surface temperature fluctuation were found to match with those of turbulent coherent structures. A parametric direct numerical simulation (DNS) study was then performed by solving the solid-fluid heat transport mechanism numerically for varying solid thermal properties, solid thickness and strength of stratification. Even though there were large differences in the friction Reynolds and Richardson numbers between the experiments and numerical simulations, similar turbulent characteristics were observed. The ejection (sweep) events tend to be aligned with the streamwise direction to form roll vortices with unstable stratification. The solid-fluid interfacial temperature fluctuations increase with the decreases in solid thermal inertia; and with the increase in solid thickness to

  6. Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles

    Science.gov (United States)

    Witte, Brandon; Smith, Lorli; Schlagenhauf, Cornelia; Bailey, Sean

    2016-11-01

    We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).

  7. Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers

    Science.gov (United States)

    2015-10-01

    index. In the boundary layer, atmospheric temperature fluctuations are primarily responsible for the variations in refractive index at ultraviolet...parameterization of the atmospheric emissivity, in the early 1980s a parallel study of the SEB was conducted by the US Army Waterways Experiment Station...period of rotation of the atmosphere can be defined as TI = 2π/fc. At most mid- latitude locations this period is approximately 17 h. This quantity is

  8. Turbulence Structure of the Unstable Atmospheric Surface Layer and Transition to the Outer Layer

    Science.gov (United States)

    McNaughton, K. G.

    We present a new model of the structure of turbulence in the unstable atmospheric surface layer, and of the structural transition between this and the outer layer. The archetypal element of wall-bounded shear turbulence is the Theodorsen ejection amplifier (TEA) structure, in which an initial ejection of air from near the ground into an ideal laminar and logarithmic flow induces vortical motion about a hairpin-shaped core, which then creates a second ejection that is similar to, but larger than, the first. A series of TEA structures form a TEA cascade. In real turbulent flows TEA structures occur in distorted forms as TEA-like (TEAL) structures. Distortion terminates many TEAL cascades and only the best-formed TEAL structures initiate new cycles. In an extended log layer the resulting shear turbulence is a complex, self-organizing, dissipative system exhibiting self-similar behaviour under inner scaling. Spectral results show that this structure is insensitive to instability. This is contrary to the fundamental hypothesis of Monin--Obukhov similarity theory. All TEAL cascades terminate at the top of the surface layer where they encounter, and are severely distorted by, powerful eddies of similar size from the outer layer. These eddies are products of the breakdown of the large eddies produced by buoyancy in the outer layer. When the outer layer is much deeper than the surface layer the interacting eddies are from the inertial subrange of the outer Richardson cascade. The scale height of the surface layer, zs, is then found by matching the powers delivered to the creation of emerging TEAL structures to the power passing down the Richardson cascade in the outer layer. It is zs = u* 3ks, where u*s friction velocity, k is the von Káán constant and s is the rate of dissipation of turbulence kinetic energy in the outer layer immediately above the surface layer. This height is comparable to the Obukhov length in the fully convective boundary layer. Aircraft and tower

  9. The near-neutral atmospheric surface layer: turbulence and non-stationarity.

    Science.gov (United States)

    Metzger, M; McKeon, B J; Holmes, H

    2007-03-15

    The neutrally stable atmospheric surface layer is used as a physical model of a very high Reynolds number, canonical turbulent boundary layer. Challenges and limitations with this model are addressed in detail, including the inherent thermal stratification, surface roughness and non-stationarity of the atmosphere. Concurrent hot-wire and sonic anemometry data acquired in Utah's western desert provide insight to Reynolds number trends in the axial velocity statistics and spectra.

  10. On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements

    NARCIS (Netherlands)

    Vilà-Guerau de Arellano, J.; Dries, van den K.; Pino, D.

    2009-01-01

    We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL). A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of i

  11. Turbulent Structures and Coherence in the Atmospheric Surface Layer

    Science.gov (United States)

    Träumner, K.; Damian, Th.; Stawiarski, Ch.; Wieser, A.

    2015-01-01

    Organized structures in turbulent flow fields are a well-known and still fascinating phenomenon. Although these so-called coherent structures are obvious from visual inspection, quantitative assessment is a challenge and many aspects e.g., formation mechanisms and contribution to turbulent fluxes, are discussed controversially. During the "High Definition Clouds and Precipitation for Advancing Climate Prediction" Observational Prototype Experiment (HOPE) from April to May 2013, an advanced dual Doppler lidar technique was used to image the horizontal wind field near the surface for approximately 300 h. A visual inspection method, as well as a two-dimensional integral length scale analysis, were performed to characterize the observations qualitatively and quantitatively. During situations with forcing due to shear, the wind fields showed characteristic patterns in the form of clearly bordered, elongated areas of enhanced or reduced wind speed, which can be associated with near-surface streaks. During calm situations with strong buoyancy forcing, open cell patterns in the horizontal divergence field were observed. The measurement technique used enables the calculation of integral length scales of both horizontal wind components in the streamwise and cross-stream directions. The individual length scales varied considerably during the observation period but were on average shorter during situations with compared to strongly stable situations. During unstable situations, which were dominated by wind fields with structures, the streamwise length scales increased with increasing wind speed, whereas the cross-stream length scales decreased. Consequently, the anisotropy increased from 1 for calm situations to values of 2-3 for wind speeds of 8-10. During neutral to stable situations, the eddies were on average quite isotropic in the horizontal plane.

  12. Turbulence Measurements in the Atmospheric Surface Layer by Means of an Ultrasonic Anemometer and Thermometer

    Science.gov (United States)

    2006-02-01

    C., 1981: Cup , propeller, vane, and sonic anemometers in turbulence research. Annual Review of Fluid Mechanics, 13, 399–423, doi:10.1146/annurev.fl.13.010181.002151. 91 ...REPORT Turbulence measurements in the atmospheric surface layer by means of an ultrasonic anemometer and thermometer 14. ABSTRACT 16. SECURITY...ultrasonic anemometer /thermometers ("sonics"). The system performance was quantified by comparing observed turbulence spectra with inertial-range

  13. Surface ozone-aerosol behaviour and atmospheric boundary layer structure in Saharan dusty scenario

    Science.gov (United States)

    Adame, Jose; Córdoba-Jabonero, Carmen; Sorrribas, Mar; Gil-Ojeda, Manuel; Toledo, Daniel; Yela, Margarita

    2016-04-01

    A research campaign was performed for the AMISOC (Atmospheric Minor Species relevant to the Ozone Chemistry) project at El Arenosillo observatory (southwest Spain) in May-June 2012. The campaign focused on the impact of Saharan dust intrusions at the Atmospheric Boundary Layer (ABL) and ozone-aerosol interactions. In-situ and remote-sensing techniques for gases and aerosols were used moreover to modelling analyses. Meteorology features, ABL structures and evolution, aerosol profiling distributions and aerosol-ozone interactions on the surface were analysed. Two four-day periods were selected according to non-dusty (clean conditions) and dusty (Saharan dust) situations. In both scenarios, sea-land breezes developed in the lower atmosphere, but differences were found in the upper levels. Results show that surface temperatures were greater than 3°C and humidity values were lower during dusty conditions than non-dusty conditions. Thermal structures on the surface layer (estimated using an instrument on a 100 m tower) show differences, mainly during nocturnal periods with less intense inversions under dusty conditions. The mixing layer during dusty days was 400-800 m thick, less than observed on non-dusty days. Dust also disturbed the typical daily ABL evolution. Stable conditions were observed during the early evening during intrusions. Aerosol extinction on dusty days was 2-3 times higher, and the dust was confined between 1500 and 5500 m. Back trajectory analyses confirmed that the dust had an African origin. On the surface, the particle concentration was approximately 3.5 times higher during dusty events, but the local ozone did not exhibit any change. The arrival of Saharan dust in the upper levels impacted the meteorological surface, inhibited the daily evolution of the ABL and caused an increase in aerosol loading on the surface and at higher altitudes; however, no dust influence was observed on surface ozone.

  14. LOTOS: A Proposed Lower Tropospheric Observing System from the Land Surface through the Atmospheric Boundary Layer

    Science.gov (United States)

    Cohn, S. A.; Lee, W. C.; Carbone, R. E.; Oncley, S.; Brown, W. O. J.; Spuler, S.; Horst, T. W.

    2015-12-01

    Advances in sensor capabilities, but also in electronics, optics, RF communication, and off-the-grid power are enabling new measurement paradigms. NCAR's Earth Observing Laboratory (EOL) is considering new sensors, new deployment modes, and integrated observing strategies to address challenges in understanding within the atmospheric boundary layer and the underlying coupling to the land surface. Our vision is of a network of deployable observing sites, each with a suite of complementary instruments that measure surface-atmosphere exchange, and the state and evolution of the boundary layer. EOL has made good progress on distributed surface energy balance and flux stations, and on boundary layer remote sensing of wind and water vapor, all suitable for deployments of combined instruments and as network of such sites. We will present the status of the CentNet surface network development, the 449-MHz modular wind profiler, and a water vapor and temperature profiling differential absorption lidar (DIAL) under development. We will further present a concept for a test bed to better understand the value of these and other possible instruments in forming an instrument suite flexible for multiple research purposes.

  15. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...

  16. A coupled atmosphere and multi-layer land surface model for improving heavy rainfall simulation

    Directory of Open Access Journals (Sweden)

    M. Haggag

    2008-04-01

    Full Text Available A multi-layer land surface model (SOLVEG is dynamically coupled to the non-hydrostatic atmospheric model (MM5 in order to represent better spatial variations and changes in land surface characteristics compared with the land surface parameterization schemes included in the MM5. In this coupling, calculations of the atmosphere and land surface models are carried out as independent tasks of different processors; a model coupler controls these calculations and data exchanges among models using Message Passing Interface (MPI. This coupled model is applied to the record-breaking heavy rain events occurred in Kyushu Island, the southernmost of Japan's main islands, from 20 July to 25 July in 2006. The test computations are conducted by using both the developed coupled model and the original land surface parameterization of MM5. The result of these computations shows that SOLVEG reproduce higher ground temperature than land surface parameterization schemes in the MM5. This result indicates the feedback of land surface processes between MM5 and SOLVEG plays an important role in the computation. The most pronounced difference is in the rainfall simulation that shows the importance of coupling SOLVEG and MM5. The coupled model accurately reproduces the heavy rainfall events observed in Kyushu Island compared to the original MM5 from both the spatial and temporal point of view. This paper clearly shows that realistic simulation of rainfall event strongly depends on land-surface processes interacting with cloud development that depends on surface heat and moisture fluxes, which in turn are mainly determined by land surface vegetation and soil moisture storage. Soil temperature/moisture changes significantly affect the localized precipitation and modest improvement in the land surface representation can enhance the heavy rain simulation. MM5-SOLVEG coupling shows a clear image of land surface-atmosphere interactions and the dynamic feedback on

  17. Relation between the Atmospheric Boundary Layer and Impact Factors under Severe Surface Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Yinhuan Ao

    2017-01-01

    Full Text Available This paper reported a comprehensive analysis on the diurnal variation of the Atmospheric Boundary Layer (ABL in summer of Badain Jaran Desert and discussed deeply the effect of surface thermal to ABL, including the Difference in Surface-Air Temperature (DSAT, net radiation, and sensible heat, based on limited GPS radiosonde and surface observation data during two intense observation periods of experiments. The results showed that (1 affected by topography of the Tibetan Plateau, the climate provided favorable external conditions for the development of Convective Boundary Layer (CBL, (2 deep CBL showed a diurnal variation of three- to five-layer structure in clear days and five-layer ABL structure often occurred about sunset or sunrise, (3 the diurnal variation of DSAT influenced thickness of ABL through changes of turbulent heat flux, (4 integral value of sensible heat which rapidly converted by surface net radiation had a significant influence on the growth of CBL throughout daytime. The cumulative effect of thick RML dominated the role after CBL got through SBL in the development stage, especially in late summer, and (5 the development of CBL was promoted and accelerated by the variation of wind field and distribution of warm advection in high and low altitude.

  18. CONCENTRATION OF HARMFUL SUBSTANCES REDUCING IN SURFACE LAYER OF ATMOSPHERE AT RHEOSTAT LOCOMOTIVE TESTS

    Directory of Open Access Journals (Sweden)

    E. A. Bondar

    2010-06-01

    Full Text Available It is shown that at present an acceptable way of reducing the concentration of harmful substances in the surface layer of the atmosphere at rheostat tests of locomotives is their dispersion in a large volume of air. Channels, installed above an exhaust pipe of diesel locomotive with a break at the gas flow, work as ejectors. We have solved jointly the equation of aerodynamic characteristics of the ejector device and the equation of diffusion of gases; as a result the calculated dependence for determining the necessary height of ejector device has been obtained.

  19. On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements

    Directory of Open Access Journals (Sweden)

    J. Vilà-Guerau de Arellano

    2009-06-01

    Full Text Available We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL. A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of isoprene fluxes to the entrainment process, the partition of surface fluxes, the horizontal advection of warm/cold air masses and subsidence. Our findings demonstrate the key role played by the evolution of boundary layer height in modulating the retrieved isoprene flux. More specifically, inaccurate values of the potential temperature lapse rate lead to changes in the dilution capacity of the CBL and as a result the isoprene flux may be overestimated or underestimated by as much as 20%. The inferred emission flux estimated in the early morning hours is highly dependent on the accurate estimation of the discontinuity of the thermodynamic values between the residual layer and the rapidly forming CBL. Uncertainties associated with the partition of the sensible and latent heat flux also yield large deviations in the calculation of the isoprene surface flux. Similar results are obtained if we neglect the influence of warm or cold advection in the development of the CBL. We show that all the above-mentioned processes are non-linear, for which reason the dynamic and chemical evolutions of the CBL must be solved simultaneously. Based on the discussion of our results, we suggest the measurements needed to correctly apply the mixed-layer technique in order to minimize the uncertainties associated with the diurnal variability of the convective boundary layer.

  20. On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements

    Directory of Open Access Journals (Sweden)

    J. Vilà-Guerau de Arellano

    2009-02-01

    Full Text Available We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL. A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of isoprene fluxes to the entrainment process, the partition of surface fluxes, the horizontal advection of warm/cold air masses and subsidence. Our findings demonstrate the key role played by the evolution of boundary layer height in modulating the retrieved isoprene flux. More specifically, inaccurate values of the potential temperature lapse rate lead to changes in the dilution capacity of the CBL and as a result the isoprene flux may be overestimated or underestimated by as much as 20%. The inferred emission flux estimated in the early morning hours is highly dependent on the accurate estimation of the discontinuity of the thermodynamic values between the residual layer and the rapidly forming CBL. Uncertainties associated with the partition of the sensible and latent heat flux also yield large deviations in the calculation of the isoprene surface flux. Similar results are obtained if we neglect the influence of warm or cold advection in the development of the CBL. We show that all the above-mentioned processes are non-linear, for which reason the dynamic and chemical evolutions of the CBL must be solved simultaneously. Based on the discussion of our results, we suggest the measurements needed to correctly apply the mixed-layer technique in order to minimize the uncertainties associated with the diurnal variability of the convective boundary layer.

  1. Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters

    Science.gov (United States)

    Bogatov, Nikolay A.; Bakhanov, Victor V.; Ermoshkin, Aleksei V.; Kazakov, Vasily I.; Kemarskaya, Olga N.; Titov, Victor I.; Troitskaya, Yulia I.

    2014-10-01

    At present time radar methods of the seas and oceans diagnostics are actively developing. Using of the radar stations based on satellites and planes allows to receive information on a sea surface and a atmosphere near-surface layer with coverage of big water surface areas independently of day time. The developed methods of satellite radio images processing can be applied to marine radar stations. In Institute of Applied Physics RAS works on sea surface diagnostics systems development on the basis of standard marine radar are actively conducted. Despite smaller coverage of the territory in comparison with satellite data, marine radar have possibility to record spatially temporary radar images and to receive information on a surrounding situation quickly. This work deals with results of the researches which were conducted within the international expedition in the Atlantic Ocean in the autumn of 2012 on a route Rotterdam (Netherlands) - Ushuaya (Argentina) - Antarctica — Ushuaya. During this expedition a complex measurements of a sea surface, a atmosphere near-surface layer parameters and subsurface currents in the wide range of hydroweather conditions, including the storm were carried out. The system developed in IAP RAS on the basis of a marine radar ICOM MR-1200RII and the ADC (Analog Digital Converter) block for data recording on the personal computer was used. Display of a non-uniform near-surface current on sea surface radar images in storm conditions is shown. By means of the high-speed anemometer and meteorological station the measurements of the atmosphere parameters were carried out. Comparison of the anemometer data with calculated from radar images is carried out. Dependence of radar cross section from wind speed in the wide range of wind speeds, including storm conditions is investigated. Possibility of marine radar using for surface waves intensity and ice situation estimates also as icebergs detection is shown.

  2. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Zhaoxia [Univ. of Utah, Salt Lake City, UT (United States)

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  3. New expressions for the surface roughness length and displacement height in the atmospheric boundary layer

    Institute of Scientific and Technical Information of China (English)

    Lin Jian-Zhong; Li Hui-Jun; Zhang Kai

    2007-01-01

    An alternative model for the prediction of surface roughness length is developed. In the model a new factor is introduced to compensate for the effects of wake diffusion and interactions between the wake and roughness obstacles.The experiments are carried out by the use of the hot wire anemometry in the simulated atmospheric boundary layer in a wind tunnel. Based on the experimental data, a new expression for the zero-plane displacement height is proposed for the square arrays of roughness elements, which highlights the influence of free-stream speed on the roughness length. It appears that the displacement height increases with the wind speed while the surface roughness length decreases with Reynolds number increasing. It is shown that the calculation results based on the new expressions are in reasonable agreement with the experimental data.

  4. A Statistical Model for the Prediction of Wind-Speed Probabilities in the Atmospheric Surface Layer

    Science.gov (United States)

    Efthimiou, G. C.; Hertwig, D.; Andronopoulos, S.; Bartzis, J. G.; Coceal, O.

    2016-11-01

    Wind fields in the atmospheric surface layer (ASL) are highly three-dimensional and characterized by strong spatial and temporal variability. For various applications such as wind-comfort assessments and structural design, an understanding of potentially hazardous wind extremes is important. Statistical models are designed to facilitate conclusions about the occurrence probability of wind speeds based on the knowledge of low-order flow statistics. Being particularly interested in the upper tail regions we show that the statistical behaviour of near-surface wind speeds is adequately represented by the Beta distribution. By using the properties of the Beta probability density function in combination with a model for estimating extreme values based on readily available turbulence statistics, it is demonstrated that this novel modelling approach reliably predicts the upper margins of encountered wind speeds. The model's basic parameter is derived from three substantially different calibrating datasets of flow in the ASL originating from boundary-layer wind-tunnel measurements and direct numerical simulation. Evaluating the model based on independent field observations of near-surface wind speeds shows a high level of agreement between the statistically modelled horizontal wind speeds and measurements. The results show that, based on knowledge of only a few simple flow statistics (mean wind speed, wind-speed fluctuations and integral time scales), the occurrence probability of velocity magnitudes at arbitrary flow locations in the ASL can be estimated with a high degree of confidence.

  5. Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model

    CERN Document Server

    Lascaux, Franck; Fini, Luca

    2015-01-01

    This article aims at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature) above the ESO ground-base site of Cerro Paranal with a mesoscale atmospherical model called Meso-Nh. In a precedent paper we have preliminarily treated the model performances obtained in reconstructing some key atmospherical parameters in the surface layer 0-30~m studying the bias and the RMSE on a statistical sample of 20 nights. Results were very encouraging and it appeared therefore mandatory to confirm such a good result on a much richer statistical sample. In this paper, the study was extended to a total sample of 129 nights between 2007 and 2011 distributed in different parts of the solar year. This large sample made our analysis more robust and definitive in terms of the model performances and permitted us to confirm the excellent performances of the model. Besides, we present an independent analysis of the model p...

  6. Interactions of the land-surface with the atmospheric boundary layer

    NARCIS (Netherlands)

    Ek, M.B.

    2005-01-01

    We study daytime land-atmosphere interaction using a one-dimensional (column) coupled land-surface - atmospheric boundary-Iayer (ABL) model and data sets gathered at Cabauw (1978, central Netherlands) and during the Hydrological and Atmospheric Pilot Experiment - Modélisation du Bilan Hydrique (HAPE

  7. A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations

    Directory of Open Access Journals (Sweden)

    J. Ryder

    2014-12-01

    Full Text Available In Earth system modelling, a description of the energy budget of the vegetated surface layer is fundamental as it determines the meteorological conditions in the planetary boundary layer and as such contributes to the atmospheric conditions and its circulation. The energy budget in most Earth system models has long been based on a "big-leaf approach", with averaging schemes that represent in-canopy processes. Such models have difficulties in reproducing consistently the energy balance in field observations. We here outline a newly developed numerical model for energy budget simulation, as a component of the land surface model ORCHIDEE-CAN (Organising Carbon and Hydrology In Dynamic Ecosystems – CANopy. This new model implements techniques from single-site canopy models in a practical way. It includes representation of in-canopy transport, a multilayer longwave radiation budget, height-specific calculation of aerodynamic and stomatal conductance, and interaction with the bare soil flux within the canopy space. Significantly, it avoids iterations over the height of tha canopy and so maintains implicit coupling to the atmospheric model LMDz. As a first test, the model is evaluated against data from both an intensive measurement campaign and longer term eddy covariance measurements for the intensively studied Eucalyptus stand at Tumbarumba, Australia. The model performs well in replicating both diurnal and annual cycles of fluxes, as well as the gradients of sensible heat fluxes. However, the model overestimates sensible heat flux against an underestimate of the radiation budget. Improved performance is expected through the implementation of a more detailed calculation of stand albedo and a more up-to-date stomatal conductance calculation.

  8. Scaling Anisotropy and Convective Instability of the Atmospheric Surface-Layer

    Science.gov (United States)

    Fitton, G. F.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.

    2013-12-01

    In this study we use the scaling exponents, often called Hurst exponents, of the horizontal velocity and the temperature to classify the stability of the atmospheric surface-layer, including in the wake of a turbine. For this study we use two datasets for comparison. In the Growian experiment two 150m masts were constructed on coastal terrain with propeller anemometers positioned at the heights 10, 50, 75, 100, 125 and 150m measuring wind speed and direction. The measurements were taken at 2.5Hz over twenty-minutes with 300 measuring runs done in total. In addition, temperature was measured also at 2.5Hz over twenty minutes but only at the heights 10, 50, 100 and 150m. The second dataset consisted of three sonic anemometers positioned at 22, 23 and 43m on a single mast situated in a wind turbine test site in a mountainous part of Corsica France. The sonic anemometers measured three dimensional velocities and temperature at 10Hz over a period of six-months. The samples are separated into daily sub-samples, 180 in total. We find that the stability of the atmospheric surface-layer strongly depends on whether or not the temperature scales passively as the velocity. When the two scaling exponents remain of the same order, the scaling of both the velocity and temperature is consistent with surface-layer literature. However, when the scaling exponent of the temperature becomes larger than the scaling exponent of the velocity, the corresponding time-scales exhibit a strong, scaling anisotropy. To avoid shadow effects from masts, we are compelled to deal with samples whose `mean' velocity is near-perpendicular to the masts. The anisotropy of these samples turns out to be beyond a trivial component-wise anisotropy corresponding to pre-factors depending on the direction, i.e., the scaling exponents themselves (in particular the Hurst exponent) depend on the direction. We use a rotated frame of reference to better analyse this behaviour and put forward analytical expression of

  9. One year of 222Rn concentration in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    S. Galmarini

    2006-01-01

    Full Text Available A one-year time series of 222Rn measured in a rural area in the North of Italy in 1997 is analyzed. The scope of the investigation is to better understand the behavior of this common atmospheric tracer in relation to the meteorological conditions at the release site. Wavelet analysis is used as one of the investigation tools of the time series. The measurements and scalograms of 222Rn are compared to those of wind-speed, pressure, relative humidity, temperature and NOx. The use of wavelet analysis allows the identification of the various scales controlling the influence of the meteorological variables on 222Rn dispersion in the surface layer that are not visible through classical Fourier analysis or direct time series inspection. The analysis of the time series has identified specific periods during which the usual diurnal variation of radon is superimposed to a linear growth thus indicating the build up of concentration at the measurement level. From these specific cases an estimate of the surface flux of 222Rn is made. By means of a simple model these special cases are reproduced.

  10. One year of 222Rn concentration in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    S. Galmarini

    2005-12-01

    Full Text Available A one-year time series of 222Rn measured in a rural area in the North of Italy in 1997 is analyzed. The scope of the investigation is to better understand the behavior of this common atmospheric tracer in relation to the meteorological conditions at the release site. Wavelet analysis is used as one of the investigation tools of the time series. The measurements and scalograms of 222Rn are compared to those of wind-speed, pressure, relative humidity, temperature and NOx. The use of wavelet analysis allows the identification of the various scales controlling the influence of the meteorological variables on 222Rn dispersion in the surface layer that are not visible through classical Fourier analysis or direct time series inspection. The analysis of the time series has identified specific periods during which the usual diurnal variation of radon is superimposed to a linear growth thus indicating the build up of concentration at the measurement level. From these specific cases an estimate of the surface flux of 222Rn is made. By means of a simple model these special cases are reproduced.

  11. Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece.

    Science.gov (United States)

    Kostopoulos, V E; Helmis, C G

    2014-10-01

    Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean Sea of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean Sea, characterized by limited spatial and temporal scales which could affect these exchanges at the air-sea interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open seas and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding air-sea interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the sea surface temperature.

  12. Variance Method to Determine Turbulent Fluxes of Momentum And Sensible Heat in The Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Debruin, H.A.R.; Hartogensis, O.K.

    2005-01-01

    Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, ¿u and ¿T respectively, measured at a single level. An attractive aspect of this method is that it yi

  13. Transport and deposition of nitrogen oxides and ozone in the atmospheric surface layer

    Science.gov (United States)

    Li, Yongxian

    Tropospheric ozone is an important photochemical air pollutant, which increases respiratory-related diseases, decreases crop yields, and causes other environmental problems. This research has focused on the measurement of soil biogenic emissions of nitric oxide (NO), one of the precursors for ozone formation, from intensively managed soils in the Southeast US, and examined the transport and deposition of NOx (NO + NO2) and ozone in the atmospheric surface layer, and the effects of NO emissions and its chemical reactions on ozone flux and deposition to the earth's surface. Emissions of nitric oxide were measured from an intensively managed agricultural soil, in the lower coastal plain of North Carolina (near Plymouth, NC), using a dynamic chamber technique. Measurements of soil NO emissions in several crop canopies were conducted at four different sites in North Carolina during late spring and summer of 1994-1996. The turbulent fluxes of NO2 and O3 at 5 m and 10 m above the ground were measured using the eddy-correlation technique near Plymouth, NC during late spring of 1995 and summer of 1996, concurrent with measurements of soil NO emissions using the dynamic chamber system. Soil NO emission from within the corn field was high averaging approximately 35 ng N/m2/s during the measurement period of 1995. In another study, vertical measurements of ozone were made on a 610 m tall tower located 15 km Southeast of Raleigh, NC during the summers of 1993-1997, as part of an effort by the State of North Carolina to develop a State Implementation Plan (SIP) for ozone control in the Raleigh Metropolitan Statistical Area. A strong correlation was observed between the nighttime and early morning ozone concentrations in the residual layer (CR) above the NBL and the maximum ground level concentration (C o max) the following afternoon. Based on this correlation, an empirical regression equation (Co max = 27.67*exp(0.016 CR)) was developed for predicting maximum ground level ozone

  14. Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to Simulate the Interaction between Land Surface Processes and Atmospheric Boundary Layer in Semi-Arid Regions

    Institute of Scientific and Technical Information of China (English)

    刘树华; 乐旭; 胡非; 刘辉志

    2004-01-01

    This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts:atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity,turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results.This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.

  15. Atmospheric stability of surface boundary layer in coastal region of the Wol-Ryong site

    Science.gov (United States)

    Lim, Hee-Chang

    2012-08-01

    In order to provide statistically reliable information of a wind energy site, accurate analysis on the atmospheric stability and climate characteristics in a certain area is a prerequisite. Two 2-D ultrasonic anemometers and one cup anemometer, located perpendicular to the prevailing wind direction, were used to measure the atmospheric wind environment at a height of 4.5 m in coastal region of the Wol-Ryong, Jeju, South Korea. The study is aiming to understand the atmospheric stability about a coastal region, and the effect of roughness length. We calculate the Monin-Obukhov length for division of atmospheric stability about unstable regime, neutral regime and stable regime. The distribution of diurnal Monin-Obukhov length is highly sporadic in the coastal region due to the effect of radiant heat from the surface or other environmental effects. In order to calculate the roughness length in coastal region, three different methods are applied in terms of the surface roughness, flow fluctuation and gust wind, which are called logarithmic profile, standard deviation and gust factor methods. In the study, the atmospheric stability was insignificant when applying these three methods. In the results, three different roughness length scales sufficiently showed the effect of obstacle and surface conditions around the measurement position. On the basis of an overall analysis of the short-term data measured in the Wol-Ryong area, Jeju Island, it is concluded that for the development of future wind energy resources, the Wol-Ryong site could be a good candidate for a future wind energy site.

  16. Study of Near-Surface Models in Large-Eddy Simulations of a Neutrally Stratified Atmospheric Boundary Layer

    Science.gov (United States)

    Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.

    2004-01-01

    Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.

  17. Estimating the atmospheric boundary layer height over sloped, forested terrain from surface spectral analysis during BEARPEX

    Directory of Open Access Journals (Sweden)

    W. Choi

    2010-11-01

    Full Text Available In this study the atmospheric boundary layer (ABL height (zi over complex, forested terrain is estimated based on the power spectra and the integral length scale of horizontal winds obtained from a three-axis sonic anemometer during the BEARPEX (Biosphere Effects on Aerosol and Photochemistry Experiment. The zi values estimated with this technique showed very good agreement with observations obtained from balloon tether sonde (2007 and rawinsonde (2009 measurements under unstable conditions (z/L < 0 at the coniferous forest in the California Sierra Nevada. The behavior of the nocturnal boundary layer height (h and power spectra of lateral winds and temperature under stable conditions (z/L > 0 is also presented. The nocturnal boundary layer height is found to be fairly well predicted by a recent interpolation formula proposed by Zilitinkevich et al. (2007, although it was observed to only vary from 60–80 m during the experiment. Finally, significant directional wind shear was observed during both day and night with winds backing from the prevailing west-southwesterlies in the ABL (anabatic cross-valley circulation to consistent southerlies in a layer ~1 km thick just above the ABL before veering to the prevailing westerlies further aloft. We show that this is consistent with the forcing of a thermal wind driven by the regional temperature gradient directed due east in the lower troposphere.

  18. Improving the Representation of the Nocturnal Near-Neutral Surface Layer in the Urban Environment with a Mesoscale Atmospheric Model

    Science.gov (United States)

    Husain, Syed Zahid; Bélair, Stéphane; Mailhot, Jocelyn; Leroyer, Sylvie

    2013-06-01

    A new approach to improve the representation of surface processes in the Global Environmental Multiscale (GEM) atmospheric model associated with the exchanges between the urban canopy and the atmosphere is presented. Effects of the urban canopy on the evolution of surface-layer wind, temperature, moisture, and turbulence are directly parametrized in order to allow realistic interactions between the canopy elements (i.e., roofs, roads, and walls) and the atmosphere at GEM's multiple vertical levels that are positioned inside the canopy. Surface energy budgets as implemented in the Town Energy Balance (TEB) scheme have been used to determine temperatures of the urban canopy elements for the proposed multilayer scheme. Performance of the multilayer scheme is compared against standard implementations of the TEB scheme for one nighttime intensive observation period of the Joint Urban 2003 experiment held in Oklahoma City, USA. Although the new approach is found to have a negligible impact on urban surface-layer wind profiles, it improves the prediction of near-neutral nocturnal profiles of potential temperature close to the surface. The urban heat island effect is simulated with a better accuracy by the multilayer approach. The horizontal temperature gradient across the central business district of the city along the direction of flow is also reasonably well captured by the proposed scheme.

  19. Accelerated formation of sodium depletion layer on soda lime glass surface by corona discharge treatment in hydrogen atmosphere

    Science.gov (United States)

    Kawaguchi, Keiga; Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Uraji, Keiichiro; Yamamoto, Kiyoshi; Suzuki, Toshio; Harada, Kenji; Nishii, Junji

    2014-05-01

    Formation of a sodium depletion layer on a soda lime glass surface was accelerated efficiently using a corona discharge treatment in H2 atmosphere. One origin of such acceleration was the preferential generation of H+ with a larger mobility at an anode needle end with a lower applied voltage than that in air. The second origin was the applied voltage across the glass plate during the corona discharge treatment, which was estimated theoretically as 2.7 times higher than that in air. These two effects doubled the depletion layer thickness compared with that in air.

  20. Estimating the atmospheric boundary layer height over sloped, forested terrain from surface spectral analysis during BEARPEX

    Directory of Open Access Journals (Sweden)

    W. Choi

    2011-07-01

    Full Text Available The atmospheric boundary layer (ABL height (zi over complex, forested terrain is estimated based on the power spectra and the integral length scale of cross-stream winds obtained from a three-axis sonic anemometer during the two summers of the BEARPEX (Biosphere Effects on Aerosol and Photochemistry Experiment. The zi values estimated with this technique show very good agreement with observations obtained from balloon tether sondes (2007 and rawinsondes (2009 under unstable conditions (z/L < 0 at the coniferous forest in the California Sierra Nevada. On the other hand, the low frequency behavior of the streamwise upslope winds did not exhibit significant variations and was therefore not useful in predicting boundary layer height. The behavior of the nocturnal boundary layer height (h with respect to the power spectra of the v-wind component and temperature under stable conditions (z/L > 0 is also presented. The nocturnal boundary layer height is found to be fairly well predicted by a recent interpolation formula proposed by Zilitinkevich et al. (2007, although it was observed to only vary from 60–80 m during the 2009 experiment in which it was measured. Finally, significant directional wind shear was observed during both day and night soundings. The winds were found to be consistently backing from the prevailing west-southwesterlies within the ABL (the anabatic cross-valley circulation to southerlies in a layer ~1–2 km thick just above the ABL before veering to the prevailing westerlies further aloft. This shear pattern is shown to be consistent with the forcing of a thermal wind driven by the regional temperature gradient directed east-southeast in the lower troposphere.

  1. Experimental Measurements of Concentration Fluctuations and Scales in a Dispersing Plume in the Atmospheric Surface Layer Obtained Using a Very Fast Response Concentration Detector

    Science.gov (United States)

    2016-06-14

    VOLUME 33 Experimental Measurements of Concentration Fluctuations and Scales in a Dispersing Plume in the Atmospheric Surface Layer Obtained Using a...final form 22 December 1993) ABSTRACT High-frequency fluctuations of concentration in a plume dispersing in the atmospheric surface layer have... layer is of critical importance in many industrial and envi- ronmental fluid mechanics problems, ranging from air quality control and regulation of

  2. The relationship between ozone formation and air temperature in the atmospheric surface layer

    Science.gov (United States)

    Belan, Boris D.; Savkin, Denis; Tolmachev, Gennadii

    2016-04-01

    Studying the formation and dynamics of ozone in the atmosphere is important due to several reasons. First, the contribution of tropospheric ozone to the global greenhouse effect is only slightly less than that of water vapor, carbon dioxide, and methane. Second, tropospheric ozone acts as a strong poison that has negative effects on human health, animals, and vegetation. Third, being a potent oxidizer, ozone destroys almost all materials, including platinum group metals and compounds. Fourthly, ozone is formed in situ from precursors as a result of photochemical processes, but not emitted into the atmosphere by any industrial enterprises directly. In this work, we present some results of the study aimed at the revealing relationship between ozone formation rate and surface air temperature in the background atmosphere. It has been found that this relationship is nonlinear. Analysis of the possible reasons showed that the nonlinear character of this relationship may be due to a nonlinear increase in the reaction constants versus air temperature and a quadratic increase in the concentration of hydrocarbons with increasing temperature. This work was supported by the Ministry of Education and Science contract no.14.613.21.0013 (ID: RFMEFI61314X0013).

  3. A hybrid surface layer parameterization scheme for the two-way fully coupled atmosphere-ocean wave system WEW

    Science.gov (United States)

    Katsafados, Petros; Papadopoulos, Anastasios; Varlas, George; Korres, Gerasimos

    2015-04-01

    The two-way fully coupled atmosphere-ocean wave system WEW has been recently developed in order to study the factors that contribute to the air-sea interaction processes and feedbacks. The coupled system consists of two components: the atmospheric component which is based on the Workstation Eta non-hydrostatic limited area model and the ocean-wave component which is based on the fourth generation OpenMP (OMP) version of the WAM model. The WEW has been already evaluated in a number of high-impact weather and sea state events where generally a more realistic representation of the momentum exchanges in the ocean wind-wave system has been shown However, the new developed wind-wave parameterization scheme reduces both the near surface wind speed and the significant wave height as a response to the increased aerodynamic drag considered by the atmospheric model over rough sea surfaces. Such behavior is mainly attributed to the surface layer parameterization scheme of the atmospheric component which is based on the Mellor-Yamada-Janjic (MYJ) scheme. It is noted that this scheme has been adjusted to support independent atmospheric simulations. Therefore, we proceed to develop a new hybrid surface layer parameterization based on the MYJ and the Janssen schemes that operate in the atmospheric and ocean wave components of the WEW, respectively. In this case the roughness length depends on the wave age instead of the Charnock parameter following the formulation proposed by Vickers and Mahrt. The spatial variability of the wave age is estimated at each ocean wave component time step and it is directly provided to the MYJ scheme. The parameterization of the viscous sublayer and the universal functions for the estimation of the near surface wind speed have been also revised accordingly. In this study, a test version of the new hybrid scheme of WEW has been statistically evaluated against a number of buoys and satellite retrievals over the Mediterranean Sea in a case study of high

  4. Assessing impacts of PBL and surface layer schemes in simulating the surface-atmosphere interactions and precipitation over the tropical ocean using observations from AMIE/DYNAMO

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yun; Yan, Huiping; Berg, Larry K.; Hagos, Samson M.; Feng, Zhe; Yang, Ben; Huang, Maoyi

    2016-11-01

    Accuracy of turbulence parameterization in representing Planetary Boundary Layer (PBL) processes in climate models is critical for predicting the initiation and development of clouds, air quality issues, and underlying surface-atmosphere-cloud interactions. In this study, we 1) evaluate WRF model-simulated spatial patterns of precipitation and surface fluxes, as well as vertical profiles of potential temperature, humidity, moist static energy and moisture tendency terms as simulated by WRF at various spatial resolutions and with PBL, surface layer and shallow convection schemes against measurements, 2) identify model biases by examining the moisture tendency terms contributed by PBL and convection processes through nudging experiments, and 3) evaluate the dependence of modeled surface latent heat (LH) fluxes onPBL and surface layer schemes over the tropical ocean. The results show that PBL and surface parameterizations have surprisingly large impacts on precipitation, convection initiation and surface moisture fluxes over tropical oceans. All of the parameterizations tested tend to overpredict moisture in PBL and free atmosphere, and consequently result in larger moist static energy and precipitation. Moisture nudging tends to suppress the initiation of convection and reduces the excess precipitation. The reduction in precipitation bias in turn reduces the surface wind and LH flux biases, which suggests that the model drifts at least partly because of a positive feedback between precipitation and surface fluxes. The updated shallow convection scheme KF-CuP tends to suppress the initiation and development of deep convection, consequently decreasing precipitation. The Eta surface layer scheme predicts more reasonable LH fluxes and the LH-Wind Speed relationship than the MM5 scheme, especially when coupled with the MYJ scheme. By examining various parameterization schemes in WRF, we identify sources of biases and weaknesses of current PBL, surface layer and shallow

  5. Coupled Vadose Zone and Atmospheric Surface-Layer Transport of CO2 from Geologic Carbon Sequestration Sites

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.; Unger, Andre J.A.

    2004-03-29

    Geologic carbon dioxide (CO{sub 2}) sequestration is being considered as a way to offset fossil-fuel-related CO{sub 2} emissions to reduce the rate of increase of atmospheric CO{sub 2} concentrations. The accumulation of vast quantities of injected carbon dioxide (CO{sub 2}) in geologic sequestration sites may entail health and environmental risks from potential leakage and seepage of CO{sub 2} into the near-surface environment. We are developing and applying a coupled subsurface and atmospheric surface-layer modeling capability built within the framework of the integral finite difference reservoir simulator TOUGH2. The overall purpose of modeling studies is to predict CO{sub 2} concentration distributions under a variety of seepage scenarios and geologic, hydrologic, and atmospheric conditions. These concentration distributions will provide the basis for determining above-ground and near-surface instrumentation needs for carbon sequestration monitoring and verification, as well as for assessing health, safety, and environmental risks. A key feature of CO{sub 2} is its large density ({rho} = 1.8 kg m{sup -3}) relative to air ({rho} = 1.2 kg m{sup -3}), a property that may allow small leaks to cause concentrations in air above the occupational exposure limit of 4 percent in low-lying and enclosed areas such as valleys and basements where dilution rates are low. The approach we take to coupled modeling involves development of T2CA, a TOUGH2 module for modeling the multicomponent transport of water, brine, CO{sub 2}, gas tracer, and air in the subsurface. For the atmospheric surface-layer advection and dispersion, we use a logarithmic vertical velocity profile to specify constant time-averaged ambient winds, and atmospheric dispersion approaches to model mixing due to eddies and turbulence. Initial simulations with the coupled model suggest that atmospheric dispersion quickly dilutes diffuse CO{sub 2} seepage fluxes to negligible concentrations, and that rainfall

  6. The WELSONS experiment: overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain

    Directory of Open Access Journals (Sweden)

    J.-P. Frangi

    Full Text Available This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain. This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT and chisel ploughing (reduced tillage denoted RT. This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance, these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models.

    Key words: Hydrology (desertification - Meterology and

  7. Activity of radon ($^{222}$Rn) in the lower atmospheric surface layer of a typical rural site in south India

    Indian Academy of Sciences (India)

    K Charan Kumar; T Rajendra Prasad; M Venkat Ratnam; Nagaraja Kamsali

    2016-10-01

    Analysis of one year measurements of in situ radon ($^{222}$Rn) and its progenies along with surface air temperature, relative humidity and pressure near to the Earth’s surface has been carried out for the first time at the National Atmospheric Research Laboratory (NARL, 13.5◦N and 79.2◦E) located in a rural site in Gadanki, south India. The dataset was analysed to understand the behaviour of radon inrelation to the surface air temperature and relative humidity at a rural site. It was observed that over a period of the 24 hours in a day, the activity of radon and its progenies reaches a peak in the morning hours followed by a remarkable decrease in the afternoon hours. Relatively, a higher concentration of radon was observed at NARL during fair weather days, and this can be attributed to the presence ofrocky hills and dense vegetation surrounding the site. The high negative correlation between surface air temperature and activity of radon (R = – 0.70, on an annual scale) suggests that dynamical removal of radon due to increased vertical mixing is one of the most important controlling processes of the radon accumulation in the atmospheric surface layer. The annual averaged activity of radon was found to be12.01±0.66 Bq m$^{−3}$ and 4.25±0.18 Bq m$^{−3}$ for its progenies, in the study period.

  8. Activity of radon (222Rn) in the lower atmospheric surface layer of a typical rural site in south India

    Science.gov (United States)

    Kumar, K. Charan; Prasad, T. Rajendra; Ratnam, M. Venkat; Nagaraja, Kamsali

    2016-09-01

    Analysis of one year measurements of in situ radon (222Rn) and its progenies along with surface air temperature, relative humidity and pressure near to the Earth's surface has been carried out for the first time at the National Atmospheric Research Laboratory (NARL, 13.5∘N and 79.2∘E) located in a rural site in Gadanki, south India. The dataset was analysed to understand the behaviour of radon in relation to the surface air temperature and relative humidity at a rural site. It was observed that over a period of the 24 hours in a day, the activity of radon and its progenies reaches a peak in the morning hours followed by a remarkable decrease in the afternoon hours. Relatively, a higher concentration of radon was observed at NARL during fair weather days, and this can be attributed to the presence of rocky hills and dense vegetation surrounding the site. The high negative correlation between surface air temperature and activity of radon (R = - 0.70, on an annual scale) suggests that dynamical removal of radon due to increased vertical mixing is one of the most important controlling processes of the radon accumulation in the atmospheric surface layer. The annual averaged activity of radon was found to be 12.01±0.66 Bq m-3 and 4.25±0.18 Bq m-3 for its progenies, in the study period.

  9. Activity of radon (222Rn) in the lower atmospheric surface layer of a typical rural site in south India

    Science.gov (United States)

    Kumar, K. Charan; Prasad, T. Rajendra; Ratnam, M. Venkat; Nagaraja, Kamsali

    2016-10-01

    Analysis of one year measurements of in situ radon (222Rn) and its progenies along with surface air temperature, relative humidity and pressure near to the Earth's surface has been carried out for the first time at the National Atmospheric Research Laboratory (NARL, 13.5∘N and 79.2∘E) located in a rural site in Gadanki, south India. The dataset was analysed to understand the behaviour of radon in relation to the surface air temperature and relative humidity at a rural site. It was observed that over a period of the 24 hours in a day, the activity of radon and its progenies reaches a peak in the morning hours followed by a remarkable decrease in the afternoon hours. Relatively, a higher concentration of radon was observed at NARL during fair weather days, and this can be attributed to the presence of rocky hills and dense vegetation surrounding the site. The high negative correlation between surface air temperature and activity of radon ( R = - 0.70, on an annual scale) suggests that dynamical removal of radon due to increased vertical mixing is one of the most important controlling processes of the radon accumulation in the atmospheric surface layer. The annual averaged activity of radon was found to be 12.01±0.66 Bq m-3 and 4.25±0.18 Bq m-3 for its progenies, in the study period.

  10. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  11. Turbulent characteristics of a semiarid atmospheric surface layer from cup anemometers – effects of soil tillage treatment (Northern Spain

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    Full Text Available This paper deals with the characteristics of turbulent flow over two agricultural plots with various tillage treatments in a fallow, semiarid area (Central Aragon, Spain. The main dynamic characteristics of the Atmospheric Surface Layer (ASL measured over the experimental site (friction velocity, roughness length, etc., and energy budget, have been presented previously (Frangi and Richard, 2000. The current study is based on experimental measurements performed with cup anemometers located in the vicinity of the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. It reveals that the horizontal wind variance, the Eulerian integral scales, the frequency range of turbulence and the turbulent kinetic energy dissipation rate are affected by the surface roughness. In the vicinity of the ground surface, the horizontal wind variance logarithmically increases with height, directly in relation to the friction velocity and the roughness length scale. It was found that the time integral scale (and subsequently the length integral scale increased with the surface roughness and decreased with the anemometer height. These variations imply some shifts in the meteorological spectral gap and some variations of the spectral peak length scale. The turbulent energy dissipation rate, affected by the soil roughness, shows a z-less stratification behaviour under stable conditions. In addition to the characterization of the studied ASL, this paper intends to show which turbulence characteristics, and under what conditions, are accessible through the cup anemometer.

    Key words. Meteorology and atmospheric dynamics (climatology, turbulence, instruments and techniques

  12. The Role of Large-Coherent-Eddy Transport in the Atmospheric Surface Layer Based on CASES-99 Observations

    Science.gov (United States)

    Sun, Jielun; Lenschow, Donald H.; LeMone, Margaret A.; Mahrt, Larry

    2016-07-01

    The analysis of momentum and heat fluxes from the Cooperative Atmosphere-Surface Exchange Study 1999 (CASES-99) field experiment is extended throughout the diurnal cycle following the investigation of nighttime turbulence by Sun et al. (J Atmos Sci 69:338-351, 2012). Based on the observations, limitations of Monin-Obukhov similarity theory (MOST) are examined in detail. The analysis suggests that strong turbulent mixing is dominated by relatively large coherent eddies that are not related to local vertical gradients as assumed in MOST. The HOckey-Stick Transition (HOST) hypothesis is developed to explain the generation of observed large coherent eddies over a finite depth and the contribution of these eddies to vertical variations of turbulence intensity and atmospheric stratification throughout the diurnal cycle. The HOST hypothesis emphasizes the connection between dominant turbulent eddies and turbulence generation scales, and the coupling between the turbulence kinetic energy and the turbulence potential energy within the turbulence generation layer in determining turbulence intensity. For turbulence generation directly influenced by the surface, the HOST hypothesis recognizes the role of the surface both in the vertical variation of momentum and heat fluxes and its boundary effect on the size of the dominant turbulence eddies.

  13. Chemical composition of aerosol in the atmospheric surface layer of the East Antarctica coastal zone

    Directory of Open Access Journals (Sweden)

    L. P. Golobokova

    2016-01-01

    Full Text Available Chemical composition of aerosol in the ground layer of the coastal zone in East Antarctica is analyzed in the article. The aerosol samples were taken in 2006–2015 during seasonal works of the Russian Antarctic Expeditions (RAE, namely, these were 52nd–53rd, 55th, and 58th–60th expeditions. Samples were taken in the 200‑km band of the sea-shore zone along routes of the research vessels (REV «Akademik Fedorov» and «Akademik Treshnikov» as well as on territories of the Russian stations Molodezhnaya and Mirny. Although the results obtained did show the wide range of the aerosol concentrations and a certain variability of their chemical composition, some common features of the variability were revealed. Thus, during the period from 2006 to 2014 a decrease of average values of the sums were noted. Spatially, a tendency of decreasing of the ion concentrations was found in the direction from the station Novolazarevskaya to the Molodezhnaya one, but the concentrations increased from the Molodezhnaya to the station Mirny. The sum of ions of the aerosol in the above mentioned coastal zone was, on the average, equal to 2.44 μg/m3, and it was larger than that on the territory of the Antarctic stations Molodezhnaya (0,29 μg/m3 and Mirny (0,50 ág / m3. The main part to the sum of the aerosol ions on the Antarctic stations was contributed by Na+, Ca2+, Cl−, SO4 2−. The main ions in aerosol composition in the coastal zone are ions Na+ and Cl−. The dominant contribution of the sea salt and SO4 2− can be traced in not only the composition of atmospheric aerosols, but also in the chemical composition of the fresh snow in the coastal areas of East Antarctica: at the Indian station Maitri, on the Larsemann Hills, and in a boring located in 55.3 km from the station Progress (K = 1.4÷6.1. It was noted that values of the coefficient of enrichment K of these ions decreases as someone moves from a shore to inland. Estimation of

  14. Spatial and Temporal Variability of CO2 and CH4 Concentrations in the Atmospheric Surface Layer over West Siberia

    Science.gov (United States)

    Belan, Boris D.; Machida, Toshinobu; Sasakawa, Motoki; Davydov, Denis K.; Fofonov, Alexander V.; Krasnov, Oleg A.; Maksyutov, Shamil; Arshinov, Mikhail Yu.

    2015-04-01

    The investigation of greenhouse gas behavior in the atmosphere plays a key role in predicting the global changes of Earth's climate. In this connection, of particular importance is the study of the distribution of sources/sinks of trace gases in the atmospheric surface layer over the different regions of the globe. In order to fill a gap in the data on greenhouse gas concentrations in Russia, National Institute for Environmental Studies (NIES, Japan) and Institute of Atmospheric Optics (IAO SB RAS, Russia) established a network for GHG monitoring (JR-STATION, Japan-Russia Siberian Tall Tower Inland Observation Network). Gas analyzers and meteorological sensors were mounted at radio relay towers located in different regions of West Siberia. The checking equipment was placed in containers at the tower base. In the containers, the climatic parameters optimal for gas analyzer operation were maintained. The work on the network development started in 2001. Since at each of the sites the measurement duration could be different, in this paper we present the data of the greenhouse gas monitoring for eight sites which give the primary idea on the spatial distribution and temporal dynamics of CO2 and CH4 in the atmospheric surface layer over West Siberia. The analysis of the data showed that the average increase in concentration of carbon dioxide by results of our measurements in this territory increases within 1.95 - 2.53 ppm/year, depending on the area. The analysis of long-term data testifies about existence of growth of concentration of methane within 3.2 - 7.2 ppb / year. The presence of a distributed network of the sites operating in the monitoring regime makes it possible not only to investigate the temporal dynamics of CO2 and CH4 at each site and to determine the spatial differences between the concentrations by comparing the data, but also to plot the distribution charts for different moments of time. This work was supported by the Global Environment Research

  15. Forecasting surface-layer atmospheric parameters at the Large Binocular Telescope site

    Science.gov (United States)

    Turchi, Alessio; Masciadri, Elena; Fini, Luca

    2017-04-01

    In this paper, we quantify the performance of an automated weather forecast system implemented on the Large Binocular Telescope (LBT) site at Mt Graham (Arizona) in forecasting the main atmospheric parameters close to the ground. The system employs a mesoscale non-hydrostatic numerical model (Meso-Nh). To validate the model, we compare the forecasts of wind speed, wind direction, temperature and relative humidity close to the ground with the respective values measured by instrumentation installed on the telescope dome. The study is performed over a large sample of nights uniformly distributed over 2 yr. The quantitative analysis is done using classical statistical operators [bias, root-mean-square error (RMSE) and σ] and contingency tables, which allows us to extract complementary key information, such as the percentage of correct detections (PC) and the probability of obtaining a correct detection within a defined interval of values (POD). The results of our study indicate that the model performance in forecasting the atmospheric parameters we have just cited are very good, in some cases excellent: RMSE for temperature is below 1°C, for relative humidity it is 14 per cent and for the wind speed it is around 2.5 m s-1. The relative error of the RMSE for wind direction varies from 9 to 17 per cent depending on the wind speed conditions. This work is performed in the context of the ALTA (Advanced LBT Turbulence and Atmosphere) Center project, whose final goal is to provide forecasts of all the atmospheric parameters and the optical turbulence to support LBT observations, adaptive optics facilities and interferometric facilities.

  16. The role of atmospheric boundary layer-surface interactions on the development of coastal fronts

    Directory of Open Access Journals (Sweden)

    D. Malda

    2007-03-01

    Full Text Available Frictional convergence and thermal difference between land and sea surface are the two surface conditions that govern the intensity and evolution of a coastal front. By means of the mesoscale model MM5, we investigate the influence of these two processes on wind patterns, temperature and precipitation amounts, associated with a coastal front, observed on the west coast of The Netherlands in the night between 12 and 13 August 2004. The mesoscale model MM5 is further compared with available observations and the results of two operational models (ECMWF and HIRLAM. HIRLAM is not capable to reproduce the coastal front, whereas ECMWF and MM5 both calculate precipitation for the coastal region. The precipitation pattern, calculated by MM5, agrees satisfactorily with the accumulated radar image. The failure of HIRLAM is mainly due to a different stream pattern at the surface and consequently, a different behaviour of the frictional convergence at the coastline.

    The sensitivity analysis of frictional convergence is carried out with the MM5 model, by varying land surface roughness length (z0. For the sensitivity analysis of thermal difference between sea and land surface, we changed the sea surface temperature (SST. Increasing surface roughness implies stronger convergence near the surface and consequently stronger upward motions and intensification of the development of the coastal front. Setting land surface roughness equal to the sea surface roughness means an elimination of frictional convergence and results in a diminishing coastal front structure of the precipitation pattern. The simulation with a high SST produces much precipitation above the sea, but less precipitation in the coastal area above land. A small increment of the SST results in larger precipitation amounts above the sea; above land increments are calculated for areas near the coast. A decrease of the SST shifts the precipitation maxima inland, although the

  17. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar re

  18. Impacts of Ocean Waves on the Atmospheric Surface Layer: Simulations and Observations

    Science.gov (United States)

    2016-06-07

    Observational data was collected from the ASIT using a variety of sensors deployed in the air and water . For the research described here we focus on the...turbulence data gathered from 4 3-D sonic anemometers mounted at nominal heights z = (5.85, 7.94, 11.8, 18.1)m above the water . Wave height information...swell show significant differences compared with rough wall boundary layers and flow over hills (i.e., stationary waves). Our interpreta­ tion

  19. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    Science.gov (United States)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  20. Variance Method to Determine Turbulent Fluxes of Momentum And Sensible Heat in The Stable Atmospheric Surface Layer

    Science.gov (United States)

    de Bruin, H. A. R.; Hartogensis, O. K.

    2005-08-01

    Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, σ u and σ T respectively, measured at a single level. An attractive aspect of this method is that it yields fluxes from measurements that can be obtained with two-dimensional sonic anemometers. These instruments are increasingly being used at official weather stations, where they replace the standard cup anemometer wind vane system. With methods such as the one described in this note, a widespread, good quality, flux network can be established, which would greatly benefit the modelling community. It is shown that a ‘variance’ dimensionless height (ζ σ) defined from σ u and σ T is highly related to the ‘conventional’ dimensionless stability parameter ζ=z/L, where z is height and L is the Obukhov length. Empirical functions for ζ σ are proposed that allow direct calculation of heat and momentum fluxes from σ u and σ T. The method performs fairly well also during a night of intermittent turbulence.

  1. Friction velocity u* and roughness length z0 of atmospheric surface boundary layer in sparse-tree land

    Institute of Scientific and Technical Information of China (English)

    Guan Dexin; Zhu Tingyao; Han Shijie

    1999-01-01

    Sparse-tree land is one of the typical lands and can be considered as one typical rough surface in boundary layer meteorology. Many lands can be classified into the kind surface in the view of scale and distribution feature of the roughness elements such as agroforest, scatter planted or growing trees, savanna and so on. The structure of surface boundary layer in sparse-tree land is analyzed and the parameters, friction velocity u* and roughness length z0 are deduced based on energy balance law and other physical hypothesis. The models agree well with data of wind tunnel experiments and field measurements.

  2. Observations of the atmospheric surface layer parameters over a semi arid region during the solar eclipse of August 11th, 1999

    Indian Academy of Sciences (India)

    Praveena Krishnan; P K Kunhikrishnan; S Muraleedharan Nair; Sudha Ravindran; Radhika Ramachandran; D B Subrahamanyam; M Venkata Ramana

    2004-09-01

    This paper discusses the observations of the Atmospheric Surface Layer (ASL) parameters during the solar eclipse of August 11th, 1999. Intensive surface layer experiments were conducted at Ahmedabad (23° 21′N, 72° 36′E), the western part of India, which was close to the totality path. This rare event provided by nature is utilised to document the surface layer effects during the eclipse period using measurements of high frequency fluctuations of temperature, tri-axial wind components as well as mean parameters such as temperature, humidity, wind speed and subsoil temperature. Analysis showed that during the eclipse period, the turbulence parameters were affected leading to the suppression of the turbulence process, the main dynamic process in the atmospheric boundary layer, while the mean parameters showed variations within the natural variability of the observational period. The spectra of the wind components and temperature indicated decrease in spectral power by one order in magnitude during the eclipse period. The rate of dissipation of turbulent kinetic energy is found to decrease by more than one order during the eclipse period. The stability parameter showed a change from unstable to stable condition during the period of eclipse and back to unstable condition by the end of eclipse.

  3. On structural similarity in wall turbulence organization under weak thermal effects: from the wind tunnel to the atmospheric surface layer (Invited)

    Science.gov (United States)

    Guala, M.

    2013-12-01

    Reproducing the different thermal stability regimes of the atmospheric boundary layer (ABL) in wind tunnel experiments requires accurate control of the free stream air and wall temperatures and a test section long enough to ensure the establishment of fully developed conditions. Such requirements are met in the SAFL atmospheric wind tunnel, with some limitations on the achievable range of z/L, confined between the weakly stratified and weakly convective boundary layers. A number of statistical checks based on Reynolds, Monin-Obukhov similarities, Kolmogorov small scale universality, temperature and velocity variance balance equations, are available to assess the quality of the measurements, flow and estimate of the scaling parameters. However, limited work has been devoted to the comparison of the spatio-temporal structure of turbulent flows from the laboratory to the field scale. Specifically, the vertical extent, scaling and statistical relevance of different structural types pose some scalability issues and deserve further investigation. PIV and triple wire measurements from the SAFL Wind Tunnel will be presented and compared with measurements in the atmospheric surface layer. Particular care is devoted to the contributions of large and very-large scale motions to the momentum and heat fluxes, and to their role in near-surface processes and wind energy.

  4. Titan's surface and atmosphere

    Science.gov (United States)

    Hayes, Alexander G.; Soderblom, Jason M.; Ádámkovics, Máté

    2016-05-01

    Since its arrival in late 2004, the NASA/ESA Cassini-Huygens mission to Saturn has revealed Titan to be a world that is both strange and familiar. Titan is the only extraterrestrial body known to support standing bodies of stable liquid on its surface and, along with Earth and early Mars, is one of three places in the Solar System known to have had an active hydrologic cycle. With atmospheric pressures of 1.5 bar and temperatures of 90-95 K at the surface, methane and ethane condense out of Titan's nitrogen-dominated atmosphere and flow as liquids on the surface. Despite vast differences in environmental conditions and materials from Earth, Titan's methane-based hydrologic cycle drives climatic and geologic processes which generate landforms that are strikingly similar to their terrestrial counterparts, including vast equatorial dunes, well-organized channel networks that route material through erosional and depositional landscapes, and lakes and seas of liquid hydrocarbons. These similarities make Titan a natural laboratory for studying the processes that shape terrestrial landscapes and drive climates, probing extreme conditions impossible to recreate in earthbound laboratories. Titan's exotic environment ensures that even rudimentary measurements of atmospheric/surface interactions, such as wind-wave generation or aeolian dune development, provide valuable data to anchor physical models.

  5. Further Studies Of Atmospheric Turbulence In Layers Near The Surface: Scaling The Tke Budget Above The Roughness Sublayer

    Science.gov (United States)

    Frenzen, Paul; Vogel, Christoph A.

    The second of two experimental studies of the TKE budget conducted on sites of different roughness is described, and results are compared. The first took place within a shallow layer above a small field of mostly bare, cultivated soil; the second was carried out above a roughness sublayer of significant depth on an extensive plain of tall dry grass. Budget terms observed in the second study were scaled with a modified u which compensated for effects of an unusually large stress gradient and ensured that the m functions would be collinear. By showing that the modification becomes negligible in smaller gradients, it is demonstrated that in normal conditions, budgets observed above significant roughness sublayers should be normalized by scaling in terms of the unreduced Reynolds stress at the sublayer's upper surface. This procedure is shown to be consistent with the expectation that TKE budgets in layers near the surface all scale in fundamentally the same way.Other findings include: (1) the fact that most m functions previously reported are not quite collinear is attributed to a type of overspeeding known to affect three-cup anemometers; (2) revised m functions, collinear and largely free of the effects of overspeeding, are determined from a well-established characteristic of the linear φm relation for the stable case; (3) data that define collinear φm functions can also be represented with single hyperbolic curves; (4) dissipation is found to be 10 to 15% too small to balance total TKE production in unstable and neutral conditions and to decrease with increasing z/L in thestable regime; and (5) new relations for φ based on the observed behaviour of the dissipation deficit provide an improved closure for the set of equations that express the budget terms as functions of φm and z/L.

  6. Effects of Initial Drivers and Land Use on WRF Modeling for Near-Surface Fields and Atmospheric Boundary Layer over the Northeastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Junhua Yang

    2016-01-01

    Full Text Available To improve the simulation performance of mesoscale models in the northeastern Tibetan Plateau, two reanalysis initial datasets (NCEP FNL and ERA-Interim and two MODIS (Moderate-Resolution Imaging Spectroradiometer land-use datasets (from 2001 and 2010 are used in WRF (Weather Research and Forecasting modeling. The model can reproduce the variations of 2 m temperature (T2 and 2 m relative humidity (RH2, but T2 is overestimated and RH2 is underestimated in the control experiment. After using the new initial drive and land use data, the simulation precision in T2 is improved by the correction of overestimated net energy flux at surface and the RH2 is improved due to the lower T2 and larger soil moisture. Due to systematic bias in WRF modeling for wind speed, we design another experiment that includes the Jimenez subgrid-scale orography scheme, which reduces the frequency of low wind speed and increases the frequency of high wind speed and that is more consistent with the observation. Meanwhile, the new drive and land-use data lead to lower boundary layer height and influence the potential temperature and wind speed in both the lower atmosphere and the upper layer, while the impact on water vapor mixing ratio is primarily concentrated in the lower atmosphere.

  7. Variability of the Structure Parameters of Temperature and Humidity Observed in the Atmospheric Surface Layer Under Unstable Conditions

    NARCIS (Netherlands)

    Braam, M.; Moene, A.F.; Beyrich, F.

    2014-01-01

    The structure parameters of temperature and humidity are important in scintillometry as they determine the structure parameter of the refractive index of air, the primary atmospheric variable obtained with scintillometers. In this study, we investigate the variability of the logarithm of the Monin-O

  8. Turbulent characteristics of a semiarid atmospheric surface layer from cup anemometers A~é effects of soil tillage treatment (Northern Spain)

    Science.gov (United States)

    Yahaya, S.; Frangi, J. P.; Richard, D. C.

    2003-10-01

    This paper deals with the characteristics of turbulent flow over two agricultural plots with various tillage treatments in a fallow, semiarid area (Central Aragon, Spain). The main dynamic characteristics of the Atmospheric Surface Layer (ASL) measured over the experimental site (friction velocity, roughness length, etc.), and energy budget, have been presented previously (Frangi and Richard, 2000). The current study is based on experimental measurements performed with cup anemometers located in the vicinity of the ground at 5 different levels (from 0.25 to 4 m) and sampled at 1 Hz. It reveals that the horizontal wind variance, the Eulerian integral scales, the frequency range of turbulence and the turbulent kinetic energy dissipation rate are affected by the surface roughness. In the vicinity of the ground surface, the horizontal wind variance logarithmically increases with height, directly in relation to the friction velocity and the roughness length scale. It was found that the time integral scale (and subsequently the length integral scale) increased with the surface roughness and decreased with the anemometer height. These variations imply some shifts in the meteorological spectral gap and some variations of the spectral peak length scale. The turbulent energy dissipation rate, affected by the soil roughness, shows a z-less stratification behaviour under stable conditions. In addition to the characterization of the studied ASL, this paper intends to show which turbulence characteristics, and under what conditions, are accessible through the cup anemometer.

  9. Numerical Simulation of Atmospheric Boundary Layer Flow Over Battlefield-scale Complex Terrain: Surface Fluxes From Resolved and Subgrid Scales

    Science.gov (United States)

    2015-07-06

    portance to the performance of modern wind farms[26], aerodynamics of vegetative canopies[27, 9] and urban environments[28, 29, 5, 4], and geomorphological...and smooth surfaces at ground level. Water Resour. Res., 11:543–550, 1975. [17] P.R. Owen and W.R. Thomson . Heat transfer across rough surfaces. J

  10. Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model

    Science.gov (United States)

    Piazza, Marie; Terray, Laurent; Boé, Julien; Maisonnave, Eric; Sanchez-Gomez, Emilia

    2016-03-01

    A high-resolution global atmospheric model is used to investigate the influence of the representation of small-scale North Atlantic sea surface temperature (SST) patterns on the atmosphere during boreal winter. Two ensembles of forced simulations are performed and compared. In the first ensemble (HRES), the full spatial resolution of the SST is maintained while small-scale features are smoothed out in the Gulf Stream region for the second ensemble (SMTH). The model shows a reasonable climatology in term of large-scale circulation and air-sea interaction coefficient when compared to reanalyses and satellite observations, respectively. The impact of small-scale SST patterns as depicted by differences between HRES and SMTH shows a strong meso-scale local mean response in terms of surface heat fluxes, convective precipitation, and to a lesser extent cloudiness. The main mechanism behind these statistical differences is that of a simple hydrostatic pressure adjustment related to increased SST and marine atmospheric boundary layer temperature gradient along the North Atlantic SST front. The model response to small-scale SST patterns also includes remote large-scale effects: upper tropospheric winds show a decrease downstream of the eddy-driven jet maxima over the central North Atlantic, while the subtropical jet exhibits a significant northward shift in particular over the eastern Mediterranean region. Significant changes are simulated in regard to the North Atlantic storm track, such as a southward shift of the storm density off the coast of North America towards the maximum SST gradient. A storm density decrease is also depicted over Greenland and the Nordic seas while a significant increase is seen over the northern part of the Mediterranean basin. Changes in Rossby wave breaking frequencies and weather regimes spatial patterns are shown to be associated to the jets and storm track changes.

  11. The Asymptotical Analysis for the Problem of Modeling the Gas Admixture in the Surface Layer of the Atmosphere

    Directory of Open Access Journals (Sweden)

    M. A. Davydova

    2016-01-01

    Full Text Available In the present work the model boundary value problem for a stationary singularly perturbed reaction-diffusion-advection equation arising at the description of gas impurity transfer processes in an ecosystem ”forest – swamp” is considered. Application of a boundary functions method and an asymptotic method of differential inequalities allow to construct an asymptotics of the boundary layer type solution, to prove the existence of the solution with such an asymptotics and its asymptotic stability by Lyapunov as the stationary solution of the corresponding parabolic problem with the definition of local area of boundary layer type solution formation. The latter has a certain importance for applications, since it allows to reveal the solution describing one of the most probable conditions of the ecosystem. In the final part of the work sufficient conditions for existence of solutions with interior transitional layers (contrast structures are discussed.

  12. Quantifying Aerial Concentrations of Maize Pollen in the Atmospheric Surface Layer Using Remote-Piloted Airplanes and Lagrangian Stochastic Modeling

    Science.gov (United States)

    Aylor, Donald E.; Boehm, Matthew T.; Shields, Elson J.

    2006-07-01

    The extensive adoption of genetically modified crops has led to a need to understand better the dispersal of pollen in the atmosphere because of the potential for unwanted movement of genetic traits via pollen flow in the environment. The aerial dispersal of maize pollen was studied by comparing the results of a Lagrangian stochastic (LS) model with pollen concentration measurements made over cornfields using a combination of tower-based rotorod samplers and airborne radio-controlled remote-piloted vehicles (RPVs) outfitted with remotely operated pollen samplers. The comparison between model and measurements was conducted in two steps. In the first step, the LS model was used in combination with the rotorod samplers to estimate the pollen release rate Q for each sampling period. In the second step, a modeled value for the concentration Cmodel, corresponding to each RPV measured value Cmeasure, was calculated by simulating the RPV flight path through the LS model pollen plume corresponding to the atmospheric conditions, field geometry, wind direction, and source strength. The geometric mean and geometric standard deviation of the ratio Cmodel/Cmeasure over all of the sampling periods, except those determined to be upwind of the field, were 1.42 and 4.53, respectively, and the lognormal distribution corresponding to these values was found to fit closely the PDF of Cmodel/Cmeasure. Model output was sensitive to the turbulence parameters, with a factor-of-100 difference in the average value of Cmodel over the range of values encountered during the experiment. In comparison with this large potential variability, it is concluded that the average factor of 1.4 between Cmodel and Cmeasure found here indicates that the LS model is capable of accurately predicting, on average, concentrations over a range of atmospheric conditions.

  13. Subfilter Scale Fluxes in the Marine Surface Layer

    Science.gov (United States)

    2016-06-13

    Subfilter Scale Fluxes in the Marine Surface Layer Peter P. Sullivan National Center for Atmospheric Research Boulder, CO 80307-3000 Phone... layer research is to identify and quantify coupling mechanisms that connect the atmospheric boundary layer and surface waves. Large-eddy simulation...Ocean Horizontal Array Turbulence Study (OHATS), specifically directed at the measurement of SFS variables in the marine surface layer in the presence

  14. Dynamic of the atmospheric boundary layer from the isotopic composition of surface water vapor at the Maïdo Observatory (La Réunion, Indian Ocean)

    Science.gov (United States)

    Guilpart, Etienne; Vimeux, Francoise; Metzger, Jean-Marc; Evan, Stephanie; Brioude, Jerome; Cattani, Olivier

    2016-04-01

    Projections of tropical and subtropical precipitation strongly differ from one climate model to another, both in sign and in amplitude. This is the case for example in some parts of the West Indian Ocean. The causes of those uncertainties are numerous and a better understanding of humid processes in the tropical atmosphere is needed. We propose to address this burning question by using water stables isotopes. We have been measuring the isotopic composition of surface water vapor at the atmospheric Observatory of Maïdo located at La Reunion Island (21°S, 55°E, 2200m a.s.l) since November 2014. Our results exhibit a strong diurnal cycle all over the year (except during cyclonic activity), with almost constant isotopic values during the day (around -13.5±0.6‰ for oxygen 18 from November 2014 to November 2015) and variable and very depleted isotopic values during the night (down to -35‰ for oxygen 18 over the same period) associated with low humidity levels. We will show in this presentation that the diurnal isotopic variations are associated to a strong air masses mixing. During the day, the isotopic composition of the vapor is typical of marine boundary layer (BL) moisture transported from the close Ocean and lifted up to the Maïdo station. During the night, the depleted values and the low humidity could trace free troposphere moisture, which is consistent with previous studies suggesting that the Maïdo Observatory is above the BL during the night. We will explore the influence of the daily BL development on our observations, using a set of atmospheric vertical profiles done on site in May 2015 during the BIOMAIDO campaign. At last, we will discuss the most isotopic depleted values recorded in our observations during the night as a possible consequence of regional strong subsidences.

  15. Atmospheric Boundary Layers: Modeling and Parameterization

    NARCIS (Netherlands)

    Holtslag, A.A.M.

    2015-01-01

    In this contribution we deal with the representation of the atmospheric boundary layer (ABL) for modeling studies of weather, climate, and air quality. As such we review the major characteristics of the ABL, and summarize the basic parameterizations for the description of atmospheric turbulence and

  16. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    to the atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important...

  17. Adsorption of Atmospheric Gases on Pu Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A J; Holliday, K S; Stanford, J A; Grant, W K; Erler, R G; Allen, P G; McLean, W; Roussel, P

    2012-03-29

    Surface adsorption represents a competition between collision and scattering processes that depend on surface energy, surface structure and temperature. The surface reactivity of the actinides can add additional complexity due to radiological dissociation of the gas and electronic structure. Here we elucidate the chemical bonding of gas molecules adsorbed on Pu metal and oxide surfaces. Atmospheric gas reactions were studied at 190 and 300 K using x-ray photoelectron spectroscopy. Evolution of the Pu 4f and O 1s core-level states were studied as a function of gas dose rates to generate a set of Langmuir isotherms. Results show that the initial gas dose forms Pu{sub 2}O{sub 3} on the Pu metal surface followed by the formation of PuO{sub 2} resulting in a layered oxide structure. This work represents the first steps in determining the activation energy for adsorption of various atmospheric gases on Pu.

  18. Impact of storm-induced cooling of sea surface temperature on large turbulent eddies and vertical turbulent transport in the atmospheric boundary layer of Hurricane Isaac

    Science.gov (United States)

    Zhu, Ping; Wang, Yuting; Chen, Shuyi S.; Curcic, Milan; Gao, Cen

    2016-01-01

    Roll vortices in the atmospheric boundary layer (ABL) are important to oil operation and oil spill transport. This study investigates the impact of storm-induced sea surface temperature (SST) cooling on the roll vortices generated by the convective and dynamic instability in the ABL of Hurricane Isaac (2012) and the roll induced transport using hindcasting large eddy simulations (LESs) configured from the multiply nested Weather Research & Forecasting model. Two experiments are performed: one forced by the Unified Wave INterface - Coupled Model and the other with the SST replaced by the NCEP FNL analysis that does not include the storm-induced SST cooling. The simulations show that the roll vortices are the prevalent eddy circulations in the ABL of Isaac. The storm-induced SST cooling causes the ABL stability falls in a range that satisfies the empirical criterion of roll generation by dynamic instability, whereas the ABL stability without considering the storm-induced SST cooling meets the criterion of roll generation by convective instability. The ABL roll is skewed and the increase of convective instability enhances the skewness. Large convective instability leads to large vertical transport of heat and moisture; whereas the dominant dynamic instability results in large turbulent kinetic energy but relatively weak heat and moisture transport. This study suggests that failure to consider roll vortices or incorrect initiation of dynamic and convective instability of rolls in simulations may substantially affect the transport of momentum, energy, and pollutants in the ABL and the dispersion/advection of oil spill fume at the ocean surface.

  19. Atmospheric Boundary Layer Characteristics during BOBMEX-Pilot Experiment

    Indian Academy of Sciences (India)

    G S Bhat; S Ameenulla; M Venkataramana; K Sengupta

    2000-06-01

    The atmospheric boundary layer characteristics observed during the BOBMEX-Pilot experiment are reported. Surface meteorological data were acquired continuously through an automatic weather monitoring system and manually every three hours. High resolution radiosondes were launched to obtain the vertical thermal structure of the atmosphere. The study area was convectively active, the SSTs were high, surface air was warm and moist, and the surface air moist static energy was among the highest observed over the tropical oceans. The mean sea air temperature difference was about 1.25°C and the sea skin temperature was cooler than bucket SST by 0.5°C. The atmospheric mixed layer was shallow, fluctuated in response to synoptic conditions from 100 m to 900 m with a mean around 500 m.

  20. Entrainment process of carbon dioxide in the atmospheric boundary layer

    NARCIS (Netherlands)

    Vilà-Guerau de Arellano, J.; Gioli, B.; Miglietta, F.; Jonker, H.J.J.; Klein Baltink, H.; Hutjes, R.W.A.; Holtslag, A.A.M.

    2004-01-01

    Aircraft and surface measurements of turbulent thermodynamic variables and carbon dioxide (CO2) were taken above a grassland in a convective atmospheric boundary layer. The observations were analyzed to assess the importance of the entrainment process for the distribution and evolution of carbon dio

  1. Uncertainties in Surface Layer Modeling

    Science.gov (United States)

    Pendergrass, W.

    2015-12-01

    A central problem for micrometeorologists has been the relationship of air-surface exchange rates of momentum and heat to quantities that can be predicted with confidence. The flux-gradient profile developed through Monin-Obukhov Similarity Theory (MOST) provides an integration of the dimensionless wind shear expression where is an empirically derived expression for stable and unstable atmospheric conditions. Empirically derived expressions are far from universally accepted (Garratt, 1992, Table A5). Regardless of what form of these relationships might be used, their significance over any short period of time is questionable since all of these relationships between fluxes and gradients apply to averages that might rarely occur. It is well accepted that the assumption of stationarity and homogeneity do not reflect the true chaotic nature of the processes that control the variables considered in these relationships, with the net consequence that the levels of predictability theoretically attainable might never be realized in practice. This matter is of direct relevance to modern prognostic models which construct forecasts by assuming the universal applicability of relationships among averages for the lower atmosphere, which rarely maintains an average state. Under a Cooperative research and Development Agreement between NOAA and Duke Energy Generation, NOAA/ATDD conducted atmospheric boundary layer (ABL) research using Duke renewable energy sites as research testbeds. One aspect of this research has been the evaluation of legacy flux-gradient formulations (the ϕ functions, see Monin and Obukhov, 1954) for the exchange of heat and momentum. At the Duke Energy Ocotillo site, NOAA/ATDD installed sonic anemometers reporting wind and temperature fluctuations at 10Hz at eight elevations. From these observations, ϕM and ϕH were derived from a two-year database of mean and turbulent wind and temperature observations. From this extensive measurement database, using a

  2. 森林近地层大气湍流特性观测分析%Observational Analysis on Turbulent Characteristics of the Atmospheric Surface Layer Above Forest

    Institute of Scientific and Technical Information of China (English)

    许俊卿; 陈蓓莹; 隋晓霞

    2014-01-01

    The measurement and observation for this study were carried out by using a three-dimensional (u,v,w)sonic anemometer (IAP-SA 485 )at the Forest Ecosystem Opened Research Station of Changbaishan Mountains.Some micrometeorological characteris-tics of wind speed,wind direction,atmospheric stability,and turbulent intensity,variance similarity,scalar fluxes in the near-sur-face layer were analyzed and compared on the basis of the observational data acquired by using the eddy correlation method in August and September 2003.The main results are as follows:(1)Atmospheric stability in August and September was basically concentrated in the vicinity of 0.(2)Turbulence was very active when wind speed was less than 2 m·s-1 and decreased rapidly with wind speed in-creasing.When the wind speed reached 3 m·s-1 ,the turbulence intensity deviated from 0 and got larger,and continued to increase untill a certain wind speed,then turbulence intensity didn’t change with wind speed basically.(3)The normalized variance of three-dimensional wind and z/L satisfied the similarity law under both unstable and stable stratification.Their universal functions also could be fitted according to the“law of 1/3 fractional power”.(4)The diurnal variations of surface fluxes were evident,and latent heat flux was leading in August and September.Latent heat flux in September was significantly less than that in August.Sensible heat flux var-ied little in August and September.%利用长白山森林生态系统定位研究站观测资料,及2003年8月和9月涡旋相关资料,分析和比较了该地区近地层包括风速、风向、大气稳定度在内的平均场特征,以及湍流强度、无量纲化风脉动方差相似性和地表通量变化特征。结果表明:(1)8月和9月稳定度都基本集中在0附近;(2)风速<2 m·s-1的环境中,湍流发展最为旺盛,随着风速的增大湍流强度先迅速减小,当风速增大到3 m· s-1后,湍流强度偏离0

  3. Turbulent Characterization of atmospheric surface layer over non-homogeneous terrain; Caracterizacion turbulenta de la capa superficial atmosferica en un terreno no homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Artinano Rodriguez de Torres, B.

    1989-07-01

    About 15000 wind and temperature profiles from a 100 m tower located in CEDER (Soria, Spain) have been analyzed. Using profiles in close neutral conditions, two main parameters of surface layer were obtained. Results show a great dependence of these parameters (Z{sub 0} roughness length and u friction velocity) on flow conditions and terrain (tinctures. Difficulty finding neutral conditions in this type of terrain (gently rolling and scattered bush) and in this latitude , is also remarkable. (Author) 91 refs.

  4. Simulation of atmospheric turbulence layers with phase screens by JAVA

    Science.gov (United States)

    Zhang, Xiaofang; Chen, Wenqin; Yu, Xin; Yan, Jixiang

    2008-03-01

    In multiconjugate Adaptive Optics (MCAO), the phase screens are used to simulate atmospheric turbulence layers to study the optimal turbulence delamination and the determination of layer boundary position. In this paper, the method of power spectrum inversion and sub-harmonic compensation were used to simulate atmospheric turbulence layers and results can be shown by grey map. The simulation results showed that, with the increase of turbulence layers, the RMS of adaptive system decreased, but the amplitude diminished. So the atmospheric turbulence can be split into 2-3 layers and be modeled by phase screens. Otherwise, a small simulation atmospheric turbulence delamination system was realized by JAVA.

  5. Turbulence in the Stable Atmospheric Boundary Layer

    Science.gov (United States)

    Fernando, Harindra; Kit, Eliezer; Conry, Patrick; Hocut, Christopher; Liberzon, Dan

    2016-11-01

    During the field campaigns of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program, fine-scale measurements of turbulence in the atmospheric boundary layer (ABL) were made using a novel sonic and hot-film anemometer dyad (a combo probe). A swath of scales, from large down to Kolmogorov scales, was covered. The hot-film was located on a gimbal within the sonic probe volume, and was automated to rotate in the horizontal plane to align with the mean flow measured by sonic. This procedure not only helped satisfy the requirement of hot-film alignment with the mean flow, but also allowed in-situ calibration of hot-films. This paper analyzes a period of nocturnal flow that was similar to an idealized stratified parallel shear flow. Some new phenomena were identified, which included the occurrence of strong bursts in the velocity records indicative of turbulence generation at finer scales that are not captured by conventional sonic anemometers. The spectra showed bottleneck effect, but its manifestation did not fit into the framework of previous bottleneck-effect theories and was unequivocally related to bursts of turbulence. The measurements were also used to evaluate the energetics of stratified shear flows typical of the environment. ONR # N00014-11-1-0709; NSF # AGS-1528451; ISF 408/15.

  6. Identification of Coherent Structures of Turbulence at the Atmospheric Surface Layer%大气边界层湍流相干结构的识别

    Institute of Scientific and Technical Information of China (English)

    李昕; M.H.Al-Jiboori; 等

    2002-01-01

    A parameter-free method based on orthonormal wavelet transforms is recommended for calculating the principal time scale of coherent structures in atmospheric boundary-layer measurements. First, the atmospheric turbulent signal is decomposed into the small scate vortex that has approximate isotropy and the large scale vortex with the digital filter. Then, the large scale vortex is used to detect colterent structures with this method. The principal time scale and profile of coherent structures for velocity components (u, v, w)above rice fields are obtained. In order to testify the validity of this method, the correlation of coherent structures and non-coherent structures are also calculated.%首先利用数字滤波方法对淮河流域试验的大气边界层湍流观测资料进行三项分解,将大气边界层湍流的风速信号分解为近似各项同性的小尺度涡和各向异性的大尺度涡.然后再将大尺度涡信号进行离散正交小波分解,寻找相干结构的主要特征尺度.对于大气边界层湍流垂直脉动风速来说,其相干结构的主要特征尺度为16 s;对径向与纬向脉动风速来说,其相干结构的主要特征尺度为32~64 s.在此基础上,利用小波的反变换提取出相干结构的信号与非相干结构的信号,并计算两者间的相关系数,最大仅有0.02.此外,对原始大气湍流观测信号不进行数字滤波,直接利用本文中子波分析法提取湍流相干结构所得结果作比较研究;并探讨了采用对称或似对称离散正交小波对此研究的影响.

  7. Clear-air radar observations of the atmospheric boundary layer

    Science.gov (United States)

    Ince, Turker

    2001-10-01

    This dissertation presents the design and operation of a high-resolution frequency-modulated continuous-wave (FM- CW) radar system to study the structure and dynamics of clear-air turbulence in the atmospheric boundary layer (ABL). This sensitive radar can image the vertical structure of the ABL with both high spatial and temporal resolutions, and provide both qualitative information about the morphology of clear-air structures and quantitative information on the intensity of fluctuations in refractive-index of air. The principles of operation and the hardware and data acquisition characteristics of the radar are described in the dissertation. In October 1999, the radar participated in the Cooperative Atmosphere-Surface Exchange Study (CASES'99) Experiment to characterize the temporal structure and evolution of the boundary-layer features in both convective and stable conditions. The observed structures include clear-air convection, boundary layer evolution, gravity waves, Kelvin-Helmholtz instabilities, stably stratified layers, and clear-air turbulence. Many of the S-band radar images also show high- reflectivity returns from Rayleigh scatterers such as insects. An adaptive median filtering technique based on local statistics has, therefore, been developed to discriminate between Bragg and Rayleigh scattering in clear-air radar observations. The filter is tested on radar observations of clear air convection with comparison to two commonly used image processing techniques. The dissertation also examines the statistical mean of the radar-measured C2n for clear-air convection, and compares it with the theoretical predictions. The study also shows that the inversion height, local thickness of the inversion layer, and the height of the elevated atmospheric layers can be estimated from the radar reflectivity measurements. In addition, comparisons to the radiosonde-based height estimates are made. To examine the temporal and spatial structure of C2n , the dissertation

  8. The height of the atmospheric boundary layer during unstable conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E.

    2005-11-01

    The height of the convective atmospheric boundary layer, also called the mixed-layer, is one of the fundamental parameters that characterise the structure of the atmosphere near the ground. It has many theoretical and practical applications such as the prediction of air pollution concentrations, surface temperature and the scaling of turbulence. However, as pointed out by Builtjes (2001) in a review paper on Major Twentieth Century Milestones in Air Pollution Modelling and Its Application, the weakest point in meteorology data is still the determination of the height of the mixed-layer, the so-called mixing height. A simple applied model for the height of the mixed-layer over homogeneous terrain is suggested in chapter 2. It is based on a parameterised budget for the turbulent kinetic energy. In the model basically three terms - the spin-up term and the production of mechanical and convective turbulent kinetic energy - control the growth of the mixed layer. The interplay between the three terms is related to the meteorological conditions and the height of the mixed layer. A stable layer, the so-called entrainment zone, which is confined between the mixed layer and the free air above, caps the mixed layer. A parameterisation of the depth of the entrainment zone is also suggested, and used to devise a combined model for the height of the mixed layer and the entrainment zone. Another important aspect of the mixed layer development exists in coastal areas where an internal boundary layer forms downwind from the coastline. A model for the growth of the internal boundary layer is developed in analogy with the model for mixed layer development over homogeneous terrain. The strength of this model is that it can operate on a very fine spatial resolution with minor computer resources. Chapter 3 deals with the validation of the models. It is based in parts on data from the literature, and on own measurements. For the validation of the formation of the internal boundary layer

  9. Aerosol in the upper layer of earth's atmosphere

    Science.gov (United States)

    Morozhenko, A. V.; Vidmachenko, A. P.; Nevodovskii, P. V.

    2013-09-01

    Aerosol layers exist in the upper atmospheres of Venus, Mars, Jupiter, Saturn and the Earth. The reason for their existence may be meteorites, rings, and removal of particles of planetary origin. Observations from 1979 to 1992 showed that the optical thickness of aerosol over the Earth's polar regions changed from tau =0.0002 up to tau =.1 for lambda = 1000 nm. The greatest values of tau were in 1984 and 1992 and they were preceded by a strong volcanic activity of El Chichon (1982) and Pinatubo (1991). We show that the above-mentioned increase in the optical thickness of the stratosphere aerosol can lead to the ozone layer decrease detected in 1970. The stratospheric aerosol nature (real part of refractive index), effective particle size r and changing tau with latitude remain un solved. Among distance methods for the determination of nr and r efficient is the analysis of the phase dependence of the polarization degree. The observational values of the intensity and pol arization degree invisible light are due to optical properties of the surface and optical thickness of the atmosphere, the values of which vary with latitude, longitude and time. Therefore, it is impossible to identify accurately the stratospheric aerosol contribution. When observing in UV at lambda negative factors can take place, namely, the emission of various gases playing depolarizing role, horizontal inhomogeneity of the effective optical thickness of ozone layer, and oriented particles (the polarization plane variation points to their presence).

  10. Simulating dynamics of (delta){sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of (delta){sup 13}C and thus the global (delta){sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to (delta){sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of (delta){sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The (delta){sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on (delta){sup 13}C of CO{sub 2} dynamics in PBL

  11. Simulating dynamics of {delta}{sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of {delta}{sup 13}C and thus the global {delta}{sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to {delta}{sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of {delta}{sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The {delta}{sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on {delta}{sup 13}C of CO{sub 2} dynamics in PBL

  12. The Influence of Convergence Movement on Turbulent Transportation in the Atmospheric Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    胡隐樵; 左洪超

    2003-01-01

    Classical turbulent K closure theory of the atmospheric boundary layer assumes that the verticalturbulent transport flux of any macroscopic quantity is equivalent to that quantity's vertical gradienttransport flux. But a cross coupling between the thermodynamic processes and the dynamic processesin the atmospheric system is demonstrated based on the Curier-Prigogine principle of cross coupling oflinear thermodynamics. The vertical turbulent transportation of energy and substance in the atmosphericboundary layer is related not only to their macroscopic gradient but also to the convergence and the di-vergence movement. The transportation of the convergence or divergence movement is important for theatmospheric boundary layer of the heterogeneous underlying surface and the convection boundary layer.Based on this, the turbulent transportatiou in the atmospheric boundary layer, the energy budget of theheterogeneous underlying surface and the convection boundary layer, and the boundary layer parameteri-zation of land surface processes over the heterogeneous underlying surface are studied. This research offersclues not only for establishing the atmospheric boundary layer theory about the heterogeneous underlyingsurface, but also for overcoming the difficulties encountered recently in the application of the atmosphericboundary layer theory.

  13. Atmosphere-surface interactions over polar oceans and heterogeneous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vihma, T.

    1995-12-31

    Processes of interaction between the atmospheric boundary layer and the planetary surface have been studied with special emphasis on polar ocean surfaces: the open ocean, leads, polynyas and sea ice. The local exchange of momentum, heat and moisture has been studied experimentally both in the Weddell Sea and in the Greenland Sea. Exchange processes over heterogeneous surfaces are addressed by modelling studies. Over a homogeneous surface, the local turbulent fluxes can be reasonably well estimated using an iterative flux-profile scheme based on the Monin-Obukhov similarity theory. In the Greenland Sea, the near-surface air temperature and the generally small turbulent fluxes over the open ocean were affected by the sea surface temperature fronts. Over the sea ice cover in the Weddell Sea, the turbulent sensible heat flux was generally downwards, and together with an upward oceanic heat flux through the ice it compensated the heat loss from the surface via long-wave radiation. The wind dominated on time scales of days, while the current became important on longer time scales. The drift dynamics showed apparent spatial differences between the eastern and western regions, as well as between the Antarctic Circumpolar Current and the rest of the Weddell Sea. Inertial motion was present in regions of low ice concentration. The surface heterogeneity, arising e.g. from roughness or temperature distribution, poses a problem for the parameterization of surface exchange processes in large-scale models. In the case of neutral flow over a heterogeneous terrain, an effective roughness length can be used to parameterize the roughness effects

  14. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  15. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Science.gov (United States)

    Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.

    2005-03-01

    Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow). It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral) or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions) depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S were overlooked

  16. Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey;

    2015-01-01

    For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...

  17. Chemistry in the near-surface atmosphere at Ganymede

    Science.gov (United States)

    Shematovich, V. I.

    2013-09-01

    Theoretical predictions of the composition and chemical evolution of near-surface atmospheres of the icy satellites in the Jovian and Kronian systems are of great importance for assessing the biological potential of these satellites. Depending on the satellite mass the formation of the rarefied exosphere with the relatively dense near-surface layer is possible as, for example, in the case of the relatively heavy Galilean satellites Europa and Ganymede in the Jovian system [1-3]. Ganymede is of special interest, because observations indicate that Ganymede has a significant O2 near - surface atmosphere, probably subsurface ocean, and is the only satellite with its own magnetosphere. Processes of formation of the rarefied gaseous envelope of Ganymede and chemical exchange between atmosphere and icy surface will be considered. The water vapour is usually the domin ant parent species in such gaseous envelope because of the ejection from the satellite icy surface due to the thermal outgassing, non-thermal photolysis and radiolysis and other active processes at work on the surface. The photochemis try of water vapour in the near - surface atmospheric layer [4] and the radiolysis of icy regolith [5] result in the supplement of the atmosphere by an admixture of H2, O2, OH and O. Returning molecules have species-dependent behaviour on contact with icy surface of the satellite and non-thermal energy distributions for the chemical radicals. The H2 and O2 molecules stick with very low efficiency and are immediately desorbed thermally, but returning H2O, OH, H and O stick to the grains in the icy regolith with unit efficiency. The suprathermal radicals OH, H, and O entering the regolith can drive the surface chemistry. The numerical kinetic model to investigate on the molecular level the chemistry of the atmosphere - surface interface of the rarefied Н2О-dominant gaseous envelope at Ganymede was developed. Such numerical model simulates the gas-phase and diffusive surface

  18. On the modeling of electrical boundary layer (electrode layer) and derivation of atmospheric electrical profiles, eddy diffusion coeffcient and scales of electrode layer

    Indian Academy of Sciences (India)

    Madhuri N Kulkarni

    2010-02-01

    Electrode layer or electrical boundary layer is one of the charge generators in the global atmospheric electric circuit. In spite of this we find very few model studies and few measurements of it in the literature. Using a new technique it is shown that in this layer, the space charge density varies exponentially in vertical. A new experimental method based on the surface measurements is discussed to determine all the characteristic scales and an average electrical and meteorological state of an electrode layer. The results obtained are in good agreement with the previous studies. So, it is suggested that an exponential space charge density profile will no longer be an assumption in the case of electrode layer studies. The profiles of atmospheric electric field and electrical conductivity are also derived and a new term named as electrode layer constant is introduced.

  19. Water molecules orientation in surface layer

    Science.gov (United States)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  20. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... and the material surface, and thus many reactive species generated in the plasma can reach the surface before inactivated, and be efficiently utilized for surface modification. In the present work polyester plates are treated using a dielectric barrier discharge (DBD) and a gliding arc at atmospheric pressure...... irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment...

  1. Comparative study of the surface layer density of liquid surfaces

    Science.gov (United States)

    Chacón, E.; Fernández, E. M.; Duque, D.; Delgado-Buscalioni, R.; Tarazona, P.

    2009-11-01

    Capillary wave fluctuations blur the inherent structure of liquid surfaces in computer simulations. The intrinsic sampling method subtracts capillary wave fluctuations and yields the intrinsic surface structure, leading to a generic picture of the liquid surface. The most relevant magnitude of the method is the surface layer density ns that may be consistently determined from different properties: the layering structure of the intrinsic density profiles, the turnover rate for surface layer particles, and the hydrodynamic damping rate of capillary waves. The good agreement among these procedures provides evidence for the physical consistency of the surface layering hypothesis, as an inherent physical property of the liquid surfaces. The dependence of the surface compactness, roughness, and exchange rate with temperature is analyzed for several molecular interaction models.

  2. Model castings with composite surface layer - application

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-10-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in foundingprocess a composite surface layer on the basis of Fe-Cr-C alloy. Technology of composite surface layer guarantee mainly increase inhardness and aberasive wear resistance of cast steel castings on machine elements. This technology can be competition for generallyapplied welding technology (surfacing by welding and thermal spraying. In range of studies was made cast steel test castings withcomposite surface layer, which usability for industrial applications was estimated by criterion of hardness and aberasive wear resistance of type metal-mineral and quality of joint cast steel – (Fe-Cr-C. Based on conducted studies a thesis, that composite surface layer arise from liquid state, was formulated. Moreover, possible is control of composite layer thickness and its hardness by suitable selection of parameters i.e. thickness of insert, pouring temperature and solidification modulus of casting. Possibility of technology application of composite surface layer in manufacture of cast steel slide bush for combined cutter loader is presented.

  3. Implementation of a boundary layer heat flux parameterization into the Regional Atmospheric Modeling System (RAMS

    Directory of Open Access Journals (Sweden)

    E. L. McGrath-Spangler

    2008-07-01

    Full Text Available The response of atmospheric carbon dioxide to a given amount of surface flux is inversely proportional to the depth of the boundary layer. Overshooting thermals that entrain free tropospheric air down into the boundary layer modify the characteristics and depth of the lower layer through the insertion of energy and mass. This alters the surface energy budget by changing the Bowen ratio and thereby altering the vegetative response and the surface boundary conditions. Although overshooting thermals are important in the physical world, their effects are unresolved in most regional models. A parameterization to include the effects of boundary layer entrainment was introduced into a coupled ecosystem-atmosphere model (SiB-RAMS. The parameterization is based on a downward heat flux at the top of the boundary layer that is proportional to the heat flux at the surface. Results with the parameterization show that the boundary layer simulated is deeper, warmer, and drier than when the parameterization is turned off. These results alter the vegetative stress factors thereby changing the carbon flux from the surface. The combination of this and the deeper boundary layer change the concentration of carbon dioxide in the boundary layer.

  4. Atmospheric pressure plasma for surface modification

    CERN Document Server

    Wolf, Rory A

    2012-01-01

    This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma process

  5. Surface layer similarity in the nocturnal boundary layer: the application of Hilbert-Huang transform

    Directory of Open Access Journals (Sweden)

    J. Hong

    2009-10-01

    Full Text Available Turbulence statistics such as flux-variance relationship is critical information in measuring and modeling carbon, water, energy, and momentum exchanges at the biosphere-atmosphere interface. Using a recently proposed mathematical technique, the Hilbert-Huang transform (HHT, this study highlights its possibility to quantify impacts of non-turbulent flows on turbulence statistics in the stable surface layer. The HHT is suitable for the analysis of non-stationary and intermittent data and thus very useful for better understanding of the interplay of the surface layer similarity with complex nocturnal environment. Our analysis showed that the HHT can successfully sift non-turbulent components and be used as a tool to estimate the relationships between turbulence statistics and atmospheric stability in complex environment such as nocturnal stable boundary layer.

  6. Chromized Layers Produced on Steel Surface by Means of CVD

    Institute of Scientific and Technical Information of China (English)

    KASPRZYCKA Ewa; BOGDA(N)SKI Bogdan; JEZIORSKI Leopold; JASI(N)SKI J(o)zef; TORBUS Roman

    2004-01-01

    Chemical vapour deposition of chromium on the surface of carbon steel has been investigated using a novel CVD method that combines the low cost of pack cementation method with advantages of vacuum technique. The processes have been performed in chromium chlorides atmosphere at a low pressure range from 1 to 800 hPa, the treatment temperature 800 to 950℃. Studies of the layers thickness, the phase composition, Cr, C and Fe depth profiles in diffusion zone have been conducted. The effect of the vacuum level during the process and the process parameters such as time and temperature on layer diffusion growth on the carbon steel surface has been investigated.

  7. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved...

  8. Leidenfrost Vapor Layer Stabilization on Superhydrophobic Surfaces

    Science.gov (United States)

    Vakarelski, Ivan; Patankar, Neelesh; Marston, Jeremy; Chan, Derek; Thoroddsen, Sigurdur

    2012-11-01

    We have performed experiments to investigate the influence of the wettability of a superheated metallic sphere on the stability of a thin vapor layer during the cooling of a sphere immersed in water. For high enough sphere temperatures, a continuous vapor layer (Leidenfrost regime) is observed on the surface of non-superhydrophobic spheres, but below a critical sphere temperature the layer becomes unstable and explosively switches to nuclear boiling regime. In contrast, when the sphere surface is textured and superhydrophobic, the vapor layer is stable and gradually relaxes to the sphere surface until the complete cooling of the sphere, thus avoiding the nuclear boiling transition altogether. This finding could help in the development of heat exchange devices and of vapor layer based drag reducing technologies.

  9. Stable water layers on solid surfaces.

    Science.gov (United States)

    Hong, Ying-Jhan; Tai, Lin-Ai; Chen, Hung-Jen; Chang, Pin; Yang, Chung-Shi; Yew, Tri-Rung

    2016-02-17

    Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 μm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems.

  10. Acoustic Tomography of the Atmospheric Surface Layer

    Science.gov (United States)

    2014-11-28

    propagation between speakers and microphone which constitute a tomography array. The travel times are then used as input parameters in the inverse algorithms...decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211... speakers and microphone which constitute a tomography array. The travel times are then used as input parameters in the inverse algorithms for

  11. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  12. Smear layer--materials surface.

    Science.gov (United States)

    Eick, J D

    1992-01-01

    SEM and TEM photomicrographs were presented of the smear layer and several dentin-adhesive interfaces. It was shown that as the wetting and penetration of the dentin adhesive increased, the shear bond strength also increased. Three categories of dentin adhesives were presented. Category one included Scotchbond, Dentin Adhesit and Gluma, with shear bond strength values between 5 and 7 MPa; the second category, dentin adhesives based on Dr. Bowen's research, included Tenure and Mirage Bond, with shear bond strengths between 8 and 14 MPa; the third category included Superbond and Scotchbond 2, with shear bond strength values up to 20 MPa. Failures occurred at the interface or in the resin adhesive for materials in categories one and two; failures occurred through the dentin or composite for materials in category three.

  13. Atmospheric aerosol layers over Bangkok Metropolitan Region from CALIPSO observations

    Science.gov (United States)

    Bridhikitti, Arika

    2013-06-01

    Previous studies suggested that aerosol optical depth (AOD) from the Earth Observing System satellite retrievals could be used for inference of ground-level air quality in various locations. This application may be appropriate if pollution in elevated atmospheric layers is insignificant. This study investigated the significance of elevated air pollution layers over the Bangkok Metropolitan Region (BMR) from all available aerosol layer scenes taken from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) for years 2007 to 2011. The results show that biomass burning smoke layers alone were the most frequently observed. The smoke layers accounted for high AOD variations and increased AOD levels. In the dry seasons, the smoke layers alone with high AOD levels were likely brought to the BMR via northeasterly to easterly prevailing winds and found at altitudes above the typical BMR mixing heights of approximately 0.7 to 1.5 km. The smoke should be attributed to biomass burning emissions outside the BMR.

  14. Simulation of Wind turbines in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    Large eddy simulation of an arbitrary wind farm is studied in the neutral and thermally stratified atmospheric boundary Layer. Large eddy simulations of industrial flows usually requires full resolution of the flow near the wall and this is believed to be one of the main deficiencies of LES because...... layer. In the current study, another approach has been implemented to simulate the flow in a fully developed wind farm boundary layer. The approach is based on Immersed Boundary Method and involves implementation of an arbitrary prescribed initial boundary layer. An initial boundary layer is enforced...... height and the flow development is seen based on the temperature variations and wind turbine wake generations and interactions of wakes occurs as soon as the wakes of the upwind turbine reach the downwind turbines. References: [1] U. Piomelli, Wall-layer models for large-eddy simulations, Progress...

  15. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    NARCIS (Netherlands)

    Janssen, R.H.H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Kabat, P.; Jimenez, J.L.; Farmer, D.K.; Heerwaarden, van C.C.; Mammarella, I.

    2012-01-01

    We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the mod

  16. A Study of the Atmospheric Boundary Layer Structure During a Clear Day in the Arid Region of Northwest China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiang; WANG Sheng

    2009-01-01

    The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to analyze the distribution and characteristics of the ABL in the extremely arid desert in Dunhuang, Northwest China. These data show that the daytime convective boundary layer and night time stable boundary layer in this area extend to higher altitudes than in other areas. In the night time, the stable boundary layer exceeds 900 m in altitude and can sometimes peak at 1750 m, above which the residual layer may reach up to about 4000 m. The daytime convective boundary layer develops rapidly after entering the residual layer, and exceeds 4000 m in thickness. The results show that the deep convective boundary layer in the daytime is a pre-requisite for maintaining the deep residual mixed layer in the night time. Meanwhile, the deep residual mixed layer in the night time provides favorable thermal conditions for the development of the convective boundary layer in the daytime. The prolonged periods of clear weather that often occurs in this area allow the cumulative effect of the atmospheric residual layer to develop fully, which creates thermal conditions beneficial for the growth of the daytime convective boundary layer. At the same time, the land surface process and atmospheric motion within the surface layer in this area also provide helpful support for forming the particular structure of the thermal ABL. High surface temperature is clearly the powerful external thermal forcing for the deep convective boundary layer. Strong sensible heat flux in the surface layer provides the required energy. Highly convective atmosphere and strong turbulence provide the necessary dynamic conditions, and the accumulative effect of the residual layer provides a favorable thermal environment.

  17. Numerical model of a non-steady atmospheric planetary boundary layer, based on similarity theory

    DEFF Research Database (Denmark)

    Zilitinkevich, S.S.; Fedorovich, E.E.; Shabalova, M.V.

    1992-01-01

    A numerical model of a non-stationary atmospheric planetary boundary layer (PBL) over a horizontally homogeneous flat surface is derived on the basis of similarity theory. The two most typical turbulence regimes are reproduced: one corresponding to a convectively growing PBL and another correspon...... variations of meteorological fields in the lower 2 km layer confirm the ability of the model to reproduce the main features of the phenomena, known from observations....

  18. Surface-layer gusts for aircraft operation

    DEFF Research Database (Denmark)

    Young, G.S.; Kristensen, L.

    1992-01-01

    We use Monin-Obukhov similarity theory to extend the Kristensen et al. (1991) aviation gust estimation technique from the neutral to the diabatic surface layer. Example calculations demonstrate the importance of this correction. Simple stability class methods using only standard aviation surface ...

  19. LES model intercomparisons for the stable atmospheric boundary layer

    NARCIS (Netherlands)

    Moene, A.F.; Baas, P.; Bosveld, F.C.; Basu, S.

    2011-01-01

    Model intercomparisons are one possible method to gain confidence in Large-Eddy Simulation (LES) as a viable tool to study turbulence in the atmospheric boundary-layer. This paper discusses the setup and some results of two intercomparison cases focussing on the stably stratified nocturnal boundary-

  20. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  1. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  2. A model study of mixing and entrainment in the horizontally evolving atmospheric convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Fedorovich, E.; Kaiser, R. [Univ. Karlsruhe, Inst. fuer Hydrologie und Wasserwirtschaft (Germany)

    1997-10-01

    We present results from a parallel wind-tunnel/large-eddy simulation (LES) model study of mixing and entrainment in the atmospheric convective boundary layer (CBL) longitudinally developing over a heated surface. The advection-type entrainment of warmer air from upper turbulence-free layers into the growing CBL has been investigated. Most of numerical and laboratory model studies of the CBL carried out so far dealt with another type of entrainment, namely the non-steady one, regarding the CBL growth as a non-stationary process. In the atmosphere, both types of the CBL development can take place, often being superimposed. (au)

  3. Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height

    Directory of Open Access Journals (Sweden)

    C. A. Keller

    2010-06-01

    Full Text Available A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement to the MH derived from concurrent Radon-222 (222Rn measurements and in previous studies.

  4. Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height

    Directory of Open Access Journals (Sweden)

    C. A. Keller

    2011-02-01

    Full Text Available A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement with the MH derived from concurrent Radon-222 (222Rn measurements and in previous studies.

  5. Internal boundary-layer height formulae — A comparison with atmospheric data

    Science.gov (United States)

    Walmsley, John L.

    1989-04-01

    The height of the internal boundary layer (IBL) downwind of a step change in surface roughness is computed using formulae of Elliott (1958), Jackson (1976) and Panofsky and Dutton (1984). The results are compared with neutral-stratification atmospheric data extracted from the set of wind-tunnel and atmospheric data summarized by Jackson (1976) as well as neutral-stratification data presented by Peterson et al. (1979) and new data measured at Cherrywood, Ontario. It is found that the Panofsky-Dutton formulation gives the least root-mean-square (RMS) absolute errors for atmospheric applications.

  6. Multipole surface solitons in layered thermal media

    CERN Document Server

    Kartashov, Yaroslav V; Torner, Lluis

    2008-01-01

    We address the existence and properties of multipole solitons localized at a thermally insulating interface between uniform or layered thermal media and a linear dielectric. We find that in the case of uniform media, only surface multipoles with less than three poles can be stable. In contrast, we reveal that periodic alternation of the thermo-optic coefficient in layered thermal media makes possible the stabilization of higher order multipoles.

  7. A Persistent Meteoric Ion Layer in the Martian Atmosphere

    Science.gov (United States)

    Crismani, Matteo; Schneider, Nicholas M.; Jain, Sonal Kumar; Plane, John; Deigo Carrillo Sanchez, Juan; Deighan, Justin; Stevens, Michael H.; Evans, Scott; Chaffin, Michael S.; Jacosky, Bruce; IUVS Team

    2016-10-01

    We report on a persistent metal ion layer at Mars produced by meteoric ablation in the upper atmosphere, observed by the Imaging Ultraviolet Spectrograph (IUVS) on MAVEN. The response of the Martian atmosphere to meteoroid influx constrains cometary activity, dust dynamics, ionospheric production at Mars and meteoric smoke may represent a site of nucleation for high altitude clouds. Using observations that span more than an Earth year, we find this layer is global and steady state, contrary to previous observations, but in accordance with predictions. IUVS observations cover a range of observation conditions, which allows us to determine the variability of the Mg+ layer seasonally and geographically. Mars has passed through several predicted meteor showers, though the fluences of these events have hitherto been unconstrained. Analysis of these events will determine whether Mars' atmosphere responds to such events dramatically, as was the case with comet Siding Spring, or more similarly to Earth. Mg is also detected, but the ratio of Mg to Mg+ is less than predicted, indicative of undetermined chemical processes in the Martian atmosphere.

  8. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  9. Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer.

    Science.gov (United States)

    Wilcox, Eric M; Thomas, Rick M; Praveen, Puppala S; Pistone, Kristina; Bender, Frida A-M; Ramanathan, Veerabhadran

    2016-10-18

    The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events.

  10. Power Absorption of High Frequency Electromagnetic Waves in a Partially Ionized Plasma Layer in Atmosphere Conditions

    Institute of Scientific and Technical Information of China (English)

    郭斌; 王晓钢

    2005-01-01

    We have studied the absorption, reflection, and transmission of electromagnetic waves in an unmagnetized uniform plasma layer covering a metal surface in atmosphere conditions.Instead of the absorption of the electromagnetic wave propagating only once in previous work on the plasma layer, a general formula of total power absorption by the plasma layer with an infinite time of reflections between the atmosphere-plasma interface and the metal surface has been derived for the first time. Effects of plasma parameters, especially the dependence of the fraction of positive ions, negative ions and electrons in plasmas on the power absorption processes are discussed. The results show that the existence of negative ions significantly reduces the power absorption of the electromagnetic wave. Absorptions of electromagnetic waves are calculated.

  11. Surface modification of polycarbonate in homogeneous atmospheric pressure discharge

    Energy Technology Data Exchange (ETDEWEB)

    SIra, M; Trunec, D; St' ahel, P; BursIkova, V; Navratil, Z [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2008-01-07

    A homogeneous atmospheric pressure dielectric barrier discharge was used for the surface modification of polycarbonate (PC). The discharge was generated between two planar metal electrodes, the top electrode was covered by glass and the bottom electrode was covered by a polymer sample. The discharge burned in pure nitrogen or in a mixture of nitrogen and hydrogen. The surface properties of both treated and untreated polymers were characterized by atomic force microscopy, surface free energy (SFE) measurements and x-ray photoelectron spectroscopy. The influence of the treatment time and power input to the discharge on the surface properties of polymers was studied. The ageing of treated samples was also investigated. The treatment of polymers in the homogeneous atmospheric pressure discharge was homogeneous and the polymer surfaces showed a smaller degree of roughness in comparison with the polymer surfaces treated in a filamentary discharge. The SFE of the treated PC obtained at optimum conditions was 53 mJ m{sup -2} and the corresponding contact angle of water was 38{sup 0}. The maximum decrease in the SFE during ageing was about 13%. The analysis of the chemical composition showed an increase in the nitrogen concentration in the surface layer, but almost a zero increase in the oxygen concentration. This result was discussed concerning the measured values of the SFE measurement.

  12. A model of the planetary boundary layer over a snow surface

    Science.gov (United States)

    Halberstam, I.; Melendez, R.

    1979-01-01

    A model of the planetary boundary layer over a snow surface has been developed. It contains the vertical heat exchange processes due to radiation, conduction, and atmospheric turbulence. Parametrization of the boundary layer is based on similarity functions developed by Hoffert and Sud (1976), which involve a dimensionless variable, dependent on boundary-layer height and a localized Monin-Obukhov length. The model also contains the atmospheric surface layer and the snowpack itself, where snowmelt and snow evaporation are calculated. The results indicate a strong dependence of surface temperatures, especially at night, on the bursts of turbulence which result from the frictional damping of surface-layer winds during periods of high stability, as described by Businger (1973). The model also shows the cooling and drying effect of the snow on the atmosphere, which may be the mechanism for air mass transformation in sub-Arctic regions.

  13. Transport of particles in an atmospheric turbulent boundary layer

    Institute of Scientific and Technical Information of China (English)

    Xiongping Luo; Shiyi Chen

    2005-01-01

    A program incorporating the parallel code of large eddy simulation (LES) and particle transportation model is developed to simulate the motion of particles in an atmospheric turbulent boundary layer (ATBL). A model of particles of 100-micrometer order coupling with large scale ATBL is proposed. Two typical cases are studied, one focuses on the evolution of particle profile in the ATBL and the landing displacement of particles, whereas the other on the motion of particle stream.

  14. Surface state and normal layer effects

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.A.; Ledvij, M. [Argonne National Lab., IL (United States); Liu, S.H. [Univ. of California, San Diego, CA (United States). Dept. of Physics

    1995-08-01

    In addition to the conducting CuO{sub 2} (S) layers, most high-T{sub c} superconductors also contain other conducting (N) layers, which are only superconducting due to the proximity effect. The combination of S and N layers can give rise to complicated electronic densities of states, leading to quasilinear penetration depth and NMR relaxation rate behavior at low temperatures. Surface states can also complicate the analysis of tunneling and, photoemission measurements. Moreover, geometrical considerations and in homogeneously trapped flux axe possible explanations of the paramagnetic Meissner effect and of corner and ring SQUID experiments. Hence, all of the above experiments could be consistent with isotropic s-wave superconductivity within the S layers.

  15. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...

  16. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    at the Høvsøre site in Denmark, which is a flat farmland area with a nearly homogeneous easterly upstream sector. Therefore, within that sector, the turning of the wind is caused by a combination of atmospheric stability, Coriolis, roughness, horizontal pressure gradient and baroclinity effects. Atmospheric......Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... stability was measured using sonic anemometers placed at different heights on the mast. Horizontal pressure gradients and baroclinity are derived from outputs of a numerical weather prediction model and are used to estimate the geostrophic wind. It is found, for these specific and relatively short periods...

  17. Thermal inertia index of the ocean layer of interaction with the atmosphere

    Science.gov (United States)

    Sherstyukov, Boris

    2013-04-01

    The ocean is one of the most important components of the climate system and one of the factors of long-term variations of climate. Huge heat capacity of the ocean are always determined by the dominance of the ocean in interaction between ocean and atmosphere. For global atmosphere the ocean can be both a source and sewer of heat. The atmosphere is in contact only with the surface of the ocean, but thermal interaction takes place with the top mixed layer of the ocean that ranges from a few hundred meters to 1.5-2 km. The depth of this layer depends on the characteristics of domestic ocean processes at each place and from time. Mixed layer depth of Ocean determines the volume layer and its thermal capacity. The ocean could take away heat from the atmosphere and can give it away. If the depth of the upper mixed layer of the oceans depends the thermal inertia, the depth of this layer can be a factor of long-term changes of climate. Modified inertia must also affect the amplitude and phase lag of seasonal temperature changes. It is very important to assess changes in ocean mixed layer depth at each location for compare with climate changes. The change of the top ocean layer depth of ocean interaction with atmosphere can be measured by changes in lag of seasonal temperature changes. The report proposes an index of inertia (depth of layer) of the thermal interaction of the ocean with the atmosphere: I=T2-T1 , were T2 - the average temperature of the ocean surface in the second half of the year (July to December), T1 is the average temperature of the ocean surface in the first half of the year (January-June). The increase of index shows increased inertia of seasonal change that indirectly reflects the increase in depth of the top layer of the ocean involved into interaction with the atmosphere. Analysis of the index changes has shown that in the 20th century was reduced the layer depth of the ocean interacting with the atmosphere. This may mean that in recent decades was

  18. Conditionally Averaged Large-Scale Motions in the Neutral Atmospheric Boundary Layer: Insights for Aeolian Processes

    Science.gov (United States)

    Jacob, Chinthaka; Anderson, William

    2016-06-01

    Aeolian erosion of flat, arid landscapes is induced (and sustained) by the aerodynamic surface stress imposed by flow in the atmospheric surface layer. Conceptual models typically indicate that sediment mass flux, Q (via saltation or drift), scales with imposed aerodynamic stress raised to some exponent, n, where n > 1 . This scaling demonstrates the importance of turbulent fluctuations in driving aeolian processes. In order to illustrate the importance of surface-stress intermittency in aeolian processes, and to elucidate the role of turbulence, conditional averaging predicated on aerodynamic surface stress has been used within large-eddy simulation of atmospheric boundary-layer flow over an arid, flat landscape. The conditional-sampling thresholds are defined based on probability distribution functions of surface stress. The simulations have been performed for a computational domain with ≈ 25 H streamwise extent, where H is the prescribed depth of the neutrally-stratified boundary layer. Thus, the full hierarchy of spatial scales are captured, from surface-layer turbulence to large- and very-large-scale outer-layer coherent motions. Spectrograms are used to support this argument, and also to illustrate how turbulent energy is distributed across wavelengths with elevation. Conditional averaging provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Results indicate that surface-stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. Fluid in the interfacial shear layers between these adjacent quasi-uniform momentum regions exhibits high streamwise and vertical vorticity.

  19. Conditionally Averaged Large-Scale Motions in the Neutral Atmospheric Boundary Layer: Insights for Aeolian Processes

    Science.gov (United States)

    Jacob, Chinthaka; Anderson, William

    2017-01-01

    Aeolian erosion of flat, arid landscapes is induced (and sustained) by the aerodynamic surface stress imposed by flow in the atmospheric surface layer. Conceptual models typically indicate that sediment mass flux, Q (via saltation or drift), scales with imposed aerodynamic stress raised to some exponent, n, where n > 1. This scaling demonstrates the importance of turbulent fluctuations in driving aeolian processes. In order to illustrate the importance of surface-stress intermittency in aeolian processes, and to elucidate the role of turbulence, conditional averaging predicated on aerodynamic surface stress has been used within large-eddy simulation of atmospheric boundary-layer flow over an arid, flat landscape. The conditional-sampling thresholds are defined based on probability distribution functions of surface stress. The simulations have been performed for a computational domain with ≈ 25 H streamwise extent, where H is the prescribed depth of the neutrally-stratified boundary layer. Thus, the full hierarchy of spatial scales are captured, from surface-layer turbulence to large- and very-large-scale outer-layer coherent motions. Spectrograms are used to support this argument, and also to illustrate how turbulent energy is distributed across wavelengths with elevation. Conditional averaging provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Results indicate that surface-stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. Fluid in the interfacial shear layers between these adjacent quasi-uniform momentum regions exhibits high streamwise and vertical vorticity.

  20. Surface-atmosphere decoupling limits accumulation at Summit, Greenland.

    Science.gov (United States)

    Berkelhammer, Max; Noone, David C; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J; O'Neill, Michael S; Schneider, David; Steffen, Konrad; White, James W C

    2016-04-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland.

  1. Improving Surface Flux Parameterizations in the Navy’s Coastal Ocean Atmosphere Prediction System

    Science.gov (United States)

    2016-06-07

    Improving Surface Flux Parameterizations in the Navy’s Coastal Ocean Atmosphere Prediction System Shouping Wang Naval Research Laboratory...this research is to improve the surface flux and boundary layer turbulence parameteri- zation in COAMPS®1 for low- and high-wind events over the...processes and developing new parameterizations for the surface and boundary layer turbulence mixing. We pro- vide real-time COAMPS weather forecasts

  2. Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer

    Science.gov (United States)

    Peña, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte B.

    2008-12-01

    We present measurements from 2006 of the marine wind speed profile at a site located 18 km from the west coast of Denmark in the North Sea. Measurements from mast-mounted cup anemometers up to a height of 45 m are extended to 161 m using LiDAR observations. Atmospheric turbulent flux measurements performed in 2004 with a sonic anemometer are compared to a bulk Richardson number formulation of the atmospheric stability. This is used to classify the LiDAR/cup wind speed profiles into atmospheric stability classes. The observations are compared to a simplified model for the wind speed profile that accounts for the effect of the boundary-layer height. For unstable and neutral atmospheric conditions the boundary-layer height could be neglected, whereas for stable conditions it is comparable to the measuring heights and therefore essential to include. It is interesting to note that, although it is derived from a different physical approach, the simplified wind speed profile conforms to the traditional expressions of the surface layer when the effect of the boundary-layer height is neglected.

  3. Dynamic air layer on textured superhydrophobic surfaces.

    Science.gov (United States)

    Vakarelski, Ivan U; Chan, Derek Y C; Marston, Jeremy O; Thoroddsen, Sigurdur T

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model.

  4. Dynamic air layer on textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model. © 2013 American Chemical Society.

  5. Effects of artificial sea film slick upon the atmospheric boundary layer structure

    Science.gov (United States)

    Repina, Irina; Artamonov, Arseniy; Malinovsky, Vladimir; Chechin, Dmitriy

    2010-05-01

    Organic surface-active compounds accumulate at the ocean-atmosphere boundary, influencing several air-sea interaction processes. In coastal areas with high biological activity this accumulation frequently becomes visible as mirrorlike patches ("slicks") on the sea surface. The artificial surface films of oleyl alcohol and vegetable oil were produced in the Black Sea coastal zone (one site was located near Gelendjik and another was near Crimea coast) to investigate its influence on energy and gas exchange between atmosphere and sea surface under different meteorological conditions. The atmospheric turbulence measurements during the passage of an artificial sea slick are compared with similar measurements without a sea slick. The effects of the slick are modifications of roughness length z0, and a possible increase in mean wind speed. In the mean, during the passage of the slick, the roughness length decreased while the mean wind speed appeared to increase. For the spectral comparison we compared the wind field over the sea during the time the film slick was in the vicinity of the measurement site with the wind field observed after the slick had passed. The cross-spectral density was computed between horizontal velocity and vertical velocity (Reynolds stress) and between atmospheric temperature and vertical velocity (heat flux). The introduction of the sea film slick, with its damping and suppression of capillary waves, appears to completely destroy the atmospheric turbulence generation. When a slick is present, the U-W phase angle and Reynolds stress spectrum for the atmosphere appear to be completely unaffected by undulating sea surface directly below the sensors. Spectral and wavelet analysis of the atmospheric surface layer characteristics showed a significant correlation between the processes on the sea surface and the atmospheric boundary layer. An intensification of change processes in the vicinity of the windward slick boundary are detected. It may be

  6. A Diagnostic Diagram to Understand the Marine Atmospheric Boundary Layer at High Wind Speeds

    Science.gov (United States)

    Kettle, Anthony

    2014-05-01

    Long time series of offshore meteorological measurements in the lower marine atmospheric boundary layer show dynamical regimes and variability that are forced partly by interaction with the underlying sea surface and partly by the passage of cloud systems overhead. At low wind speeds, the dynamics and stability structure of the surface layer depend mainly on the air-sea temperature difference and the measured wind speed at a standard height. The physical processes are mostly understood and the quantified through Monin-Obukhov (MO) similarity theory. At high wind speeds different dynamical regimes become dominant. Breaking waves contribute to the atmospheric loading of sea spray and water vapor and modify the character of air-sea interaction. Downdrafts and boundary layer rolls associated with clouds at the top of the boundary layer impact vertical heat and momentum fluxes. Data from offshore meteorological monitoring sites will typically show different behavior and the regime shifts depending on the local winds and synoptic conditions. However, the regular methods to interpret time series through spectral analysis give only a partial view of dynamics in the atmospheric boundary layer. Also, the spectral methods have limited use for boundary layer and mesoscale modellers whose geophysical diagnostics are mostly anchored in directly measurable quantities: wind speed, temperature, precipitation, pressure, and radiation. Of these, wind speed and the air-sea temperature difference are the most important factors that characterize the dynamics of the lower atmospheric boundary layer and they provide a dynamical and thermodynamic constraint to frame observed processes, especially at high wind speeds. This was recognized in the early interpretation of the Froya database of gale force coastal winds from mid-Norway (Andersen, O.J. and J. Lovseth, Gale force maritime wind. The Froya data base. Part 1: Sites and instrumentation. Review of the data base, Journal of Wind

  7. Neutral atmosphere near the icy surface of Jupiter's moon Ganymede

    Science.gov (United States)

    Shematovich, V. I.

    2016-07-01

    The paper discusses the formation and dynamics of the rarefied gas envelope near the icy surface of Jupiter's moon Ganymede. Being the most massive icy moon, Ganymede can form a rarefied exosphere with a relatively dense near-surface layer. The main parent component of the gas shell is water vapor, which enters the atmosphere due to thermal degassing, nonthermal radiolysis, and other active processes and phenomena on the moon's icy surface. A numerical kinetic simulation is performed to investigate, at the molecular level, the formation, chemical evolution, and dynamics of the mainly H2O- and O2-dominant rarefied gas envelopes. The ionization processes in these rarefied gas envelopes are due to exposure to ultraviolet radiation from the Sun and the magnetospheric plasma. The chemical diversity of the icy moon's gas envelope is attributed to the primary action of ultraviolet solar photons and plasma electrons on the rarefied gas in the H2O- or O2-dominant atmosphere. The model is used to calculate the formation and development of the chemical diversity in the relatively dense near-surface envelope of Ganymede, where an important contribution comes from collisions between parent molecules and the products of their photolysis and radiolysis.

  8. Simultaneous profiling of the Arctic Atmospheric Boundary Layer

    Science.gov (United States)

    Mayer, S.; Jonassen, M.; Reuder, J.

    2009-09-01

    The structure of the Arctic atmospheric boundary layer (AABL) and the heat and moisture fluxes between relatively warm water and cold air above non-sea-ice-covered water (such as fjords, leads and polynyas) are of great importance for the sensitive Arctic climate system (e.g. Andreas and Cash, 1999). So far, such processes are not sufficiently resolved in numerical weather prediction (NWP) and climate models (e.g. Tjernström et al., 2005). Especially for regions with complex topography as the Svalbard mountains and fjords the state and diurnal evolution of the AABL is not well known yet. Knowledge can be gained by novel and flexible measurement techniques such as the use of an unmanned aerial vehicle (UAV). An UAV can perform vertical profiles as well as horizontal surveys of the mean meteorological parameters: temperature, relative humidity, pressure and wind. A corresponding UAV, called Small Unmanned Meteorological Observer (SUMO), has been developed at the Geophysical Institute at the University of Bergen in cooperation with Müller Engineering (www.pfump.org) and the Paparazzi Project (http://paparazzi.enac.fr). SUMO has been used under Arctic conditions at Longyear airport, Spitsbergen in March/April 2009. Besides vertical profiles up to 1500 m and horizontal surveys at flight levels of 100 and 200 m, SUMO could measure vertical profiles for the first time simultaneously in a horizontal distance of 1 km; one over the ice and snow-covered land surface and the other one above the open water of Isfjorden. This has been the first step of future multiple UAV operations in so called "swarms” or "flocks”. With this, corresponding measurements of the diurnal evolution of the AABL can be achieved with minimum technical efforts and costs. In addition, the Advanced Research Weather Forecasting model (AR-WRF version 3.1) has been run in high resolution (grid size: 1 km). First results of a sensitivity study where ABL schemes have been tested and compared with

  9. Layer-by-layer assembly of thin organic films on PTFE activated by cold atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Tóth András

    2014-12-01

    Full Text Available An air diffuse coplanar surface barrier discharge is used to activate the surface of polytetrafluoroethylene (PTFE samples, which are subsequently coated with polyvinylpyrrolidone (PVP and tannic acid (TAN single, bi- and multilayers, respectively, using the dip-coating method. The surfaces are characterized by X-ray Photoelectron Spectroscopy (XPS, Attenuated Total Reflection – Fourier Transform Infrared Spectroscopy (ATR-FTIR and Atomic Force Microscopy (AFM. The XPS measurements show that with plasma treatment the F/C atomic ratio in the PTFE surface decreases, due to the diminution of the concentration of CF2 moieties, and also oxygen incorporation through formation of new C–O, C=O and O=C–O bonds can be observed. In the case of coated samples, the new bonds indicated by XPS show the bonding between the organic layer and the surface, and thus the stability of layers, while the gradual decrease of the concentration of F atoms with the number of deposited layers proves the creation of PVP/TAN bi- and multi-layers. According to the ATR-FTIR spectra, in the case of PVP/TAN multilayer hydrogen bonding develops between the PVP and TAN, which assures the stability of the multilayer. The AFM lateral friction measurements show that the macromolecular layers homogeneously coat the plasma treated PTFE surface.

  10. Hyperspectral Remote Sensing of Atmosphere and Surface Properties

    Science.gov (United States)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Yang, Ping

    2011-01-01

    Atmospheric Infrared Sounder (AIRS), Infrared Atmospheric Sounding Interferometer (IASI), and Cross-track Infrared Sounder (CrIS) are all hyper-spectral satellite sensors with thousands of spectral channels. Top of atmospheric radiance spectra measured by these sensors contain high information content on atmospheric, cloud, and surface properties. Exploring high information content contained in these high spectral resolution spectra is a challenging task due to computation e ort involved in modeling thousands of spectral channels. Usually, only very small fractions (4{10 percent) of the available channels are included in physical retrieval systems or numerical weather forecast (NWP) satellite data assimilations. We will describe a method of simultaneously retrieving atmospheric temperature, moisture, cloud, and surface properties using all available spectral channels without sacrificing computational speed. The essence of the method is to convert channel radiance spectra into super-channels by an Empirical Orthogonal Function (EOF) transformation. Because the EOFs are orthogonal to each other, about 100 super-channels are adequate to capture the information content of the radiance spectra. A Principal Component-based Radiative Transfer Model (PCRTM) developed at NASA Langley Research Center is used to calculate both the super-channel magnitudes and derivatives with respect to atmospheric profiles and other properties. There is no need to perform EOF transformations to convert super channels back to spectral space at each iteration step for a one-dimensional variational retrieval or a NWP data assimilation system. The PCRTM forward model is also capable of calculating radiative contributions due to multiple-layer clouds. The multiple scattering effects of the clouds are efficiently parameterized. A physical retrieval algorithm then performs an inversion of atmospheric, cloud, and surface properties in super channel domain directly therefore both reducing the

  11. Seasonal variation of surface fluxes and atmospheric interaction in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Z.; Topcu, S. [Istanbul Technical Univ. (Turkey)

    1994-12-31

    A central objective of micrometeorological research is to establish fluxes from a knowledge of the mean temperature, humidity and wind speed profiles. The effect of time and spatial variations of surface heat and momentum fluxes is studied for various geographic regions. These analysis show the principal boundary conditions for micro and meso-scale analysis, air-sea interactions, weather forecasting air pollution, agrometeorology and climate changing models. The fluxes of heat and momentum can be obtained from observed profiles of wind speed and temperature using the similarity relations for the atmospheric surface layer. In recent years, harmonic analysis is a particularly useful tool in studying annual patterns of some meteorological parameters at the field of micrometeorological studies.

  12. An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics

    Science.gov (United States)

    Sui, C.-H.; Lau, K.-M.; Betts, Alan K.

    A coupled model is used to study the equilibrium state of the ocean-atmosphere boundary layer in the tropics. The atmospheric model is a one-dimensional thermodynamic model for a partially mixed, partly cloudy convective boundary layer (CBL), including the effects of cloud-top subsidence, surface momentum and heat (latent and sensible) fluxes, and realistic radiative transfer for both shortwaves and longwaves (Betts and Ridgway, 1988; 1989). The oceanic model is a thermodynamic model for a well-mixed layer, with a closure constraint based on a one-dimensional turbulent kinetic energy (TKE) equation following Kraus and Turner (1967). Results of several sets of experiments are reported in this paper. In the first two sets of experiments, with sea surface temperature (SST) specified, we solve the equilibrium state of the coupled system as a function of SST for a given surface wind (case 1) and as a function of surface wind for a given SST (case 2). In both cases the depth of the CBL and the ocean mixed layer (OML) increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The deepening of the equilibrium CBL is primarily linked to the increase of CBL moisture with increasing SST and surface wind. The increase of OML depth and decrease of upwelling are due to a decrease of net downward heat flux with increasing SST and the generation of TKE by increasing wind. In another two sets of experiments, we solve for the coupled ocean-atmosphere model iteratively as a function of surface wind for a fixed upwelling (case 3) and a fixed OML depth (case 4). SST falls with increasing wind in both cases, but the fall is steeper in case 4, because the OML depth is fixed, whereas in case 3 the depth is allowed to deepen and the cooling is spread over a larger mass of water. The decrease of evaporation with increasing wind in case 4 leads to a very dry and shallow CBL. Results of further experiments with surface wind and SST

  13. Surface roughness scattering in multisubband accumulation layers

    Science.gov (United States)

    Fu, Han; Reich, K. V.; Shklovskii, B. I.

    2016-06-01

    Accumulation layers with very large concentrations of electrons where many subbands are filled became recently available due to ionic liquid and other new methods of gating. The low-temperature mobility in such layers is limited by the surface roughness scattering. However, theories of roughness scattering so far dealt only with the small-density single subband two-dimensional electron gas (2DEG). Here we develop a theory of roughness-scattering limited mobility for the multisubband large concentration case. We show that with growing 2D electron concentration n the surface dimensionless conductivity σ /(2 e2/h ) first decreases as ∝n-6 /5 and then saturates as ˜(d aB/Δ2)≫1 , where d and Δ are the characteristic length and height of the surface roughness and aB is the effective Bohr radius. This means that in spite of the shrinkage of the 2DEG thickness and the related increase of the scattering rate the 2DEG remains a good metal.

  14. Model Simulations of the Arctic Atmospheric Boundary Layer from the SHEBA Year

    Energy Technology Data Exchange (ETDEWEB)

    Tjernstroem, Michael; Zagar, Mark; Svensson, Gunilla [Stockholm Univ. (Sweden). Dept. of Meteorology

    2004-06-01

    We present Arctic atmospheric boundary-layer modeling with a regional model COAMPSTM, for the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. Model results are compared to soundings, near-surface measurements and forecasts from the ECMWF model. The near-surface temperature is often too high in winter, except in shorter periods when the boundary layer was cloud-capped and well-mixed due to cloud-top cooling. Temperatures are slightly too high also during the summer melt season. Effects are too high boundary-layer moisture and formation of too dense stratocumulus, generating a too deep well-mixed boundary layer with a cold bias at the simulated boundary-layer top. Errors in temperature and therefore moisture are responsible for large errors in heat flux, in particular in solar radiation, by forming these clouds. We conclude that the main problems lie in the surface energy balance and the treatment of the heat conduction through the ice and snow and in how low-level clouds are treated.

  15. Sea ice edge position impact on the atmospheric boundary layer temperature structure

    Science.gov (United States)

    Khavina, Elena; Repina, Irina

    2016-04-01

    Processes happening in the Arctic region nowadays strongly influence global climate system; the polar amplification effect can be considered one of the main indicators of ongoing changes. Dramatic increase in amount of ice-free areas in the Arctic Ocean, which took place in 2000s, is one of the most significant examples of climate system dynamic in polar region. High amplitude of changes in Arctic climate, both observed and predicted, and existing inaccuracies of climate and weather forecasting models, enforce the development of a more accurate one. It is essential to understand the physics of the interaction between atmosphere and ocean in the Northern Polar area (particularly in boundary layer of the atmosphere) to improve the models. Ice conditions have a great influence on the atmospheric boundary layer in the Arctic. Sea ice inhibits the heat exchange between atmosphere and ocean water during the polar winter, while the heat exchange above the ice-free areas increases rapidly. Due to those significant temperature fluctuations, turbulence of heat fluxes grows greatly. The most intensive interaction takes place at marginal ice zones, especially in case of the cold outbreak - intrusion of cooled air mass from the ice to free water area. Still, thermal structure and dynamic of the atmosphere boundary layer are not researched and described thoroughly enough. Single radio sounding observations from the planes being done, bur they do not provide high-resolution data which is necessary for study. This research is based on continuous atmosphere boundary layer temperature and sea ice observation collected in the Arctic Ocean during the two NABOS expeditions in August and September in 2013 and 2015, as well as on ice conditions satellite data (NASA TEAM 2 and VASIA 2 data processing). Atmosphere temperature data has been obtained with Meteorological Temperature Profiler MTP-5 (ATTEX, Russia). It is a passive radiometer, which provides continuous data of atmospheric

  16. Surface Properties of PEMFC Gas Diffusion Layers

    Energy Technology Data Exchange (ETDEWEB)

    WoodIII, David L [Los Alamos National Laboratory (LANL); Rulison, Christopher [Augustine Scientific; Borup, Rodney [Los Alamos National Laboratory (LANL)

    2010-01-01

    The wetting properties of PEMFC Gas Diffusion Layers (GDLs) were quantified by surface characterization measurements and modeling of material properties. Single-fiber contact-angle and surface energy (both Zisman and Owens-Wendt) data of a wide spectrum of GDL types is presented to delineate the effects of hydrophobic post-processing treatments. Modeling of the basic sessile-drop contact angle demonstrates that this value only gives a fraction of the total picture of interfacial wetting physics. Polar forces are shown to contribute 10-20 less than dispersive forces to the composite wetting of GDLs. Internal water contact angles obtained from Owens-Wendt analysis were measured at 13-19 higher than their single-fiber counterparts. An inverse relationship was found between internal contact angle and both Owens-Wendt surface energy and % polarity of the GDL. The most sophisticated PEMFC mathematical models use either experimentally measured capillary pressures or the standard Young-Laplace capillary-pressure equation. Based on the results of the Owens-Wendt analysis, an advancement to the Young-Laplace equation is proposed for use in these mathematical models, which utilizes only solid surface energies and fractional surface coverage of fluoropolymer. Capillary constants for the spectrum of analyzed GDLs are presented for the same purpose.

  17. Scaling of the asymptotic entropy jump in the superadiabatic layers of stellar atmospheres

    CERN Document Server

    Magic, Zazralt

    2016-01-01

    Stellar structure calculations are able to predict precisely the properties of stars during their evolution. However, convection is still modelled by the mixing length theory; therefore, the upper boundary conditions near the optical surface do not agree with asteroseismic observations. We want to improve how the outer boundary conditions are determined in stellar structure calculations. We study realistic 3D stellar atmosphere models to find alternative properties. We find that the asymptotic entropy run of the superadiabatic convective surface layers exhibit a distinct universal stratification when normalised by the entropy minimum and jump. The normalised entropy can be represented by a 5th order polynomial very accurately, and a 3rd order polynomial also yields accurate coefficients. This generic entropy stratification or the solar stratification, when scaled by the entropy jump and minimum, can be used to improve the modelling of superadiabatic surface layers in stellar structure calculations. Furthermor...

  18. Preface: GEWEX Atmospheric Boundary-layer Study (GABLS) on Stable Boundary Layers

    NARCIS (Netherlands)

    Holtslag, A.A.M.

    2006-01-01

    The Global Energy and Water Cycle Experiment (GEWEX) is a program initiated by the World Climate Research Programme (WCRP) to observe, understand and model the hydrological cycle and the related energy fluxes in the atmosphere, at the land surface and in the upper oceans. Consequently the atmospheri

  19. Regional atmospheric budgets of reduced nitrogen over the British isles assessed using a multi-layer atmospheric transport model

    NARCIS (Netherlands)

    Fournier, N.; Tang, Y.S.; Dragosits, U.; Kluizenaar, Y.de; Sutton, M.A.

    2005-01-01

    Atmospheric budgets of reduced nitrogen for the major political regions of the British Isles are investigated with a multi-layer atmospheric transport model. The model is validated against measurements of NH3 concentration and is developed to provide atmospheric budgets for defined subdomains of the

  20. Determination of regional surface heat fluxes over heterogeneous landscapes by integrating satellite remote sensing with boundary layer observations

    NARCIS (Netherlands)

    Ma, Y.M.

    2006-01-01

    Keywords: satellite remote sensing, surface layer observations, atmospheric boundary layer observations, land surface variables, vegetation variables, land surface heat fluxes, validation, heterogeneous landscape, GAME/Tibet

  1. A land surface scheme for atmospheric and hydrologic models: SEWAB (Surface Energy and Water Balance)

    Energy Technology Data Exchange (ETDEWEB)

    Mengelkamp, H.T.; Warrach, K.; Raschke, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    A soil-vegetation-atmosphere-transfer scheme is presented here which solves the coupled system of the Surface Energy and Water Balance (SEWAB) equations considering partly vegetated surfaces. It is based on the one-layer concept for vegetation. In the soil the diffusion equations for heat and moisture are solved on a multi-layer grid. SEWAB has been developed to serve as a land-surface scheme for atmospheric circulation models. Being forced with atmospheric data from either simulations or measurements it calculates surface and subsurface runoff that can serve as input to hydrologic models. The model has been validated with field data from the FIFE experiment and has participated in the PILPS project for intercomparison of land-surface parameterization schemes. From these experiments we feel that SEWAB reasonably well partitions the radiation and precipitation into sensible and latent heat fluxes as well as into runoff and soil moisture Storage. (orig.) [Deutsch] Ein Landoberflaechenschema wird vorgestellt, das den Transport von Waerme und Wasser zwischen dem Erdboden, der Vegetation und der Atmosphaere unter Beruecksichtigung von teilweise bewachsenem Boden beschreibt. Im Erdboden werden die Diffusionsgleichungen fuer Waerme und Feuchte auf einem Gitter mit mehreren Schichten geloest. Das Schema SEWAB (Surface Energy and Water Balance) beschreibt die Landoberflaechenprozesse in atmosphaerischen Modellen und berechnet den Oberflaechenabfluss und den Basisabfluss, die als Eingabedaten fuer hydrologische Modelle genutzt werden koennen. Das Modell wurde mit Daten des FIFE-Experiments kalibriert und hat an Vergleichsexperimenten fuer Landoberflaechen-Schemata im Rahmen des PILPS-Projektes teilgenommen. Dabei hat sich gezeigt, dass die Aufteilung der einfallenden Strahlung und des Niederschlages in den sensiblen und latenten Waermefluss und auch in Abfluss und Speicherung der Bodenfeuchte in SEWAB den beobachteten Daten recht gut entspricht. (orig.)

  2. Wear measurement by surface layer activation

    Energy Technology Data Exchange (ETDEWEB)

    Blatchley, C.

    1987-05-01

    The purpose of these projects was to demonstrate the capability for precisely but remotely measuring small increments of wear, erosion or corrosion in utility components using detectors mounted outside the system to monitor the presence of radionuclide surface markers. These gamma ray emitting markers are produced by surface layer activation (SLA) using a high energy particle beam from a Van de Graaff or cyclotron particle accelerator. The work was divided into three major projects: (1) determination of the feasibility of applying SLA based surface monitoring techniques to key power plant systems; (2) a field demonstration of SLA monitoring in steam turbine components subject to severe solid particle erosion; and (3) a field demonstration of SLA wear or corrosion monitoring of components in boiler auxiliaries. In the field tests, surface material removal was successfully measured from both selected systems, demonstrating the feasibility of the technique for long term diagnostic condition monitoring. Three bearing components in a boiler circulation pump were monitored almost continuously for a period of over 5 months until the pump was stopped due to electrical problems unrelated to the wear measurements. Solid particle erosion from two stop valve bypass valves was measured during a series of nine startup cycles. Both test demonstrations confirmed the earlier feasibility estimates and showed how SLA markers can be used to provide valuable diagnostic information to plant operators. 22 refs., 63 figs., 29 tabs.

  3. On the parametrization of the planetary boundary layer of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, D. [Bulgarian Academy of Sciences, Geophysical Inst., Sofia (Bulgaria); Syrakov, D.; Kolarova, M. [Bulgarian Academy of Sciences, National Inst. of Meteorology and Hydrology, Sofia (United Kingdom)

    1997-10-01

    The investigation of the dynamic processes in the planetary boundary layer presents a definite theoretical challenge and plays a growing role for the solution of a number of practical tasks. The improvement of large-scale atmospheric weather forecast depends, to a certain degree, on the proper inclusion of the planetary boundary layer dynamics in the numerical models. The modeling of the transport and the diffusion of air pollutants is connected with estimation of the different processes in the Planetary Boundary Layer (PBL) and needs also a proper PBL parametrization. For the solution of these practical tasks the following PBL models;(i) a baroclinic PBL model with its barotropic version, and (ii) a convective PBL model were developed. Both models are one dimensional and are based on the similarity theory and the resistance lows extended for the whole PBL. Two different PBL parametrizations under stable and under convective conditions are proposed, on the basis of which the turbulent surface heat and momentum fluxes are estimated using generalized similarity theory. By the proposed parametrizations the internal parameters are calculated from the synoptic scale parameters as geostrophyc wind, potential temperature and humidity given at two levels (ground level and at 850 hPa) and from them - the PBL profiles. The models consists of two layers: a surface layer (SL) with a variable height and a second (Ekman layer) over it with a constant with height turbulent exchange coefficient. (au) 14 refs.

  4. Measurements of pollution in the lower layers of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Perroud, P.; Sylvestre-Baron, M.; Pleyber, G.; Perilhon, P.; Faivre- Pierret, R.; Closson, A.; Nicotra, C.

    1973-06-01

    The measurement of the meteorological parameters and the sampling of pollutants in the lower levels of the atmosphere were made by the use of captive balloons. A 550 m/sup 3/ airship filled with hydrogen was used with apparatus distributed along the anchor cable up to a height of 1,200 m. The meteorological probes used to measure the pressure, temperature, humidity, and wind velocity and to transmit them to the ground are described. The apparatus for air sampling and the chemical analytical methods are described. The results obtained are reported. This experiment made it possible to prove the relations existing between temperature inversion regions and pollution levels. The results show that under the temperature emission layers the profiles for the diffusion of SO/sub 2/, Cl/ sub 2/, and organic pollutants are sharply different. (tr-auth)

  5. DBD atmospheric plasma-modified, electrospun, layer-by-layer polymeric scaffolds for L929 fibroblast cell cultivation.

    Science.gov (United States)

    Surucu, Seda; Turkoglu Sasmazel, Hilal

    2016-01-01

    This paper reported a study related to atmospheric pressure dielectric barrier discharge (DBD) Ar + O2 and Ar + N2 plasma modifications to alter surface properties of 3D PCL/Chitosan/PCL layer-by-layer hybrid scaffolds and to improve mouse fibroblast (L929 ATCC CCL-1) cell attachment, proliferation, and growth. The scaffolds were fabricated using electrospinning technique and each layer was electrospun sequentially on top of the other. The surface modifications were performed with an atmospheric pressure DBD plasma under different gas flow rates (50, 60, 70, 80, 90, and 100 sccm) and for different modification times (0.5-7 min), and then the chemical and topographical characterizations of the modified samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), atomic force microscopy, and X-ray photoelectron spectroscopy. The samples modified with Ar + O2 plasma for 1 min under 70 cm(3)/min O2 flow rate (71.077° ± 3.578) showed a 18.83% decrease compare to unmodified samples' CA value (84.463° ± 3.864). Comparing with unmodified samples, the average fiber diameter values for plasma-modified samples by Ar + O2 (1 min 70 sccm) and Ar + N2 (40 s 70 sccm) increased 40.756 and 54.295%, respectively. Additionally, the average inter-fiber pore size values exhibited decrease of 37.699 and 48.463% for the same Ar + O2 and Ar + N2 plasma-modified samples, respectively, compare to unmodified samples. Biocompatibility performance was determined with MTT assay, fluorescence, Giemsa, and confocal imaging as well as SEM. The results showed that Ar + O2-based plasma modification increased the hydrophilicity and oxygen functionality of the surface, thus affecting the cell viability and proliferation on/within scaffolds.

  6. Land-surface and boundary layer processes in a semi-arid heterogeneous landscape

    NARCIS (Netherlands)

    Jochum, A.M.

    2003-01-01

    The European Field Experiment in a Desertification-threatened Area (EFEDA) provides a comprehensive land-surface dataset for a semiarid Mediterranean environment. It is used here to study heat and moisture transport processes in the atmospheric boundary layer (ABL), to derive grid-scale surface flux

  7. Surface layer temperature inversion in the Bay of Bengal

    Science.gov (United States)

    Thadathil, Pankajakshan; Gopalakrishna, V. V.; Muraleedharan, P. M.; Reddy, G. V.; Araligidad, Nilesh; Shenoy, Shrikant

    2002-10-01

    Surface layer temperature inversion occurring in the Bay of Bengal has been addressed. Hydrographic data archived in the Indian Oceanographic Data Center are used to understand various aspects of the temperature inversion of surface layer in the Bay of Bengal, such as occurrence time, characteristics, stability, inter-annual variability and generating mechanisms. Spatially organized temperature inversion occurs in the coastal waters of the western and northeastern Bay during winter (November-February). Although the inversion in the northeastern Bay is sustained until February (with remnants seen even in March), in the western Bay it becomes less organized in January and almost disappears by February. Inversion is confined to the fresh water induced seasonal halocline of the surface layer. Inversions of large temperature difference (of the order of 1.6-2.4°C) and thin layer thickness (10-20 m) are located adjacent to major fresh water inputs from the Ganges, Brahmaputra, Irrawaddy, Krishna and Godavari rivers. The inversion is stable with a mean stability of 3600×10 -8 m -1. Inter-annual variability of the inversion is significantly high and it is caused by the inter-annual variability of fresh water flux and surface cooling in the northern Bay. Fresh water flux leads the occurrence process in association with surface heat flux and advection. The leading role of fresh water flux is understood from the observation that the two occurrence regions of inversion (the western and northeastern Bay) have proximity to the two low salinity (with values about 28-29‰) zones. In the western Bay, the East India Coastal Current brings less saline and cold water from the head of the Bay to the south-west Bay, where it advects over warm, saline water, promoting temperature inversion in this region in association with the surface heat loss. For inversion occurring in the northeastern Bay (where the surface water gains heat from atmosphere), surface advection of the less saline

  8. Decadal change in the troposphere and atmospheric boundary layer over the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Neff, W.D. [National Oceanic and Atmospheric Administration/Environmental Technology Lab., Boulder, CO (United States)

    1994-12-31

    During the austral winter of 1993, the Environmental Technology Laboratory carried out a detailed field study of the atmospheric boundary layer at Amundsen-Scott South Pole Station to determine the effect of transitory synoptic disturbances on the surface-energy budget. This study used newly developed 915-megahertz radar wind-profiling technology for the first time in the Antarctic in combination with conventional boundary layer instrumentation that included a short tower, sonic anemometer, microbarograph array, and doppler sodar. Recent discussions, however, of interdecadal variability in the circumpolar circulation around Antarctica and of decadal changes in summer cloudiness at the South Pole, motivated our study of the long-term variability in boundary layer characteristics, cloudiness, and tropospheric flow behavior to provide a climatological context for our single year`s observations. 7 refs., 3 figs.

  9. X-ray lattice strain determination in surface layers

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.; Pantleon, Karen

    2002-01-01

    The present article describes several aspects of lattice strain determination in surface layers by means of X-ray diffraction analysis. Several possibilities and the origins of stress in surface layers are illustrated by the following three cases: 200 nm thick Mo layers on glass substrates; 5.5 m.......5 microns thick TiN layers on heat treatable steel and 21 microns thick gamma prime-Fe4N1-x layers on iron....

  10. Carbides composite surface layers produced by (PTA)

    Energy Technology Data Exchange (ETDEWEB)

    Tajoure, Meloud, E-mail: Tajoore2000@yahoo.com [MechanicalEng.,HIHM,Gharian (Libya); Tajouri, Ali, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com [Materials and Metallurgical Eng., UOT, Tripoli (Libya); Akreem, Mosbah, E-mail: makreem@yahoo.com [Industrial Research Centre,Tripoli (Libya)

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  11. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    Science.gov (United States)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  12. NOAA Climate Data Record (CDR) of Upper Atmospheric Temperature 4 Layer Microwave, Version 3.3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 4 Layer Upper Atmosphere Temperature (UAT) Climate Data Record (CDR) dataset is a monthly analysis of the tropospheric and stratospheric data using temperature...

  13. Preliminary analysis of the Nocturnal Atmospheric Boundary Layer during the experimental campaign CIBA 2008

    Science.gov (United States)

    Yagüe, C.; Maqueda, G.; Ramos, D.; Sastre, M.; Viana, S.; Serrano, E.; Morales, G.; Ayarzagüena, B.; Viñas, C.; Sánchez, E.

    2009-04-01

    An Atmospheric Boundary Layer campaign was developed in Spain along June 2008 at the CIBA (Research Centre for the Lower Atmosphere) site which is placed on a fairly homogeneous terrain in the centre of an extensive plateau (41°49' N, 4°56' W). Different instrumentation at several levels was available on a new 10m meteorological mast, including temperature and humidity sensors, wind vanes and cup anemometers, as well as one sonic anemometer. Besides, two quartz-based microbarometers were installed at 50 and 100m on the main permanent 100m tower placed at CIBA. Three additional microbarometers were deployed on the surface on a triangular array of approximately 200 m side, and a tethered balloon was used in order to record vertical profiles of temperature, wind and humidity up to 1000m. Finally, a GRIMM particle monitor (MODEL 365), which can be used to continuously measure each six seconds simultaneously the PM10, PM2.5 and PM1 values, was deployed at 1.5m. This work will show some preliminary results from the campaign CIBA 2008, analysing the main physical processes present in the atmospheric Nocturnal Boundary Layer (NBL), the different stability periods observed and the corresponding turbulent parameters, as well as the coherent structures detected. The pressure perturbations measured from the surface and tower levels make possible to study the main wave parameters from wavelet transform, and compared the structures detected by the microbarometers with those detected in the wind and particles records.

  14. On the Structure and Adjustment of Inversion-Capped Neutral Atmospheric Boundary-Layer Flows: Large-Eddy Simulation Study

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Gryning, Sven-Erik; Kelly, Mark C.

    2014-01-01

    A range of large-eddy simulations, with differing free atmosphere stratification and zero or slightly positive surface heat flux, is investigated to improve understanding of the neutral and near-neutral, inversion-capped, horizontally homogeneous, barotropic atmospheric boundary layer with emphasis...... on the upper region. We find that an adjustment time of at least 16 h is needed for the simulated flow to reach a quasi-steady state. The boundary layer continues to grow, but at a slow rate that changes little after 8 h of simulation time. A common feature of the neutral simulations is the development...... of a super-geostrophic jet near the top of the boundary layer. The analytical wind-shear models included do not account for such a jet, and the best agreement with simulated wind shear is seen in cases with weak stratification above the boundary layer. Increasing the surface heat flux decreases the magnitude...

  15. Momentum Transfer Between an Atmospheric and an Oceanic Layer at the Synoptic and the Mesoscale: An Idealized Numerical Study

    Science.gov (United States)

    Moulin, A.; Wirth, A.

    2016-09-01

    We consider air-sea interaction at the (atmospheric) synoptic and the mesoscale due to momentum transfer only. Two superposed one-layer fine-resolution shallow-water models are numerically integrated, where the upper layer represents the atmosphere and the lower layer the ocean. The frictional force between the two layers is implemented using a quadratic drag law and experiments with different values of the surface drag coefficient are performed. The actual energy loss of the atmosphere and the energy gain by the ocean, due to the interfacial shear, is determined and compared to estimates based on average speeds. The correlation between the vorticity in the atmosphere and the ocean is determined. Results differ from previous investigations where the exchange of momentum was considered at basin scale. It is shown that the ocean has a passive role, absorbing kinetic energy at nearly all times and locations, results showing that the energy input to the ocean increases almost quadratically with the value of the drag coefficient. Due to the feeble velocities in the ocean, the energy transfer depends only weakly on the oceanic velocity. The ocean dynamics leave nevertheless their imprint on atmospheric dynamics, leading to a quenched disordered state of the atmosphere-ocean system for the highest value of the drag coefficient considered. This finding questions the ergodic hypothesis for the idealized configuration studied here. The ergodic hypothesis is at the basis of a large number of experimental, observational and numerical results in ocean, atmosphere and climate dynamics.

  16. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer

    Science.gov (United States)

    Claudin, P.; Fourrière, A.; Andreotti, B.; Murray, A. B.

    2009-12-01

    Depending on the wind regime, sand dunes exhibit linear, crescent-shaped or star-like forms resulting from the interaction between dune morphology and sand transport. Small-scale dunes form by destabilization of the sand bed with a wavelength (a few tens of metres) determined by the sand transport saturation length. The mechanisms controlling the formation of giant dunes, and in particular accounting for their typical time and length scales, have remained unknown. Using a combination of field measurements and aerodynamic calculations, we show here that the growth of aeolian giant dunes, ascribed to the nonlinear interaction between small-scale superimposed dunes, is limited by the confinement of the flow within the atmospheric boundary layer. Aeolian giant dunes and river dunes form by similar processes, with the thermal inversion layer that caps the convective boundary layer in the atmosphere acting analogously to the water surface in rivers. In both cases, the bed topography excites surface waves on the interface that in turn modify the near-bed flow velocity. This mechanism is a stabilizing process that prevents the scale of the pattern from coarsening beyond the resonant condition. Our results can explain the mean spacing of aeolian giant dunes ranging from 300 m in coastal terrestrial deserts to 3.5 km. We propose that our findings could serve as a starting point for the modelling of long-term evolution of desert landscapes under specific wind regimes.

  17. Radiation and atmospheric circulation controls on carbonyl sulfide concentrations in the marine boundary layer

    Science.gov (United States)

    Berkelhammer, M.; Steen-Larsen, H. C.; Cosgrove, A.; Peters, A. J.; Johnson, R.; Hayden, M.; Montzka, S. A.

    2016-11-01

    A potential closure of the global carbonyl sulfide (COS or OCS) budget has recently been attained through a combination of remote sensing, modeling, and extended surface measurements. However, significant uncertainties in the spatial and temporal dynamics of the marine flux still persist. In order to isolate the terrestrial photosynthetic component of the global atmospheric OCS budget, tighter constraints on the marine flux are needed. We present 6 months of nearly continuous in situ OCS concentrations from the North Atlantic during the fall and winter of 2014-2015 using a combination of research vessel and fixed tower measurements. The data are characterized by synoptic-scale ˜100 pmol mol-1 variations in marine boundary layer air during transitions from subtropical to midlatitude source regions. The synoptic OCS variability is shown here to be a linear function of the radiation history along an air parcel's trajectory with no apparent sensitivity to the chlorophyll concentration of the surface waters that the air mass interacted with. This latter observation contradicts expectations and suggests a simple radiation limitation for the combined direct and indirect marine OCS emissions. Because the concentration of OCS in the marine boundary layer is so strongly influenced by an air parcel's history, marine and atmospheric concentrations would rarely be near equilibrium and thus even if marine production rates are held constant at a given location, the ocean-atmosphere flux would be sensitive to changes in atmospheric circulation alone. We hypothesize that changes in atmospheric circulation including latitudinal shifts in the storm tracks could affect the marine flux through this effect.

  18. Probing Below the Visible Cloud Layers in Jupiter's Atmosphere

    Science.gov (United States)

    de Pater, Imke; Sault, Robert J.; Butler, Bryan J.; DeBoer, David R.; Wong, Michael H.

    2016-10-01

    Visible and near-infrared images of the giant planets reveal a multitude of clouds, ranging in size from tiny, hardly visible, features to giant storm systems, such as Jupiter's Great Red Spot and Oval BA. At radio wavelengths we can probe altitudes in Jupiter's atmosphere below these visible cloud layers. We used the upgraded Very Large Array to map this unexplored region down to ~10 bar. We will present full radio maps at frequencies between 4 and ~35 GHz, with typical spatial resolutions of order 1000-2000 km. We will also show spectra and radiative transfer calculations of individual features, such as the Great Red Spot, Oval BA, hot spots and ammonia-rich "plumes". Our maps are complementary to observations planned for Juno's microwave radiometer (MWR). MWR's field-of-view is tiny, ~1000 km at the highest frequencies at perijove, and is limited to extremely narrow swaths of longitude; as such, our VLA maps will provide regional and global context at wavelengths overlapping with Juno MWR. Several maps at 8-12 GHz, at a spatial resolution of ~1000 km, will be taken during Juno perijove passes.Our analysis to date, based on 4-18 GHz maps, reveal a dynamically active planet at pressures up ammonia gas from Jupiter's deep atmosphere in "plumes", at concentrations similar to that measured by the Galileo Probe. At higher altitudes, the ammonia gas in these plumes will condense out, and as such could be responsible for the spectroscopically identified fresh ammonia ice clouds detected by the Galileo spacecraft at these latitudes.

  19. Rate of evolution of the specific surface area of surface snow layers.

    Science.gov (United States)

    Cabanes, Axel; Legagneux, Loïc; Dominé, Florent

    2003-02-15

    The snowpack can impact atmospheric chemistry by exchanging adsorbed or dissolved gases with the atmosphere. Modeling this impact requires the knowledge of the specific surface area (SSA) of snow and its variations with time. We have therefore measured the evolution of the SSA of eight recent surface snow layers in the Arctic and the French Alps, using CH4 adsorption at liquid nitrogen temperature (77 K). The SSA of fresh snow layers was found to decrease with time, from initial values in the range 613-1540 cm2/g to values as low as 257 cm2/g after 6 days. This is explained by snow metamorphism, which causes modifications in crystal shapes, here essentially crystal rounding and the disappearance of microstructures. A parametrization of the rate of SSA decrease is proposed. We fit the SSA decrease to an exponential law and find that the time constant alpha(exp) (day(-1)) depends on temperature according to alpha(exp) = 76.6 exp (-1708/7), with Tin kelvin. Our parametrization predicts that the SSA of a snow layer evolving at -40 degrees C will decrease by a factor of 2 after 14 days, while a similar decrease at -1 degrees C will only require 5 days. Wind was found to increase the rate of SSA decrease, but insufficient data did not allow a parametrization of this effect.

  20. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    Science.gov (United States)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall. Simulations are also performed using the Advanced Weather and Research Forecasting (WRF-ARW) for moist zonal flow over Gaussian ridge, and the energy spectra close

  1. Wind instability of a foam layer sandwiched between the atmosphere and the ocean

    CERN Document Server

    Shtemler, Yuri M; Mond, Michael

    2007-01-01

    Kelvin-Helmholtz instability of short gravity waves is examined in order to explain the recent findings of the decrease in momentum transfer from hurricane winds to sea waves. A three-fluid configuration of a foam layer between the atmosphere and the ocean is suggested to provide signifficant stabilization of the system and shifting the marginal critical wavelength to the shortwave part of the spectrum. It is conjectured that such stabilization leads to the observed drag reduction. The high contrasts in three fluid densities provide a universal mechanism for stabilizing surface perturbations.

  2. Atmospheres and radiating surfaces of neutron stars with strong magnetic fields

    CERN Document Server

    Potekhin, A Y; Chabrier, G

    2016-01-01

    We review the current status of the theory of thermal emission from the surface layers of neutron stars with strong magnetic fields $B\\sim 10^{10}-10^{15}$ G, including formation of the spectrum in a partially ionized atmosphere and at a condensed surface. In particular, we describe recent progress in modeling partially ionized atmospheres of central compact objects in supernova remnants, which may have moderately strong fields $B\\sim 10^{10}-10^{11}$ G. Special attention is given to polarization of thermal radiation emitted by a neutron star surface. Finally, we briefly describe applications of the theory to observations of thermally emitting isolated neutron stars.

  3. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  4. The vertical structure of the atmospheric boundary layer over the central Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    BIAN Lingen; MA Yongfeng; LU Changgui; LIN Xiang

    2013-01-01

    The tropopause height and the atmospheric boundary layer (PBL) height as well as the variation of inversion layer above the floating ice surface are presented using GPS (global position system ) radiosonde sounding data and relevant data obtained by China’s fourth arctic scientific expedition team over the central Arctic Ocean (86◦-88◦N, 144◦-170◦W ) during the summer of 2010. The tropopause height is from 9.8 to 10.5 km, with a temperature range between-52.2 and-54.1◦C in the central Arctic Ocean. Two zones of maximum wind (over 12 m/s) are found in the wind profile, namely, low-and upper-level jets, located in the middle troposphere and the tropopause, respectively. The wind direction has a marked variation point in the two jets from the southeast to the southwest. The average PBL height determined by two methods is 341 and 453 m respectively. These two methods can both be used when the inversion layer is very low, but the results vary significantly when the inversion layer is very high. A significant logarithmic relationship exists between the PBL height and the inversion intensity, with a correlation coefficient of 0.66, indicating that the more intense the temperature inversion is, the lower the boundary layer will be. The observation results obviously differ from those of the third arctic expedition zone (80◦-85◦N). The PBL height and the inversion layer thickness are much lower than those at 87◦-88◦N, but the inversion temperature is more intense, meaning a strong ice-atmosphere interaction in the sea near the North Pole. The PBL structure is related to the weather system and the sea ice concentration, which affects the observation station.

  5. Turbulent transport in the atmospheric boundary layer with application to wind farm dynamics

    Science.gov (United States)

    Waggy, Scott B.

    With the recent push for renewable energy sources, wind energy has emerged as a candidate to replace some of the power produced by traditional fossil fuels. Recent studies, however, have indicated that wind farms may have a direct effect on local meteorology by transporting water vapor away from the Earth's surface. Such turbulent transport could result in an increased drying of soil, and, in turn, negatively affect the productivity of land in the wind farm's immediate vicinity. This numerical study will analyze four scenarios with the goal of understanding turbulence transport in the wake of a turbine: the neutrally-stratified boundary layer with system rotation, the unstably-stratified atmospheric boundary layer, and wind turbine simulations of these previous two cases. For this work, the Ekman layer is used as an approximation of the atmospheric boundary layer and the governing equations are solved using a fully-parallelized direct numerical simulation (DNS). The in-depth studies of the neutrally and unstably-stratified boundary layers without introducing wind farm effects will act to provide a concrete background for the final study concerning turbulent transport due to turbine wakes. Although neutral stratification rarely occurs in the atmospheric boundary layer, it is useful to study the turbulent Ekman layer under such conditions as it provides a limiting case when unstable or stable stratification are weak. In this work, a thorough analysis was completed including turbulent statistics, velocity and pressure autocorrelations, and a calculation of the full turbulent energy budget. The unstably-stratified atmospheric boundary layer was studied under two levels of heating: moderate and vigorous. Under moderate stratification, both buoyancy and shearing contribute significantly to the turbulent dynamics. As the level of stratification increases, the role of shearing is shown to diminish and is confined to the near-wall region only. A recent, multi

  6. Atmospheric Plasma Deposition of SiO2 Films for Adhesion Promoting Layers on Titanium

    Directory of Open Access Journals (Sweden)

    Liliana Kotte

    2014-12-01

    Full Text Available This paper evaluates the deposition of silica layers at atmospheric pressure as a pretreatment for the structural bonding of titanium (Ti6Al4V, Ti15V3Cr3Sn3Al in comparison to an anodizing process (NaTESi process. The SiO2 film was deposited using the LARGE plasma source, a linearly extended DC arc plasma source and applying hexamethyldisiloxane (HMDSO as a precursor. The morphology of the surface was analyzed by means of SEM, while the characterization of the chemical composition of deposited plasma layers was done by XPS and FTIR. The long-term durability of bonded samples was evaluated by means of a wedge test in hot/wet condition. The almost stoichiometric SiO2 film features a good long-term stability and a high bonding strength compared to the films produced with the wet-chemical NaTESi process.

  7. The effect of the Asian Monsoon to the atmospheric boundary layer over the Tibetan Plateau

    Science.gov (United States)

    Li, Maoshan; Su, Zhongbo; Chen, Xuelong; Zheng, Donghai; Sun, Fanglin; Ma, Yaoming; Hu, Zeyong

    2016-04-01

    Modulation of the diurnal variations in the convective activities associated with day-by-day changes of surface flux and soil moisture was observed in the beginning of the monsoon season on the central Tibetan plateau (Sugimoto et al., 2008) which indicates the importance of land-atmosphere interactions in determining convective activities over the Tibetan plateau. Detailed interaction processes need to be studied by experiments designed to evaluate a set of hypotheses on mechanisms and linkages of these interactions. A possible function of vegetation to increase precipitation in cases of Tibetan High type was suggested by Yamada and Uyeda (2006). Use of satellite derived plateau scale soil moisture (Wen et al., 2003) enables the verification of these hypotheses (e.g. Trier et al. 2004). To evaluate these feedbacks, the mesoscale WRF model will be used because several numerical experiments are being conducted to improve the soil physical parameterization in the Noah land surface scheme in WRF so that the extreme conditions on the Tibetan plateau could be adequately represented (Van der Velde et al., 2009) such that the impacts on the structure of the atmospheric boundary layer can be assessed and improved. The Tibetan Observational Research Platform (TORP) operated by the Institute of Tibetan Plateau (Ma et al., 2008) will be fully utilized to study the characteristics of the plateau climate and different aspects of the WRF model will be evaluated using this extensive observation platform (e.g. Su et al., 2012). Recently, advanced studies on energy budget have been done by combining field and satellite measurements over the Tibetan Plateau (e.g. Ma et al., 2005). Such studies, however, were based on a single satellite observation and for a few days over an annual cycle, which are insufficient to reveal the relation between the land surface energy budget and the Asian monsoon over the Tibetan plateau. Time series analysis of satellite observations will provide the

  8. Surface Instability of a Vertically Oscillating Granular Layer

    Institute of Scientific and Technical Information of China (English)

    SUI Lei; MIAO Guo-Qing; WEI Rong-Jue

    2001-01-01

    In the study of the surface instability of a vertically oscillating granular layer, we obtained experimentally thephase diagram for the surface states of the layer in the driving frequency-acceleration plane, and measured thedispersion relation for the surface waves in a granular layer in comparison to that in viscous fluids. Our experiments show that the onset dimensionless acceleration increases with the driving frequency, and the wavelengthof the surface waves increases with the depth of granular layer. These experimental results are in agreement withour theoretical model qualitatively.

  9. Observed Variability of Global Atmospheric Mixing Layer Height from 1971 to 2014

    Science.gov (United States)

    Wang, Xiaoyan; Wang, Kaicun

    2015-04-01

    It is important to determine the mixing layer height (MLH) for understanding the transport process in the troposphere, weather prediction, and climate monitoring. MLH is a key parameter in air pollution models which determines the volume available for pollutants to dispersion. The long-term variation of MLH can drive the change of surface air quality. Many methods have been proposed to estimate MLH from the temperature or atmospheric composition profiles provided by radiosonde and remote sounding systems. Radiosonde data are usually considered as a reference by other methods owing to its long-term history and direct observation. However, disagreements exist between MLHs derived from different variable profiles of radiosonde data. In this study, a method integrating the information of potential temperature, relative humidity, specific humidity, atmospheric refractivity and the effect of cloud on the boundary layer turbulence was applied to the global radiosonde data to generate long-term variation of the global MLH from 1971 to 2014. The radiosonde observations were released by the Integrated Global Radiosonde Archive (IGRA) of National Climatic Data Center (NCDC). The MLHs in the North America are fairly deep, with an average value between 1800 and 2200 m, however, the Europe and the Eastern Asia have shallow MLHs between 1200 and 1500 m. The majority of the North America and Australia stations showed a negative trend during the period of 1971 to 2014, while, for the Europe and Japan, the MLHs increased over time. The MLH had a negative correlation with surface relative humidity and a positive association with surface air temperature. Besides the effect of thermodynamic factors, the dynamical factors including the surface wind speed and its shear in the boundary layer influence the development of the boundary layer. However, there is no significant correlation between the surface wind speeds and MLH in this study. Weak negative association was found between

  10. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    Institute of Scientific and Technical Information of China (English)

    FANG Zhi; QIU Yuchang; WANG Hui; E. KUFFEL

    2007-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.

  11. CVD Delta-Doped Boron Surface Layers for Ultra-Shallow Junction Formation

    NARCIS (Netherlands)

    Sarubbi, F.; Nanver, L.K.; Scholtes, T.L.M.

    2006-01-01

    A new doping technique is presented that uses a pure boron atmospheric/low-pressure chemical vapor deposition (AP/LPCVD) in a commercially available epitaxial reactor to form less than 2-nm-thick δ-doped boron-silicide (BxSi) layers on the silicon surface. For long exposure B segregates at the surfa

  12. Analytical solution for the convectively-mixed atmospheric boundary layer

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.

    2013-01-01

    Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation

  13. White Layer of Hard Turned Surface by Sharp CBN Tool

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-ping; SONG He-chuan; C.Richard Liu

    2005-01-01

    White layers in hard turned surfaces were identified and measured as a function of turning parameters based on the Taguchi method. It reveals that white layers generate on the machine surface in the absence of tool flank wear, and white layer depth varies with the different combinations of hard turning parameters. Turning speed has the most important impact on white layer depth, feed rate follows, and cutting depth at last. The white layer generation consequently suggests a strong couple relation to the heat generation and thermal process of hard turning operation. White layer disappears under an optimal combination of turning parameters by Taguchi method. It suggests that a superior surface integrity without white layer is feasible under some selected combinations of turning parameters by a sharp CBN cutting tool.

  14. Large Eddy Simulation of Pollen Transport in the Atmospheric Boundary Layer

    Science.gov (United States)

    Chamecki, Marcelo; Meneveau, Charles; Parlange, Marc B.

    2007-11-01

    The development of genetically modified crops and questions about cross-pollination and contamination of natural plant populations enhanced the importance of understanding wind dispersion of airborne pollen. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using large eddy simulation. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of great importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. The velocity field is discretized using a pseudospectral approach. However the application of the same discretization scheme to the pollen equation generates unphysical solutions (i.e. negative concentrations). The finite-volume bounded scheme SMART is used for the pollen equation. A conservative interpolation scheme to determine the velocity field on the finite volume surfaces was developed. The implementation is validated against field experiments of point source and area field releases of pollen.

  15. Diamond nucleation on surface of C60 thin layers

    Institute of Scientific and Technical Information of China (English)

    杨国伟; 袁放成; 刘大军; 何金田; 张兵临

    1997-01-01

    Diamond nucleation on the surface of C60 thin layers and intermediate layer of Si substrates are studied by scanning electron microscopy (SEM). The cross-section SEM images of diamond films show that diamond grains really nucleate on the surface of C60 thin layers. The SEM images of diamond nucleating sites show the nucleating aggregation of diamond on C60 surfaces. The preferential oriented diamond films are observed. The plasma pre-treatment of C60 sublimating layers is a key factor for diamond nucleation.

  16. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    Science.gov (United States)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  17. Scale-consistent two-way coupling of land-surface and atmospheric models

    Science.gov (United States)

    Schomburg, A.; Venema, V.; Ament, F.; Simmer, C.

    2009-04-01

    Processes at the land surface and in the atmosphere act on different spatial scales. While in the atmosphere small-scale heterogeneity is smoothed out quickly by turbulent mixing, this is not the case at the land surface where small-scale variability of orography, land cover, soil texture, soil moisture etc. varies only slowly in time. For the modelling of the fluxes between the land-surface and the atmosphere it is consequently more scale consistent to model the surface processes at a higher spatial resolution than the atmospheric processes. The mosaic approach is one way to deal with this problem. Using this technique the Soil Vegetation Atmosphere Transfer (SVAT) scheme is solved on a higher resolution than the atmosphere, which is possible since a SVAT module generally demands considerably less computation time than the atmospheric part. The upscaling of the turbulent fluxes of sensible and latent heat at the interface to the atmosphere is realized by averaging, due to the nonlinearities involved this is a more sensible approach than averaging the soil properties and computing the fluxes in a second step. The atmospheric quantities are usually assumed to be homogeneous for all soil-subpixels pertaining to one coarse atmospheric grid box. In this work, the aim is to develop a downscaling approach in which the atmospheric quantities at the lowest model layer are disaggregated before they enter the SVAT module at the higher mosaic resolution. The overall aim is a better simulation of the heat fluxes which play an important role for the energy and moisture budgets at the surface. The disaggregation rules for the atmospheric variables will depend on high-resolution surface properties and the current atmospheric conditions. To reduce biases due to nonlinearities we will add small-scale variability according to such rules as well as noise for the variability we can not explain. The model used in this work is the COSMO-model, the weather forecast model (and regional

  18. Atmospheric Boundary Layer, Integrating Air Chemistry and Land Interactions

    NARCIS (Netherlands)

    Vilà-Guerau De Arellano, J.; Heerwaarden, van C.C.; Stratum, van B.J.H.; Dries, van den C.L.A.M.

    2015-01-01

    This textbook provides an introduction to the interactions between the atmosphere and the land for advanced undergraduate and graduate students and a reference text for researchers in atmospheric physics and chemistry, hydrology, and plant physiology. The combination of the book, which provides the

  19. Contact mechanics for layered materials with randomly rough surfaces.

    Science.gov (United States)

    Persson, B N J

    2012-03-07

    The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.

  20. Meteorological responses in the atmospheric boundary layer over southern England to the deep partial eclipse of 20 March 2015.

    Science.gov (United States)

    Burt, Stephen

    2016-09-28

    A wide range of surface and near-surface meteorological observations were made at the University of Reading's Atmospheric Observatory in central southern England (latitude 51.441° N, longitude 0.938° W, altitude 66 m above mean sea level) during the deep partial eclipse on the morning of 20 March 2015. Observations of temperature, humidity, radiation, wind speed and direction, and atmospheric pressure were made by computerized logging equipment at 1 Hz, supplemented by an automated cloud base recorder sampling at 1 min intervals and a high-resolution (approx. 10 m vertical interval) atmospheric sounding by radiosonde launched from the same location during the eclipse. Sources and details of each instrumental measurement are described briefly, followed by a summary of observed and derived measurements by meteorological parameter. Atmospheric boundary layer responses to the solar eclipse were muted owing to the heavily overcast conditions which prevailed at the observing location, but instrumental records of the event documented a large (approx. 80%) reduction in global solar radiation, a fall in air temperature of around 0.6°C, a decrease in cloud base height, and a slight increase in atmospheric stability during the eclipse. Changes in surface atmospheric moisture content and barometric pressure were largely insignificant during the event.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  1. Direct Measurements of the Surface-Atmosphere Exchange of Ammonia

    Science.gov (United States)

    Tevlin, A.; Murphy, J. G.; Wentworth, G.; Gregoire, P.

    2012-12-01

    As the dominant atmospheric base, ammonia plays an important role in the formation and growth of inorganic aerosols. Surface-atmosphere exchange of ammonia has been observed to occur as a bidirectional flux governed by the relative magnitudes of atmospheric gas phase concentration and a temperature-dependent surface compensation point. In order to better characterise the links between gas-particle and surface-atmosphere exchanges, more direct measurements of these exchanges are necessary. Eddy Covariance (EC) can provide the most direct surface-atmosphere flux measurements, but its requirement for high frequency data combined with the reactive nature of ammonia have limited its application for this species. In order to address this lack, an investigation into the instrumental sensitivity and time response requirements for EC ammonia flux measurements was carried out using a Quantum Cascade-Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) capable of measuring ammonia concentration at 10 Hz. Time response was additionally improved through the use of a heated sample line and custom glass inlet, and the system was deployed over a short grass field in rural Ontario. The ammonia measurements were used along with three dimensional sonic anemometer wind speed data to calculate EC ammonia fluxes. When combined with simultaneous measurements of the inorganic composition of gas and particle phases made by Ambient Ion Monitor - Ion Chromatography (AIM-IC), these flux measurements can provide insight into the links between gas-particle and surface-atmosphere exchange.

  2. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  3. Global ocean wind power sensitivity to surface layer stability

    Science.gov (United States)

    Capps, Scott B.; Zender, Charles S.

    2009-05-01

    Global ocean wind power has recently been assessed (W. T. Liu et al., 2008) using scatterometry-based 10 m winds. We characterize, for the first time, wind power at 80 m (typical wind turbine hub height) above the global ocean surface, and account for the effects of surface layer stability. Accounting for realistic turbine height and atmospheric stability increases mean global ocean wind power by +58% and -4%, respectively. Our best estimate of mean global ocean wind power is 731 W m-2, about 50% greater than the 487 W m-2 based on previous methods. 80 m wind power is 1.2-1.5 times 10 m power equatorward of 30° latitude, between 1.4 and 1.7 times 10 m power in wintertime storm track regions and >6 times 10 m power in stable regimes east of continents. These results are relatively insensitive to methodology as wind power calculated using a fitted Weibull probability density function is within 10% of power calculated from discrete wind speed measurements over most of the global oceans.

  4. Detection of CO in Triton's atmosphere and the nature of surface-atmosphere interactions

    CERN Document Server

    Lellouch, E; Sicardy, B; Ferron, S; Käufl, H -U

    2010-01-01

    Triton possesses a thin atmosphere, primarily composed of nitrogen, sustained by the sublimation of surface ices. The goal is to determine the composition of Triton's atmosphere and to constrain the nature of surface-atmosphere interactions. We perform high-resolution spectroscopic observations in the 2.32-2.37 $\\mu$m range, using CRIRES at the VLT. From this first spectroscopic detection of Triton's atmosphere in the infrared, we report (i) the first observation of gaseous methane since its discovery in the ultraviolet by Voyager in 1989 and (ii) the first ever detection of gaseous CO in the satellite. The CO atmospheric abundance is remarkably similar to its surface abundance, and appears to be controlled by a thin, CO-enriched, surface veneer resulting from seasonal transport and/or atmospheric escape. The CH$_4$ partial pressure is several times larger than inferred from Voyager. This confirms that Triton's atmosphere is seasonally variable and is best interpreted by the warming of CH$_4$-rich icy grains ...

  5. Atmospheric boundary layer investigations in the Laptev Sea area

    Science.gov (United States)

    Schwarz, Pascal; Heinemann, Günther; Drüe, Clemens; Makshtas, Alexander

    2016-04-01

    In the winter season 2014/2015 a field campaign at the Tiksi observatory (71°38'N, 128°52'E) was carried out by the University of Trier with support of the Arctic and Antarctic Research Institute (AARI) and the GEOMAR Kiel in framework of the interdisciplinary Transdrift project. One goal of the campaign is to help to improve the understanding of processes within the Arctic stable boundary layer (SBL). Within the SBL, there are several important phenomena and processes like low-level jets, surface and lifted inversions, the development of the mixing height or the determination of the energy balance, which can be best investigated with a mix of high-resolution ground-based remote sensing systems and flux tower measurements. We mainly used a SODAR/RASS, a scintillometer, a ceilometer as well as the local flux tower to investigate the SBL for the Arctic winter. Baroclinity is found to be the main driven mechanism for low-level jets with jet core heights above 200 m due to the strong temperature gradient between the Laptev Sea and the Siberian continent. Strong temperature changes at short time scale (few hours) were often closely related to a change of wind direction and therefore advection. LLJs with heights below 200 m are likely influenced by local topography. In addition, regional climate model simulations using the COSMO-CLM (COnsortium for Small-scale MOdelling - Climate Limited area Mode) driven by ERA-Interim reanalysis data have been performed. The COSMO-CLM simulations show a good agreement with ERA-Interim reanalysis data and in-situ measurements (tower, soundings).

  6. On the marine atmospheric boundary layer characteristics over Bay of Bengal and Arabian Sea during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB)

    Indian Academy of Sciences (India)

    Denny P Alappattu; D Bala Subrahamanyam; P K Kunhikrishnan; K M Somayaji; G S Bhat; R Venkatesan; C B S Dutt; A Bagavath Singh; V K Soni; A S Tripathi

    2008-07-01

    Detailed measurements were carried out in the Marine Atmospheric Boundary Layer (MABL) during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) which covered both Arabian Sea and Bay of Bengal during March to May 2006. In this paper, we present the meteorological observations made during this campaign. The latitudinal variation of the surface layer turbulent fluxes is also described in detail.

  7. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  8. Investigating sources of measured forest-atmosphere ammonia fluxes using two-layer bi-directional modelling

    DEFF Research Database (Denmark)

    Hansen, K.; Personne, E.; Skjøth, C.A.

    2017-01-01

    not for forest ecosystems due to the complex nature of this soil-vegetation-atmosphere system. Furthermore, the high reactivity of NH3 makes it technically complex and expensive to measure and understand the forest-atmospheric NH3 exchange. The aim of this study is to investigate the NH3 flux partitioning...... between the ground layer, cuticle and stomata compartments for two temperate deciduous forest ecosystems located in Midwestern, USA (MMSF) and in Denmark (DK-Sor). This study is based on measurements and simulations of the surface energy balance, fluxes of CO2 and NH3 during two contrasted periods...... of the forest ecosystems, a period with full developed canopy (MMSF) and a senescent period for the DK-Sor site, with leaf fall and leaf litter build-up. Both datasets indicate emissions of NH3 from the forest to the atmosphere. The two-layer NH3 compensation point model SURFATM-NH3 was used in combination...

  9. Significant Atmospheric Boundary Layer Change Observed above an Agulhas Current Warm Cored Eddy

    Directory of Open Access Journals (Sweden)

    C. Messager

    2016-01-01

    Full Text Available The air-sea impact of a warm cored eddy ejected from the Agulhas Retroflection region south of Africa was assessed through both ocean and atmospheric profiling measurements during the austral summer. The presence of the eddy causes dramatic atmospheric boundary layer deepening, exceeding what was measured previously over such a feature in the region. This deepening seems mainly due to the turbulent heat flux anomaly above the warm eddy inducing extensive deep and persistent changes in the atmospheric boundary layer thermodynamics. The loss of heat by turbulent processes suggests that this kind of oceanic feature is an important and persistent source of heat for the atmosphere.

  10. Characterization and use of crystalline bacterial cell surface layers

    Science.gov (United States)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  11. A unified account of perceptual layering and surface appearance in terms of gamut relativity.

    Directory of Open Access Journals (Sweden)

    Tony Vladusich

    Full Text Available When we look at the world--or a graphical depiction of the world--we perceive surface materials (e.g. a ceramic black and white checkerboard independently of variations in illumination (e.g. shading or shadow and atmospheric media (e.g. clouds or smoke. Such percepts are partly based on the way physical surfaces and media reflect and transmit light and partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of previous experimental and modelling work on layered representation, however, a unified computational model of key perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and surface appearance--based on a boarder theoretical framework called gamut relativity--that is consistent with these demonstrations. The model (a qualitatively explains striking effects of perceptual transparency, figure-ground separation and lightness, (b quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching performance, and (c unifies two prominent theoretical frameworks for understanding surface appearance. The model thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface materials, illumination and atmospheric media, which can be exploited in computer graphics applications.

  12. A unified account of perceptual layering and surface appearance in terms of gamut relativity.

    Science.gov (United States)

    Vladusich, Tony; McDonnell, Mark D

    2014-01-01

    When we look at the world--or a graphical depiction of the world--we perceive surface materials (e.g. a ceramic black and white checkerboard) independently of variations in illumination (e.g. shading or shadow) and atmospheric media (e.g. clouds or smoke). Such percepts are partly based on the way physical surfaces and media reflect and transmit light and partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of previous experimental and modelling work on layered representation, however, a unified computational model of key perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and surface appearance--based on a boarder theoretical framework called gamut relativity--that is consistent with these demonstrations. The model (a) qualitatively explains striking effects of perceptual transparency, figure-ground separation and lightness, (b) quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching performance, and (c) unifies two prominent theoretical frameworks for understanding surface appearance. The model thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface materials, illumination and atmospheric media, which can be exploited in computer graphics applications.

  13. Turbulence Variance Characteristics in the Unstable Atmospheric Boundary Layer above Flat Pine Forest

    Science.gov (United States)

    Asanuma, Jun

    Variances of the velocity components and scalars are important as indicators of the turbulence intensity. They also can be utilized to estimate surface fluxes in several types of "variance methods", and the estimated fluxes can be regional values if the variances from which they are calculated are regionally representative measurements. On these motivations, variances measured by an aircraft in the unstable ABL over a flat pine forest during HAPEX-Mobilhy were analyzed within the context of the similarity scaling arguments. The variances of temperature and vertical velocity within the atmospheric surface layer were found to follow closely the Monin-Obukhov similarity theory, and to yield reasonable estimates of the surface sensible heat fluxes when they are used in variance methods. This gives a validation to the variance methods with aircraft measurements. On the other hand, the specific humidity variances were influenced by the surface heterogeneity and clearly fail to obey MOS. A simple analysis based on the similarity law for free convection produced a comprehensible and quantitative picture regarding the effect of the surface flux heterogeneity on the statistical moments, and revealed that variances of the active and passive scalars become dissimilar because of their different roles in turbulence. The analysis also indicated that the mean quantities are also affected by the heterogeneity but to a less extent than the variances. The temperature variances in the mixed layer (ML) were examined by using a generalized top-down bottom-up diffusion model with some combinations of velocity scales and inversion flux models. The results showed that the surface shear stress exerts considerable influence on the lower ML. Also with the temperature and vertical velocity variances ML variance methods were tested, and their feasibility was investigated. Finally, the variances in the ML were analyzed in terms of the local similarity concept; the results confirmed the original

  14. Wind tunnel experiment of drag of isolated tree models in surface boundary layer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    For very sparse tree land individual tree was the basic element of interaction between atmosphere and the surface. Drag of isolated tree was preliminary aerodynamic index for analyzing the atmospheric boundary layer of this kind of surface. A simple pendulum method was designed and carried out in wind tunnel to measure drag of isolated tree models according to balance law of moment of force. The method was easy to conduct and with small error. The results showed that the drag and drag coefficient of isolated tree increased with decreasing of its permeability or porosity. Relationship between drag coefficient and permeability of isolated tree empirically was expressed by quadric curve.

  15. Preservation of Archaeal Surface Layer Structure During Mineralization

    Science.gov (United States)

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-05-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.

  16. Preservation of Archaeal Surface Layer Structure During Mineralization.

    Science.gov (United States)

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-05-25

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer "ghosts" during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.

  17. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  18. Improve oxidation resistance at high temperature by nanocrystalline surface layer.

    Science.gov (United States)

    Xia, Z X; Zhang, C; Huang, X F; Liu, W B; Yang, Z G

    2015-08-13

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  19. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    Science.gov (United States)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  20. Spatial structures in the heat budget of the Antarctic Atmospheric Boundary Layer

    Directory of Open Access Journals (Sweden)

    W. J. van de Berg

    2007-08-01

    Full Text Available Output from the regional climate model RACMO2/ANT is used to calculate the heat budget of the Antarctic atmospheric boundary layer (ABL. The main feature of the wintertime Antarctic ABL is a persistent temperature deficit compared to the free atmosphere. The magnitude of this deficit is controlled by the heat budget. During winter, transport of heat towards the surface by turbulence and net longwave emission are the primary ABL cooling terms. These processes show horizontal spatial variability only on continental scales. Vertical and horizontal advection of heat are the main warming terms. Over regions with convex ice sheet topography, i.e. domes and ridges, warming by downward vertical advection is enhanced due to divergence of the ABL wind field. Horizontal advection balances any excess warming caused by vertical advection, hence the ABL over domes and ridges tends to have a relatively weak temperature deficit. Conversely, vertical advection is reduced in regions with concave topography, i.e. valleys, where the ABL temperature deficit is enlarged. Along the coast, horizontal and vertical advection is governed by the inability of the large-scale circulation to adapt to small scale topographic features. Meso-scale (~10 km topographic structures have thus a strong impact on the ABL winter temperature, besides latitude and surface elevation. During summer, this mechanism is much weaker; and the horizontal variability of ABL temperatures is smaller.

  1. Large Eddy Simulation and Field Experiments of Pollen Transport in the Atmospheric Boundary Layer

    Science.gov (United States)

    Chamecki, M.; Meneveau, C.; Parlange, M. B.; van Hout, R.

    2006-12-01

    Dispersion of airborne pollen by the wind has been a subject of interest for botanists and allergists for a long time. More recently, the development of genetically modified crops and questions about cross-pollination and subsequent contamination of natural plant populations has brought even more interest to this field. A critical question is how far from the source field pollen grains will be advected. Clearly the answer depends on the aerodynamic properties of the pollen, geometrical properties of the field, topography, local vegetation, wind conditions, atmospheric stability, etc. As a consequence, field experiments are well suited to provide some information on pollen transport mechanisms but are limited to specific field and weather conditions. Numerical simulations do not have this drawback and can be a useful tool to study pollen dispersal in a variety of configurations. It is well known that the dispersion of particles in turbulent fields is strongly affected by the large scale coherent structures. Large Eddy Simulation (LES) is a technique that allows us to study the typical distances reached by pollen grains and, at the same time, resolve the larger coherent structures present in the atmospheric boundary layer. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using LES. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of extreme importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. In both cases we make use of the theoretical profile for suspended particles derived by Kind (1992). Field experiments were performed to study the applicability of the theoretical profile to pollen grains and the results are encouraging. Airborne concentrations as well as ground deposition from the simulations are compared to experimental data to validate the

  2. [Characteristics of Winter Atmospheric Mixing Layer Height in Beijing-Tianjin-Hebei Region and Their Relationship with the Atmospheric Pollution].

    Science.gov (United States)

    Li, Meng; Tang, Gui-qian; Huang, Jun; Liu, Zi-rui; An, Jun-lin; Wang, Yue-si

    2015-06-01

    Atmospheric mixing layer height (MLH) is one of the main factors affecting the atmospheric diffusion and plays an important role in air quality assessment and distribution of the pollutants. Based on the ceilometers data, this paper has made synchronous observation on MLH in Beijing-Tianjin-Hebei region (Beijing, Tianjin, Shijiazhuang and Qinhuangdao) in heavy polluted February 2014 and analyzed the respective overall change and its regional features. Results show that in February 2014,the average of mixing layer height in Qinhuangdao is the highest, up to 865 +/- 268 m, and in Shijiazhuang is the lowest (568 +/- 207 m), Beijing's and Tianjin's are in between, 818 +/- 319 m and 834 +/- 334 m respectively; Combined with the meteorological data, we find that radiation and wind speed are main factors of the mixing layer height; The relationship between the particle concentration and mixing layer height in four sites suggests that mixing layer is less than 800 m, concentration of fine particulate matter in four sites will exceed the national standard (GB 3095-2012, 75 microg x m(-3)). During the period of observation, the proportion of days that mixing layer is less than 800 m in Beijing, Tianjin, Shijiazhuang and Qinhuangdao are 50%, 43%, 80% and 50% respectively. Shijiazhuang though nearly formation contaminant concentration is high, within the atmospheric mixed layer pollutant load is not high. Unfavorable atmospheric diffusion conditions are the main causes of heavy pollution in Shijiazhuang for a long time. The results of the study are of great significance for cognitive Beijing-Tianjin-Hebei area pollution distribution, and can provide a scientific reference for reasonable distribution of regional pollution sources.

  3. Surface cleaning of metal wire by atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T., E-mail: tsubasa@oshima-k.ac.jp [Electronic-Mechanical Engineering Department, Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-Oshima, Yamaguchi (Japan); Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka (Japan); Buttapeng, C. [School of Electrical and Energy Engineering, University of the Thai Chamber of Commerce, 126/1, Vibhavadee-Rungsit, Dindaeng, Bangkok 10400 (Thailand); Furuya, S. [Faculty of Education, Gunma University, 4-2 Aramaki, Maebashi (Japan); Harada, N. [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka (Japan)

    2009-11-30

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  4. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan Christian

    2005-01-01

    Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soil-structure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  5. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan

    2007-01-01

    Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soilstructure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  6. Turbulent Boundary Layer Flow over Superhydrophobic Surfaces

    Science.gov (United States)

    2013-05-10

    Figure 1 were a highly viscous fluid, such as honey , the boundary layer would be thick while if the fluid were water, a low-viscosity fluid, the boundary...drag has become even more important. In response to this need, and with the benefit of modern technology, the drag-reduction field is replete with...manufactured with “riblets,” small ridges on the order of fractions of millimeters, built-into the hull or skin that seek to reduce frictional drag. The

  7. On the Representation of Heterogeneity in Land-Surface-Atmosphere Coupling

    Science.gov (United States)

    de Vrese, Philipp; Schulz, Jan-Peter; Hagemann, Stefan

    2016-07-01

    A realistic representation of processes that are not resolved by the model grid is one of the key challenges in Earth-system modelling. In particular, the non-linear nature of processes involved makes a representation of the link between the atmosphere and the land surface difficult. This is especially so when the land surface is horizontally strongly heterogeneous. In the majority of present day Earth system models two strategies are pursued to couple the land surface and the atmosphere. In the first approach, surface heterogeneity is not explicitly accounted for, instead effective parameters are used to represent the entirety of the land surface in a model's grid box (parameter-aggregation). In the second approach, subgrid-scale variability at the surface is explicitly represented, but it is assumed that the blending height is located below the lowest atmospheric model level (simple flux-aggregation). Thus, in both approaches the state of the atmosphere is treated as being horizontally homogeneous within a given grid box. Based upon the blending height concept, an approach is proposed that allows for a land-surface-atmosphere coupling in which horizontal heterogeneity is considered not only at the surface, but also within the lowest layers of the atmosphere (the VERTEX scheme). Below the blending height, the scheme refines the turbulent mixing process with respect to atmospheric subgrid fractions, which correspond to different surface features. These subgrid fractions are not treated independently of each other, since an explicit horizontal component is integrated into the turbulent mixing process. The scheme was implemented into the JSBACH model, the land component of the Max Planck Institute for Meteorology's Earth-system model, when coupled to the atmospheric general circulation model ECHAM. The single-column version of the Earth system model is used in two example cases in order to demonstrate how the effects of surface heterogeneity are transferred into the

  8. Exploration of Venus' Deep Atmosphere and Surface Environment

    Science.gov (United States)

    Glaze, L. S.; Amato, M.; Garvin, J. B.; Johnson, N. M.

    2017-01-01

    Venus formed in the same part of our solar system as Earth, apparently from similar materials. Although both planets are about the same size, their differences are profound. Venus and Earth experienced vastly different evolutionary pathways resulting in unexplained differences in atmospheric composition and dynamics, as well as in geophysical processes of the planetary surfaces and interiors. Understanding when and why the evolutionary pathways of Venus and Earth diverged is key to understanding how terrestrial planets form and how their atmospheres and surfaces evolve. Measurements made in situ, within the near-surface or surface environment, are critical to addressing unanswered questions. We have made substantial progress modernizing and maturing pressure vessel technologies to enable science operations in the high temperature and pressure near-surface/surfaceenvironment of Venus.

  9. Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.

    Science.gov (United States)

    Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Bjorneholm, Olle

    2017-03-30

    Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied XPS to study aqueous solutions of four amino acids: glycine, alanine, valine and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidences that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interaction play a central role in cloud droplet formation, and they should be considered in climate models.

  10. Nanoscale Surface Modification of Layered Materials

    Science.gov (United States)

    O'Shea, Aaron

    2011-11-01

    A scanning electron microscope can magnify a sample many times greater than a standard microscope, down to nanoscale dimensions. It can also be used to form patterns on the surfaces of certain materials, a technique used to create microchips. We have developed a technique that simplifies and expedites this process using an unmodified scanning electron microscope. Using this technique, we are able to alter the surface chemistry in a controlled pattern on a special class of materials called transition metal dichalcogenides. These materials have many useful applications: industrial lubricants; high strength nanocomposites; advanced solar cells; and next generation electronics. Altering the surface chemistry of these materials at the nanoscale results in unusual quantum behavior, which is useful in nanotechnology.

  11. Process Conditions of Forming the Surface Layer of Aluminum Powder Product by Layer-by-layer Laser Sintering

    Science.gov (United States)

    Saprykina, N. A.; Saprykin, A. A.; Ibragimov, E. A.; Arkhipova, D. A.

    2016-07-01

    The paper presents data on state of the art in selective laser sintering of products. Layer-by-layer sintering is shown to be a future-oriented technology, making it possible to synthesize products of metal powder materials. Factors, influencing the quality of a sintered product, are revealed in the paper. It presents outcomes of experiments, focused on the dependence of surface layer thickness of sintered aluminum powder PA-4 on laser processing conditions. Basic factors, influencing the quality of a sintered surface layer include laser power, speeds of scanning and moving the laser beam on the layer of powder. Thickness of the sintered layer varies from 0.74 to 1.55 mm, as the result of changing the laser processing conditions.

  12. Neural-estimator for the surface emission rate of atmospheric gases

    CERN Document Server

    Paes, F F

    2009-01-01

    The emission rate of minority atmospheric gases is inferred by a new approach based on neural networks. The neural network applied is the multi-layer perceptron with backpropagation algorithm for learning. The identification of these surface fluxes is an inverse problem. A comparison between the new neural-inversion and regularized inverse solution id performed. The results obtained from the neural networks are significantly better. In addition, the inversion with the neural netwroks is fster than regularized approaches, after training.

  13. Spatial atmospheric ALD of functional layers for CIGS Solar Cells

    NARCIS (Netherlands)

    Illiberi, A.; Frijters, C.; Balder, J.E.; Poodt, P.W.G.; Roozeboom, F.

    2015-01-01

    Spatial Atmosperic Atomic Layer Depositon combines the advantages of temporal ALD, i.e. excellent control of film composition and uniformity over large area substrates, with high growth rages (up tot nm/s). In this paper we present a short overview of our research acctivity carried out on S-ALD of f

  14. On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers

    DEFF Research Database (Denmark)

    Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert

    2011-01-01

    The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory...

  15. Chemical interactions between the present-day Martian atmosphere and surface minerals

    Science.gov (United States)

    Prinn, Ronald; Fegley, Bruce

    1987-01-01

    Thermochemical and photochemical reactions between surface minerals and present-day atmospheric constituents are predicted to produce microscopic effects on the surfaces of mineral grains. Relevant reactions hypothesized in the literature include conversions of silicates and volcanic glasses to clay minerals, conversion of ferrous to ferric compounds, and formation of carbonates, nitrates, and sulfates. These types of surface-atmosphere interactions are important for addressing issues such as chemical weathering of minerals, biological potential of the surface environment, and atmospheric stability in both present and past Martian epochs. It is emphasized that the product of these reactions will be observable and interpretable on the microscopic surface layers of Martian surface rocks using modern techniques with obvious implications for sample return from Mars. Macroscopic products of chemical weathering reactions in past Martian epochs are also expected in Martian surface material. These products are expected not only as a result of reactions similar to those proceeding today but also due to aqueous reactions in past epochs in which liquid water was putatively present. It may prove very difficult or impossible however to determine definitively from the relic macroscopic product alone either the exact weathering process which led to its formation or the identity of its weathered parent mineral. The enormous advantages of studying Martian chemical weathering by investigating the microscopic products of present-day chemical reactions on sample surfaces are very apparent.

  16. Chemical interactions between the present-day Martian atmosphere and surface minerals: Implications for sample return

    Science.gov (United States)

    Prinn, Ronald; Fegley, Bruce

    1988-01-01

    Thermochemical and photochemical reactions between surface minerals and present-day atmospheric constituents are predicted to produce microscopic effects on the surface of mineral grains. Relevant reactions hypothesized in the literature include conversions of silicates and volcanic glasses to clay minerals, conversion of ferrous to ferric compounds, and formation of carbonates, nitrates, and sulfates. These types of surface-atmosphere weathering of minerals, biological potential of the surface environment, and atmospheric stability in both present and past Martian epochs. It is emphasized that the product of these reactions will be observable and interpretable on the microscopic surface layers of Martian surface rocks using modern techniques with obvious implications for sample return from Mars. Macroscopic products of chemical weathering reactions in past Martian epochs are also expected in Martian surface materials. These products are expected not only as a result of reactions similar to those proceeding today but also due to aqueous reactions in past epochs in which liquid water was putatively present. It may prove very difficult or impossible, however, to determine definitively from the relic macroscopic product alone either the exact weathering process which led to its formation of the identity of its weathering parent mineral. The enormous advantages of studying the Martian chemical weathering by investigating the microscopic products of present-day chemical reactions on sample surfaces are very apparent.

  17. The diurnal evolution of 222Rn and its progeny in the atmospheric boundary layer during the Wangara experiment

    Directory of Open Access Journals (Sweden)

    S. Galmarini

    2007-06-01

    Full Text Available The diurnal atmospheric boundary layer evolution of the 222Rn decaying family is studied by using a state-of-the-art large-eddy simulation model. In particular, a diurnal cycle observed during the Wangara experiment is successfully simulated together with the effect of diurnal varying turbulent characteristics on radioactive compounds in a secular equilibrium. This study allows us to clearly analyze and identify the boundary layer processes driving the 222Rn and its progeny concentration behaviors. The activity disequilibrium observed in the nocturnal boundary layer is due to the proximity of the radon source and the trapping of fresh 222Rn close to the surface induced by the weak vertical transport. During the morning transition, the secular equilibrium is fast restored by the vigorous turbulent mixing. The evolution of 222Rn and its progeny concentration in the unsteady growing convective boundary layer depends on the strength of entrainment events.

  18. Current status and challenges in optical turbulence simulations in various layers of the Earth's atmosphere

    Science.gov (United States)

    He, Ping; Nunalee, Christopher G.; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.

    2014-10-01

    In this study, we present a brief review on the existing approaches for optical turbulence estimation in various layers of the Earth's atmosphere. The advantages and disadvantages of these approaches are also discussed. An alternative approach, based on mesoscale modeling with parameterized turbulence, is proposed and tested for the simulation of refractive index structure parameter (C2n ) in the atmospheric boundary layer. The impacts of a few atmospheric flow phenomena (e.g., low-level jets, island wake vortices, gravity waves) on optical turbulence are discussed. Consideration of diverse geographic settings (e.g., flat terrain, coastal region, ocean islands) makes this study distinct.

  19. Atomic and molecular layer deposition for surface modification

    Science.gov (United States)

    Vähä-Nissi, Mika; Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija; Johansson, Leena-Sisko; Koskinen, Jorma T.; Harlin, Ali

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas-solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin - even non-uniform - atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid.

  20. Surface modification of polymeric materials by cold atmospheric plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, K.G., E-mail: kostov@feg.unesp.br [Faculty of Engineering in Guaratinguetá–FEG, Universidade Estadual Paulista–UNESP Guaratiguetá, 12516-410, SP (Brazil); Nishime, T.M.C.; Castro, A.H.R. [Faculty of Engineering in Guaratinguetá–FEG, Universidade Estadual Paulista–UNESP Guaratiguetá, 12516-410, SP (Brazil); Toth, A. [Institute of Material and Environmental Chemistry, Hungarian Academy of Science P.O. Box 17, H-1525, Budapest (Hungary); Hein, L.R.O. [Faculty of Engineering in Guaratinguetá–FEG, Universidade Estadual Paulista–UNESP Guaratiguetá, 12516-410, SP (Brazil)

    2014-09-30

    Highlights: • We investigate polymer surface modification by atmospheric pressure plasma jet APPJ. • Jet operation conditions for uniform surface modification were determined. • The APPJ added O atoms to the polymer surface and also enhanced the roughness. • The degree of polymer surface modification by APPJ and DBD were compared. • The APPJ is more efficient in attaching O atoms and produces less polymer fragments. - Abstract: In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source – the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

  1. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Svendby, T.M.; Myhre, C.L.; Stebel, K.; Edvardsen, K; Orsolini, Y.; Dahlback, A.

    2012-07-01

    This is an annual report describing the activities and main results of the monitoring programme: Monitoring of the atmospheric ozone layer and natural ultraviolet radiation for 2011. 2011 was a year with generally low ozone values above Norway. A clear decrease in the ozone layer above Norway during the period 1979-1997 stopped after 1998 and the ozone layer above Norway seems now to have stabilized.(Author)

  2. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    A multilayered waveguide, which supports surface plasmon polaritons, is considered as an absorption modulator. The waveguide core consists of a silicon nitride layer and ultrathin layer with the varied carrier density embedded between two silver plates, which also serve as electrodes. Under...... package CST Microwave Studio in the frequency domain. We explore different permittivities of the ITO layer, which can be achieved by utilizing different anneal conditions. To increase transmittance and enhance modulation depth or efficiency, we propose to pattern the continuous active layer. Dependence...

  3. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Science.gov (United States)

    Mamede, Anne-Sophie; Nuns, Nicolas; Cristol, Anne-Lise; Cantrel, Laurent; Souvi, Sidi; Cristol, Sylvain; Paul, Jean-François

    2016-04-01

    In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8-12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe2O3 oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  4. Extreme Vertical Gusts in the Atmospheric Boundary Layer

    Science.gov (United States)

    2015-07-01

    with tornadogenesis [Mueller and Carbone (1987), Wilson (1986) and McCaul and Bluestein (1986)], although tornadoes are part of the hazard of...Burns, C. Nappo, R. Banta, R. Newsom and J. Cuxart (2002). CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bulletin of...Meteorology 64(1-2): 55-74. Wilson , J. W. (1986). Tornadogenesis by nonprecipitation induced wind shear lines. Monthly Weather Review 114(2): 270-284

  5. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Mamede, Anne-Sophie, E-mail: anne-sophie.mamede@ensc-lille.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Nuns, Nicolas, E-mail: nicolas.nuns@univ-lille1.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Cristol, Anne-Lise, E-mail: anne-lise.cristol@ec-lille.fr [University Lille, CNRS, Centrale Lille, Arts et Métiers Paris Tech, FRE 3723 – LML – Laboratoire de Mécanique de Lille, F-59000 Lille (France); Cantrel, Laurent, E-mail: laurent.cantrel@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); Souvi, Sidi, E-mail: sidi.souvi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); and others

    2016-04-30

    Graphical abstract: - Highlights: • Mutitechnique characterisation of oxidised 304L. • Oxidation at high temperature under steam and air conditions of 304L stainless steel. • Chromium and manganese oxides formed in the outer layer. • Oxide profiles differ in air or steam atmosphere. - Abstract: In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8–12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe{sub 2}O{sub 3} oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  6. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, He...

  7. Atmospheric mercury accumulation and washoff processes on impervious urban surfaces

    Science.gov (United States)

    Eckley, C.S.; Branfireun, B.; Diamond, M.; Van Metre, P.C.; Heitmuller, F.

    2008-01-01

    The deposition and transport of mercury (Hg) has been studied extensively in rural environments but is less understood in urbanized catchments, where elevated atmospheric Hg concentrations and impervious surfaces may efficiently deliver Hg to waterways in stormwater runoff. We determined the rate at which atmospheric Hg accumulates on windows, identified the importance of washoff in removing accumulated Hg, and measured atmospheric Hg concentrations to help understand the relationship between deposition and surface accumulation. The main study location was Toronto, Ontario. Similar samples were also collected from Austin, Texas for comparison of Hg accumulation between cities. Windows provided a good sampling surface because they are ubiquitous in urban environments and are easy to clean/blank allowing the assessment of contemporary Hg accumulation. Hg Accumulation rates were spatially variable ranging from 0.82 to 2.7 ng m-2 d-1 in Toronto and showed similar variability in Austin. The highest accumulation rate in Toronto was at the city center and was 5?? higher than the rural comparison site (0.58 ng m-2 d-1). The atmospheric total gaseous mercury (TGM) concentrations were less than 2?? higher between the rural and urban locations (1.7 ?? 0.3 and 2.7 ?? 1.1 ng m-3, respectively). The atmospheric particulate bound fraction (HgP), however, was more than 3?? higher between the rural and urban sites, which may have contributed to the higher urban Hg accumulation rates. Windows exposed to precipitation had 73 ?? 9% lower accumulation rates than windows sheltered from precipitation. Runoff collected from simulated rain events confirmed that most Hg accumulated on windows was easily removed and that most of the Hg in washoff was HgP. Our results indicate that the Hg flux from urban catchments will respond rapidly to changes in atmospheric concentrations due to the mobilization of the majority of the surface accumulated Hg during precipitation events. ?? 2008 Elsevier

  8. Planetary boundary layer depth in Global climate models induced biases in surface climatology

    CERN Document Server

    Davy, Richard

    2014-01-01

    The Earth has warmed in the last century with the most rapid warming occurring near the surface in the arctic. This enhanced surface warming in the Arctic is partly because the extra heat is trapped in a thin layer of air near the surface due to the persistent stable-stratification found in this region. The warming of the surface air due to the extra heat depends upon the amount of turbulent mixing in the atmosphere, which is described by the depth of the atmospheric boundary layer (ABL). In this way the depth of the ABL determines the effective response of the surface air temperature to perturbations in the climate forcing. The ABL depth can vary from tens of meters to a few kilometers which presents a challenge for global climate models which cannot resolve the shallower layers. Here we show that the uncertainties in the depth of the ABL can explain up to 60 percent of the difference between the simulated and observed surface air temperature trends and 50 percent of the difference in temperature variability...

  9. Erosion resistance of Fe-C-Cr weld surfacing layers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fe-C-Cr weld surfacing layers with different compositions and microstructures can be obtained by submerged arc welding with welding wire of the low carbon steel and high alloy bonded flux. With the increase of Cr and C in the layers the microstructures are changed from hypoeutectoid steel, hypereutectoid steel to hypoeutectic iron and hypereutectic iron. When the weld surfacing layers belong to the alloyed cast irons the erosion resistance can be raised with the eutectic increase and the austenite decrease. Good erosion resistance can be obtained when the proportion of the primary carbides is within 10 %. The experimental results lay a foundation to make double-metal percussive plates by surfacing wear resistant layers on the substrates of the low carbon steels.

  10. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    H. Giordani

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  11. Heat and Moisture Transport in the Atmospheric Boundary Layer.

    Science.gov (United States)

    1987-01-05

    rapid distortion theory by considering the ’image’ of the eddies in the boundary (Goldstein & Durbin , 1980). The same techniques could be applied to...Fitzjarald, D.J. (1983) Katabatic wind in opposing flow NCAR3123-83/1 Goldstein, M.E. & Durbin , P.A. (1980) J. Fluid Mech. 98, 473. Geiger, R. (1965) The...Foldvick (1962), S -S (2.6a) or algebraically : S - SO (h m/Z) where N0 and U are the values at the height hm of the mid- dle layer, and hi is the vertical

  12. First-order chemistry in the surface-flux layer

    DEFF Research Database (Denmark)

    Kristensen, L.; Andersen, C.E.; Ejsing Jørgensen, Hans

    1997-01-01

    We have discussed the behavior of a non-conserved scalar in the stationary, horizontally homogeneous, neutral surface-flux layer and, on the basis of conventional second-order closure, derived analytic expressions for flux and for mean concentration of a gas, subjected to a first-order removal...... process, The analytic flux solution showed a clear deviation from the constant flux, characterizing a conserved scalar in the surface-flux layer. It decreases with height and is reduced by an order of magnitude of the surface flux at a height equal to about the typical mean distance a molecule can travel...

  13. Surface Modification of Electrospun PVDF/PAN Nanofibrous Layers by Low Vacuum Plasma Treatment

    OpenAIRE

    Fatma Yalcinkaya; Baturalp Yalcinkaya; Adam Pazourek; Jana Mullerova; Martin Stuchlik; Jiri Maryska

    2016-01-01

    Nanofibres are very promising for water remediation due to their high porosity and small pore size. Mechanical properties of nanofibres restrict the application of pressure needed water treatments. Various PAN, PVDF, and PVDF/PAN nanofibre layers were produced, and mechanical properties were improved via a lamination process. Low vacuum plasma treatment was applied for the surface modification of nanofibres. Atmospheric air was used to improve hydrophilicity while sulphur hexafluoride gas was...

  14. Thin-layer chromatography and mass spectrometry coupled using proximal probe thermal desorption with electrospray or atmospheric pressure chemical ionization.

    Science.gov (United States)

    Ovchinnikova, Olga S; Van Berkel, Gary J

    2010-06-30

    An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high-performance thin-layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read-out resolution, detection limits, and surface type are discussed.

  15. Atmospheric Microplasma Application for Surface Modification of Biomaterials

    Science.gov (United States)

    Shimizu, Kazuo; Fukunaga, Hodaka; Tatematsu, Shigeki; Blajan, Marius

    2012-11-01

    Atmospheric microplasma has been intensively studied for applications in various fields, since in this technology the generated field is only 1 kV (approx) under atmospheric pressure and a dielectric barrier discharge gap of 10 to 100 µm. A low discharge voltage atmospheric plasma process is an economical and effective solution for various applications such as indoor air control including sterilization, odor removal, and surface treatment, and would be suitable for medical applications in the field of plasma life sciences. In this paper, we present the application of microplasma for the surface treatment of materials used in medical fields. Moreover, a biomaterial composed of L-lactic acid is used in experiments, which can be biodecomposed in the human body after medical operations. The surface modification process was carried out with active species generated between the microplasma electrodes, which were observed by emission spectrometry. Microplasma treatment of a polymer sheet using Ar as the process gas decreased the contact angle of a water droplet at the surface of the polymer from 78.3 to 45.6° in 10 s, indicating improved surface adhesive characteristics.

  16. Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhang; He, Wenjie; Duan, Chenlong [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Chen, Rong, E-mail: rongchen@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Shan, Bin [State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2016-01-15

    Spatial atomic layer deposition (SALD) is a promising technology with the aim of combining the advantages of excellent uniformity and conformity of temporal atomic layer deposition (ALD), and an industrial scalable and continuous process. In this manuscript, an experimental and numerical combined model of atmospheric SALD system is presented. To establish the connection between the process parameters and the growth efficiency, a quantitative model on reactant isolation, throughput, and precursor utilization is performed based on the separation gas flow rate, carrier gas flow rate, and precursor mass fraction. The simulation results based on this model show an inverse relation between the precursor usage and the carrier gas flow rate. With the constant carrier gas flow, the relationship of precursor usage and precursor mass fraction follows monotonic function. The precursor concentration, regardless of gas velocity, is the determinant factor of the minimal residual time. The narrow gap between precursor injecting heads and the substrate surface in general SALD system leads to a low Péclet number. In this situation, the gas diffusion act as a leading role in the precursor transport in the small gap rather than the convection. Fluid kinetics from the numerical model is independent of the specific structure, which is instructive for the SALD geometry design as well as its process optimization.

  17. Unsteady Flow in Different Atmospheric Boundary Layer Regimes and Its Impact on Wind-Turbine Performance

    Science.gov (United States)

    Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu

    2016-11-01

    Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.

  18. Scaling structure of the velocity statistics in atmospheric boundary layers

    CERN Document Server

    Kurien, S; Procaccia, I; Sreenivasan, K R; Kurien, Susan; L'vov, Victor S.; Procaccia, Itamar

    2000-01-01

    The statistical objects characterizing turbulence in real turbulent flows differ from those of the ideal homogeneous isotropic model.They containcontributions from various 2d and 3d aspects, and from the superposition ofinhomogeneous and anisotropic contributions. We employ the recently introduceddecomposition of statistical tensor objects into irreducible representations of theSO(3) symmetry group (characterized by $j$ and $m$ indices), to disentangle someof these contributions, separating the universal and the asymptotic from the specific aspects of the flow. The different $j$ contributions transform differently under rotations and so form a complete basis in which to represent the tensor objects under study. The experimental data arerecorded with hot-wire probes placed at various heights in the atmospheric surfacelayer. Time series data from single probes and from pairs of probes are analyzed to compute the amplitudes and exponents of different contributions to the second order statistical objects characte...

  19. Layer-by-layer deposition of oppositely charged polyelectrolytes on the surface of condensed DNA particles.

    Science.gov (United States)

    Trubetskoy, V S; Loomis, A; Hagstrom, J E; Budker, V G; Wolff, J A

    1999-08-01

    DNA can be condensed with an excess of poly-cations in aqueous solutions forming stable particles of submicron size with positive surface charge. This charge surplus can be used to deposit alternating layers of polyanions and polycations on the surface surrounding the core of condensed DNA. Using poly-L-lysine (PLL) and succinylated PLL (SPLL) as polycation and polyanion, respectively, we demonstrated layer-by-layer architecture of the particles. Polyanions with a shorter carboxyl/backbone distance tend to disassemble binary DNA/PLL complexes by displacing DNA while polyanions with a longer carboxyl/backbone distance effectively formed a tertiary complex. The zeta potential of such complexes became negative, indicating effective surface recharging. The charge stoichiometry of the DNA/PLL/SPLL complex was found to be close to 1:1:1, resembling poly-electrolyte complexes layered on macrosurfaces. Recharged particles containing condensed plasmid DNA may find applications as non-viral gene delivery vectors.

  20. Atmospheric moisture supersaturation in the near-surface atmosphere at Dome C, Antarctic Plateau

    Science.gov (United States)

    Genthon, Christophe; Piard, Luc; Vignon, Etienne; Madeleine, Jean-Baptiste; Casado, Mathieu; Gallée, Hubert

    2017-01-01

    Supersaturation often occurs at the top of the troposphere where cirrus clouds form, but is comparatively unusual near the surface where the air is generally warmer and laden with liquid and/or ice condensation nuclei. One exception is the surface of the high Antarctic Plateau. One year of atmospheric moisture measurement at the surface of Dome C on the East Antarctic Plateau is presented. The measurements are obtained using commercial hygrometry sensors modified to allow air sampling without affecting the moisture content, even in the case of supersaturation. Supersaturation is found to be very frequent. Common unadapted hygrometry sensors generally fail to report supersaturation, and most reports of atmospheric moisture on the Antarctic Plateau are thus likely biased low. The measurements are compared with results from two models implementing cold microphysics parameterizations: the European Center for Medium-range Weather Forecasts through its operational analyses, and the Model Atmosphérique Régional. As in the observations, supersaturation is frequent in the models but the statistical distribution differs both between models and observations and between the two models, leaving much room for model improvement. This is unlikely to strongly affect estimations of surface sublimation because supersaturation is more frequent as temperature is lower, and moisture quantities and thus water fluxes are small anyway. Ignoring supersaturation may be a more serious issue when considering water isotopes, a tracer of phase change and temperature, largely used to reconstruct past climates and environments from ice cores. Because observations are easier in the surface atmosphere, longer and more continuous in situ observation series of atmospheric supersaturation can be obtained than higher in the atmosphere to test parameterizations of cold microphysics, such as those used in the formation of high-altitude cirrus clouds in meteorological and climate models.

  1. Cleaning of carbon materials from flat surfaces and castellation gaps by an atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Stancu, C. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Str. 409, PO Box Mg36, Magurele-Bucharest, 077125 (Romania); Alegre, D. [Laboratorio Nacional de Fusión, As. Euratom/Ciemat, Avda. Complutense 22, 28040, Madrid (Spain); Ionita, E.R.; Mitu, B. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Str. 409, PO Box Mg36, Magurele-Bucharest, 077125 (Romania); Grisolia, C. [CEA, IRFM, F-13108, Saint-Paul-lez-Durance (France); Tabares, F.L. [Laboratorio Nacional de Fusión, As. Euratom/Ciemat, Avda. Complutense 22, 28040, Madrid (Spain); Dinescu, G., E-mail: dinescug@infim.ro [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Str. 409, PO Box Mg36, Magurele-Bucharest, 077125 (Romania)

    2016-02-15

    Highlights: • Atmospheric plasma jets operated with nitrogen, oxygen and their mixtures are used for cleaning surfaces of carbon residues • Efficient plasma jet cleaning of carbon deposits from flat surfaces and inside gaps of castellated surfaces is demonstrated • Plasma jet cleaning is more effective at the gaps entrance and on their bottom - Abstract: A study of the removal of carbon layers from flat and castellated surfaces by a plasma jet source operated in open atmosphere is presented. Amorphous hydrogenated carbon films deposited on silicon substrates, on aluminium made castellated surfaces, and graphitic carbon plates were used. The erosion effects of plasmas generated either in pure argon, nitrogen or in their mixtures with hydrogen, ammonia, oxygen are compared. Highest erosion was obtained with nitrogen and nitrogen/oxygen plasmas. Plasmas in argon and containing hydrogen, and ammonia have shown a low erosion rate. A large removal rate by pure nitrogen plasma jet of 3.2 mg/min was found by scanning graphitic carbon flat surfaces for optimum process parameters. Adding small quantities of oxygen led to a removal rate enhancement by a factor of 3. Finally, the integral removal rate of amorphous hydrogenated carbon deposited in gaps 23 mm deep and 0.5 mm wide was of the order of 0.35 mg/min. The layer elimination was more efficient at the top and at the bottom of the gaps, precisely where the thickest codeposits develop in a nuclear fusion device.

  2. Structure and deuterium retention properties of tungsten layers deposited by plasma sputtering in a mixed atmosphere of D2 and He

    Science.gov (United States)

    Tang, X. H.; Shi, L. Q.; O'Connor, D. J.; King, B.

    2014-03-01

    The influence of the deposition conditions on the surface morphology, crystal structure and deuterium retention of the tungsten layers formed by rf magnetron plasma sputtering in mixed atmosphere of D2, He and Ar, has been carried out. Helium containing deuterated tungsten layers (named He-WDx) on Cu/Si substrate demonstrate serious film damages with zones of cracks, fractures, flaking-off and large surface blisters. However, these kinds of damages do not happen on the He-WDx layers performed on mechanically polished polycrystalline Cu substrates because of larger surface roughness of the substrates. The crystal structure of the W layer greatly changes with the additional He in the layer, and large amounts of defects resulting in lattice expansion and X-diffraction peak broadening were produced in the W crystal. He in the W layer has direct impacts on D retention. Both D and He concentrations vary simultaneously with He fraction, attached negative bias and substrate temperature.

  3. Laser alloying of the plain carbon steel surface layer

    Directory of Open Access Journals (Sweden)

    A. Radziszewska

    2008-07-01

    Full Text Available As an example of the types of features observed after laser alloying, the addition of Ta to mild carbon steel is described. The system is of interest because such alloying is beneficial in improving surface related properties. The paper describes the microstructure and properties (phase and chemical composition, microhardness of the laser alloyed surface layer. In the investigation the optical microscope, the scanning electron microscope (SEM, chemical (EDS microanalysis composition and microhardness testing methods have been used. Specimens of 0,17 %C plain steel were coated with Ta powder layers. The paints containing organic components were used as the binders during deposition of Ta powder layers on the sample surface. The thickness of Ta deposited layers amounted to 0,16 mm. The specimens were then swept through high power (of nominal power 2,5 kW CW CO2 laser radiation at different speeds.The surface alloyed layers varied in microstructure consisted of fiber like Ta2C + γ eutectics, chemical composition and microhardness. The EDS analyses revealed the enrichment of tantalum in the laser alloyed zone (LAZ. The changes of process parameters had an influence on the hardness of alloyed surface layers: by increasing scanning velocity (from 12 mm/s to 20 mm/s and decreasing laser power (from 1,8 kW to 1,35 kW, the hardness diminished. The wear tests were also carried out which showed that laser alloying of plain carbon steel surface layer led to improvement of their wear resistance.

  4. Method for producing functionally graded nanocrystalline layer on metal surface

    Science.gov (United States)

    Ajayi, Oyelayo O.; Hershberger, Jeffrey G.

    2010-03-23

    An improved process for the creation or formation of nanocrystalline layers on substrates' surfaces is provided. The process involves "prescuffing" the surface of a substrate such as a metal by allowing friction to occur on the surface by a load-bearing entity making rubbing contact and moving along and on the substrate's surface. The "prescuffing" action is terminated when the coefficient of friction between the surface and the noise is rising significantly. Often, the significant rise in the coefficient of friction is signaled by a change in pitch of the scuffing action sound emanating from the buffeted surface. The "prescuffing" gives rise to a harder and smoother surface which withstands better any inadequate lubrication that may take place when the "prescuffed" surface is contacted by other surfaces.

  5. Surface modification of polymeric materials by cold atmospheric plasma jet

    Science.gov (United States)

    Kostov, K. G.; Nishime, T. M. C.; Castro, A. H. R.; Toth, A.; Hein, L. R. O.

    2014-09-01

    In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source - the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

  6. Initial multi-parameter detection of atmospheric metal layers by Beijing Na-K lidar

    Science.gov (United States)

    Jiao, Jing; Yang, Guotao; Wang, Jihong; Cheng, Xuewu; Du, Lifang; Wang, Zelong; Gong, Wei

    2017-02-01

    Beijing Na-K lidar has been started running in 2010. This lidar has two laser beams: one dye laser emits a 589-nm laser beam for Na layer detection; the other dye laser emits a 770-nm laser beam for K layer detection. Under similar conditions, the echo signal of K layer is only about 2 orders of magnitude smaller than that of Na layer. This lidar has a sufficient Signal Noise Ratio (SNR). The structure and details of potassium layer can be effectively distinguished from a single original echo. Several examples of co-observation of density of Na and K layer showed some different results with previous studies. This lidar not only can supplement the lack of Na and K layer observation at this latitude region, but also provide evidence for the atmospheric sciences and space environment monitoring.

  7. The Effect of Free-Atmosphere Stratification on Boundary-Layer Flow and Power Output from Very Large Wind Farms

    Directory of Open Access Journals (Sweden)

    Fernando Porté-Agel

    2013-04-01

    Full Text Available Large-eddy simulation is used to study the influence of free-atmosphere stratification on the structure of atmospheric boundary-layer flow inside and above very large wind farms, as well as the power extracted by the wind turbines. In the simulations, tuning-free Lagrangian scale-dependent dynamic models are used to model the subgrid-scale turbulent fluxes, while the turbine-induced forces are parameterized with an actuator-disk model. It is shown that for a given surface cover (with and without turbines thermal stratification of the free atmosphere reduces the entrainment from the flow above compared with the unstratified case, leading to lower boundary-layer depth. Due to the fact that in very large wind farms vertical energy transport associated with turbulence is the only source of kinetic energy, lower entrainment leads to lower power production by the wind turbines. In particular, for the wind-turbine arrangements considered in the present work, the power output from the wind farms is reduced by about 35% when the potential temperature lapse rate in the free atmosphere increases from 1 to 10 K/km (within the range of values typically observed in the atmosphere. Moreover, it is shown that the presence of the turbines has significant effect on the growth of the boundary layer. Inspired by the obtained results, a simple one-dimensional model is developed to account for the effect of free-atmosphere stability on the mean flow and the power output from very large wind farms.

  8. Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean

    Science.gov (United States)

    Arrieta, Jesús M.; Duarte, Carlos M.; Sala, M. Montserrat; Dachs, Jordi

    2016-01-01

    Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget. PMID:26834717

  9. Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean

    KAUST Repository

    Arrieta, Jesus

    2016-01-20

    Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget.

  10. Observational description of the atmospheric and oceanic boundary layers over the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Marcelo Dourado

    2001-01-01

    Full Text Available Time evolution of atmospheric and oceanic boundary layers are described for an upwelling region in the Atlantic Ocean located in Cabo Frio, Brazil (23°00'S, 42°08'W. The observations were obtained during a field campaign carried out by the "Instituto de Estudos do Mar Almirante Paulo Moreira", on board of the oceanographic ship Antares of the Brazilian Navy, between July 7 and 10 of 1992. The analysis shown here was based on 19 simultaneous vertical soundings of atmosphere and ocean, carried out consecutively every 4 hours. The period of observation was characterized by a passage of a cold front that penetrated in Cabo Frio on July 6. During the cold front passage the vertical extension of atmospheric (and oceanic mixed layer varied from 200 m (and 13 m to 1000 m (and 59 m. These changes occurred in the first day of observation and were followed by an increase of 1.2°C in the oceanic mixed layer temperature and by a decrease of 6 K and 6 g/kg in the virtual potential temperature and specific humidity of the atmospheric mixed layer. The short time scale variations in the ocean can be explained in terms of the substitution of cold upwelling water by warm downwelling water regime, as the surface winds shift from pre-frontal NE to post-frontal SSW during the cold front passage in Cabo Frio. The large vertical extent of the atmospheric mixed layer can be explained in terms of an intensification of the thermal mixing induced by the warming of the oceanic upper layers combined with the cooling of the lower atmospheric layers during the cold front passage. An intensification of the mechanical mixing, observed during the cold front passage, may also be contributing to the observed variations in the vertical extent of both layers.A evolução temporal das camadas limites atmosféricas e oceânicas são descritas para a região de ressurgência do Oceano Atlântico localizada em Cabo Frio. As observações foram obtidas durante a campanha de medidas

  11. Atomic and molecular layer deposition for surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Johansson, Leena-Sisko, E-mail: leena-sisko.johansson@aalto.fi [Aalto University, School of Chemical Technology, Department of Forest Products Technology, PO Box 16100, FI‐00076 AALTO (Finland); Koskinen, Jorma T.; Harlin, Ali [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland)

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  12. NOAA Climate Data Record (CDR) of Ocean Near Surface Atmospheric Properties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature, near-surface atmospheric properties, and heat fluxes....

  13. The surface layer observed by a high-resolution sodar at DOME C, Antarctica

    Directory of Open Access Journals (Sweden)

    Stefania Argentini

    2014-01-01

    Full Text Available One year field experiment has started on December 2011 at the French - Italian station of Concordia at Dome C, East Antarctic Plateau. The objective of the experiment is the study of the surface layer turbulent processes under stable/very stable stratifications, and the mechanisms leading to the formation of the warming events. A sodar was improved to achieve the vertical/time resolution needed to study these processes. The system, named Surface Layer sodar (SL-sodar, may operate both in high vertical resolution (low range and low vertical resolution (high range modes. In situ turbulence and radiation measurements were also provided in the framework of this experiment. A few preliminary results, concerning the standard summer diurnal cycle, a summer warming event, and unusually high frequency boundary layer atmospheric gravity waves are presented.

  14. Surface modes in sheared boundary layers over impedance linings

    Science.gov (United States)

    Brambley, E. J.

    2013-08-01

    Surface modes, being duct modes localized close to the duct wall, are analysed within a lined cylindrical duct with uniform flow apart from a thin boundary layer. As well as full numerical solutions of the Pridmore-Brown equation, simplified mathematical models are given where the duct lining and boundary layer are lumped together and modelled using a single boundary condition (a modification of the Myers boundary condition previously proposed by the author), from which a surface mode dispersion relation is derived. For a given frequency, up to six surface modes are shown to exist, rather than the maximum of four for uniform slipping flow. Not only is the different number and behaviour of surface modes important for frequency-domain mode-matching techniques, which depend on having found all relevant modes during matching, but the thin boundary layer is also shown to lead to different convective and absolute stability than for uniform slipping flow. Numerical examples are given comparing the predictions of the surface mode dispersion relation to full solutions of the Pridmore-Brown equation, and the accuracy with which surface modes are predicted is shown to be significantly increased compared with the uniform slipping flow assumption. The importance of not only the boundary layer thickness but also its profile (tanh or linear) is demonstrated. A Briggs-Bers stability analysis is also performed under the assumption of a mass-spring-damper or Helmholtz resonator impedance model.

  15. Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Antończak, Arkadiusz J., E-mail: arkadiusz.antonczak@pwr.edu.pl [Laser and Fiber Electronics Group, Faculty of Electrical Engineering, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Skowroński, Łukasz; Trzcinski, Marek [Institute of Mathematics and Physics, University of Technology and Life Sciences, Kaliskiego 7, 85-789 Bydgoszcz (Poland); Kinzhybalo, Vasyl V. [Wroclaw Research Centre EIT+, Stabłowicka 147, 54-066 Wrocław (Poland); Institute of Low Temperature and Structure Research, Okólna 2, 50-422 Wrocław (Poland); Łazarek, Łukasz K.; Abramski, Krzysztof M. [Laser and Fiber Electronics Group, Faculty of Electrical Engineering, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-01-15

    Highlights: • Chemical structure of the films induced by laser on titanium surface was analyzed. • It was shown that outer layer of this films consist of oxides doped with nitrogen. • The optical properties of the laser-induced oxynitride films were characterized. • We found that the films demonstrated significant absorption in the band of 300–580 nm. • The morphology of the layers as a function of the laser fluence was investigated. - Abstract: This paper presents the results of the analysis of the complex chemical structure of the layers made on titanium in the process of the heating of its surfaces in an atmospheric environment, by irradiating samples with a nanosecond-pulsed laser. The study was carried out for electroplated, high purity, polycrystalline titanium substrates using a Yb:glass fiber laser. All measurements were made for samples irradiated in a broad range of accumulated fluence, below the ablation threshold. It has been determined how the complex index of refraction of both the oxynitride layers and the substrate vary as a function of accumulated laser fluence. It was also shown that the top layer of the film produced on titanium, which is transparent, is not a pure TiO{sub 2} as had been supposed before. The XPS and XRD analyses confirmed the presence of nitrogen compounds and the existence of nonstoichiometric compounds. By sputtering of the sample's surface using an Ar{sup +} ion gun, the changes in the concentration of individual elements as a function of the layer's cross-section were determined. Lastly, an analysis of the surface morphology has also been carried out, explaining why the layers crack and exfoliate from their substrate.

  16. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    Directory of Open Access Journals (Sweden)

    J. Lauros

    2010-08-01

    Full Text Available We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the vertical profile of particle number distribution does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by biosphere.

    Simulation of aerosol concentration inside the atmospheric boundary layer during nucleation days shows highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated suitability of our turbulent mixing scheme in reproducing most important characteristics of particle dynamics inside the atmospheric boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles at the lowest part of the atmospheric boundary layer.

  17. Rocket dust storms and detached layers in the Martian atmosphere

    CERN Document Server

    Spiga, Aymeric; Madeleine, Jean-Baptiste; Määttänen, Anni; Forget, François

    2012-01-01

    Airborne dust is the main climatic agent in the Martian environment. Local dust storms play a key role in the dust cycle; yet their life cycle is poorly known. Here we use mesoscale modeling with radiatively-active transported dust to predict the evolution of a local dust storm monitored by OMEGA on board Mars Express. We show that the evolution of this dust storm is governed by deep convective motions. The supply of convective energy is provided by the absorption of incoming sunlight by dust particles, in lieu of latent heating in moist convection on Earth. We propose to use the terminology "rocket dust storm", or conio-cumulonimbus, to describe those storms in which rapid and efficient vertical transport takes place, injecting dust particles at high altitudes in the Martian troposphere (30 to 50 km). Combined to horizontal transport by large-scale winds, rocket dust storms form detached layers of dust reminiscent of those observed with instruments on board Mars Global Surveyor and Mars Reconnaissance Orbite...

  18. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    Science.gov (United States)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from composite, stainless steel type 410, and aluminum alloy 2024 was demonstrated with the atmospheric pressure helium-oxygen plasma. All surfaces studied were converted from a hydrophobic state with a water contact angle of 65° to 80° into a hydrophilic state with a water contact angle between 20° and 40° within 5 seconds of plasma exposure. X-ray photoelectron spectroscopy confirmed that the carbon atoms on the carbon-fiber/epoxy composite were oxidized, yielding 17 atom% carboxylic acid groups, 10% ketones or aldehydes and 9% alcohols. Analysis of stainless steel and aluminum by XPS illustrate oxidation of the metal

  19. Assessment of thermal structure of boundary layer atmosphere of Western Siberia

    OpenAIRE

    Akhmetshina, Anna

    2013-01-01

    The assessment of frequency of temperature inversions makes it possible to investigate the probability of coincidence of unfavorable conditions of atmospheric stratification and the results of the intensive business activity. This paper is devoted to the study of thermal structure of the atmosphere boundary layer of Western Siberian territory in the period from 1990 to 2010 by using reanalysis of NCEP/NCAR data. The data of reanalysis is the only available information for similar research. Ba...

  20. Water content distribution in the surface layer of Maoping slope

    Institute of Scientific and Technical Information of China (English)

    LIU Yuewu; CHEN Huixin; LIU Qingquan; GONG Xin; ZHANG Dawei; LI Lianxiang

    2005-01-01

    The water content distribution in the surface layer of Maoping slope has been studied by testing the water content at 31 control sites. The water content profiles at these sites have also been determined. The water content distributions at different segments have been obtained by using the Kriging method of geostatistics. By comparing the water content distributions with the landform of the slope, it was shown that the water content is closely dependent on the landform of the slope. The water content distribution in the surface layer provided a fundamental basis for landslide predication and treatment.

  1. Stress distribution and surface instability of an inclined granular layer

    Institute of Scientific and Technical Information of China (English)

    Zheng He-Peng; Jiang Yi-Min; Peng Zheng

    2013-01-01

    Static granular materials may avalanche suddenly under continuous quasi-static drives.This phenomenon,which is important in many engineering applications,can be explained by analyzing the stability of the elastic solutions.We show this for a granular layer driven by its inclination angle in gravity,where the elastic problem can be solved generally and analytically.It is found that a loss of stability may occur only at the free surface of the layer.This result is considered to be relevant for understanding surface avalanches and the flows observed experimentally.

  2. Wetting layer of copper on the tantalum (001) surface

    Science.gov (United States)

    Dupraz, Maxime; Poloni, Roberta; Ratter, Kitti; Rodney, David; De Santis, Maurizio; Gilles, Bruno; Beutier, Guillaume; Verdier, Marc

    2016-12-01

    The heteroepitaxial interface formed by copper deposited onto the tantalum (001) surface is studied by surface x-ray diffraction and ab initio calculations. The analysis of the crystal truncation rods reveals the presence of a wetting layer of copper made of two atomic planes pseudomorphic to the tantalum substrate, with the upper most atomic planes significantly deformed. These findings are in total agreement with the results of density-functional-theory calculations. The presence of the wetting layer confirms a Stranski-Krastanov growth mode and is thought to explain the extremely fast atomic diffusion of copper during the dewetting process in the solid state at high temperature.

  3. The Aggregate behavior of branch points--measuring the number and velocity of atmospheric turbulence layers.

    Science.gov (United States)

    Oesch, Denis W; Sanchez, Darryl J; Matson, Charles L

    2010-10-11

    Optical waves propagating through atmospheric turbulence develop spatial and temporal variations in their phase. For sufficiently strong turbulence, these phase differences can lead to interference in the propagating wave and the formation of branch points; positions of zero amplitude. Under the assumption of a layered turbulence model, we show that these branch points can be used to estimate the number and velocities of atmospheric layers. We describe how to carry out this estimation process and demonstrate its robustness in the presence of sensor noise.

  4. Studies on Aerosols in the Marine Atmospheric Surface Layer

    OpenAIRE

    Leeuw, G. de; Eijk, A.M.J. van; Dekker, H.

    1992-01-01

    The work performed in 1992 in the framework of the EUROTRAC subproject ASE was mainly focused on three topics. The first was the extension of the modified CLUSE numerical model [Rouault et al., 1991; De Leeuw et al., 1992a] to over-ocean conditions. The modifications in the new code (SEACLUSE) include the influence of waves on the air flow and the evaporation of salt-water droplets. The second aim was to finalize the analysis of the TWO-PIE experimental data on tracer aerosol deposition on wa...

  5. Critical heat flux maxima resulting from the controlled morphology of nanoporous hydrophilic surface layers

    Science.gov (United States)

    Tetreault-Friend, Melanie; Azizian, Reza; Bucci, Matteo; McKrell, Thomas; Buongiorno, Jacopo; Rubner, Michael; Cohen, Robert

    2016-06-01

    Porous hydrophilic surfaces have been shown to enhance the critical heat flux (CHF) in boiling heat transfer. In this work, the separate effects of pore size and porous layer thickness on the CHF of saturated water at atmospheric pressure were experimentally investigated using carefully engineered surfaces. It was shown that, for a fixed pore diameter (˜20 nm), there is an optimum layer thickness (˜2 μm), for which the CHF value is maximum, corresponding to ˜115% enhancement over the value for uncoated surfaces. Similarly, a maximum CHF value (˜100% above the uncoated surface CHF) was observed while changing the pore size at a constant layer thickness (˜1 μm). To explain these CHF maxima, we propose a mechanistic model that can capture the effect of pore size and pore thickness on CHF. The good agreement found between the model and experimental data supports the hypothesis that CHF is governed by the competition between capillary wicking, viscous pressure drop and evaporation, as well as conduction heat transfer within the porous layer. The model can be used to guide the development of engineered surfaces with superior boiling performance.

  6. An Estimation of Turbulent Kinetic Energy and Energy Dissipation Rate Based on Atmospheric Boundary Layer Similarity Theory

    Science.gov (United States)

    Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)

    2000-01-01

    Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.

  7. Non-steady dynamics of atmospheric turbulence interaction with wind turbine loadings through blade-boundary-layer-resolved CFD

    Science.gov (United States)

    Vijayakumar, Ganesh

    Modern commercial megawatt-scale wind turbines occupy the lower 15-20% of the atmospheric boundary layer (ABL), the atmospheric surface layer (ASL). The current trend of increasing wind turbine diameter and hub height increases the interaction of the wind turbines with the upper ASL which contains spatio-temporal velocity variations over a wide range of length and time scales. Our interest is the interaction of the wind turbine with the energetic integral-scale eddies, since these cause the largest temporal variations in blade loadings. The rotation of a wind turbine blade through the ABL causes fluctuations in the local velocity magnitude and angle of attack at different sections along the blade. The blade boundary layer responds to these fluctuations and in turn causes temporal transients in local sectional loads and integrated blade and shaft bending moments. While the integral scales of the atmospheric boundary layer are ˜ O(10--100m) in the horizontal with advection time scales of order tens of seconds, the viscous surface layer of the blade boundary layer is ˜ O(10 -- 100 mum) with time scales of order milliseconds. Thus, the response of wind turbine blade loadings to atmospheric turbulence is the result of the interaction between two turbulence dynamical systems at extremely disparate ranges of length and time scales. A deeper understanding of this interaction can impact future approaches to improve the reliability of wind turbines in wind farms, and can underlie future improvements. My thesis centers on the development of a computational framework to simulate the interaction between the atmospheric and wind turbine blade turbulence dynamical systems using a two step one-way coupled approach. Pseudo-spectral large eddy simulation (LES) is used to generate a true (equilibrium) atmospheric boundary layer over a flat land with specified surface roughness and heating consistent with the stability state of the daytime lower troposphere. Using the data from the

  8. The Zodiacal Cloud Model applied to the Martian atmosphere. Diurnal variations in Meteoric ion layers

    Science.gov (United States)

    Diego Carrillo-Sánchez, Juan; Plane, John M. C.; Withers, Paul; Fallows, Kathryn; Nesvorný, David; Pokorný, Petr; Feng, Wuhu

    2016-04-01

    Sporadic metal layers have been detected in the Martian atmosphere by radio occultation measurements using the Mars Express Orbiter and Mars Global Surveyor spacecraft. More recently, metallic ion layers produced by the meteor storm event following the close encounter between Comet Siding Spring (C/2013 A1) and Mars were identified by the Imaging UltraViolet Spectrograph (IUVS) aboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. However, the background metal layers produced by the influx of sporadic meteors have not yet been detected at Mars (contrary to the permanent metal layers identified in the Earth's atmosphere). The Zodiacal Dust Cloud (ZDC) model for particle populations released by asteroids (AST), and dust grains from Jupiter Family Comets (JFC) and Halley-Type Comets (HTC) has been combined with a Monte Carlo sampling method and the Chemical ABlation MODel (CABMOD) to predict the ablation rates of Na, K, Fe, Si, Mg, Ca and Al above 40 km altitude in the Martian atmosphere. CABMOD considers the standard treatment of meteor physics, including the balance of frictional heating by radiative losses and the absorption of heat energy through temperature increases, melting phase transitions and vaporization, as well as sputtering by inelastic collisions with the air molecules. These vertical profiles are input into the Leeds 1-D Mars atmospheric model which includes photo-ionization, and gas-phase ion-molecule and neutral chemistry, in order to explore the evolution of the resulting metallic ions and atoms. We conclude that the formation of the sporadic ion layers observed below 100 km with a plasma density exceeding 104 cm-3 requires the combination of the three different influx sources considered by the ZDC model, with a significant asteroidal contribution. Finally, we explore the changes of the neutral and ionized Mg and Fe layers over a diurnal cycle.

  9. Body surface adaptations to boundary-layer dynamics

    NARCIS (Netherlands)

    Videler, J.J.

    1995-01-01

    Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins, sca

  10. Quantized layer growth at liquid-crystal surfaces

    DEFF Research Database (Denmark)

    Ocko, B. M.; Braslau, A.; Pershan, P. S.

    1986-01-01

    of the specular reflectivity is consistent with a sinusoidal density modulation, starting at the surface and terminating abruptly, after an integral number of bilayers. As the transition is approached the number of layers increases in quantized steps from zero to five before the bulk undergoes a first...

  11. Surface modification of layered zirconium phosphate with PNIPAM.

    Science.gov (United States)

    Wang, Xuezhen; Zhao, Di; Medina, Ilse B Nava; Diaz, Agustin; Wang, Huiliang; Clearfield, Abraham; Mannan, M Sam; Cheng, Zhengdong

    2016-04-04

    A new method was reported to modify layered zirconium phosphate (ZrP) with thermoresponsive polymer PNIPAM (poly N-isopropylacrylamide). PNIPAM was proved to be covalently grafted onto ZrP. (60)Co γ-rays irradiation produced peroxide groups on the surface which, upon heating, initiated free radical polymerization and subsequent attachment of PNIPAM.

  12. Convective boundary layers driven by nonstationary surface heat fluxes

    NARCIS (Netherlands)

    Van Driel, R.; Jonker, H.J.J.

    2011-01-01

    In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change

  13. Removal of surface layers from plated materials: upgrading of scrap

    NARCIS (Netherlands)

    Dapper, G.; Sloterdijk, W.; Verbraak, C.A.

    1978-01-01

    In this paper a description is given of a method developed for the purpose of removing surface layers from plated materials. The principle of separation is based on the difference in vapour pressures and stabilities with the formation of metal chlorides. A series of pyrolytic experiments was carried

  14. DESIGN AND CALCULATION OF AERODROMECOAING WITH HEATED SURFACE LAYERS

    Directory of Open Access Journals (Sweden)

    Vadim G. Piskunov

    2009-04-01

    Full Text Available  The developed constructions with heated by surface layers for aerodromes and auto roads when developed composition of electroconductive concrete reinforced with chemical electrical conductive fibres being used was researched. The experimentally obtained characteristics of ended conductive concrete reinforced with fibers were presented. Calculation by developed heated construction of shell was made.

  15. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: Annual report 2014

    OpenAIRE

    Svendby, Tove Marit; Edvardsen, Kåre; Hansen, Georg Heinrich; Stebel, Kerstin; Dahlback, Arne

    2015-01-01

    This is an annual report describing the activities and main results of the monitoring programme “Monitoring of the atmospheric ozone layer and natural ultraviolet radiation” for 2014. The ozone layer was below the long-term mean in spring 2014, but increased in April/May and was close to normal rest of the year. A clear decrease in total ozone above Norway during the period 1979-1997 stopped after 1998 and the ozone layer above Norway now seems to have stabilized.

  16. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  17. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.

    Science.gov (United States)

    Vakarelski, Ivan U; Patankar, Neelesh A; Marston, Jeremy O; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-09-13

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling--by heat transfer--the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating.

  18. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-09-12

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  19. Stable atmospheric boundary-layer experiment in Spain (SABLES 98): A report

    DEFF Research Database (Denmark)

    Cuxart, J.; Yague, C.; Morales, G.;

    2000-01-01

    This paper describes the Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98), which took place over the northern Spanish plateau comprising relatively flat grassland, in September 1998. The main objectives of the campaign were to study the properties of the mid-latitude stable...

  20. [Analysis on concentration variety characteristics of atmospheric ozone under the boundary layer in Beijing].

    Science.gov (United States)

    Zong, Xue-Mei; Wang, Geng-Chen; Chen, Hong-Bin; Wang, Pu-Cai; Xuan, Yue-Jian

    2007-11-01

    Based on the atmospheric ozone sounding data, the average monthly and seasonal variety principles of atmospheric ozone concentration during six years are analyzed under the boundary layer in Beijing. The results show that the monthly variation of atmospheric ozone are obvious that the minimum values appear in January from less than 10 x 10(-9) on ground to less than 50 x 10(-9) on upper layer (2 km), but the maximum values appear in June from 85 x 10(-9) on ground to more than 90 x 10(-9) on upper layer. The seasonal variation is also clear that the least atmospheric ozone concentration is in winter and the most is in summer, but variety from ground to upper layer is largest in winter and least in summer. According to the type of outline, the outline of ozone concentration is composite of three types which are winter type, summer type and spring-autumn type. The monthly ozone concentration in different heights is quite different. After analyzing the relationship between ozone concentration and meteorological factors, such as temperature and humidity, we find ozone concentration on ground is linear with temperature and the correlation coefficient is more than 85 percent.

  1. Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98) : a report

    NARCIS (Netherlands)

    Cuxart, J.; Yague, C.; Morales, G.; Terradelles, E.; Orbe, J.; Calvo, J.; Vilu-Guerau, de J.; Soler, M.R.; Infante, C.; Buenestado, P.; Espinalt, A.; Jorgensem, H.E.

    2000-01-01

    This paper describes the Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98), which took place over the northern Spanish plateau comprising relatively flat grassland, in September 1998. The main objectives of the campaign were to study the properties of the mid-latitude stable boundary

  2. Impacts of Aerosol Shortwave Radiation Absorption on the Dynamics of an Idealized Convective Atmospheric Boundary Layer

    NARCIS (Netherlands)

    Wilde Barbaro, E.; Vilà-Guerau de Arellano, J.; Krol, M.C.; Holtslag, A.A.M.

    2013-01-01

    We investigated the impact of aerosol heat absorption on convective atmospheric boundary-layer (CBL) dynamics. Numerical experiments using a large-eddy simulation model enabled us to study the changes in the structure of a dry and shearless CBL in depthequilibrium for different vertical profiles of

  3. Atmospheric spatial atomic layer deposition of in-doped ZnO

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Roozeboom, F.; Poodt, P.

    2014-01-01

    Indium-doped zinc oxide (ZnO:In) has been grown by spatial atomic layer deposition at atmospheric pressure (spatial-ALD). Trimethyl indium (TMIn), diethyl zinc (DEZ) and deionized water have been used as In, Zn and O precursor, respectively. The metal content of the films is controlled in the range

  4. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    Science.gov (United States)

    Kulkarni, Pavan S.; Dasari, Hari Prasad; Sharma, Ashish; Bortoli, D.; Salgado, Rui; Silva, A. M.

    2016-12-01

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000-2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months.

  5. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    KAUST Repository

    Kulkarni, Pavan S.

    2016-09-24

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months. © 2016 Elsevier Ltd

  6. Layer-by-layer assembly surface modified microbial biomass for enhancing biorecovery of secondary gold.

    Science.gov (United States)

    Zhou, Ying; Zhu, Nengwu; Kang, Naixin; Cao, Yanlan; Shi, Chaohong; Wu, Pingxiao; Dang, Zhi; Zhang, Xiaoping; Qin, Benqian

    2017-02-01

    Enhancement of the biosorption capacity for gold is highly desirable for the biorecovery of secondary gold resources. In this study, polyethylenimine (PEI) was grafted on Shewanella haliotis surface through layer-by-layer assembly approach so as to improve the biosorption capacity of Au(III). Results showed that the relative contribution of amino group to the biosorption of Au(III) was the largest one (about 44%). After successful grafting 1, 2 and 3-layer PEI on the surface of biomass, the biosorption capacity significantly enhanced from 143.8mg/g to 597.1, 559.1, and 536.8mg/g, respectively. Interestingly, the biomass modified with 1-layer PEI exhibited 4.2 times higher biosorption capacity than the untreated control. When 1-layer modified biomass was subjected to optimizing the various conditions by response surface methodology, the theoretical maximum adsorption capacity could reach up to 727.3mg/g. All findings demonstrated that PEI modified S. haliotis was effective for enhancing gold biorecovery.

  7. Efficiency of eddy mixing in a stable stratified atmospheric boundary layer

    Science.gov (United States)

    Kurbatskiy, A. F.; Kurbatskaya, L. I.

    2011-12-01

    Based on a mesoscale RANS model of turbulence, the behavior of turbulent eddy mixing parameters is found to agree with the latest data of laboratory and atmospheric measurements. Some problems of the description of turbulent eddy mixing in the atmospheric boundary layer are studied. When the flow transforms to an extremely stable state, in particular, it is found the flux Richardson number Ri f can change nonmonotonically: it increases with increasing gradient Richardson number Rig until the state of saturation is reached at Ri g ≃ 1 and then decreases. The behavior of the coefficients of eddy diffusion of momentum and heat agrees with the concept of momentum (but not heat) transfer by internal waves propagating in an extremely stable atmospheric boundary layer.

  8. Comparison of surface fluxes and boundary-layer measurements at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Stone, Robert; Crepinsek, Sara; Albee, Robert; Makshtas, Alexander; Kustov, Vasily; Repina, Irina; Artamonov, Arseniy

    2014-05-01

    Observational evidence suggests that atmospheric energy fluxes are a major contributor to the decrease of the Arctic pack ice, seasonal land snow cover and the warming of the surrounding land areas and permafrost layers. To better understand the atmosphere-surface exchange mechanisms, improve models, and to diagnose climate variability in the Arctic, accurate measurements are required of all components of the net surface energy budget and the carbon dioxide cycle over representative areas and over multiple years. This study analyzes and discusses variability of surface fluxes and basic meteorological parameters based on measurements made at several long-term research observatories near the coast of the Arctic Ocean located in USA (Barrow), Canada (Eureka), and Russia (Tiksi). Tower-based eddy covariance and solar radiation measurements provide a long-term near continuous temporal record of hourly average mass and energy fluxes respectively. The turbulent fluxes of the momentum, sensible heat, water vapor, and carbon dioxide are supported by additional atmospheric and surface/snow/permafrost measurements (mean wind speed, air temperature and humidity, upwelling and downwelling short-wave and long-wave atmospheric and surface radiation, snow depth, surface albedo, soil heat flux, active layer temperature profiles etc.) In this study we compare annual cycles of surface fluxes including solar radiation and other ancillary data to describe four seasons in the Arctic including spring onset of melt and fall onset of snow accumulation. Particular interest is a transition through freezing point, i.e. during transition from winter to spring and from summer to fall, when the carbon dioxide and/or water vapor turbulent fluxes change their direction. According to our data, in a summer period observed temporal variability of the carbon dioxide flux was generally in anti-phase with water vapor flux (downward CO2 flux and upward H2O flux). On average the turbulent flux of carbon

  9. A new method for estimating aerosol mass flux in the urban surface layer using LAS technology

    Science.gov (United States)

    Yuan, Renmin; Luo, Tao; Sun, Jianning; Liu, Hao; Fu, Yunfei; Wang, Zhien

    2016-04-01

    Atmospheric aerosol greatly influences human health and the natural environment, as well as the weather and climate system. Therefore, atmospheric aerosol has attracted significant attention from society. Despite consistent research efforts, there are still uncertainties in understanding its effects due to poor knowledge about aerosol vertical transport caused by the limited measurement capabilities of aerosol mass vertical transport flux. In this paper, a new method for measuring atmospheric aerosol vertical transport flux is developed based on the similarity theory of surface layer, the theory of light propagation in a turbulent atmosphere, and the observations and studies of the atmospheric equivalent refractive index (AERI). The results show that aerosol mass flux can be linked to the real and imaginary parts of the atmospheric equivalent refractive index structure parameter (AERISP) and the ratio of aerosol mass concentration to the imaginary part of the AERI. The real and imaginary parts of the AERISP can be measured based on the light-propagation theory. The ratio of the aerosol mass concentration to the imaginary part of the AERI can be measured based on the measurements of aerosol mass concentration and visibility. The observational results show that aerosol vertical transport flux varies diurnally and is related to the aerosol spatial distribution. The maximum aerosol flux during the experimental period in Hefei City was 0.017 mg m-2 s-1, and the mean value was 0.004 mg m-2 s-1. The new method offers an effective way to study aerosol vertical transport in complex environments.

  10. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected.

  11. Influencing factors on elastic-plastic deformation of multi-layered surfaces under sliding contact

    Institute of Scientific and Technical Information of China (English)

    YAN Li; PAN Xin-xiang; XU Jiu-jun; CHENG Dong

    2004-01-01

    Stress distribution in the gradient multi-layered surface under a sliding contact was investigated using finite element method(FEM). The main structure parameters of layered surface discussed are total layer thickness,layer number and elastic modulus ratio of layer to the substrate. A model of multi-layered surface contact with rough slider was studied. The effect of the surface structure parameters on the elastic-plastic deformation was analyzed.

  12. Surface properties of solids and surface acoustic waves: Application to chemical sensors and layer characterization

    Science.gov (United States)

    Krylov, V. V.

    1995-09-01

    A general phenomenological approach is given for the description of mechanical surface properties of solids and their influence on surface acoustic wave propogation. Surface properties under consideration may be changes of the stress distribution in subsurface atomic layers, the presence of adsorbed gas molecules, surface degradation as a result of impacts from an aggressive environment, damage due to mechanical manufacturing or polishing, deposition of thin films or liquid layers, surface corrugations, etc. If the characteristic thickness of the affected layers is much less than the wavelengths of the propagating surface waves, then the effects of all these irregularities can be described by means of non-classical boundary conditions incorporating the integral surface parameters such as surface tension, surface moduli of elasticity and surface mass density. The effect of surface properties on the propagation of Rayleigh surface waves is analysed in comparison with the results of traditional approaches, in particular with Auld's energy perturbation method. One of the important implications of the above-mentioned boudnary conditions is that they are adequate for the description of the effect of rarely distributed adsorbed atoms or molecules. This allows, in particular, to obtain a rigorous theoretical description of chemical sensors using surface acoustic waves and to derive analytical expressions for their sensitivity.

  13. Diagnostics of Atmospheric Pressure Surface Discharge Plasmas in Argon

    Institute of Scientific and Technical Information of China (English)

    张锐; 詹如娟; 温晓辉

    2003-01-01

    Atmospheric pressure surface discharge is shown to have great prospects for a number of industrial applications.To acquire better results in application fields and considering that the study of the basic parameters including electron temperature and electron density is desirable,we develop an equivalent circuit model and the diagnostic techniques based on optical emission spectroscopy and electrical measurement in our laboratory.The electron temperature has been determined to be about 0.7eV by a Fermi-Dirac model.The electron density has been calculated to be near 1010 cm-3 from a time resolved electrical measurement(Ohmic heating method).

  14. Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca; Kosović, Branko; Clifton, Andrew; Vandenberghe, Francois; Rodrigo, Javier Sanz

    2016-12-14

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we use the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.

  15. Atmospheric Solid Analysis Probe-Ion Mobility Mass Spectrometry: An Original Approach to Characterize Grafting on Cyclic Olefin Copolymer Surfaces.

    Science.gov (United States)

    Vieillard, Julien; Hubert-Roux, Marie; Brisset, Florian; Soulignac, Cecile; Fioresi, Flavia; Mofaddel, Nadine; Morin-Grognet, Sandrine; Afonso, Carlos; Le Derf, Franck

    2015-12-01

    A cyclic olefin copolymer (COC) was grafted with aryl layers from aryldiazonium salts, and then we combined infrared spectrometry, atomic force microscopy (AFM), and ion mobility mass spectrometry with atmospheric solid analysis probe ionization (ASAP-IM-MS) to characterize the aryl layers. ASAP is a recent atmospheric ionization method dedicated to the direct analysis of solid samples. We demonstrated that ASAP-IM-MS is complementary to other techniques for characterizing bromine and sulfur derivatives of COC on surfaces. ASAP-IM-MS was useful for optimizing experimental grafting conditions and to elucidate hypotheses around aryl layer formation during the grafting process. Thus, ASAP-IM-MS is a good candidate tool to characterize covalent grafting on COC surfaces.

  16. Chemical reactions between Venus' surface and atmosphere - An update. (Invited)

    Science.gov (United States)

    Treiman, A. H.

    2013-12-01

    The surface of Venus, at ~740K, is hot enough to allow relatively rapid chemical reactions between it and the atmosphere, i.e. weathering. Venus chemical weathering has been explored in detail [1], to the limits of available data. New data from Venus Express (VEx) and new ideas from exoplanets have sparked a modest renewal of interest in Venus weathering. Venus' surface cannot be observed in visible light, but there are several NIR ';windows' through its atmosphere that allow surface imaging. The VIRTIS spectrometer on VEx viewed the surface through one window [2]; emissivity variations among lava flows on Imdr and Themis Regios have been explained as varying degrees of weathering, and thus age [3]. The VMC camera on VEx also provides images through a NIR window, which suggest variable degrees of weathering on some basaltic plains [4]. Indirect evidence for weathering may come from varying SO2 abundance at Venus' cloud tops; repeated rapid increases and gradual declines may represent volcanic eruptions followed by weathering to form sulfate minerals [5]. Continued geochemical modeling relevant to Venus weathering is motivated by expolanet studies [6]. Models have been extended to hypothetical exo-Venuses of different temperatures and surface compositions [7]. The idea that Venus' atmosphere composition can be buffered by reaction with its surface was explored in detail, and the derived constraint extended to other types of planets [8]. Several laboratories are investigating Venus weathering, motivated in part by the hope that they can provide real constraints on timescales of Venus volcanism [3]. Aveline et al. [9] are extending early studies [10] by reacting rocks and minerals with concentrated SO2 (to accelerate reaction rates to allow detectability of products). Kohler et al. [11] are investigating the stability of metals and chalcogenides as possible causes of the low-emissivity surfaces at high elevations. Berger and Aigouy [12] studied rock alteration on a

  17. Layer-by-layer rose petal mimic surface with oleophilicity and underwater oleophobicity.

    Science.gov (United States)

    Huang, Hsiu-chin; Zacharia, Nicole S

    2015-01-20

    Surfaces designed with specific wetting properties are still a key challenge in materials science. We present here a facile preparation of a surface assembled by the layer-by-layer technique, using a colloidal dispersion of ionomer particles and linear polyethylene imine. The colloidal ethylene-co-methacrylic acid (EMAA) particles are on the order of half a micron in size with surface features from 40 to 100 nm in width. The resultant surface has roughness on two length scales, one on the micron scale due to the packing of particles and one on the nanoscale due to these surface features on the EMAA particles. This hierarchical structure results in a hydrophobic surface with good water pinning properties (∼550 μN). We show that there is a balance between maximizing contact angle and water pinning force. Furthermore, this surface is oleophilic with regard to many organic solvents, also demonstrating underwater oleophobicity, and given the difference in wetting between aqueous and organic phases, this material may be a candidate material for oil/water separations.

  18. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    Science.gov (United States)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  19. Investigation of inhomogeneity and anisotropy in near ground layers of atmospheric air turbulence using image motion monitoring method

    Science.gov (United States)

    Mohammadi Razi, Ebrahim; Rasouli, Saifollah

    2017-01-01

    In this work the anisotropy and inhomogeneity of real atmospheric turbulence have been investigated using image motion monitoring and differential image motion monitoring methods. For this purpose the light beam of a point source is propagated through the atmospheric turbulence layers in horizontal path and then impinged to a telescope aperture. The telescope and point source were 350 m apart. In front of the telescope's aperture a mask consisting of four subapertures was installed. Image of the point source was formed on a sensitive CCD camera located at the focal plane of the telescope. By displacing CCD camera along the axis of telescope, four distinct images were recorded. Angle of arrival (AA) of each spot was calculated by image processing. Air turbulence causes AA to fluctuate. By comparing AA fluctuation variances of different spots in two directions isotropy and homogeneity of turbulence were studied. Results have shown that atmospheric turbulence in near ground layers is treated as an anisotropic and inhomogeneous medium. In addition, the inhomogeneity and anisotropy of turbulence decreases with the distance from earth surface.

  20. Lower and middle atmosphere and ozone layer responses to solar variation

    Science.gov (United States)

    Elias, Ana G.

    2010-02-01

    Global warming in the troposphere and the decrease of stratospheric ozone concentration has become a major concern to the scientific community. The increase in greenhouse gases and aerosols concentration is believed to be the main cause of this global change in the lower atmosphere and in stratospheric ozone, which is corresponded by a cooling in the middle and upper atmosphere. However, there are natural sources, such as the sun and volcanic eruptions, with the same ability to produce global changes in the atmosphere. The present work will focus on solar variation and its signature in lower and middle atmosphere parameters. The Sun can influence the Earth and its climate through electromagnetic radiation variations and also through changes in the solar wind which causes geomagnetic storms. The effects of both mechanisms over the lower and middle atmosphere and ozone layer will be discussed through an overview of selected papers, which by no means cover this subject that is extremely wide and complex. A fundamental understanding of the atmosphere response to solar variations is required for understanding and interpreting the causes of atmospheric variability. This is an essential focus of climate science, which is seeking to determine the extent to which human activities are altering the planetary energy balance through the emission of greenhouse gases and pollutants.

  1. LDPE Surface Modifications Induced by Atmospheric Plasma Torches with Linear and Showerhead Configurations

    CERN Document Server

    Rich, Sami Abou; Leroy, Perrine; Reniers, François; Nittler, Laurent; Pireaux, Jean-Jacques

    2016-01-01

    Low density polyethylene (LDPE) surfaces have been plasma modified to improve their nanostructural and wettability properties. These modifications can significantly improve the deposition of subsequent layers such as films with specific barrier properties. For this purpose, we compare the treatments induced by two atmospheric plasma torches with different configurations (showerhead vs. linear). The modifications of LDPE films in terms of chemical surface composition and surface morphology are evidenced by X-ray photoelectron spectro-scopy, water contact angles measurements, and atomic force microscopy. A comparison between the two post-discharge treatments is achieved for several torch-to-substrate distances (gaps), treatment times, and oxygen flow rates in terms of etching rate, roughening rate, diffusion of oxygen into the subsur-face and hydrophilicity. By correlating these results with the chemical composition of the post-discharges, we identify and compare the 'species which are responsible for the chemi...

  2. Surface Treatment of PET Nonwovens with Atmospheric Plasma

    Science.gov (United States)

    Li, Shufang

    2013-01-01

    In this study, polyethylene-terephthalate (PET) nonwovens are treated using an atmospheric plasma and the effects of the treatment time, treatment power and discharge distance on the ability of water-penetration into the nonwovens are investigated. The result indicates that the method can improve the wettability of PET nonwovens remarkably, but the aging decay of the sample's wettability is found to be notable as a function of the storage time after treatment due to the internal rotation of the single bond of surface macromolecules. As shown by SEM and XPS analysis, the etching and surface reaction are significant, and water-penetration weight is found to increase remarkably with the increasing power. This variation can be attributed to momentum transfer and enhanced higher-energy particle excitation.

  3. Sterilisation properties of the Mars surface and atmospheric environment.

    Science.gov (United States)

    Moreau, D; Muller, C

    2003-01-01

    The radiative and chemical conditions at the surface and in the lower Martian atmosphere are computed at various latitudes and seasons combining a 2D photochemical model and radiation simulations. In most situations, the solar UV B and C radiations reach the surface however, suspended dust and, in polar cases, ozone can constitute an effective UV shield. The daytime and night time concentrations of the sterilizing oxidants: OH, H2O2 and O3 are determined, as well as the concentration of the substances which could influence the metabolism of microorganisms. The possible habitats of a remaining Mar's life as well as the possibilities of contamination by resistant earth life forms will be described.

  4. The studies of scale surface produced on outer diffusion layers

    Directory of Open Access Journals (Sweden)

    J. Augustyn-Pieniążek

    2011-04-01

    Full Text Available In this study at attempt was made to examine the scale formed on ferritic-austenitic duplex type steel subjected to previous thermochemical treatment. The treatment consisted in diffusion aluminising in a metallising mixture composed of Fe-Al powder. As an activator, ammonium chloride (NH4Cl added in an amount of 2 wt.% was used. Then, both the base material and samples with the diffusiondeposited surface layers were oxidised at 1000°C in the air. Thus formed scales were identified by light microscopy, SEM and X-ray phase analysis. The aim of the oxidation tests carried out under isothermal conditions was to compare the scale morphology when obtained on untreated substrate material and on the surface layers rich in aluminium.

  5. Studies of stability of blade cascade suction surface boundary layer

    Institute of Scientific and Technical Information of China (English)

    DONG Xue-zhi; YAN Pei-gang; HAN Wan-jin

    2007-01-01

    Compressible boundary layers stability on blade cascade suction surface was discussed by wind tunnel experiment and numerical solution. Three dimensional disturbance wave Parabolized Stability Equations(PSE) of orthogonal Curvilinear Coordinates in compressible flow was deducted. The surface pressure of blade in wind tunnel experiment was measured. The Falkner-Skan equation was solved under the boundary conditions of experiment result, and velocity, pressure and temperature of average flow were obtained. Substituted this result for discretization of the PSE Eigenvalue Problem, the stability problem can be solved.

  6. Surface-plasmons lasing in double-graphene-layer structures

    Energy Technology Data Exchange (ETDEWEB)

    Dubinov, A. A. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute for Physics of Microstructures of Russian Academy of Sciences, and Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Aleshkin, V. Ya. [Institute for Physics of Microstructures of Russian Academy of Sciences, and Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Ryzhii, V. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation); Shur, M. S. [Department of Electrical, Electronics, and System Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Otsuji, T. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan)

    2014-01-28

    We consider the concept of injection terahertz lasers based on double-graphene-layer (double-GL) structures with metal surface-plasmon waveguide and study the conditions of their operation. The laser under consideration exploits the resonant radiative transitions between GLs. This enables the double-GL laser room temperature operation and the possibility of voltage tuning of the emission spectrum. We compare the characteristics of the double-GL lasers with the metal surface-plasmon waveguides with those of such laser with the metal-metal waveguides.

  7. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Norberg, Seth A., E-mail: norbergs@umich.edu; Johnsen, Eric, E-mail: ejohnsen@umich.edu [Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109-2125 (United States); Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

    2015-07-07

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O{sub 2} = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  8. A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2014-01-01

    boundary type technique where volume forces are used to introduce wind shear and atmospheric turbulence. The application of the model for wake studies is demonstrated by combining it with the actuator line method, and predictions are compared with field measurements. Copyright © 2013 John Wiley & Sons, Ltd.......A simple model for including the influence of the atmospheric boundary layer in connection with large eddy simulations of wind turbine wakes is presented and validated by comparing computed results with measurements as well as with direct numerical simulations. The model is based on an immersed...

  9. Diffusion Carbide Layers, Formed on the Surface of Steel in the Vacuum Titanizing Process

    Institute of Scientific and Technical Information of China (English)

    KASPRZYCKAEwa; SENATORSKIJan; NAKONIECZNYAleksander; BABULTomasz

    2004-01-01

    Diffusion layers produced on carbon steel surface in vacuum titanizing process were investigated. Studies of layers thickness, their morphology, titanium, carbon and iron concentration depth profiles in the diffusion zone of titanized layers were carried out. The effect of process parameters such as time and temperature on the kinetics of layer growth on steel surface was investigated. Tribocorrosion resistance of titanized layers was determined.

  10. Coupled atmosphere and land-surface assimilation of surface observations with a single column model and ensemble data assimilation

    Science.gov (United States)

    Rostkier-Edelstein, Dorita; Hacker, Joshua P.; Snyder, Chris

    2014-05-01

    types of one-week long numerical experiments are performed: (a) free ensemble runs; (b) ensemble assimilation that directly impacts the atmospheric-state vector only; (c) ensemble assimilation that directly impacts the coupled atmospheric-LS-state vector. The WRF-SCM is run in two modes: with and without inclusion of externally imposed horizontal advection terms in the atmospheric column (derived from the NARR, too). Preliminary examination of analyses and 30-min forecasts of reference height temperature and moisture, soil temperature and moisture at four depths (0.05m, 0.25m, 0.7m and 1.5m), fluxes at the surface, and planetary boundary layer (PBL) height shows that: 1. Horizontal advection is important to the realism of PBL heights and fluxes in the "truth", and affects the depth of influence of the assimilation on the soil state; a deeper effect (that could be non-realistic) is more often observed when advection is not included. 2. Inclusion of soil variables in the state vector can be beneficial to estimates of soil temperature and moisture,of moisture- and net latent heat fluxes at the surface, and of atmospheric variables (for the latter especially when no advection is included), However, no benefit is observed on PBL heights. Further analysis and improvement of the WRF-SCM/DART system (in particular the treatment of advection) is under way.

  11. RF atmospheric plasma jet surface treatment of paper

    Science.gov (United States)

    Pawlat, Joanna; Terebun, Piotr; Kwiatkowski, Michał; Diatczyk, Jaroslaw

    2016-09-01

    A radio frequency RF atmospheric pressure plasma jet was used to enhance the wettability of cellulose-based paper of 90 g m-2 and 160 g m-2 grammage as a perspective platform for antibiotic sensitivity tests. Helium and argon were the carrier gases for oxygen and nitrogen; pure water and rapeseed oil were used for goniometric tests. The influence of the flow rate and gas type, the power of the discharge, and distance from the nozzle was examined. The surface structure was observed using an optical microscope. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra were investigated in order to determine whether cellulose degradation processes occurred. The RF plasma jet allowed us to decrease the surface contact angle without drastic changes in other features of the tested material. Experiments confirmed the significant influence of the distance between the treated sample and reactor nozzle, especially for treatment times longer than 15 s due to the greater concentration of reactive species at the surface of the sample, which decreases with distance—and their accumulation effect with time. The increase of discharge power plays an important role in decreasing the surface contact angle for times longer than 10 s. Higher power had a positive effect on the amount of generated active particles and facilitated the ignition of discharge. However, a too high value can cause a rise in temperature of the material and heat-caused damage.

  12. Manufacturing of Electrolyte and Cathode Layers SOFC Using Atmospheric Spraying Method and Its Characterization

    Directory of Open Access Journals (Sweden)

    S. Sulistyo

    2012-12-01

    Full Text Available The use of Solid Oxide Fuel Cell (SOFC has created various interest in many parties, due to its capability to convert gases into electricity. The main requirement of SOFC cell components is to be produced as thin as possible to minimize the losses of electrical resistance, as well as able to support internal and external loads. This paper discusses the procedure of making a thin electrolyte layer, as well as a porous thin layer cathode using atmospheric spraying technique. The procedure of spraying was in room temperature with the process of sintering at temperature of 13500 C held for 3 hours. The SOFC characterization of electrolyte and cathode microstructure was determined by using the SEM, FESEM, XRD and impedance spectroscopy, to measure the impedance of SOFC cells. The results show that the thickness of thin layer electrolyte and porous cathode obtained of about 20 µm and 4 µm, respectively. Also the SOFC cell impedance was measured of 2.3726 x 106 Ω at room temperature. The finding also demonstrated that although the materials (anode, cathode and electrolyte possess different coefficient thermal expansion, there was no evidence of flaking layers which seen the materials remain intact. Thus, the atmospheric spraying method can offer an alternative method to manufacturing of SOFC thin layer electrolyte and cathode. [Key words: SOFC; spraying method; electrolyte; cathode

  13. Effect of impurities in the description of surface nanobubbles: Role of nonidealities in the surface layer

    NARCIS (Netherlands)

    Das, Siddhartha

    2011-01-01

    In a recent study [ S. Das, J. H. Snoeijer and D. Lohse Phys. Rev. E 82 056310 (2010)], we provided quantitative demonstration of the conjecture [ W. A. Ducker Langmuir 25 8907 (2009)] that the presence of impurities at the surface layer (or the air-water interface) of surface nanobubbles can substa

  14. Formulation of a Prototype Coupled Atmospheric and Oceanic Boundary Layer Model.

    Science.gov (United States)

    1982-12-01

    layers. The approach will be to compare observed evolutions in the oceanic and atmospheric boundary layers with predictions from bulk modelo wherein...16.4 -. 004S 6.3 1100 276 iSi 8.2 £3.0 £5.2 16.4 -.0045 6.3 1130 278 M53 6.6 13.1 iS.2 14.1 -.0057 6.3 1200 279 iS3 5.0 £3.0 iS.2 14.1 -.00S7 5.7 1230

  15. Surface Modification of Electrospun PVDF/PAN Nanofibrous Layers by Low Vacuum Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Fatma Yalcinkaya

    2016-01-01

    Full Text Available Nanofibres are very promising for water remediation due to their high porosity and small pore size. Mechanical properties of nanofibres restrict the application of pressure needed water treatments. Various PAN, PVDF, and PVDF/PAN nanofibre layers were produced, and mechanical properties were improved via a lamination process. Low vacuum plasma treatment was applied for the surface modification of nanofibres. Atmospheric air was used to improve hydrophilicity while sulphur hexafluoride gas was used to improve hydrophobicity of membranes. Hydrophilic membranes showed higher affinity to attach plasma particles compared to hydrophobic membranes.

  16. Tailored surface engineering of pigments by layer-by-layer coating.

    Science.gov (United States)

    Dähne, Lars; Schneider, Julia; Lewe, Dirk; Petersen, Henrik

    2015-01-01

    We have evaluated the feasibility of layer-by-layer encapsulation technology for the improvement of dye pigments used for tattoos or permanent make-up. The formation of core-shell structures is possible by coating pigments with thin films of several different polyelectrolytes using this technology. The physicochemical surface properties, such as charge density and chemical functionality, can be reproducibly varied in a wide range. Tailoring the surface properties independently from the pigment core allows one to control the rheological behaviour of pigment suspensions, to prevent aggregation between different pigments, to reduce the cytotoxicity, and to influence the response of phagocytes in order to have similar or the same uptake and bioclearance for all pigments. These properties determine the durability and colour tone stability of tattoos and permanent make-up.

  17. Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning

    Directory of Open Access Journals (Sweden)

    N. A. Brunsell

    2010-07-01

    Full Text Available The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variability under three different horizontal wind speeds are used in the analysis. The base case uses Landsat ETM imagery over the Cloud Land Surface Interaction Campaign (CLASIC field site for 3 June 2007. Using wavelets, the surface fields are band-pass filtered in order to maintain the spatial mean and variances to length scales of 200 m, 1600 m, and 12.8 km as lower boundary conditions to the model. The simulations exhibit little variation in net radiation. Rather, a change in the partitioning of the surface energy between sensible and latent heat flux is responsible for differences in boundary layer dynamics. The sensible heat flux is dominant for intermediate surface length scales. For smaller and larger scales of surface heterogeneity, which can be viewed as being more homogeneous, the latent heat flux becomes increasingly important. The results reflect a general decrease of the Bowen ratio as the surface conditions transition from heterogeneous to homogeneous. Air temperature is less sensitive to surface heterogeneity than water vapor, which implies that the role of surface heterogeneity in modifying the local temperature gradients in order to maximize convective heat fluxes. More homogeneous surface conditions, on the other hand, tend to maximize latent heat flux. Scalar vertical profiles respond predictably to the partitioning of surface energy. Fourier spectra of the vertical wind speed, air temperature and specific humidity (w, T and q and associated cospectra (w'T', w'q' and T'q', however, are insensitive to the length scale of surface heterogeneity, but the near surface spectra are sensitive to the

  18. The horizontal transport of pollutants from a slope wind layer into the valley core as a function of atmospheric stability

    Science.gov (United States)

    Leukauf, Daniel; Gohm, Alexander; Rotach, Mathias W.; Posch, Christian

    2016-04-01

    Slope winds provide a mechanism for the vertical exchange of air between the valley and the free atmosphere aloft. By this means, heat, moisture and pollutants are exported or imported. However, it the static stability of the valley atmosphere is strong, one part of the up-slope flow is redirected towards the valley center and pollutants are recirculated within the valley. This may limit the venting potential of slope winds severely. The main objective of this study is to quantify the horizontal transport of pollutants from the slope wind layer into the stable valley core and to determine the dependency of this flux as a function of the initial stability of the atmosphere. For this purpose, we conducted large eddy simulations with the Weather Research and Forecasting (WRF) model for a quasi-two-dimensional valley. The valley geometry consists of two slopes with constant slope angle rising to a crest height of 1500 m and a 4 km wide flat valley floor in between. The valley is 20 km long and homogeneous in along-valley direction. Hence, only slope winds but no valley winds can evolve. The surface sensible heat flux is prescribed by a sine function with an amplitude of 125 W m-2. The initial sounding characterized by an atmosphere at rest and by a constant Brunt-Väisälä frequency which is varied between 0.006 s-1 and 0.02 s-1. A passive tracer is released with an arbitrary but constant rate at the valley floor. As expected, the atmospheric stability has a strong impact on the vertical and horizontal transport of tracer mass. A horizontal intrusion forms at the top of the mixed layer due to outflow from the slope wind layer. Tracer mass is transported from the slope towards the center of the valley. The efficiency of this mechanism increases with increasing stability N. For the lowest value of N, about 70% of the tracer mass released at the valley bottom is exported out of the valley. This value drops to about 12% in the case of the strongest stability. Hence, most

  19. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    Science.gov (United States)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  20. Gas permeation barriers deposited by atmospheric pressure plasma enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Lukas, E-mail: lhoffmann@uni-wuppertal.de; Theirich, Detlef; Hasselmann, Tim; Räupke, André; Schlamm, Daniel; Riedl, Thomas, E-mail: t.riedl@uni-wuppertal.de [Institute of Electronic Devices, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal (Germany)

    2016-01-15

    This paper reports on aluminum oxide (Al{sub 2}O{sub 3}) thin film gas permeation barriers fabricated by atmospheric pressure atomic layer deposition (APPALD) using trimethylaluminum and an Ar/O{sub 2} plasma at moderate temperatures of 80 °C in a flow reactor. The authors demonstrate the ALD growth characteristics of Al{sub 2}O{sub 3} films on silicon and indium tin oxide coated polyethylene terephthalate. The properties of the APPALD-grown layers (refractive index, density, etc.) are compared to that deposited by conventional thermal ALD at low pressures. The films films deposited at atmospheric pressure show water vapor transmission rates as low as 5 × 10{sup −5} gm{sup −2}d{sup −1}.

  1. Amorphous surface layers in Ti-implanted Fe

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, J.A.; Follstaedt, D.M.; Picraux, S.T.

    1979-01-01

    Implanting Ti into high-purity Fe results in an amorphous surface layer which is composed of not only Fe and Ti, but also C. Implantations were carried out at room temperature over the energy range 90 to 190 keV and fluence range 1 to 2 x 10/sup 16/ at/cm/sup 2/. The Ti-implanted Fe system has been characterized using transmission electron microscopy (TEM), ion backscattering and channeling analysis, and (d,p) nuclear reaction analysis. The amorphous layer was observed to form at the surface and grow inward with increasing Ti fluence. For an implant of 1 x 10/sup 17/ Ti/cm/sup 2/ at 180 keV the layer thickness was 150 A, while the measured range of the implanted Ti was approx. 550 A. This difference is due to the incorporation of C into the amorphous alloy by C being deposited on the surface during implantation and subsequently diffusing into the solid. Our results indicate that C is an essential constituent of the amorphous phase for Ti concentrations less than or equal to 10 at. %. For the 1 x 10/sup 17/ Ti/cm/sup 2/ implant, the concentration of C in the amorphous phase was approx. 25 at. %, while that of Ti was only approx. 3 at. %. A higher fluence implant of 2 x 10/sup 17/ Ti/cm/sup 2/ produced an amorphous layer with a lower C concentration of approx. 10 at. % and a Ti concentration of approx. 20 at. %.

  2. Study of near-surface layers of Omerelu area using low velocity layer (LVL method

    Directory of Open Access Journals (Sweden)

    Ajani, O.O.

    2013-03-01

    Full Text Available It is important that we have good knowledge of the soil type so as to appreciate the enormous resources we are stepping on. It is more compelling for oil explorationists to know more as this will go a long way to determine the success or failure of search for minerals. Seismic methods give a good overview of a wide area though they involve greater logistics and operational requirements than some other geophysical methods. The purpose of present study is to determine the depth of the weathered layer and velocities of near-surface layers over the investigated area. Twelve sample points were picked with a grid system spread over a perimeter of approximately 4km x 4km. The in-house UpSphere computer program was utilised to analyse and display result in a way that makes final interpretation very easy. This program actually removed the burden of plotting the graphs and the contour maps manually. The depth of weathered layer in the study area varies between 12m and 13m. The velocities of the weathered layer and the consolidated layer vary between 500 m/s – 550 m/s and 1790 m/s – 1875 m/s respectively. Also the dip is in the north east – south west direction.

  3. MODIFICATION OF SURFACE LAYERS FOR SILICATE GLASSES BY ELECTRON IRRADIATION

    Directory of Open Access Journals (Sweden)

    V. S. Brunov

    2014-05-01

    Full Text Available Experimental research results of silicate glass surface layers modification by the influence of electron beams with 5-50 keV energies and 20-50 mC/cm2 doses are presented. It is shown that during the glasses exposure to an electron beam with 20-50 keV electron energies, a gradient optical waveguide with increased refractive index on waveguide axis Δn = 0.01-0.04 is formed in the surface layer. Сhemical etching rate is increased in the exposed area by up to two times which is related to glass grid destruction. Depending on irradiation dose thin film or silver nanoparticles with the size less than 20nm are formed on the surface of the silver containing glasses for electron energies less than 10 keV. Silver films drawn on the surface of the glass are dissolved into the glass bulk for electron energies 20-50 keV and 20-50 mC/cm2 dose. Basic mechanisms causing these effects are: chemical bonds breaking of spatial glass grid by high energy electrons, formation of negative volume charge inside the glass and field migration of positive metal ions into the volume charge region. Achieved results can be used in photonics, integral optics and nanoplasmonics device fabrication.

  4. WAVELET TRANSFORM METHOD FOR DERIVING ATMOSPHERIC BOUNDARY LAYER HEIGHT FROM LIDAR SIGNALS

    OpenAIRE

    RAJITHA PALETI; Y. Bhavani Kumar; T. Krishna Chaitanya

    2013-01-01

    Wavelet method of determining the atmospheric boundary layer (ABL) height from lidar signals is presented in this paper. The wavelet covariance transform (WCT) method employed determines the significant gradient in the measured lidar signals. Using this method, the accuracy of ABL height detection enhances with increased dilation length. The developed wavelet algorithm is coded in MATLAB software and has a provision to alter the dilation length in real-time for a given translation estimate.

  5. In-situ surface hardening of cast iron by surface layer metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sebastian F., E-mail: s.fischer@gi.rwth-aachen.de [Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen (Germany); Muschna, Stefan, E-mail: smuschna@yahoo.de [Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen (Germany); Bührig-Polaczek, Andreas, E-mail: sekretariat@gi.rwth-aachen.de [Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen (Germany); Bünck, Matthias, E-mail: m.buenck@access-techcenter.de [Access e.V., Intzestraße 5, 52072 Aachen (Germany)

    2014-10-06

    Abrasive wear is a serious problem in many cast iron castings used in industry. To minimize failure and repair of these components, different strategies exist to improve their surface microhardness thus enhancing their wear resistance. However, most of these methods lead to very brittle and/or expensive castings. In the current work a new method for surface hardening is presented which utilizes surface layer metallurgy to generate in-situ a boron-enriched white cast iron surface layer with a high microhardness on a gray cast iron casting. To do this, sand molds are coated with a ferroboron suspension and cast with a cast iron melt. After solidification, a 100–900 µm thick layer of boron-enriched ledeburite is formed on the surface of the casting which produces an increase in the average microhardness from 284 HV{sub 0.1}±52 HV{sub 0.1} to 505 HV{sub 0.1}±87 HV{sub 0.1}. Analyses of the samples' core reveal a typical cast iron microstructure which leads to the conclusion that the coating mainly affects the castings' surface. By varying the grain size of the ferroboron powder in the coatings, it is shown that a powder size ≤100 µm is most suitable to create a boron-enriched ledeburite surface layer possessing high hardness values.

  6. Influence of Surface Energy Effects on Elastic Fields of a Layered Elastic Medium under Surface Loading

    Directory of Open Access Journals (Sweden)

    Supakorn Tirapat

    2017-01-01

    Full Text Available This paper presents the analysis of a layered elastic half space under the action of axisymmetric surface loading and the influence of the surface energy effects. The boundary value problems for the bulk and the surface are formulated based on classical linear elasticity and a complete Gurtin-Murdoch constitutive relation. An analytical technique using Love’s representation and the Hankel integral transform is employed to derive an integral-form solution for both displacement and stress fields. An efficient numerical quadrature is then applied to accurately evaluate all involved integrals. Selected numerical results are presented to portray the influence of various parameters on elastic fields. Numerical results indicate that the surface stress displays a significant influence on both displacement and stress fields. It is also found that the layered half space becomes stiffer with the presence of surface stresses. In addition, unlike the classical elasticity solution, size-dependent behavior of elastic fields is noted. The present analytical solutions provide fundamental understanding of the influence of surface energy on layered elastic materials. It can also be used as a benchmark solution for the development of numerical techniques such as FEM and BEM, for analysis of more complex problems involving a layered medium under the influence of surface energy effects.

  7. Study on tribological properties of multi-layer surface texture on Babbitt alloys surface

    Science.gov (United States)

    Zhang, Dongya; Zhao, Feifei; Li, Yan; Li, Pengyang; Zeng, Qunfeng; Dong, Guangneng

    2016-12-01

    To improve tribological properties of Babbitt alloys, multi-layer surface texture consisted of the main grooves and secondary micro-dimples are fabricated on the Babbitt substrate through laser pulse ablation. The tribological behaviors of multi-layer surface texture are investigated using a rotating type pin-on-disc tribo-meter under variation sliding speeds, and the film pressure distributions on the textured surfaces are simulated using computational fluid dynamics (CFD) method for elucidating the possible mechanisms. The results suggest that: (i) the multi-layer surface texture can reduce friction coefficient of Babbitt alloy, which has lowest friction coefficient of 0.03, in case of the groove parameter of 300 μm width and 15% of area density; (ii) the improvement effect may be more sensitive to the groove area density and the siding speed, and the textured surface with lower area density has lower friction coefficient under high sliding speed. Based on the reasons of (i) the secondary micro-dimples on Babbitt alloy possesses a hydrophobicity surface and (ii) the CFD analysis indicates that main grooves enhancing hydrodynamic effect, thus the multi-layer surface texture is regarded as dramatically improve the lubricating properties of the Babbitt alloy.

  8. Effects of the March 2015 solar eclipse on near-surface atmospheric electricity.

    Science.gov (United States)

    Bennett, A J

    2016-09-28

    Measurements of atmospheric electrical and standard meteorological parameters were made at coastal and inland sites in southern England during the 20 March 2015 partial solar eclipse. Clear evidence of a reduction in air temperature resulting from the eclipse was found at both locations, despite one of them being overcast during the entire eclipse. The reduction in temperature was expected to affect the near-surface electric field (potential gradient (PG)) through a reduction in turbulent transfer of space charge. No such effect could be unambiguously confirmed, however, with variability in PG and air-Earth current during the eclipse being comparable to pre- and post-eclipse conditions. The already low solar radiation for this latitude, season and time of day was likely to have contributed to the reduced effect of the eclipse on atmospheric electricity through boundary layer stability. The absence of a reduction in mean PG shortly after time of maximum solar obscuration, as observed during eclipses at lower geomagnetic latitude, implied that there was no significant change in atmospheric ionization from cosmic rays above background variability. This finding was suggested to be due to the relative importance of cosmic rays of solar and galactic origin at geomagnetic mid-latitudes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  9. Lightness constancy through transparency: internal consistency in layered surface representations.

    Science.gov (United States)

    Singh, Manish

    2004-01-01

    Asymmetric lightness matching was employed to measure how the visual system assigns lightness to surface patches seen through partially-transmissive surfaces. Observers adjusted the luminance of a comparison patch seen through transparency, in order to match the lightness of a standard patch seen in plain view. Plots of matched-to-standard luminance were linear, and their slopes were consistent with Metelli's alpha. A control experiment confirmed that these matches were indeed transparency based. Consistent with recent results, however, when observers directly matched the transmittance of transparent surfaces, their matches deviated strongly and systematically from Metelli's alpha. Although the two sets of results appear to be contradictory, formal analysis reveals a deeper mutual consistency in the representation of the two layers. A ratio-of-contrasts model is shown to explain both the success of Metelli's model in predicting lightness through transparency, and its failure to predict perceived transmittance--and hence is seen to play the primary role in perceptual transparency.

  10. Nanoscale Structuring of Surfaces by Using Atomic Layer Deposition.

    Science.gov (United States)

    Sobel, Nicolas; Hess, Christian

    2015-12-01

    Controlled structuring of surfaces is interesting for a wide variety of areas, including microelectronic device fabrication, optical devices, bio(sensing), (electro-, photo)catalysis, batteries, solar cells, fuel cells, and sorption. A unique feature of atomic layer deposition (ALD) is the possibility to form conformal uniform coatings on arbitrarily shaped materials with controlled atomic-scale thickness. In this Minireview, we discuss the potential of ALD for the nanoscale structuring of surfaces, highlighting its versatile application to structuring both planar substrates and powder materials. Recent progress in the application of ALD to porous substrates has even made the nanoscale structuring of high-surface-area materials now feasible, thereby enabling novel applications, such as those in the fields of catalysis and alternative energy.

  11. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layer physical properties

    Directory of Open Access Journals (Sweden)

    J.-M. Friedt

    2016-12-01

    Full Text Available We use an instrument combining optical (surface plasmon resonance and acoustic (Love mode surface acoustic wave device real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition and surfactant adsorption, the bound mass and its physical properties – density and optical index – are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70±20% water and are 16±3 to 19±3 nm thick for bulk concentrations ranging from 30 to 300 μg/ml. Fibrinogen layers include 50±10% water for layer thicknesses in the 6±1.5 to 13±2 nm range when the bulk concentration is in the 46 to 460 μg/ml range.

  12. Near-Surface Boundary Layer Turbulence Along a Horizontally-Moving, Surface-Piercing Vertical Wall

    CERN Document Server

    Washuta, Nathan; Duncan, James H

    2016-01-01

    The complex interaction between turbulence and the free surface in boundary layer shear flow created by a vertical surface-piercing wall is considered. A laboratory-scale device was built that utilizes a surface-piercing stainless steel belt that travels in a loop around two vertical rollers, with one length of the belt between the rollers acting as a horizontally-moving flat wall. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally-evolving boundary layer analogous to the spatially-evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface profiles are measured with a cinematic laser-induced fluorescence system and sub-surface velocity fields are recorded using a high-speed planar particle image velocimetry system. It is found that the belt initially travels through the water without creating any significant waves, before the free surface bursts with activity close to the belt surface. These free surface ripples travel away...

  13. The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice

    NARCIS (Netherlands)

    Sterk, H.A.M.; Steeneveld, G.J.; Holtslag, A.A.M.

    2013-01-01

    To enhance the understanding of the impact of small-scale processes in the polar climate, this study focuses on the relative role of snow-surface coupling, radiation and turbulent mixing in an Arctic stable boundary layer. We extend the GABLS1 (GEWEX Atmospheric Boundary-Layer Study 1) model interco

  14. Sensitivity of the Arctic Climate to Leads in a Coupled Atmosphere-Mixed Layer Ocean Model.

    Science.gov (United States)

    Vavrus, Stephen J.

    1995-02-01

    The thermodynamic sea ice code in a coupled atmosphere-mixed layer ocean GCM has been altered to allow the presence of open water within an ice pack (leads) and a prescribed turbulent oceanic heat flux at the ice bottom. Two experiments with the GCM are then performed: one with leads included and one without. A comparison between the two model runs is presented, in addition to a comparison between observations and the simulation with leads. Selected sea ice and atmospheric variables in the high-latitude Northern Hemisphere are analyzed to assess the sensitivity of these climatic components to the presence of leads and to identify feedback mechanisms that are introduced by leads.The inclusion of leads causes Northern Hemispheric sea ice concentration to decrease in every season, with year-round statistically significant reductions at the highest latitude band (81°N). Using the improved sea ice code, the model's simulation of sea ice concentration in the central Arctic is consistent with observations in every season. Simulated summertime sea ice concentration at 81°N averages 93.8%, which agrees well with observations. There is a pronounced longitudinal variation to the lead fraction in summer, with the smallest values (0.01) neat the Canadian Archipelago and the largest (0.25) north of the East Siberian Sea. Consistent with observations, the model produces wintertime turbulent sensible heat fluxes over leads that are one to two orders of magnitude larger than over adjacent sea ice and of the opposite sign. Annual solar radiation absorption by leads in the central Arctic is 1.8 times as large as over adjacent sea ice, resulting in a summertime shortwave energy gain of over 2.5 W m2 at 8 1°N compared to the model run without leads.The inclusion of leads causes thicker sea ice in every season, because the very rapid ice growth rate in the leads is translated into enhanced accretion at the bottom of adjacent sea ice once a prescribed minimum lead fraction is reached

  15. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    Science.gov (United States)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  16. 大型浅水湖泊与大气之间的动量和水热交换系数——以太湖为例%Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large shallow freshwater lake: A case study of Lake Taihu

    Institute of Scientific and Technical Information of China (English)

    肖薇; 刘寿东; 李旭辉; 王伟; 胡凝; 江晓东; 李永秀; 徐向华; 张雪松

    2012-01-01

    湖泊水面与大气之间垂直方向的动量、水汽和热量通量与风速、湿度和温度梯度之间存在比例关系,因此在湖泊水气相互作用研究中,这比例系数(交换系数)是关键因子.在以往的研究中,交换系数通常直接采用水面梯度观测法或海洋大气近地层的参数化方案进行计算本文采用涡度相关系统和小气候系统仪器在太湖平台上直接观测的通量和气象要素,对上述交换系数(最小均方差原则)进行优化,结果为:动量交换系数CDION=1.52×10-1、水汽变换系数CEION=0.82×10-3、热量交换系数CHION=1.02×10-3,与其他内陆湖泊涡度相关观测数据的推导结果一致.本文的研究结果表明:与海洋参数化方案相比,在相同的风速条件下,湖面的空气动力学粗糙度比海洋高,这可能是由于受到水深的影响;如果采用海洋参数化方案,会导致湖泊年蒸发量的估算值偏大40%.太湖的动量、水汽和热量交换系数可以视为常数,可以不考虑稳定度和风速的影响.这是因为本文中83%的数据为近中性条件.敏感性分析表明:如果考虑稳定度的影响,LE模拟值的平均误差降低了0.5 W/m2,H的平均误差降低了0.4 W/m2,u*的计算值没有变化;如果考虑风速的影响,u*模拟值的平均误差降低了 0.004 m/s,LE的平均误差升高了1.3 W/m2,H的模拟结果几乎不受影响.这一结果能为湖气相互作用研究提供参考.%In studies of lake-atmosphere interactions, the fluxes of momentum, water vapor and heat (latent ami sensible heat) are parameterized as being proportional to the differences in Mind, humiclily and air temperature between the water surface and a reference height above the surface. The proportionality or transfer coefficients are often assumed to follow the gradient observation above lake surface or the parameterizations established for the marine atmospheric surface layer. Optimization against the eddy covariance

  17. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  18. Soil moisture sensor calibration for organic soil surface layers

    Science.gov (United States)

    Bircher, Simone; Andreasen, Mie; Vuollet, Johanna; Vehviläinen, Juho; Rautiainen, Kimmo; Jonard, François; Weihermüller, Lutz; Zakharova, Elena; Wigneron, Jean-Pierre; Kerr, Yann H.

    2016-04-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finnish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology (HOBE). For the Decagon 5TE sensor such a function is currently not reported in the literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified. For the Decagon 5TE, apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large specific surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger nonlinearity in the sensor response and signal saturation in the high-level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here-proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and

  19. Soil moisture sensor calibration for organic soil surface layers

    Directory of Open Access Journals (Sweden)

    S. Bircher

    2015-12-01

    Full Text Available This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology HOBE. For the Decagon 5TE sensor such a function is currently not reported in literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified: for the Decagon 5TE apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger non-linearity in the sensor response and signal saturation in the high level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankyl

  20. Processing and properties of electrodeposited layered surface coatings

    DEFF Research Database (Denmark)

    Horsewell, Andy

    1998-01-01

    clacks and spalls off early on. For thick, non-compliant coatings, much thicker coatings can be formed. Fracture resistance must be considered in relation to both specimen and loading geometries. Since the inherent bending moment causes a maximum tensile stress at the coating surface, the loading......Hard chromium, produced by conventional dir ect curl ent (DC) electrodeposition, cannot be deposited to thicknesses gl enter than about 5 mu m because of the buildup of processing stresses which cause channel cracks in the coating. Much thicker chromium coatings map be produced by depositing...... a layered structure using alternate DC plating and periodic current reversal (PR). Such layering produces a through thickness stepped gradient in residual stresses. Most importantly a bending moment develops in the coating whenever the substrate is compliant. For thin, compliant substrates, the coating...

  1. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2015-07-01

    Full Text Available The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8, SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452. We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  2. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Science.gov (United States)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  3. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    Science.gov (United States)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  4. Sensitivity analysis of radiative transfer for atmospheric remote sensing in thermal IR: atmospheric weighting functions and surface partials

    Science.gov (United States)

    Ustinov, E. A.

    2003-01-01

    In this presentation, we apply the adjoint sensitivity analysis of radiative transfer in thermal IR to the general case of the analytic evaluation of the weighting functions of atmospheric parameters together with the partial derivatives for the surface parameters. Applications to remote sensing of atmospheres of Mars and Venus are discussed.

  5. Application of a dynamical two-box surface-atmosphere model to the Mount Pinatubo cooling event

    CERN Document Server

    Knox, Robert S

    2008-01-01

    We analyze the global temperature change due to the Mt. Pinatubo eruption using a simple two-layer model of the atmosphere and surface to obtain results consistent with satellite data. Current highly complex models exist to model this and other temperature anomalies, but because of their complexity are not easily analyzed by those not directly involved. Through analytic and numerical analysis we find a principal characteristic response time of 5 to 8 months and a climate sensitivity of 0.17 to 0.20 C/(W/m^2), corresponding to a negative instantaneous feedback. Our solutions were fit to the data, reproducing the results of a one-box model, and providing somewhat more detailed information about the feedbacks related to surface layer temperature. The formalism for coupling of the surface layer to the thermocline is set up but not applied.

  6. Investigating the diurnal and spatial variability of flows in the atmospheric boundary layer: A large eddy simulation study

    Science.gov (United States)

    Kumar, Vijayant

    Large-eddy simulation (LES) studies of the atmospheric boundary layer (ABL) have historically modeled the daytime (convective), nighttime (stable) and dawn/dusk windy (neutral) regimes separately under the assumption of a quasi-steady ABL. The real-world ABL however, continuously transitions between the different stability regimes and development of an LES capable of simulating the entire diurnal evolution of the ABL is needed. We have developed an LES tool (The JHU-LES code) with the new-generation Lagrangian dynamic models capable of dynamic adjustment of the subgrid-scale stresses thereby, making it apt for LES over entire diurnal cycles of the ABL. Preliminary LES studies demonstrate that the JHU-LES code reproduces well-known features of the quasi-steady convective and stable boundary layers, such as the well-known spectral scalings for production and inertial subranges. LES of the entire 24-hour diurnal evolution of the atmospheric boundary layer is then performed and compared successfully to field observations (HATS dataset). Important features of the diurnal ABL such as entrainment-based growth of the CBL, development of the stable boundary layer and evolution of the nocturnal low-level jet are well reproduced. The advantages of using a local Obukhov length-scale to normalize the results are highlighted. To investigate the role of surface boundary conditions and geostrophic wind forcing, LES investigations of multi-day evolution of the ABL flow are then performed with several combinations of surface boundary conditions (imposed temperature and heat flux) and geostrophic forcing (constant, time-varying, time and height varying). The variable geostrophic forcing significantly improves the agreement of LES results with surface flux observations but shows poor agreement with daytime surface fluxes and, daytime and nighttime mean profiles. The LES setup using an imposed surface temperature almost always yields better results than cases where the heat flux is

  7. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.

    2013-09-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  8. Structure-phase states of the nickel surface layers after electroexplosive carburizing

    Institute of Scientific and Technical Information of China (English)

    Budovskikh; E.; A.; Bagautdinov; A.; Y.; Ivanov; Yu.; F.; Martusevich; E.; V.; Gromov; V.; E.

    2005-01-01

    The layer by layer study of the structure-phase states of the nickel surface layer carburizing with use the phenomena of the electrical explosion has conducted by the method TEM of the fine foils.……

  9. Multi-year record of atmospheric and snow surface nitrate in the central Antarctic plateau.

    Science.gov (United States)

    Traversi, R; Becagli, S; Brogioni, M; Caiazzo, L; Ciardini, V; Giardi, F; Legrand, M; Macelloni, G; Petkov, B; Preunkert, S; Scarchilli, C; Severi, M; Vitale, V; Udisti, R

    2017-04-01

    Continuous all year-round samplings of atmospheric aerosol and surface snow at high (daily to 4-day) resolution were carried out at Dome C since 2004-05 to 2013 and nitrate records are here presented. Basing on a larger statistical data set than previous studies, results confirm that nitrate seasonal pattern is characterized by maxima during austral summer for both aerosol and surface snow, occurring in-phase with solar UV irradiance. This temporal pattern is likely due to a combination of nitrate sources and post-depositional processes whose intensity usually enhances during the summer. Moreover, it should be noted that a case study of the synoptic conditions, which took place during a major nitrate event, showed the occurrence of a stratosphere-troposphere exchange. The sampling of both matrices at the same time with high resolution allowed the detection of a an about one-month long recurring lag of summer maxima in snow with respect to aerosol. This result can be explained by deposition and post-deposition processes occurring at the atmosphere-snow interface, such as a net uptake of gaseous nitric acid and a replenishment of the uppermost surface layers driven by a larger temperature gradient in summer. This hypothesis was preliminarily tested by a comparison with surface layers temperature data in the 2012-13 period. The analysis of the relationship between the nitrate concentration in the gas phase and total nitrate obtained at Dome C (2012-13) showed the major role of gaseous HNO3 to the total nitrate budget suggesting the need to further investigate the gas-to-particle conversion processes.

  10. Surface treatment of the window layer in CdS/CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Shin Haeng; Kim, Sang Su; Park, Min Hyuk; Suh, Jong Hee; Hong, Jin Ki [Korea University, Jochiwon (Korea, Republic of)

    2014-11-15

    CdS films are used as window layers in CdS/CdTe solar cells, and an annealing process is required to promote grain growth and recrystallization in them. However, when annealing is performed in an air atmosphere, oxides such as CdO and CdSO{sub 4} form on parts of the layer's surface, which reduces the shunt resistance and the fill factor and results in poor device performance. In this study, we annealed the CdS film in a CdCl{sub 2} atmosphere instead of air. Then, CdCl{sub 2} annealing and air annealing were compared by investigating the structural and the electrical properties of the CdS window layers. Our results reveal that the CdCl{sub 2} annealing protects the CdS film from oxidation and provides good recrystallization conditions. We also found that this CdCl{sub 2} annealing enhance the device's performance. In particular, considerably higher shunt resistance and conversion efficiency were obtained for the CdCl{sub 2}-annealed device compared with the air-annealed device.

  11. Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers.

    Science.gov (United States)

    Venkatesan, Swaminathan; Ngo, Evan; Khatiwada, Devendra; Zhang, Cheng; Qiao, Qiquan

    2015-07-29

    The role of electron selective interfaces on the performance and lifetime of polymer solar cells were compared and analyzed. Bilayer interfaces consisting of metal oxide films with cationic polymer modification namely poly ethylenimine ethoxylated (PEIE) were found to enhance device lifetime compared to bare metal oxide films when used as an electron selective cathode interface. Devices utilizing surface-modified metal oxide layers showed enhanced lifetimes, retaining up to 85% of their original efficiency when stored in ambient atmosphere for 180 days without any encapsulation. The work function and surface potential of zinc oxide (ZnO) and ZnO/PEIE interlayers were evaluated using Kelvin probe and Kelvin probe force microscopy (KPFM) respectively. Kelvin probe measurements showed a smaller reduction in work function of ZnO/PEIE films compared to bare ZnO films when aged in atmospheric conditions. KPFM measurements showed that the surface potential of the ZnO surface drastically reduces when stored in ambient air for 7 days because of surface oxidation. Surface oxidation of the interface led to a substantial decrease in the performance in aged devices. The enhancement in the lifetime of devices with a bilayer interface was correlated to the suppressed surface oxidation of the metal oxide layers. The PEIE passivated surface retained a lower Fermi level when aged, which led to lower trap-assisted recombination at the polymer-cathode interface. Further photocharge extraction by linearly increasing voltage (Photo-CELIV) measurements were performed on fresh and aged samples to evaluate the field required to extract maximum charges. Fresh devices with a bare ZnO cathode interlayer required a lower field than devices with ZnO/PEIE cathode interface. However, aged devices with ZnO required a much higher field to extract charges while aged devices with ZnO/PEIE showed a minor increase compared to the fresh devices. Results indicate that surface modification can act as a

  12. Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow

    Science.gov (United States)

    Kunkel, Gary J.; Marusic, Ivan

    2006-02-01

    Data from the near-wall-turbulent region of the high-Reynolds-number atmospheric surface layer are used to analyse the attached-eddy model of wall turbulence. All data were acquired during near-neutral conditions at the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility located in the western Utah Great Salt Lake Desert. Instantaneous streamwise and wall-normal components of velocity were collected with a wall-normal array of two-component hot wires within the first 2 m above the surface of the salt flats. Streamwise and wall-normal turbulence intensities and spectra are directly compared to corresponding laboratory data and similarity formulations hypothesized from the attached-eddy model of wall turbulence. This affords the opportunity to compare results with Reynolds numbers varying over three orders of magnitude. The wall-normal turbulence-intensity similarity formulation is extended. The results show good support for the similarity arguments forwarded by the attached-eddy model as well as Townsend's (1956) Reynolds-number similarity hypothesis and lack of the ‘inactive’ motion influence on the wall-normal velocity component. The effects of wall roughness and the spread in the convection velocity due to this roughness are also discussed.

  13. Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow

    CERN Document Server

    Bashioum, Jessica L; Schmitz, Sven; Duque, Earl P N

    2013-01-01

    The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.

  14. Monodisperse gold nanoparticles formed on bacterial crystalline surface layers (S-layers) by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dieluweit, S. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Pum, D. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Sleytr, U.B. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Kautek, W. [Department for Physical Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna (Austria)]. E-mail: wolfgang.kautek@univie.ac.at

    2005-12-15

    The fabrication of patterned arrays of nanoparticles whose electronic, optical and magnetic properties will find technological applications, such as ultra-high-density memories, is currently one of the most important objectives of inorganic material research. In this study, the in situ electroless nucleation of ordered two-dimensional arrays of gold nanoparticles (5 nm in size) by using bacterial S-layers as molecular templates and their characterization by small spot X-ray photoelectron emission spectroscopy (XPS) is presented. This yielded the elemental composition of the nanoclusters, which consisted of almost entirely elemental gold, and possible side reactions on the cluster and protein surface. The preferential deposition of the gold nanoparticles on the S-layer suggests that topography and functional groups are important for superlattice formation.

  15. Uptake of partially fluorinated alcohols on atmospheric ice surfaces

    Science.gov (United States)

    Moreno, Elena; Aranda, Alfonso; Díaz-de-Mera, Yolanda; Notario, Alberto; Rodríguez, Diana; Bravo, Iván

    2012-12-01

    This work provides uptake results of CF3CF2CH2OH and CF3CF2CF2CH2OH on ice over the range temperature 203-223 K using a coated wall flow tube coupled to mass spectrometric detection. The adsorption was fully reversible and the data could be described in terms of the Langmuir isotherm for the range of concentrations and temperatures studied. For this temperature range, ΔH0ads = -45 ± 11 kJ mol-1 and ΔH0ads = -46 ± 8 kJ mol-1 were obtained for CF3CF2CH2OH and CF3CF2CF2CH2OH respectively (error is 2σ + 5%). Although ice surfaces do not permanently scavenge the studied partially fluorinated compounds, the partitioning between the gas phase and cirrus or snow-pack surfaces may play a role as a reservoir slowing down other permanent atmospheric sinks.

  16. FAST TRACK COMMUNICATION: Small surface wave discharge at atmospheric pressure

    Science.gov (United States)

    Kiss'ovski, Zh; Kolev, M.; Ivanov, A.; Lishev, St.; Koleva, I.

    2009-09-01

    A small surface wave driven source produces plasma at atmospheric pressure. Microwave power at frequency 2.45 GHz is coupled with the source and a discharge is ignited at power levels below 10 W. The coaxial exciter of the surface waves has a length of 10 mm because its dielectric is a high permittivity discharge tube. The plasma source operates as a plasma jet in the case of plasma columns longer than the tube length. The source maintains stable plasma columns over a wide range of neutral gas flow and applied power in continuous and pulse regimes. An additional advantage of this source is the discharge self-ignition. An electron temperature of Te ~ 1.9 eV and a density of ne ~ 3.9 × 1014 cm-3 are estimated by the probe diagnostics method. The emission spectra in the wavelength range 200-1000 nm under different experimental conditions are analysed and they prove the applicability of the source for analytical spectroscopy. The dependences of column length, reflected power and plasma parameters on the gas flow and the input power are discussed.

  17. Aqueous oxidation reaction enabled layer-by-layer corrosion of semiconductor nanoplates into single-crystalline 2D nanocrystals with single layer accuracy and ionic surface capping.

    Science.gov (United States)

    Ji, Muwei; Xu, Meng; Zhang, Jun; Liu, Jiajia; Zhang, Jiatao

    2016-02-25

    A controllable aqueous oxidation reaction enabled layer-by-layer corrosion has been proposed to prepare high-quality two-dimensional (2D) semiconductor nanocrystals with single layer accuracy and well-retained hexagonal shapes. The appropriate oxidizing agent, such as H2O2, Fe(NO3)3, and HNO3, could not only corrode the layered-crystalline-structured Bi2Te3 nanoplates layer-by-layer to be a single quintuple layer, but also replace the organic barriers to be ionic ligands on the surface synergistically. AFM analysis was used to confirm the layer-by-layer exfoliation from the side to the center. Together with precise XRD, LRTEM and HRTEM characterizations, the controllable oxidation reaction enabled aqueous layer-by-layer corrosion mechanism has been studied.

  18. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  19. Intermittency and energy fluxes in the surface layer of free-surface turbulence

    CERN Document Server

    Troiani, Guido; Olivieri, Angelo; Casciola, Carlo Massimo

    2016-01-01

    By analyzing hot-wire velocity data taken in an open channel flow, an unambiguous definition of surface-layer thickness is here provided in terms of the cross-over scale between backward and forward energy fluxes. It is shown that the turbulence in the surface layer does not conform to the classical description of two-dimensional turbulence, since the direct energy cascade persists at scales smaller than the cross-over scale, comparable with the distance from the free-surface. The multifractal analysis of the one-dimensional surrogate of the turbulent kinetic energy dissipation rate in terms of generalized dimensions and singularity spectrum indicates that intermittency is strongly depleted in the surface layer, as shown by the singularity spectrum contracted to a single point. The combination of intermittency indicators and energy fluxes allowed to identify the specific nature of the surface layer as alternative to classical paradigms of three- and two-dimensional turbulence which cannot fully capture the gl...

  20. A numerical model for chemical reaction on slag layer surface and slag layer behavior in entrained-flow gasifier

    Directory of Open Access Journals (Sweden)

    Liu Sheng

    2013-01-01

    Full Text Available The paper concerns with slag layer accumulation, chemical reaction on slag layer surface, and slag layer flow, heat and mass transfer on the wall of entrained-flow coal gasifier. A slag layer model is developed to simulate slag layer behaviors in the coal gasifier. This 3-D model can predict temperature, slag particle disposition rate, disposition particle composition, and syngas distribution in the gasifier hearth. The model is used to evaluate the effects of O2/coal ratio on slag layer behaviors.

  1. Large eddy simulation of atmospheric boundary layer flows and application to pollen dispersal

    Science.gov (United States)

    Chamecki, Marcelo

    This work presents a framework for simulating pollen dispersal by wind based on Large Eddy Simulation. Important phenomena such as pollen emission by plants and ground deposition are modeled through the boundary condition. An expression for the vertical equilibrium concentration profile of pollen particles, including the effect of the canopy on the eddy diffusivity as well as corrections for atmospheric stability, is proposed for this purpose. This expression is validated against measurements of vertical concentration profiles of corn pollen above a corn field. The numerical discretization of the evolution equations follows a new approach in which different discretization schemes are used for the velocity and concentration fields. A new interpolation scheme is proposed to couple the two discretizations. The numerical model is validated against previously published experiments of point-source releases of glass beads and pollen grains in the atmospheric boundary layer. The numerical model is used together with experimental data of pollen emission and downwind deposition from a natural field obtained near Washington DC in the summer of 2006. The combined analysis of experimental and numerical data elucidates the emission, transport, and deposition processes in considerable detail. In particular, the relative fractions of pollen deposited inside the source field and airborne at the edge of the field can be quantified. Investigations based on experimental data and direct numerical simulation of the effects of the local structure of the flow on subgrid scale models for simulations of the atmospheric boundary layer are also presented.

  2. The Effect of Diffusional Transport and Surface Catalysis on the Aerothermodynamic Heating for Martian Atmospheric Entry

    Science.gov (United States)

    Henline, William D.; Papadopoulos, Periklis; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    For the reentry heating of 70-degree blunt sphere-cones entering Mars at velocities in excess of 6 km/sec, a study was performed to determine the magnitude of both convective and catalytic heating on the cone forebody. Case studies of the peak heating conditions for the current NASA Mars Pathfinder entry probe, as well as the peak heating conditions of the proposed NASA Mars 2001 aerobraking orbiter mission were performed. Since the actual behavior of the chemical recombination of Mars atmosphere hypersonic shock layer species on heat shield materials is not known, and no experimental studies of any consequence have been done to determine surface reaction rates for the CO2 system, a parametric analysis of various reaction schemes and surface catalytic mechanistic models was performed. In many cases the actual Mars entry probe will have a heat shield composed of an ablative material which can either partially or completely preclude the existence of catalytic surface recombination phenomena. The extent of this blockage effect has not been examined at this time and is not considered in this effort. Instead only non-ablative computations are performed to separately evaluate the full extent of the surface catalysis and related diffusional phenomena. Parametric studies include peak heating point comparisons of non-catalytic, partially catalytic and fully catalytic total surface heat transfer for three difference surface recombination catalytic mechanisms (with and without simultaneous CO + O and O + O recombination) as well as with different species diffusion models. Diffusion model studies include constant Schmidt number (equal diffusivities) and the bifurcation, approximate multi-component diffusion model. Since the gas phase reaction kinetics for the Mars CO2 based atmosphere have also not been validated, the effect of two different (fast and slow) sets of gas kinetics on heat transfer is presented.

  3. Translation of Land Surface Model Accuracy and Uncertainty into Coupled Land-Atmosphere Prediction

    Science.gov (United States)

    Santanello, Joseph A.; Kumar, Sujay; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Zhou, Shuija

    2012-01-01

    Land-atmosphere (L-A) Interactions playa critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (US-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF Simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  4. Plasma Nitriding of Austenitic Stainless Steel with Severe Surface Deformation Layer

    Institute of Scientific and Technical Information of China (English)

    JI Shi-jun; GAO Yu-zhou; WANG Liang; SUN Jun-cai; HEI Zu-kun

    2004-01-01

    The dc glow discharge plasma nitriding of austenite stainless steel with severe surface deformation layer is used to produce much thicker surface modified layer. This kind of layers has useful properties such as a high surface hardness of about 1500 Hv 0.1 and high resistance to frictional wear. This paper presents the structures and properties of low temperature plasma nitrided austenitic stainless steel with severe surface deformation layer.

  5. Lidar-Observed Stress Vectors and Veer in the Atmospheric Boundary Layer

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, Edward G.

    2013-01-01

    the Coriolis force is negligible, this is supposedly a good approximation. High-resolution large-eddy simulation data show that this is indeed the case even beyond the surface layer. In contrast, through analysis of WindCube lidar measurements supported by sonic measurements, the study shows that it is only...

  6. Effect of Large Finite-Size Wind Farms and Their Wakes on Atmospheric Boundary Layer Dynamics

    Science.gov (United States)

    Wu, Ka Ling; Porté-Agel, Fernando

    2016-04-01

    Through the use of large-eddy simulation, the effect of large finite-size wind farms and their wakes on conventionally-neutral atmospheric boundary layer (ABL) dynamics and power extraction is investigated. Specifically, this study focuses on a wind farm that comprises 25 rows of wind turbines, spanning a distance of 10 km. It is shown that large wind farms have a significant effect on internal boundary layer growth both inside and downwind of the wind farms. If the wind farm is large enough, the internal boundary layer interacts with the thermally-stratified free atmosphere above, leading to a modification of the ABL height and power extraction. In addition, it is shown that large wind farms create extensive wakes, which could have an effect on potential downwind wind farms. Specifically, for the case considered here, a power deficit as large as 8% is found at a distance of 10 km downwind from the wind farm. Furthermore, this study compares the wind farm wake dynamics for cases in which the conventionally neutral ABLs are driven by a unidirectional pressure gradient and Coriolis forces.

  7. Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models

    Science.gov (United States)

    Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.

    2016-10-01

    We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.

  8. Evolution of vortex-surface fields in transitional boundary layers

    Science.gov (United States)

    Yang, Yue; Zhao, Yaomin; Xiong, Shiying

    2016-11-01

    We apply the vortex-surface field (VSF), a Lagrangian-based structure-identification method, to the DNS database of transitional boundary layers. The VSFs are constructed from the vorticity fields within a sliding window at different times and locations using a recently developed boundary-constraint method. The isosurfaces of VSF, representing vortex surfaces consisting of vortex lines with different wall distances in the laminar stage, show different evolutionary geometries in transition. We observe that the vortex surfaces with significant deformation evolve from wall-parallel planar sheets through hairpin-like structures and packets into a turbulent spot with regeneration of small-scale hairpins. From quantitative analysis, we show that a small number of representative or influential vortex surfaces can contribute significantly to the increase of the drag coefficient in transition, which implies a reduced-order model based on VSF. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11472015, 11522215 and 11521091), and the Thousand Young Talents Program of China.

  9. Trends in surface engineering of biomaterials: atmospheric pressure plasma deposition of coatings for biomedical applications

    Science.gov (United States)

    da Ponte, G.; Sardella, E.; Fanelli, F.; D'Agostino, R.; Favia, P.

    2011-11-01

    Cold plasma processes for surface engineering of biomaterials and biomedical devices are traditionally performed at low pressure; more and more, though, surface modification plasma processes at atmospheric pressure are also gaining popularity. This short review is aimed to list briefly atmospheric pressure plasma processes reported, in the last decade, for adapting the surface of materials to the best interactions with cells, bacteria and biomolecules.

  10. Bubbles & Turbulence in the Ocean Surface Layer & Topographic Interactions in Coastal Waters

    Science.gov (United States)

    2016-06-07

    Bubbles & Turbulence in the Ocean Surface Layer & Topographic Interactions in Coastal Waters David Farmer Institute of Ocean Sciences 9860 West...ocean surface layer , and their relationship to wave breaking, turbulence and the effects of buoyancy, gas dissolution and advection by coherent...cases, bubble size distributions were measured, along with other characteristics of the surface layer . Our approach has involved determination of the

  11. Crystalline Bacterial Surface Layer (S-Layer) Opens Golden Opportunities for Nanobiotechnology in Textiles.

    Science.gov (United States)

    Asadi, Narges; Chand, Nima; Rassa, Mehdi

    2015-12-01

    This study focuses on the successful recrystallization of bacterial S-layer arrays of the Lactobacillus acidophilus ATCC 4356 at textile surfaces to create a novel method and material. Optimum bacterial growth was obtained at approximately 45 °C, pH 5.0, and 14 h pi. The cells were resuspended in guanidine hydrochloride and the 43 kDa S-protein was dialyzed and purified. The optimum reassembly on the polypropylene fabric surface in terms of scanning electron microscopy (SEM), reflectance, and uniformity (spectrophotometry) was obtained at 30 °C, pH 5.0 for 30 minutes in the presence of 2 gr/l (liquor ratio; 1:40) of the S-protein. Overall, our data showed that the functional aspects and specialty applications of the fabric would be very attractive for the textile and related sciences, and result in advanced technical textiles.

  12. A method to correct IACT data for atmospheric absorption due to the Saharan Air Layer

    CERN Document Server

    Dorner, Daniela; Bretz, Thomas

    2008-01-01

    Using the atmosphere as a detector volume, Imaging Air Cherenkov Telescopes (IACTs) depend highly on the properties and the condition of the air mass above the telescope. On the Canary Island of La Palma, where the Major Atmospheric Gamma-ray Imaging Cherenkov telescope (MAGIC) is situated, the Saharan Air Layer (SAL) can cause strong atmospheric absorption affecting the data quality and resulting in a reduced gamma flux. To correlate IACT data with other measurements, e.g. long-term monitoring or Multi-Wavelength (MWL) studies, an accurate flux determination is mandatory. Therefore, a method to correct the data for the effect of the SAL is needed. Three different measurements of the atmospheric absorption are performed on La Palma. From the determined transmission, a correction factor is calculated and applied to the MAGIC data. The different transmission measurements from optical and IACT data provide comparable results. MAGIC data of PG 1553+113, taken during a MWL campaign in July 2006, have been analyzed...

  13. Observations of high rates of NO2 – HONO conversion in the nocturnal atmospheric boundary layer in Kathmandu, Nepal

    Directory of Open Access Journals (Sweden)

    R. Prinn

    2009-01-01

    Full Text Available Nitrous acid (HONO plays a significant role in the atmosphere, especially in the polluted troposphere. Its photolysis after sunrise is an important source of hydroxyl free radicals (OH. Measurements of nitrous acid and other pollutants were carried out in the Kathmandu urban atmosphere during January–February 2003, contributing to the sparse knowledge of nitrous acid in South Asia. The results showed average nocturnal levels of HONO (1.7±0.8 ppbv, NO2 (17.9±10.2 ppbv, and PM10 (0.18±0.11 mg m−3 in urban air in Kathmandu. Surprisingly high ratios of chemically formed secondary [HONO] to [NO2] (up to 30% were found, which indicates unexpectedly efficient chemical conversion of NO2 to HONO in Kathmandu. The ratios of [HONO]/[NO2] at nights are much higher than previously reported values from measurements in urban air in Europe, North America and Asia. The influence of aerosol plumes, relative humidity, aerosol surface and ground reactive surface, temperature on NO2-HONO chemical conversion were discussed. The high humidity, strong and low inversion layer at night, and serious aerosol pollution burden may explain the particularly efficient conversion of NO2 to HONO.

  14. Snow modeling within a multi-layer soil-vegetation-atmosphere model

    Science.gov (United States)

    McGowan, L. E.; Paw U, K. T.; Pyles, D. R.

    2014-12-01

    Estimates of snow depth, extent, and melt in the Sierra Nevada Mountain Range are critical to estimating the amount of water that will be available for crops during the growing season within California's Central Valley. Numerical simulations utilizing a fourth order turbulent closure transport scheme in a multi-layer soil-vegetation-atmosphere model, Advanced Canopy-Atmosphere-Soil algorithm (ACASA), were used to explore snow model improvements in the physics-based parameterization for the Sierra Nevada Range. A set of alterations were made separately to the existing snowpack model within ACASA focusing on improvements to snow cover simulations on complex terrain slopes and over varying canopy cover. Three winter seasons were simulated; a climatological average, dry, and wet winter. The simulated output from the models are compared to observations to determine which model alterations made the largest improvements to snow simulations.

  15. Local flux-profile relationships of wind speed and temperature in a canopy layer in atmospheric stable conditions

    Science.gov (United States)

    Zhang, G.; Leclerc, M. Y.; Karipot, A.

    2010-11-01

    The particularities of the physics of the canopy layer pose challenges to the determination and use of traditional universal functions so helpful in the atmospheric surface layer. Progress toward "universal-like functions" such as those provided by Monin-Obukhov similarity theory for the canopy layer has been modest. One of the challenges lies in that the assumptions underlying Monin-Obukhov similarity theory do not hold within a canopy layer. This paper thus examines the local flux-profile relations for wind (Φm) and for temperature (Φh). It uses three different stability parameters, i.e., h/L(h) at tree top, local z/L(z), and the local bulk Richardson number (Ri), within a tall forest canopy in nighttime stable (indicated by h/L(h) > 0) conditions. Results suggest that the in-canopy Φm can be described using the local Richardson number Ri. Furthermore, Φm is found to increase linearly with Ri in the upper canopy layer for |Ri| 1, |Φm| decreases with |Ri| in a power function, a result consistent for all levels of measurements within the canopy. When both local Φh and local Ri are positive, i.e., the local downward turbulent heat flux is consistent with the local temperature gradient, the local Φh increases with the local Ri when Ri 1. The relationship between local Φh and Ri disappears when counter-gradient heat transfer occurs in strongly stable conditions. A self-correlation analysis is used to examine the influence of self-correlation and the physical meaning of these relationships.

  16. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Science.gov (United States)

    Hoffer, Petr; Sugiyama, Yuki; Hosseini, S. Hamid R.; Akiyama, Hidenori; Lukes, Petr; Akiyama, Masahiro

    2016-10-01

    This paper reports physical characteristics of water surface discharges. Discharges were produced by metal needle-to-water surface geometry, with the needle electrode driven by 47 kV (FWHM) positive voltage pulses of 2 µs duration. Propagation of discharges along the water surface was confined between glass plates with 2 mm separation. This allowed generation of highly reproducible 634 mm-long plasma filaments. Experiments were performed using different atmospheres: air, N2, and O2, each at atmospheric pressure. Time- and spatially-resolved spectroscopic measurements revealed that early spectra of discharges in air and nitrogen atmospheres were dominated by N2 2nd positive system. N2 radiation disappeared after approx. 150 ns, replaced by emissions from atomic hydrogen. Spectra of discharges in O2 atmosphere were dominated by emissions from atomic oxygen. Time- and spatially-resolved emission spectra were used to determine temperatures in plasma. Atomic hydrogen emissions showed excitation temperature of discharges in air to be about 2  ×  104 K. Electron number densities determined by Stark broadening of the hydrogen H β line reached a maximum value of ~1018 cm-3 just after plasma initiation. Electron number densities and temperatures depended only slightly on distance from needle electrode, indicating formation of high conductivity leader channels. Direct observation of discharges by high speed camera showed that the average leader head propagation speed was 412 km · s-1, which is substantially higher value than that observed in experiments with shorter streamers driven by lower voltages.

  17. Influence of annealing in H atmosphere on the electrical properties of Al2O3 layers grown on p-type Si by the atomic layer deposition technique

    Science.gov (United States)

    Kolkovsky, Vl.; Stübner, R.; Langa, S.; Wende, U.; Kaiser, B.; Conrad, H.; Schenk, H.

    2016-09-01

    In the present study the electrical properties of 100 nm and 400 nm alumina films grown by the atomic layer deposition technique on p-type Si before and after a post-deposition annealing at 440 °C and after a dc H plasma treatment at different temperatures are investigated. We show that the density of interface states is below 2 × 1010 cm-2 in these samples and this value is significantly lower compared to that reported previously in thinner alumina layers (below 50 nm). The effective minority carrier lifetime τg,eff and the effective surface recombination velocity seff in untreated p-type Si samples with 100 nm and 400 nm aluminum oxide is comparable with those obtained after thermal oxidation of 90 nm SiO2. Both, a post-deposition annealing in forming gas (nitrogen/hydrogen) at elevated temperatures and a dc H-plasma treatment at temperatures close to room temperature lead to the introduction of negatively charged defects in alumina films. The results obtained in samples annealed in different atmospheres at different temperatures or subjected to a dc H plasma treatment allow us to correlate these centers with H-related defects. By comparing with theory we tentatively assign them to negatively charged interstitial H atoms.

  18. Two-dimensional modeling of thermal inversion layers in the middle atmosphere of Mars

    Science.gov (United States)

    Theodore, B.; Chassefiere, E.

    1993-01-01

    There is some evidence that the thermal structure of the martian middle atmosphere may be altered in a significant way by the general circulation motions. Indeed, while it is well known that the circulation in the meridional plane is responsible for the reversal of the latitudinal thermal gradient at the solstice through the adiabatic heating due to sinking motions above the winter pole, here we want to emphasize that a likely by-product effect could be the formation of warm layers, mainly located in the winter hemisphere, and exhibiting an inversion of the vertical thermal gradient.

  19. The Oblique Incident Effects of Electromagnetic Wave in Atmospheric Pressure Plasma Layers

    Institute of Scientific and Technical Information of China (English)

    HE Yong; JIANG Zhonghe; HU Xiwei; LIU Minghai

    2008-01-01

    The propagating behaviours, i.e. phase shift, transmissivity, reflectivity and absorptivity, of an electromagnetic (EM) wave in a two-dimensional atmospheric pressure plasma layer are described by the numerical solutions of integral-differential Maxwell's equations through a generalized finite-difference-time-domain (FDTD) algorithm. These propagating behaviours are found to be strongly affected by five factors: two EM wave characteristics relevan.t to the oblique incident and three dimensionless factors. The two EM wave factors are the polarization mode (TM mode or TE mode) and its incident angle. The three dimensionless factors are: the ratio of the maximum electron density to the critical density n0/ncr, the ratio of the plasma layer width to the wave length d/λ, and the ratio of the collision frequency between electrons and neutrals to the incident wave frequency ve0/f.

  20. LOLAS: an optical turbulence profiler in the atmospheric boundary layer with extreme altitude-resolution

    CERN Document Server

    Avila, R; Wilson, R W; Chun, M; Butterley, T; Carrasco, E

    2008-01-01

    We report the development and first results of an instrument called Low Layer Scidar (LOLAS) which is aimed at the measurement of optical-turbulence profiles in the atmospheric boundary layer with high altitude-resolution. The method is based on the Generalized Scidar (GS) concept, but unlike the GS instruments which need a 1- m or larger telescope, LOLAS is implemented on a dedicated 40-cm telescope, making it an independent instrument. The system is designed for widely separated double-star targets, which enables the high altitude-resolution. Using a 20000-separation double- star, we have obtained turbulence profiles with unprecedented 12-m resolution. The system incorporates necessary novel algorithms for autoguiding, autofocus and image stabilisation. The results presented here were obtained at Mauna Kea Observatory. They show LOLAS capabilities but cannot be considered as representative of the site. A forthcoming paper will be devoted to the site characterisation. The instrument was built as part of the ...

  1. Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES 98): A Report

    Science.gov (United States)

    Cuxart, J.; Yague, C.; Morales, G.; Terradellas, E.; Orbe, J.; Calvo, J.; Fernandez, A.; Soler, M.R.; Infante, C.; Buenestado, P.; Espinalt, A.; Joergensen, H.E.; Rees, J.M.; Vila, J.; Redondo, J.M.; Cantalapiedra, I.R.; Conangla, L.

    This paper describes the Stable AtmosphericBoundary Layer Experiment in Spain (SABLES 98),which took place over the northern Spanish plateaucomprising relatively flat grassland,in September 1998. The main objectives of the campaign were to study the properties of themid-latitude stable boundary layer (SBL).Instrumentation deployed on two meteorologicalmasts (of heights 10 m and 100 m)included five sonic anemometers, 15 thermocouples,five cup anemometers and three propeller anemometers,humidity sensors and radiometers.A Sensitron mini-sodar and a tetheredballoon were also operated continuously. Atriangular array of cup anemometers wasinstalled to allow the detection ofwave events. Two nocturnal periods analysedon 14-15 and 20-21 September are used toillustrate the wide-ranging characteristics of the SBL.

  2. On the role of atmosphere-ocean interactions in the expected long-term changes of the Earth's ozone layer caused by greenhouse gases

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    It is well known that anthropogenic emissions of greenhouse gases into the atmosphere produce a global warming of the troposphere and a global cooling of the stratosphere. The expected stratospheric cooling essentially influences the ozone layer via increased polar stratospheric cloud formation and via temperature dependences of the gas phase reaction rates. One more mechanism of how greenhouse gases influences the ozone layer is enhanced water evaporation from the oceans into the atmosphere because of increasing temperatures of the ocean surface due to greenhouse effect. The subject of this paper is a study of the influence of anthropogenic pollution of the atmosphere by the greenhouse gases CO2, CH4, N2O and ozone-depleting chlorine and bromine compounds on the expected long-term changes of the ozone layer with taking into account an increase of water vapour content in the atmosphere due to greenhouse effect. The study based on 2-D zonally averaged interactive dynamical radiative-photochemical model of the troposphere and stratosphere. The model allows to self-consistently calculating diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of two types. It was supposed in the model that an increase of the ocean surface temperature caused by greenhouse effect is similar to calculated increase of atmospheric surface temperature. Evaporation rate from the ocean surface was computed in dependence of latitude. The model time-dependent runs were made for the period from 1975 to 2100 using two IPCC scenarios depicting maximum and average expected increases of greenhouse gases in the atmosphere. The model calculations show that anthropogenic increasing of water vapour abundance in the atmosphere due to heating of the ocean surface caused by greenhouse effect gives a sensible contribution to the expected ozone

  3. Exploring the bronzing effect at the surface of ink layers

    Science.gov (United States)

    Hébert, Mathieu; Mallet, Maxime; Deboos, Alexis; Chavel, Pierre; Kuang, Deng-Feng; Hugonin, Jean-Paul; Besbes, Mondher; Cazier, Anthony

    2015-03-01

    We investigate the optical phenomenon responsible for the colored shine that sometimes appears at the surface of ink layers in the specular direction, often called bronzing or gloss differential. It seems to come from the wavelength-dependent refractive index of the ink, which induces a wavelength-dependent reflectance of the ink-air interface. Our experiments on cyan and magenta inkjet inks confirm this theory. Complex refractive indices can be obtained from measurements of the spectral reflectance and transmittance of a transparency film coated with the ink. We propose a correction of the classical Clapper-Yule model in order to include the colored gloss in the prediction of the spectral reflectance of an inked paper. We also explored effects of scattering by the micrometric or nanometric roughness of the ink surface. The micrometric roughness, easy to model with a geometrical optics model, can predict the spreading of the colored gloss over a large cone. Electromagnetic models accounting for the effect of the nanometric roughness of the surface also predict the attenuation of short wavelengths observed under collimated illumination.

  4. Structure and Optical Properties of the Atmospheric Boundary Layer over Dusty Hot Deserts

    Science.gov (United States)

    Chalermthai, B.; Al Marzooqi, M.; Basha, G.; Ouarda, T.; Armstrong, P.; Molini, A.

    2014-12-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature of the atmospheric boundary layer (ABL) over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main common features however, desert boundary layers present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as transport and deposition of dust and pollutants, local wind fields, turbulent fluxes and their impacts on the sustainable development, human health and solar energy harvesting in these regions. In this study, we explore the potential of the joint usage of Lidar Ceilometer backscattering profiles and sun-photometer optical depth retrievals to quantitatively determine the vertical aerosol profile over dusty hot desert regions. Toward this goal, we analyze a continuous record of observations of the atmospheric boundary layer height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4425N 54.6163E, Abu Dhabi, United Arab Emirates), starting March 2013, and the concurrent measurements of aerosol optical depth derived independently from the Masdar Institute AERONET sun-photometer. The main features of the desert ABL are obtained from the ceilometer range corrected backscattering profiles through bi-dimensional clustering technique we developed as a modification of the recently proposed single-profile clustering method, and therefore "directly" and "indirectly" calibrated to obtain a full diurnal cycle climatology of the aerosol optical depth and aerosol profiles. The challenges and the advantages of applying a similar methodology to the monitoring of aerosols and dust over hyper-arid regions are also discussed, together with the issues related to the sensitivity of commercial ceilometers to changes in the solar background.

  5. Influences of the boundary layer evolution on surface ozone variations at a tropical rural site in India

    Indian Academy of Sciences (India)

    K K Reddy; M Naja; N Ojha; P Mahesh; S Lal

    2012-08-01

    Collocated measurements of the boundary layer evolution and surface ozone, made for the first time at a tropical rural site (Gadanki 13.5°N, 79.2°E, 375 m amsl) in India, are presented here. The boundary layer related observations were made utilizing a lower atmospheric wind profiler and surface ozone observations were made using a UV analyzer simultaneously in April month. Daytime average boundary layer height varied from 1.5 km (on a rainy day) to a maximum of 2.5 km (on a sunny day). Correlated day-to-day variability in the daytime boundary layer height and ozone mixing ratios is observed. Days of higher ozone mixing ratios are associated with the higher boundary layer height and vice versa. It is shown that higher height of the boundary layer can lead to the mixing of near surface air with the ozone rich air aloft, resulting in the observed enhancements in surface ozone. A chemical box model simulation indicates about 17% reduction in the daytime ozone levels during the conditions of suppressed PBL in comparison with those of higher PBL conditions. On a few occasions, substantially elevated ozone levels (as high as 90 ppbv) were observed during late evening hours, when photochemistry is not intense. These events are shown to be due to southwesterly wind with uplifting and northeasterly winds with downward motions bringing ozone rich air from nearby urban centers. This was further corroborated by backward trajectory simulations.

  6. Very-Large-Scale Motions in the Atmospheric Boundary Layer Educed by Snapshot Proper Orthogonal Decomposition

    Science.gov (United States)

    Shah, Stimit; Bou-Zeid, Elie

    2014-12-01

    Large-eddy simulations of the atmospheric boundary layer (ABL) under a wide range of stabilities are conducted to educe very-large-scale motions and then to study their dynamics and how they are influenced by buoyancy. Preliminary flow visualizations suggest that smaller-scale motions that resemble hairpins are embedded in much larger scale streamwise meandering rolls. Using simulations that represent more than 150 h of physical time, many snapshots in the -, - and -planes are then collected to perform snapshot proper orthogonal decomposition and further investigate the large structures. These analyses confirm that large streamwise rolls that share several features with the very-large-scale motions observed in laboratory studies arise as the dominant modes under most stabilities, but the effect of the surface kinematic buoyancy flux on the energy content of these dominant modes is very significant. The first two modes in the -plane in the neutral case contain up to 3 % of the total turbulent kinetic energy; they also have a vertical tilt angle in the -plane of about 0 to 30 due to the turning effect associated with the Coriolis force. Unstable cases also feature streamwise rolls, but in the convective ABL they are strengthened by rising plumes in between them, with two to four rolls spanning the whole domain in the first few modes; the Coriolis effect is much weaker in the unstable ABL. These rolls are no longer the dominant modes under stable conditions where the first mode is observed to contain sheet-like motions with high turbulent kinetic energy. Using these proper orthogonal decomposition modes, we are also able to extract the vertical velocity fields corresponding to individual modes and then to correlate them with the horizontal velocity or temperature fields to obtain the momentum and heat flux carried by individual modes. Structurally, the fluxes are explained by the topology of their corresponding modes. However, the fraction of the fluxes produced by

  7. Enhancing the prediction of turbulent kinetic energy in the marine atmospheric boundary layer

    Science.gov (United States)

    Foreman, R. J.; Emeis, S.

    2010-09-01

    A recent study by Shaikh and Siddiqui (2010) has shown definitively that the turbulent structure of boundary layer flows over water is fundamentally different compared with that over a smooth surface and with that over a solid wavy surface whose wave amplitude is similar to that of dynamically wind-generated waves. In light of this new information, the constants of the Mellor-Yamada boundary layer model, which are based on laboratory data over solid walls, are re-evaluated to suit the turbulent dynamics of a dynamic, wavy surface. The constants are based on the principal that the enhanced turbulent production in the vicinity of waves is redistributed among the normal stress components by virtue of the enhanced pressure-velocity covariances also found in the vicinity of waves. There is then a feedback mechanism whereby enhanced normal stresses modify the dynamic surface. The net effect of this is that in the marine boundary layer, one can expect an enhancement of turbulent kinetic energy due to the enhancement of normal stresses at the expense of shear stresses. The constants in the Mellor-Yamada-Janjic planetary boundary layer scheme within the Weather Research and Forecasting (WRF) model are changed to fit this principal. Simulations are then performed and compared with data (wind speed and turbulent kinetic energy) from the FINO1 platform in the North Sea. It is found that while predictions of the wind speed are barely changed, the magnitude of the tke error (RMS) is reduced by up to 50%. This is expected to be practically relevant for the estimation of blade fatigue of wind energy converters, where the tke is an important parameter in this assessment. It could also be relevant for pollution dispersion in marine boundary layers.

  8. UAS and DTS: Using Drones and Fiber Optics to Measure High Resolution Temperature of the Atmospheric Boundary Layer

    Science.gov (United States)

    Predosa, R. A.; Darricau, B.; Higgins, C. W.

    2015-12-01

    The atmospheric boundary layer (ABL) is the lowest part of the atmosphere that directly interacts with the planet's surface. The development of the ABL plays a vital role, as it affects the transport of atmospheric constituents such as air pollutants, water vapor, and greenhouse gases. Measurements of the processes in the ABL have been difficult due to the limitations in the spatial and temporal resolutions of the equipment as well as the height of the traditional flux tower. Recent advances in the unmanned aerial vehicle (UAV) and distributed temperature sensing (DTS) technologies have provided us with new tools to study the complex processes in ABL. We conducted a series of pioneering experiments in Eastern Oregon using a platform that combines UAV and DTS to collect data during morning and evening transitions in the ABL. The major components of this platform consists of a quad-copter, a DTS computer unit, and a set of customized fiber optic cables. A total of 75 flights were completed to investigate: (1) the capability of a duplexed fiber optic cable to reduce noise in the high spatial and temporal temperature measurements taken during the morning transition; (2) the possibility of using fiber optic cable as "wet bulb" thermometer to calculate relative humidity in the ABL at high spatial and temporal resolution. The preliminary results showed that using a fiber optic cable in a duplexed configuration with the UAV-DTS platform can effectively reduce noise level during the morning transition data collection. The customized "wet bulb" fiber optic cable is capable of providing information for the calculation of relative humidity in the ABL at unprecedented spatial and temporal resolutions. From this study, the UAV-DTS platform demonstrated great potential in collecting temperature data in the ABL and with the development of atmospheric sensor technologies, it will have more applications in the future.

  9. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  10. A macromolecular model for the endothelial surface layer

    Science.gov (United States)

    Harden, James; Danova-Okpetu, Darina; Grest, Gary

    2006-03-01

    The endothelial surface layer (ESL) is a micron-scale macromolecular lining of the luminal side of blood vessels composed of proteoglycans, glycoproteins, polysaccharides and associated plasma proteins all in dynamic equilibrium. It has numerous physiological roles including the regulation of blood flow and microvascular permeability, and active participation in mechanotransduction and stress regulation, coagulation, cell adhesion, and inflammatory response. The dynamic structure and the mechanical properties of the ESL are crucial for many of its physiological properties. We present a topological model for the ESL composed of three basic macromolecular elements: branched proteoglycans, linear polysaccharide chains, and small plasma proteins. The model was studied using non-equilibrium molecular dynamics simulations and compared with scaling theories for associating tethered polymers. We discuss the observed dynamical and mechanical properties of the ESL captured by this model, and the possible physical insight it provides into the physiological behavior of the ESL.

  11. Cone model for two surface foundations on layered soil

    Institute of Scientific and Technical Information of China (English)

    Chen Wenhua

    2006-01-01

    In this paper, the cone model is applied to the vibration analysis of two foundations on a layered soil half space. In the analysis, the total stress field in the subsoil is divided into the free-field and the scattering field. Seed's simplified method is adopted for the free-field analysis,while the cone model is proposed for analyzing the dynamic scattering stress wave field.The shear stress field and the compressive stress field in the layered stratum with two scattering sources are calculated by shear cone and compressive cone, respectively. Furthermore, the stress fields in the subsoil with two foundations are divided into six zones, and the P wave and S wave are analyzed in each zone. Numerical results are provided to illustrate features of the added stress field for two surface foundations under vertical and horizontal sinusoidal force excitation. The proposed cone model may be useful in handling some of the complex problems associated with multi-scattering sources.

  12. Surface topology and electronic structure of layered strontium ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, Robert; Klinke, Melanie; Waelsch, Michael; Mietke, Sebastian; Matzdorf, Rene [Experimentalphysik II, Universitaet Kassel (Germany); Peng, Jin; Mao, Zhiqiang [Department of Physics, Tulane University, New Orleans (United States)

    2012-07-01

    In complex materials the interplay of properties like crystal structure, electronic structure and magnetism results in very interesting physical phenomena. The Ruddlesden-Popper series of layered Strontium Ruthenates Sr{sub n+1}Ru{sub n}O{sub 3n+1} describes one class of these materials. The double and triple layer systems behave like a Fermi liquid up to the transition temperature of 15 K and 24 K, respectively. In both compounds the local density of states (LDOS) shows a peak within the dip-like feature around the Fermi energy E{sub F}. Using low-temperature (LT) STM and STS we studied the temperature dependence of the LDOS in the range from 4.7 to 35 K. By increasing the temperature the peak within the dip in the LDOS at E{sub F} is only affected by thermal broadening. The surface unit cell of the Strontium Ruthenates exhibits a c(2 x 2) super structure, which is stable from 4.7 K up to room temperature as shown by our atomically resolved LT STM images and room temperature LEED experiments.

  13. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation

    Science.gov (United States)

    Frost, W.; Harper, W. L.; Fichtl, G. H.

    1975-01-01

    Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.

  14. Micropatterned Surfaces for Atmospheric Water Condensation via Controlled Radical Polymerization and Thin Film Dewetting.

    Science.gov (United States)

    Wong, Ian; Teo, Guo Hui; Neto, Chiara; Thickett, Stuart C

    2015-09-30

    Inspired by an example found in nature, the design of patterned surfaces with chemical and topographical contrast for the collection of water from the atmosphere has been of intense interest in recent years. Herein we report the synthesis of such materials via a combination of macromolecular design and polymer thin film dewetting to yield surfaces consisting of raised hydrophilic bumps on a hydrophobic background. RAFT polymerization was used to synthesize poly(2-hydroxypropyl methacrylate) (PHPMA) of targeted molecular weight and low dispersity; spin-coating of PHPMA onto polystyrene films produced stable polymer bilayers under appropriate conditions. Thermal annealing of these bilayers above the glass transition temperature of the PHPMA layer led to complete dewetting of the top layer and the formation of isolated PHPMA domains atop the PS film. Due to the vastly different rates of water nucleation on the two phases, preferential dropwise nucleation of water occurred on the PHPMA domains, as demonstrated by optical microscopy. The simplicity of the preparation method and ability to target polymers of specific molecular weight demonstrate the value of these materials with respect to large-scale water collection devices or other materials science applications where patterning is required.

  15. Influence of the atmospheric species water, oxygen, nitrogen and carbon dioxide on the degradation of aluminum doped zinc oxide layers

    NARCIS (Netherlands)

    Theelen, M.; Dasgupta, S.; Vroon, Z.; Kniknie, B.; Barreau, N.; Berkum, J. van; Zeman, M.

    2014-01-01

    Aluminum doped zinc oxide (ZnO:Al) layers were exposed to the atmospheric gases carbon dioxide (CO2), oxygen (O2), nitrogen (N 2) and air as well as liquid H2O purged with these gases, in order to investigate the chemical degradation behavior of these layers. The samples were analyzed by electrical,

  16. Study on the atmospheric boundary layer and its influence on regional air quality over the Pearl River delta

    Directory of Open Access Journals (Sweden)

    M. Wu

    2013-03-01

    Full Text Available To study the structure of atmospheric boundary layer (ABL and its influence on regional air quality over the Pearl River delta (PRD, two ABL intensive observations were conducted at Panyu (urban station and Xinken (non-urban station, near estuary of PRD during October 2004 and July 2006, respectively. Based on the ABL intensive observation data analysis, the typical weather condition type associated with poor air quality over PRD could be summarized into two kinds: the warmed period before cold front (WPBCF and the subsidence period controlled by tropical cyclone (SPCTC. Two typical polluted cases (affected by WPBCF and SPCTC, respectively and one clean (not-polluted case were chosen for detail analysis. It was found that the continuously low or calm ground wind would lead to pollutant accumulation. The local circulation, such as sea–land breezes and heat–island circulation, played an important role in these polluted cases. The recirculation was significant in polluted cases; steady transport occurred in the clean case. Ventilation index (VI was quite different between polluted cases and the clean case: in WPBCF cases, the peak VI was from 184 to 3555 m2 s−1; on SPCTC days, the peak VI was from 1066 to 4363 m2 s−1; on the clean day, the peak VI was 10 885 m2 s−1 and much larger than all polluted cases. The 24-h average VI on polluted days was from 169 to 2858 m2 s−1 and also much smaller than that of the clean day. VI is a good reference index for pollution judgment. The peak mixing heights were smaller than 700 m in WPBCF cases, and were smaller than 800 m in SPCTC cases. During WPBCF polluted case, only surface inversion layer appeared. In the period of land breeze, surface inversion layer height was about 50 m, but in the period of sea breeze, surface inversion layer height would increase, and reach the maximum height, which was about 600 m. During SPCTC polluted case, there were several inversion layers that appeared at different

  17. The diurnal evolution of ²²²Rn and its progeny in the atmospheric boundary layer during the Wangara experiment

    Directory of Open Access Journals (Sweden)

    S. Galmarini

    2007-09-01

    Full Text Available The diurnal atmospheric boundary layer evolution of the 222Rn decaying family is studied using a state-of-the-art large-eddy simulation model. In particular, a diurnal cycle observed during the Wangara experiment is successfully simulated together with the effect of diurnal varying turbulent characteristics on radioactive compounds initially in a secular equilibrium. This study allows us to clearly analyze and identify the boundary layer processes driving the behaviour of 222Rn and its progeny concentrations. An activity disequilibrium is observed in the nocturnal boundary layer due to the proximity of the radon source and the trapping of fresh 222Rn close to the surface induced by the weak vertical transport. During the morning transition, the secular equilibrium is fast restored by the vigorous turbulent mixing. The evolution of 222Rn and its progeny concentrations in the unsteady growing convective boundary layer depends on the strength of entrainment events.

  18. Laboratory Simulations of Local Winds in the Atmospheric Boundary Layer via Image Analysis

    Directory of Open Access Journals (Sweden)

    Monica Moroni

    2015-01-01

    Full Text Available In the atmospheric boundary layer, under high pressure conditions and negligible geostrophic winds, problems associated with pollution are the most critical. In this situation local winds play a major role in the evaluation of the atmospheric dynamics at small scales and in dispersion processes. These winds originate as a result of nonuniform heating of the soil, either when it is homogeneous or in discontinuous terrain in the presence of sea and/or slopes. Depending on the source of the thermal gradient, local winds are classified into convective boundary layer, sea and land breezes, urban heat islands, and slope currents. Local winds have been analyzed by (i simple analytical models; (ii numerical models; (iii field measurements; (iv laboratory measurements through which it is impossible to completely create the necessary similarities, but the parameters that determine the phenomenon can be controlled and each single wind can be separately analyzed. The present paper presents a summary of laboratory simulations of local winds neglecting synoptic winds and the effects of Coriolis force. Image analysis techniques appear suitable to fully describe both the individual phenomenon and the superposition of more than one local wind. Results do agree with other laboratory studies and numerical experiments.

  19. Complementary nature of surface and atmospheric parameters associated with Haiti earthquake of 12 January 2010

    Directory of Open Access Journals (Sweden)

    Ramesh P. Singh

    2010-06-01

    Full Text Available The present paper describes surface (surface air temperature and atmospheric parameters (relative humidity, surface latent heat flux over the epicenter (18°27´25´´ N 72°31´59´´ W of Haiti earthquake of 12 January 2010. Our analysis shows pronounced changes in surface and atmospheric parameters few days prior to the main earthquake event. Changes in relative humidity are found from the surface up to an altitude of 500 hPa clearly show atmospheric perturbations associated with the earthquake event. The purpose of this paper is to show complementary nature of the changes observed in surface, atmospheric and meteorological parameters. The total ozone concentration is found to be lowest on the day of earthquake and afterwards found to be increased within a week of earthquake. The present results show existence of coupling between lithosphere-atmosphere associated with the deadly Haiti earthquake.

  20. Arctic Mechanisms of Interaction between the Surface and Atmosphere (AMISA) IPY Airborne Data Set

    Science.gov (United States)

    Gasiewski, A. J.; Zucker, M. L.; Persson, O. P.

    2012-12-01

    The Arctic Mechanisms of Interaction Between the Surface and Atmosphere (AMISA) campaign is an International Polar year (IPY) project conducted in conjunction with a related ship-based IPY project, the Arctic Summer Cloud-Ocean Study (ASCOS). Understanding the top-side atmospheric and sea ice radiative processes contributing to Arctic sea ice reduction is the primary goal of AMISA. This poster describes the field activities and status of AMISA data processing studies at the end of the final grant year. Tropospheric synoptic and mesoscale disturbances over the Arctic Ocean force large, transitory changes in the structure of the Arctic boundary layer (ABL) and its surface energy budget (SEB). These changes determine the near-surface air temperature and drive the thermodynamic and mass balance of sea ice. The thermal, kinematic, and cloud features associated with these disturbances modify the kinematic and thermodynamic structure of the ABL through both turbulent and radiative fluxes and changes in ABL clouds. These changes, in turn, subsequently affect the SEB of the pack ice. Accordingly, processes linking atmospheric synoptic and mesoscale disturbances to ABL structure and SEB during the seasonal transition periods were the primary observational objectives of AMISA. To achieve these objectives high resolution observations of Arctic sea ice cover and type along with meteorological conditions representative of significant mesoscale processes were obtained during five sorties over polar sea ice as part of the 23-day AMISA deployment in August 2008 using the NASA DC-8 aircraft based out of Kiruna, Sweden. Measurements of ABL cloud and moisture content and identification of summertime meltponds (which produce different radiative and turbulent fluxes) and leads were included. DC-8 data includes high resolution microwave imagery of sea ice using the Polarimetric Scanning Radiometer (PSR/A) system, video data used for ice/lead/meltpond discrimination, and direct sampling

  1. Progress in Understanding Land-Surface-Atmosphere Coupling from LBA Research

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2010-06-01

    Full Text Available LBA research has deepened our understanding of the role of soil water storage, clouds and aerosols in land-atmosphere coupling. We show how the reformulation of cloud forcing in terms of an effective cloud albedo per unit area of surface gives a useful measure of the role of clouds in the surface energy budget over the Amazon. We show that the diurnal temperature range has a quasi-linear relation to the daily mean longwave cooling; and to effective cloud albedo because of the tight coupling between the near-surface climate, the boundary layer and the cloud field. The coupling of surface and atmospheric processes is critical to the seasonal cycle: deep forest rooting systems make water available throughout the year, whereas in the dry season the shortwave cloud forcing is reduced by regional scale subsidence, so that more light is available for photosynthesis. At sites with an annual precipitation above 1900 mm and a dry season length less than 4 months, evaporation rates increased in the dry season, coincident with increased radiation. In contrast, ecosystems with precipitation less than 1700 mm and a longer dry season showed clear evidence of reduced evaporation in the dry season coming from water stress. In all these sites, the seasonal variation of the effective cloud albedo is a major factor in determining the surface available energy. Dry season fires add substantial aerosol to the atmosphere. Aerosol scattering and absorption both reduce the total downward surface radiative flux, but increase the diffuse/direct flux ratio, which increases photosynthetic efficiency. Convective plumes produced by fires enhance the vertical transport of aerosols over the Amazon, and effectively inject smoke aerosol and gases directly into the middle troposphere with substantial impacts on mid- tropospheric dispersion. In the rainy season in Rondônia, convection in low-level westerly flows with low aerosol content resembles oceanic convection with

  2. Surface Roughness and Dislocation Distribution in Compositionally Graded Relaxed SiGe Buffer Layer with Inserted Strained Si Layers

    Science.gov (United States)

    Yoon, Tae-Sik

    2005-03-01

    We report the experimental investigation of surface roughness and dislocation distribution of 1 μm-thick, compositionally graded, relaxed SiGe buffer layer with a final Ge surface content of 30%. Tensile-strained Si layers are inserted at various locations in the graded buffer during SiGe epitaxial growths. Slight reduction in surface roughness from about 10.3 nm to about 7.8 nm by inserting two 20 nm thick tensile-strained Si layers followed by SiGe growths. It turns out that majority of the residual surface roughness is developed during the SiGe growths on top of the topmost strain Si layer. The surface immediately after the growth of tensile strained Si is very flat with about 1.1 nm RMS roughness and without crosshatch morphology. Cross-sectional TEM shows clear signs of increased interaction between dislocation half-loops at the top surface of the strained Si layers. Our observation shows that although thin Si layers under tensile-strain are effective in reducing cross-hatch, they could in the meantime impede dislocation propagation leading to higher threading dislocation density. Considerations for an optimized scheme exploiting the flattening function of tensile-strained layers will be discussed.

  3. An analytical model for radioactive pollutant release simulation in the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Weymar, Guilherme J.; Vilhena, Marco T.; Bodmann, Bardo E.J., E-mail: guicefetrs@gmail.com, E-mail: mtmbvilhena@gmail.com, E-mail: bejbodmann@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Buske, Daniela; Quadros, Regis, E-mail: danielabuske@gmail.com, E-mail: quadros99@gmail.com [Universidade Federal de Pelotas (UFPel), Capao do Leao, RS (Brazil). Programa de Pos-Graduacao em Modelagem Matematica

    2013-07-01

    Simulations of emission of radioactive substances in the atmosphere from the Brazilian nuclear power plant Angra 1 are a necessary tool for control and elaboration of emergency plans as a preventive action for possible accidents. In the present work we present an analytical solution for radioactive pollutant dispersion in the atmosphere, solving the time-dependent three-dimensional advection-diffusion equation. The experiment here used as a reference in the simulations consisted of the controlled releases of radioactive tritiated water vapor from the meteorological tower close to the power plant at Itaorna Beach. The wind profile was determined using experimental meteorological data and the micrometeorological parameters were calculated from empirical equations obtained in the literature. We report on a novel analytical formulation for the concentration of products of a radioactive chain released in the atmospheric boundary layer and solve the set of coupled equations for each chain radionuclide by the GILTT solution, assuming the decay of all progenitors radionuclide for each equation as source term. Further we report on numerical simulations, as an explicit but fictitious example and consider three radionuclides in the radioactive chain of Uranium 235. (author)

  4. Effect of treatment time on characterization and properties of nanocrystalline surface layer in copper induced by surface mechanical attrition treatment

    Indian Academy of Sciences (India)

    Farzad Kargar; M Laleh; T Shahrabi; A Sabour Rouhaghdam

    2014-08-01

    Nanocrystalline surface layers were synthesized on pure copper by means of surface mechanical attrition treatment (SMAT) at various treatment times. The microstructural features of the surface layers produced by SMAT were systematically characterized by optical microscopy (OM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. Hardness and surface roughness measurements were also carried out. It is found that the thickness of the deformed layer increased from 50 to 500 m with increasing treatment time from 10 to 300 min, while the average grain size of the top surface layer decreased from 20 to 7 nm. Hardness of the all SMATed samples decreased with depth. Furthermore, the hardness of the top surface layer of the SMATed samples was at least two times higher than that of the un-treated counterpart. Surface roughness results showed different trend with treatment time. Amounts of PV and a values first sharply increased and then decreased.

  5. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... COMMISSION Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and... Guidance (LR-ISG), LR-ISG-2012-02, ``Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric... aging management programs (AMPs), aging management review (AMR) items, and definitions in NUREG-...

  6. Oxidation of the Martian surface - Constraints due to chemical processes in the atmosphere

    Science.gov (United States)

    Mcelroy, M. B.; Kong, T. Y.

    1976-01-01

    Dissociation of water in the Martian atmosphere may supply oxygen to the surface and may result in the formation of minerals such as goethite, as proposed by Huguenin. The supply rate is limited by chemical processes in the atmosphere which regulate the abundance of O2. The net surface sink for atmospheric oxygen can be as large as 33 million atoms per sq cm per sec which compares to the escape rate of 60 million atoms per sq cm per sec.

  7. INVESTIGATIONS INTO THE DETACHMENT OF DIFFERENTLY STRUCTURED DUST LAYERS FROM SURFACES

    Institute of Scientific and Technical Information of China (English)

    Eberhard Schmidt

    2005-01-01

    A technique is presented for creating surface-adhering dust layers under defined conditions, and characterizing and stressing the layers created. The procedure described is shown to be suitable for the quantitative evaluation of the effects of different parameters such as particle size, porosity and surface roughness etc. on the stability of particle layers.

  8. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    Science.gov (United States)

    Abuzairi, Tomy; Okada, Mitsuru; Bhattacharjee, Sudeep; Nagatsu, Masaaki

    2016-12-01

    An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5-4.2 km/s and 2-7 × 1017 m-3. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from -900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  9. Characterization of Floating Surface Layers of Lipids and Lipopolymers by Surface-Sensitive Scattering

    Science.gov (United States)

    Krüger, Peter; Lösche, Mathias

    Nanotechnology and molecular (bio-)engineering are making ever deepening inroads into everybodys daily life. Physicochemical and biotechnological achievements in the design of physiologically active supramolecular assemblies have brought about the quest for their submolecular-level characterization. We employ surface-sensitive scattering techniques for the investigation of planar lipid membranes - floating monolayers on aqueous surfaces - to correlate structural, functional and dynamic aspects of biomembrane models. This chapter surveys recent work on the submolecular structure of floating phospholipid monolayers - where the advent of third-generation synchrotron X-ray sources has driven the development of realistic, submolecular-scale quasi-chemical models - as well as of more complex systems: cation binding to anionic lipid surfaces; conformational changes of lipopolymers undergoing phase transitions; the conformational organization of phosphatidylinositol and phosphatidylinositides, as examples of physiologically important lipids; and the adsorption of peptides (neuropeptide Y, NPY) or solvents (dimethylsulfoxide, DMSO) onto phospholipid surface layers.

  10. Atmospheric trace metals in the snow layers deposited at the South Pole from 1928 to 1977

    Energy Technology Data Exchange (ETDEWEB)

    Boutron, C.

    1982-01-01

    Forty-seven successive dated snow samples, covering a 50 y continuous time sequence between 1928 and 1977 with a time resolution of approximately one sample per year, have been collected using stringent contamination-free techniques from a 10 m deep pit in the clean sector at the geographic South Pole, Antarctica. They have been analyzed for Na, Mg, K, Ca, Fe, Al, Mn, Pb, Cd, Cu, Zn and Ag in clean room conditions by flameless atomic absorption after preconcentration. For all the elements, the concentrations observed in the most recent snow layers are comparable to the ones in the 50 y old snow layers, except for Pb, for which an increase (x4) is observed after 1960 approximately. These data therefore confirm that the influence of global atmospheric pollution is probably still negligible in the remote areas of the southern hemisphere for the 12 measured elements except possibly for Pb after 1960. For this last element, however, an alternative explanation of the post-1960 increase could be that the post-1960 snow layers have been contaminated by operations at Amundsen Scott station, which has been occupied since 1957.

  11. Influence of the atmosphere on the evaluation of the geopotential from global models on the surface of the Earth: implications for the realization of a World Height System

    Science.gov (United States)

    Mäkinen, Jaakko

    2016-04-01

    Outside the atmosphere, the potential of a standard atmosphere can with high accuracy be approximated with the potential of a surface layer with the same mass, independently of the scale height of the atmosphere. Not so when the potential is evaluated on the surface of the Earth. In a spherically symmetric approximation and assuming a scale height of 7.6 km, the potential at zero height is in a back-of-the-envelope calculation 0.12 percent less than the potential of the surface laýer. This corresponds to a difference of -1.2 ppb in the total geopotential evaluated on the surface of the Earth, the equivalent of a difference of +8 mm in height. Using a realistic atmospheric and Earth model, the difference is not constant. This has obvious implications for the geopotential values associated with a World Height System. The question has in fact already been extensively analyzed in the context of geoid determination.

  12. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide.

    Science.gov (United States)

    Sahoo, Pathik; Ishihara, Shinsuke; Yamada, Kazuhiko; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Eisaku, Nii; Sasai, Ryo; Labuta, Jan; Ishikawa, Daisuke; Hill, Jonathan P; Ariga, Katsuhiko; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke; Iyi, Nobuo

    2014-10-22

    The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040-18043). The use of (13)C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.

  13. The marine atmospheric boundary layer under strong wind conditions: Organized turbulence structure and flux estimates by airborne measurements

    Science.gov (United States)

    Brilouet, Pierre-Etienne; Durand, Pierre; Canut, Guylaine

    2017-02-01

    During winter, cold air outbreaks take place in the northwestern Mediterranean sea. They are characterized by local strong winds (Mistral and Tramontane) which transport cold and dry continental air across a warmer sea. In such conditions, high values of surface sensible and latent heat flux are observed, which favor deep oceanic convection. The HyMeX/ASICS-MED field campaign was devoted to the study of these processes. Airborne measurements, gathered in the Gulf of Lion during the winter of 2013, allowed for the exploration of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). A spectral analysis based on an analytical model was conducted on 181 straight and level runs. Profiles of characteristic length scales and sharpness parameter of the vertical wind spectrum revealed larger eddies along the mean wind direction associated with an organization of the turbulence field into longitudinal rolls. These were highlighted by boundary layer cloud bands on high-resolution satellite images. A one-dimensional description of the vertical exchanges is then a tricky issue. Since the knowledge of the flux profile throughout the entire MABL is essential for the estimation of air-sea exchanges, a correction of eddy covariance turbulent fluxes was developed taking into account the systematic and random errors due to sampling and data processing. This allowed the improvement of surface fluxes estimates, computed from the extrapolation of the stacked levels. A comparison between those surface fluxes and bulk fluxes computed at a moored buoy revealed considerable differences, mainly regarding the latent heat flux under strong wind conditions.

  14. Ordering layers of [bmim][PF6] ionic liquid on graphite surfaces: molecular dynamics simulation.

    Science.gov (United States)

    Maolin, Sha; Fuchun, Zhang; Guozhong, Wu; Haiping, Fang; Chunlei, Wang; Shimou, Chen; Yi, Zhang; Jun, Hu

    2008-04-01

    Microscopic structures of room temperature ionic liquid (IL) [bmim][PF6] on hydrophobic graphite surfaces have been studied in detail by molecular dynamics simulation. It is clearly shown that both the mass and electron densities of the surface adsorbed ionic liquid are oscillatory, and the first peak adjacent to the graphite surface is considerably higher than others, corresponding to a solidlike IL bottom layer of 6 angstroms thick. Three IL layers are indicated between the graphite surface and the inner bulk IL liquid. The individually simulated properties of single-, double-, and triple-IL layers on the graphite surface are very similar to those of the layers between the graphite surface and the bulk liquid, indicating an insignificant effect of vapor-IL interface on the ordered IL layers. The simulation also indicates that the imidazolium ring and butyl tail of the cation (bmim+) of the IL bottom layer lie flat on the graphite surface.

  15. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  16. Experiment of near surface layer parameters in ice camp over Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Estimates of near surface layer parameters over (78.) N drifting ice in ice camp over the Arctic ocean are made using bulk transfer methods with the data from the experiments operated by the Chinese Arctic Scientific Expedition in August 22 September 3, 2003.The results show that the net radiation received by the snow surface is only 3.6 W/m2, among which the main part transported into atmosphere in term of sensible heat and latent heat, which account for 52% and 31% respectively,and less part being transported to deep ice in the conductive process.The bulk transfer coefficient of momentum is about 1.16 x 10-3 in the near neutral layer, which is a little smaller than that obtained over (75.)N drifting ice.However, to compare with the results observed over 75°N drifting ice over the Arctic Ocean in 1999, it can be found that the thermodynamic and momentum of interactions between sea and air are significant different with latitudes, concentration and the scale of sea ice.It is very important on considering the effect of sea-air-ice interaction over the Arctic Ocean when studying climate modeling.

  17. Hybrid layers deposited by an atmospheric pressure plasma process for corrosion protection of galvanized steel.

    Science.gov (United States)

    Del Frari, D; Bour, J; Bardon, J; Buchheit, O; Arnoult, C; Ruch, D

    2010-04-01

    Finding alternative treatments to reproduce anticorrosion properties of chromated coatings is challenging since both physical barrier and self-healing effects are needed. Siloxane based treatments are known to be a promising way to achieve physical barrier coatings, mainly plasma polymerized hexamethyldisiloxane (ppHMDSO). In addition, it is known that cerium-based coatings can also provide corrosion protection of metals by means of self-healing effect. In this frame, innovative nanoAlCeO3/ppHMDSO layers have thus been deposited and studied. These combinations allow to afford a good physical barrier effect and active properties. Liquid siloxane and cerium-based particles mixture is atomized and introduced as precursors into a carrier gas. Gas mixture is then injected into an atmospheric pressure dielectric barrier discharge (DBD) where plasma polymerization of the siloxane precursor occurs. The influence of cerium concentration on the coating properties is investigated: coating structure and topography have been studied by scanning electron microscopy (SEM) and interferometry, and corrosion resistance of these different coatings is compared by electrochemistry techniques: polarization curves and electrochemical impedance spectroscopy (EIS). Potential self-healing property afforded by cerium in the layer was studied by associating EIS measurements and nanoscratch controlled damaging. Among the different combinations investigated, mixing of plasma polymerized HMDSO and AICeO3 nanoparticles seems to give promising results with a good physical barrier and interesting electroactive properties. Indeed, corrosion currents measured on such coatings are almost as low as those measured with the chromated film. Combination of nanoscratch damaging of layers with EIS experiments to investigate self-healing also allow to measure the active protection property of such layers.

  18. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-03-16

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

  19. Coupled atmosphere-mixed layer ocean response to ocean heat flux convergence along the Kuroshio current extension

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Oh [Woods Hole Oceanographic Institution, Physical Oceanography Department, Woods Hole, MA (United States); Deser, Clara [National Center for Atmospheric Research, Boulder, CO (United States); Cassou, Christophe [CNRS-CERFACS, Toulouse (France)

    2011-06-15

    The winter response of the coupled atmosphere-ocean mixed layer system to anomalous geostrophic ocean heat flux convergence in the Kuroshio Extension is investigated by means of experiments with an atmospheric general circulation model coupled to an entraining ocean mixed layer model in the extra-tropics. The direct response consists of positive SST anomalies along the Kuroshio Extension and a baroclinic (low-level trough and upper-level ridge) circulation anomaly over the North Pacific. The low-level component of this atmospheric circulation response is weaker in the case without coupling to an extratropical ocean mixed layer, especially in late winter. The inclusion of an interactive mixed layer in the tropics modifies the direct coupled atmospheric response due to a northward displacement of the Pacific Inter-Tropical Convergence Zone which drives an equivalent barotropic anomalous ridge over the North Pacific. Although the tropically driven component of the North Pacific atmospheric circulation response is comparable to the direct response in terms of sea level pressure amplitude, it is less important in terms of wind stress curl amplitude due to the mitigating effect of the relatively broad spatial scale of the tropically forced atmospheric teleconnection. (orig.)

  20. Modeling hydrodynamic flows in plasma fluxes when depositing metal layer on the surface of catalyst converters

    Science.gov (United States)

    Chinakhov, D. A.; Sarychev, V. D.; Granovsky, A. Yu; Solodsky, S. A.; Nevsky, S. A.; Konovalov, S. V.

    2017-01-01

    Air pollution with harmful substances resulting from combustion of liquid hydrocarbons and emitted into atmosphere became one of the global environmental problems in the late 20th century. The systems of neutralization capable to reduce toxicity of exhaust gases several times are very important for making environmentally safer combustion products discharged into the atmosphere. As revealed in the literature review, one of the most promising purification procedures is neutralization of burnt gases by catalyst converter systems. The principal working element in the converter is a catalytic layer of metals deposited on ceramics, with thickness 20-60 micron and a well-developed micro-relief. The paper presents a thoroughly substantiated new procedure of deposing a nano-scale surface layer of metal-catalyst particles, furthering the utilization of catalysts on a new level. The paper provides description of mathematical models and computational researches into plasma fluxes under high-frequency impulse input delivered to electrode material, explorations of developing Kelvin-Helmholtz, Marangoni and magnetic hydrodynamic instabilities on the surface of liquid electrode metal droplet in the nano-scale range of wavelengths to obtain a flow of nano-meter particles of cathode material. The authors have outlined a physical and mathematical model of magnetic and hydrodynamic instability for the case of melt flowing on the boundary with the molten metal with the purpose to predict the interphase shape and mutual effect of formed plasma jet and liquid metal droplet on the electrode in the nano-scale range of wavelengths at high-frequency impact on the boundary “electrode-liquid layer”.

  1. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  2. Surface Electroelastic Love Waves in Layered System with a Piezoelectric Substrate and Two Isotropic Layers of Any Thickness

    Directory of Open Access Journals (Sweden)

    Danoyan Z.N.

    2009-09-01

    Full Text Available In the article the existence and behaviour of electroelastic Love waves in three-layered system of a piezoelectric substrate of classes 6, 4, 6mm, 4mm and attached to her two isotropic layers (conductor-dielectric, conductor-conductor of any thickness is investigated, depending on the physicomechanical characteristics of layered system and relative thicknesses of layers. The characteristic equation of a required surface wave is investigated in case of a basic soft layer. The research is based on properties of the electromechanical factor of surface wave given in the work [1-5]. Existence of a Love wave of a gap type caused by extremely piezoelectric effect in particular is shown. The structure and behavior of modes of Love waves are investigated. The qualitative diagrams of “dispersive” curves of modes of Love waves are given . The relation between electroelastic Love waves, pure-elastic Love waves, and Bleustein-Gulyaev waves is discussed.

  3. Climate change and atmospheric chemistry: how will the stratospheric ozone layer develop?

    Science.gov (United States)

    Dameris, Martin

    2010-10-25

    The discovery of the ozone hole over Antarctica in 1985 was a surprise for science. For a few years the reasons of the ozone hole was speculated about. Soon it was obvious that predominant meteorological conditions led to a specific situation developing in this part of the atmosphere: Very low temperatures initiate chemical processes that at the end cause extreme ozone depletion at altitudes of between about 15 and 30 km. So-called polar stratospheric clouds play a key role. Such clouds develop at temperatures below about 195 K. Heterogeneous chemical reactions on cloud particles initiate the destruction of ozone molecules. The future evolution of the ozone layer will not only depend on the further development of concentrations of ozone-depleting substances, but also significantly on climate change.

  4. A consistent turbulence formulation for the dynamic wake meandering model in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Veldkamp, Dick; Wedel-Heinen, Jens Jakob

    capability of the dynamics wake meandering model to a level where it is sufficiently mature to be applied in industrial applications and for an augmentation of the IEC-standard for wind turbine wake modelling. Based on a comparison of capabilities of the dynamic wake meandering model to the requirement...... of the wind industry, four areas were identified as high prioritizations for further research: 1. the turbulence distribution in a single wake 2. multiple wake deficits and build-up of turbulence over a row of turbines 3. the effect of the atmospheric boundary layer on wake turbulence and wake deficit...... as a standalone flow-solver for the velocity and turbulence distribution, and power production in a wind farm. The performance of the standalone implementation is validated against field data, higher-order computational fluid dynamics models, as well as the most common engineering wake models in the wind industry...

  5. Spatial atmospheric atomic layer deposition of InxGayZnzO for thin film transistors.

    Science.gov (United States)

    Illiberi, A; Cobb, B; Sharma, A; Grehl, T; Brongersma, H; Roozeboom, F; Gelinck, G; Poodt, P

    2015-02-18

    We have investigated the nucleation and growth of InGaZnO thin films by spatial atmospheric atomic layer deposition. Diethyl zinc (DEZ), trimethyl indium (TMIn), triethyl gallium (TEGa), and water were used as Zn, In, Ga and oxygen precursors, respectively. The vaporized metal precursors have been coinjected in the reactor. The metal composition of InGaZnO has been controlled by varying the TMIn or TEGa flow to the reactor, for a given DEZ flow and exposure time. The morphology of the films changes from polycrystalline, for ZnO and In-doped ZnO, to amorphous for In-rich IZO and InGaZnO. The use of these films as the active channel in TFTs has been demonstrated and the influence of In and Ga cations on the electrical characteristics of the TFTs has been studied.

  6. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    Science.gov (United States)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  7. All-Weather Sounding of Moisture and Temperature From Microwave Sensors Using a Coupled Surface/Atmosphere Inversion Algorithm

    Science.gov (United States)

    Boukabara, S. A.; Garrett, K.

    2014-12-01

    A one-dimensional variational retrieval system has been developed, capable of producing temperature and water vapor profiles in clear, cloudy and precipitating conditions. The algorithm, known as the Microwave Integrated Retrieval System (MiRS), is currently running operationally at the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS), and is applied to a variety of data from the AMSU-A/MHS sensors on board the NOAA-18, NOAA-19, and MetOp-A/B polar satellite platforms, as well as SSMI/S on board both DMSP F-16 and F18, and from the NPP ATMS sensor. MiRS inverts microwave brightness temperatures into atmospheric temperature and water vapor profiles, along with hydrometeors and surface parameters, simultaneously. This atmosphere/surface coupled inversion allows for more accurate retrievals in the lower tropospheric layers by accounting for the surface emissivity impact on the measurements. It also allows the inversion of the soundings in all-weather conditions thanks to the incorporation of the hydrometeors parameters in the inverted state vector as well as to the inclusion of the emissivity in the same state vector, which is accounted for dynamically for the highly variable surface conditions found under precipitating atmospheres. The inversion is constrained in precipitating conditions by the inclusion of covariances for hydrometeors, to take advantage of the natural correlations that exist between temperature and water vapor with liquid and ice cloud along with rain water. In this study, we present a full assessment of temperature and water vapor retrieval performances in all-weather conditions and over all surface types (ocean, sea-ice, land, and snow) using matchups with radiosonde as well as Numerical Weather Prediction and other satellite retrieval algorithms as references. An emphasis is placed on retrievals in cloudy and precipitating atmospheres, including extreme weather events

  8. Effects of the 2003 European heatwave on the Central Mediterranean Sea surface layer: a numerical simulation

    Directory of Open Access Journals (Sweden)

    A. Olita

    2006-05-01

    Full Text Available The effects of anomalous weather conditions on the sea surface layer over the Central Mediterranean were studied with an eddy resolving regional ocean model by performing a 5-year long simulation from 2000 to 2004. The focus was on surface heat fluxes, temperature and dynamics. The analysis of the time series of the selected variables permitted us to identify and quantify the anomalies of the analysed parameters. In order to separate the part of variability not related to the annual cycle and to locate the anomalies in the time-frequency domain, we performed a wavelet analysis of anomalies time series. We found the strongest anomalous event was the overheating affecting the sea surface in the summer of 2003. This anomaly was strictly related to a strong increase of air temperature, a decrease of both wind stress and upward heat fluxes in all their components. The simulated monthly averages of the sea surface temperature were in a good agreement with the remotely-sensed data, although the ocean regional model tended to underestimate the extreme events. We also found, on the basis of the long-wave period of the observed anomaly, this event was not limited to the few summer months, but it was probably part of a longer signal, which also includes negative perturbations of the involved variables. The atmospheric parameters responsible for the overheating of the sea surface also influenced the regional surface and sub-surface dynamics, especially in the Atlantic Ionian Stream and the African Modified Atlantic Water current, in which flows seem to be deeply modified in that period.

  9. Heterogeneous reactions on the surface of fine particles in the atmosphere

    Institute of Scientific and Technical Information of China (English)

    DING Jie; ZHU Tong

    2003-01-01

    Fine particles play an important role in the atmosphere. Research on heterogeneous reactions on the surface of fine particles is one of the frontier areas of atmospheric science. In this paper, physical and chemical characteristics of fine particles in the atmosphere and the interactions between trace gases and fine particles are described, methods used in heterogeneous reactions research are discussed in detail, progress in the study of heterogeneous reactions on the surface of fine particles in the atmosphere is summarized, existing importantquestions are pointed out and future research directions are suggested.

  10. Methods of improvement in hardness of composite surface layer on cast steel

    OpenAIRE

    J. Szajnar; P. Wróbel; T. Wróbel

    2008-01-01

    The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in founding process a composite surface layer on the basis of Fe-Cr-C alloy and next its remelting with use of welding technology TIG – Tungsten Inert Gas. Technology of composite surface layer guarantee mainly increase in hardness and abrasive wear resistance of cast steel castings on machine elements. This technology can be competition for generally applied welding te...

  11. Microstructure of Ni / WC Surface Composite Layer on Gray Iron Substrate

    Institute of Scientific and Technical Information of China (English)

    YANG Guirong; SONG Wenming; MA Ying; LU Jinjun; HAO Yuan; LI Yuandong; WANG Haitang

    2011-01-01

    The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μrn which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macrohardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV 1000.

  12. Impact of Clouds on the Shortwave Radiation Budget of the Surface: Atmosphere System for Snow Covered Surfaces

    Science.gov (United States)

    Nemesure, Seth; Cess, Robert D.; Dutton, Ellsworth G.; DeLuisi, John J.; Li, Zhanqing; Leighton, Henry G.

    1994-01-01

    Recent data from the Earth Radiation Budget Experiment (ERBE) have raised the question as to whether or not the addition of clouds to the atmospheric column can decrease the top-of-the-atmosphere (TOA) albedo over bright snow-covered surfaces. To address this issue, ERBE shortwave pixel measurements have been collocated with surface insolation measurements made at two snow-covered locations: the South Pole and Saskatoon, Saskatchewan. Both collocated datasets show a negative correlation (with solar zenith angle variability removed) between TOA albedo and surface insolation. Because increased cloudiness acts to reduce surface insolation, these negative correlations demonstrate that clouds increase the TOA albedo at both snow-covered locations.

  13. Impact of clouds on the shortwave radiation budget of the surface-atmosphere system for snow-covered surfaces

    Science.gov (United States)

    Nemesure, Seth; Cess, Robert D.; Dutton, Ellsworth; Deluisi, John J.; Li, Zhanqing; Leighton, Henry G.

    1994-01-01

    Recent data from the Earth Radiation Budget Experiment (ERBE) have raised the question as to whether or not the addition of clouds to the atmospheric column can decrease the top-of-the atmosphere (TOA) albedo over bright snow-covered surface. To address this issue, ERBE shortwave pixel measurements have been collected with surface insolation measurements made at two snow-covered locations: the South Pole and Saskatoon, Saskatchewan. Both collected datasets show a negative correlation (with solar zenith angle variability removed) between TOA albedo and surfaces insolation. Because increased cloudiness acts to reduce surface insolation, these negative correlations demonstrate that clouds increase the TOA albedo at both snow-covered locations.

  14. The implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy)

    Science.gov (United States)

    Janssen, R. H. H.; Pozzer, A.

    2014-10-01

    We present a new submodel for the Modular Earth Submodel System (MESSy): the MiXed Layer (MXL) model for the diurnal dynamics of the convective boundary layer, including explicit representations of entrainment and surface fluxes. Through the MESSy interface, MXL is coupled with modules that represent other processes relevant to chemistry in the atmospheric boundary layer (ABL). In combination, these provide a computationally inexpensive tool that is ideally suited for the analysis of field data, for evaluating new parametrizations for 3-D models, and for performing systematic sensitivity analyses. A case study for the DOMINO campaign in Southern Spain is shown to demonstrate the use and performance of MXL/MESSy in reproducing and analysing field observations.

  15. Wind-wave coupling in the atmospheric boundary layer over a reservoir: field measurements and verification of the model

    Science.gov (United States)

    Troitskaya, Yuliya; Papko, Vladislav; Baidakov, Georgy; Vdovin, Maxim; Kandaurov, Alexander; Sergeev, Daniil

    2013-04-01

    This paper presents the results of field experiments conducted at the Gorky Reservoir to test a quasi-linear model of the atmospheric boundary layer [1]. In the course of the experiment we simultaneously measured profiles of wind speed and surface wave spectra using instruments placed on the Froude buoy, which measures the following parameters: i) the module and the direction of the wind speed using ultrasonic wind sensor WindSonic Gill instruments, located on the 4 - levels from 0.1 x 5 m long; ii) profile of the surface waves with 3-channel string wave-gauge with a base of 5 cm, iii) the temperature of the water and air with a resistive sensor. From the measured profiles of wind speed, we calculated basic parameters of the atmospheric boundary layer: the friction velocity u*, the wind speed at the standard height of 10 m U10 and the drag coefficient CD. Data on CD(U10), obtained at the Gorky Reservoir, were compared with similar data obtained on Lake George in Australia during the Australian Shallow Water Experiment (AUSWEX) conducted in 1997 - 1999 [2,3]. A good agreement was obtained between measured data at two different on the parameters of inland waters: deep Gorky reservoir and shallow Lake George.To elucidate the reasons for this coincidence of the drag coefficients under strongly different conditions an analysis of surface waves was conducted.Measurements have shown that in both water bodies the surface wave spectra have almost the same asymptotics (spatial spectrum - k-3, the frequency spectrum -5), corresponding to the Phillips saturation spectrum.These spectra are typically observed for the steep surface waves, for which the basic dissipation mechanism is wave breaking. The similarity of the short-wave parts of the spectra can be regarded as a probable cause of coincidence of dependency of drag coefficient of the water surface on wind speed. Quantitative verification of this hypothesis was carried out in the framework of quasi-linear model of the wind

  16. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej–Curie 55, 87-100 Toruń (Poland); Żenkiewicz, Marian [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2015-08-15

    Highlights: • We modified polylactide surface layer with chemical, plasma or laser methods. • We tested selected properties and surface structure of modified samples. • We stated that the plasma treatment appears to be the most beneficial. - Abstract: The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm{sup 2} was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  17. Cell surface hydrophobicity is conveyed by S-layer proteins - A study in recombinant lactobacilli

    NARCIS (Netherlands)

    Mei, H.C. van der; Belt-Gritter, B. van de; Pouwels, P.H.; Martinez, B.; Busscher, H.J.

    2003-01-01

    Cell surface hydrophobicity is one of the most important factors controlling adhesion of microorganisms to surfaces. In this paper, cell surface properties of lactobacilli and recombinant lactobacilli with and without a surface layer protein (SLP) associated with cell surface hydrophobicity were det

  18. Local flux-profile relationships of wind speed and temperature in a canopy layer in atmospheric stable conditions

    Directory of Open Access Journals (Sweden)

    G. Zhang

    2010-11-01

    Full Text Available The particularities of the physics of the canopy layer pose challenges to the determination and use of traditional universal functions so helpful in the atmospheric surface layer. Progress toward "universal-like functions" such as those provided by Monin-Obukhov similarity theory for the canopy layer has been modest. One of the challenges lies in that the assumptions underlying Monin-Obukhov similarity theory do not hold within a canopy layer. This paper thus examines the local flux-profile relations for wind (Φm and for temperature (Φh. It uses three different stability parameters, i.e., h/L(h at tree top, local z/L(z, and the local bulk Richardson number (Ri, within a tall forest canopy in nighttime stable (indicated by h/L(h > 0 conditions. Results suggest that the in-canopy Φm can be described using the local Richardson number Ri. Furthermore, Φm is found to increase linearly with Ri in the upper canopy layer for |Ri| < 1. When local |Ri| > 1, |Φm| decreases with |Ri| in a power function, a result consistent for all levels of measurements within the canopy. When both local Φh and local Ri are positive, i.e., the local downward turbulent heat flux is consistent with the local temperature gradient, the local Φh increases with the local Ri when Ri < 1. However, Φh does not change with Ri (or much more scattered when Ri > 1. The relationship between local Φh and Ri disappears when counter-gradient heat transfer occurs in strongly stable conditions. A self-correlation analysis is used to examine the influence of self-correlation and the physical meaning of these relationships.

  19. Closing the Dimethyl Sulfide Budget in the Tropical Marine Boundary Layer during the Pacific Atmospheric Sulfur Experiment

    Directory of Open Access Journals (Sweden)

    S. A. Conley

    2009-08-01

    Full Text Available Fourteen research flights were conducted with the National Center for Atmospheric Research (NCAR C-130 near Christmas Island (2° N, 157° W during the summer of 2007 as part of the Pacific Atmospheric Sulfur Experiment (PASE. In order to tightly constrain the scalar budget of DMS, fluxes were measured at various levels in the marine boundary layer (MBL from near the surface (30 m to the top of the mixed layer (500 m providing greater accuracy of the flux divergence calculation in the DMS budget. The observed mean mole fraction of DMS in the MBL exhibited the well known diurnal cycle, ranging from 50 pptv in the daytime to 110 pptv at night. Contributions from horizontal advection are included using a multivariate regression of all DMS flight data from within the MBL to estimate the mean gradients and trends. With this technique we consider the residual term in the DMS budget as an estimate of overall photochemical oxidation. Error analysis of the various terms in the DMS budget indicate that chemical losses acting on time scales of up to 110 h can be inferred with this technique. On average, photochemistry accounted for 7.3 ppt hr−1 loss rate for the seven daytime flights, with an estimated error of 0.6 ppt/hr. The loss rate due to expected OH oxidation is sufficient to explain the net DMS destruction without invoking the action of additional oxidants (e.g. reactive halogens. The observed ocean flux of DMS averaged 3.1 (±1.5μmol m−2 d−1, and generally decreased throughout the sunlit hours. The average entrainment flux at the top of the MBL was 2.5 μmol m−2 d−1; therefore the flux divergence term in the budget equation only contributed an average increase of 1.3 ppt hr−1 to the mean MBL mole fraction. Over the entire mission, the horizontal advection contribution to the overall budget was 0.2 ppt hr−1, indicating a mean atmospheric DMS gradient nearly

  20. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances.

    Science.gov (United States)

    Masiello, Guido; Serio, Carmine

    2013-04-10

    The problem of simultaneous physical retrieval of surface emissivity, skin temperature, and temperature, water-vapor, and ozone atmospheric profiles from high-spectral-resolution observations in the infrared is formulated according to an inverse problem with multiple regularization parameters. A methodology has been set up, which seeks an effective solution to the inverse problem in a generalized L-curve criterion framework. The a priori information for the surface emissivity is obtained on the basis of laboratory data alone, and that for the atmospheric parameters by climatology or weather forecasts. To ensure that we deal with a problem of fewer unknowns than observations, the dimensionality of the emissivity is reduced through expansion in Fourier series. The main objective of this study is to demonstrate the simultaneous retrieval of emissivity, skin temperature, and atmospheric parameters with a two-dimensional L-curve criterion. The procedure has been demonstrated with spectra observed from the infrared atmospheric sounder interferometer, flying onboard the European Meteorological Operational satellite. To check the quality and reliability of the methodology, we have used spectra recorded over regions characterized by known or stable emissivity. These include sea surface, for which effective emissivity models are known, and arid lands (Sahara and Namib Deserts) that are known to exhibit the characteristic spectral signature of quartz-rich sand.

  1. The Role of Carbides in Formation of Surface Layer on Steel X153CrMoV12 Due to Low-Pressure Nitriding (Vacuum Nitriding)

    Science.gov (United States)

    Januszewicz, B.; Wołowiec, E.; Kula, P.

    2015-05-01

    The mechanism of formation of surface layer on steel X153CrMoV12 in the process of vacuum nitriding (low-pressure nitriding) in a universal vacuum furnace in an atmosphere of dissociated ammonia at a pressure of 30 × 102 Pa (30 mbar) is studied by the methods of light microscopy and measurement of microhardness. The chemical composition of the nitrided layers is determined.

  2. Description and implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy)

    Science.gov (United States)

    Janssen, R. H. H.; Pozzer, A.

    2015-03-01

    We present a new submodel for the Modular Earth Submodel System (MESSy): the MiXed Layer (MXL) model for the diurnal dynamics of the convective boundary layer, including explicit representations of entrainment and surface fluxes. This submodel is embedded in a new MESSy base model (VERTICO), which represents a single atmospheric column. With the implementation of MXL in MESSy, MXL can be used in combination with other MESSy submodels that represent processes related to atmospheric chemistry. For instance, the coupling of MXL with more advanced modules for gas-phase chemistry (such as the Mainz Isoprene Mechanism 2 (MIM2)), emissions, dry deposition and organic aerosol formation than in previous versions of the MXL code is possible. Since MXL is now integrated in the MESSy framework, it can take advantage of future developments of this framework, such as the inclusion of new process submodels. The coupling of MXL with submodels that represent other processes relevant to chemistry in the atmospheric boundary layer (ABL) yields a computationally inexpensive tool that is ideally suited for the analysis of field data, for evaluating new parametrizations for 3-D models, and for performing systematic sensitivity analyses. A case study for the DOMINO campaign in southern Spain is shown to demonstrate the use and performance of MXL/MESSy in reproducing and analysing field observations.

  3. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    Science.gov (United States)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  4. Characteristics of the near-surface atmosphere over the Ross Ice Shelf, Antarctica

    Science.gov (United States)

    Cassano, John J.; Nigro, Melissa A.; Lazzara, Matthew A.

    2016-04-01

    Two years of data from a 30 m instrumented tower are used to characterize the near-surface atmospheric state over the Ross Ice Shelf, Antarctica. Stable stratification dominates the surface layer at this site, occurring 83% of the time. The strongest inversions occur for wind speeds less than 4 m s-1 and the inversion strength decreases rapidly as wind speed increases above 4 m s-1. In summer unstable stratification occurs 50% of the time and unstable conditions are observed in every season. A novel aspect of this work is the use of an artificial neural network pattern identification technique, known as self-organizing maps, to objectively identify characteristic potential temperature profiles that span the range of profiles present in the 2 year study period. The self-organizing map clustering technique allows the more than 100,000 observed potential temperature profiles to be represented by just 30 patterns. The pattern-averaged winds show distinct and physically consistent relationships with the potential temperature profiles. The strongest winds occur for the nearly well mixed but slightly stable patterns and the weakest winds occur for the strongest inversion patterns. The weakest wind shear over the depth of the tower occurs for slightly unstable profiles and the largest wind shear occurs for moderately strong inversions. Pattern-averaged log wind profiles are consistent with theoretical expectations. The log wind profiles exhibit a kinked profile for the strongest inversion cases indicative of decoupling of the winds between the bottom and top of the tower.

  5. Local scaling characteristics of Antarctic surface layer turbulence

    Directory of Open Access Journals (Sweden)

    S. Basu

    2010-03-01

    Full Text Available Over the past years, several studies have validated Nieuwstadt's local scaling hypothesis by utilizing turbulence observations from the mid-latitude, nocturnal stable boundary layers. In this work, we probe into the local scaling characteristics of polar, long-lived stable boundary layers by analyzing turbulence data from the South Pole region of the Antarctic Plateau.

  6. Effects of atmospheric pressure fluctuations on hill-side coal fires and surface anomalies

    Institute of Scientific and Technical Information of China (English)

    Song Zeyang; Zhu Hongqing; Xu Jiyuan; Qin Xiaofeng

    2015-01-01

    This paper presents numerical studies on the effects of atmospheric pressure fluctuations on hill-side coal fires and their surface anomalies. Based on the single-particle reaction–diffusion model, a formula to estimate oxygen consumption rate at high temperature controlled by oxygen transport is proposed. Daily fluctuant atmospheric pressure was imposed on boundaries, including the abandoned gallery and cracks. Simulated results show that the effects of atmospheric pressure fluctuations on coal fires and surface anomalies depend on two factors: the fluctuant amplitude and the pressure difference between inlet(s) and outlet(s) of the air ventilation system. If the pressure difference is close to the fluctuant amplitude, atmospheric pressure fluctuations greatly enhance gas flow motion and tempera-tures of the combustion zone and outtake(s). If the pressure difference is much larger than the fluctuant amplitude, atmospheric pressure fluctuations exert no impact on underground coal fires and surface anomalies.

  7. Some new aspects of the transient ionization layer of comet Siding Spring origin in the Martian upper atmosphere

    Science.gov (United States)

    Venkateswara Rao, N.; ManasaMohana, P.; Jayaraman, A.; Rao, S. V. B.

    2016-04-01

    The close encounter of comet Siding Spring with Mars resulted in the formation of a dense transient ionization layer in the Martian upper atmosphere at altitudes between 80 and 120 km. Instruments on three spacecraft orbiting Mars detected the presence of this layer, as reported in previous publications. In this study, we reanalyzed the ionograms of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument on Mars Express to get further insight about the recurrence of the layer. For this purpose, data from three periapsis passes of MARSIS that took place 5 h, 12 h, and 19 h after peak dust deposition are used. We found that the transient ionization layer was sustained at least for 19 h on the nightside and 12 h on the dayside. While the peak density of the layer on the nightside gradually decreases from orbit to orbit, it does not change much on the dayside. Some ionograms in all three orbits show two transient ionization layers that are separated by ~60 km in apparent altitude. These double layers occur preferentially in regions of strong vertical magnetic fields. The bottom layer of the double structure is probably an oblique echo due to reflections from ionization bulges (formed in regions of vertical magnetic fields) at altitudes of the transient ionization layer. Horizontal bifurcation of the original layer is considered as another plausible mechanism for explaining the double-layer structure.

  8. Atmospheric response to the North Pacific enabled by daily sea surface temperature variability

    Science.gov (United States)

    Zhou, Guidi; Latif, Mojib; Greatbatch, Richard J.; Park, Wonsun

    2015-09-01

    Ocean-atmosphere interactions play a key role in climate variability on a wide range of timescales from seasonal to decadal and longer. The extratropical oceans are thought to exert noticeable feedbacks on the atmosphere especially on decadal and longer timescales, yet the large-scale atmospheric response to anomalous extratropical sea surface temperature (SST) is still under debate. Here we show, by means of dedicated high-resolution atmospheric model experiments, that sufficient daily variability in the extratropical background SST needs to be resolved to force a statistically significant large-scale atmospheric response to decadal North Pacific SST anomalies associated with the Pacific Decadal Oscillation, which is consistent with observations. The large-scale response is mediated by atmospheric eddies. This implies that daily extratropical SST fluctuations must be simulated by the ocean components and resolved by the atmospheric components of global climate models to enable realistic simulation of decadal North Pacific sector climate variability.

  9. Cosmic rays intensity and atmosphere humidity at near earth surface

    Science.gov (United States)

    Oskomov, V. V.; Sedov, A. N.; Saduyev, N. O.; Kalikulov, O. A.; Naurzbayeva, A. Zh; Alimgazinova, N. Sh; Kenzhina, I. E.

    2016-08-01

    Experimental studies of estimation the mutual influence of humidity and flux of cosmic rays in first approximation were carried out. Normalized cross-correlation function of time series of neutron monitors count rate and level of relative atmosphere humidity near cosmic rays registration point is studied. Corrected and uncorrected on pressure minute and hour data of 6NM64 neutron monitor count rate were used for the study. Neutron monitor is located in Al-Farabi Kazakh National University, at an altitude of 850 m above sea level. Also, data from NM64 neutron monitor of Tien Shan mountain research station of Institute of Ionosphere, located at an altitude of 3340 m above sea level were used. Uncorrected on pressure cosmic rays intensity better reflects the changes in relative atmosphere humidity. Average and sometimes strong relationship is often observed by time changes of atmosphere humidity near the point of cosmic rays detection and their intensity: the value of normalized cross-correlation function of respective signals, even in case of their long duration and a large number of data (eg, for minute changes at intervals of up to several months) covers 0.5 - 0.75 range, sometimes falling to ∼⃒ 0.4.

  10. Mars: Correcting surface albedo observations for effects of atmospheric dust loading

    Science.gov (United States)

    Lee, S. W.; Clancy, R. T.

    1992-01-01

    We have developed a radiative transfer model which allows the effects of atmospheric dust loading on surface albedo to be investigated. This model incorporates atmospheric dust opacity, the single scattering albedo and particle phase function of atmospheric dust, the bidirectional reflectance of the surface, and variable lighting and viewing geometry. The most recent dust particle properties are utilized. The spatial and temporal variability of atmospheric opacity (Tan) strongly influences the radiative transfer modelling results. We are currently using the approach described to determine Tan for IRTM mapping sequences of selected regions. This approach allows Tan to be determined at the highest spatial and temporal resolution supported by the IRTM data. Applying the radiative transfer modelling and determination of Tan described, IRTM visual brightness observations can be corrected for the effects of atmospheric dust loading a variety of locations and times. This approach allows maps of 'dust-corrected surface albedo' to be constructed for selected regions. Information on the variability of surface albedo and the amount of dust deposition/erosion related to such variability results. To date, this study indicates that atmospheric dust loading has a significant effect on observations of surface albedo, amounting to albedo corrections of as much as several tens of percent. This correction is not constant or linear, but depends upon surface albedo, viewing and lighting geometry, the dust and surface phase functions, and the atmospheric opacity. It is clear that the quantitative study of surface albedo, especially where small variations in observed albedo are important (such as photometric analyses), needs to account for the effects of the atmospheric dust loading. Maps of 'dust-corrected surface albedo' will be presented for a number of regions.

  11. Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Arganda, E.; Argiro, S.; Arisaka, K.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Baecker, T.; Badagnani, D.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Bleve, C.; Bluemer, H.; Bohacova, M.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Chye, J.; Clay, R. W.; Colombo, E.; Conceicao, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dornic, D.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Engel, R.; Escobar, C. O.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferrero, A.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Gamez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Goncalves, P.; Goncalves do Amaral, M.; Gonzalez, D.; Gonzalez, J. G.; Gora, D.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutierrez, J.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Hrabovsky, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kegl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D. -H.; Krieger, A.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; Lopez, R.; Agueera, A. Lopez; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Luna Garcia, R.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Marquez Falcon, H. R.; Martello, D.; Martinez, J.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; McNeil, R. R.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafa, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Nyklicek, M.; Oehlschlaeger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Riviere, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, A.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmid, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuessler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Smialkowski, A.; Smida, R.; Smith, B. E.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tarutina, T.; Tascau, O.; Tcaciuc, R.; Tcherniakhovski, D.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tome, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tuci, V.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van den Berg, A. M.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2009-01-01

    Atmospheric parameters, such as pressure (P), temperature (T) and density (ρ∝P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Ob

  12. Evolving research directions in Surface Ocean-Lower Atmosphere (SOLAS) science

    NARCIS (Netherlands)

    Law, Cliff S.; Breviere, Emilie; de Leeuw, Gerrit; Garcon, Veronique; Guieu, Cecile; Kieber, David J.; Kontradowitz, Stefan; Paulmier, Aurelien; Quinn, Patricia K.; Saltzman, Eric S.; Stefels, Jacqueline; von Glasow, Roland

    2013-01-01

    This review focuses on critical issues in ocean-atmosphere exchange that will be addressed by new research strategies developed by the international Surface Ocean-Lower Atmosphere Study (SOLAS) research community. Eastern boundary upwelling systems are important sites for CO2 and trace gas emission

  13. Climatology of wintertime long-distance transport of surface-layer air masses arriving urban Beijing in 2001-2012

    Science.gov (United States)

    Chen, Bin; Xiang-De, XU

    2017-02-01

    In this study, the FLEXPART-WRF coupled modeling system is used to conduct 12-year Lagrangian modeling over Beijing, China, for the winters of 2001-2012. Based on large trajectory tracking ensembles, the long-range air transport properties, in terms of geographic source regions within the atmospheric planetary boundary layer (PBL) and large-scale ventilation, and its association with air quality levels were quantified from a climatological perspective. The results show the following: (1) The air masses residing in the near-surface layer over Beijing potentially originate from broader atmospheric boundary-layer regions, which cover vast areas with the backward tracking time elapsed. However, atmospheric transport from northeastern China and, to a lesser extent, from the surrounding regions of Beijing is important. (2) The evolution of air quality over Beijing is negatively correlated with large-scale ventilation conditions, particularly at a synoptic timescale. Thus, the simple but robust backward-trajectory ventilation (BV) index defined in this study could facilitate operational forecasting of severe air pollution events. (3) By comparison, the relatively short-range transport occurring over transport timescales of less than 3 days from southern and southeastern Beijing and its surrounding areas plays a vital role in the formation of severe air pollution events during the wintertime. (4) Additionally, an interannual trend analysis suggests that the geographic sources and ventilation conditions also changed, at least over the last decade, corresponding to the strength variability of the winter East Asian monsoon.

  14. Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2011-01-01

    The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

  15. Surface tension-driven convection patterns in two liquid layers

    CERN Document Server

    Juel, A; McCormick, W D; Swift, J B; Swinney, H L; Juel, Anne; Burgess, John M.; Swinney, Harry L.

    1999-01-01

    Two superposed liquid layers display a variety of convective phenomena that are inaccessible in the traditional system where the upper layer is a gas. We consider several pairs of immiscible liquids. Once the liquids have been selected, the applied temperature difference and the depths of the layers are the only independent control parameters. Using a perfluorinated hydrocarbon and silicone oil system, we have made the first experimental observation of convection with the top plate hotter than the lower plate. Since the system is stably stratified, this convective flow is solely due to thermocapillary forces. We also have found oscillatory convection at onset in an acetonitrile and n-hexane system heated from below.

  16. Investigation of the Surface Properties of Titanium Biomaterial with Oxide Layer of Rutile Structure

    Institute of Scientific and Technical Information of China (English)

    Huang Nan; Chen Yuanru; Xiao Jing; Xue Zhennan; Liu Xianghuai

    1994-01-01

    Structural characteristics of titanium oxide layer on titanium matrix were investigated by Rutherford Backscattering Spectroscopy (RBS), Auger Electron Spectroscopy(AES) and X-ray diffraction, It has been identified that the titanium oxide layers have rutile structure. The mechanical properties of its surface were ineasured by microhardness test, pin-on-disc wear experiment and scratch adhesion test. The blood-compatibility of the titanium oxide layers of different thickness was studied by blood clotting time measurement. It is shown that as the thickness of the titanium oxide layers increases, the surface mechanical properties and bloodcompatibility of these layers are obviously improved.

  17. THE SEMI-GEOSTROPHIC ADAPTATION PROCESS WITH TWO-LAYER BAROCLINIC MODEL IN LOW LATITUDE ATMOSPHERE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the adaptation process in low latitude atmosphere is discussed by means of a two-layer baroclinic model on the equator β plane, showing that the adaptation process in low latitude is mainly dominated by the internal inertial gravity waves. The initial ageostrophic energy is dispersed by the internal inertial gravity waves, and as a result, the geostrophic motion is obtained in zonal direction while the ageostrophic motion maintains in meridional direction, which can be called semi-geostrophic balance in barotropic model as well as semi-thermal-wind balance in baroclinic model. The vertical motion is determined both by the distribution of the initial vertical motion and that of the initial vertical motion tendency, but it is unrelated to the initial potential vorticity. Finally, the motion tends to be horizontal. The discussion of the physical mechanism of the semi-thermal-wind balance in low latitude atmosphere shows that the achievement of the semi-thermal-wind balance is due to the adjustment between the stream field and the temperature field through the horizontal convergence and divergence which is related to the vertical motion excited by the internal inertial gravity waves. The terminal adaptation state obtained shows that the adaptation direction between the mean temperature field and the shear flow field is determined by the ratio of the scale of the initial ageostrophic disturbance to the scale of one character scale related to the baroclinic Rossby radius of deformation. The shear stream field adapts to the mean temperature field when the ratio is greater than 1, and the mean temperature field adapts to the shear stream field when the ratio is smaller than 1.

  18. EFFECT OF ELECTRIC FIELD STRENGTH ON SURFACE LAYER DESTRUCTION IN INSULATION CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Y.G. Gontar

    2013-09-01

    Full Text Available Results of theoretical and experimental studies of surface layer destruction in electrical insulation under lightning surge pulses are given, their impact on the insulation construction durability shown. Causes of water treeing in the surface layers of polymer insulation are analyzed.

  19. Metallurgical investigations of dry sliding surface layer in phosphorous iron/steel friction pairs

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Surface layer behaviors of composition concentration and micro-hardness were inves-tigated on phosphorous cast irons after dry sliding. The experimental results indicate that thehardness and chemical composition unevenly distribute in the surface layer. The sliding conditionand microstructure of the pin specimen have greatly effects on the distributions.

  20. Solute leaching in a sandy soil with a water-repellent surface layer: a simulation.

    NARCIS (Netherlands)

    Rooij, de G.H.; Vries, de P.

    1996-01-01

    Many sandy soils in the Netherlands have a water-repellent surface layer covering a wettable soil with a shallow groundwater table. Fingers form in the water-repellent surface layer and rapidly transport water and solutes to the wettable soil in which the streamlines diverge. Although several field