WorldWideScience

Sample records for atmospheric stability conditions

  1. Wake meandering under non-neutral atmospheric stability conditions – theory and facts

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Machefaux, Ewan; Chougule, Abhijit S.

    2015-01-01

    This paper deals with modelling of wake dynamics under influence of atmospheric stability conditions different from neutral. In particular, it is investigated how the basic split in turbulent scales, on which the Dynamic Wake Meandering model is based, can be utilized to include atmospheric...... stability effects in this model. This is done partly by analyzing a large number of turbulence spectra obtained from sonic measurements, partly by analyzing dedicated full-scale LiDAR measurements from which wake dynamics can be directly resolved. The theory behind generalizing the Dynamic Wake Meandering...

  2. Convective transport in ATM simulations and its relation to the atmospheric stability conditions

    Science.gov (United States)

    Kusmierczyk-Michulec, Jolanta

    2017-04-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). One of the important noble gases, monitored on a daily basis, is radioxenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. To address the question whether including the convective transport in ATM simulations will change the results significantly, the differences between the outputs with the convective transport turned off and turned on, were computed and further investigated taking into account the atmospheric stability conditions. For that purpose series of 14 days forward simulations, with convective transport and without it, released daily in the period January 2011 to February 2012, were analysed. The release point was at the ANSTO facility in Australia. The unique opportunity of having access to both daily emission values for ANSTO as well as measured Xe-133 activity concentration (AC) values at the IMS stations, gave a chance to validate the simulations.

  3. Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions.

    Science.gov (United States)

    Yang, Man; Chen, Xianfeng; Wang, Yujie; Yuan, Bihe; Niu, Yi; Zhang, Ying; Liao, Ruoyu; Zhang, Zumin

    2017-09-05

    In order to analyze the thermal decomposition characteristics of ammonium nitrate (AN), its thermal behavior and stability under different conditions are studied, including different atmospheres, heating rates and gas flow rates. The evolved decomposition gases of AN in air and nitrogen are analyzed with a quadrupole mass spectrometer. Thermal stability of AN at different heating rates and gas flow rates are studied by differential scanning calorimetry, thermogravimetric analysis, paired comparison method and safety parameter evaluation. Experimental results show that the major evolved decomposition gases in air are H 2 O, NH 3 , N 2 O, NO, NO 2 and HNO 3 , while in nitrogen, H 2 O, NH 3 , NO and HNO 3 are major components. Compared with nitrogen atmosphere, lower initial and end temperatures, higher heat flux and broader reaction temperature range are obtained in air. Meanwhile, higher air gas flow rate tends to achieve lower reaction temperature and to reduce thermal stability of AN. Self-accelerating decomposition temperature of AN in air is much lower than that in nitrogen. It is considered that thermostability of AN is influenced by atmosphere, heating rate and gas flow rate, thus changes of boundary conditions will influence its thermostability, which is helpful to its safe production, storage, transportation and utilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. MPAS Atmospheric Boundary Layer Simulation under Selected Stability Conditions: Evaluation Using the SWIFT Datasen

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, V. Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Feng, Yan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-12

    Modeling the transition from mesoscale to microscale is necessary in order to model different processes that affect a wind farm and to develop forecasting tools that operate at the farm scale. The mesoscale-to-microscale coupling (MMC) project is an A2e (Atmosphere-toelectrons) coordinated activity for developing modeling capabilities at the wind farm scale. By moving the focus of the research from a single wind turbine to the collection of turbines that comprise a wind farm, A2e extends the range of spatial and timescales that need representation in a model from tens of meters to hundreds of kilometers and timescales from a few seconds to days (Bokharaie et al. 2016). In the atmosphere, these scales are represented by mesoscale-tomicroscale models. The modeling available at these scales has differed in its representation of various physical processes. The MMC group is responsible for evaluating existing models at these scales and recommending a set of options for coupling the mesoscale and microscale with the best-performing models. The group was organized in 2015 and will explore options for coupling strategies with real-world test problems in fiscal year (FY) 2017. The model of choice for this exercise is WRF (Weather Research Forecasting) for mesoscale and WRF-LES (Large Eddy Simulation) for microscale simulations. The MPAS (Model Prediction Across Scales) variable mesh model that can be continuously refined; it has dynamic core and physics options adopted from WRF, which offer an alternative platform for modeling the mesoscale.

  5. Plume spread and atmospheric stability

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The horizontal spread of a plume in atmospheric dispersion can be described by the standard deviation of horizontal direction. The widely used Pasquill-Gifford classes of atmospheric stability have assigned typical values of the standard deviation of horizontal wind direction and of the lapse rate. A measured lapse rate can thus be used to estimate the standard deviation of wind direction. It is examined by means of a large dataset of fast wind measurements how good these estimates are. (author) 1 fig., 2 refs.

  6. Atmospheric stability and atmospheric circulation in Athens, Greece

    International Nuclear Information System (INIS)

    Synodinou, B.M.; Petrakis, M.; Kassomenos, P.; Lykoudis, S.

    1996-01-01

    In the evaluation and study of atmospheric pollution reference is always made to the stability criteria. These criteria, usually represented as functions of different meteorological data such as wind speed and direction, temperature, solar radiation, etc., play a very important role in the investigation of different parameters that affect the build up of pollution episodes mainly in urban areas. In this paper an attempt is made to evaluate the atmospheric stability criteria based on measurements obtained from two locations in and nearby Athens. The atmospheric stability is then examined along with the other meteorological parameters

  7. Complementarity and stability conditions

    Directory of Open Access Journals (Sweden)

    Howard Georgi

    2017-08-01

    Full Text Available We discuss the issue of complementarity between the confining phase and the Higgs phase for gauge theories in which there are no light particles below the scale of confinement or spontaneous symmetry breaking. We show with a number of examples that even though the low energy effective theories are the same (and trivial, discontinuous changes in the structure of heavy stable particles can signal a phase transition and thus we can sometimes argue that two phases which have different structures of heavy particles that cannot be continuously connected and thus the phases cannot be complementary. We discuss what this means and suggest that such “stability conditions” can be a useful physical check for complementarity.

  8. Determination of equivalent mixing height and atmospheric stability assessment

    International Nuclear Information System (INIS)

    Simon, J.; Bulko, M.; Holy, K.

    2007-01-01

    Atmospheric stability is an indicator that reflects the intensity of boundary layer mixing processes. This feature of the atmosphere is especially important since it defines dispersive atmospheric conditions and provides information on how effectively the anthropogenic pollution will be transferred to the higher levels of the atmosphere. The assessment of atmospheric dispersiveness plays a crucial role in the protection of air quality and public health in big cities. The presented paper deals with determination of atmospheric stability via so called Equivalent Mixing Height (EMH) quantity using a radioactive noble gas 222 Rn. A method of deriving a link between 222 Rn activity concentration, eddy diffusion coefficient and EMH using fluid mechanics is also outlined in this work. (authors)

  9. Furfural stability in various conditions

    OpenAIRE

    Oreiro Muzas, Olaya

    2011-01-01

    The topic of this thesis is the study of the furfural stability to determine the influence of some conditions in furfural degradation. The aim of the study is to decrease furfural degradation and thus improve furfural yield in furfural production. The thesis consists of a literature review and laboratory experiments. Attention has been paid to the furfural description and properties as well as the background of the research and traditional methods to produce furfural. In the experiments, w...

  10. Atmospheric stability inside containments with a heated layer of liquid on the floor

    Energy Technology Data Exchange (ETDEWEB)

    Vate, J.F. van de [Netherlands Energy Research Foundation, Petten (Netherlands)

    1977-01-01

    The study of atmospheric stability inside containments with a heated layer of liquid comprised derivation of the boundary condition for stable atmospheric stratifications and the experimental validation of the boundary condition for stable atmospheric stratification. This report includes description of the model for stirred aerosol deposition and the calculation results for maximum aerodynamic diameter of a confined aerosol remaining just well-stirred.

  11. Analysis of smoke trailers at individual classes of atmosphere stability

    International Nuclear Information System (INIS)

    Carach, V.; Macala, J.

    2007-01-01

    At the present most endangered element of the environment is currently atmosphere and its pollution that rapidly accrue. Pollutants are emitted from air pollution sources. The output of pollutant from air pollution source is creating so-called smoke screen. Smoke screens can be observed from point sources of air pollution - smokestacks, up-cast. The purpose of this article was to build theoretical models of smoke screens rise from point source at different meteorological conditions characterized with fifth classes of atmosphere stability. (authors)

  12. Effect of Atmospheric Conditions on LIBS Spectra

    OpenAIRE

    Effenberger, Andrew J.; Scott, Jill R.

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e.g., Mars and Lunar) or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air.

  13. Effect of Atmospheric Conditions on LIBS Spectra

    Science.gov (United States)

    Effenberger, Andrew J.; Scott, Jill R.

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e.g., Mars and Lunar) or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air. PMID:22399914

  14. Tracer Studies to Characterize the Effects of Roadside Noise Barriers on Near-Road Pollutant Dispersion under Varying Atmospheric Stability Conditions

    Science.gov (United States)

    A roadway toxics dispersion study was conducted by the Field Research Division (FRD) of NOAA at the Idaho National Laboratory (INL) near Idaho Falls, ID to document the effects on concentrations of roadway emissions behind a roadside sound barrier in various conditions of atmosph...

  15. On atmospheric stability in the dynamic wake meandering model

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.

    2014-01-01

    The present study investigates a new approach for capturing the effects of atmospheric stability on wind turbine wake evolution and wake meandering by using the dynamic wake meandering model. The most notable impact of atmospheric stability on the wind is the changes in length and velocity scales...... spectra and applied to the dynamic wake meandering model to capture the correct wake meandering behaviour. The ambient turbulence in all stability classes is generated using the Mann turbulence model, where the effects of non-neutral atmospheric stability are approximated by the selection of input...... in the computational domain. The changes in the turbulent length scales due to the various atmospheric stability states impact the wake meandering characteristics and thus the power generation by the individual turbines. The proposed method is compared with results from both large-eddy simulation coupled...

  16. Atmospheric stability index using radio occultation refractivity profiles

    Indian Academy of Sciences (India)

    A new stability index based on atmospheric refractivity at ∼500 hPa level and surface measurements of temperature ... able at different heights rather than pressure levels. However ..... the radio occultation technique being a limb sound-.

  17. STABILITY OF CO2 ATMOSPHERES ON DESICCATED M DWARF EXOPLANETS

    International Nuclear Information System (INIS)

    Gao, Peter; Hu, Renyu; Li, Cheng; Yung, Yuk L.; Robinson, Tyler D.

    2015-01-01

    We investigate the chemical stability of CO 2 -dominated atmospheres of desiccated M dwarf terrestrial exoplanets using a one-dimensional photochemical model. Around Sun-like stars, CO 2 photolysis by Far-UV (FUV) radiation is balanced by recombination reactions that depend on water abundance. Planets orbiting M dwarf stars experience more FUV radiation, and could be depleted in water due to M dwarfs’ prolonged, high-luminosity pre-main sequences. We show that, for water-depleted M dwarf terrestrial planets, a catalytic cycle relying on H 2 O 2 photolysis can maintain a CO 2 atmosphere. However, this cycle breaks down for atmospheric hydrogen mixing ratios <1 ppm, resulting in ∼40% of the atmospheric CO 2 being converted to CO and O 2 on a timescale of 1 Myr. The increased O 2 abundance leads to high O 3 concentrations, the photolysis of which forms another CO 2 -regenerating catalytic cycle. For atmospheres with <0.1 ppm hydrogen, CO 2 is produced directly from the recombination of CO and O. These catalytic cycles place an upper limit of ∼50% on the amount of CO 2 that can be destroyed via photolysis, which is enough to generate Earth-like abundances of (abiotic) O 2 and O 3 . The conditions that lead to such high oxygen levels could be widespread on planets in the habitable zones of M dwarfs. Discrimination between biological and abiotic O 2 and O 3 in this case can perhaps be accomplished by noting the lack of water features in the reflectance and emission spectra of these planets, which necessitates observations at wavelengths longer than 0.95 μm

  18. Wind turbine power and sound in relation to atmospheric stability

    NARCIS (Netherlands)

    van den Berg, G. P.

    2008-01-01

    Atmospheric stability cannot, with respect to modem, toll wind turbines, be viewed as a 'small perturbation to a basic neutral state' This can be demonstrated by comparison of measured wind velocity at the height of the rotor with the wind velocity expected in a neutral or 'standard' atmosphere.

  19. Persistency of atmospheric diffusion conditions in Angra dos Reis - Brazil

    International Nuclear Information System (INIS)

    Nicolli, D.

    1981-12-01

    Based on a 2 year observation period, the diffusion conditions at the Almirante Alvaro Alberto N.P.P. site, in Angra dos Reis, are analized with respect to persistency as a function of the wind direction, the Pasquill stability class and the time of the day. The Pasquill stability class relates to the bulk vertical temperature gradient measured between 2m and 50m in the atmosphere; the wind direction is measured at 50m height. The persistency is defined in this report as the probability that the wind direction will remain longer than a given time in a sector without change in the diffusion category by more than a certain stage. During the day the persistency is mostly affected by the sea breeze with predominance of the unstable and neutral categories. At night the stable categories dominate. The alternating sea and land breezes disturb daily the trade wind field resulting in low persistency of the diffusion conditions. (Author) [pt

  20. The annual averaged atmospheric dispersion factor and deposition factor according to methods of atmospheric stability classification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Hwang, Won Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    This study analyzes the differences in the annual averaged atmospheric dispersion factor and ground deposition factor produced using two classification methods of atmospheric stability, which are based on a vertical temperature difference and the standard deviation of horizontal wind direction fluctuation. Daedeok and Wolsong nuclear sites were chosen for an assessment, and the meteorological data at 10 m were applied to the evaluation of atmospheric stability. The XOQDOQ software program was used to calculate atmospheric dispersion factors and ground deposition factors. The calculated distances were chosen at 400 m, 800 m, 1,200 m, 1,600 m, 2,400 m, and 3,200 m away from the radioactive material release points. All of the atmospheric dispersion factors generated using the atmospheric stability based on the vertical temperature difference were shown to be higher than those from the standard deviation of horizontal wind direction fluctuation. On the other hand, the ground deposition factors were shown to be same regardless of the classification method, as they were based on the graph obtained from empirical data presented in the Nuclear Regulatory Commission's Regulatory Guide 1.111, which is unrelated to the atmospheric stability for the ground level release. These results are based on the meteorological data collected over the course of one year at the specified sites; however, the classification method of atmospheric stability using the vertical temperature difference is expected to be more conservative.

  1. On the stability of atmospheric waves with low waves numbers

    Energy Technology Data Exchange (ETDEWEB)

    Wiin-Nielsen, A [The Royal Danish Academy of Sciences and Letters, Copenhagen (Denmark)

    2001-01-01

    The stability of atmospheric waves with low wave numbers is investigated using a quasi-geostrophic model of the second kind. Such a model is base on the thermodynamic equation, the continuity equation and a rigorous use of the geostrophic relations. The boundary conditions at the surface of the earth is formulated in two ways. The effects of a boundary condition at 1000 hpa, where the vertical p-velocity is zero, is compared with the effects of a second condition, where w is zero. The two boundary conditions are used to determine the stability of the low wave number waves. The second condition introduces waves with large positive and negative phase velocities, especially in the low latitudes, but has also an influence on the stability of these waves. The main result of the comparative investigation is that the more correct boundary condition in general will produce stronger instabilities than the simpler boundary condition. The e-folding times obtained with the more general model is in closer agreement with the results obtained by observational studies. [Spanish] Se investiga la estabilidad de las ondas atmosfericas con numero bajo de ondas, mediante un modelo quasi-geostrofico de segunda clase. Tal modelo esta basado en la ecuacion termodinamica, la de continuidad y un empleo riguroso de las relaciones geostroficas. La condicion de frontera en la superficie terrestre se formula de dos maneras. Los efectos de una condicion fronteriza a los 1000 hPa, donde la velocidad vertical P es nula, se comparan con los efectos de una segunda condicion, donde W es cero. Las dos condiciones fronterizas se usan para determinar la estabilidad de las ondas de numero bajo. La segunda condicion introduce ondas grandes, tanto con velocidades de fase positivas como negativas, especialmente en las bajas latitudes, pero tiene tambien una influencia sobre la estabilidad de estas ondas. El resultado principal de la investigacion comparativa es que entre mas realista es la condicion de

  2. Energy implications of future stabilization of atmospheric CO2 content

    International Nuclear Information System (INIS)

    Hoffert, M.I.; Jain, A.K.

    1998-01-01

    The United Nations Framework Convention on Climate Change calls for ''stabilization of greenhouse-gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system...''. A standard baseline scenario that assumes no policy intervention to limit greenhouse-gas emissions has 10 TW (10 x 10 12 watts) of carbon-emission-free power being produced by the year 2050, equivalent to the power provided by all today's energy sources combined. Here we employ a carbon-cycle/energy model to estimate the carbon-emission-free power needed for various atmospheric CO 2 stabilization scenarios. We find that CO 2 stabilization with continued economic growth will require innovative, cost-effective and carbon-emission-free technologies that can provide additional tens of terawatts of primary power in the coming decades, and certainly by the middle of the twenty-first century, even with sustained improvement in the economic productivity of primary energy. (author)

  3. The photochemical stability of the Venus atmosphere against UV radiation

    International Nuclear Information System (INIS)

    Mills, F.P.; Slanger, T.G.; Allen, M.

    2004-01-01

    Full text: One unresolved question regarding the Venus atmosphere is what chemical mechanism(s) stabilize its primary constituent (CO 2 ) against UV radiation. CO 2 photolyzes on the day side into CO and O after absorbing photons at 2 rather than recombining with CO to form CO 2 , and the intense night side O 2 airglow observed quantitatively supports this. CO and O 2 are photochemically stable in an otherwise pure CO 2 atmosphere so significant abundances of CO and O 2 could accumulate on Venus if no catalytic mechanism existed to speed the reformation of CO 2 . However, the observational upper limit on ground state O 2 is equivalent to 2 from CO and O 2 . Recent laboratory work verified the existence of the ClC(O)OO catalytic mechanism that has been used in photochemical models since the early 1980s. However, there are significant uncertainties in the rates for the component steps of this catalytic mechanism. An alternative mechanism for production of CO 2 that has not previously been modeled but which could be competitive with the ClCO(O)O mechanism is the reaction CO + O 2 (c 1 Σ - u ) → CO 2 + O( 1 D) or O( 1 S), Reaction (1). A range of values for Reaction (1) will be examined in model calculations to compare with observational (UV to IR) constraints and to assess under what conditions this mechanism is competitive with the ClC(O)OO catalytic mechanism. The sensitivity of the results to uncertainties in the CO 2 UV absorption cross section also will be examined

  4. First Integrals of Evolution Systems and Nonlinear Stability of Stationary Solutions for the Ideal Atmospheric, Oceanic Hydrodynamical and Plasma Models

    International Nuclear Information System (INIS)

    Gordin, V.A.

    1998-01-01

    First integral of the systems of nonlinear equations governing the behaviour of atmospheric, oceanic and MHD plasma models are determined. The Lyapunov stability conditions for the solutions under small initial disturbances are analyzed. (author)

  5. Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model

    DEFF Research Database (Denmark)

    Peña, Alfredo; Réthoré, Pierre-Elouan; Rathmann, Ole

    2013-01-01

    Here, we evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide ran...

  6. Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient

    DEFF Research Database (Denmark)

    Peña, Alfredo; Rathmann, Ole

    2014-01-01

    We extend the infinite wind-farm boundary-layer (IWFBL) model of Frandsen to take into account atmospheric static stability effects. This extended model is compared with the IWFBL model of Emeis and to the Park wake model used inWind Atlas Analysis and Application Program (WAsP), which is computed......) larger than the adjusted values for a wide range of neutral to stable atmospheric stability conditions, a number of roughness lengths and turbine separations lower than _ 10 rotor diameters and (ii) too large compared with those obtained by a semiempirical formulation (relating the ratio of the friction...

  7. Atmospheric stability analysis and its relationship with the atmospheric pollution in Salamanca

    International Nuclear Information System (INIS)

    Fidalgo, M.R.; Garmendia, J.

    1989-01-01

    In this paper we have studied the relationship between the sulphur dioxide and suspended particulate matter concentrations and the atmospheric stability in Salamanca over 4 year (1978-1982). Of the various indices cited in the bibliography for estimating stratification stability, two were used. First, the Pasquill categories and later a method based on Montgomery's potential, which was the one that gave the best results. (Author)

  8. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    Science.gov (United States)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the

  9. Investigation of the influence of atmospheric stability and turbulence on land-atmosphere exchange

    Science.gov (United States)

    Osibanjo, O.; Holmes, H.

    2015-12-01

    Surface energy fluxes are exchanged between the surface of the earth and the atmosphere and impact weather, climate, and air quality. The radiation from the sun triggers the surface-atmosphere interaction during the day as heat is transmitted to the surface and the surface heats the air directly above generating wind (i.e., thermal turbulence) that transports heat, moisture, and momentum in the atmospheric boundary layer (ABL). This process is impacted by greenhouse gasses (i.e., water vapor, carbon dioxide and other trace gases) that absorb heat emitted by the earth's surface. The concentrations of atmospheric greenhouse gasses are increasing leading to changes in ABL dynamics as a result of the changing surface energy balance. The ABL processes are important to characterize because they are difficult to parameterize in global and regional scale atmospheric models. Empirical data can be collected using eddy covariance micrometeorological methods to measure turbulent fluxes (e.g., sensible heat, moisture, and CO2) and quantify the exchange between the surface and the atmosphere. The objective of this work is to calculate surface fluxes using observational data collected during one week in September 2014 from a monitoring site in Echo, Oregon. The site is located in the Columbia Basin with rolling terrain, irrigated farmland, and over 100 wind turbines. The 10m tower was placed in a small valley depression to isolate nighttime cold air pools. This work will present observations of momentum, sensible heat, moisture, and carbon dioxide fluxes from data collected at a sampling frequency of 10Hz at four heights. Atmospheric stability is determined using Monin-Obukov length and flux Richardson number, and the impact of stability on surface-atmosphere exchange is investigated. This work will provide a better understanding of surface fluxes and mixing, particularly during stable ABL periods, and the results can be used to compare with numerical models.

  10. 222Rn concentration in the outdoor atmosphere and its relation to the atmospheric stability

    International Nuclear Information System (INIS)

    Holy, K.; Boehm, R.; Bosa, I.; Polaskova, A.; Hola, O.

    1998-01-01

    The radon in the outdoor atmosphere has been monitored continuously since 1991. On the basis of the measured data mainly the average daily and the average annual courses of the 222 Rn concentrations have been studied. The annual courses of 222 Rn concentration are similar for all years. They present the annual variations. The average course of the 222 Rn concentration calculated on the basis of all continual measurements in the years 1991-1997 reaches the maximum value in October and the minimum value in April. The average daily courses of the 222 Rn concentration for the individual months of the year. The average daily courses have a form of waves with a maximum in the morning hours and with a minimum in the afternoon. The maximal amplitudes of daily waves have been reached in the summer months, from June till August. The amplitudes of daily waves are very small at the end of an autumn and during the winter months. The analysis of the daily waves and annual courses of 222 Rn showed that the amplitudes of the daily waves are in proportion to the global solar radiation irradiating the Earth's surface. The day duration influence on the phase of the daily wave and the wind velocity influence mainly on the level of the radon concentration. For the study of the relation of the radon concentration in the outdoor atmosphere to the stability the data of the atmosphere were obtained and they were correlated with the radon concentration. The results indicate that the 222 Rn concentrations int he outdoor atmosphere could be used for determination of the vertical atmospheric stability and these ones could reflect the atmospheric stability more completely than the different classifications based on the knowledge pertinent to the meteorological parameters. (authors)

  11. An experimental and numerical study of the atmospheric stability impact on wind turbine wakes

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Koblitz, Tilman

    2016-01-01

    campus test site. Wake measurements are averaged within a mean wind speed bin of 1 m s1 and classified according to atmospheric stability using three different metrics: the Obukhov length, the Bulk–Richardson number and the Froude number. Three test cases are subsequently defined covering various...... atmospheric conditions. Simulations are carried out using large eddy simulation and actuator disk rotor modeling. The turbulence properties of the incoming wind are adapted to the thermal stratification using a newly developed spectral tensor model that includes buoyancy effects. Discrepancies are discussed......In this paper, the impact of atmospheric stability on a wind turbine wake is studied experimentally and numerically. The experimental approach is based on full-scale (nacelle based) pulsed lidar measurements of the wake flow field of a stall-regulated 500 kW turbine at the DTU Wind Energy, Risø...

  12. New Sufficient LMI Conditions for Static Output Stabilization

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher

    2014-01-01

    This paper presents new linear matrix inequality conditions to the static output feedback stabilization problem. Although the conditions are only sufficient, numerical experiments show excellent success rates in finding a stabilizing controller....

  13. Atmospheric stability modelling for nuclear emergency response systems using fuzzy set theory

    International Nuclear Information System (INIS)

    Walle, B. van de; Ruan, D.; Govaerts, P.

    1993-01-01

    A new approach to Pasquill stability classification is developed using fuzzy set theory, taking into account the natural continuity of the atmospheric stability and providing means to analyse the obtained stability classes. (2 figs.)

  14. Montmorillonite stability under near-field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Leupin, O.X. (ed.); Birgersson, M.; Karnland, O. [Clay Technology AB, Lund (Sweden); Korkeakoski, P. [Posiva Oy, Eurajoki (Finland); Sellin, P. [Svensk Kärnbränslehantering AB, SKB, Stockholm (USSR); Mäder, U.; Wersin, P. [University of Berne, Berne (Switzerland)

    2014-07-15

    Clay-based engineered barriers comprising bentonite and bentonite/sand mixtures are the favoured option in geological repositories for high-level waste due to their inherently low hydraulic conductivity at full saturation. This ensures that diffusion of solutes such as radionuclides will be the dominating mechanism for transport through the engineered barriers. Another advantageous property of bentonite is the development of swelling pressure in contact with water under the constant volume conditions of repository excavations, ensuring the closure of unintentional gaps or openings. The predictability of the long-term behaviour of bentonite (up to a million years) is thus key to the safety analysis. The thermal pulse from the radioactive decay of the radionuclides in the high-level waste and spent fuel will lead to temperatures significantly higher than in the undisturbed host rock for hundreds of years, which may influence the thermodynamic stability and kinetics of alteration reactions of montmorillonite, the smectite that is the main constituent of the bentonite. The aim of this report is to review the present understanding of potential alteration of bentonite by focusing on experimental and modeling results under the thermal conditions of a repository. Many studies show that the transformation of smectite-to-illite is induced by increasing temperature and potassium activity. The conversion process is complex and still not completely understood. Nonetheless, it displays very slow kinetics over a wide range of environmental conditions for the temperatures of interest. The various models for illitisation of smectites suggest negligible transformation in a repository due to the relatively short period of elevated temperatures and slow mass transport. However, because of uncertainties and a number of conservatisms in the application of such models, the results of such calculations should be considered as bounding and indicative and not as quantitative predictions. In

  15. Montmorillonite stability under near-field conditions

    International Nuclear Information System (INIS)

    Leupin, O.X.; Korkeakoski, P.; Sellin, P.; Mäder, U.; Wersin, P.

    2014-07-01

    Clay-based engineered barriers comprising bentonite and bentonite/sand mixtures are the favoured option in geological repositories for high-level waste due to their inherently low hydraulic conductivity at full saturation. This ensures that diffusion of solutes such as radionuclides will be the dominating mechanism for transport through the engineered barriers. Another advantageous property of bentonite is the development of swelling pressure in contact with water under the constant volume conditions of repository excavations, ensuring the closure of unintentional gaps or openings. The predictability of the long-term behaviour of bentonite (up to a million years) is thus key to the safety analysis. The thermal pulse from the radioactive decay of the radionuclides in the high-level waste and spent fuel will lead to temperatures significantly higher than in the undisturbed host rock for hundreds of years, which may influence the thermodynamic stability and kinetics of alteration reactions of montmorillonite, the smectite that is the main constituent of the bentonite. The aim of this report is to review the present understanding of potential alteration of bentonite by focusing on experimental and modeling results under the thermal conditions of a repository. Many studies show that the transformation of smectite-to-illite is induced by increasing temperature and potassium activity. The conversion process is complex and still not completely understood. Nonetheless, it displays very slow kinetics over a wide range of environmental conditions for the temperatures of interest. The various models for illitisation of smectites suggest negligible transformation in a repository due to the relatively short period of elevated temperatures and slow mass transport. However, because of uncertainties and a number of conservatisms in the application of such models, the results of such calculations should be considered as bounding and indicative and not as quantitative predictions. In

  16. Conditional stability for a single interior measurement

    International Nuclear Information System (INIS)

    Honda, Naofumi; McLaughlin, Joyce; Nakamura, Gen

    2014-01-01

    An inverse problem to identify unknown coefficients of a partial differential equation by a single interior measurement is considered. The equation considered in this paper is a strongly elliptic second order scalar equation which can have complex coefficients in a bounded domain with C 2 boundary. We are given a single interior measurement. This means that we know a given solution of the forward equation in this domain. The equation includes some model equations arising from acoustics, viscoelasticity and hydrology. We assume that the coefficients are piecewise analytic. Our major result is the local Hölder stability estimate for identifying the unknown coefficients. If the unknown coefficient is a complex coefficient in the principal part of the equation, we assumed a condition which we name admissibility assumption for the real part and imaginary part of the difference of two complex coefficients. This admissibility assumption is automatically satisfied if the complex coefficients are real valued. For identifying either the real coefficient in the principal part or the coefficient of the 0th order of the equation, the major result implies global uniqueness for the identification. (paper)

  17. On the permanent hip-stabilizing effect of atmospheric pressure.

    Science.gov (United States)

    Prietzel, Torsten; Hammer, Niels; Schleifenbaum, Stefan; Kaßebaum, Eric; Farag, Mohamed; von Salis-Soglio, Georg

    2014-08-22

    Hip joint dislocations related to total hip arthroplasty (THA) are a common complication especially in the early postoperative course. The surgical approach, the alignment of the prosthetic components, the range of motion and the muscle tone are known factors influencing the risk of dislocation. A further factor that is discussed until today is atmospheric pressure which is not taken into account in the present THA concepts. The aim of this study was to investigate the impact of atmospheric pressure on hip joint stability. Five joint models (Ø 28-44 mm), consisting of THA components were hermetically sealed with a rubber capsule, filled with a defined amount of fluid and exposed to varying ambient pressure. Displacement and pressure sensors were used to record the extent of dislocation related to intraarticular and ambient pressure. In 200 experiments spontaneous dislocations of the different sized joint models were reliably observed once the ambient pressure was lower than 6.0 kPa. Increasing the ambient pressure above 6.0 kPa immediately and persistently reduced the joint models until the ambient pressure was lowered again. Displacement always exceeded half the diameter of the joint model and was independent of gravity effects. This experimental study gives strong evidence that the hip joint is permanently stabilized by atmospheric pressure, confirming the theories of Weber and Weber (1836). On basis of these findings the use of larger prosthetic heads, capsular repair and the deployment of an intracapsular Redon drain are proposed to substantially decrease the risk of dislocation after THA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Statistical prediction of far-field wind-turbine noise, with probabilistic characterization of atmospheric stability

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Barlas, Emre; Sogachev, Andrey

    2018-01-01

    Here we provide statistical low-order characterization of noise propagation from a single wind turbine, as affected by mutually interacting turbine wake and environmental conditions. This is accomplished via a probabilistic model, applied to an ensemble of atmospheric conditions based upon......; the latter solves Reynolds-Averaged Navier-Stokes equations of momentum and temperature, including the effects of stability and the ABL depth, along with the drag due to the wind turbine. Sound levels are found to be highest downwind for modestly stable conditions not atypical of mid-latitude climates...

  19. Stability of niclosamide in water under local conditions

    International Nuclear Information System (INIS)

    El Hindi, A.M.; Sidra, M.S.

    1986-01-01

    The stability of 14 C-labelled niclosamide was studied in distilled water at two different pH values and in canal water. 2 mg/1 niclosamide solutions were exposed to direct atmospheric conditions. The activity was followed by radioassay and the concentration of niclosamide was determined by GLC. The total activity was found to decrease to 46.0% in weakly acidic solution (pH 6.5), 45% in neutral solution (pH 7.0) and 16.7% in filtered canal water after three weeks. GLC analysis showed that niclosamide concentration had dropped to 0.05, 0.06 and 0.03 mg/1 in weakly acidic, neutral medium and canal water after the same period. GLC analysis as compared to radioassay indicated the presence of increasing amounts of degradation product(s), in the chloroform extracts of water with time, which were not detected by GLC

  20. Assessing the Impacts of Atmospheric Conditions under Climate Change on Air Quality Profile over Hong Kong

    Science.gov (United States)

    Hei Tong, Cheuk

    2017-04-01

    Small particulates can cause long term impairment to human health as they can penetrate deep and deposit on the wall of the respiratory system. Under the projected climate change as reported by literature, atmospheric stability, which has strong effects on vertical mixing of air pollutants and thus air quality Hong Kong, is also varying from near to far future. In addition to domestic emission, Hong Kong receives also significant concentration of cross-boundary particulates that their natures and movements are correlated with atmospheric condition. This study aims to study the relation of atmospheric conditions with air quality over Hong Kong. Past meteorological data is based on Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis data. Radiosonde data provided from HKO are also adopted in testing and validating the data. Future meteorological data is simulated by the Weather Research and Forecasting Model (WRF), which dynamically downscaled the past and future climate under the A1B scenario simulated by ECHAM5/MPIOM. Air quality data is collected on one hand from the ground station data provided by Environment Protection Department, with selected stations revealing local emission and trans-boundary emission respectively. On the other hand, an Atmospheric Light Detection and Ranging (LiDAR), which operates using the radar principle to detect Rayleigh and Mie scattering from atmospheric gas and aerosols, has also been adopted to measure vertical aerosol profile, which has been observed tightly related to the high level meteorology. Data from scattered signals are collected, averaged or some episode selected for characteristic comparison with the atmospheric stability indices and other meteorological factors. The relation between atmospheric conditions and air quality is observed by statistical analysis, and statistical models are built based on the stability indices to project the changes in sulphur dioxide, ozone and particulate

  1. Atmospheric particle formation in spatially and temporally varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lauros, J.

    2011-07-01

    Atmospheric particles affect the radiation balance of the Earth and thus the climate. New particle formation from nucleation has been observed in diverse atmospheric conditions but the actual formation path is still unknown. The prevailing conditions can be exploited to evaluate proposed formation mechanisms. This study aims to improve our understanding of new particle formation from the view of atmospheric conditions. The role of atmospheric conditions on particle formation was studied by atmospheric measurements, theoretical model simulations and simulations based on observations. Two separate column models were further developed for aerosol and chemical simulations. Model simulations allowed us to expand the study from local conditions to varying conditions in the atmospheric boundary layer, while the long-term measurements described especially characteristic mean conditions associated with new particle formation. The observations show statistically significant difference in meteorological and back-ground aerosol conditions between observed event and non-event days. New particle formation above boreal forest is associated with strong convective activity, low humidity and low condensation sink. The probability of a particle formation event is predicted by an equation formulated for upper boundary layer conditions. The model simulations call into question if kinetic sulphuric acid induced nucleation is the primary particle formation mechanism in the presence of organic vapours. Simultaneously the simulations show that ignoring spatial and temporal variation in new particle formation studies may lead to faulty conclusions. On the other hand, the theoretical simulations indicate that short-scale variations in temperature and humidity unlikely have a significant effect on mean binary water sulphuric acid nucleation rate. The study emphasizes the significance of mixing and fluxes in particle formation studies, especially in the atmospheric boundary layer. The further

  2. Loads in wind farms under non-neutral ABL stability conditions: A full-scale validation study of the DWM model

    DEFF Research Database (Denmark)

    The purpose of this study is twofold: To validate a generalized version of the DWM approach for load prediction under non-neural atmospheric stability conditions, and to demonstrate the importance of atmospheric stability for wind turbines operating in wind farm conditions.......The purpose of this study is twofold: To validate a generalized version of the DWM approach for load prediction under non-neural atmospheric stability conditions, and to demonstrate the importance of atmospheric stability for wind turbines operating in wind farm conditions....

  3. Exoplanetary Atmospheres-Chemistry, Formation Conditions, and Habitability.

    Science.gov (United States)

    Madhusudhan, Nikku; Agúndez, Marcelino; Moses, Julianne I; Hu, Yongyun

    2016-12-01

    Characterizing the atmospheres of extrasolar planets is the new frontier in exoplanetary science. The last two decades of exoplanet discoveries have revealed that exoplanets are very common and extremely diverse in their orbital and bulk properties. We now enter a new era as we begin to investigate the chemical diversity of exoplanets, their atmospheric and interior processes, and their formation conditions. Recent developments in the field have led to unprecedented advancements in our understanding of atmospheric chemistry of exoplanets and the implications for their formation conditions. We review these developments in the present work. We review in detail the theory of atmospheric chemistry in all classes of exoplanets discovered to date, from highly irradiated gas giants, ice giants, and super-Earths, to directly imaged giant planets at large orbital separations. We then review the observational detections of chemical species in exoplanetary atmospheres of these various types using different methods, including transit spectroscopy, Doppler spectroscopy, and direct imaging. In addition to chemical detections, we discuss the advances in determining chemical abundances in these atmospheres and how such abundances are being used to constrain exoplanetary formation conditions and migration mechanisms. Finally, we review recent theoretical work on the atmospheres of habitable exoplanets, followed by a discussion of future outlook of the field.

  4. Atmospheric stability analysis over statically and dynamically rough surfaces

    Science.gov (United States)

    Maric, Emina; Metzger, Meredith; Singha, Arindam; Sadr, Reza

    2011-11-01

    The ratio of buoyancy flux to turbulent kinetic energy production in the atmospheric surface layer is investigated experimentally for air flow over two types of surfaces characterized by static and dynamic roughness. In this study, ``static'' refers to the time-invariant nature of naturally-occurring roughness over a mud/salt playa; while, ``dynamic'' refers to the behavior of water waves along an air-water interface. In both cases, time-resolved measurements of the momentum and heat fluxes were acquired from synchronized 3D sonic anemometers mounted on a vertical tower. Field campaigns were conducted at two sites, representing the ``statically'' and ``dynamically'' rough surfaces, respectively: (1) the SLTEST facility in Utah's western desert, and (2) the new Doha airport in Qatar under construction along the coast of the Persian Gulf. Note, at site 2, anemometers were located directly above the water by extension from a tower secured to the end of a 1 km-long pier. Comparisons of the Monin-Obukhov length, flux Richardson number, and gradient Richardson number are presented, and discussed in the context of the observed evolution of the turbulent spectra in response to diurnal variations of atmospheric stability. Supported by the Qatar National Research Fund.

  5. Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: Characterising the atmospheric mixing state

    International Nuclear Information System (INIS)

    Chambers, Scott D.; Galeriu, Dan; Williams, Alastair G.; Melintescu, Anca; Griffiths, Alan D.; Crawford, Jagoda; Dyer, Leisa; Duma, Marin; Zorila, Bogdan

    2016-01-01

    A radon-based nocturnal stability classification scheme is developed for a flat inland site near Bucharest, Romania, characterised by significant local surface roughness heterogeneity, and compared with traditional meteorologically-based techniques. Eight months of hourly meteorological and atmospheric radon observations from a 60 m tower at the IFIN-HH nuclear research facility are analysed. Heterogeneous surface roughness conditions in the 1 km radius exclusion zone around the site hinder accurate characterisation of nocturnal atmospheric mixing conditions using conventional meteorological techniques, so a radon-based scheme is trialled. When the nocturnal boundary layer is very stable, the Pasquill–Gifford “radiation” scheme overestimates the atmosphere's capacity to dilute pollutants with near-surface sources (such as tritiated water vapour) by 20% compared to the radon-based scheme. Under these conditions, near-surface wind speeds drop well below 1 m s"−"1 and nocturnal mixing depths vary from ∼25 m to less than 10 m above ground level (a.g.l.). Combining nocturnal radon with daytime ceilometer data, we were able to reconstruct the full diurnal cycle of mixing depths. Average daytime mixing depths at this flat inland site range from 1200 to 1800 m a.g.l. in summer, and 500–900 m a.g.l. in winter. Using tower observations to constrain the nocturnal radon-derived effective mixing depth, we were able to estimate the seasonal range in the Bucharest regional radon flux as: 12 mBq m"−"2 s"−"1 in winter to 14 mBq m"−"2 s"−"1 in summer. - Highlights: • Site climatology accurately characterised by season and atmospheric stability class. • Comparison of "2"2"2Rn-based, Pasquill–Gifford and Richardson number stability indices. • Seasonal mixing depth estimates over the whole diurnal cycle by ceilometer and radon. • Seasonal variability in the regional radon source function well constrained.

  6. Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain

    DEFF Research Database (Denmark)

    Han, Xingxing; Liu, Deyou; Xu, Chang

    2018-01-01

    This paper evaluates the influence of atmospheric stability and topography on wind turbine performance and wake properties in complex terrain. To assess atmospheric stability effects on wind turbine performance, an equivalent wind speed calculated with the power output and the manufacture power...... and topography have significant influences on wind turbine performance and wake properties. Considering effects of atmospheric stability and topography will benefit the wind resource assessment in complex terrain....

  7. Atmospheric conditions important for the assessment of population exposure

    International Nuclear Information System (INIS)

    Vidic, S.

    2005-01-01

    Atmospheric distribution of a pollutant can be predicted using numerical weather prediction models and atmospheric dispersion models. The first provides prediction on the evaluation of the meteorological fields for specified time period and the second uses this information to determine the evolution of the dispersing cloud in time and space. There is a number of conditions and features that limit the performance of both models, as they contain a degree of parametrisation that may be a source of error. This paper discusses influential parameters and conditions.(author)

  8. Aircraft nonlinear stability analysis and multidimensional stability region estimation under icing conditions

    Directory of Open Access Journals (Sweden)

    Liang QU

    2017-06-01

    Full Text Available Icing is one of the crucial factors that could pose great threat to flight safety, and thus research on stability and stability region of aircraft safety under icing conditions is significant for control and flight. Nonlinear dynamical equations and models of aerodynamic coefficients of an aircraft are set up in this paper to study the stability and stability region of the aircraft under an icing condition. Firstly, the equilibrium points of the iced aircraft system are calculated and analyzed based on the theory of differential equation stability. Secondly, according to the correlation theory about equilibrium points and the stability region, this paper estimates the multidimensional stability region of the aircraft, based on which the stability regions before and after icing are compared. Finally, the results are confirmed by the time history analysis. The results can give a reference for stability analysis and envelope protection of the nonlinear system of an iced aircraft.

  9. Transport of radionuclides in the atmosphere during complex meteorological conditions

    International Nuclear Information System (INIS)

    Antic, D.; Telenta, B.

    1991-01-01

    Radionuclides from various sources (nuclear and fossil fuel power plants, nuclear facilities, medical facilities, etc.) are being released to the atmosphere. The meteorological conditions determine the atmospheric turbulence, dispersion, and removal processes of the radionuclides. A two-dimensional version of the cloud model based on the Klemp-Wilhelmson dynamic and Lin et al.'s microphysics and thermodynamics has been adapted and used to simulate the transport of radionuclides emitted from a power plant or other source to the atmosphere. Calculations of the trajectories and radii for a few puffs are included in this paper. These numerical investigations show that the presented model can be used for the transport simulation of radionuclides and for the assessment of the radiological impact of power plants and other sources in safety assessments and comparative studies. Because it can simulate puff trajectories, this model is especially valuable in the presence of complex meteorological conditions

  10. Energy conditions and stability in general relativity

    International Nuclear Information System (INIS)

    Hall, G.S.

    1982-01-01

    The dominant energy condition in general relativity theory, which says that every observer measures a nonnegative local energy density and a nonspacelike local energy flow, is examined in connection with the types of energy-momentum tensor it permits. The condition that the energy-momentum tensor be ''stable'' in obeying the dominant energy conditions is then defined in terms of a suitable topology on the set of energy-momentum tensors on space-time and the consequences are evaluated and discussed. (author)

  11. Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study

    Directory of Open Access Journals (Sweden)

    L. Vollmer

    2016-09-01

    Full Text Available An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the inflow wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty in the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as a source of uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. Control of the wake position in a highly convective environment is therefore not recommended.

  12. The relationship between perceived family atmosphere and emotional stability of adolescents

    OpenAIRE

    KRÁČMAROVÁ, Martina

    2015-01-01

    The bachelor thesis called "The relationship between perceived family atmosphere and emotional stability of adolescents" deals with adolescence especially in relation to the perceived family and emotional stability of adolescent. The main goal of my work is to describe how the perceived family atmosphere and events in the family influences the emotion of Adolescents. Firstly I was clarifying the specifics of adolescent period, the importance of relationships, family atmosphere and emotional a...

  13. Improvement of stability of sinusoidally driven atmospheric pressure plasma jet using auxiliary bias voltage

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Kim

    2015-12-01

    Full Text Available In this study, we have proposed the auxiliary bias pulse scheme to improve the stability of atmospheric pressure plasma jets driven by an AC sinusoidal waveform excitation source. The stability of discharges can be significantly improved by the compensation of irregular variation in memory voltage due to the effect of auxiliary bias pulse. From the parametric study, such as the width, voltage, and onset time of auxiliary bias pulse, it has been demonstrated that the auxiliary bias pulse plays a significant role in suppressing the irregular discharges caused by the irregular variation in memory voltage and stable discharge can be initiated with the termination of the auxiliary bias pulse. As a result of further investigating the effects of the auxiliary pulse scheme on the jet stability under various process conditions such as the distance between the jet head and the counter electrode, and carrier gas flow, the jet stability can be improved by adjusting the amplitude and number of the bias pulse depending on the variations in the process conditions.

  14. ATMOSPHERIC CIRCULATION OF HOT JUPITERS: INSENSITIVITY TO INITIAL CONDITIONS

    International Nuclear Information System (INIS)

    Liu Beibei; Showman, Adam P.

    2013-01-01

    The ongoing characterization of hot Jupiters has motivated a variety of circulation models of their atmospheres. Such models must be integrated starting from an assumed initial state, which is typically taken to be a wind-free, rest state. Here, we investigate the sensitivity of hot-Jupiter atmospheric circulation to initial conditions with shallow-water models and full three-dimensional models. Those models are initialized with zonal jets, and we explore a variety of different initial jet profiles. We demonstrate that, in both classes of models, the final, equilibrated state is independent of initial condition—as long as frictional drag near the bottom of the domain and/or interaction with a specified planetary interior are included so that the atmosphere can adjust angular momentum over time relative to the interior. When such mechanisms are included, otherwise identical models initialized with vastly different initial conditions all converge to the same statistical steady state. In some cases, the models exhibit modest time variability; this variability results in random fluctuations about the statistical steady state, but we emphasize that, even in these cases, the statistical steady state itself does not depend on initial conditions. Although the outcome of hot-Jupiter circulation models depend on details of the radiative forcing and frictional drag, aspects of which remain uncertain, we conclude that the specification of initial conditions is not a source of uncertainty, at least over the parameter range explored in most current models.

  15. A new stabilized least-squares imaging condition

    International Nuclear Information System (INIS)

    Vivas, Flor A; Pestana, Reynam C; Ursin, Bjørn

    2009-01-01

    The classical deconvolution imaging condition consists of dividing the upgoing wave field by the downgoing wave field and summing over all frequencies and sources. The least-squares imaging condition consists of summing the cross-correlation of the upgoing and downgoing wave fields over all frequencies and sources, and dividing the result by the total energy of the downgoing wave field. This procedure is more stable than using the classical imaging condition, but it still requires stabilization in zones where the energy of the downgoing wave field is small. To stabilize the least-squares imaging condition, the energy of the downgoing wave field is replaced by its average value computed in a horizontal plane in poorly illuminated regions. Applications to the Marmousi and Sigsbee2A data sets show that the stabilized least-squares imaging condition produces better images than the least-squares and cross-correlation imaging conditions

  16. Evaluation of accelerated stability test conditions for medicated chewing gums.

    Science.gov (United States)

    Maggi, Lauretta; Conte, Ubaldo; Nhamias, Alain; Grenier, Pascal; Vergnault, Guy

    2013-10-01

    The overall stability of medicated chewing gums is investigated under different storage conditions. Active substances with different chemical stabilities in solid state are chosen as model drugs. The dosage form is a three layer tablet obtained by direct compression. The gum core contains the active ingredient while the external layers are formulated to prevent gum adhesion to the punches of the tableting machine. Two accelerated test conditions (40°C/75% RH and 30°C/65% RH) are performed for 6 months. Furthermore, a long-term stability test at room conditions is conducted to verify the predictability of the results obtained from the stress tests. Some drugs are stable in all the conditions tested, but other drugs, generally considered stable in solid dosage forms, have shown relevant stability problems particularly when stress test conditions are applied to this particular semi-solid dosage forms. For less stable drugs, the stress conditions of 40°C/75% RH are not always predictable of chewing gum stability at room temperature and may produce false negative; intermediate conditions, 30°C/65% RH, are more predictive for this purpose, the results of drug content found after 6 months at intermediate stress conditions and 12 months at room conditions are generally comparable. But the results obtained show that only long-term conditions stability tests gave consistent results. During aging, the semi solid nature of the gum base itself, may also influence the drug delivery rate during chewing and great attention should be given also to the dissolution stability.

  17. Design of Multijunction Photovoltaic Cells Optimized for Varied Atmospheric Conditions

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2014-01-01

    Full Text Available Band gap engineering provides an opportunity to not only provide higher overall conversion efficiencies of the reference AM1.5 spectra but also customize PV device design for specific geographic locations and microenvironments based on atmospheric conditions characteristic to that particular location. Indium gallium nitride and other PV materials offer the opportunity for limited bandgap engineering to match spectra. The effects of atmospheric conditions such as aerosols, cloud cover, water vapor, and air mass have been shown to cause variations in spectral radiance that alters PV system performance due to both overrating and underrating. Designing PV devices optimized for spectral radiance of a particular region can result in improved PV system performance. This paper presents a new method for designing geographically optimized PV cells with using a numerical model for bandgap optimization. The geographic microclimate spectrally resolved solar flux for twelve representative atmospheric conditions for the incident radiation angle (zenith angle of 48.1° and fixed array angle of 40° is used to iteratively optimize the band gap for tandem, triple, and quad-layer of InGaN-based multijunction cells. The results of this method are illustrated for the case study of solar farms in the New York region and discussed.

  18. Stability of prebiotic, laminaran oligosaccharide under food processing conditions

    Science.gov (United States)

    Chamidah, A.

    2018-04-01

    Prebiotic stability tests on laminaran oligosaccharide under food processing conditions were urgently performed to determine the ability of prebiotics deal with processing. Laminaran, oligosaccharide is produced from enzymatic hydrolysis. To further apply this prebiotic, it is necessary to test its performance on food processing. Single prebiotic or in combination with probiotic can improve human digestive health. The effectiveness evaluation of prebiotic should be taken into account in regards its chemical and functional stabilities. This study aims to investigate the stability of laminaran, oligosaccharide under food processing condition.

  19. On the determination of stability conditions over forested areas from velocity measurements

    DEFF Research Database (Denmark)

    Medici, D.; Segalini, A.; Dellwik, Ebba

    2014-01-01

    Two proxies able to determine the sign of the atmospheric stability in the absence of temperature measurements were investigated using data from four forested sites in Sweden. The results indicate that the simple proxy based on the time of the day when the measurement was taken was sufficient....... The investigated data sets show large variation of shear and turbulence intensity with increasing stability, indicating the need for proxies that also can be used to characterize the degree of atmospheric stability....... approximately 90% of the overall stable data. When selecting data with mean wind speeds over 5 m/s at 80 m height, the presented data sets include mostly data where temperature effects are small (near-neutral), followed by stable data. Only few occurrences of unstable conditions were anyway observed...

  20. Entropy Stability and the No-Slip Wall Boundary Condition

    KAUST Repository

    Svä rd, Magnus; Carpenter, Mark H.; Parsani, Matteo

    2018-01-01

    We present an entropy stable numerical scheme subject to no-slip wall boundary conditions. To enforce entropy stability only the no-penetration boundary condition and a temperature condition are needed at a wall, and this leads to an L bound on the conservative variables. In this article, we take the next step and design a finite difference scheme that also bounds the velocity gradients. This necessitates the use of the full no-slip conditions.

  1. Entropy Stability and the No-Slip Wall Boundary Condition

    KAUST Repository

    Svärd, Magnus

    2018-01-18

    We present an entropy stable numerical scheme subject to no-slip wall boundary conditions. To enforce entropy stability only the no-penetration boundary condition and a temperature condition are needed at a wall, and this leads to an L bound on the conservative variables. In this article, we take the next step and design a finite difference scheme that also bounds the velocity gradients. This necessitates the use of the full no-slip conditions.

  2. A discussion for stabilization time of carbon steel in atmospheric corrosion

    Science.gov (United States)

    Zhang, Zong-kai; Ma, Xiao-bing; Cai, Yi-kun

    2017-09-01

    Stabilization time is an important parameter in long-term prediction of carbon steel corrosion in atmosphere. The range of the stabilization time of carbon steel in atmospheric corrosion has been published in many scientific literatures. However, the results may not precise because engineering experiences is dominant. This paper deals with the recalculation of stabilization time based on ISO CORRAG program, and analyzes the results and makes a comparison to the data mentioned above. In addition, a new thinking to obtain stabilization time will be proposed.

  3. Alteration of municipal and industrial slags under atmospheric conditions

    Science.gov (United States)

    Rafał Kowalski, Piotr; Michalik, Marek

    2014-05-01

    The Waste Management System in Poland is being consequently built since 1998. After important changes in legislation, local governments have taken over the duty of waste collection. New points of selective collection of wastes have been opened and new sorting and composting plants were built. The last stage of introducing the Waste Management System is construction of waste incineration power plants. From nine installations which were planned, six are now under construction and they will start operating within the next two years. It is assumed that the consumption of raw wastes for these installations will reach 974 thousand tons per year. These investments will result in increased slags and ashes production. Now in Poland several local waste incinerators are operating and predominant amount of produced incineration residues is landfilled. These materials are exposed to atmospheric conditions in time of short term storage (just after incineration) and afterwards for a longer period of time on the landfill site. During the storage of slags low temperature mineral transformations and chemical changes may occur and also some components can be washed out. These materials are stored wet because of the technological processes. The aim of this study is to investigate the influence of storage in atmospheric conditions on slags from incineration of industrial and municipal wastes. The experiment started in January 2013. During this period slag samples from incineration of industrial and municipal wastes were exposed to atmospheric conditions. Samples were collected after 6 and 12 months. Within this time the pH value was measured monthly, and during the experimental period remained constant on the level of 9.5. After 6 months of exposure only slight changes in mineral compositions were observed in slags. The results of XRD analysis of municipal slags showed increase in content of carbonate minerals in comparison to the raw slag samples. In industrial slags, a decrease in

  4. On the impact of atmospheric thermal stability on the characteristics of nocturnal downslope flows

    Science.gov (United States)

    Ye, Z. J.; Garratt, J. R.; Segal, M.; Pielke, R. A.

    1990-04-01

    The impacts of background (or ambient) and local atmospheric thermal stabilities, and slope steepness, on nighttime thermally induced downslope flow in meso-β domains (i.e., 20 200 km horizontal extent) have been investigated using analytical and numerical model approaches. Good agreement between the analytical and numerical evaluations was found. It was concluded that: (i) as anticipated, the intensity of the downslope flow increases with increased slope steepness, although the depth of the downslope flow was found to be insensitive to slope steepness in the studied situations; (ii) the intensity of the downslope flow is generally independent of background atmospheric thermal stability; (iii) for given integrated nighttime cooling across the nocturnal boundary layer (NBL), Q s the local atmospheric thermal stability exerts a strong influence on downslope flow behavior: the downslope flow intensity increases when local atmospheric thermal stability increases; and (iv) the downslope flow intensity is proportional to Q s 1/2.

  5. High temperature corrosion in chloridizing atmospheres: development of material quasi-stability diagrams and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, S.; Schuetze, M. [Karl-Winnacker-Institut der DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2004-07-01

    Chlorine gas is widely encountered in chemical industries, e. g. in waste incinerators and plastic/polymer decomposition mills. The presence of chlorine may significantly reduce the life-time of the components. Although metallic materials have been widely used under such conditions there is still a need for data on the role of the different alloying elements in commercial alloys. The purpose of this work is to produce a clear picture of which alloying elements play a detrimental role and which elements are beneficial. These results can be used as a tool for general assessment of metallic alloys with regard to their performance in chloridizing high temperature environments. A previous study has already been performed in oxidizing-chloridizing atmospheres and led to the elaboration of material quasi-stability diagrams. As a follow-up the present work has been performed in reducing-chloridizing atmospheres in order to validate these diagrams at low partial pressures of oxygen. The behaviour of 9 commercial materials where the content of the major alloying elements was varied in a systematic manner was investigated in reducing-chloridizing atmospheres (in Ar containing up to 2 vol.% Cl{sub 2} and down to 1 ppm O{sub 2}) at 800 deg. C. As the thermodynamical approach to corrosion in such atmospheres could not explain all the phenomena which occur, kinetics calculations i.e. diffusion calculations were carried out. Pack cementation and High Velocity Oxy-Fuel (HVOF) coatings were also developed from the best alloying elements previously found by the calculations and the corrosion experiments. Corrosion tests on the coated materials were then performed in the same conditions as the commercial alloys. (authors)

  6. Theoretical predictions of arsenic and selenium species under atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Monahan-Pendergast, M.T.; Przybylek, M.; Lindblad, M.; Wilcox, J. [Worcester Polytechnic Institute, Worcester, MA (United States). Dept. of Chemical Engineering

    2008-03-15

    Thermochemical properties of arsenic and selenium species thought to be released into the atmosphere during the coal combustion were examined using ab initio methods. At various levels of theory, calculated geometries and vibrational frequencies of the species were compared with experimental data, where available. Through a comparison of equilibrium constants for a series of gaseous arsenic and selenium oxidation reactions involving OH and HO{sub 2}, five thermodynamically favored reactions were found. In addition, it was determined that all favored reactions were more likely to go to completion tinder tropospheric, rather than stratospheric, conditions.

  7. Documentation of Atmospheric Conditions During Observed Rising Aircraft Wakes

    Science.gov (United States)

    Zak, J. Allen; Rodgers, William G., Jr.

    1997-01-01

    Flight tests were conducted in the fall of 1995 off the coast of Wallops Island, Virginia in order to determine characteristics of wake vortices at flight altitudes. A NASA Wallops Flight Facility C130 aircraft equipped with smoke generators produced visible wakes at altitudes ranging from 775 to 2225 m in a variety of atmospheric conditions, orientations (head wind, cross wind), and airspeeds. Meteorological and aircraft parameters were collected continuously from a Langley Research Center OV-10A aircraft as it flew alongside and through the wake vortices at varying distances behind the C130. Meteorological data were also obtained from special balloon observations made at Wallops. Differential GPS capabilities were on each aircraft from which accurate altitude profiles were obtained. Vortices were observed to rise at distances beyond a mile behind the C130. The maximum altitude was 150 m above the C130 in a near neutral atmosphere with significant turbulence. This occurred from large vertical oscillations in the wakes. There were several cases when vortices did not descend after a very short initial period and remained near generation altitude in a variety of moderately stable atmospheres and wind shears.

  8. The properties and Roles of Resonance-Stabilized Radicals in Photochemical Pathways in Titan's Atmosphere

    Science.gov (United States)

    Sebree, Joshua A.; Kidwell, Nathan; Zwier, Timothy

    2010-11-01

    In recent years, the Cassini satellite has been providing details about the composition of Titan's atmosphere. Recent data has shown the existence of polycyclic aromatic hydrocarbons (PAHs) at higher altitudes than previously expected including masses tentatively ascribed to naphthalene and anthracene. The formation of indene (C9H9) and naphthalene (C10H8), the simplest PAHs, and their derivatives are of great interest as similar mechanisms may lead to the formation of larger fused-ring systems. In recent years it has been proposed that resonance-stabilized radicals (RSRs) may play an important role as intermediates along these pathways. RSRs gain extra stability by delocalizing the unpaired electron through a neighboring conjugated π-system. Because of this extra stability, RSRs are able to build up in concentration, allowing for the creation of larger, more complex systems through their recombination with other RSRs. Mass-selective UV-visible spectra of two RSRs, phenylallyl and benzylallenyl radicals, have been recorded under jet-cooled conditions. These two radicals, while sharing the same radical conjugation, have unique properties. The roles these radicals may play in the formation of fused ring systems will be discussed along with recent photochemical results on reaction pathways starting from benzylallene through the benzylallenyl radical.

  9. Atmospheric stability and complex terrain: comparing measurements and CFD

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Berg, Jacob

    2014-01-01

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer, for example the Coriolis force...

  10. The effects of atmospheric optical conditions on perceived scenic beauty

    Science.gov (United States)

    Latimer, Douglas A.; Hogo, Henry; Daniel, Terry C.

    This paper describes the results from the first year of a currently on-going study, the objective of which is to investigate the relationships between atmospheric optical conditions and human perceptions of scenic beauty. Color photographs and atmospheric optical measurements, using telephotometers and nephelometers, were taken in the western U.S.A. (Grand Canyon National Park and Mt. Lemmon near Tucson, Arizona) and in the eastern United States (Great Smoky Mountains and Shenandoah national parks). Over 1300 individual observers rated color slides for either visual air quality or scenic beauty using a 10-point rating scale. Ratings were transformed to indices using standard psychophysical techniques. Relationships between these perceptual indices and physical parameters characteristic of the given landscape represented in the color slides were investigated using scatter plots, correlation analysis, and multiple linear regression. Physical parameters included visual range, horizon sky chromaticity and luminance, solar zenith and scattering angles, and cloud conditions. Results show that observers' ratings of visual air quality and scenic beauty are sensitive to visual range, sky color, and scattering angle. However, in some of the areas investigated, scenic beauty ratings were not affected by changes in visual range. The sensitivity of the scenic beauty of a vista to changes in the extinction coefficient may be useful for establishing visibility goals and priorities.

  11. Nb-TiO{sub 2}/polymer hybrid solar cells with photovoltaic response under inert atmosphere conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lira-Cantu, Monica; Khoda Siddiki, Mahbube; Munoz-Rojas, David; Amade, Roger [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2, CSIC), Laboratory of Nanostructured Materials for Photovoltaic Energy, Campus UAB, Barcelona (Spain); Gonzalez-Pech, Natalia I. [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2, CSIC), Laboratory of Nanostructured Materials for Photovoltaic Energy, Campus UAB, Barcelona (Spain); Instituto Tecnologico y de Estudios Superiores de Monterrey (ITESM), Ave. Eugenio Garza Sada, 64640 Monterrey, N.L. (Mexico)

    2010-07-15

    Hybrid Solar Cells (HSC) applying Nb-TiO{sub 2} in direct contact with a conducting organic polymer, MEH-PPV, show higher stability than the bare TiO{sub 2}-based HSC when analyzed under inert atmosphere conditions. IPCE analyses revealed that inert atmospheres affect directly the semiconductor oxide in the first stages of the analyses but photovoltaic performance stabilizes after several hours. A 20 wt% Nb-doped TiO{sub 2} presented the highest stability and photovoltaic properties. The behavior has been attributed to the solubility limit of Nb within the TiO{sub 2} beyond 20 wt% doping level where the co-existence of NbO{sub 2} is observed. The HSCs were analyzed under controlled N{sub 2} atmosphere and 1000 W/m{sup 2} (AM 1.5) irradiation. (author)

  12. Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion

    CERN Document Server

    Zeytounian, Radyadour K

    1991-01-01

    The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.

  13. Effects of some storage conditions on the stability of hydrocortisone ...

    African Journals Online (AJOL)

    In this study, the effects of some environmental storage conditionslight, temperature and humidity on the stability of the steroidal drug, hydrocortisone sodium succinate injection were investigated. The drug samples were stored at varying conditions of light, temperature (0°C, 28°C and 60°C) and humidity, after which each ...

  14. Lyapunov Based Estimation of Flight Stability Boundary under Icing Conditions

    Directory of Open Access Journals (Sweden)

    Binbin Pei

    2017-01-01

    Full Text Available Current fight boundary of the envelope protection in icing conditions is usually defined by the critical values of state parameters; however, such method does not take the interrelationship of each parameter and the effect of the external disturbance into consideration. This paper proposes constructing the stability boundary of the aircraft in icing conditions through analyzing the region of attraction (ROA around the equilibrium point. Nonlinear icing effect model is proposed according to existing wind tunnel test results. On this basis, the iced polynomial short period model can be deduced further to obtain the stability boundary under icing conditions using ROA analysis. Simulation results for a series of icing severity demonstrate that, regardless of the icing severity, the boundary of the calculated ROA can be treated as an estimation of the stability boundary around an equilibrium point. The proposed methodology is believed to be a promising way for ROA analysis and stability boundary construction of the aircraft in icing conditions, and it will provide theoretical support for multiple boundary protection of icing tolerant flight.

  15. Atmospheric conditions create freeways, detours and tailbacks for migrating birds.

    Science.gov (United States)

    Shamoun-Baranes, Judy; Liechti, Felix; Vansteelant, Wouter M G

    2017-07-01

    The extraordinary adaptations of birds to contend with atmospheric conditions during their migratory flights have captivated ecologists for decades. During the 21st century technological advances have sparked a revival of research into the influence of weather on migrating birds. Using biologging technology, flight behaviour is measured across entire flyways, weather radar networks quantify large-scale migratory fluxes, citizen scientists gather observations of migrant birds and mechanistic models are used to simulate migration in dynamic aerial environments. In this review, we first introduce the most relevant microscale, mesoscale and synoptic scale atmospheric phenomena from the point of view of a migrating bird. We then provide an overview of the individual responses of migrant birds (when, where and how to fly) in relation to these phenomena. We explore the cumulative impact of individual responses to weather during migration, and the consequences thereof for populations and migratory systems. In general, individual birds seem to have a much more flexible response to weather than previously thought, but we also note similarities in migratory behaviour across taxa. We propose various avenues for future research through which we expect to derive more fundamental insights into the influence of weather on the evolution of migratory behaviour and the life-history, population dynamics and species distributions of migrant birds.

  16. Colloidal stability of silver nanoparticles in biologically relevant conditions

    International Nuclear Information System (INIS)

    MacCuspie, Robert I.

    2011-01-01

    Understanding the colloidal stability of nanoparticles (NPs) plays a key role in phenomenological interpretation of toxicological experiments, particularly if single NPs or their aggregates or agglomerates determine the dominant experimental result. This report examines a variety of instrumental techniques for surveying the colloidal stability of aqueous suspensions of silver nanoparticles (AgNPs), including atomic force microscopy, dynamic light scattering, and colorimetry. It was found that colorimetry can adequately determine the concentration of single AgNPs that remained in solution if morphological information about agglomerates is not required. The colloidal stability of AgNPs with various surface capping agents and in various solvents ranging from cell culture media to different electrolytes of several concentrations, and in different pH conditions was determined. It was found that biocompatible bulky capping agents, such as bovine serum albumin or starch, that provided steric colloidal stabilization, as opposed to purely electrostatic stabilization such as with citrate AgNPs, provided better retention of single AgNPs in solution over a variety of conditions for up to 64 h of observation.

  17. Filter Media Tests Under Simulated Martian Atmospheric Conditions

    Science.gov (United States)

    Agui, Juan H.

    2016-01-01

    Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.

  18. Ozonation of isoproturon adsorbed on silica particles under atmospheric conditions

    Science.gov (United States)

    Pflieger, Maryline; Grgić, Irena; Kitanovski, Zoran

    2012-12-01

    The results on heterogeneous ozonation of a phenylurea pesticide, isoproturon, under atmospheric conditions are presented for the first time in the present study. The study was carried out using an experimental device previously adopted and validated for the heterogeneous reactivity of organics toward ozone (Pflieger et al., 2011). Isoproturon was adsorbed on silica particles via a liquid-to-solid equilibrium with a load far below a monolayer (0.02% by weight/surface coverage of 0.5%). The rate constants were estimated by measuring the consumption of the organic (dark, T = 26 °C, RH isoproturon on the aerosol surface does not affect the kinetics of ozonation, indicating that both compounds are adsorbed on different surface sites of silica particles.

  19. A thermal model for photovoltaic panels under varying atmospheric conditions

    International Nuclear Information System (INIS)

    Armstrong, S.; Hurley, W.G.

    2010-01-01

    The response of the photovoltaic (PV) panel temperature is dynamic with respect to the changes in the incoming solar radiation. During periods of rapidly changing conditions, a steady state model of the operating temperature cannot be justified because the response time of the PV panel temperature becomes significant due to its large thermal mass. Therefore, it is of interest to determine the thermal response time of the PV panel. Previous attempts to determine the thermal response time have used indoor measurements, controlling the wind flow over the surface of the panel with fans or conducting the experiments in darkness to avoid radiative heat loss effects. In real operating conditions, the effective PV panel temperature is subjected to randomly varying ambient temperature and fluctuating wind speeds and directions; parameters that are not replicated in controlled, indoor experiments. A new thermal model is proposed that incorporates atmospheric conditions; effects of PV panel material composition and mounting structure. Experimental results are presented which verify the thermal behaviour of a photovoltaic panel for low to strong winds.

  20. Calculating the wind energy input to a system using a spatially explicit method that considers atmospheric stability

    Science.gov (United States)

    Atmospheric stability has a major effect in determining the wind energy doing work in the atmospheric boundary layer (ABL); however, it is seldom considered in determining this value in emergy analyses. One reason that atmospheric stability is not usually considered is that a sui...

  1. Simplification and Validation of a Spectral-Tensor Model for Turbulence Including Atmospheric Stability

    Science.gov (United States)

    Chougule, Abhijit; Mann, Jakob; Kelly, Mark; Larsen, Gunner C.

    2018-02-01

    A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate ɛ , the length scale of energy-containing eddies L , a turbulence anisotropy parameter Γ, the Richardson number Ri, and the normalized rate of destruction of temperature variance η _θ ≡ ɛ _θ /ɛ . Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin-Obukhov similarity theory, where z is the height above the Earth's surface, and L is the Obukhov length corresponding to Ri,η _θ. Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale ˜ 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.

  2. Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia

    Science.gov (United States)

    Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara

    2012-11-01

    We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m3) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m3. Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.

  3. Origin and stability of exomoon atmospheres: implications for habitability.

    Science.gov (United States)

    Lammer, Helmut; Schiefer, Sonja-Charlotte; Juvan, Ines; Odert, Petra; Erkaev, Nikolai V; Weber, Christof; Kislyakova, Kristina G; Güdel, Manuel; Kirchengast, Gottfried; Hanslmeier, Arnold

    2014-09-01

    We study the origin and escape of catastrophically outgassed volatiles (H2O, CO2) from exomoons with Earth-like densities and masses of 0.1, 0.5 and 1 M⊕ orbiting an extra-solar gas giant inside the habitable zone of a young active solar-like star. We apply a radiation absorption and hydrodynamic upper atmosphere model to the three studied exomoon cases. We model the escape of hydrogen and dragged dissociation products O and C during the activity saturation phase of the young host star. Because the soft X-ray and EUV radiation of the young host star may be up to ~100 times higher compared to today's solar value during the first 100 Myr after the system's origin, an exomoon with a mass 0.5 M⊕, however, may evolve to habitats that are a mixture of Mars-like and Earth-analogue habitats, so that life may originate and evolve at the exomoon's surface.

  4. Estimation of seasonal atmospheric stability and mixing height by using different schemes

    International Nuclear Information System (INIS)

    Essa, K.S.M.; Embaby, M.; Mubarak, F.; Kamel, I.

    2007-01-01

    Different atmospheric stability schemes were used to characterize the plume growth (dispersion coefficients σ) in the lateral and vertical directions to determine the concentration distribution of pollutants through the PBL. The PBL is the region in which surface friction has a large effect on the mixing of pollutants. It is also suffer large fluctuation in temperature and wind and its depth (mixing depth) changes over a diurnal cycle. In this study, four months of surface meteorological parameters were used (to represent different seasons) to determine seasonal stability, classification. Five different stability schemes were estimated based on temperature gradient, standard deviation of the horizontal wind direction fluctuation, gradient and Bulk Richardson numbers and Monin-Obukhov length. Friction velocity, (u * ) for each stability scheme was estimated for characterizing the hourly, mixing height for each stability class. Also, plume rise was estimated for each stability class depending on the availability of meteorological parameters

  5. Standard Model Vacuum Stability and Weyl Consistency Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Gillioz, Marc; Krog, Jens

    2013-01-01

    At high energy the standard model possesses conformal symmetry at the classical level. This is reflected at the quantum level by relations between the different beta functions of the model. These relations are known as the Weyl consistency conditions. We show that it is possible to satisfy them...... order by order in perturbation theory, provided that a suitable coupling constant counting scheme is used. As a direct phenomenological application, we study the stability of the standard model vacuum at high energies and compare with previous computations violating the Weyl consistency conditions....

  6. Ebola Virus Stability Under Hospital and Environmental Conditions.

    Science.gov (United States)

    Westhoff Smith, Danielle; Hill-Batorski, Lindsay; N'jai, Alhaji; Eisfeld, Amie J; Neumann, Gabriele; Halfmann, Peter; Kawaoka, Yoshihiro

    2016-10-15

    The West African outbreak of Ebola virus (EBOV) is largely contained, but sporadic new cases continue to emerge. To assess the potential contribution of fomites to human infections with EBOV, we tested EBOV stability in human blood spotted onto Sierra Leonean banknotes and in syringe needles under hospital and environmental conditions. Under some of these conditions, EBOV remained infectious for >30 days, indicating that EBOV-contaminated items may pose a serious risk to humans. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. Volumetric scans of wind turbine wakes performed with three simultaneous wind LiDARs under different atmospheric stability regimes

    International Nuclear Information System (INIS)

    Iungo, Giacomo Valerio; Porté-Agel, Fernando

    2014-01-01

    Aerodynamic optimization of wind farm layout is a crucial task to reduce wake effects on downstream wind turbines, thus to maximize wind power harvesting. However, downstream evolution and recovery of wind turbine wakes are strongly affected by the characteristics of the incoming atmospheric boundary layer (ABL) flow, such as wind shear and turbulence intensity, which are in turn affected by the ABL thermal stability. In order to characterize the downstream evolution of wakes produced by full-scale wind turbines under different atmospheric conditions, wind velocity measurements were performed with three wind LiDARs. The volumetric scans are performed by continuously sweeping azimuthal and elevation angles of the LiDARs in order to cover a 3D volume that includes the wind turbine wake. The minimum wake velocity deficit is then evaluated as a function of the downstream location for different atmospheric conditions. It is observed that the ABL thermal stability has a significant effect on the wake evolution, and the wake recovers faster under convective conditions

  8. Atmospheric stability in CFD &NDASH; Representation of the diurnal cycle in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey

    2012-01-01

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics (CFD) models that focus primarily on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer (ABL), for exam......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics (CFD) models that focus primarily on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer (ABL......), for example the Coriolis force, buoyancy forces and heat transport, are mostly ignored in state-of-the-art CFD models. In order to decrease the uncertainty of wind resource assessment, especially in complex terrain, the effect of thermal stratification on the ABL should be included in such models. The present...

  9. Computer Modeling of the Effects of Atmospheric Conditions on Sound Signatures

    Science.gov (United States)

    2016-02-01

    simulation. 11 5. References 1. Attenborough K. Sound propagation in the atmosphere. In: Rossing TD, editor. Springer handbook of...ARL-TR-7602 ● FEB 2016 US Army Research Laboratory Computer Modeling of the Effects of Atmospheric Conditions on Sound ...Laboratory Computer Modeling of the Effects of Atmospheric Conditions on Sound Signatures by Sarah Wagner Science and Engineering Apprentice

  10. Infulence of atmospheric stability on the spatial structure of turbulence

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.

    This thesis consists of three chapters. In the first chapter, the cross-spectral phases between velocity components at two heights are analyzed from observations at the Høvsøre test site under diabatic conditions. These phases represent the degree to which turbulence sensed at one height leads (o...... is able to predict the temperature-coherence, moreso in the stable case than in the unstable case. We compare the model predictions against those of Mann (1994) in the coherence estimations, where the new model seems to give slightly improved results....

  11. Lipid oxidation and color changes of goose meat stored under vacuum and modified atmosphere conditions.

    Science.gov (United States)

    Orkusz, A; Haraf, G; Okruszek, A; Werenska-Sudnik, M

    2017-03-01

    The objective of the work was to investigate the color and lipid oxidation changes of goose breast meat packaged in vacuum and modified atmosphere (MA) conditions consisting of 80% O2, 20% CO2, and stored in refrigerated conditions at 4°C. Color stability was monitored by determining total heme pigments concentration; relative concentration of myoglobin, oxymyoglobin, and metmyoglobin; parameters of color L*, a*, b*, and sensory evaluation of the surface color. Lipid stability was measured by determining thiobarbituric acid reactive substances (TBARS). The samples were examined in 24 h after slaughter (unpacked muscles) and on d 4, 7, 9, 11 of storage (muscles packed in vacuum and in MA). Through the time of storage, samples packed in MA had higher TBARS values in comparison to the meat packed in vacuum. For samples packed in two types of atmospheres, the total pigments concentration decreased gradually within 11 d of storage. It was observed that relative metmyoglobin concentration increased whereas relative oxymyoglobin concentration decreased in total heme pigments in the MA stored muscle. The relative concentration of all three myoglobin forms sample packed in vacuum remained unchanged. The color parameters (L*, a*, b*) did not change for 11 d of storage for the vacuum packed meat. The value of the color parameter a* decreased and the value of the color parameters L* and b* increased in the samples packaged in MA. The data prove that if you store goose meat in MA (consisting of 80% O2, 20% CO2) or vacuum, the unchanged surface color is preserved for 9 and 11 day, respectively.Vacuum appears to be a better method as regards the maintaining of lipid stability in goose meat. © 2016 Poultry Science Association Inc.

  12. Investigating On Colour Stability Conditions Of Postirradiation Radiochromic Film Dosimeter

    International Nuclear Information System (INIS)

    Nguyen Nguyet Dieu; Doan Binh; Pham Thu Hong; Cao Van Chung; Nguyen Thanh Duoc

    2011-01-01

    B3 dosimeter is a thin film with average thickness of 0.0194 mm, which is supplied by the Gex company, the United States. This dosimeter was influenced by many factors: light, temperature, humidity during and after irradiation process. In fact, B3 film dosimeters will be stable under certain conditions such as tightly sealed packs, controlled irradiation and stored temperature after irradiated. Therefore, investigation of the stability effect of postirradiated B3 film dosimeters on the heating temperature, heating time and storing time is carried out before the absorbed dose is read and followed standard reading procedures. When exposed to ionizing radiation, the dosimeters change from colorless to colour. The absorbed doses are read on a Genesys 20 spectrophotometer at a wavelength of 544 nm. Absorbed dose range is investigated from 0.55 to 80 kGy. Experimental results were indicated that colour stability of the postirradiated dosimeters at a temperature of 65 ± 3 o C for 30 minutes and keeping them in desiccator for 5 minutes before read out. Under these conditions, colour stability of B3 film dosimeter has maintained for 3 months. (author)

  13. Stability of captopril in powder papers under three storage conditions

    International Nuclear Information System (INIS)

    Taketomo, C.K.; Chu, S.A.; Cheng, M.H.; Corpuz, R.P.

    1990-01-01

    The stability of captopril in powder papers under three different storage conditions was determined. Captopril 12.5-mg tablets were triturated with lactose to a final concentration of 2 mg of captopril in 100 mg of powder. A total of 240 powder papers were prepared and stored in class A prescription vials (80 papers), 002G plastic zip-lock bags (80 papers), and Moisture Proof Barrier Bags (80 papers). Immediately after preparation and at 1, 2, 3, 4, 8, 12, and 24 weeks of storage at room temperature, powder papers under each storage condition were reweighed and the contents were assayed for captopril concentration by a stability-indicating high-performance liquid chromatographic method. More than 90% of the initial captopril concentration was retained under all storage conditions during the first 12 weeks of the study. Captopril disulfide, a degradation product, was detected in one sample stored in a plastic zip-lock bag at 24 weeks. Captopril was stable for the entire 24-week period in powder papers stored in either the class A prescription vial or the Moisture Proof Barrier Bag. Captopril in powder papers is stable for at least 12 weeks when stored at room temperature under all three storage conditions

  14. Impact of atmospheric release in stable night meteorological conditions; can emergency models predict dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Connan, O.; Hebert, D.; Solier, L.; Voiseux, C.; Lamotte, M.; Laguionie, P.; Maro, D.; Thomas, L. [IRSN/PRP-ENV/SERIS/LRC (France)

    2014-07-01

    Atmospheric dispersion of pollutant or radionuclides in stratified meteorological condition, i.e. especially when weather conditions are very stable, mainly at night, is still poorly understood and not well apprehended by the operational atmospheric dispersion models. However, correctly predicting the dispersion of a radioactive plume, and estimating the radiological consequences for the population, following an unplanned atmospheric release of radionuclides are crucial steps in an emergency response. To better understand dispersion in these special weather conditions, IRSN performed a series of 22 air sampling campaigns between 2010 and 2013 in the vicinity of the La Hague nuclear reprocessing plant (AREVA - NC, France), at distances between 200 m and 3000 m from the facility. Krypton-85 ({sup 85}Kr), a b-and g-emitting radionuclide, released during the reprocessing of spent nuclear fuel was used as a non-reactive tracer of radioactive plumes. Experimental campaigns were realized in stability class stable or very stable (E or F according to Pasquill classification) 18 times, and in neutral conditions (D according to Pasquill classification) 4 times. During each campaign, Krypton-85 real time measurement were made to find the plume around the plant, and then integrated samples (30 min) were collected in bag perpendicularly to the assumed wind direction axis. After measurement by gamma spectrometry, we have, when it was possible, estimate the point of impact and the width of the plume. The objective was to estimate the horizontal dispersion (width) of the plume at ground level in function of the distance and be able to calculate atmospheric transfer coefficients. In a second step, objective was to conclude on the use of common model and on their uncertainties. The results will be presented in terms of impact on the near-field. They will be compared with data obtained in previous years in neutral atmospheric conditions, and finally the results will be confronted with

  15. Stability studies on refined soybean oil stored in various conditions

    International Nuclear Information System (INIS)

    Arawande, J.O.; Amoo, I.A.

    2008-01-01

    The 12 months stability study of freshly produced refined soybean oil revealed that refined soybean oil stored in plastic containers in dark was more hydrolytically and oxidatively stable than that stored in other containers in light condition. There was no significant difference at P < 0.05 in free fatty acids and acid value of oil stored under light and dark conditions in tin and glass containers but there was significant difference at P < 0.05 in peroxide value of oil stored in light and dark conditions in all the storage containers. Light increased the degree of oxidative rancidity of refined soybean oil, the most in tin containers, followed by glass containers and the least in plastic containers. (author)

  16. Variation of vertical atmospheric stability by means of radon measurements and of sodar monitoring

    International Nuclear Information System (INIS)

    Guedalia, D.; Druilhet, A.; Fontan, J.; N'tsila, A.

    1980-01-01

    Continuous measurements of radon at ground level are used to infer variations in equivalent mixing height and atmospheric vertical stability. Simultaneous determinations of the height of the inversion layer, when present, permit, with the use of sodar techniques, the estimation of radon flux from the ground and of the vertical diffusion coefficient. The two sets of data often indicate similar variations in mixing height

  17. Infinite slope stability under steady unsaturated seepage conditions

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan W.

    2008-01-01

    We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.

  18. Stability conditions for the Bianchi type II anisotropically inflating universes

    International Nuclear Information System (INIS)

    Kao, W.F.; Lin, Ing-Chen

    2009-01-01

    Stability conditions for a class of anisotropically inflating solutions in the Bianchi type II background space are shown explicitly in this paper. These inflating solutions were known to break the cosmic no-hair theorem such that they do not approach the de Sitter universe at large times. It can be shown that unstable modes of the anisotropic perturbations always exist for this class of expanding solutions. As a result, we show that these set of anisotropically expanding solutions are unstable against anisotropic perturbations in the Bianchi type II space

  19. The height of the atmospheric boundary layer during unstable conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E.

    2005-11-01

    The height of the convective atmospheric boundary layer, also called the mixed-layer, is one of the fundamental parameters that characterise the structure of the atmosphere near the ground. It has many theoretical and practical applications such as the prediction of air pollution concentrations, surface temperature and the scaling of turbulence. However, as pointed out by Builtjes (2001) in a review paper on Major Twentieth Century Milestones in Air Pollution Modelling and Its Application, the weakest point in meteorology data is still the determination of the height of the mixed-layer, the so-called mixing height. A simple applied model for the height of the mixed-layer over homogeneous terrain is suggested in chapter 2. It is based on a parameterised budget for the turbulent kinetic energy. In the model basically three terms - the spin-up term and the production of mechanical and convective turbulent kinetic energy - control the growth of the mixed layer. The interplay between the three terms is related to the meteorological conditions and the height of the mixed layer. A stable layer, the so-called entrainment zone, which is confined between the mixed layer and the free air above, caps the mixed layer. A parameterisation of the depth of the entrainment zone is also suggested, and used to devise a combined model for the height of the mixed layer and the entrainment zone. Another important aspect of the mixed layer development exists in coastal areas where an internal boundary layer forms downwind from the coastline. A model for the growth of the internal boundary layer is developed in analogy with the model for mixed layer development over homogeneous terrain. The strength of this model is that it can operate on a very fine spatial resolution with minor computer resources. Chapter 3 deals with the validation of the models. It is based in parts on data from the literature, and on own measurements. For the validation of the formation of the internal boundary layer

  20. Assessment of a surface-layer parameterization scheme in an atmospheric model for varying meteorological conditions

    Directory of Open Access Journals (Sweden)

    T. J. Anurose

    2014-06-01

    Full Text Available The performance of a surface-layer parameterization scheme in a high-resolution regional model (HRM is carried out by comparing the model-simulated sensible heat flux (H with the concurrent in situ measurements recorded at Thiruvananthapuram (8.5° N, 76.9° E, a coastal station in India. With a view to examining the role of atmospheric stability in conjunction with the roughness lengths in the determination of heat exchange coefficient (CH and H for varying meteorological conditions, the model simulations are repeated by assigning different values to the ratio of momentum and thermal roughness lengths (i.e. z0m/z0h in three distinct configurations of the surface-layer scheme designed for the present study. These three configurations resulted in differential behaviour for the varying meteorological conditions, which is attributed to the sensitivity of CH to the bulk Richardson number (RiB under extremely unstable, near-neutral and stable stratification of the atmosphere.

  1. Stability of infinite slopes under transient partially saturated seepage conditions

    Science.gov (United States)

    Godt, Jonathan W.; ŞEner-Kaya, BaşAk; Lu, Ning; Baum, Rex L.

    2012-05-01

    Prediction of the location and timing of rainfall-induced shallow landslides is desired by organizations responsible for hazard management and warnings. However, hydrologic and mechanical processes in the vadose zone complicate such predictions. Infiltrating rainfall must typically pass through an unsaturated layer before reaching the irregular and usually discontinuous shallow water table. This process is dynamic and a function of precipitation intensity and duration, the initial moisture conditions and hydrologic properties of the hillside materials, and the geometry, stratigraphy, and vegetation of the hillslope. As a result, pore water pressures, volumetric water content, effective stress, and thus the propensity for landsliding vary over seasonal and shorter time scales. We apply a general framework for assessing the stability of infinite slopes under transient variably saturated conditions. The framework includes profiles of pressure head and volumetric water content combined with a general effective stress for slope stability analysis. The general effective stress, or suction stress, provides a means for rigorous quantification of stress changes due to rainfall and infiltration and thus the analysis of slope stability over the range of volumetric water contents and pressure heads relevant to shallow landslide initiation. We present results using an analytical solution for transient infiltration for a range of soil texture and hydrological properties typical of landslide-prone hillslopes and show the effect of these properties on the timing and depth of slope failure. We follow by analyzing field-monitoring data acquired prior to shallow landslide failure of a hillside near Seattle, Washington, and show that the timing of the slide was predictable using measured pressure head and volumetric water content and show how the approach can be used in a forward manner using a numerical model for transient infiltration.

  2. Atmospheric corrosion in Gran Canaria specifically meteorological and pollution conditions

    International Nuclear Information System (INIS)

    Gonzalez, J.E.G.; Valles, M.L.; Mirza R, J.C.

    1998-01-01

    Carbon steel, copper, zinc and aluminium samples were exposed in different sizes with known ambient parameters in Gran Canaria Island and atmospheric corrosion was investigated. Weight-loss measurements used to determine corrosion damage were complemented with metallographic and XP S determination in order to characterize the structure and morphology of surface corrosion products. The ambient aggressiveness could be well evaluated from meteorological and pollution data. All atmospheric corrosion and environmental data were statistically processed for establishing general corrosion damage functions for carbon steel, copper, aluminium and zinc in terms of Gran Canaria extreme meteorological and pollution parameters. (Author)

  3. Ocean-atmosphere interaction and synoptic weather conditions in ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    turbances over oceans. On the other hand, these disturbances have an impact on the oceanic mixed layer, causing changes in the SST. This complex feed back process between the sea surface and the atmospheric disturbances is important in deter- mining the life span of the synoptic scale events. (Paul et al 1992). In view ...

  4. The role of ions in particle nucleation under atmospheric conditions

    DEFF Research Database (Denmark)

    Enghoff, Martin B.; Pedersen, J. O. P.; Bondo, T.

    2008-01-01

    Aerosol nucleation has been studied experimentally in purified, atmospheric air, containing trace amounts of water vapor, ozone, and sulfur dioxide. The results are compared with model calculations. It is found that an increase in ionization by a factor of 10 increases the production rate of stable...

  5. On the formation of sulphuric acid – amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2012-10-01

    Full Text Available Sulphuric acid is a key component in atmospheric new particle formation. However, sulphuric acid alone does not form stable enough clusters to initiate particle formation in atmospheric conditions. Strong bases, such as amines, have been suggested to stabilize sulphuric acid clusters and thus participate in particle formation. We modelled the formation rate of clusters with two sulphuric acid and two amine molecules (JA2B2 at varying atmospherically relevant conditions with respect to concentrations of sulphuric acid ([H2SO4], dimethylamine ([DMA] and trimethylamine ([TMA], temperature and relative humidity (RH. We also tested how the model results change if we assume that the clusters with two sulphuric acid and two amine molecules would act as seeds for heterogeneous nucleation of organic vapours (other than amines with higher atmospheric concentrations than sulphuric acid. The modelled formation rates JA2B2 were functions of sulphuric acid concentration with close to quadratic dependence, which is in good agreement with atmospheric observations of the connection between the particle formation rate and sulphuric acid concentration. The coefficients KA2B2 connecting the cluster formation rate and sulphuric acid concentrations as JA2B2=KA2B2[H2SO4]2 turned out to depend also on amine concentrations, temperature and relative humidity. We compared the modelled coefficients KA2B2 with the corresponding coefficients calculated from the atmospheric observations (Kobs from environments with varying temperatures and levels of anthropogenic influence. By taking into account the modelled behaviour of JA2B2 as a function of [H2SO4], temperature and RH, the atmospheric particle formation rate was reproduced more closely than with the traditional semi-empirical formulae based on sulphuric acid concentration only. The formation rates of clusters with two sulphuric acid and two amine molecules with different amine compositions (DMA or TMA or one of both had

  6. Reflow process stabilization by chemical characteristics and process conditions

    Science.gov (United States)

    Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho

    2002-07-01

    With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.

  7. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    OpenAIRE

    Ramezani, Maziar; Pasang, Timotius; Chen, Zhan; Neitzert, Thomas; Au, Dominique

    2015-01-01

    Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric contro...

  8. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    International Nuclear Information System (INIS)

    Alizadeh, E.; Sanche, L.

    2014-01-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N 2 , O 2 , H 2 O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N 2 had little effect on the yields of LEE-induced single and double strand breaks, both O 2 and H 2 O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O 2 and H 2 O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitization of these agents in chemo-radiation cancer therapy. (authors)

  9. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    Science.gov (United States)

    Alizadeh, Elahe; Sanche, Léon

    2014-04-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N2, O2, H2O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N2 had little effect on the yields of LEE-induced single and double strand breaks, both O2 and H2O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O2 and H2O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitisation of these agents in chemoradiation cancer therapy.

  10. Thermophysical Properties Measurement of High-Temperature Liquids Under Microgravity Conditions in Controlled Atmospheric Conditions

    Science.gov (United States)

    Watanabe, Masahito; Ozawa, Shumpei; Mizuno, Akotoshi; Hibiya, Taketoshi; Kawauchi, Hiroya; Murai, Kentaro; Takahashi, Suguru

    2012-01-01

    Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are preparing the experiments of thermophysical properties measurements using the Materials-Science Laboratories ElectroMagnetic-Levitator (MSL-EML) facilities in the international Space station (ISS). Recently, it has been identified that dependence of surface tension on oxygen partial pressure (Po2) must be considered for industrial application of surface tension values. Effect of Po2 on surface tension would apparently change viscosity from the damping oscillation model. Therefore, surface tension and viscosity must be measured simultaneously in the same atmospheric conditions. Moreover, effect of the electromagnetic force (EMF) on the surface oscillations must be clarified to obtain the ideal surface oscillation because the EMF works as the external force on the oscillating liquid droplets, so extensive EMF makes apparently the viscosity values large. In our group, using the parabolic flight levitation experimental facilities (PFLEX) the effect of Po2 and external EMF on surface oscillation of levitated liquid droplets was systematically investigated for the precise measurements of surface tension and viscosity of high temperature liquids for future ISS experiments. We performed the observation of surface oscillations of levitated liquid alloys using PFLEX on board flight experiments by Gulfstream II (G-II) airplane operated by DAS. These observations were performed under the controlled Po2 and also under the suitable EMF conditions. In these experiments, we obtained the density, the viscosity and the surface tension values of liquid Cu. From these results, we discuss about as same as reported data, and also obtained the difference of surface oscillations with the change of the EMF conditions.

  11. Suspended Particulates Concentration (PM10 under Unstable Atmospheric Conditions over Subtropical Urban Area (Qena, Egypt

    Directory of Open Access Journals (Sweden)

    M. El-Nouby Adam

    2013-01-01

    Full Text Available The main purpose of this study is to evaluate the suspended particulates (PM10 in the atmosphere under unstable atmospheric conditions. The variation of PM10 was investigated and primary statistics were employed. The results show that, the PM10 concentrations values ranged from 6.00 to 646.74 μg m−3. The average value of PM10 is equal to 114.32 μg m−3. The high values were recorded in April and May (155.17 μg m−3 and 171.82 μg m−3, respectively and the low values were noted in February and December (73.86 μg m−3 and 74.05 μg m−3, respectively. The average value of PM10 of the hot season (125.35 × 10−6 g m−3 was higher than its value for the cold season (89.27 μg m−3. In addition, the effect of weather elements (air temperature, humidity and wind on the concentration of PM10 was determined. The multiple R between PM10 and these elements ranged from 0.05 to 0.47 and its value increased to reach 0.73 for the monthly average of the database used. Finally, the PM10 concentrations were grouped depending on their associated atmospheric stability class. These average values were equal to 122.80 ± 9 μg m−3 (highly unstable or convective, 109.37 ± 12 μg m−3 (moderately unstable and 104.42 ± 15 μg m−3 (slightly unstable.

  12. Climatic effects of nuclear war: The role of atmospheric stability and ground heat fluxes

    International Nuclear Information System (INIS)

    Mitchell, J.F.B.; Slingo, A.

    1988-01-01

    Most studies of the climatic effects of nuclear war have used atmospheric models with simple representations of important physical processes. In this work, a model is used which treats the diurnal cycle of insolation, and includes surface and boundary layer parameterizations which take into account static stability and a four-layer soil model. Three idealized experiments are described in which a band of smoke is prescribed over northern mid-latitudes in In the experiment, the standard model is used, in the second the effect of deep soil layers is ignored and in the third the stability dependence in the surface and boundary layer processes is removed. It is found that the inclusion of deep soil layers decreases the surface cooling by about 20%, whereas the inclusion of stability effects increases the cooling by about the same amount, though conclusions will depend to some extent on the model used. copyright American Geophysical Union 1988

  13. Polythiophene films obtained by polymerization under atmospheric pressure plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    Teslaru, T.; Topala, I., E-mail: ionut.topala@uaic.ro; Dobromir, M.; Pohoata, V.; Curecheriu, L.; Dumitrascu, N.

    2016-02-01

    The present work describes the experimental arrangement used to initiate polymerization reactions of thiophene monomer based on a dielectric barrier discharge with plane – parallel geometry, working at atmospheric pressure in argon, in turn to obtain conductive polymeric films for different applications. The resulting plasma polymerized polythiophene (pPTh) film was characterized by FT-IR, UV–Vis, XPS spectroscopy, AFM and contact angle measurements. Characterization of pPTh films showed a higher hydrophobic character and roughness, as compared with films obtained by chemical methods, and the thickness is depending on polymerization duration. Also it can conclude that our samples represent oxidised state of pPTh. As a possible application, it analysed in situ the iodine absorption phenomenon in the pPTh matrix and its time evolution by UV–Vis spectroscopy. The presence of iodine 3d{sub 5/2} and 3d{sub 3/2} peaks in the pPTh sample after absorption was identified by XPS spectroscopy. The hydrophobic pPTh film is transformed in a super hydrophilic film after absorption of iodine vapors. - Highlights: • We obtained polythiophene films (pPTh) by atmospheric pressure plasma technique. • The pPTh films showed a hydrophobic character and conducting properties. • The pPTh films were used as sensor for iodine vapors in biological environment.

  14. Evidence for the existence of supercooled ethane droplets under conditions prevalent in Titan's atmosphere.

    Science.gov (United States)

    Sigurbjörnsson, Omar F; Signorell, Ruth

    2008-11-07

    Recent evidence for ethane clouds and condensation in Titan's atmosphere raise the question whether liquid ethane condensation nuclei and supercooled liquid ethane droplets exist under the prevalent conditions. We present laboratory studies on the phase behaviour of pure ethane aerosols and ethane aerosols formed in the presence of other ice nuclei under conditions relevant to Titan's atmosphere. Combining bath gas cooling with infrared spectroscopy, we find evidence for the existence of supercooled liquid ethane aerosol droplets. The observed homogeneous freezing rates imply that supercooled ethane could be a long-lived species in ethane-rich regions of Titan's atmosphere similar to supercooled water in the Earth's atmosphere.

  15. Separation and Conditioning of Mars Atmospheric Gases via TSA

    Science.gov (United States)

    Finn, John E.; Luna, Bernadette (Technical Monitor)

    2000-01-01

    Space and planetary exploration almost always presents interesting and unusual engineering challenges. Separations engineering for chemical processes that are critical to humans working in space is no exception. The challenges are becoming clearer as we make the transition from concepts and planning to hardware development, and as we understand better the constraints and environments in which the processes must perform. The coming decade will see a robotic Mars exploration program that has recovered from recent setbacks and is building a knowledge and technology base for human exploration. One of the missions will carry a small chemical pilot plant for demonstrating the manufacture of rocket propellants and life support consumables from the low-pressure (0.01 atm) Martian atmosphere. By manufacturing and storing the fuel and consumables needed for human-return missions in situ, launch mass and landed mass are reduced by tons and missions become far less expensive. The front-end to the pilot plant is a solid-state atmosphere acquisition and separation unit based on temperature-swing adsorption (TSA). The unit produces purified and pressurized (to 1.0 atm) carbon dioxide to downstream reactors that will make methane and oxygen. The unit also produces a nitrogen-argon mixture as a valuable by-product for life support, inflatable structures, and propellant pressurization. With nighttime temperatures falling to -100 degrees C, power availability restricted to a few watts, and flawless operation critical to success, the dusty Martian surface is a difficult place to operate a remote plant. This talk will focus on how this TSA separation process is designed and implemented for this application, and how it might be used in the more distant future for human exploration.

  16. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    DEFF Research Database (Denmark)

    Selsted, Merete Bang

    on ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions, shows that extended summer drought in combination with elevated temperature will ensure permanent dryer soil conditions, which decreases carbon turnover, while elevated atmospheric CO2 concentrations will increase...... carbon turnover. In the full future climate scenario, carbon turnover is over all expected to increase and the heathland to become a source of atmospheric CO2. The methodology of static chamber CO2 flux measurements and applying the technology in a FACE (free air CO2 enrichment) facility is a challenge...... on the atmospheric CO2 concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO2 concentration and the CO2 soil-atmosphere gradient....

  17. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  18. Modified atmospheric conditions controlling fungal growth on cheese

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose

    1997-01-01

    Effective control of fungal growth on cheese under storage conditions is of great concern for the dairy industry. Therefore we designed a research project together with the Danish dairy industry on modelling fungal growth on cheese as affected by the combined effect of storage conditions (O2 and CO......2 level, relative humidity and temperature) and the composition of the cheese. All fungal species commonly found on cheese, starter cultures as well as contaminants, were examined.The most important factors influencing fungal growth are temperature, water activity of the medium and the carbon...... a competitive advantage over other fungi in moist conditions with high carbon dioxide levels, such as inside a roquefort cheese or in gas tight grain storage. The key to success in food packaging is to recognise the food ecosystem, as it enables us to identify which micro...

  19. The effect of surface treatment and gaseous rust protection paper on the atmospheric corrosion stability of aluminium alloy

    International Nuclear Information System (INIS)

    Gao Guizhong

    1992-03-01

    The experimental results of atmospheric corrosion of 166 aluminium alloy of Al-Mg-Si-Cu system and 167 aluminium alloy of Al-Mg-Si-Cu-Fe-Ni system for different surface treatment and different wrapping papers used are introduced. The results show: 1. The composition of aluminium alloy has some effect on the performance of atmospheric corrosion stability and the local corrosion depth for 167 aluminium alloy specimen is considerable. 2. After 8 years storage, the 167 aluminium alloy tubular specimen, which was treated with surface treatment in deionized water at 100 ∼ 230 C degree, has no spot of atmospheric corrosion found. 3. Within the test period, the performance of atmospheric corrosion stability by sulphuric-acid anodization film is remarkable. 4. The No. 19 gaseous rust protection paper has no effect of atmospheric corrosion stability on the 166 and 167 aluminium alloys which were treated with quenching and natural ageing method

  20. Measurement of forest condition and response along the Pennsylvania atmospheric deposition gradent

    Science.gov (United States)

    D.D. David; J.M. Skelly; J.A. Lynch; L.H. McCormick; B.L. Nash; M. Simini; E.A. Cameron; J.R. McClenahen; R.P. Long

    1991-01-01

    Research in the oak-hickory forest of northcentral Pennsylvania is being conducted to detect anomalies in forest condition that may be due to atmospheric deposition, with the intent that such anomalies will be further studied to determine the role, if any, of atmospheric deposition. This paper presents the status of research along a 160-km gradient of sulfate/nitrate...

  1. Response in atmospheric circulation and sources of Greenland precipitation to glacial boundary conditions

    DEFF Research Database (Denmark)

    Langen, Peter Lang; Vinther, Bo Møllesøe

    2009-01-01

    The response in northern hemisphere atmospheric circulation and the resulting changes in moisture sources for Greenland precipitation to glacial boundary conditions are studied in NCAR's CCM3 atmospheric general circulation model fitted with a moisture tracking functionality. We employ both...... seasonality, condensation temperatures and source temperatures are assessed. Udgivelsesdato: June 2009...

  2. Stability of diphenylalanine peptide nanotubes under liquid conditions

    DEFF Research Database (Denmark)

    Andersen, Karsten Brandt; Castillo, Jaime; Hedstrom, Martin

    2011-01-01

    nanotubes are believed to be very stable both thermally and chemically. Previously, the chemical and thermal stability of self-organizing structures has been investigated after the evaporation of the solvent. However, it was recently discovered that the stability of the structures differed significantly...

  3. Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient

    OpenAIRE

    Peña, Alfredo; Rathmann, Ole

    2014-01-01

    We extend the infinite wind-farm boundary-layer (IWFBL) model of Frandsen to take into account atmospheric static stability effects. This extended model is compared with the IWFBL model of Emeis and to the Park wake model used inWind Atlas Analysis and Application Program (WAsP), which is computed for an infinite wind farm. The models show similar behavior for the wind-speed reduction when accounting for a number of surface roughness lengths, turbine to turbine separations and wind speeds und...

  4. A comparison of short-term dispersion estimates resulting from various atmospheric stability classification methods

    International Nuclear Information System (INIS)

    Mitchell, A.E. Jr.

    1982-01-01

    Four methods of classifying atmospheric stability class are applied at four sites to make short-term (1-h) dispersion estimates from a ground-level source based on a model consistent with U.S. Nuclear Regulatory Commission practice. The classification methods include vertical temperature gradient, standard deviation of horizontal wind direction fluctuations (sigma theta), Pasquill-Turner, and modified sigma theta which accounts for meander. Results indicate that modified sigma theta yields reasonable dispersion estimates compared to those produced using methods of vertical temperature gradient and Pasquill-Turner, and can be considered as a potential economic alternative in establishing onsite monitoring programs. (author)

  5. Effect of high-oxygen atmosphere packaging on oxidative stability and sensory quality of two chicken muscles during chill storage

    DEFF Research Database (Denmark)

    Jongberg, Sisse; Wen, Jinzhu; Tørngren, Mari Ann

    2014-01-01

    The oxidative stability and sensory quality of chicken breast (m. pectoralis) and thigh (m. peroneus longus) stored in high-oxygen modified atmosphere (MAP-O), non-oxygen modified atmosphere (MAP-N), or vacuum for up to 9 days at 5°C were investigated. Protein thiol concentration in breasts and t...

  6. Surface layer conditions of the atmosphere over western Bay of Bengal during Monex

    Digital Repository Service at National Institute of Oceanography (India)

    Anto, A.F.; Rao, L.V.G.; Somayajulu, Y.K.

    Based on surface meteorological data and wave data collected from 2 stations in the western Bay of Bengal in July 1979, surface layer (SL) conditions of the atmosphere for different situations of surface circulations and the associated sea surface...

  7. Atmospheric conditions of intense thaws in the Polish lowlands

    Energy Technology Data Exchange (ETDEWEB)

    Bednorz, Ewa [Adam Mickiewicz Univ., Poznan (Poland). Dept. of Climatology

    2012-02-15

    Synoptic conditions of daily changes in the snow cover depth by {>=} 5 cm were analyzed. Negative pressure anomalies appear over the North Atlantic and Scandinavia, which means low pressure systems moving over Europe along a northerly path. At the same time, positive pressure anomalies appear over the Mediterranean, indicating the expansion of the Azorean High. Such distribution of anomalies increases the horizontal baric gradient, which results in the intensification of the western and south western flow and stronger than usual winds from the SW quadrant. Transport of warm and humid air masses from the south-west brings about thaw-conducive conditions in central Europe: an increase in temperature and a considerable increase in the content of precipitable water, which means abundant precipitation. Different circulation types favorable for intense thawing were distinguished using the method of the hierarchical grouping. Two of them are characterized by the presence of deep and widespread cyclonal systems located north, north-west or west of the researched area. Less frequently, the decrease in the depth of snow cover occurs in the presence of the high located west over the Atlantic Ocean, which brings air masses from the north western direction. Such situations occur most frequently towards the end of winter. (orig.)

  8. Thermal stability of pulsed laser deposited iridium oxide thin films at low oxygen atmosphere

    Science.gov (United States)

    Gong, Yansheng; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng

    2013-11-01

    Iridium oxide (IrO2) thin films have been regarded as a leading candidate for bottom electrode and diffusion barrier of ferroelectric capacitors, some process related issues need to be considered before integrating ferroelectric capacitors into memory cells. This paper presents the thermal stability of pulsed laser deposited IrO2 thin films at low oxygen atmosphere. Emphasis was given on the effect of post-deposition annealing temperature at different oxygen pressure (PO2) on the crystal structure, surface morphology, electrical resistivity, carrier concentration and mobility of IrO2 thin films. The results showed that the thermal stability of IrO2 thin films was strongly dependent on the oxygen pressure and annealing temperature. IrO2 thin films can stably exist below 923 K at PO2 = 1 Pa, which had a higher stability than the previous reported results. The surface morphology of IrO2 thin films depended on PO2 and annealing temperature, showing a flat and uniform surface for the annealed films. Electrical properties were found to be sensitive to both the annealing temperature and oxygen pressure. The room-temperature resistivity of IrO2 thin films with a value of 49-58 μΩ cm increased with annealing temperature at PO2 = 1 Pa. The thermal stability of IrO2 thin films as a function of oxygen pressure and annealing temperature was almost consistent with thermodynamic calculation.

  9. The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-05-01

    Full Text Available Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007–2010 of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers, it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values. This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap

  10. The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau

    Science.gov (United States)

    Li, Jiming; Lv, Qiaoyi; Jian, Bida; Zhang, Min; Zhao, Chuanfeng; Fu, Qiang; Kawamoto, Kazuaki; Zhang, Hua

    2018-05-01

    Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007-2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into

  11. An equivalent condition for stability properties of Lotka-Volterra systems

    International Nuclear Information System (INIS)

    Chu Tianguang

    2007-01-01

    We give a solvable Lie algebraic condition for the equivalence of four typical stability notions (asymptotic stability, D-stability, total stability, and Volterra-Lyapunov stability) concerning Lotka-Volterra systems. Our approach makes use of the decomposition of the interaction matrix into symmetric and skew-symmetric parts, which may be related to the cooperative and competitive interaction pattern of a Lotka-Volterra system. The present result covers a known condition and can yield a larger set of interaction matrices for equivalence of the stability properties

  12. Model test study of evaporation mechanism of sand under constant atmospheric condition

    OpenAIRE

    CUI, Yu Jun; DING, Wenqi; SONG, Weikang

    2014-01-01

    The evaporation mechanism of Fontainebleau sand using a large-scale model chamber is studied. First, the evaporation test on a layer of water above sand surface is performed under various atmospheric conditions, validating the performance of the chamber and the calculation method of actual evaporation rate by comparing the calculated and measured cumulative evaporations. Second,the evaporation test on sand without water layer is conducted under constant atmospheric condition. Both the evoluti...

  13. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    model results. A method is developed how to simulate the time-dependant non-neutral ABL flow over complex terrain: a precursor simulation is used to specify unsteady inlet boundary conditions on complex terrain domains. The advantage of the developed RANS model framework is its general applicability...... characteristics of neutral and non-neutral ABL flow. The developed ABL model significantly improves the predicted flow fields over both flat and complex terrain, when compared against neutral models and measurements....... cost than e.g. using large-eddy simulations. The developed ABL model is successfully validated using a range of different test cases with increasing complexity. Data from several large scale field campaigns, wind tunnel experiments, and previous numerical simulations is presented and compared against...

  14. Stability of iron in clays under different leaching conditions

    Czech Academy of Sciences Publication Activity Database

    Doušová, B.; Fuitová, L.; Koloušek, D.; Lhotka, M.; Matys Grygar, Tomáš; Spurná, P.

    2014-01-01

    Roč. 62, 1-2 (2014), s. 145-152 ISSN 0009-8604 Institutional support: RVO:61388980 Keywords : Clays * Iron * Leaching Stability * Structure * Surface Properties Subject RIV: DD - Geochemistry Impact factor: 1.228, year: 2014

  15. Globally exponential stability condition of a class of neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Liao, T.-L.; Yan, J.-J.; Cheng, C.-J.; Hwang, C.-C.

    2005-01-01

    In this Letter, the globally exponential stability for a class of neural networks including Hopfield neural networks and cellular neural networks with time-varying delays is investigated. Based on the Lyapunov stability method, a novel and less conservative exponential stability condition is derived. The condition is delay-dependent and easily applied only by checking the Hamiltonian matrix with no eigenvalues on the imaginary axis instead of directly solving an algebraic Riccati equation. Furthermore, the exponential stability degree is more easily assigned than those reported in the literature. Some examples are given to demonstrate validity and excellence of the presented stability condition herein

  16. Study on chemical buffering property of GMZ sodium bentonite under atmospheric condition

    International Nuclear Information System (INIS)

    Wen Zhijian

    2012-01-01

    At present, the deep geological disposal is regarded as the most reasonable and effective way to safely disposal the high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system. The buffer is one of the engineered barrier materials and GMZ Na-bentonite is selected as the basic material. One of the most important functions related to buffer is the chemical buffering, which means buffering the changes in pore water chemistry. This paper presents the experiments of GMZ-1 Na-bentonite reacted with distilled water under atmospheric condition. The batch tests and results discussion are reported. Na and Mg in batch test solution are co-provided by interlayer cations of montmorillonite and solids dissolution, K and Ca are provided by dissolution of solids. The result is a pre-requisite for predicting near-field nuclide migration and assesses the long-term stability of the engineered barrier materials. (author)

  17. Atmospheric stability and turbulence fluxes at Horns Rev—an intercomparison of sonic, bulk and WRF model data

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hahmann, Andrea N.

    2012-01-01

    anemometer at 15 m height and potential temperature differences between the water and the air above. Surface flux estimations from the advanced weather research and forecast (WRF) model are also validated against the sonic and bulk data. The correlation between the sonic and bulk estimates of friction...... to the surface, not only from a systematic bulk and WRF under‐prediction of the friction velocity when compared with the sonic value but also because of the lower magnitude of the sonic heat flux compared with that from the WRF simulations. Although they are not measured but parameterized or estimated, the bulk......–WRF comparisons of friction velocity and 10 m wind speed show good agreement. It is also shown that on a long‐term basis, the WRF and bulk estimates of stability are nearly equal and that a correction towards a slightly stable atmospheric condition has to be applied to the long‐term wind profile at Horns Rev...

  18. Local Stability Conditions for Two Types of Monetary Models with Recursive Utility

    OpenAIRE

    Miyazaki, Kenji; Utsunomiya, Hitoshi

    2009-01-01

    This paper explores local stability conditions for money-in-utility-function (MIUF) and transaction-costs (TC) models with recursive utility.A monetary variant of the Brock-Gale condition provides a theoretical justification of the comparative statics analysis. One of sufficient conditions for local stability is increasing marginal impatience (IMI) in consumption and money. However, this does not deny the possibility of decreasing marginal impatience (DMI). The local stability with DMI is mor...

  19. Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology

    Science.gov (United States)

    Fournier, D.; Leguèbe, M.; Hanson, C. S.; Gizon, L.; Barucq, H.; Chabassier, J.; Duruflé, M.

    2017-12-01

    The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cut-off frequency ( 5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider recently developed and published radiative boundary conditions for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first- and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the "infinite atmosphere" solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a Vernazza Avrett Loeser atmospheric model.

  20. The sound of high winds. The effect of atmospheric stability on wind turbine sound and microphone noise

    International Nuclear Information System (INIS)

    Van den Berg, G.P.

    2006-01-01

    In this thesis issues are raised concerning wind turbine noise and its relationship to altitude dependent wind velocity. The following issues are investigated: what is the influence of atmospheric stability on the speed and sound power of a wind turbine?; what is the influence of atmospheric stability on the character of wind turbine sound?; how widespread is the impact of atmospheric stability on wind turbine performance: is it relevant for new wind turbine projects; how can noise prediction take this stability into account?; what can be done to deal with the resultant higher impact of wind turbine sound? Apart from these directly wind turbine related issues, a final aim was to address a measurement problem: how does wind on a microphone affect the measurement of the ambient sound level?

  1. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mikolajewicz, U. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-02-01

    The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and slowly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the Atlantic intertropical convergence zone is displaced southward and the westerlies in the northern hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface waters in high northern latitudes, which allows them to accumulate more precipitation and runoff from the continents, which results in an increased stability in the North Atlantic.

  2. Intact stability analysis of dead ship conditions using FORM

    DEFF Research Database (Denmark)

    Choi, Ju Hyuck; Jensen, Jørgen Juncher; Kristensen, Hans Otto Holmegaard

    2017-01-01

    The IMO Weather Criterion has proven to be the governing stability criteria regarding minimum GM for e.g. small ferries and large passenger ships. The formulation of the Weather Criterion is based on some empirical relations derived many years ago for vessels not necessarily representative for cu...

  3. Stability of llama heavy chain antibody fragments under extreme conditions

    NARCIS (Netherlands)

    Dolk, E.

    2004-01-01

    Camelids have next to their normal antibodies, a unique subset of antibodies lacking light chains. The resulting single binding domain, VHH, of these heavy chain antibodies consequently have unique properties. A high stability is one of these properties, which was investigated in this thesis. The

  4. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bang Selsted, M

    2010-07-15

    Global change is a reality. Atmospheric CO{sub 2} levels are rising as well as mean global temperature and precipitation patterns are changing. These three environmental factors have separately and in combination effect on ecosystem processes. Terrestrial ecosystems hold large amounts of carbon, why understanding plant and soil responses to such changes are necessary, as ecosystems potentially can ameliorate or accelerate global change. To predict the feedback of ecosystems to the atmospheric CO{sub 2} concentrations experiments imitating global change effects are therefore an important tool. This work on ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions, shows that extended summer drought in combination with elevated temperature will ensure permanent dryer soil conditions, which decreases carbon turnover, while elevated atmospheric CO{sub 2} concentrations will increase carbon turnover. In the full future climate scenario, carbon turnover is over all expected to increase and the heathland to become a source of atmospheric CO{sub 2}. The methodology of static chamber CO{sub 2} flux measurements and applying the technology in a FACE (free air CO{sub 2} enrichment) facility is a challenge. Fluxes of CO{sub 2} from soil to atmosphere depend on a physical equilibrium between those two medias, why it is important to keep the CO{sub 2} gradient between soil and atmosphere unchanged during measurement. Uptake to plants via photosynthesis depends on a physiological process, which depends strongly on the atmospheric CO{sub 2} concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO{sub 2} concentration and the CO{sub 2} soil-atmosphere gradient. (author)

  5. Influence factor analysis of atmospheric electric field monitoring near ground under different weather conditions

    International Nuclear Information System (INIS)

    Wan, Haojiang; Wei, Guanghui; Cui, Yaozhong; Chen, Yazhou

    2013-01-01

    Monitoring of atmospheric electric field near ground plays a critical role in atmospheric environment detecting and lightning warning. Different environmental conditions (e.g. buildings, plants, weather, etc.) have different influences on the data's coherence in an atmospheric electric field detection network. In order to study the main influence factors of atmospheric electric field monitoring under different weather conditions, with the combination of theoretical analysis and experiments, the electric field monitoring data on the ground and on the top of a building are compared in fair weather and thunderstorm weather respectively in this paper. The results show that: In fair weather, the field distortion due to the buildings is the main influence factor on the electric field monitoring. In thunderstorm weather, the corona ions produced from the ground, besides the field distortion due to the buildings, can also influence the electric field monitoring results.

  6. PROVISION FOR ECONOMIC STABILITY OF CONSTRUCTION ENTERPRISES UNDER CONDITIONS OF UNSTABLE RUSSIAN ECONOMY

    Directory of Open Access Journals (Sweden)

    M. A. Kaminsky

    2012-01-01

    Full Text Available Construction enterprise economic stability is determined as condition at which there is most coordinated interaction of all activity components(financing, manufacturing, human resources, marketing, investment and management. Construction enterprise stability enhancing may beachieved through the implementation of adaptation programs. A mechanism of the impact on economic stability of individual components is described which makes it possible to increase overall stability of the construction company in different situations.

  7. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahlers, M.; /Wisconsin U., Madison; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Buenos Aires, CONICET; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Almela, A.; /Natl. Tech. U., San Nicolas /Buenos Aires, CONICET; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  8. Stability of Ruddlesden-Popper-structured oxides in humid conditions

    Science.gov (United States)

    Lehtimäki, M.; Yamauchi, H.; Karppinen, M.

    2013-08-01

    Some of layered transition-metal oxides are known to react with atmospheric humidity to form through topotactic intercalation reactions new water-containing layered structures. Here we investigate the influence of oxygen content (7-δ) of the Ruddlesden-Popper-structured Sr3FeMO7-δ (M=Ni, Mn, Ti) oxides on the water-intercalation reaction. It is found that their oxygen contents influence greatly the reactivity of the phases with water. Other factors possibly affecting the reactivity are discussed on the basis of the present data in combination with a comprehensive review of previous works on Ruddlesden-Popper and related layered oxide phases.

  9. Stability conditions and phase diagrams for two-component Fermi gases with population imbalance

    International Nuclear Information System (INIS)

    Chen Qijin; He Yan; Chien, C.-C.; Levin, K.

    2006-01-01

    Superfluidity in atomic Fermi gases with population imbalance has recently become an exciting research focus. There is considerable disagreement in the literature about the appropriate stability conditions for states in the phase diagram throughout the BCS to Bose-Einstein condensation crossover. Here we discuss these stability conditions for homogeneous polarized superfluid phases, and compare with recent alternative proposals. The requirement of a positive second-order partial derivative of the thermodynamic potential with respect to the fermionic excitation gap Δ (at fixed chemical potentials) is demonstrated to be equivalent to the positive definiteness of the particle number susceptibility matrix. In addition, we show the positivity of the effective pair mass constitutes another nontrivial stability condition. These conditions determine the (local) stability of the system towards phase separation (or other ordered phases). We also study systematically the effects of finite temperature and the related pseudogap on the phase diagrams defined by our stability conditions

  10. Stability of lamb loin stored under refrigeration and packed in different modified atmosphere packaging systems.

    Science.gov (United States)

    Fernandes, Rafaella de Paula Paseto; Freire, Maria Teresa de Alvarenga; de Paula, Elisa Silva Maluf; Kanashiro, Ana Livea Sayuri; Catunda, Fernanda Antunes Pinto; Rosa, Alessandra Fernandes; Balieiro, Júlio Cesar de Carvalho; Trindade, Marco Antonio

    2014-01-01

    The aim of the present study was to evaluate the effect of different modified atmosphere packaging (MAP) systems (vacuum, 75% O2+25% CO2 and 100% CO2) on the stability of lamb loins stored at 1±1°C for 28 days. Microbiological (counts of aerobic and anaerobic psychrotrophic microorganisms, coliform at 45°C, coagulase-positive staphylococci and lactic acid bacteria and presence of Salmonella), physical and chemical (thiobarbituric acid reactive substances [TBARS], objective color, pH, water loss from cooking [WLC] and shear force), sensory (acceptance testing using a 9-point hedonic scale) and gas composition analyses were performed. Lamb meat remained stable with respect to the majority of the evaluated physical and chemical indexes and within the standards established by Brazilian legislation for pathogenic microorganisms throughout the storage period in all three packaging systems. However, with respect to psychrotrophic microorganisms, 100% CO2 packaging system provided increased stability despite presenting lower appearance preference. © 2013.

  11. PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

    Science.gov (United States)

    García Muñoz, A.; Mills, F. P.

    2017-08-01

    PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

  12. Pyridostimine Bromide 30mg Stability in Extended Storage Conditions

    Science.gov (United States)

    2017-12-03

    States Pharmacopeia (USP) >. The real-life storage conditions will be determined using the International Commission for Harmonization’s (ICH) Quality ...Packaging and Storage Requirements. 4 ~ Real-life storage conditions are defined based on the International Council for Harmonisation’s (ICH) Quality ...information, including suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate {0704-0188). Respondents should be

  13. STEEL CORROSION AT 600°C IN SINGLE AND DUAL CONDITION IN OXYFUEL ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Daniel Massari de Souza Coelho

    2014-10-01

    Full Text Available Coal-fired power plants using the Oxyfuel process are being developed to produce electricity with zero CO2 emission. Steels used in this and other processes are often exposed to different atmospheres in each side of the material, especially in heat exchangers and solid oxide fuel cells. Some studies have shown that steels exposed to different hydrogen partial pressures in each side have a different corrosion behavior from steels exposed to a single atmosphere condition. In this investigation, two experimental steels were studied at 600°C and 1 atm in dual atmospheres containing water vapor in one side and flue gas in the other and they were compared to steels oxidized in single atmospheres. The gas composition used is similar to the ones found in Oxyfuel coal power plants, where there is a great concentration of CO2, and also H2O and SO2. Analyses were made using SEM and TEM.

  14. Analyses on the formation of atmospheric particles and stabilized sulphuric acid clusters

    Energy Technology Data Exchange (ETDEWEB)

    Paasonen, P.

    2012-11-01

    Aerosol particles have various effects on our life. They affect the visibility and have diverse health effects, but are also applied in various applications, from drug inhalators to pesticides. Additionally, aerosol particles have manifold effects on the Earths' radiation budget and thus on the climate. The strength of the aerosol climate effect is one of the factors causing major uncertainties in the global climate models predicting the future climate change. Aerosol particles are emitted to atmosphere from various anthropogenic and biogenic sources, but they are also formed from precursor vapours in many parts of the world in a process called atmospheric new particle formation (NPF). The uncertainties in aerosol climate effect are partly due to the current lack of knowledge of the mechanisms governing the atmospheric NPF. It is known that gas phase sulphuric acid most certainly plays an important role in atmospheric NPF. However, also other vapours are needed in NPF, but the exact roles or even identities of these vapours are currently not exactly known. In this thesis I present some of the recent advancements in understanding of the atmospheric NPF in terms of the roles of the participating vapours and the meteorological conditions. Since direct measurements of new particle formation rate in the initial size scale of the formed particles (below 2 nm) are so far infrequent in both spatial and temporal scales, indirect methods are needed. The work presented on the following pages approaches the NPF from two directions: by analysing the observed formation rates of particles after they have grown to sizes measurable with widely applied instruments (2 nm or larger), and by measuring and modelling the initial sulphuric acid cluster formation. The obtained results can be summarized as follows. (1) The observed atmospheric new particle formation rates are typically connected with sulphuric acid concentration to the power close to two. (2) Also other compounds, most

  15. Legendre condition and the stabilization problem for classical soliton solutions in generalized Skyrme models

    International Nuclear Information System (INIS)

    Kiknadze, N.A.; Khelashvili, A.A.

    1990-01-01

    The problem on stability of classical soliton solutions is studied from the unique point of view: the Legendre condition - necessary condition of existence of weak local minimum for energy functional (term soliton is used here in the wide sense) is used. Limits to parameters of the model Lagrangians are obtained; it is shown that there is no soliton stabilization in some of them despite the phenomenological achievements. The Jacoby sufficient condition is discussed

  16. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Maziar Ramezani

    2015-04-01

    Full Text Available Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric control, heat treatment with stainless steel foil wrapping, pack carburization heat treatment and vacuum heat treatment. The results showed that stainless steel foil wrapping could restrict decarburization process, resulting in a constant hardness profile as vacuum heat treatment does. However, the tempering characteristic between these two heat treatment methods is different. Results from the gas nitrided samples showed that the thickness and the hardness of the nitrided layer is independent of the carbon content in H13 steel.

  17. Stability of Ruddlesden–Popper-structured oxides in humid conditions

    International Nuclear Information System (INIS)

    Lehtimäki, M.; Yamauchi, H.; Karppinen, M.

    2013-01-01

    Some of layered transition-metal oxides are known to react with atmospheric humidity to form through topotactic intercalation reactions new water-containing layered structures. Here we investigate the influence of oxygen content (7−δ) of the Ruddlesden–Popper-structured Sr 3 FeMO 7−δ (M=Ni, Mn, Ti) oxides on the water-intercalation reaction. It is found that their oxygen contents influence greatly the reactivity of the phases with water. Other factors possibly affecting the reactivity are discussed on the basis of the present data in combination with a comprehensive review of previous works on Ruddlesden–Popper and related layered oxide phases. - Graphical abstract: Many of the Ruddlesden–Popper-structured A 3 B 2 O 7−δ oxides readily react with water via intercalation reactions. Three possible factors affecting the water intercalation are identified: oxygen content of the phase, ionic radius of cation A and valence state of cation B. The resultant layered water-derivative phases can be categorised into two groups, depending on the crystal symmetry of the phase. Highlights: • Ruddlesden–Popper oxides A 3 B 2 O 7−δ often accommodate water via intercalation reaction. • The lower the oxygen content 7−δ is the more readily the intercalation reaction occurs. • The second factor promoting the reaction is the large size of cation A. • The third possible factor is the high valence state of cation B. • Resultant water-derivatives can be categorised into two groups depending on symmetry

  18. Stability of Ruddlesden–Popper-structured oxides in humid conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lehtimäki, M.; Yamauchi, H.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    2013-08-15

    Some of layered transition-metal oxides are known to react with atmospheric humidity to form through topotactic intercalation reactions new water-containing layered structures. Here we investigate the influence of oxygen content (7−δ) of the Ruddlesden–Popper-structured Sr{sub 3}FeMO{sub 7−δ} (M=Ni, Mn, Ti) oxides on the water-intercalation reaction. It is found that their oxygen contents influence greatly the reactivity of the phases with water. Other factors possibly affecting the reactivity are discussed on the basis of the present data in combination with a comprehensive review of previous works on Ruddlesden–Popper and related layered oxide phases. - Graphical abstract: Many of the Ruddlesden–Popper-structured A{sub 3}B{sub 2}O{sub 7−δ} oxides readily react with water via intercalation reactions. Three possible factors affecting the water intercalation are identified: oxygen content of the phase, ionic radius of cation A and valence state of cation B. The resultant layered water-derivative phases can be categorised into two groups, depending on the crystal symmetry of the phase. Highlights: • Ruddlesden–Popper oxides A{sub 3}B{sub 2}O{sub 7−δ} often accommodate water via intercalation reaction. • The lower the oxygen content 7−δ is the more readily the intercalation reaction occurs. • The second factor promoting the reaction is the large size of cation A. • The third possible factor is the high valence state of cation B. • Resultant water-derivatives can be categorised into two groups depending on symmetry.

  19. Time reversal method with stabilizing boundary conditions for Photoacoustic tomography

    International Nuclear Information System (INIS)

    Chervova, Olga; Oksanen, Lauri

    2016-01-01

    We study an inverse initial source problem that models photoacoustic tomography measurements with array detectors, and introduce a method that can be viewed as a modification of the so called back and forth nudging method. We show that the method converges at an exponential rate under a natural visibility condition, with data given only on a part of the boundary of the domain of wave propagation. In this paper we consider the case of noiseless measurements. (paper)

  20. Initial conditions and ENSO prediction using a coupled ocean-atmosphere model

    Science.gov (United States)

    Larow, T. E.; Krishnamurti, T. N.

    1998-01-01

    A coupled ocean-atmosphere initialization scheme using Newtonian relaxation has been developed for the Florida State University coupled ocean-atmosphere global general circulation model. The initialization scheme is used to initialize the coupled model for seasonal forecasting the boreal summers of 1987 and 1988. The atmosphere model is a modified version of the Florida State University global spectral model, resolution T-42. The ocean general circulation model consists of a slightly modified version of the Hamburg's climate group model described in Latif (1987) and Latif et al. (1993). The coupling is synchronous with information exchanged every two model hours. Using ECMWF atmospheric daily analysis and observed monthly mean SSTs, two, 1-year, time-dependent, Newtonian relaxation were performed using the coupled model prior to conducting the seasonal forecasts. The coupled initializations were conducted from 1 June 1986 to 1 June 1987 and from 1 June 1987 to 1 June 1988. Newtonian relaxation was applied to the prognostic atmospheric vorticity, divergence, temperature and dew point depression equations. In the ocean model the relaxation was applied to the surface temperature. Two, 10-member ensemble integrations were conducted to examine the impact of the coupled initialization on the seasonal forecasts. The initial conditions used for the ensembles are the ocean's final state after the initialization and the atmospheric initial conditions are ECMWF analysis. Examination of the SST root mean square error and anomaly correlations between observed and forecasted SSTs in the Niño-3 and Niño-4 regions for the 2 seasonal forecasts, show closer agreement between the initialized forecast than two, 10-member non-initialized ensemble forecasts. The main conclusion here is that a single forecast with the coupled initialization outperforms, in SST anomaly prediction, against each of the control forecasts (members of the ensemble) which do not include such an initialization

  1. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment

    Directory of Open Access Journals (Sweden)

    S. Dupont

    2012-07-01

    Full Text Available Momentum and scalar (heat and water vapor transfer between a walnut canopy and the overlying atmosphere are investigated for two seasonal periods (before and after leaf-out, and for five thermal stability regimes (free and forced convection, near-neutral condition, transition to stable, and stable. Quadrant and octant analyses of momentum and scalar fluxes followed by space-time autocorrelations of observations from the Canopy Horizontal Array Turbulence Study's (CHATS thirty meter tower help characterize the motions exchanging momentum, heat, and moisture between the canopy layers and aloft.

    During sufficiently windy conditions, i.e. in forced convection, near-neutral and transition to stable regimes, momentum and scalars are generally transported by sweep and ejection motions associated with the well-known canopy-top "shear-driven" coherent eddy structures. During extreme stability conditions (both unstable and stable, the role of these "shear-driven" structures in transporting scalars decreases, inducing notable dissimilarity between momentum and scalar transport.

    In unstable conditions, "shear-driven" coherent structures are progressively replaced by "buo-yantly-driven" structures, known as thermal plumes; which appear very efficient at transporting scalars, especially upward thermal plumes above the canopy. Within the canopy, downward thermal plumes become more efficient at transporting scalars than upward thermal plumes if scalar sources are located in the upper canopy. We explain these features by suggesting that: (i downward plumes within the canopy correspond to large downward plumes coming from above, and (ii upward plumes within the canopy are local small plumes induced by canopy heat sources where passive scalars are first injected if there sources are at the same location as heat sources. Above the canopy, these small upward thermal plumes aggregate to form larger scale upward thermal plumes. Furthermore, scalar

  2. 40 CFR 86.1312-2007 - Filter stabilization and microbalance workstation environmental conditions, microbalance...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Filter stabilization and microbalance workstation environmental conditions, microbalance specifications, and particulate matter filter handling and... Particulate Exhaust Test Procedures § 86.1312-2007 Filter stabilization and microbalance workstation...

  3. Numberical Calculations of Atmospheric Conditions over Tibetan Plateau by Using WRF Model

    International Nuclear Information System (INIS)

    Qian, Xuan; Yao, Yongqiang; Wang, Hongshuai; Liu, Liyong; Li, Junrong; Yin, Jia

    2015-01-01

    The wind field, precipitable water vapor are analyzed by using the mesoscale numerical model WRF over Tibetan Plateau, and the aerosol is analyzed by using WRF- CHEM model. The spatial and vertical distributions of the relevant atmospheric factors are summarized, providing truth evidence for selecting and further evaluating an astronomical site. It has been showed that this method could provide good evaluation of atmospheric conditions. This study serves as a further demonstration towards astro-climate regionalization, and provides with essential database for astronomical site survey over Tibetan Plateau. (paper)

  4. Interaction of oxides of nitrogen and aromatic hydrocarbons under simulated atmospheric conditions

    International Nuclear Information System (INIS)

    Obrien, R.J.; Green, P.J.; Doty, R.A.; Vanderzanden, J.W.; Easton, R.R.; Irwin, R.P.

    1979-01-01

    The reactions of nitrogen oxides with aromatic hydrocarbons under simulated atmospheric conditions are investigated. Gaseous reaction products formed when toluene is irradiated under simulated atmospheric conditions in the presence of nitrogen oxides were analyzed by gas chromatography. Reaction products detected include acetylene, water, acetaldehyde, acetone, toluene, benzaldehyde, ortho-, meta- and para-cresol, benzyl nitrate and meta- and para-nitrotoluene. Reaction mechanisms yielding the various products are illustrated. The assumption that all the nitrogen oxides observed to be lost from the reaction products can be accounted for by nitric acid formation in the absence of ozone formation is verified by a model in which the hydroxyl radical is assumed to be the only means of removing toluene. Under conditions in which ozone is formed, nitrogen oxide loss is accounted for by ozone formation in addition to nitric acid formation

  5. Oblique radiation lateral open boundary conditions for a regional climate atmospheric model

    Science.gov (United States)

    Cabos Narvaez, William; De Frutos Redondo, Jose Antonio; Perez Sanz, Juan Ignacio; Sein, Dmitry

    2013-04-01

    The prescription of lateral boundary conditions in regional atmospheric models represent a very important issue for limited area models. The ill-posed nature of the open boundary conditions makes it necessary to devise schemes in order to filter spurious wave reflections at boundaries, being desirable to have one boundary condition per variable. On the other side, due to the essentially hyperbolic nature of the equations solved in state of the art atmospheric models, external data is required only for inward boundary fluxes. These circumstances make radiation lateral boundary conditions a good choice for the filtering of spurious wave reflections. Here we apply the adaptive oblique radiation modification proposed by Mikoyada and Roseti to each of the prognostic variables of the REMO regional atmospheric model and compare it to the more common normal radiation condition used in REMO. In the proposed scheme, special attention is paid to the estimation of the radiation phase speed, essential to detecting the direction of boundary fluxes. One of the differences with the classical scheme is that in case of outward propagation, the adaptive nudging imposed in the boundaries allows to minimize under and over specifications problems, adequately incorporating the external information.

  6. The influence of boundary conditions on domain structure stability in spin wave approximation

    International Nuclear Information System (INIS)

    Wachinewski, A.

    1974-01-01

    Instead of the usually used Born-Karman cyclic conditions, boundary conditions which take into account the situation of the boundary lattice sites lying on the crystal's surface are assumed. It is shown that the particular choice of the boundary conditions secures the stability of domain structure in ferromagnet (positive spin wave energies), without including the Winter term in Hamiltonian. (author)

  7. Effect of Tropical Climatic Conditions on the Stability of Cefaclor Dry ...

    African Journals Online (AJOL)

    Erah

    This study was carried out to investigate the effect of moisture sorption at two different storage conditions ... Keywords: Dry powder for suspension; Moisture content; Colour; Stability; Moisture migration;. Interaction. ..... condensation. Sorption of ...

  8. Montmorillonite stability. With special respect to KBS-3 conditions

    International Nuclear Information System (INIS)

    Karnland, Ola; Birgersson, Martin

    2006-08-01

    The basic advantageous properties, e.g. low hydraulic conductivity and high swelling pressure, of the bentonite buffer in a KBS- repository stem from a strong interaction between water and the montmorillonite mineral in the bentonite. Minerals similar in structure but with substantially lower mineral-water interaction exist in nature. Transformations from montmorillonite to such minerals are observed e.g. in burial diagenesis and in contact metamorphism. A thermodynamic consideration confirms that medium and low charged montmorillonite is not in chemical equilibrium with quartz. From a safety assessment perspective it is therefore of vital importance to quantify the montmorillonite transformation under KBS- conditions. Silica release from the montmorillonite tetrahedral layers is the initial process for several possible transformations. Replacement of silica by aluminum increases the layer charge but maintains the basic atomic structure. A sufficiently high layer charge results in an irreversible collapse of the clay-water structure, i.e. a non-swelling mineral is formed. Compared to other cations, potassium as counter ion leads to a collapse at lower layer charge and the produced phase is generally termed illite. Montmorillonite-to-illite transformation is the most frequently found alteration process in nature. Three different kinetic illitization models are reviewed and the model proposed by Huang et al. is considered the most suitable for quantification in a KBS- repository, since the kinetic rate expression and its associated parameters are systematically determined by laboratory work. The model takes into account temperature, montmorillonite fraction and potassium concentration, but do not include relevant parameters such as pH, temperature gradients and water content. Calculations by use of the Huang illitization model applied for repository conditions yield insignificant montmorillonite transformation also under very pessimistic assumptions. Other non

  9. Montmorillonite stability. With special respect to KBS-3 conditions

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, Ola; Birgersson, Martin [Clay Technology AB, Lund (Sweden)

    2006-08-15

    The basic advantageous properties, e.g. low hydraulic conductivity and high swelling pressure, of the bentonite buffer in a KBS- repository stem from a strong interaction between water and the montmorillonite mineral in the bentonite. Minerals similar in structure but with substantially lower mineral-water interaction exist in nature. Transformations from montmorillonite to such minerals are observed e.g. in burial diagenesis and in contact metamorphism. A thermodynamic consideration confirms that medium and low charged montmorillonite is not in chemical equilibrium with quartz. From a safety assessment perspective it is therefore of vital importance to quantify the montmorillonite transformation under KBS- conditions. Silica release from the montmorillonite tetrahedral layers is the initial process for several possible transformations. Replacement of silica by aluminum increases the layer charge but maintains the basic atomic structure. A sufficiently high layer charge results in an irreversible collapse of the clay-water structure, i.e. a non-swelling mineral is formed. Compared to other cations, potassium as counter ion leads to a collapse at lower layer charge and the produced phase is generally termed illite. Montmorillonite-to-illite transformation is the most frequently found alteration process in nature. Three different kinetic illitization models are reviewed and the model proposed by Huang et al. is considered the most suitable for quantification in a KBS- repository, since the kinetic rate expression and its associated parameters are systematically determined by laboratory work. The model takes into account temperature, montmorillonite fraction and potassium concentration, but do not include relevant parameters such as pH, temperature gradients and water content. Calculations by use of the Huang illitization model applied for repository conditions yield insignificant montmorillonite transformation also under very pessimistic assumptions. Other non

  10. Characterization of sensitization and stress corrosion cracking behavior of stabilized stainless steels under BWR conditions

    International Nuclear Information System (INIS)

    Kilian, R.; Ilg, U.; Meier, V.; Teichmann, H.; Wachter, O.

    1995-01-01

    Stress corrosion cracking occurs if the three parameters -- material condition, tensile stress and water chemistry -- are in a critical range. In this study the material conditions especially of Ti- and Nb-stabilized steels are considered. The purpose of this work is to show the influence of the degree of sensitization of Ti- and Nb-stabilized stainless steels on stress corrosion cracking susceptibility in BWR water chemistry. This is an on-going research program. Preliminary results will be presented. Different types of stabilized, and for comparison unstabilized, stainless steels are examined in various heat treatment conditions with regard to their sensitization behavior by EPR tests (double loop) and TEM. The results are plotted in sensitization diagrams. The sensitization behavior depends on many parameters such as carbon content, stabilization element, stabilization ratio and materials history, e.g. solution heat treatment or cold working. The obtained EPR sensitization diagrams are compared with the well known sensitization diagrams from the literature, which were determined by standard IC test according to e.g. German standard DIN 50914 (equivalent to ASTM A 262, Pract. E). Based on the obtained EPR sensitization diagrams material conditions for SSRT tests were selected. The EPR values (Ir/Ia x 100%) of the tested Ti-stabilized stainless steel are in the range of ∼ 0.1--20%. The SSRT tests are carried out in high-temperature water with 0.4 ppm O 2 , a conductivity of 0.5 microS/cm and a strain rate of 1x10 -6-1 . The test temperature is 280 C. Ti-stabilized stainless steel with Ir/Ia x 100% > 1% suffered intergranular stress corrosion cracking under these conditions. The SCC tests for Nb-stabilized stainless steel are still in progress. The correlation between EPR value, chromium depletion and SSRT result will be shown for a selected material condition of sensitized Ti-stabilized stainless steel

  11. Efficacy of passive sampler collection for atmospheric NO2 isotopes under simulated environmental conditions.

    Science.gov (United States)

    Coughlin, Justin G; Yu, Zhongjie; Elliott, Emily M

    2017-07-30

    Nitrogen oxides or NO x (NO x = NO + NO 2 ) play an important role in air quality, atmospheric chemistry, and climate. The isotopic compositions of anthropogenic and natural NO 2 sources are wide-ranging, and they can be used to constrain sources of ambient NO 2 and associated atmospheric deposition of nitrogen compounds. While passive sample collection of NO 2 isotopes has been used in field studies to determine NO x source influences on atmospheric deposition, this approach has not been evaluated for accuracy or precision under different environmental conditions. The efficacy of NO 2 passive sampler collection for NO 2 isotopes was evaluated under varied temperature and relative humidity (RH) conditions in a dynamic flux chamber. The precision and accuracy of the filter NO 2 collection as nitrite (NO 2 - ) for isotopic analysis were determined using a reference NO 2 gas tank and through inter-calibration with a modified EPA Method 7. The bacterial denitrifer method was used to convert 20 μM of collected NO 2 - or nitrate (NO 3 - ) into N 2 O and was carried out on an Isoprime continuous flow isotope ratio mass spectrometer. δ 15 N-NO 2 values determined from passive NO 2 collection, in conditions of 11-34 °C, 1-78% RH, have an overall accuracy and precision of ±2.1 ‰, and individual run precision of ±0.6 ‰. δ 18 O-NO 2 values obtained from passive NO 2 sampler collection, under the same conditions, have an overall precision of ± 1.3 ‰. Suitable conditions for passive sampler collection of NO 2 isotopes are in environments ranging from 11 to 34 °C and 1 to 78% RH. The passive NO 2 isotope measurement technique provides an accurate method to determine variations in atmospheric δ 15 N-NO 2 values and a precise method for determining atmospheric δ 18 O-NO 2 values. The ability to measure NO 2 isotopes over spatial gradients at the same temporal resolution provides a unique perspective on the extent and seasonality of fluctuations in atmospheric NO 2

  12. Necessary conditions for the initiation and propagation of nuclear-detonation waves in plane atmospheres

    International Nuclear Information System (INIS)

    Weaver, T.A.; Wood, L.

    1979-01-01

    The basic conditions for the initiation of a nuclear-detonation wave in an atmosphere having plane symmetry (e.g., a thin, layered fluid envelope on a planet or star) are developed. Two classes of such a detonation are identified: those in which the temperature of the plasma is comparable to that of the electromagnetic radiation permeating it, and those in which the temperature of the plasma is much higher. Necessary conditions are developed for the propagation of such detonation waves for an arbitrarily great distance. The contribution of fusion chain reactions to these processes is evaluated. By means of these considerations, it is shown that neither the atmosphere nor oceans of the Earth may be made to undergo propagating nuclear detonation under any circumstances

  13. Higher stability in forest-atmosphere exchange observed in a structurally diverse forest.

    Science.gov (United States)

    Tamrakar, R.; Rayment, M.; Moyano, F.; Herbst, M.; Mund, M.; Knohl, A.

    2016-12-01

    We tested the hypothesis that structurally diverse forests have greater stability on exchange processes with the atmosphere compared to forests with less diverse structure. In a case study, we assessed how net ecosystem exchange (NEE) and normalized maximum assimilation (Amax) varied over time in two forests in Germany based on 11 years of continuous eddy flux measurements. The two sites differ in structure as well as in species composition: one (Hainich) is an unmanaged, uneven-aged and heterogeneous mixed beech forest (65% beech), the other (Leinefelde) is a managed, even-aged and homogeneous pure beech stand. The two selected forests are of similar mean ages (about 130 years old) and exposed to similar air temperatures and vapour pressure deficits. Even though Hainich (the unmanaged forest) received higher rainfall (720 ± 134 mm vs 599±166 mm), the soil water availability showed no significant difference between both sites. Based on detailed biomass inventory, trees in Hainich are well distributed in all diameter at breast height (dbh) classes (10 to 90cm dbh) whereas in Leinefelde (the managed forest) trees are mostly confined to dbh classes of 40 to 55 cm. Our results showed a strong difference in inter-annual variability of NEE, which was lower in the unmanaged than in the managed site (coefficient of variation (CV) of 0.13 and 0.27, respectively). The lowest NEE was observed in both sites in 2004, a mast year and a year after the strong summer drought of 2003. The variation in the inter-annual normalized maximum assimilation (Amax) was lower in Hainich (standard deviation of 2.5 compared to 3.9 µmol m-2 s-1). Also, the seasonal course of Amax differed between the two forests which could explain why the mixed forest was more affected by the late summer drought of 2003, despite showing a more conservative carbon budget than the pure stand in the long term. The interannual anomaly in Amax was correlated with fruit production, the latter being larger in

  14. Study of the relations between cloud properties and atmospheric conditions using ground-based digital images

    Science.gov (United States)

    Bakalova, Kalinka

    The aerosol constituents of the earth atmosphere are of great significance for the radiation budget and global climate of the planet. They are the precursors of clouds that in turn play an essential role in these processes and in the hydrological cycle of the Earth. Understanding the complex aerosol-cloud interactions requires a detailed knowledge of the dynamical processes moving the water vapor through the atmosphere, and of the physical mechanisms involved in the formation and growth of cloud particles. Ground-based observations on regional and short time scale provide valuable detailed information about atmospheric dynamics and cloud properties, and are used as a complementary tool to the global satellite observations. The objective of the present paper is to study the physical properties of clouds as displayed in ground-based visible images, and juxtapose them to the specific surface and atmospheric meteorological conditions. The observations are being carried out over the urban area of the city of Sofia, Bulgaria. The data obtained from visible images of clouds enable a quantitative description of texture and morphological features of clouds such as shape, thickness, motion, etc. These characteristics are related to cloud microphysical properties. The changes of relative humidity and the horizontal visibility are considered to be representative of the variations of the type (natural/manmade) and amount of the atmospheric aerosols near the earth surface, and potentially, the cloud drop number concentration. The atmospheric dynamics is accounted for by means of the values of the atmospheric pressure, temperature, wind velocity, etc., observed at the earth's surface. The advantage of ground-based observations of clouds compared to satellite ones is in the high spatial and temporal resolution of the obtained data about the lowermost cloud layer, which in turn is sensitive to the meteorological regimes that determine cloud formation and evolution. It turns out

  15. The stability of CaS in circulating fluidized bed boiler residue and the possible release of H2S gas to the atmosphere

    International Nuclear Information System (INIS)

    Mattisson, T.; Lyngfelt, A.

    1995-01-01

    During the combustion of coal, SO 2 is released to the atmosphere. Because of environmental concerns with acid rain, the capture of SO 2 is an important issue. In fluidized bed combustion SO 2 is captured in-situ by limestone or dolomite to form CaSO 4 . This product is stable and can be disposed of or reused as gypsum. In order to capture the sulphur as CaSO 4 oxidizing conditions are necessary. In a fluidized bed boiler (FBB) CaS may form in regions with reducing conditions, and FBB ashes sampled under irregular operating conditions may contain as much as 50 % of the captured sulphur as CaS. The stability of CaS in a landfill environment is thus very important. It is possible that the sulphide decomposes in the presence of moisture or runoff leachate with the subsequent release of H 2 S gas. This re-release of captured sulphur could have a substantial effect on the overall sulphur capture efficiency, with more sulphur released to the atmosphere than previously thought. In this study the stability of CaS in bed ashes from a 12 MW circulating FBB combusting coal has been investigated, with focus on the release of H 2 S gas. (orig.)

  16. Atmospheric propagation of high power laser radiation at different weather conditions

    OpenAIRE

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-01-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long fr...

  17. Exchange of nitrogen dioxide (NO2) between plants and the atmosphere under laboratory and field conditions

    Science.gov (United States)

    Breuninger, C.; Meixner, F. X.; Thielmann, A.; Kuhn, U.; Dindorf, T.; Kesselmeier, J.

    2012-04-01

    Nitric oxide (NO), nitrogen dioxide (NO2), often denoted as nitrogen oxides (NOx), and ozone (O3) are considered as most important compounds in atmospheric chemistry. In remote areas NOx concentration is related to biological activities of soils and vegetation. The emitted NOx will not entirely be subject of long range transport through the atmosphere. Aside oxidation of NO2 by the OH radical (forming HNO3), a considerable part of it is removed from the atmosphere through the uptake of NO2 by plants. The exchange depends on stomatal activity and on NO2 concentrations in ambient air. It is known that NO2 uptake by plants represents a large NO2 sink, but the magnitude and the NO2 compensation point concentration are still under discussion. Our dynamic chamber system allows exchange measurements of NO2 under field conditions (uncontrolled) as well as studies under controlled laboratory conditions including fumigation experiments. For NO2 detection we used a highly NO2 specific blue light converter (photolytic converter) with subsequent chemiluminescence analysis of the generated NO. Furthermore, as the exchange of NO2 is a complex interaction of transport, chemistry and plant physiology, in our field experiments we determined fluxes of NO, NO2, O3, CO2 and H2O. For a better knowledge of compensation point values for the bi-directional NO2 exchange we investigated a primary representative of conifers, Picea abies, under field and laboratory conditions, and re-analyzed older field data of the deciduous tree Quercus robur.

  18. Modeling Daily Rainfall Conditional on Atmospheric Predictors: An application to Western Greece

    Science.gov (United States)

    Langousis, Andreas; Kaleris, Vassilios

    2013-04-01

    Due to its intermittent and highly variable character, daily precipitation is the least well reproduced hydrologic variable by both General Circulation Models (GCMs) and Limited Area Models (LAMs). To that extent, several statistical procedures (usually referred to as downscaling schemes) have been suggested to generate synthetic rainfall time series conditional on predictor variables that are descriptive of the atmospheric circulation at the mesoscale. In addition to be more accurately simulated by GCMs and LAMs, large-scale atmospheric predictors are important indicators of the local weather. Currently used downscaling methods simulate rainfall series using either stable statistical relationships (usually referred to as transfer functions) between certain characteristics of the rainfall process and mesoscale atmospheric predictor variables, or simple stochastic schemes (e.g. properly transformed autoregressive models) with parameters that depend on the large-scale atmospheric conditions. The latter are determined by classifying large-scale circulation patterns into broad categories of weather states, using empirical or theoretically based classification schemes, and modeled by resampling from those categories; a process usually referred to as weather generation. In this work we propose a statistical framework to generate synthetic rainfall timeseries at a daily level, conditional on large scale atmospheric predictors. The latter include the mean sea level pressure (MSLP), the magnitude and direction of upper level geostrophic winds, and the 500 hPa geopotential height, relative vorticity and divergence. The suggested framework operates in continuous time, avoiding the use of transfer functions, and weather classification schemes. The suggested downscaling approach is validated using atmospheric data from the ERA-Interim archive (see http://www.ecmwf.int/research/era/do/get/index), and daily rainfall data from Western Greece, for the 14-year period from 01 October

  19. Energy intensity decline implications for stabilization of atmospheric CO2 content

    International Nuclear Information System (INIS)

    Lightfoot, H.D.; Green, C.

    2002-01-01

    By calculating the amount of carbon-free energy required to stabilize the level of carbon dioxide in the atmosphere at some level, such as 550 parts per million by volume (ppmv) in 2100, the authors estimate the appropriate rate of world average annual energy intensity decline. The roles played by energy efficiency and long term sectoral changes like shifts in economic activity from high energy intensity sectors or industries to low energy intensity sectors or industries are distinguished. Advances in technology and better and improved procedures, as well as a broader adoption of more efficient technologies currently available are included in the improvements made in energy efficiency. The objective was, for the period 1990 to 2100 (110 years), to estimate the potential energy efficiency increase for world electricity generation. It is noted that electricity generation represents 38 per cent of world energy consumption in 1995, while transportation accounts for 19 per cent and residential, industrial and commercial uses account for 43 per cent. In 2100, it is expected that the overall average decline in energy intensity will be 40.1 per cent of that of 1990, according to the results obtained. Looked at from another perspective, it represents an average annual rate of energy intensity decline of 0.83 per cent for 110 years. Between 0.16 and 0.30 per cent could be added to the impact of sectoral changes on the average annual rate of decline in energy intensity, while 0.83 per cent would be attributable to improvements in energy efficiency, as shown by sensitivity analysis. 33 refs., 9 tabs., 1 fig

  20. Effect of oxygen level on the oxidative stability of two different retail pork products stored using modified atmosphere packaging (MAP)

    DEFF Research Database (Denmark)

    Spanos, Dimitrios; Ann Tørngren, Mari; Christensen, Mette

    2016-01-01

    The characteristics and the oxidative stability of pork steaks and of pork mince were investigated during 2, 5 and 7 days of refrigerated storage using oxygen (O2) levels of 0%, 20%, 50% and 80% in modified atmosphere packaging (MAP). Steaks stored during 7 days were not affected by an increase i......%) O2 MAP. The results show that fresh pork products are affected differently by the MAP O2 concentration and strongly indicate that optimisation of MAP based on the retail product type would be of considerable benefit to their oxidative stability....

  1. Effects of packaging and heat transfer kinetics on drug-product stability during storage under uncontrolled temperature conditions.

    Science.gov (United States)

    Nakamura, Toru; Yamaji, Takayuki; Takayama, Kozo

    2013-05-01

    To predict the stability of pharmaceutical preparations under uncontrolled temperature conditions accurately, a method to compute the average reaction rate constant taking into account the heat transfer from the atmosphere to the product was developed. The average reaction rate constants computed with taken into consideration heat transfer (κ(re) ) were then compared with those computed without taking heat transfer into consideration (κ(in) ). The apparent thermal diffusivity (κ(a) ) exerted some influence on the average reaction rate constant ratio (R, R = κ(re) /κ(in) ). In the regions where the κ(a) was large (above 1 h(-1) ) or very small, the value of R was close to 1. On the contrary, in the middle region (0.001-1 h(-1) ), the value of R was less than 1.The κ(a) of the central part of a large-size container and that of the central part of a paper case of 10 bottles of liquid medicine (100 mL) fell within this middle region. On the basis of the above-mentioned considerations, heat transfer may need to be taken into consideration to enable a more accurate prediction of the stability of actual pharmaceutical preparations under nonisothermal atmospheres. Copyright © 2013 Wiley Periodicals, Inc.

  2. Sufficient conditions for BIBO robust stabilization : given by the gap metric

    NARCIS (Netherlands)

    Zhu, S.Q.; Hautus, M.L.J.; Praagman, C.

    1987-01-01

    A relation between coprlme fractions and the gap metric is presented. Using this result we provide some sufficient conditions for BIBO robust stabilization for a very wide class of systems. These conditions allow the plant and compensator to be disturbed simultaneously. Keywords: Robust

  3. Combined Statistical Analyses for Long-Term Stability Data with Multiple Storage Conditions : A Simulation Study

    NARCIS (Netherlands)

    Almalik, Osama; Nijhuis, Michiel B.; van den Heuvel, Edwin R.

    2014-01-01

    Shelf-life estimation usually requires that at least three registration batches are tested for stability at multiple storage conditions. The shelf-life estimates are often obtained by linear regression analysis per storage condition, an approach implicitly suggested by ICH guideline Q1E. A linear

  4. Sufficient conditions for robust BIBO stabilization : given by the gap metric

    NARCIS (Netherlands)

    Zhu, S.Q.; Hautus, M.L.J.; Praagman, C.

    1988-01-01

    A relation between coprime fractions and the gap metric is presented. Using this result we provide some sufficient conditions for robust BIBO stabilization for a wide class of systems. These conditions allow the plant and the compensator to be disturbed simultaneously.

  5. Hyers-Ulam stability for second-order linear differential equations with boundary conditions

    Directory of Open Access Journals (Sweden)

    Pasc Gavruta

    2011-06-01

    Full Text Available We prove the Hyers-Ulam stability of linear differential equations of second-order with boundary conditions or with initial conditions. That is, if y is an approximate solution of the differential equation $y''+ eta (x y = 0$ with $y(a = y(b =0$, then there exists an exact solution of the differential equation, near y.

  6. Phase stability limit of c-BN under hydrostatic and non-hydrostatic pressure conditions

    International Nuclear Information System (INIS)

    Xiao, Jianwei; Du, Jinglian; Wen, Bin; Zhang, Xiangyi; Melnik, Roderick; Kawazoe, Yoshiyuki

    2014-01-01

    Phase stability limit of cubic boron nitride (c-BN) has been investigated by the crystal structure search technique. It indicated that this limit is ∼1000 GPa at hydrostatic pressure condition. Above this pressure, c-BN turns into a metastable phase with respect to rocksalt type boron nitride (rs-BN). However, rs-BN cannot be retained at 0 GPa owing to its instability at pressure below 250 GPa. For non-hydrostatic pressure conditions, the phase stability limit of c-BN is substantially lower than that under hydrostatic pressure conditions and it is also dramatically different for other pressure mode

  7. Fretting Wear Damage Mechanism of Uranium under Various Atmosphere and Vacuum Conditions

    Directory of Open Access Journals (Sweden)

    Zhengyang Li

    2018-04-01

    Full Text Available A fretting wear experiment with uranium has been performed on a linear reciprocating tribometer with ball-on-disk contact. This study focused on the fretting behavior of the uranium under different atmospheres (Ar, Air (21% O2 + 78% N2, and O2 and vacuum conditions (1.05 and 1 × 10−4 Pa. Evolution of friction was assessed by coefficient of friction (COF and friction-dissipated energy. The oxide of the wear surface was evaluated by Raman spectroscopy. The result shows that fretting wear behavior presents strong atmosphere and vacuum condition dependence. With increasing oxygen content, the COF decreases due to abrasive wear and formation of oxide film. The COF in the oxygen condition is at least 0.335, and it has a maximum wear volume of about 1.48 × 107 μm3. However, the COF in a high vacuum condition is maximum about 1.104, and the wear volume is 1.64 × 106 μm3. The COF in the low vacuum condition is very different: it firstly increased and then decreased rapidly to a steady value. It is caused by slight abrasive wear and the formation of tribofilm after thousands of cycles.

  8. Assessment of the dispersion of fission products in the atmosphere following a reactor accident under meteorological conditions of low wind speed

    International Nuclear Information System (INIS)

    Crabol, B.

    1984-11-01

    The aim of the study is the assessment of the dispersion in a low speed situation and the validation of the computer code ICAIR3 by means of SF6 tracing experiments carried out on the CADARACHE site under different stability conditions. The results show clearly some characteristic features of the dispersion. In particular, high concentrations are found in the experimental field several hours after the end of the release. Large differences of the plume width are observed depending on the atmospheric stability. The flow seems well organized under stable conditions, probably in relation with a topographic effect (CADARACHE is situated in a valley), while there is a much larger spread out of the plume in neutral or unstable conditions. A reasonable agreement with the values predicted by the calculation code is found for the maximum concentration

  9. Atmospheric conditions measured by a wireless sensor network on the local scale

    Science.gov (United States)

    Lengfeld, K.; Ament, F.

    2010-09-01

    Atmospheric conditions close to the surface, like temperature, wind speed and humidity, vary on small scales because of surface heterogeneities. Therefore, the traditional measuring approach of using a single, highly accurate station is of limited representativeness for a larger domain, because it is not able to determine these small scale variabilities. However, both the variability and the domain averages are important information for the development and validation of atmospheric models and soil-vegetation-atmosphere-transfer (SVAT) schemes. Due to progress in microelectronics it is possible to construct networks of comparably cheap meteorological stations with moderate accuracy. Such a network provides data in high spatial and temporal resolution. The EPFL Lausanne developed such a network called SensorScope, consisting of low cost autonomous stations. Each station observes air and surface temperature, humidity, wind direction and speed, incoming solar radiation, precipitation, soil moisture and soil temperature and sends the data via radio communication to a base station. This base station forwards the collected data via GSM/GPRS to a central server. The first measuring campaign took place within the FLUXPAT project in August 2009. We deployed 15 stations as a twin transect near Jülich, Germany. To test the quality of the low cost sensors we compared two of them to more accurate reference systems. It turned out, that although the network sensors are not highly accurate, the measurements are consistent. Consequently an analysis of the pattern of atmospheric conditions is feasible. The transect is 2.3 km long and covers different types of vegetation and a small river. Therefore, we analyse the influence of different land surfaces and the distance to the river on meteorological conditions. For example, we found a difference in air temperature of 0.8°C between the station closest to and the station farthest from the river. The decreasing relative humidity with

  10. Influence of stability classification on atmospheric diffusion calculations for elevated releases over a terrain of major roughness

    International Nuclear Information System (INIS)

    Hu Erbang

    1988-01-01

    A series (22) of atmospheric tracer experiments with 100m release height have been performed at the kernforschungszentrum karlsruhe (KfK) of West Germany over a terrain of major roughness (Z 0 = 1.5 m). The concentration data of the tracers are statistically analysed in which 5 methods of stability classification are used. The results show that the normalized diffusion factors predicted by Gaussian plume dispersion model is in good agreement with the observed ones for elevated releases over a terrain of major roughness. Differnent sets of dispersion parameters could be obtained for the same series of atmospheric tracer experiments if different methods of classification are applied. The same method of stability classification should be used for the application of these dispersion parameters to evaluate the environment impact

  11. The effect of the atmospheric condition on the extensive air shower analysis at the Telescope Array experiment

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Tsunesada, Y.; Tokuno, H.; Kakimoto, F.; Tomida, T.

    2011-01-01

    The accuracies in determination of air shower parameters such as longitudinal profiles or primary energies with the fluorescence detection technique are strongly dependent on atmospheric conditions of the molecular and aerosol components. Moreover, air fluorescence photon yield depends on the atmospheric density, and the transparency of the air for fluorescence photons depends on the atmospheric conditions from EAS to FDs. In this paper, we describe the atmospheric monitoring system in the Telescope Array (TA experiment), and the impact of the atmospheric conditions in air shower reconstructions. The systematic uncertainties of the determination of the primary cosmic ray energies and of the measurement of depth of maximum development (X max ) of EASs due to atmospheric variance are evaluated by Monte Carlo simulation.

  12. Improving Delay-Range-Dependent Stability Condition for Systems with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Wei Qian

    2013-01-01

    Full Text Available This paper discusses the delay-range-dependent stability for systems with interval time-varying delay. Through defining the new Lyapunov-Krasovskii functional and estimating the derivative of the LKF by introducing new vectors, using free matrices and reciprocally convex approach, the new delay-range-dependent stability conditions are obtained. Two well-known examples are given to illustrate the less conservatism of the proposed theoretical results.

  13. Well-posedness and exponential stability for a wave equation with nonlocal time-delay condition

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Raposo

    2017-11-01

    Full Text Available Well-posedness and exponential stability of nonlocal time-delayed of a wave equation with a integral conditions of the 1st kind forms the center of this work. Through semigroup theory we prove the well-posedness by the Hille-Yosida theorem and the exponential stability exploring the dissipative properties of the linear operator associated to damped model using the Gearhart-Huang-Pruss theorem.

  14. Political stability in conditions of overtaking modernisation: challenges and reference points

    Directory of Open Access Journals (Sweden)

    M. K. Mantashyan

    2017-07-01

    To sum up, compensatory mechanisms of the political stability in conditions of the ongoing modernization should accelerate the development of civil society within the absence of a stable and adaptive political community. Challenges to political stability should be compensated by creativity and optimality of the authorities’ activities. Prospects for further consideration of problems, being raised in this paper, are as following: to determine the socio-cultural constraints of the institutional adaptability of the political system.

  15. Automated finder for the critical condition on the linear stability of fluid motions

    International Nuclear Information System (INIS)

    Fujimura, Kaoru

    1990-03-01

    An automated finder routine for the critical condition on the linear stability of fluid motions is proposed. The Newton-Raphson method was utilized for an iteration to solve nonlinear eigenvalue problems appeared in the analysis. The routine was applied to linear stability problem of a free convection between vertical parallel plates with different non-uniform temperatures as well as a plane Poiseuille flow. An efficiency of the finder routine is demonstrated for several parameter sets, numerically. (author)

  16. Stabilizing local boundary conditions for two-dimensional shallow water equations

    KAUST Repository

    Dia, Ben Mansour

    2018-03-27

    In this article, we present a sub-critical two-dimensional shallow water flow regulation. From the energy estimate of a set of one-dimensional boundary stabilization problems, we obtain a set of polynomial equations with respect to the boundary values as a requirement for the energy decrease. Using the Riemann invariant analysis, we build stabilizing local boundary conditions that guarantee the stability of the hydrodynamical state around a given steady state. Numerical results for the controller applied to the nonlinear problem demonstrate the performance of the method.

  17. CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Madhusudhan, Nikku [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Mousis, Olivier [Institut UTINAM, CNRS-UMR 6213, Observatoire de Besancon, BP 1615, F-25010 Besancon Cedex (France); Johnson, Torrence V. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lunine, Jonathan I., E-mail: nmadhu@astro.princeton.edu [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

    2011-12-20

    The recent inference of a carbon-rich atmosphere, with C/O {>=} 1, in the hot Jupiter WASP-12b motivates the exotic new class of carbon-rich planets (CRPs). We report a detailed study of the atmospheric chemistry and spectroscopic signatures of carbon-rich giant (CRG) planets, the possibility of thermal inversions in their atmospheres, the compositions of icy planetesimals required for their formation via core accretion, and the apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRG atmospheres probe a unique region in composition space, especially at high temperature (T). For atmospheres with C/O {>=} 1, and T {approx}> 1400 K in the observable atmosphere, most of the oxygen is bound up in CO, while H{sub 2}O is depleted and CH{sub 4} is enhanced by up to two or three orders of magnitude each, compared to equilibrium compositions with solar abundances (C/O = 0.54). These differences in the spectroscopically dominant species for the different C/O ratios cause equally distinct observable signatures in the spectra. As such, highly irradiated transiting giant exoplanets form ideal candidates to estimate atmospheric C/O ratios and to search for CRPs. We also find that the C/O ratio strongly affects the abundances of TiO and VO, which have been suggested to cause thermal inversions in highly irradiated hot Jupiter atmospheres. A C/O = 1 yields TiO and VO abundances of {approx}100 times lower than those obtained with equilibrium chemistry assuming solar abundances, at P {approx} 1 bar. Such a depletion is adequate to rule out thermal inversions due to TiO/VO even in the most highly irradiated hot Jupiters, such as WASP-12b. We estimate the compositions of the protoplanetary disk, the planetesimals, and the envelope of WASP-12b, and the mass of ices dissolved in the envelope, based on the observed atmospheric abundances. Adopting stellar abundances (C/O = 0.44) for the primordial disk composition and low-temperature formation conditions

  18. Evaluation of the atmospheric stability and it influence in the radiological environmental impact of the treatment plant and radioactive waste storage (PTDR)

    International Nuclear Information System (INIS)

    Ramos V, E.O.; Cornejo D, N.

    2006-01-01

    It is well-known that the meteorological variables as the atmospheric stability, influence in the atmospheric dispersion of radioactive pollutants, for that as regards radiological safety, it constitutes a demand the evaluation of their impact in the process before mentioned. The present work exposes the results of the study of the radiological impact of our PTDR that it allowed to know the influence of this meteorological parameter in the atmospheric dispersion of radioactive pollutants in its location. To such effects they were processed by means of the methodology of Pasquill - Gifford, data of time zone observations of this meteorological variable obtained in the proximities of the installation, being modeled the worst conditions in atmospheric liberation of their radionuclides inventory, valuing stops the 2 critical considered population groups the doses received by inhalation of polluted air and ingestion of water and polluted products, as well as, for external irradiation from the radioactive cloud and the floor. The obtained annual effective doses due to the modeling situation reach until a mSv, except for the Ra-226 that are lightly superior, implying a risk radiological acceptable chord to the international standard. To the above-mentioned a reduced probability of occurrence of events initiators of the evaluated accidental sequence is added. (Author)

  19. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.

    Science.gov (United States)

    Manoli, Gabriele; Domec, Jean-Christophe; Novick, Kimberly; Oishi, Andrew Christopher; Noormets, Asko; Marani, Marco; Katul, Gabriel

    2016-06-01

    Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m-2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible (Hs) and latent heat (LE) and large-scale, slowly evolving free atmospheric temperature and water vapor content are known to be first-order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy-cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio Bo=Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the

  20. Determination atmospheric conditions by evaluating clearness index, turbidity and brightness of the sky

    International Nuclear Information System (INIS)

    Kandilli, C.

    2005-01-01

    There are fifteen different sky types which range from totally overcast sky to low turbidity clear sky have been defined by CIE (International Commission on Illumination). For the applications of solar energy engineering and day lighting purposes, it has a great importance to determine the physical characteristics of atmosphere and the sky type. The most important parameters which define the sky type are clearness index, turbidity and brightness. In this study, the parameters of clearness index, turbidity and brightness of the sky belong to Izmir was calculated and their relations with solar radiation and its components were represented according to 10 years data (1994-2004) of meteorology station of Ege University Solar Energy Institute. In this study, clearness index, turbidity, sky clearness and brightness were evaluated to put forward the effects of the these parameters on the atmospheric condition for designing and engineering purposes

  1. Sorption activity investigation of ultrafine powders of high temperature melting point compounds in atmospheric pressure conditions

    International Nuclear Information System (INIS)

    Rudneva, V.V.

    2006-01-01

    A study is made in saturation with gas in the air for ultradispersed chromium carbonitride and boride powders synthesized in a nitrogen plasma jet according to three variants: from elements, from oxides, from chromium trichloride. It is established that in the air on temperature increasing the powders adsorb considerable amounts of oxygen and water vapor. This results in surface oxidation of powder particles and a loss in specific combination of properties. Preliminary vacuum heat treatment is shown to decrease sharply the rate of atmospheric gas adsorption. The quantity of adsorbed gases is dependent on a carbon monoxide concentration in a particle surface layer and the availability of adsorption centers. The number of such centers in the layer can be controlled by vacuum heat treatment conditions. The interaction of the powders with atmospheric gases is concluded to be of adsorption-diffusion nature [ru

  2. Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions

    CERN Document Server

    Kürten, Andreas; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kirkby, Jasper; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Schobesberger, Siegfried; Seinfeld, John H; Steiner, Gerhard; Tomé, António; Tröstl, Jasmin; Winkler, Paul M; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Kenneth S; Kulmala, Markku; Worsnop, Douglas R; Curtius, Joachim

    2014-01-01

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even tho...

  3. The Effects of Electroless Nickel Plating Bath Conditions on Stability of Solution and Properties of Deposit

    International Nuclear Information System (INIS)

    Huh, Jin; Lee, Jae Ho

    2000-01-01

    Electroless depositions of nickel were conducted in different bath conditions to find optimum conditions of electroless nickel plating at low operating temperature and pH. The effect of complexing reagent on stability of plating solution was investigated. Sodium citrate complexed plating solution is more stable than sodium pyrophosphate complexed solution. The effects of nickel salt concentration, reducing agent, complexing agent and inhibitor on deposition rate was investigated. The effects of pH on deposition rate and content of phosphorous in deposited nickel were also analyzed. Electroless deposited nickel become crystallized with increasing pH due to lower phosphorous content. In optimum operating bath condition, deposition rate was 7 μm/hr at 60 .deg. C and pH 10.0 without stabilizer. The rate was decreased with stabilizer concentration

  4. Chlorophyll stability in yerba maté leaves in controlled atmospheres

    Directory of Open Access Journals (Sweden)

    Rubén O. Morawicki

    1999-01-01

    Full Text Available The objective of this research was to investigate the stability of chlorophyll in yerba maté leaves in controlled atmospheres of CO2/air mixtures and different water activities at 25°C.Two levels of water activity were selected corresponding to saturated salt solutions of LiCl (a w=0.113 and MgCl2(a w=0.330 and three levels of CO2/air mixtures (0/100,20/80 and 40/60. The chlorophyll content was evaluated using a liquid chromatography HPLC technique. Experimental values varied between 2.16 and 0.61 mg/g of dry matter. For each sample, 5 determination were made during 58 days. Experimental values were fitted to an equation describing a first order reaction. In all cases, the agreement was good with PO objetivo deste trabalho foi pesquisar a estabilidade da clorofila em folhas de erva mate em misturas atmosféricas controladas de CO2/ar e diferentes atividades de vapor de água a 25ºC. Dois níveis de atividade de vapor de água foram selecionadas, correspondendo a soluçoes saturadas de LiCl (a w=0.113 e MgCl2 (a w=0.330 e três níveis de misturas CO2/ar (0/100,20/80 e 40/60. O conteúdo de clorofila foi avaliado usando a técnica de cromatografia líqüida HPLC. Os valores experimentais variaram entre 2.16 e 0.61 mg/g de matéria seca. Para cada amostra foram realizadas 5 determinaçoes durante 58 dias. Os valores experimentais foram ajustados para uma eqüação descrevendo uma reação de primeiro ordem. Em todos os casos houve boa concordância P < 3 10-3. A concentração inicial de clorofila ficou reduzida em média um 30.5% depois de 58 dias. Porém, depois da comparação das constantes de velocidade, não foram achadas diferenças entre elas.

  5. Influence of atmospheric stability and transport on CH{sub 4} concentrations in northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    García, M. Ángeles, E-mail: magperez@fa1.uva.es; Sánchez, M. Luisa; Pérez, Isidro A.; Ozores, Marta I.; Pardo, Nuria

    2016-04-15

    Continuous methane (CH{sub 4}) concentrations were measured in Northern Spain over two years (2011–2012) by multi-point sampling at 1.8, 3.7 and 8.3 m using a Picarro analyser. The technique is based on cavity ring-down spectroscopy. The contrast in mean concentrations was about 1.2 ppb, with 95th percentiles differing by 2.2 ppb and mean minimum concentrations proving similar. Temporal variations of CH{sub 4} were also analysed, with a similar seasonal variability being found for the three heights. The highest CH{sub 4} concentrations were obtained in late autumn and winter and the lowest in summer, yielding a range of 52 ppb. This variation may depend on the active photochemical reaction with OH radical during a period of intense solar radiation and changes in soil conditions together with variations in emissions. Peak concentration levels were recorded at night-time, between 5:00–7:00 GMT, with mean values ranging between 1920 and 1923 ppb. The lowest value, around 1884 ppb, was obtained at 16:00 GMT. This diurnal variation was mainly related to vertical mixing and photochemistry. Therefore, CH{sub 4} concentrations were also examined using the bulk Richardson number (R{sub B}) as a stability indicator. Four groups were distinguished: unstable cases, situations with pure shear flow, transitional stages and drainage flows. The highest contrast in mean CH{sub 4} concentrations between lower and upper heights was obtained for the transition and drainage cases, mainly associated to high concentrations from nearby sources. The impact of long range transport was analysed by means of 3-day isobaric backward air mass trajectories, which were calculated taking into account origins from Europe, Africa, the Atlantic Ocean and Local conditions. Assessment of the results showed the influence of S and SE wind sectors, especially with Local conditions associated with low winds. Finally, an estimation of the background CH{sub 4} concentration in the study period provided an

  6. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    Science.gov (United States)

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  7. Cleaning and air conditioning device for atmosphere in thermonuclear reactor chamber

    International Nuclear Information System (INIS)

    Ishida, Seiji.

    1993-01-01

    The device of the present invention removes tritium efficiently and attains ventilation and conditioning of a great amount of air flow. That is, there are disposed a humidity separator, a filter, a heater, a catalyst filled layer, a water jetting type humidifying heat insulation cooler and a cooler in this order from an inlet side (upstream) of contaminated room atmospheric gases. The catalyst filled layer, etc. are incorporated integrally into the ventilation air conditioning facility for ventilating air in the chamber of the thermonuclear reactor, to clean a tritium atmosphere at the same time. Accordingly, the device is made compact as a whole. A limit for the air flow rate owing to the use of the conventional catalyst tower and adsorbing tower is eliminated. Then a ventilating air conditioning for a great flow rate can be attained. Tritium is removed by cooling and dehumidification without using any adsorbent. Accordingly, an adsorbing tower is no more necessary and conventional regeneration operation is not required. As a result, space for installation is reduced, the system is simplified and the cost for construction and facility can be reduced. (I.S.)

  8. Modelling of the diffusion of pollutants in the atmosphere under varying conditions in large cultivated regions

    International Nuclear Information System (INIS)

    Wueneke, C.D.; Schultz, H.

    1975-01-01

    The most important routines of a numerical code based on the particle-in-cell-method for calculating the transport and the turbulent dispersion of inert and radio-active pollutants in the atmosphere have been programmed and have been tested successfully on the CDC computer CYBER 73/76 of the Regional Computer Centre for Niedersachsen in Hanover. Compared to the Gaussian plume model such a numerical code based on the particle-in-cell-method offers several advantages for the computation of the diffusion under varying conditions in large cultivated regions. (orig.) [de

  9. Forest condition and chemical characteristics of atmospheric depositions: research and monitoring network in Lombardy

    Directory of Open Access Journals (Sweden)

    Flaminio DI GIROLAMO

    2002-09-01

    Full Text Available Since 1987, the Regional Forestry Board of Lombardy and the Water Research Institute of the National Research Council have been carrying out surveys of forest conditions and the response of the ecosystem to environmental factors. The study approach is based on a large number of permanent plots for extensive monitoring (Level 1. At this level, crown condition is assessed annually, and soil condition and the nutritional status of forests surveyed. Some of the permanent plots were selected for intensive monitoring (Level 2, focussing mainly on the impact of atmospheric pollution on forest ecosystems. Level 2 monitoring also includes increment analyses, ground vegetation assessment, atmospheric deposition, soil solution analyses and climatic observations. This paper summarises the main results of a pluriannual research, which provides a general picture of the state of forest health in the region and focuses on more detailed investigations, described as case studies. Modified wet and dry samplers which use a water surface to collect dry deposition were used in a pluriannual field campaign at five sites in alpine and prealpine areas, to measure the total atmospheric depositions and to evaluate the nitrogen and sulphate exceedances of critical loads. Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999 at two high elevation forest sites (Val Gerola and Val Masino which were known to differ in terms of tree health, as assessed by live crown condition. Results indicated a higher contribution from the dry deposition of N-NO3 -, N-NH4 + and H+ and considerable canopy leaching of Ca2+, K+ and weak organic acids at Val Gerola, where the symptoms of damage were more evident. In the area of Val Masino (SO, included since 1997 in the national CONECOFOR network, investigations focused on the effectiveness of the biological compartment in modifying fluxes of atmospheric elements, and on the role of nitrogen both as an

  10. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    KAUST Repository

    Kulkarni, Pavan S.

    2016-09-24

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months. © 2016 Elsevier Ltd

  11. Numerical experiments on the atmospheric response to cold Equatorial Pacific conditions ('La Nina') during northern summer

    International Nuclear Information System (INIS)

    Storch, H. von; Schriever, D.; Arpe, K.; Branstator, G.W.; Legnani, R.; Ulbrich, U.

    1993-01-01

    The effect of cold conditions in the central and eastern Equatorial Pacific during Northern Summer is examined in a series of numerical experiments with the low resolution (T21) atmospheric general circulation model ECHAM2. Anomalous sea surface temperatures (SST) as observed in June 1988 were prescribed and the effect on the global circulation is examined. In the model atmosphere, the anomalous cold water in the Equatorial Pacific excites a strong and stable response over the tropical Central and East Pacific. From here stationary Rossby waves radiate into both hemispheres. The Northern Hemisphere wave train is weak and affects only the Northeast Pacific area; the Southern Hemisphere wave train arches from the Central Pacific over the southern tip of South America to the South Atlantic. This response is not only present in the basic anomaly experiment with the T21 GCM but also in experiments with SST anomalies confined to the tropics and with an envelope-formulation of the SST anomalies, in experiments with a linear model, and in high resolution (T42) model experiments. The model output is also compared to the actually observed atmospheric state in June 1988. (orig./KW)

  12. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    KAUST Repository

    Kulkarni, Pavan S.; Dasari, Hari Prasad; Sharma, Ashish; Bortoli, D.; Salgado, Rui; Silva, A.M.

    2016-01-01

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months. © 2016 Elsevier Ltd

  13. Stepping towards new parameterizations for non-canonical atmospheric surface-layer conditions

    Science.gov (United States)

    Calaf, M.; Margairaz, F.; Pardyjak, E.

    2017-12-01

    Representing land-atmosphere exchange processes as a lower boundary condition remains a challenge. This is partially a result of the fact that land-surface heterogeneity exists at all spatial scales and its variability does not "average" out with decreasing scales. Such variability need not rapidly blend away from the boundary thereby impacting the near-surface region of the atmosphere. Traditionally, momentum and energy fluxes linking the land surface to the flow in NWP models have been parameterized using atmospheric surface layer (ASL) similarity theory. There is ample evidence that such representation is acceptable for stationary and planar-homogeneous flows in the absence of subsidence. However, heterogeneity remains a ubiquitous feature eliciting appreciable deviations when using ASL similarity theory, especially in scalars such moisture and air temperature whose blending is less efficient when compared to momentum. The focus of this project is to quantify the effect of surface thermal heterogeneity with scales Ο(1/10) the height of the atmospheric boundary layer and characterized by uniform roughness. Such near-canonical cases describe inhomogeneous scalar transport in an otherwise planar homogeneous flow when thermal stratification is weak or absent. In this work we present a large-eddy simulation study that characterizes the effect of surface thermal heterogeneities on the atmospheric flow using the concept of dispersive fluxes. Results illustrate a regime in which the flow is mostly driven by the surface thermal heterogeneities, in which the contribution of the dispersive fluxes can account for up to 40% of the total sensible heat flux. Results also illustrate an alternative regime in which the effect of the surface thermal heterogeneities is quickly blended, and the dispersive fluxes provide instead a quantification of the flow spatial heterogeneities produced by coherent turbulent structures result of the surface shear stress. A threshold flow

  14. Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 k.y.

    Science.gov (United States)

    Combourieu Nebout, N.; Turon, J. L.; Zahn, R.; Capotondi, L.; Londeix, L.; Pahnke, K.

    2002-10-01

    Multiproxy paleoenvironmental records (pollen and planktonic isotope) from Ocean Drilling Program Site 976 (Alboran Sea) document rapid ocean and climate variations during the last glacial that follow the Dansgaard-Oeschger climate oscillations seen in the Greenland ice core records, thus suggesting a close link of the Mediterranean climate swings with North Atlantic climates. Continental conditions rapidly oscillated through cold-arid and warm-wet conditions in the course of stadial-interstadial climate jumps. At the time of Heinrich events, i.e., maximum meltwater flux to the North Atlantic, western Mediterranean marine microflora and microfauna show rapid cooling correlated with increasing continental dryness. Enhanced aridity conceivably points to prolonged wintertime stability of atmospheric high-pressure systems over the southwestern Mediterranean in conjunction with cooling of the North Atlantic.

  15. Stability of the stratifield cylindrical annulus flow. [toward a model of global atmospheric circulation

    Science.gov (United States)

    Antar, B. N.

    1980-01-01

    The linear stability analysis for the stratified flow between two rotating circular cylinders is formulated. Two approaches for the stability analysis are presented. The first approach results in an algebraic eigenvalue problem, while the second results in an initial value problem for the perturbation function. The advantages and disadvantages of both approaches are discussed and a preferable numerical solution technique is outlined.

  16. Stability of Durum Wheat Genotypes in Some Agronomic Traits Under Bursa Ecological Conditions

    Directory of Open Access Journals (Sweden)

    Esra Aydoğan Çiftçi

    2017-11-01

    Full Text Available In the study it is aimed to determine the stabilities of some agronomic traits of 10 different durum wheats over the years in conditions of Bursa. Research was carried out in randomized complete block design with three replications between the years of 2008-2013. Averages of genotypes of agronomic characteristics, Eberhart and Russell’s regression coefficient and deviation from regression, Francis and Kannenberg’s coefficient of variation and environmental variance used as stability parameters. When the results of the study evaluated at the stability analysis, Amb × Çak-30 lines were determined to be stable in most of the agronomic traits. As for grain yield, which is of great importance for the producer, breeding lines of Amb × Çak -26 and Amb × Çak-30 were determined in good harmony at Bursa under different climatic conditions over five years.

  17. Dynamics of a stabilized motor defense conditioned reflex at different levels of motivation in irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Shtemberg, A S

    1982-05-01

    Postradiation dynamics of strengthened motor-defense conditioned reflex in rats-males irradiated with the doses of 94.111 and 137 Gy was studied. Phase disturbances of conditioned-reflex activity increased with enhancing irradiation dose have been revealed. Rapid recovery of conditioned reflex after short primary aggravation was a characteristic peculiarity. At that, the dynamics of relation of main nervous processes in cortex was noted for significant instability increasing with radiation syndrome development. Enhancement of force of electro-defense support promoted more effective strengthening of temporary connections and conditioned high stability of trained-reflex reactions during serious functional disturbances resulted from sublethal dose irradiation.

  18. Influence of different land surfaces on atmospheric conditions measured by a wireless sensor network

    Science.gov (United States)

    Lengfeld, Katharina; Ament, Felix

    2010-05-01

    Atmospheric conditions close to the surface, like temperature, wind speed and humidity, vary on small scales because of surface heterogeneities. Therefore, the traditional measuring approach of using a single, highly accurate station is of limited representativeness for a larger domain, because it is not able to determine these small scale variabilities. However, both the variability and the domain averages are important information for the development and validation of atmospheric models and soil-vegetation-atmosphere-transfer (SVAT) schemes. Due to progress in microelectronics it is possible to construct networks of comparably cheap meteorological stations with moderate accuracy. Such a network provides data in high spatial and temporal resolution. The EPFL Lausanne developed such a network called SensorScope, consisting of low cost autonomous stations. Each station observes air and surface temperature, humidity, wind direction and speed, incoming solar radiation, precipitations, soil moisture and soil temperature and sends the data via radio communication to a base station. This base station forwards the collected data via GSM/GPRS to a central server. Within the FLUXPAT project in August 2009 we deployed 15 stations as a twin transect near Jülich, Germany. One aim of this first experiment was to test the quality of the low cost sensors by comparing them to more accurate reference measurements. It turned out, that although the network is not highly accurate, the measurements are consistent. Consequently an analysis of the pattern of atmospheric conditions is feasible. For example, we detect a variability of ± 0.5K in the mean temperature at a distance of only 2.3 km. The transect covers different types of vegetation and a small river. Therefore, we analyzed the influence of different land surfaces and the distance to the river on meteorological conditions. On the one hand, some results meet our expectations, e.g. the relative humidity decreases with increasing

  19. THE QUANTITATIVE COMPONENT’S DIAGNOSIS OF THE ATMOSPHERIC PRECIPITATION CONDITION IN BAIA MARE URBAN AREA

    Directory of Open Access Journals (Sweden)

    S. ZAHARIA

    2012-12-01

    Full Text Available The atmospheric precipitation, an essential meteorological element for defining the climatic potential of a region, presents through its general and local particularities a defining influence for the evolution of the other climatic parameters, conditioning the structure of the overall geographic landscape. Their quantitative parameters sets up the regional natural setting and differentiation of water resources, soil, vegetation and fauna, in the same time influencing the majority of human activities’ aspects, through the generated impact over the agriculture, transportation, construction, for tourism etc. Especially, through the evolution of the related climatic parameters (production type, quantity, duration, frequency, intensity and their spatial and temporal fluctuations, the pluviometric extremes set out the maxim manifestation of the energy gap of the hydroclimatic hazards/risks which induce unfavourable or even damaging conditions for the human activities’ progress. Hence, the production of atmospheric precipitation surpluses conditions the triggering, or reactivation of some intense erosion processes, landslides, and last but not least, floods. Just as dangerous are the adverse amounts of precipitation or their absence on longer periods, determining the appearance of droughts, aridity phenomena, which if associated with the sharp anthropic pressure over the environment, favours the expansion of desertification, with the whole process of the arising negative effects. In this context, this paper aims to perform the diagnosis of atmospheric precipitation condition in Baia Mare urban area, through its quantitative component, in multiannual condition (1971-2007, underlining through the results of the analyzed climatic data and their interpretation, the main characteristics that define it. The data bank from Baia Mare station from the National Meteorological Administration network, representative for the chosen study area, was used. Baia

  20. Pricing Strategy, Pricing Stability and Financial Condition in the Defense Aerospace Industry

    OpenAIRE

    Johnstone, Jeffrey Carl; Keavney, Patrick Daniel

    1987-01-01

    Approved for public release, distribution unlimited The purpose of this research is to determine if pricing strategy and pricing stability for products in the defense aerospace industry can be predicted based on a firm's financial condition. The sample for this research includes 17 contractors and 52 missile and aircraft programs. Two separate issues are addressed. The first issue concerns the relationship between financial condition and contractor pricing strategy. The second concerns the...

  1. Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions

    KAUST Repository

    Gerbi, Sté phane; Said-Houari, Belkacem

    2011-01-01

    In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.

  2. Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions

    KAUST Repository

    Gerbi, Stéphane

    2011-12-01

    In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.

  3. Effect of Tropical Climatic Conditions on the Stability of Cefaclor Dry ...

    African Journals Online (AJOL)

    Purpose: Two critical factors that govern the stability of pharmaceutical formulations in the tropics are humidity and temperature. This study was carried out to investigate the effect of moisture sorption at two different storage conditions on Cefaclor dry powder for oral suspension and predict the effect of moisture interaction on ...

  4. Stability properties of a heat equation with state-dependent parameters and asymmetric boundary conditions

    DEFF Research Database (Denmark)

    Backi, Christoph Josef; Bendtsen, Jan Dimon; Leth, John

    2015-01-01

    In this work the stability properties of a partial differential equation (PDE) with state-dependent parameters and asymmetric boundary conditions are investigated. The PDE describes the temperature distribution inside foodstuff, but can also hold for other applications and phenomena. We show...

  5. Molecular dynamics simulation of the local concentration and structure in multicomponent aerosol nanoparticles under atmospheric conditions.

    Science.gov (United States)

    Karadima, Katerina S; Mavrantzas, Vlasis G; Pandis, Spyros N

    2017-06-28

    Molecular dynamics (MD) simulations were employed to investigate the local structure and local concentration in atmospheric nanoparticles consisting of an organic compound (cis-pinonic acid or n-C 30 H 62 ), sulfate and ammonium ions, and water. Simulations in the isothermal-isobaric (NPT) statistical ensemble under atmospheric conditions with a prespecified number of molecules of the abovementioned compounds led to the formation of a nanoparticle. Calculations of the density profiles of all the chemical species in the nanoparticle, the corresponding radial pair distribution functions, and their mobility inside the nanoparticle revealed strong interactions developing between sulfate and ammonium ions. However, sulfate and ammonium ions prefer to populate the central part of the nanoparticle under the simulated conditions, whereas organic molecules like to reside at its outer surface. Sulfate and ammonium ions were practically immobile; in contrast, the organic molecules exhibited appreciable mobility at the outer surface of the nanoparticle. When the organic compound was a normal alkane (e.g. n-C 30 H 62 ), a well-organized (crystalline-like) phase was rapidly formed at the free surface of the nanoparticle and remained separate from the rest of the species.

  6. Periodic variations of atmospheric electric field on fair weather conditions at YBJ, Tibet

    Science.gov (United States)

    Xu, Bin; Zou, Dan; Chen, Ben Yuan; Zhang, Jin Ye; Xu, Guo Wang

    2013-05-01

    Observations of atmospheric electric field on fair weather conditions from the plateau station, YBJ, Tibet (90°31‧50″ E, 30°06‧38″ N), over the period from 2006 to 2011, are presented in this work. Its periodic modulations are analyzed in frequency-domain by Lomb-Scargle Periodogram method and in time-domain by folding method. The results show that the fair weather atmospheric electric field intensity is modulated weakly by annual cycle, solar diurnal cycle and its several harmonic components. The modulating amplitude of annual cycle is bigger than that of solar diurnal cycle. The annual minimum/maximum nearly coincides with spring/autumn equinox. The detailed spectrum analysis show that the secondary peaks (i.e. sidereal diurnal cycle and semi-sidereal diurnal cycle) nearly disappear along with their primary peaks when the primary signals are subtracted from electric field data sequence. The average daily variation curve exhibits dual-fluctuations, and has obviously seasonal dependence. The mean value is bigger in summer and autumn, but smaller in spring and winter. The daytime fluctuation is affected by the sunrise and sunset effect, the occurring time of which have a little shift with seasons. However, the nightly one has a great dependence on season conditions.

  7. The Turbopause experiment: atmospheric stability and turbulent structure spanning the turbopause altitude

    Directory of Open Access Journals (Sweden)

    G. A. Lehmacher

    2011-12-01

    Full Text Available Very few sequences of high resolution wind and temperature measurements in the lower thermosphere are available in the literature, which makes it difficult to verify the simulation results of models that would provide better understanding of the complex dynamics of the region. To address this problem the Turbopause experiment used four rockets launched over a period of approximately two hours from Poker Flat Research Range, Alaska (64° N, 147° W on the night of 17–18 February 2009. All four rocket payloads released trimethyl aluminum trails for neutral wind and turbulence measurements, and two of the rockets carried ionization gauges and fixed-bias Langmuir probes measuring neutral and electron densities, small-scale fluctuations and neutral temperatures. Two lidars monitored temperature structure and sodium densities. The observations were made under quiet geomagnetic conditions and show persistence in the wind magnitudes and shears throughout the observing period while being modulated by inertia-gravity waves. High resolution temperature profiles show the winter polar mesosphere and lower thermosphere in a state of relatively low stability with several quasi-adiabatic layers between 74 and 103 km. Temperature and wind data were combined to calculate Richardson number profiles. Evidence for turbulence comes from simultaneous observations of density fluctuations and downward transport of sodium in a mixed layer near 75 km; the observation of turbulent fluctuations and energy dissipation from 87–90 km; and fast and irregular trail expansion at 90–93 km, and especially between 95 to 103 km. The regions of turbulent trails agree well with regions of quasi-adiabatic temperature gradients. Above 103 km, trail diffusion was mainly laminar; however, unusual features and vortices in the trail diffusion were observed up to 118 km that have not been as prevalent or as clearly evident in earlier trail releases.

  8. Functional activity of plasmid DNA after entry into the atmosphere of earth investigated by a new biomarker stability assay for ballistic spaceflight experiments.

    Directory of Open Access Journals (Sweden)

    Cora S Thiel

    Full Text Available Sounding rockets represent an excellent platform for testing the influence of space conditions during the passage of Earth's atmosphere and re-entry on biological, physical and chemical experiments for astrobiological purposes. We designed a robust functionality biomarker assay to analyze the biological effects of suborbital spaceflights prevailing during ballistic rocket flights. During the TEXUS-49 rocket mission in March 2011, artificial plasmid DNA carrying a fluorescent marker (enhanced green fluorescent protein: EGFP and an antibiotic resistance cassette (kanamycin/neomycin was attached on different positions of rocket exterior; (i circular every 90 degree on the outer surface concentrical of the payload, (ii in the grooves of screw heads located in between the surface application sites, and (iii on the surface of the bottom side of the payload. Temperature measurements showed two major peaks at 118 and 130 °C during the 780 seconds lasting flight on the inside of the recovery module, while outer gas temperatures of more than 1000 °C were estimated on the sample application locations. Directly after retrieval and return transport of the payload, the plasmid DNA samples were recovered. Subsequent analyses showed that DNA could be recovered from all application sites with a maximum of 53% in the grooves of the screw heads. We could further show that up to 35% of DNA retained its full biological function, i.e., mediating antibiotic resistance in bacteria and fluorescent marker expression in eukaryotic cells. These experiments show that our plasmid DNA biomarker assay is suitable to characterize the environmental conditions affecting DNA during an atmospheric transit and the re-entry and constitute the first report of the stability of DNA during hypervelocity atmospheric transit indicating that sounding rocket flights can be used to model the high-speed atmospheric entry of organics-laden artificial meteorites.

  9. Muscular condition and trunk stability in judoka of national and international level

    Directory of Open Access Journals (Sweden)

    Casto Juan-Recio

    2013-12-01

    Full Text Available Background: It is theorized that the development of the ability to stabilize the trunk may improve the performance of a judoka because it improves body balance control and optimizes force transmission from the lower extremities to the upper limbs. However, there is a lack of scientific evidence to establish a clear relationship between trunk stability and performance in judo.Aim: The purpose of this study was to determine whether the quantification of trunk stability and muscular strength and endurance allowed differentiation between national level (n = 7 and international level judoka (n = 6. In addition, the relationship between trunk stability and muscular strength and endurance of the muscles involved in trunk stability control was analyzed.Method: To assess trunk stability, trunk responses to sudden loads applied by a pneumatic mechanism were analyzed, as well as trunk postural control through an unstable sitting paradigm. Muscular strength and endurance were assessed via a flexion and extension trunk test using an isokinetic dynamometer.Results/Conclusions: International level judokas showed lower CoP displacement in the most complex task in unstable seat (7.00 ± 1.19 vs 8.93 ± 1.45 mm, T = .025 and higher absolute and relative peak torque in extensor muscles (7.05 ± 0.87 vs 5.74 ± 0.72 Nm, T = .013 than national level judoka. According to these results, core stability and trunk muscular condition are important qualities in the physical training of elite judoka. Correlational analysis found no relation between the analyzed variables, thus muscular strength and endurance appear to have a non-significant effect on performance in the trunk stability tests.

  10. STUDY OF THE EFFECT OF SOIL CEMENT ELEMENTS WHEN STABILIZING ROADBED MODEL IN LABORATORY CONDITIONS

    Directory of Open Access Journals (Sweden)

    V. D Petrenko

    2017-12-01

    Full Text Available Purpose.Experimental studies allow determining th estress-strain state or bearing capacity of the tested soil body. A preliminary study of the results of model testing and experimental research allows us to find the optimal solutions and to justify the parameters of the chosen technology. The purpose of this work is to determine the effect of soil cement elements when stabilizing the roadbed on a weak subgrade using the soil tests in laboratory conditions. Methodology. During the development of measures for the reconstruction and consolidation of soil bodies, their strength is tested using many methods. In all cases, we take into account the physical and mechanical characteristics of soils obtained as a result of research, as well as the existing regulatory documents. We performed the experimental studies by model testing in laboratory conditions. The model testing was based on the corresponding relationships between geometric sizes, mechanical properties of materials, loads and other factors on which the stress-strain state depends. During testing, the model was loaded gradually. We maintained each load level up to conditional stabilization of the soil deformation. We took the readings from measuring devices at each stage of loading after achievement of stabilization of soil mass deformations. We fixed the readings in the test journal. Findings. During stabilization with soil cement piles there is an improvement in mechanical properties, which leads to a decrease in deformations by 2…3.5 times. Each test is accompanied with graphs of relative deformations-stress dependence, as well as deformation curves and compression curves. According to the results of experimental stu-dies, it can be seen that when testing a model with cement piles, compared with a model without soil cement piles, the relative deformations of the samples taken prior to the experiment and after the experiment almost coincide, indicating a decrease in deformability under

  11. Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean basin

    Science.gov (United States)

    Raymond, Florian; Ullmann, Albin; Camberlin, Pierre; Oueslati, Boutheina; Drobinski, Philippe

    2018-06-01

    Very long dry spell events occurring during winter are natural hazards to which the Mediterranean region is extremely vulnerable, because they can lead numerous impacts for environment and society. Four dry spell patterns have been identified in a previous work. Identifying the main associated atmospheric conditions controlling the dry spell patterns is key to better understand their dynamics and their evolution in a changing climate. Except for the Levant region, the dry spells are generally associated with anticyclonic blocking conditions located about 1000 km to the Northwest of the affected area. These anticyclonic conditions are favourable to dry spell occurrence as they are associated with subsidence of cold and dry air coming from boreal latitudes which bring low amount of water vapour and non saturated air masses, leading to clear sky and absence of precipitation. These extreme dry spells are also partly related to the classical four Euro-Atlantic weather regimes are: the two phases of the North Atlantic Oscillation, the Scandinavian "blocking" or "East-Atlantic", and the "Atlantic ridge". Only the The "East-Atlantic", "Atlantic ridge" and the positive phase of the North Atlantic Oscillation are frequently associated with extremes dry spells over the Mediterranean basin but they do not impact the four dry spell patterns equally. Finally long sequences of those weather regimes are more favourable to extreme dry spells than short sequences. These long sequences are associated with the favourable prolonged and reinforced anticyclonic conditions

  12. Atmospheric dispersion characteristics of radioactive materials according to the local weather and emission conditions

    Energy Technology Data Exchange (ETDEWEB)

    An, Hye Yeon; Kang, Yoon Hee; Kim, Yoo Keun [Pusan National University, Busan (Korea, Republic of); Song, Sang Keun [Jeju National University, Jeju (Korea, Republic of)

    2016-12-15

    This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the {sup 137}Cs, using the WRF/HYSPLIT modeling system. The highest mean concentration of {sup 137}Cs occurred at 0900 LST under the ME4{sub 1} (main wind direction: SSW, daily average wind speed: 2.8 ms{sup -1}), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, 4.1 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4{sub 4} (S, 2.7 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 0300 LST because {sup 137}Cs stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1{sub 3} and EM2{sub 3} that had the maximum total number of particles showed the widest dispersion of {sup 137}Cs, while its highest mean concentration was estimated under the EM1{sub 1} considering the relatively narrow dispersion and high emission rate. This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of {sup 137}Cs concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where {sup 137}Cs is dispersed, the emission rate of {sup 137}Cs, and the number of emitted particles.

  13. Simulation of convection-stabilized low-current glow and arc discharges in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Naidis, G V

    2007-01-01

    A two-dimensional model of stationary convection-stabilized low-current glow and arc discharge columns in atmospheric-pressure air is developed which accounts for deviation of the plasma state from the local thermodynamic equilibrium (LTE). In addition to equations of energy, continuity and momentum (analogous to those used in LTE arc models), the non-LTE model includes balance equations for plasma species and for the vibrational energy of nitrogen molecules. The kinetic scheme is used which was developed recently for the simulation of low-current wall-stabilized discharges in air. Results of calculation of discharge parameters over a wide current range are presented. It is shown that the non-equilibrium effects are substantial at currents lower than ∼ 100 mA. The calculated plasma parameters agree with available experimental data

  14. A new delay-independent condition for global robust stability of neural networks with time delays.

    Science.gov (United States)

    Samli, Ruya

    2015-06-01

    This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. On the analytic and numeric optimisation of airplane trajectories under real atmospheric conditions

    Science.gov (United States)

    Gonzalo, J.; Domínguez, D.; López, D.

    2014-12-01

    From the beginning of aviation era, economic constraints have forced operators to continuously improve the planning of the flights. The revenue is proportional to the cost per flight and the airspace occupancy. Many methods, the first started in the middle of last century, have explore analytical, numerical and artificial intelligence resources to reach the optimal flight planning. In parallel, advances in meteorology and communications allow an almost real-time knowledge of the atmospheric conditions and a reliable, error-bounded forecast for the near future. Thus, apart from weather risks to be avoided, airplanes can dynamically adapt their trajectories to minimise their costs. International regulators are aware about these capabilities, so it is reasonable to envisage some changes to allow this dynamic planning negotiation to soon become operational. Moreover, current unmanned airplanes, very popular and often small, suffer the impact of winds and other weather conditions in form of dramatic changes in their performance. The present paper reviews analytic and numeric solutions for typical trajectory planning problems. Analytic methods are those trying to solve the problem using the Pontryagin principle, where influence parameters are added to state variables to form a split condition differential equation problem. The system can be solved numerically -indirect optimisation- or using parameterised functions -direct optimisation-. On the other hand, numerical methods are based on Bellman's dynamic programming (or Dijkstra algorithms), where the fact that two optimal trajectories can be concatenated to form a new optimal one if the joint point is demonstrated to belong to the final optimal solution. There is no a-priori conditions for the best method. Traditionally, analytic has been more employed for continuous problems whereas numeric for discrete ones. In the current problem, airplane behaviour is defined by continuous equations, while wind fields are given in a

  16. The Stability of Hydrogen-Rich Atmospheres of Earth-Like Planets

    Science.gov (United States)

    Zahnle, Kevin

    2016-01-01

    Understanding hydrogen escape is essential to understanding the limits to habitability, both for liquid water where the Sun is bright, but also to assess the true potential of H2 as a greenhouse gas where the Sun is faint. Hydrogen-rich primary atmospheres of Earth-like planets can result either from gravitational capture of solar nebular gases (with helium), or from impact shock processing of a wide variety of volatile-rich planetesimals (typically accompanied by H2O, CO2, and under the right circumstances, CH4). Most studies of hydrogen escape from planets focus on determining how fast the hydrogen escapes. In general this requires solving hydro- dynamic equations that take into account the acceleration of hydrogen through a critical transonic point and an energy budget that should include radiative heating and cooling, thermal conduction, the work done in lifting the hydrogen against gravity, and the residual heat carried by the hydrogen as it leaves. But for planets from which hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which is much simpler, and for which a relatively full-featured treatment of radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ is straightforward. Previous work has overlooked the fact that the H2 molecule is extremely efficient at exciting non-LTE CO2 15 micron emission, and thus that radiative cooling can be markedly more efficient when H2 is abundant. We map out the region of phase space in which terrestrial planets keep hydrogen-rich atmospheres, which is what we actually want to know for habitability. We will use this framework to reassess Tian et al's hypothesis that H2-rich atmospheres may have been rather long-lived on Earth itself. Finally, we will address the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than 1.6 Earth radii.

  17. Optical aging observation in suspended core tellurite microstructured fibers under atmospheric conditions

    Science.gov (United States)

    Strutynski, C.; Mouawad, O.; Picot-Clémente, J.; Froidevaux, P.; Désévédavy, F.; Gadret, G.; Jules, J.-C.; Kibler, B.; Smektala, F.

    2017-11-01

    Tellurite glasses are good candidates for the development of broadband supercontinuum (SC) laser sources in the 1-5 μm range. At the moment, beside very few exceptions, SC generation in TeO2-based microstructured optical fibers (MOFs) is limited to 3 μm in the mid-infrared (MIR). We present here an observation of an optical aging occurring in six-hole suspended-core tellurite MOFs. When exposed to atmospheric conditions, such fibers show an alteration of their transmission between 3 and 4 μm. This aging phenomenon leads to the growth of strong additional losses in this wavelengths range over time. Impact of the transmission degradation on spectral broadening is studied through numerical simulations of SC generation.

  18. Pressure and Humidity Measurements at the MSL Landing Site Supported by Modeling of the Atmospheric Conditions

    Science.gov (United States)

    Harri, A.; Savijarvi, H. I.; Schmidt, W.; Genzer, M.; Paton, M.; Kauhanen, J.; Atlaskin, E.; Polkko, J.; Kahanpaa, H.; Kemppinen, O.; Haukka, H.

    2012-12-01

    The Mars Science Laboratory (MSL) called Curiosity Rover landed safely on the Martian surface at the Gale crater on 6th August 2012. Among the MSL scientific objectives are investigations of the Martian environment that will be addressed by the Rover Environmental Monitoring Station (REMS) instrument. It will investigate habitability conditions at the Martian surface by performing a versatile set of environmental measurements including accurate observations of pressure and humidity of the Martian atmosphere. This paper describes the instrumental implementation of the MSL pressure and humidity measurement devices and briefly analyzes the atmospheric conditions at the Gale crater by modeling efforts using an atmospheric modeling tools. MSL humidity and pressure devices are based on proprietary technology of Vaisala, Inc. Humidity observations make use of Vaisala Humicap® relative humidity sensor heads and Vaisala Barocap® sensor heads are used for pressure observations. Vaisala Thermocap® temperature sensors heads are mounted in a close proximity of Humicap® and Barocap® sensor heads to enable accurate temperature measurements needed for interpretation of Humicap® and Barocap® readings. The sensor heads are capacitive. The pressure and humidity devices are lightweight and are based on a low-power transducer controlled by a dedicated ASIC. The transducer is designed to measure small capacitances in order of a few pF with resolution in order of 0.1fF (femtoFarad). The transducer design has a good spaceflight heritage, as it has been used in several previous missions, for example Mars mission Phoenix as well as the Cassini Huygens mission. The humidity device has overall dimensions of 40 x 25 x 55 mm. It weighs18 g, and consumes 15 mW of power. It includes 3 Humicap® sensor heads and 1 Thermocap®. The transducer electronics and the sensor heads are placed on a single multi-layer PCB protected by a metallic Faraday cage. The Humidity device has measurement range

  19. Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability.

    Science.gov (United States)

    Hoffmann, Lukas; Brinkmann, Kai O; Malerczyk, Jessica; Rogalla, Detlef; Becker, Tim; Theirich, Detlef; Shutsko, Ivan; Görrn, Patrick; Riedl, Thomas

    2018-02-14

    Despite the notable success of hybrid halide perovskite-based solar cells, their long-term stability is still a key-issue. Aside from optimizing the photoactive perovskite, the cell design states a powerful lever to improve stability under various stress conditions. Dedicated electrically conductive diffusion barriers inside the cell stack, that counteract the ingress of moisture and prevent the migration of corrosive halogen species, can substantially improve ambient and thermal stability. Although atomic layer deposition (ALD) is excellently suited to prepare such functional layers, ALD suffers from the requirement of vacuum and only allows for a very limited throughput. Here, we demonstrate for the first time spatial ALD-grown SnO x at atmospheric pressure as impermeable electron extraction layers for perovskite solar cells. We achieve optical transmittance and electrical conductivity similar to those in SnO x grown by conventional vacuum-based ALD. A low deposition temperature of 80 °C and a high substrate speed of 2.4 m min -1 yield SnO x layers with a low water vapor transmission rate of ∼10 -4 gm -2 day -1 (at 60 °C/60% RH). Thereby, in perovskite solar cells, dense hybrid Al:ZnO/SnO x electron extraction layers are created that are the key for stable cell characteristics beyond 1000 h in ambient air and over 3000 h at 60 °C. Most notably, our work of introducing spatial ALD at atmospheric pressure paves the way to the future roll-to-roll manufacturing of stable perovskite solar cells.

  20. Sex differences in the stability of conditioned pain modulation (CPM) among patients with chronic pain.

    Science.gov (United States)

    Martel, Marc O; Wasan, Ajay D; Edwards, Robert R

    2013-11-01

    To examine the temporal stability of conditioned pain modulation (CPM), formerly termed diffuse noxious inhibitory controls, among a sample of patients with chronic pain. The study also examined the factors that might be responsible for the stability of CPM. In this test-retest study, patients underwent a series of standardized psychophysical pain-testing procedures designed to assess CPM on two separate occasions (i.e., baseline and follow up). Patients also completed self-report measures of catastrophizing (Pain Catastrophizing Scale [PCS] and negative affect [NA]). Overall, results provided evidence for the stability of CPM among patients with chronic pain. Results, however, revealed considerable sex differences in the stability of CPM. For women, results revealed a significant test-retest correlation between baseline and follow-up CPM scores. For men, however, the test-retest correlation between baseline and follow-up CPM scores was not significant. Results of a Fisher's Z-test revealed that the stability of CPM was significantly greater for women than for men. Follow-up analyses revealed that the difference between men and women in the stability of CPM could not be accounted for by any demographic (e.g., age) and/or psychological factors (PCS and NA). Our findings suggest that CPM paradigms possess sufficient reliability to be incorporated into bedside clinical evaluation of patients with chronic pain, but only among women. The lack of CPM reproducibility/stability observed among men places limits on the potential use of CPM paradigms in clinical settings for the assessment of men's endogenous pain-inhibitory function. Wiley Periodicals, Inc.

  1. Correlation between meteorological conditions and the concentration of radionuclides in the ground layer of atmospheric air

    International Nuclear Information System (INIS)

    Krajny, E.; Osrodka, L.; Wojtylak, M.; Michalik, B.; Skowronek, J.

    2001-01-01

    The main goal of this work was to find correlation between the concentrations of radionuclides in outdoor air and the meteorological conditions like: atmospheric pressure, wind velocity and amount of precipitation. Because the sampling period of radionuclides concentrations in air was relatively long (7 days), the average levels of meteorological parameters have been calculated within the same time. Data of radionuclide concentrations and meteorological data have been analyzed in order to find statistical correlation. The regression analysis and one of AI methods, known as neural network, were applied. In general, analysis of the gathered data does not show any strong correlation between the meteorological conditions and the concentrations of the radionuclides in air. A slightly stronger correlation we found for radionuclides with relatively short half-lives. The only positive correlation has been found between the 7 Be concentration and air temperature (at the significance level α = 0.05). In our opinion, the lack of correlation was caused by a too long sampling time in measurements of radionuclides in outdoor air (a whole week). Results of analysis received by means of the artificial neuron network are better. We were able to find certain groups of meteorological conditions, related with the corresponding concentrations of particular radionuclides in air. Preliminary measurements of radon progeny concentration support the thesis that the link between changes of meteorological parameters and concentrations of radionuclides in ambient air must exist. (author)

  2. Sulphation of oil shale ash under atmospheric and pressurized combustion conditions

    International Nuclear Information System (INIS)

    Kuelaots, I.; Yrjas, P.; Hupa, M.; Ots, A.

    1995-01-01

    One of the main problems in conventional combustion boilers firing pulverized oil shale is the corrosion and fouling of heating surfaces, which is caused by sulphur compounds. Another major problem, from the environmental point of view, are the high SO 2 emissions. Consequently, the amount of sulphur in flue gases must be reduced. One alternative to lower the SO 2 , concentration is the use of new technologies, such as pressurized fluidized bed combustion (PFBC). In FBC processes, the sulphur components are usually removed by the addition of limestone (CaCO 3 ) or dolomite (CaCO 3 x MgCO 3 ) into the bed. The calcium in these absorbents react with SO 2 , producing solid CaSO 4 . However, when burning oil shale, there would be no need to add limestone or dolomite into the bed, due to the initially high limestone content in the fuel (molar ratio Ca/S =10). The capture of sulphur by oil shale ashes has been studied using a pressurized thermogravimetric apparatus (PTGA). The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. Four different materials were tested - one cyclone ash from an Estonian oil shale boiler, two size fractions of Estonian oil shale and, one fraction of Israeli oil shale. The cyclone ash was found to be the poorest sulphur absorbent. In general, the results from the sulphur capture experiments under both atmospheric and pressurized fluidized bed conditions showed that the oil shale can capture not only its own sulphur but also significant amounts of additional sulphur from another fuel if the fuels are mixed together. (author)

  3. Stabilization of dimeric β-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions.

    Science.gov (United States)

    Vazquez-Ortega, Perla Guadalupe; Alcaraz-Fructuoso, Maria Teresa; Rojas-Contreras, Juan A; López-Miranda, Javier; Fernandez-Lafuente, Roberto

    2018-03-01

    The dimeric enzyme β-glucosidase from Aspergillus niger has been immobilized on different amino-agarose beads at pH 5 and 7, exploiting the versatility of glutaraldehyde. The stability of the free enzyme depended on enzyme concentration. Immobilization via ion exchange improved enzyme stability/activity, depending on the immobilization pH. However, the enzyme was desorbed in 75 mM NaCl at pH 7 and some stability/enzyme concentration dependence still existed. of these biocatalysts with glutaraldehyde increased enzyme stability (e.g. at pH 5, after incubation under conditions where the enzyme just ionically exchanged was fully inactivated, the activity of the glutaraldehyde treated enzyme remained unaltered). Immobilization on glutaraldehyde pre-activated supports yielded a higher increase in enzyme activity, but the stabilization was lower. While when measuring the enzyme activity at pH 4 there were no changes after immobilization, all immobilized enzymes were more active than the free enzyme at pH 6 and 7 (2-3 times). The Ki/Km ratio did not significantly decrease in any immobilized biocatalysts, and in some cases it worsened in a significant way (by a 9 fold factor using preactivated supports). The new biocatalysts are significantly more stable and avoid enzyme subunit desorption, being the immobilization pH a key point in their design. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The Titan Sky Simulator ™ - Testing Prototype Balloons in Conditions Approximating those in Titan's Atmosphere

    Science.gov (United States)

    Nott, Julian

    This paper will describe practical work flying prototype balloons in the "The Titan Sky Simulator TM " in conditions approximating those found in Titan's atmosphere. Saturn's moon, Titan, is attracting intense scientific interest. This has led to wide interest in exploring it with Aerobots, balloons or airships. Their function would be similar to the Rovers exploring Mars, but instead of moving laboriously across the rough terrain on wheels, they would float freely from location to location. To design any balloon or airship it is essential to know the temperature of the lifting gas as this influences the volume of the gas, which in turn influences the lift. To determine this temperature it is necessary to know how heat is transferred between the craft and its surroundings. Heat transfer for existing balloons is well understood. However, Titan conditions are utterly different from those in which balloons have ever been flown, so heat transfer rates cannot currently be calculated. In particular, thermal radiation accounts for most heat transfer for existing balloons but over Titan heat transfer will be dominated by convection. To be able to make these fundamental calculations, it is necessary to get fundamental experimental data. This is being obtained by flying balloons in a Simulator filled with nitrogen gas at very low temperature, about 95° K / minus 180° C, typical of Titan's temperatures. Because the gas in the Simulator is so cold, operating at atmospheric pressure the density is close to that of Titan's atmosphere. "The Titan Sky Simulator TM " has an open interior approximately 4.5 meter tall and 2.5 meters square. It has already been operated at 95° K/-180° C. By the time of the Conference it is fully expected to have data to present from actual balloons flying at this temperature. Perhaps the most important purpose of this testing is to validate numerical [computational fluid dynamics] models being developed by Tim Colonius of Caltech. These numerical

  5. Identification of voltage stability condition of a power system using measurements of bus variables

    Directory of Open Access Journals (Sweden)

    Durlav Hazarika

    2014-12-01

    Full Text Available Several online methods were proposed for investigating the voltage stability condition of an interconnected power system using the measurements of voltage and current phasors at a bus. For this purpose, phasor measurement units (PMUs are used. A PMU is a device which measures the electrical waves on an electrical network, using a common time source (reference bus for synchronisation. This study proposes a method for online monitoring of voltage stability condition of a power system using measurements of bus variables namely – (i real power, (ii reactive power and (iii bus voltage magnitude at a bus. The measurements of real power, reactive power and bus voltage magnitude could be extracted/captured from a smart energy meter. The financial involvement for implementation of the proposed method would significantly lower compared with the PMU-based method.

  6. THE EFFECT OF DIFFERENT EXPOSURE CONDITIONS ON THE CHARACTERISTICS OF THE MINERAL MATRICES STABILIZING HAZARDOUS WASTE

    Directory of Open Access Journals (Sweden)

    Anna Król

    2016-05-01

    Full Text Available Mineral binders are more and more often used in the difficult process of disposal of inorganic hazardous waste containing heavy metals. Composites solidifying hazardous waste are deposited in the environment, which exposes them to the interaction of many variable factors. The paper presents the effect of different exposure conditions on physical and mechanical properties of concrete stabilizing galvanic sewage sludge (GO. The effect of the cyclic freezing and thawing, carbon dioxide (carbonation and high temperatures (200 °C, 400 °C, 600 °C on the properties of stabilizing matrices has been described. The results, in most cases, show a loss of durability of composites solidifying sewage sludge (GO by the influence of external conditions.

  7. Microprocessor supervised stability control system for the united power system of Middle Volga in fault conditions

    Energy Technology Data Exchange (ETDEWEB)

    Berdnikov, V I; Birgel, E R; Kovalev, V D; Kuznestov, A N

    1994-12-31

    The development of the 500 kV UPS of Middle Volga, the complication of its configuration and operating conditions particularly in connection with concentration of the generating power at Balakovo NPS have aggravated the problem of stability of the Middle Volga UPS when high power is transmitted along the 500 kV transient system. In this case the necessity for improving control actions` dosage accuracy has also appeared. This work discusses solution to the above mentioned issue. (author) 3 figs.

  8. Stability of selected volatile contact allergens in different patch test chambers under different storage conditions

    DEFF Research Database (Denmark)

    Mose, Kristian Fredløv; Andersen, Klaus Ejner; Christensen, Lars Porskjaer

    2012-01-01

    Background. Patch test preparations of volatile substances may evaporate during storage, thereby giving rise to reduced patch test concentrations. Objectives. To investigate the stability of selected acrylates/methacrylates and fragrance allergens in three different test chambers under different...... both storage conditions, whereas MMA and 2-HPA required cool storage for maintenance of the limit. Conclusion. The Van der Bend® transport container was the best device for storage of samples of volatile contact allergens....

  9. The dependence of sea surface slope on atmospheric stability and swell conditions

    Science.gov (United States)

    Hwang, Paul A.; Shemdin, Omar H.

    1988-01-01

    A tower-mounted optical device is used to measure the two-orthogonal components of the sea surface slope. The results indicate that an unstable stratification at the air-sea interface tends to enhance the surface roughness. The presence of a long ocean swell system steers the primary direction of shortwave propagation away from wind direction, and may increase or reduce the mean square slope of the sea surface.

  10. F John's stability conditions versus A Carasso's SECB constraint for backward parabolic problems

    International Nuclear Information System (INIS)

    Lee, Jinwoo; Sheen, Dongwoo

    2009-01-01

    In order to solve backward parabolic problems John (1960 Commun. Pure. Appl. Math.13 551–85) introduced the two constraints ||u(T)|| ≤ M and ||u(0) − g|| ≤ δ where u(t) satisfies the backward heat equation for t in (0, T) with the initial data u(0). The slow evolution from the continuation boundary (SECB) constraint was introduced by Carasso (1994 SIAM J. Numer. Anal. 31 1535–57) to attain continuous dependence on data for backward parabolic problems even at the continuation boundary t = T. The additional 'SECB constraint' guarantees a significant improvement in stability up to t = T. In this paper, we prove that the same type of stability can be obtained by using only two constraints among the three. More precisely, we show that the a priori boundedness condition ||u(T)|| ≤ M is redundant. This implies that Carasso's SECB condition can be used to replace the a priori boundedness condition of John with an improved stability estimate. Also, a new class of regularized solutions is introduced for backward parabolic problems with an SECB constraint. The new regularized solutions are optimally stable and we also provide a constructive scheme to compute. Finally, numerical examples are provided

  11. Stability of selected volatile contact allergens in different patch test chambers under different storage conditions.

    Science.gov (United States)

    Mose, Kristian F; Andersen, Klaus E; Christensen, Lars Porskjaer

    2012-04-01

    Patch test preparations of volatile substances may evaporate during storage, thereby giving rise to reduced patch test concentrations. To investigate the stability of selected acrylates/methacrylates and fragrance allergens in three different test chambers under different storage conditions. Petrolatum samples of methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (2-HEMA), 2-hydroxypropyl acrylate (2-HPA), cinnamal and eugenol in patch test concentrations were stored in three different test chambers (IQ chamber™, IQ Ultimate™, and Van der Bend® transport container) at room temperature and in a refrigerator. The samples were analysed in triplicate with high-performance liquid chromatography. The decrease in concentration was substantial for all five allergens under both storage conditions in IQ chamber™ and IQ Ultimate™, with the exception of 2-HEMA during storage in the refrigerator. For these two chamber systems, the contact allergen concentration dropped below the stability limit in the following order: MMA, cinnamal, 2-HPA, eugenol, and 2-HEMA. In the Van der Bend® transport container, the contact allergens exhibited acceptable stability under both storage conditions, whereas MMA and 2-HPA required cool storage for maintenance of the limit. The Van der Bend® transport container was the best device for storage of samples of volatile contact allergens. © 2012 John Wiley & Sons A/S.

  12. On Some Sufficiency-Type Stability and Linear State-Feedback Stabilization Conditions for a Class of Multirate Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    M. De la Sen

    2018-05-01

    Full Text Available This paper presents and discusses the stability of a discrete multirate sampling system whose sets of sampling rates (or sampling periods are the integer multiple of those operating on all the preceding substates. Each of such substates is associated with a particular sampling rate. The sufficiency-type stability conditions are derived based on simple conditions on the norm, spectral radius and numerical radius of the matrix of the dynamics of a system parameterized at the largest sampling period.

  13. 29 CFR 1918.94 - Ventilation and atmospheric conditions (See also § 1918.2, definitions of Hazardous cargo...

    Science.gov (United States)

    2010-07-01

    ....94 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING General Working Conditions... 29 Labor 7 2010-07-01 2010-07-01 false Ventilation and atmospheric conditions (See also § 1918.2...

  14. Effect Analysis on the Radiation Dose Rate of Nagasaki Atomic Bomb Survivors by Atmospheric Condition

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ji Sun; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Shin, Chang Ho [Innovative Technology Center for Radiation Safety, Seoul (Korea, Republic of); Kim, Do Heon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The Dosimetry System 2002 (DS02) had been established to evaluate the radiation doses for the atomic bomb survivors in Hiroshima and Nagasaki. The radiation effects of neutrons and gamma-rays emitted from the atomic bombs detonated at both cities were analyzed, and two types of radiation transport codes (i.e., MCNP4C and DORT) were employed in their studies. It was specifically investigated for contribution of each type of radiations to total dose. However, it is insufficient to examine the effects by various environmental factors such as weather conditions, because their calculations were only performed under certain condition at the times of the bombings. In addition, the scope of them does not include acute radiation injury of the atomic bomb survivors in spite of important information for investigating hazard of unexpected radiation accident. Therefore, this study analyzed the contribution of primary and secondary effects (i.e., skyshine and groundshine) of neutrons emitted from the Nagasaki atomic bomb. These analyses were performed through a series of radiation transport calculations by using MCNPX 2.6.0 code with variations of atmospheric density. The acute radiation injury by prompt neutrons was also evaluated as a function of distance from the hypocenter, where hypocenter is the point on the ground directly beneath the epicenter which is the burst point of the bomb in air

  15. A comparative modeling study of a dual tracer experiment in a large lysimeter under atmospheric conditions

    Science.gov (United States)

    Stumpp, C.; Nützmann, G.; Maciejewski, S.; Maloszewski, P.

    2009-09-01

    SummaryIn this paper, five model approaches with different physical and mathematical concepts varying in their model complexity and requirements were applied to identify the transport processes in the unsaturated zone. The applicability of these model approaches were compared and evaluated investigating two tracer breakthrough curves (bromide, deuterium) in a cropped, free-draining lysimeter experiment under natural atmospheric boundary conditions. The data set consisted of time series of water balance, depth resolved water contents, pressure heads and resident concentrations measured during 800 days. The tracer transport parameters were determined using a simple stochastic (stream tube model), three lumped parameter (constant water content model, multi-flow dispersion model, variable flow dispersion model) and a transient model approach. All of them were able to fit the tracer breakthrough curves. The identified transport parameters of each model approach were compared. Despite the differing physical and mathematical concepts the resulting parameters (mean water contents, mean water flux, dispersivities) of the five model approaches were all in the same range. The results indicate that the flow processes are also describable assuming steady state conditions. Homogeneous matrix flow is dominant and a small pore volume with enhanced flow velocities near saturation was identified with variable saturation flow and transport approach. The multi-flow dispersion model also identified preferential flow and additionally suggested a third less mobile flow component. Due to high fitting accuracy and parameter similarity all model approaches indicated reliable results.

  16. Future changes in atmospheric condition for the baiu under RCP scenarios

    Science.gov (United States)

    Okada, Y.; Takemi, T.; Ishikawa, H.

    2015-12-01

    This study focuses on atmospheric circulation fields during the baiu in Japan with global warming projection experimental data conducted using a 20-km mesh global atmospheric model (MRI-AGCM3.2) under Representative Concentration Pathways (RCP) scenarios. This model also used 4 different sea surface temperature (SST) initial conditions. Support of this dataset is provided by the Meteorological Research Institute (MRI). The baiu front indicated by the north-south gradient of moist static energy moves northward in present-day climate, whereas this northward shift in future climate simulations is very slow during May and June. In future late baiu season, the baiu front stays in the northern part of Japan even in August. As a result, the rich water vapor is transported around western Japan and the daily precipitation amount will increase in August. This northward shift of baiu front is associated with the westward expansion of the enhanced the North Pacific subtropical high (NPSH) into Japan region. However, the convective activity around northwest Pacific Ocean is inactive and is unlikely to occur convective jump (CJ). These models show that the weak trough exists in upper troposphere around Japan. Therefore, the cold advection stays in the northern part of Japan during June. In July, the front due to the strengthening of the NPSH moves northward, and then it stays until August. This feature is often found between the clustered SSTs, Cluster 2 and 3. The mean field of future August also show the inflow of rich water vapor content to Japan islands. In this model, the extreme rainfall suggested tends to almost increase over the Japan islands during future summer. This work was conducted under the Program for Risk Information on Climate Change supported by the Ministry of Education, Culture, Sports, Science, and Technology-Japan (MEXT).

  17. Thermal stability of inorganic and organic compounds in atmospheric particulate matter

    Science.gov (United States)

    Perrino, Cinzia; Marconi, Elisabetta; Tofful, Luca; Farao, Carmela; Materazzi, Stefano; Canepari, Silvia

    2012-07-01

    The thermal behaviour of atmospheric particulate matter (PM) has been investigated by using different analytical approaches to explore the added value offered by these technique in environmental studies. The thermogravimetric analysis (TGA), carried out on both certified material and real PM samples, has shown that several mass losses can be detected starting from 80 °C up to above 500 °C, when pyrolysis occur. Thermo-optical analysis of PM and ion chromatographic analysis of the residual have shown that the mass losses in the temperature range 80-180 °C are not justified by the release of either organic or inorganic compounds; it can be thus attributed to the release of weakly and strongly bound water. Release of water has also been evidenced in the temperature range 225-275 °C. The release of ammonium chloride and nitrate has been detected only above 80 °C. This indicates that the release of nitric acid, hydrochloric acid and ammonia, which is observed downstream of the filters during the sampling of atmospheric PM at ambient temperature, cannot be reproduced off-line, after the end of the sampling. We successfully explored one of the possible explanations, that is the desorption of HNO3, HCl and NH3 adsorbed on collected particles. NH4NO3 and NH4Cl, which can be thermally released by the filter, exhibit a different thermal behaviour from NaNO3 and NaCl, which are thermally stable up to 370 °C. This different behaviour can be used to discriminate between natural and secondary sources of atmospheric inorganic salts, as the interconversion that is observed when heating mixtures of pure salts resulted to be not relevant when heating real PM samples.

  18. Leaching behavior and chemical stability of copper butyl xanthate complex under acidic conditions.

    Science.gov (United States)

    Chang, Yi Kuo; Chang, Juu En; Chiang, Li Choung

    2003-08-01

    Although xanthate addition can be used for treating copper-containing wastewater, a better understanding of the leaching toxicity and the stability characteristics of the copper xanthate complexes formed is essential. This work was undertaken to evaluate the leaching behavior of copper xanthate complex precipitates by means of toxicity characteristics leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) using 1 N acetic acid solution as the leachant. Also, the chemical stability of the copper xanthate complex during extraction has been examined with the studying of variation of chemical structure using UV-vis, Fourier transform infrared and X-ray photoelectron spectroscopies (XPS). Both TCLP and SDLT results showed that a negligible amount of copper ion was leached out from the copper xanthate complex precipitate, indicating that the complex exhibited a high degree of copper leaching stability under acidic conditions. Nevertheless, chemical structure of the copper xanthate complex precipitate varied during the leaching tests. XPS data suggested that the copper xanthate complex initially contained both cupric and cuprous xanthate, but the unstable cupric xanthate change to the cuprous form after acid extraction, indicating the cuprous xanthate to be the final stabilizing structure. Despite that, the changes of chemical structure did not induce the rapid leaching of copper from the copper xanthate complex.

  19. The fate of Mercury in Arctic regions: New understanding of atmospheric chemical processes and mercury stability in snow.

    Science.gov (United States)

    Steffen, A.; Ferrari, C.; Dommergue, A.; Scherz, T.; Lawson, G.; Leiatch, R.

    2006-12-01

    Mercury is a known toxic pollutant in the Arctic environment. Atmospheric mercury depletion events (AMDEs) have been studied in the Arctic since 1995. While advances in understanding this newly discovered cycling of mercury in the atmosphere have been made, much of the chemistry and the impact of this annually reoccurring event to the Arctic ecosystem are not well understood. Four years of continuous measurements at Alert, Canada of so-called reactive gaseous mercury (RGM) and mercury associated to particles (PHg) coupled with ongoing snow sampling have produced new information on the atmospheric chemistry and deposition of these mercury species to the Arctic. A distinct pattern during the springtime period in the distribution of these atmospheric mercury species has emerged. This pattern is characterized by the predominance of PHg concentration at the onset of the AMDEs. During the latter part of the AMDE season, there is an obvious swicth in the speciation of mercury to RGM as the main component during AMDEs. This swicth from PHg to RGM is clearly linked to a significant increase of mercury in the snow. In addition, concentrations of PHg are clearly linked with particles in the air that are primarily associated with Arctic haze. Recently, similar results have also been observed in Ny-Alesund (Svalbard). Further observations indicate that once deposited, the deposited mercury appears to evolve chemically in the snow. This change in mercury may impact the transfer of mercury to the environment during snow melt. These first time observed links between atmospheric conditions and subsequent deposition of mercury may help to ascertain the conditions throughout the Arctic as to when significant deposition of mercury will occur. It is proposed that should the concentration of atmospheric particles increase in the Arctic due to long range transport from emission sources, an increase in the deposition of mercury to this environment will increase during the springtime

  20. Stability of serum, plasma and urine osmolality in different storage conditions: Relevance of temperature and centrifugation.

    Science.gov (United States)

    Sureda-Vives, Macià; Morell-Garcia, Daniel; Rubio-Alaejos, Ana; Valiña, Laura; Robles, Juan; Bauça, Josep Miquel

    2017-09-01

    Osmolality reflects the concentration of all dissolved particles in a body fluid, and its measurement is routinely performed in clinical laboratories for the differential diagnosis of disorders related with the hydrolytic balance regulation, the renal function and in small-molecule poisonings. The aim of the study was to assess the stability of serum, plasma and urine osmolality through time and under different common storage conditions, including delayed centrifugation. Blood and urine samples were collected, and classified into different groups according to several preanalytical variables: serum or plasma lithium-heparin tubes; spun or unspun; stored at room temperature (RT), at 4°C or frozen at -21°C. Aliquots from each group were assayed over time, for up to 14days. Statistical differences were based on three different international performance criteria. Whole blood stability was higher in the presence of anticoagulant. Serum osmolality was stable for 2days at RT and 8days at 4°C, while plasma was less stable when refrigerated. Urine stability was 5days at RT, 4days at 4°C and >14days when frozen. Osmolality may be of great interest for the management of several conditions, such as in case of a delay in the clinical suspicion, or in case of problems in sample collection or processing. The ability to obtain reliable results for samples kept up to 14days also offers the possibility to retrospectively assess baseline values for patients which may require it. Copyright © 2017. Published by Elsevier Inc.

  1. Effect of ohmic heating processing conditions on color stability of fungal pigments.

    Science.gov (United States)

    Aguilar-Machado, Diederich; Morales-Oyervides, Lourdes; Contreras-Esquivel, Juan C; Aguilar, Cristóbal; Méndez-Zavala, Alejandro; Raso, Javier; Montañez, Julio

    2017-06-01

    The aim of this work was to analyze the effect of ohmic heating processing conditions on the color stability of a red pigment extract produced by Penicillium purpurogenum GH2 suspended in a buffer solution (pH 6) and in a beverage model system (pH 4). Color stability of pigmented extract was evaluated in the range of 60-90 ℃. The degradation pattern of pigments was well described by the first-order (fractional conversion) and Bigelow model. Degradation rate constants ranged between 0.009 and 0.088 min -1 in systems evaluated. Significant differences in the rate constant values of the ohmic heating-treated samples in comparison with conventional thermal treatment suggested a possible effect of the oscillating electric field generated during ohmic heating. The thermodynamic analysis also indicated differences in the color degradation mechanism during ohmic heating specifically when the pigment was suspended in the beverage model system. In general, red pigments produced by P. purpurogenum GH2 presented good thermal stability under the range of the evaluated experimental conditions, showing potential future applications in pasteurized food matrices using ohmic heating treatment.

  2. Effects of artificial aging conditions on yttria-stabilized zirconia implant abutments.

    Science.gov (United States)

    Basílio, Mariana de Almeida; Cardoso, Kátia Vieira; Antonio, Selma Gutierrez; Rizkalla, Amin Sami; Santos Junior, Gildo Coelho; Arioli Filho, João Neudenir

    2016-08-01

    Most ceramic abutments are fabricated from yttria-stabilized tetragonal zirconia (Y-TZP). However, Y-TZP undergoes hydrothermal degradation, a process that is not well understood. The purpose of this in vitro study was to assess the effects of artificial aging conditions on the fracture load, phase stability, and surface microstructure of a Y-TZP abutment. Thirty-two prefabricated Y-TZP abutments were screwed and tightened down to external hexagon implants and divided into 4 groups (n = 8): C, control; MC, mechanical cycling (1×10(6) cycles; 10 Hz); AUT, autoclaving (134°C; 5 hours; 0.2 MPa); and TC, thermal cycling (10(4) cycles; 5°/55°C). A single-load-to-fracture test was performed at a crosshead speed of 0.5 mm/min to assess the assembly's resistance to fracture (ISO Norm 14801). X-ray diffraction (XRD) analysis was applied to observe and quantify the tetragonal-monoclinic (t-m) phase transformation. Representative abutments were examined with high-resolution scanning electron microscopy (SEM) to observe the surface characteristics of the abutments. Load-to-fracture test results (N) were compared by ANOVA and Tukey test (α=.05). XRD measurements revealed the monoclinic phase in some abutments after each aging condition. All the aging conditions reduced the fracture load significantly (Paging conditions. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Remote Raman - laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Clegg, Sanuel M [Los Alamos National Laboratory; Barefield, James E [Los Alamos National Laboratory; Humphries, Seth D [Los Alamos National Laboratory; Wiens, Roger C [Los Alamos National Laboratory; Vaniman, D. T. [Los Alamos National Laboratory; Sharma, S. K. [UNIV OF HAWAII; Misra, A. K. [UNIV OF HAWAII; Dyar, M. D. [MT. HOLYOKE COLLEGE; Smrekar, S. E. [JET PROPULSION LAB.

    2010-12-13

    The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focus of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to

  4. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    DEFF Research Database (Denmark)

    Selsted, Merete Bang

    understanding plant and soil responses to such changes are necessary, as ecosystems potentially can ameliorate or accelerate global change. To predict the feedback of ecosystems to the atmospheric CO2 concentrations experiments imitating global change effects are therefore an important tool. This work....... Fluxes of CO2 from soil to atmosphere depend on a physical equilibrium between those two medias, why it is important to keep the CO2 gradient between soil and atmosphere unchanged during measurement. Uptake to plants via photosynthesis depends on a physiological process, which depends strongly...... on the atmospheric CO2 concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO2 concentration and the CO2 soil-atmosphere gradient....

  5. On the conditions of exponential stability in active disturbance rejection control based on singular perturbation analysis

    Science.gov (United States)

    Shao, S.; Gao, Z.

    2017-10-01

    Stability of active disturbance rejection control (ADRC) is analysed in the presence of unknown, nonlinear, and time-varying dynamics. In the framework of singular perturbations, the closed-loop error dynamics are semi-decoupled into a relatively slow subsystem (the feedback loop) and a relatively fast subsystem (the extended state observer), respectively. It is shown, analytically and geometrically, that there exists a unique exponential stable solution if the size of the initial observer error is sufficiently small, i.e. in the same order of the inverse of the observer bandwidth. The process of developing the uniformly asymptotic solution of the system reveals the condition on the stability of the ADRC and the relationship between the rate of change in the total disturbance and the size of the estimation error. The differentiability of the total disturbance is the only assumption made.

  6. Evaporation and stability of biodiesel and blends with diesel in ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zeyu; Hollebone, Bruce P.; Wang, Zhendi; Yang, Chun; Landriault, Mike [Emergencies Science and Technology Section, Environment Canada (Canada)], email: bruce.hollebone@ec.gc.ca

    2011-07-01

    This study investigates the weathering behavior of biodiesel fuels or fuel blends with diesel in ambient conditions. The goal of this study is to reveal the influencing factors on biodiesel storage stability, and weathering and evaporation rates. Samples of Fatty Acid Methyl Ester (FAME) based biodiesel compounds, ultra-low sulfur diesel blends, and petroleum diesels were prepared separately for testing. After weathering the samples for 190 days, a series of chemical procedures, including hydrocarbon extraction and gas chromatography, were conducted to reveal the aging process of the mixtures. Due to their high boiling points, biodiesel concentrations in FAME compounds generally demonstrated lower evaporation rates than petroleum diesels, which showed a fast and high mass loss. Moreover, it was shown that adding biodiesel components to fuel blends did not affect the evaporation of diesel hydrocarbon. In general, FAME compounds exhibited good storage stability under ambient weathering.

  7. WIND SPEED AND ATMOSPHERIC STABILITY TRENDS FOR SELECTED UNITED STATES SURFACE STATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R; Allen H. Weber, A

    2006-11-01

    Recently it has been suggested that global warming and a decrease in mean wind speeds over most land masses are related. Decreases in near surface wind speeds have been reported by previous investigators looking at records with time spans of 15 to 30 years. This study focuses on United States (US) surface stations that have little or no location change since the late 1940s or the 1950s--a time range of up to 58 years. Data were selected from 62 stations (24 of which had not changed location) and separated into ten groups for analysis. The group's annual averages of temperature, wind speed, and percentage of Pasquill-Gifford (PG) stability categories were fitted with linear least squares regression lines. The results showed that the temperatures have increased for eight of the ten groups as expected. Wind speeds have decreased for nine of the ten groups. The mean slope of the wind speed trend lines for stations within the coterminous US was -0.77 m s{sup -1} per century. The percentage frequency of occurrence for the neutral (D) PG stability category decreased, while that for the unstable (B) and the stable (F) categories increased in almost all cases except for the group of stations located in Alaska.

  8. Global stability and tumor clearance conditions for a cancer chemotherapy system

    Science.gov (United States)

    Valle, Paul A.; Starkov, Konstantin E.; Coria, Luis N.

    2016-11-01

    In this paper we study the global dynamics of a cancer chemotherapy system presented by de Pillis et al. (2007). This mathematical model describes the interaction between tumor cells, effector-immune cells, circulating lymphocytes and chemotherapy treatment. By applying the localization method of compact invariant sets, we find lower and upper bounds for these three cells populations. Further, we define a bounded domain in R+,04 where all compact invariant sets of the system are located and provide conditions under which this domain is positively invariant. We apply LaSalle's invariance principle and one result concerning two-dimensional competitive systems in order to derive sufficient conditions for tumor clearance and global asymptotic stability of the tumor-free equilibrium point. These conditions are computed by using bounds of the localization domain and they are given in terms of the chemotherapy treatment. Finally, we perform numerical simulations in order to illustrate our results.

  9. Relation between the Atmospheric Boundary Layer and Impact Factors under Severe Surface Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Yinhuan Ao

    2017-01-01

    Full Text Available This paper reported a comprehensive analysis on the diurnal variation of the Atmospheric Boundary Layer (ABL in summer of Badain Jaran Desert and discussed deeply the effect of surface thermal to ABL, including the Difference in Surface-Air Temperature (DSAT, net radiation, and sensible heat, based on limited GPS radiosonde and surface observation data during two intense observation periods of experiments. The results showed that (1 affected by topography of the Tibetan Plateau, the climate provided favorable external conditions for the development of Convective Boundary Layer (CBL, (2 deep CBL showed a diurnal variation of three- to five-layer structure in clear days and five-layer ABL structure often occurred about sunset or sunrise, (3 the diurnal variation of DSAT influenced thickness of ABL through changes of turbulent heat flux, (4 integral value of sensible heat which rapidly converted by surface net radiation had a significant influence on the growth of CBL throughout daytime. The cumulative effect of thick RML dominated the role after CBL got through SBL in the development stage, especially in late summer, and (5 the development of CBL was promoted and accelerated by the variation of wind field and distribution of warm advection in high and low altitude.

  10. Instrumentation for comparing night sky quality and atmospheric conditions of CTA site candidates

    International Nuclear Information System (INIS)

    Fruck, C.; Schweizer, T.; Häfner, D.; Lorentz, E.; Teshima, M.; Gaug, M.; Ernenwein, J.-P.; Costantini, H.; Mandát, D.; Pech, M.; Bulik, T.; Cieslar, M.; Dominik, M.; Ebr, J.; Garczarczyk, M.; Pareschi, G.; Puerto-Giménez, I.

    2015-01-01

    Many atmospheric and climatic criteria have to be taken into account for the selection of a suitable site for the next generation of imaging air-shower Cherenkov telescopes, the ''Cherenkov Telescope Array'' CTA. Such data are not available with sufficient precision, thus a comparison of the proposed sites and final decision based on a comprehensive characterization is impossible. Identical cross-calibrated instruments have been developed which allow for precise comparison between sites, the cross-validation of existing data, and the ground-validation of satellite data. The site characterization work package of the CTA consortium opted to construct and deploy 9 copies of an autonomous multi-purpose weather sensor, incorporating an infrared cloud sensor, a newly developed sensor for measuring the light of the night sky, and an All-Sky-Camera, the whole referred to as Autonomous Tool for Measuring Observatory Site COnditions PrEcisely (ATMOSCOPE). We present here the hardware that was combined into the ATMOSCOPE and characterize its performance

  11. Characterization of transient discharges under atmospheric-pressure conditions applying nitrogen photoemission and current measurements

    International Nuclear Information System (INIS)

    Keller, Sandra; Rajasekaran, Priyadarshini; Bibinov, Nikita; Awakowicz, Peter

    2012-01-01

    The plasma parameters such as electron distribution function and electron density of three atmospheric-pressure transient discharges namely filamentary and homogeneous dielectric barrier discharges in air, and the spark discharge of an argon plasma coagulation (APC) system are determined. A combination of numerical simulation as well as diagnostic methods including current measurement and optical emission spectroscopy (OES) based on nitrogen emissions is used. The applied methods supplement each other and resolve problems, which arise when these methods are used individually. Nitrogen is used as a sensor gas and is admixed in low amount to argon for characterizing the APC discharge. Both direct and stepwise electron-impact excitation of nitrogen emissions are included in the plasma-chemical model applied for characterization of these transient discharges using OES where ambiguity arises in the determination of plasma parameters under specific discharge conditions. It is shown that the measured current solves this problem by providing additional information useful for the determination of discharge-specific plasma parameters. (paper)

  12. Maximum Evaporation Rates of Water Droplets Approaching Obstacles in the Atmosphere Under Icing Conditions

    Science.gov (United States)

    Lowell, H. H.

    1953-01-01

    When a closed body or a duct envelope moves through the atmosphere, air pressure and temperature rises occur ahead of the body or, under ram conditions, within the duct. If cloud water droplets are encountered, droplet evaporation will result because of the air-temperature rise and the relative velocity between the droplet and stagnating air. It is shown that the solution of the steady-state psychrometric equation provides evaporation rates which are the maximum possible when droplets are entrained in air moving along stagnation lines under such conditions. Calculations are made for a wide variety of water droplet diameters, ambient conditions, and flight Mach numbers. Droplet diameter, body size, and Mach number effects are found to predominate, whereas wide variation in ambient conditions are of relatively small significance in the determination of evaporation rates. The results are essentially exact for the case of movement of droplets having diameters smaller than about 30 microns along relatively long ducts (length at least several feet) or toward large obstacles (wings), since disequilibrium effects are then of little significance. Mass losses in the case of movement within ducts will often be significant fractions (one-fifth to one-half) of original droplet masses, while very small droplets within ducts will often disappear even though the entraining air is not fully stagnated. Wing-approach evaporation losses will usually be of the order of several percent of original droplet masses. Two numerical examples are given of the determination of local evaporation rates and total mass losses in cases involving cloud droplets approaching circular cylinders along stagnation lines. The cylinders chosen were of 3.95-inch (10.0+ cm) diameter and 39.5-inch 100+ cm) diameter. The smaller is representative of icing-rate measurement cylinders, while with the larger will be associated an air-flow field similar to that ahead of an airfoil having a leading-edge radius

  13. Coal devolatilization and char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres

    DEFF Research Database (Denmark)

    Jensen, Anker Degn; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    have been carried out in an electrically heated entrained flow reactor that is designed to simulate the conditions in a suspension fired boiler. Coal devolatilized in N2 and CO2 atmospheres provided similar results regarding char morphology, char N2-BET surface area and volatile yield. This strongly......The aim of the present investigation is to examine differences between O2/N2 and O2/CO2 atmospheres during devolatilization and char conversion of a bituminous coal at conditions covering temperatures between 1173 K and 1673 K and inlet oxygen concentrations between 5 and 28 vol.%. The experiments...

  14. Changes in atmospheric circulation between solar maximum and minimum conditions in winter and summer

    Science.gov (United States)

    Lee, Jae Nyung

    2008-10-01

    Statistically significant climate responses to the solar variability are found in Northern Annular Mode (NAM) and in the tropical circulation. This study is based on the statistical analysis of numerical simulations with ModelE version of the chemistry coupled Goddard Institute for Space Studies (GISS) general circulation model (GCM) and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The low frequency large scale variability of the winter and summer circulation is described by the NAM, the leading Empirical Orthogonal Function (EOF) of geopotential heights. The newly defined seasonal annular modes and its dynamical significance in the stratosphere and troposphere in the GISS ModelE is shown and compared with those in the NCEP/NCAR reanalysis. In the stratosphere, the summer NAM obtained from NCEP/NCAR reanalysis as well as from the ModelE simulations has the same sign throughout the northern hemisphere, but shows greater variability at low latitudes. The patterns in both analyses are consistent with the interpretation that low NAM conditions represent an enhancement of the seasonal difference between the summer and the annual averages of geopotential height, temperature and velocity distributions, while the reverse holds for high NAM conditions. Composite analysis of high and low NAM cases in both the model and observation suggests that the summer stratosphere is more "summer-like" when the solar activity is near a maximum. This means that the zonal easterly wind flow is stronger and the temperature is higher than normal. Thus increased irradiance favors a low summer NAM. A quantitative comparison of the anti-correlation between the NAM and the solar forcing is presented in the model and in the observation, both of which show lower/higher NAM index in solar maximum/minimum conditions. The summer NAM in the troposphere obtained from NCEP/NCAR reanalysis has a dipolar zonal structure with maximum

  15. Effects of Soil-Vegetation-Atmosphere Interaction on the Stability of a Clay Slope: A Case Study

    Directory of Open Access Journals (Sweden)

    Pedone Giuseppe

    2016-01-01

    Full Text Available Deep and slow landslide processes are frequently observed in clay slopes located along the Southern Apennines (Italy. A case study representative of these processes, named Pisciolo case study, is discussed in the paper. The geo-hydro-mechanical characteristics of the materials involved in the instability phenomena are initially discussed. Pluviometric, piezometric, inclinometric and GPS monitoring data are subsequently presented, suggesting that rainfall infiltration constitutes the main factor inducing slope movements. The connection between formation of landslide bodies and slope-atmosphere interaction has been demonstrated through a hydro-mechanical finite element analysis, whose results are finally reported in the work. This analysis has been conducted employing a constitutive model that is capable of simulating both saturated and unsaturated soil behaviour, as well as a boundary condition able to simulate the effects of the soil-vegetation-atmosphere interaction.

  16. International energy R and D spillovers and the economics of greenhouse gas atmospheric stabilization

    International Nuclear Information System (INIS)

    Bosetti, Valentina; Carraro, Carlo; Massetti, Emanuele; Tavoni, Massimo

    2008-01-01

    It is now widely recognized that technological change will play a substantial role in reducing GHG emissions without compromising economic growth; hence, any better understanding of the process of technological innovation is likely to increase our knowledge of mitigation possibilities and costs. This paper explores how international knowledge flows affect the dynamics of the domestic R and D sector and the main economic and environmental variables. The analysis is performed using WITCH, a dynamic regional model of the world economy, in which energy-related technological change is endogenous. The focus is on disembodied energy R and D international spillovers. The knowledge pool from which regions draw foreign ideas differs between High Income and Low Income countries. Absorption capacity is also endogenous in the model. The basic questions are as follows. Do knowledge spillovers enhance energy-related technological innovation in different regions of the world? Does the speed of innovation increase? Or do free-riding incentives prevail and international spillovers crowd out domestic R and D efforts? What is the role of domestic absorption capacity and of policies designed to enhance it? Do greenhouse gas stabilization costs drop in the presence of international technological spillovers? The new specification of the WITCH model presented in this paper enables us to answer these questions. Our analysis shows that international knowledge spillovers tend to increase free-riding incentives and decrease the investments in energy R and D. The strongest cuts in energy R and D investments are recorded among High Income countries, where international knowledge flows crowd out domestic R and D efforts. The overall domestic pool of knowledge, and thus total net GHG stabilization costs, remain largely unaffected. International spillovers, however, are also an important policy channel. We therefore analyze the implication of a policy-mix in which climate policy is combined with a

  17. The stability of arsenic and selenium compounds that were retained in limestone in a coal gasification atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Somoano, M.; Lopez-Anton, M.A.; Huggins, F.E.; Martinez-Tarazona, M.R. [CSIC, Oviedo (Spain)

    2010-01-15

    The aim of this work was to evaluate the stability of arsenic and selenium species retained in a lime/limestone mixture obtained by using limestone as a sorbent for gas cleaning in a coal gasification atmosphere. It was found that the stability of arsenic and selenium species produced by the gas-solid reactions with lime/limestone may be affected by their exposure to air and by their contact with water. The results confirm the conclusions of a previous work in which Ca(AsO{sub 2}){sub 2} and CaSe was postulated as the products of the reaction between the arsenic and selenium species present in a coal gasification atmosphere with lime/limestone. Moreover it was proved that the compounds (Ca(AsO{sub 2}){sub 2} and CaSe) may undergo transformations when the sorbents post-retention are stored or disposed of in air. From the results obtained by XAFS it was possible to identify the Ca{sub 3}(AsO{sub 4}){sub 2} produced by the oxidation of the Ca(ASO{sub 2}){sub 2} on the sorbent surface. The XAFS results for selenium showed that the CaSe formed on the sorbent was transformed to form several species, but mainly elemental Se. These changes in the speciation of arsenic and selenium may explain the behavior of the sorbent post-retention during the water solubility test. Although the selenium compounds and the products that may originate from their decomposition in water are not toxic, in the case of arsenic, species like Ca(AsO{sub 2}){sub 2} and Ca{sub 3}(AsO{sub 4}){sub 2} may lixiviate, and generate toxic arsenic compounds in solution that could pose a risk when the sorbent is finally disposed of.

  18. Modeling and stability analysis for the upper atmosphere research satellite auxiliary array switch component

    Science.gov (United States)

    Wolfgang, R.; Natarajan, T.; Day, J.

    1987-01-01

    A feedback control system, called an auxiliary array switch, was designed to connect or disconnect auxiliary solar panel segments from a spacecraft electrical bus to meet fluctuating demand for power. A simulation of the control system was used to carry out a number of design and analysis tasks that could not economically be performed with a breadboard of the hardware. These tasks included: (1) the diagnosis of a stability problem, (2) identification of parameters to which the performance of the control system was particularly sensitive, (3) verification that the response of the control system to anticipated fluctuations in the electrical load of the spacecraft was satisfactory, and (4) specification of limitations on the frequency and amplitude of the load fluctuations.

  19. Conditions for Emergence, Stability and Change in New Organizations in the Field of Citizens Climate Action

    DEFF Research Database (Denmark)

    Figueroa, Maria Josefina

    Climate change represents a crisis of tangible measure and the emergence of a field of action within which acting today needs to be motivated for what can contribute to benefit climate and transform society into a low carbon tomorrow. With the breadth and scope of citizen action on climate change....... This contribution is concerned with the latter. It proposes that using field analysis it is possible to understand conditions of emergence, stability and change in citizen engagement in climate action. The present contribution offers only a preliminary exploration of possibilities for how using field theory can...

  20. Medium fidelity modelling of loads in wind farms under non-neutral ABL stability conditions – a full-scale validation study

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Larsen, Torben J.; Chougule, A.

    2017-01-01

    The aim of the present paper is to demonstrate the capability of medium fidelity modelling of wind turbine component fatigue loading, when the wind turbines are subjected to wake affected non-stationary flow fields under non-neutral atmospheric stability conditions. To accomplish this we combine......) in description of both large- and small scale atmospheric boundary layer turbulence is facilitated by a generalization of the classical Mann spectral tensor, which consistently includes buoyancy effects. With non-stationary wind turbine inflow fields modelled as described above, fatigue loads are obtained using...... the state-of-the art aeroelastic model HAWC2. The Lillgrund offshore wind farm (WF) constitute an interesting case study for wind farm model validation, because the WT interspacing is small, which in turn means that wake effects are significant. A huge data set, comprising 5 years of blade and tower load...

  1. MISTRAL V1.1.1: assessing doses from atmospheric releases in normal and off-normal conditions

    International Nuclear Information System (INIS)

    David Kerouanton; Patrick Devin; Malvina Rennesson

    2006-01-01

    Protecting the environment and the public from radioactive and chemical hazards has always been a top priority for all companies operating in the nuclear domain. In this scope, SGN provides all the services the nuclear industry needs in environmental studies especially in relation to the impact assessment in normal operating conditions and risk assessment in off-normal conditions. In order to quantify dose impact on members of the public due to atmospheric releases, COGEMA and SGN developed MISTRAL V1.1.1 code. Dose impact depends strongly on dispersion of radionuclides in atmosphere. The main parameters involved in dispersion characterization are wind velocity and direction, rain, diffusion conditions, coordinates of the point of observation and stack elevation. MISTRAL code implements DOURY and PASQUILL Gaussian plume models which are widely used in the scientific community. These models, applicable for distances of transfer ranging from 100 m up to 30 km, are used to calculate atmospheric concentration and deposit at different distances from the point of release. MISTRAL allows the use of different dose regulations or dose coefficient databases such as: - ICRP30 and ICPR71 for internal doses (inhalation, ingestion) - Despres/Kocher database or US-EPA Federal Guidance no.12 (ICPR72 for noble gases) for external exposure (from plume or ground). The initial instant of the release can be considered as the origin of time or a date format can be specified (could be useful in a crisis context). While the context is specified, the user define the meteorological conditions of the release. In normal operating mode (routine releases), the user gives the annual meteorological scheme. The data can be recorded in the MISTRAL meteorological database. In off-normal conditions mode, MISTRAL V1.1 allows the use of successive release stages for which the user gives the duration, the meteorological conditions, that is to say stability class, wind speed and direction and rainfall

  2. Stability of sputter deposited cuprous oxide (Cu2O) subjected to ageing conditions for photovoltaic applications

    Science.gov (United States)

    Camacho-Espinosa, E.; Rimmaudo, I.; Riech, I.; Mis-Fernández, R.; Peña, J. L.

    2018-02-01

    Among various metal oxide p-type semiconductors, cuprous oxide (Cu2O) stands out as a nontoxic and abundant material, which also makes it a suitable candidate as a low-cost absorber for photovoltaic applications. However, the chemical stability of the absorber layer is critical for the solar cell lifetime, in particular, for Cu-based materials, concerning to its oxidation state changes. In this paper, we addressed the Cu2O stability depositing films of 170 nm by reactive radio frequency magnetron sputtering and subsequently ageing them in conditions similar to the typical accelerated life test for the solar module, in a period of time from one to five weeks. The stability of the optical, electrical, and structural properties of the Cu2O thin films was investigated using UV-VIS-near infrared transmittance, 4-probes electrical resistance characterization, high precision profilometry, X-ray photoelectron spectroscopy, and grazing incidence X-ray diffraction. Finally, we demonstrated that the aging tests affected only the surface of the films, while the bulk remained unaltered, making Cu2O a promising candidate for production of stable devices, including solar cells.

  3. Influence of the initial state of carbon nanotubes on their colloidal stability under natural conditions

    International Nuclear Information System (INIS)

    Schwyzer, Irene; Kaegi, Ralf; Sigg, Laura; Magrez, Arnaud; Nowack, Bernd

    2011-01-01

    The colloidal stability of dry and suspended carbon nanotubes (CNTs) in the presence of amphiphilic compounds (i.e. natural organic matter or surfactants) at environmentally realistic concentrations was investigated over several days. The suspensions were analyzed for CNT concentration (UV-vis spectroscopy), particle size (nanoparticle tracking analysis), and CNT length and dispersion quality (TEM). When added in dry form, around 1% of the added CNTs remained suspended. Pre-dispersion in organic solvent or anionic detergent stabilized up to 65% of the added CNTs after 20 days of mild shaking and 5 days of settling. The initial state of the CNTs (dry vs. suspended) and the medium composition hence are critical determinants for the partitioning of CNTs between sediment and the water column. TEM analysis revealed that single suspended CNTs were present in all suspensions and that shaking and settling resulted in a fractionation of the CNTs with shorter CNTs remaining predominantly in suspension. - Highlights: → Individually suspended CNTs are present under environment relevant conditions. → The number of suspended CNTs varies depending on the medium composition. → Surfactants at environmental concentrations have no suspending effect on dry CNTs. → Pre-dispersed CNTs are more stable in suspension than dry CNTs. - The colloidal stability of CNTs varies a lot depending on the initial state of the CNTs (dry vs. pre-dispersed), the applied dispersant for pre-suspension, and the composition of the medium.

  4. Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions

    International Nuclear Information System (INIS)

    Duarte, Regina M.B.O.; Pio, Casimiro A.; Duarte, Armando C.

    2005-01-01

    The composition of the water-soluble organic matter from fine aerosols collected in a rural location during two different meteorological conditions (summer and autumn) was investigated by UV-vis, synchronous fluorescence (with Δλ = 20 nm), FT-IR and CPMAS- 13 C NMR spectroscopies. A seasonal variation in the concentration of total carbon, organic carbon and water-soluble organic carbon was confirmed, with higher values during the autumn and lower values during the summer season. The chemical characterisation of the water-soluble organic matter showed that both samples are dominated by a high content of aliphatic structures, carboxyl groups and aliphatic carbons single bonded to one oxygen or nitrogen atom. However, the autumn sample exhibits a higher aromatic content than the summer sample, plus signals due to carbons of phenol, ketones and methoxyl groups. These signals were attributed to lignin breakdown products which are likely to be released during wood combustion processes. The obtained results put into evidence the major contribution of biomass burning processes in domestic fireplaces during low temperature conditions into both the concentration and the bulk chemical properties of the WSOC from fine aerosols

  5. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    Science.gov (United States)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  6. Atmospheric stabilization of CO2 emissions: Near-term reductions and absolute versus intensity-based targets

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.

    2008-01-01

    This study analyzes CO 2 emissions reduction targets for various countries and geopolitical regions by the year 2030 to stabilize atmospheric concentrations of CO 2 at 450 ppm (550 ppm including non-CO 2 greenhouse gases) level. It also determines CO 2 intensity cuts that would be required in those countries and regions if the emission reductions were to be achieved through intensity-based targets without curtailing their expected economic growth. Considering that the stabilization of CO 2 concentrations at 450 ppm requires the global trend of CO 2 emissions to be reversed before 2030, this study develops two scenarios: reversing the global CO 2 trend in (i) 2020 and (ii) 2025. The study shows that global CO 2 emissions would be limited at 42 percent above 1990 level in 2030 if the increasing trend of global CO 2 emissions were to be reversed by 2020. If reversing the trend is delayed by 5 years, global CO 2 emissions in 2030 would be 52 percent higher than the 1990 level. The study also finds that to achieve these targets while maintaining expected economic growth, the global average CO 2 intensity would require a 68 percent drop from the 1990 level or a 60 percent drop from the 2004 level by 2030

  7. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L.; Mancinelli, B. R. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina) and Instituto de Fisica del Plasma (CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales UBA Ciudad Universitaria Pab. I, (1428) Buenos Aires (Argentina)

    2012-09-15

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processes inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.

  8. Activity and stability of a complex bacterial soil community under simulated Martian conditions

    Science.gov (United States)

    Hansen, Aviaja Anna; Merrison, Jonathan; Nørnberg, Per; Aagaard Lomstein, Bente; Finster, Kai

    2005-04-01

    A simulation experiment with a complex bacterial soil community in a Mars simulation chamber was performed to determine the effect of Martian conditions on community activity, stability and survival. At three different depths in the soil core short-term effects of Martian conditions with and without ultraviolet (UV) exposure corresponding to 8 Martian Sol were compared. Community metabolic activities and functional diversity, measured as glucose respiration and versatility in substrate utilization, respectively, decreased after UV exposure, whereas they remained unaffected by Martian conditions without UV exposure. In contrast, the numbers of culturable bacteria and the genetic diversity were unaffected by the simulated Martian conditions both with and without UV exposure. The genetic diversity of the soil community and of the colonies grown on agar plates were evaluated by denaturant gradient gel electrophoresis (DGGE) on DNA extracts. Desiccation of the soil prior to experimentation affected the functional diversity by decreasing the versatility in substrate utilization. The natural dominance of endospores and Gram-positive bacteria in the investigated Mars-analogue soil may explain the limited effect of the Mars incubations on the survival and community structure. Our results suggest that UV radiation and desiccation are major selecting factors on bacterial functional diversity in terrestrial bacterial communities incubated under simulated Martian conditions. Furthermore, these results suggest that forward contamination of Mars is a matter of great concern in future space missions.

  9. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Pedersen, Jens Olaf Pepke; Marsh, N.D.

    2007-01-01

    Experimental studies of aerosol nucleation in air, containing trace amounts of ozone, sulphur dioxide and water vapour at concentrations relevant for the Earth's atmosphere, are reported. The production of new aerosol particles is found to be proportional to the negative ion density and yields...... nucleation rates of the order of 0.1 1 cm(-3) s(-1). This suggests that the ions are active in generating an atmospheric reservoir of small thermodynamically stable clusters, which are important for nucleation processes in the atmosphere and ultimately for cloud formation....

  10. Simulation of Electrical Discharge Initiated by a Nanometer-Sized Probe in Atmospheric Conditions

    International Nuclear Information System (INIS)

    Chen Ran; Chen Chilai; Liu Youjiang; Wang Huanqin; Kong Deyi; Ma Yuan; Cada Michael; Brugger Jürgen

    2013-01-01

    In this paper, a two-dimensional nanometer scale tip-plate discharge model has been employed to study nanoscale electrical discharge in atmospheric conditions. The field strength distributions in a nanometer scale tip-to-plate electrode arrangement were calculated using the finite element analysis (FEA) method, and the influences of applied voltage amplitude and frequency as well as gas gap distance on the variation of effective discharge range (EDR) on the plate were also investigated and discussed. The simulation results show that the probe with a wide tip will cause a larger effective discharge range on the plate; the field strength in the gap is notably higher than that induced by the sharp tip probe; the effective discharge range will increase linearly with the rise of excitation voltage, and decrease nonlinearly with the rise of gap length. In addition, probe dimension, especially the width/height ratio, affects the effective discharge range in different manners. With the width/height ratio rising from 1:1 to 1:10, the effective discharge range will maintain stable when the excitation voltage is around 50 V. This will increase when the excitation voltage gets higher and decrease as the excitation voltage gets lower. Furthermore, when the gap length is 5 nm and the excitation voltage is below 20 V, the diameter of EDR in our simulation is about 150 nm, which is consistent with the experiment results reported by other research groups. Our work provides a preliminary understanding of nanometer scale discharges and establishes a predictive structure-behavior relationship

  11. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.

    Science.gov (United States)

    Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J

    2015-08-15

    Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Stability of hydrocarbon systems at thermobaric conditions corresponding to depth down to 50 km

    Science.gov (United States)

    Kutcherov, V.; Kolesnikov, A.; Mukhina, E.; Serovaiskii, A.

    2017-12-01

    Most of the theoretical models show that crude oil stability is limited by the depth of 6-8 km (`oil window'). Commercial discovery of crude oil deposits on the depth more than 10 km in the different petroleum basins worldwide casts doubt on the validity of the above-mentioned theoretical calculations. Therefore, the question at which depth complex hydrocarbon systems could be stable is important not only from fundamental research point of view but has a great practical application. To answer this question a hydrocarbon mixture was investigated under thermobaric conditions corresponding to the conditions of the Earth's lower crust. Experiments were conducted by means of Raman Mössbauer spectroscopy. The results obtained show that the complex hydrocarbon systems could be stable and remain their qualitative and quantitative composition at temperature 320-450 °C and pressure 0.7-1.4 GPa. The oxidizing resistance of hydrocarbon system was tested in the modelled the Earth's crust surrounding. The hydrocarbon system stability at the presence of Fe2O3 strongly confirms that the Earth's crust oxygen fugacity does not influence on petroleum composition. The data obtained broaden our knowledge about the possible range of depths for crude oil and natural gas deposits in the Earth's crust and give us the possibility to revise the depth of petroleum deposits occurrence.

  13. Stabilization of burn conditions in a thermonuclear reactor using artificial neural networks

    Science.gov (United States)

    Vitela, Javier E.; Martinell, Julio J.

    1998-02-01

    In this work we develop an artificial neural network (ANN) for the feedback stabilization of a thermonuclear reactor at nearly ignited burn conditions. A volume-averaged zero-dimensional nonlinear model is used to represent the time evolution of the electron density, the relative density of alpha particles and the temperature of the plasma, where a particular scaling law for the energy confinement time previously used by other authors, was adopted. The control actions include the concurrent modulation of the D-T refuelling rate, the injection of a neutral He-4 beam and an auxiliary heating power modulation, which are constrained to take values within a maximum and minimum levels. For this purpose a feedforward multilayer artificial neural network with sigmoidal activation function is trained using a back-propagation through-time technique. Numerical examples are used to illustrate the behaviour of the resulting ANN-dynamical system configuration. It is concluded that the resulting ANN can successfully stabilize the nonlinear model of the thermonuclear reactor at nearly ignited conditions for temperature and density departures significantly far from their nominal operating values. The NN-dynamical system configuration is shown to be robust with respect to the thermalization time of the alpha particles for perturbations within the region used to train the NN.

  14. Stabilization of burn conditions in a thermonuclear reactor using artificial neural networks

    International Nuclear Information System (INIS)

    Vitela, J.E.; Martinell, J.J.

    1998-01-01

    In this work we develop an artificial neural network (ANN) for the feedback stabilization of a thermonuclear reactor at nearly ignited burn conditions. A volume-averaged zero-dimensional nonlinear model is used to represent the time evolution of the electron density, the relative density of alpha particles and the temperature of the plasma, where a particular scaling law for the energy confinement time previously used by other authors, was adopted. The control actions include the concurrent modulation of the D-T refuelling rate, the injection of a neutral He-4 beam and an auxiliary heating power modulation, which are constrained to take values within a maximum and minimum levels. For this purpose a feedforward multilayer artificial neural network with sigmoidal activation function is trained using a back-propagation through-time technique. Numerical examples are used to illustrate the behaviour of the resulting ANN-dynamical system configuration. It is concluded that the resulting ANN can successfully stabilize the nonlinear model of the thermonuclear reactor at nearly ignited conditions for temperature and density departures significantly far from their nominal operating values. The NN-dynamical system configuration is shown to be robust with respect to the thermalization time of the alpha particles for perturbations within the region used to train the NN. (author)

  15. A Stabilized Incompressible SPH Method by Relaxing the Density Invariance Condition

    Directory of Open Access Journals (Sweden)

    Mitsuteru Asai

    2012-01-01

    Full Text Available A stabilized Incompressible Smoothed Particle Hydrodynamics (ISPH is proposed to simulate free surface flow problems. In the ISPH, pressure is evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection method. Even if the pressure is evaluated implicitly, the unrealistic pressure fluctuations cannot be eliminated. In order to overcome this problem, there are several improvements. One is small compressibility approach, and the other is introduction of two kinds of pressure Poisson equation related to velocity divergence-free and density invariance conditions, respectively. In this paper, a stabilized formulation, which was originally proposed in the framework of Moving Particle Semi-implicit (MPS method, is applied to ISPH in order to relax the density invariance condition. This formulation leads to a new pressure Poisson equation with a relaxation coefficient, which can be estimated by a preanalysis calculation. The efficiency of the proposed formulation is tested by a couple of numerical examples of dam-breaking problem, and its effects are discussed by using several resolution models with different particle initial distances. Also, the effect of eddy viscosity is briefly discussed in this paper.

  16. Dynamic behavior of tripolar hip endoprostheses under physiological conditions and their effect on stability.

    Science.gov (United States)

    Fabry, Christian; Kaehler, Michael; Herrmann, Sven; Woernle, Christoph; Bader, Rainer

    2014-01-01

    Tripolar systems have been implanted to reduce the risk of recurrent dislocation. However, there is little known about the dynamic behavior of tripolar hip endoprostheses under daily life conditions and achieved joint stability. Hence, the objective of this biomechanical study was to examine the in vivo dynamics and dislocation behavior of two types of tripolar systems compared to a standard total hip replacement (THR) with the same outer head diameter. Several load cases of daily life activities were applied to an eccentric and a concentric tripolar system by an industrial robot. During testing, the motion of the intermediate component was measured using a stereo camera system. Additionally, their behavior under different dislocation scenarios was investigated in comparison to a standard THR. For the eccentric tripolar system, the intermediate component demonstrated the shifting into moderate valgus-positions, regardless of the type of movement. This implant showed the highest resisting torque against dislocation in combination with a large range of motion. In contrast, the concentric tripolar system tended to remain in varus-positions and was primarily moved after stem contact. According to the results, eccentric tripolar systems can work well under in vivo conditions and increase hip joint stability in comparison to standard THRs. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Stabilization process in Saccharomyces intra and interspecific hybrids in fermentative conditions.

    Science.gov (United States)

    Pérez-Través, Laura; Lopes, Christian A; Barrio, Eladio; Querol, Amparo

    2014-12-01

    We evaluated the genetic stabilization of artificial intra- (Saccharomyces cerevisiae) and interspecific (S. cerevisiae × S. kudriavzevii) hybrids under wine fermentative conditions. Large-scale transitions in genome size and genome reorganizations were observed during this process. Interspecific hybrids seem to need fewer generations to reach genetic stability than intraspecific hybrids. The largest number of molecular patterns recovered among the derived clones was observed for intraspecific hybrids, particularly for those obtained by rare-mating. Molecular marker analyses revealed that unstable clones could change during the industrial process to obtain active dry yeast. When no changes in molecular markers and ploidy were observed after this process, no changes in genetic composition were confirmed by comparative genome hybridization, considering the clone as a stable hybrid. According to our results, under these conditions, fermentation steps 3 and 5 (30-50 generations) would suffice to obtain genetically stable interspecific and intraspecific hybrids, respectively. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  18. An Automatic Approach to the Stabilization Condition in a HIx Distillation Simulation

    International Nuclear Information System (INIS)

    Chang, Ji Woon; Shin, Young Joon; Lee, Ki Young; Kim, Yong Wan; Chang, Jong Hwa; Youn, Cheung

    2010-01-01

    In the Sulfur-Iodine(SI) thermochemical process to produce nuclear hydrogen, an H 2 O-HI-I 2 ternary mixture solution discharged from the Bunsen reaction is primarily concentrated by electro-electrodialysis. The concentrated solution is distillated in the HIx distillation column to generate a high purity HI vapor. The pure HI vapor is obtained at the top of the HIx distillation column and the diluted HIx solution is discharged at the bottom of the column. In order to simulate the steady-state HIx distillation column, a vapor-liquid equilibrium (VLE) model of the H 2 O-HI-I 2 ternary system is required and the subprogram to calculate VLE concentrations has been already introduced by KAERI research group in 2006. The steady state simulation code for the HIx distillation process was also developed in 2007. However, the intrinsic phenomena of the VLE data such as the steep slope of a T-x-y diagram caused the instability of the simulation calculation. In this paper, a computer program to automatically find a stabilization condition in the steady state simulation of the HIx distillation column is introduced. A graphic user interface (GUI) function to monitor an approach to the stabilization condition was added in this program

  19. Effect of experimental conditions on the stability of Tc-99m radiopharmaceuticals

    International Nuclear Information System (INIS)

    Vucina, J.

    2002-01-01

    The stability of three 99m Tc radiopharmaceuticals in dependence on the experimental conditions and on the presence of some chemical stabiliser was tested. Examined were dimercapto succinate (DMS), pyrophosphate (PyP) and 2,3-dicarboxypropane-1,1-diphosphonate (DPD). The reliability and applicability of the preparation of the three radiopharmaceuticals from the inactive (technetium-cold) kit solutions were tested. Each kit was dissolved in saline (0.9% NaCl). The storage conditions of the inactive kit solutions before labelling were determined. The main problem is the stability of the reductant stannous ions which is very difficult to predict. Ascorbic or gentisic acid was added in order to stabilise the labelled radiopharmaceuticals and ensure their good quality. The best results were obtained by keeping the samples at -20 deg C. Although either stabiliser can be used, much lower concentrations of ascorbic acid are sufficient for an effective protection. Its concentrations of 12-60 μg/ml of the kit stabilise DMS and PyP for about 7-8 days. The solution of DPD was stable even without any stabiliser, presumably dut to the chemical nature of this complex. In routine practice, however, the procedure requires caution, and the staff should be very experienced in radiopharmacy procedures

  20. On the stability conditions of flexible current conductor tightened in a magnetic field for charged particle trajectory tracing

    International Nuclear Information System (INIS)

    Kozodaev, M.S.

    1974-01-01

    Conditions of equilibrium stability in three-dimensional space for a stretched flexible current conductor, while tracing the trajectories of charged particles moving in a magnetic field, have been determined using variational principles. Formulas suitable for engineering calculations have been obtained that allow to determine the stability regions and to estimate errors in tracing due to the conductor weight and elasticity

  1. Evidence for the role of organics in aerosol particle formation under atmospheric conditions

    International Nuclear Information System (INIS)

    Metzger, A.; Dommen, J.; Duplissy, J.; Prevot, A.S.H.; Weingartner, E.; Baltensperger, U.; Verheggen, B.; Riipinen, I.; Kulmala, M.; Spracklen, D.V.; Carslaw, K.S.

    2010-01-01

    New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.

  2. Detailed balance condition and ultraviolet stability of scalar field in Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Borzou, Ahmad; Lin, Kai; Wang, Anzhong

    2011-01-01

    Detailed balance and projectability conditions are two main assumptions when Horava recently formulated his theory of quantum gravity - the Horava-Lifshitz (HL) theory. While the latter represents an important ingredient, the former often believed needs to be abandoned, in order to obtain an ultraviolet stable scalar field, among other things. In this paper, because of several attractive features of this condition, we revisit it, and show that the scalar field can be stabilized, if the detailed balance condition is allowed to be softly broken. Although this is done explicitly in the non-relativistic general covariant setup of Horava-Melby-Thompson with an arbitrary coupling constant λ, generalized lately by da Silva, it is also true in other versions of the HL theory. With the detailed balance condition softly breaking, the number of independent coupling constants can be still significantly reduced. It is remarkable to note that, unlike other setups, in this da Silva generalization, there exists a master equation for the linear perturbations of the scalar field in the flat Friedmann-Robertson-Walker background

  3. Rapid Determination of Protein Solubility and Stability Conditions for NMR Studies Using Incomplete Factorial Design

    International Nuclear Information System (INIS)

    Ducat, Thierry; Declerck, Nathalie; Gostan, Thierry; Kochoyan, Michel; Demene, Helene

    2006-01-01

    Sample preparation constitutes a crucial and limiting step in structural studies of proteins by NMR. The determination of the solubility and stability (SAS) conditions of biomolecules at millimolar concentrations stays today empirical and hence time- and material-consuming. Only few studies have been recently done in this field and they have highlighted the interest of using crystallogenesis tools to optimise sample conditions. In this study, we have adapted a method based on incomplete factorial design and making use of crystallisation plates to quantify the influence of physico-chemical parameters such as buffer pH and salts on protein SAS. A description of the experimental set up and an evaluation of the method are given by case studies on two functional domains from the bacterial regulatory protein LicT as well as two other proteins. Using this method, we could rapidly determine optimised conditions for extracting soluble proteins from bacterial cells and for preparing purified protein samples sufficiently concentrated and stable for NMR characterisation. The drastic reduction in the time and number of experiments required for searching protein SAS conditions makes this method particularly well-adapted for a systematic investigation on a large range of physico-chemical parameters

  4. A Numerical Study of Nonlinear Nonhydrostatic Conditional Symmetric Instability in a Convectively Unstable Atmosphere.

    Science.gov (United States)

    Seman, Charles J.

    1994-06-01

    Nonlinear nonhydrostatic conditional symmetric instability (CSI) is studied as an initial value problem using a two-dimensional (y, z)nonlinear, nonhydrostatic numerical mesoscale/cloud model. The initial atmosphere for the rotating, baroclinic (BCF) simulation contains large convective available potential energy (CAPE). Analytical theory, various model output diagnostics, and a companion nonrotating barotropic (BTNF) simulation are used to interpret the results from the BCF simulation. A single warm moist thermal initiates convection for the two 8-h simulations.The BCF simulation exhibited a very intricate life cycle. Following the initial convection, a series of discrete convective cells developed within a growing mesoscale circulation. Between hours 4 and 8, the circulation grew upscale into a structure resembling that of a squall-line mesoscale convective system (MCS). The mesoscale updrafts were nearly vertical and the circulation was strongest on the baroclinically cool side of the initial convection, as predicted by a two-dimensional Lagrangian parcel model of CSI with CAPE. The cool-side mesoscale circulation grew nearly exponentially over the last 5 h as it slowly propagated toward the warm air. Significant vertical transport of zonal momentum occurred in the (multicellular) convection that developed, resulting in local subgeostrophic zonal wind anomalies aloft. Over time, geostrophic adjustment acted to balance these anomalies. The system became warm core, with mesohigh pressure aloft and mesolow pressure at the surface. A positive zonal wind anomaly also formed downstream from the mesohigh.Analysis of the BCF simulation showed that convective momentum transport played a key role in the evolution of the simulated MCS, in that it fostered the development of the nonlinear CSI on mesoscale time scales. The vertical momentum transport in the initial deep convection generated a subgeostrophic zonal momentum anomaly aloft; the resulting imbalance in pressure

  5. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions.

    Science.gov (United States)

    Yang, Ping; Yuan, Chunlong; Wang, Hua; Han, Fuliang; Liu, Yangjie; Wang, Lin; Liu, Yang

    2018-02-07

    This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins' structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3- O -glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3- O -glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p -coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.

  6. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Ping Yang

    2018-02-01

    Full Text Available This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins’ structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3-O-glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3-O-glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p-coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.

  7. Gaussian Plume Model Parameters for Ground-Level and Elevated Sources Derived from the Atmospheric Diffusion Equation in the Neutral and Stable Conditions

    International Nuclear Information System (INIS)

    Essa, K.S.M.

    2009-01-01

    The analytical solution of the atmospheric diffusion equation for a point source gives the ground-level concentration profiles. It depends on the wind speed ua nd vertical dispersion coefficient σ z expressed by Pasquill power laws. Both σ z and u are functions of downwind distance, stability and source elevation, while for the ground-level emission u is constant. In the neutral and stable conditions, the Gaussian plume model and finite difference numerical methods with wind speed in power law and the vertical dispersion coefficient in exponential law are estimated. This work shows that the estimated ground-level concentrations of the Gaussian model for high-level source and numerical finite difference method are very match fit to the observed ground-level concentrations of the Gaussian model

  8. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    International Nuclear Information System (INIS)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-01-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA–grafted NWPE (GMA–g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA–g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h −1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  9. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    Science.gov (United States)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-07-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA-grafted NWPE (GMA-g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA-g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h-1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  10. Infrared spectroscopy, vibrational predissociation dynamics and stability of the hydrogen trioxy (HOOO) radical and estimation of its abundance in the atmosphere

    Science.gov (United States)

    Derro, Erika L.

    The hydrogen trioxy (HOOO) radical has been implicated as an important intermediate in key processes in the atmosphere. In the present studies, HOOO is produced by the combination of O2 and photolytically generated OH radicals in the collisional region of a pulsed supersonic expansion. Rotationally cooled HOOO is probed in the effectively collision-free region of the expansion using infrared action spectroscopy, an infrared-pump, ultraviolet-probe technique, in which HOOO is vibrationally excited and the nascent OH products of vibrational predissociation are probed via laser-induced fluorescence. High resolution infrared spectra of HOOO and DOOO were observed in the fundamental and overtone OH/D stretching regions (nui and 2nu 1), which comprise a rotationally structured band attributed to the trans conformer, and an unstructured component assigned to the cis conformer. Infrared spectra of HOOO and DOOO combination bands composed of the OH stretch and a low frequency mode (nu1 + nun) were also observed. This allowed identification of vibrational frequencies for five of the six modes for trans-H/DOOO and four of the six modes for cis-HOOO and DOOO. Identification of low frequency modes provides critical information on the vibrational dynamics and thermochemical properties of the HOOO radical, and furthermore, provides a potential means for detecting HOOO in situ in the atmosphere. In addition, the nascent OH X2pi products following vibrational predissociation of HOOO have been investigated. The product state distributions reveal a distinct preference for population of pi(A ') Λ-doublets in OH that is indicative of a planar dissociation of trans-HOOO in which the symmetry of the bonding orbital is maintained. The highest observed OH quantum state allows determination of the stability of HOOO relative to the OH + O 2 asymptote using a conservation of energy approach. In conjunction with a similar investigation of DOOO, the binding energy is determined to be ≤ 5

  11. Shoppers’ Perception on Physical Condition of Shopping Centers’ Atmosphere at Different Lifecycle

    Directory of Open Access Journals (Sweden)

    Astrid Kusumowidagdo

    2012-08-01

    Full Text Available Shopping center with atmospheric stimuli design needs to be well formulated in marketing strategy to expose its competitive advantage. As a result, most designs included in the marketing tactic scheme pay more attention to all factors related to the lifestyle in order to make designs exist and be appreciated by the society. Design is one of the key factors of shopping center to gain its success. This research aimed to find out to what extent the visitors perception is different towards shopping centers which has different lifecycles. The research studied two things, first was exploratory research intended to find the embodiment of atmospheric (atmospheric variables.The second research was done in a quantitative method, (multiple regression. This research studied the perception of a hundred mall visitors regarding how the variables of the interior atmosphere affected their shopping habit. The independent variables in the research were the exterior features and building configuration, interior features and supporting facilities. The dependent variable was the the visitor behavior. As a conclusion, the atmospheric interior design of a mall that is embodied in its interior element supported the hypothesis which said that existence of experience which felt differently according to visitor perception at shopping centers in different lifecyle.

  12. Attribution of soil moisture dynamics - Initial conditions vs. atmospheric forcing and the role of climate change

    Science.gov (United States)

    Orth, Rene; Seneviratne, Sonia I.

    2014-05-01

    conditions versus the atmospheric forcing for monthly soil moisture variations. We find that initial soil moisture anomalies are overall more important than the forcing, even if less pronounced in summer. Especially in southern Europe we show high drought forecasting potential, whereas the forcing is more important in Central and North-eastern Europe.

  13. Arsenic in an alkaline AMD treatment sludge: Characterization and stability under prolonged anoxic conditions

    International Nuclear Information System (INIS)

    Beauchemin, Suzanne; Fiset, Jean-Francois; Poirier, Glenn; Ablett, James

    2010-01-01

    Lime treatment of acid mine drainage (AMD) generates large volumes of neutralization sludge that are often stored under water covers. The sludge consists mainly of calcite, gypsum and a widespread ferrihydrite-like Fe phase with several associated species of metal(loid) contaminants. The long-term stability of metal(loid)s in this chemically ill-defined material remains unknown. In this study, the stability and speciation of As in AMD sludge subjected to prolonged anoxic conditions is determined. The total As concentration in the sludge is 300 mg kg -1 . In the laboratory, three distinct water cover treatments were imposed on the sludge to induce different redox conditions (100%N 2 , 100%N 2 + glucose, 95%N 2 :5%H 2 ). These treatments were compared against a control of oxidized, water-saturated sludge. Electron micro-probe (EMP) analysis and spatially resolved synchrotron X-ray fluorescence (SXRF) results indicate that As is dominantly associated with Fe in the sludge. In all treatments and throughout the experiment, measured concentrations of dissolved As were less than 5 μg L -1 . Dissolved Mn concentration in the N 2 + glucose treatment increased significantly compared to other treatments. Manganese and As K-edge X-ray absorption near edge structure spectroscopy (XANES) analyses showed that Mn was the redox-active element in the solid-phase, while As was stable. Arsenic(V) was still the dominant species in all water-covered sludges after 9 months of anoxic treatments. In contrast, Mn(IV) in the original sludge was partially reduced into Mn(II) in all water-covered sludges. The effect was most pronounced in the N 2 + glucose treatment, suggesting microbial reduction. Micro-scale SXRF and XANES analysis of the treated sludge showed that Mn(II) accumulated in areas already enriched in Fe and As. Overall, the study shows that AMD sludges remain stable under prolonged anoxic conditions. External sources of chemical reductants or soluble C were needed to induce

  14. Scaling the Shear-flow Stabilized Z-pinch to Reactor Conditions

    Science.gov (United States)

    McLean, H. S.; Schmidt, A.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Cleveau, E.

    2015-11-01

    We present a conceptual design along with scaling calculations for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device, at the University of Washington, have demonstrated stable operation for durations of 20 usec at ~100kA discharge current for pinches that are ~1 cm in diameter and 100 cm long. The inverse of the pinch diameter and plasma energy density scale strongly with pinch current and calculations show that maintaining stabilization durations of ~7 usec for increased discharge current (~15x) in a shortened pinch (10 cm) results in a pinch diameter of ~200 um and plasma conditions that approach those needed to support significant fusion burn and energy gain (Ti ~ 30keV, density ~ 3e26/m3, ntau ~1.4e20 sec/m3). Compelling features of the concept include operation at modest discharge current (1.5 MA) and voltage (40kV) along with direct adoption of liquid metals for at least one electrode--technological capabilities that have been proven in existing, commercial, pulse power devices such as large ignitrons. LLNL-ABS-674920. This work performed under the auspices of the U.S. Department of Energy ARPAe ALPHA Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. The effect of cure conditions on the stability of cement waste forms after immersion in water

    International Nuclear Information System (INIS)

    Siskind, B.; Adams, J.W.; Clinton, J.H.; Piciulo, P.L.; McDaniel, K.

    1988-01-01

    We investigated the effects of curing conditions on the stability of cement-solidified ion-exchange resins after immersion in water. The test specimens consisted of partially depleted mixed-bed bead resins solidified in one of three vendor-supplied Portland I cement formulations, in a reference cement formulation, or in a gypsum-based binder formulation. We cured samples prepared using each formulation in sealed containers for periods of 7, 14, or 28 days as well as in air or with an accelerated heat cure prior to 90-day immersion in water. Two cement formulations exhibited apparent Portland-cement-like behavior, i.e., compressive strength increased or stabilized with increasing cure time. Two cement formulations exhibited behavior apparently unlike that of Portland cement, i.e., compressive strength decreased with increasing cure time. Such non-Portland-cement-like behavior is correlated with higher waste loadings. The gypsum-based formulation exhibited approximately constant compressive strength with cure time. Accelerated heat cures may not give compressive strengths representative of real-time cures. Some physical deterioration (cracking, spalling) of the waste form occurs during immersion

  16. The effect of cure conditions on the stability of cement waste forms after immersion in water

    International Nuclear Information System (INIS)

    Siskind, B.; Adams, J.W.; Clinton, J.H.; Piciulo, P.L.

    1988-01-01

    The authors investigated the effects of curing conditions on the stability of cement-solidified ion-exchange resins after immersion in water. The test specimens consisted of partially depleted mixed-bed bead resins solidified in one of three vendor-supplied Portland I cement formulations, in a reference cement formulation, or in a gypsum-based binder formulation. They cured samples prepared using each formulation in sealed containers for periods of 7, 14, or 28 days as well as in air or with an accelerated heat cure prior to 90-day immersion in water. Two cement formulations exhibited apparent Portland-cement-like behavior, i.e., compressive strength increased or stabilized with increasing cure time. Two cement formulations exhibited behavior apparently unlike that of Portland cement, i.e. compressive strength decreased with increasing cure time. Such non-Portland-cement-like behavior is correlated with higher waste loadings. The gypsum-based formulation exhibited approximately constant compressive strength with cure time. Accelerated heat cures may not give compressive strengths representative of real-time cures. Some physical deterioration (cracking, spalling) of the waste form occurs during immersion

  17. Stabilization of time domain acoustic boundary element method for the interior problem with impedance boundary conditions.

    Science.gov (United States)

    Jang, Hae-Won; Ih, Jeong-Guon

    2012-04-01

    The time domain boundary element method (BEM) is associated with numerical instability that typically stems from the time marching scheme. In this work, a formulation of time domain BEM is derived to deal with all types of boundary conditions adopting a multi-input, multi-output, infinite impulse response structure. The fitted frequency domain impedance data are converted into a time domain expression as a form of an infinite impulse response filter, which can also invoke a modeling error. In the calculation, the response at each time step is projected onto the wave vector space of natural radiation modes, which can be obtained from the eigensolutions of the single iterative matrix. To stabilize the computation, unstable oscillatory modes are nullified, and the same decay rate is used for two nonoscillatory modes. As a test example, a transient sound field within a partially lined, parallelepiped box is used, within which a point source is excited by an octave band impulse. In comparison with the results of the inverse Fourier transform of a frequency domain BEM, the average of relative difference norm in the stabilized time response is found to be 4.4%.

  18. Modified TOV in gravity’s rainbow: properties of neutron stars and dynamical stability conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM),P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Bordbar, G.H. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM)-Maragha,P.O. Box 55134-441, Maragha 55177-36698 (Iran, Islamic Republic of); Panah, B. Eslam [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Panahiyan, S. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University,Tehran 19839 (Iran, Islamic Republic of)

    2016-09-09

    In this paper, we consider a spherical symmetric metric to extract the hydrostatic equilibrium equation of stars in (3+1)-dimensional gravity’s rainbow in the presence of cosmological constant. Then, we generalize the hydrostatic equilibrium equation to d-dimensions and obtain the hydrostatic equilibrium equation for this gravity. Also, we obtain the maximum mass of neutron star using the modern equations of state of neutron star matter derived from the microscopic calculations. It is notable that, in this paper, we consider the effects of rainbow functions on the diagrams related to the mass-central mass density (M-ρ{sub c}) relation and also the mass-radius (M-R) relation of neutron star. We also study the effects of rainbow functions on the other properties of neutron star such as the Schwarzschild radius, average density, strength of gravity and gravitational redshift. Then, we apply the cosmological constant to this theory to obtain the diagrams of M-ρ{sub c} (or M-R) and other properties of these stars. Next, we investigate the dynamical stability condition for these stars in gravity’s rainbow and show that these stars have dynamical stability. We also obtain a relation between mass of neutron stars and Planck mass. In addition, we compare obtained results of this theory with the observational data.

  19. Consequences of Urban Stability Conditions for Computational Fluid Dynamics Simulations of Urban Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J K; Chan, S T

    2005-11-30

    The validity of omitting stability considerations when simulating transport and dispersion in the urban environment is explored using observations from the Joint URBAN 2003 field experiment and computational fluid dynamics simulations of that experiment. Four releases of sulfur hexafluoride, during two daytime and two nighttime intensive observing periods, are simulated using the building-resolving computational fluid dynamics model, FEM3MP to solve the Reynolds Averaged Navier-Stokes equations with two options of turbulence parameterizations. One option omits stability effects but has a superior turbulence parameterization using a non-linear eddy viscosity (NEV) approach, while the other considers buoyancy effects with a simple linear eddy viscosity (LEV) approach for turbulence parameterization. Model performance metrics are calculated by comparison with observed winds and tracer data in the downtown area, and with observed winds and turbulence kinetic energy (TKE) profiles at a location immediately downwind of the central business district (CBD) in the area we label as the urban shadow. Model predictions of winds, concentrations, profiles of wind speed, wind direction, and friction velocity are generally consistent with and compare reasonably well with the field observations. Simulations using the NEV turbulence parameterization generally exhibit better agreement with observations. To further explore this assumption of a neutrally-stable atmosphere within the urban area, TKE budget profiles slightly downwind of the urban wake region in the 'urban shadow' are examined. Dissipation and shear production are the largest terms which may be calculated directly. The advection of TKE is calculated as a residual; as would be expected downwind of an urban area, the advection of TKE produced within the urban area is a very large term. Buoyancy effects may be neglected in favor of advection, shear production, and dissipation. For three of the IOPs, buoyancy

  20. A test facility for heat transfer, pressure drop and stability studies under supercritical conditions

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Jana, S.S.; Vijayan, P.K.

    2013-02-01

    Supercritical water (SCW) exhibits excellent heat transfer characteristics and high volumetric expansion coefficient (hence high mass flow rates in natural circulation systems) near pseudo-critical temperature. SCW is being considered as a coolant in some advanced nuclear reactor designs on account of its potential to offer high thermal efficiency, compact size, elimination of steam generator, separator and dryer, making it economically competitive. The elimination of phase change results in elimination of the Critical Heat Flux (CHF) phenomenon. Cooling a reactor at full power with natural instead of forced circulation is generally considered as enhancement of passive safety. In view of this, it is essential to study natural circulation, heat transfer and pressure drop characteristics of supercritical fluids. Carbon-dioxide can be considered to be a good simulant of water for natural circulation at supercritical conditions since the density and viscosity variation of carbon-dioxide follows a parallel curve as that of water at supercritical conditions. Hence, a supercritical pressure natural circulation loop (SPNCL) has been set up in Hall-7, BARC to investigate the heat transfer, pressure drop and stability characteristics of supercritical carbon-dioxide under natural circulation conditions. The details of the experimental facility are presented in this report. (author)

  1. Conditional stability in determination of initial data for stochastic parabolic equations

    International Nuclear Information System (INIS)

    Yuan, Ganghua

    2017-01-01

    In this paper, we solve two kinds of inverse problems in determination of the initial data for stochastic parabolic equations. One is determination of the initial data by lateral boundary observation on arbitrary portion of the boundary, the second one is determination of the initial data by internal observation in a subregion inside the domain. We obtain conditional stability for the two kinds of inverse problems. To prove the results, we estimate the initial data by a terminal observation near the initial time, then we estimate this terminal observation by lateral boundary observation on arbitrary portion of the boundary or internal observation in a subregion inside the domain. To achieve those goals, we derive several new Carleman estimates for stochastic parabolic equations in this paper. (paper)

  2. Conditional stability in determination of initial data for stochastic parabolic equations

    Science.gov (United States)

    Yuan, Ganghua

    2017-03-01

    In this paper, we solve two kinds of inverse problems in determination of the initial data for stochastic parabolic equations. One is determination of the initial data by lateral boundary observation on arbitrary portion of the boundary, the second one is determination of the initial data by internal observation in a subregion inside the domain. We obtain conditional stability for the two kinds of inverse problems. To prove the results, we estimate the initial data by a terminal observation near the initial time, then we estimate this terminal observation by lateral boundary observation on arbitrary portion of the boundary or internal observation in a subregion inside the domain. To achieve those goals, we derive several new Carleman estimates for stochastic parabolic equations in this paper.

  3. Price stability and balanced public accounts as a condition for sustainable development

    Directory of Open Access Journals (Sweden)

    C.A. CIAMPI

    1998-03-01

    Full Text Available The article illustrates Italy's economic recovery as part of a process of renewal involving the institutions, every area of the economy and Italian society as a whole. After the turning point in 1992, a general consensus emerged that European integration was necessary and fully consistent with the national interest. In this context, the three components of economic policy - budgetary policy, incomes policy, monetary policy - are working in tandem, ensuring stability, the essential condition from any lasting and sustainable growth. Thus inflation has now been beaten; the balance of payments on current account has recorded increasing and substantial surpluses, and there has been a huge reduction in the budget deficit, with a large primary surplus. The sustainability of these results is ensured by the implementation of structural reforms: tax reform, reform of central government budget, reform of the civil service, pensions reform and reform of Italy’s commercial system.

  4. Sharp conditions for global stability of Lotka-Volterra systems with distributed delays

    Science.gov (United States)

    Faria, Teresa

    We give a criterion for the global attractivity of a positive equilibrium of n-dimensional non-autonomous Lotka-Volterra systems with distributed delays. For a class of autonomous Lotka-Volterra systems, we show that such a criterion is sharp, in the sense that it provides necessary and sufficient conditions for the global asymptotic stability independently of the choice of the delay functions. The global attractivity of positive equilibria is established by imposing a diagonal dominance of the instantaneous negative feedback terms, and relies on auxiliary results showing the boundedness of all positive solutions. The paper improves and generalizes known results in the literature, namely by considering systems with distributed delays rather than discrete delays.

  5. Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahlers, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, R.; Trávníček, Petr; Vícha, Jakub

    2012-01-01

    Roč. 35, č. 9 (2012), s. 591-607 ISSN 0927-6505 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA AV ČR KJB100100904; GA AV ČR KJB300100801; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : cosmic rays * extensive air shower s * atmospheric monitoring * atmospheric models Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.777, year: 2012 http://www.sciencedirect.com/science/article/pii/S0927650511002271

  6. Reactions of CF3O radicals with selected alkenes and aromatics under atmospheric conditions

    DEFF Research Database (Denmark)

    Kelly, C.; Sidebottom, H.W.; Treacy, J.

    1994-01-01

    Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed.......Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed....

  7. LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi-Sugeno's form.

    Science.gov (United States)

    Lam, H K; Leung, Frank H F

    2007-10-01

    This correspondence presents the stability analysis and performance design of the continuous-time fuzzy-model-based control systems. The idea of the nonparallel-distributed-compensation (non-PDC) control laws is extended to the continuous-time fuzzy-model-based control systems. A nonlinear controller with non-PDC control laws is proposed to stabilize the continuous-time nonlinear systems in Takagi-Sugeno's form. To produce the stability-analysis result, a parameter-dependent Lyapunov function (PDLF) is employed. However, two difficulties are usually encountered: 1) the time-derivative terms produced by the PDLF will complicate the stability analysis and 2) the stability conditions are not in the form of linear-matrix inequalities (LMIs) that aid the design of feedback gains. To tackle the first difficulty, the time-derivative terms are represented by some weighted-sum terms in some existing approaches, which will increase the number of stability conditions significantly. In view of the second difficulty, some positive-definitive terms are added in order to cast the stability conditions into LMIs. In this correspondence, the favorable properties of the membership functions and nonlinear control laws, which allow the introduction of some free matrices, are employed to alleviate the two difficulties while retaining the favorable properties of PDLF-based approach. LMI-based stability conditions are derived to ensure the system stability. Furthermore, based on a common scalar performance index, LMI-based performance conditions are derived to guarantee the system performance. Simulation examples are given to illustrate the effectiveness of the proposed approach.

  8. Influence of Saharan dust outbreaks and atmospheric stability upon vertical profiles of size-segregated aerosols and water vapor

    Science.gov (United States)

    Giménez, Joaquín; Pastor, Carlos; Castañer, Ramón; Nicolás, José; Crespo, Javier; Carratalá, Adoración

    2010-01-01

    Vertical profiles of aerosols and meteorological parameters were obtained using a hot air balloon and motorized paraglider. They were studied under anticyclonic conditions in four different contexts. Three flights occurred near sunrise, and one took place in the central hours of the day. The effects of North African dust intrusions were analyzed, whose entrance to the study area took place above the Stable Boundary Layer (SBL) in flight 1 and below it in flight 2. These flights have been compared with a non-intrusion situation (flight 3). A fourth flight characterized the profiles in the central hours of the day with a well-formed Convective Boundary Layer (CBL). With respect to the particle number distribution, the results show that not all sizes increase within the presence of an intrusion; during the first flight the smallest particles were not affected. The particle sizes affected in the second flight fell within the 0.35-2.5 μm interval. Under situations of convective dynamics, the reduction percentage of the particle number concentration reduces with increasing altitude, independently of their size, with respect to stability conditions. The negative vertical gradient for aerosols and water vapor, characteristic of a highly stable SBL (flight 3) becomes a constant profile within a CBL (flight 4). There are two situations that seem to alter the negative vertical gradient of the water vapor mixing ratio within the SBL: the presence of an intrusion and the possible stratification of the SBL based on different degrees of stability.

  9. Stability of 26 Sedative Hypnotics in Six Toxicological Matrices at Different Storage Conditions.

    Science.gov (United States)

    Mata, Dani C

    2016-10-01

    Forensic laboratories are challenged with backlogs that produce turnaround times that vary from days to months. Therefore, drug stability is important for interpretation in both antemortem (blood and urine) and postmortem (blood, brain, liver, stomach contents) cases. In this study, 23 benzodiazepines (2-hydroxyethylflurazepam, 7-aminoclonazepam, 7-aminoflunitrazepam, α-hydroxyalprazolam, α-hydroxytriazolam, alprazolam, bromazepam, chlordiazepoxide, clonazepam, demoxepam, desalkylflurazepam, diazepam, estazolam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, nordiazepam, oxazepam, phenazepam, temazepam and triazolam) and three sedative hypnotics (zaleplon, zopiclone and zolpidem) were spiked into the six matrices at two different concentrations for each drug. The samples were stored in either a refrigerator (4°C) or freezer (-20°C) and analyzed in triplicate at various time intervals over an 8-month period using an SWGTOX validated method. The concentrations decreased over time regardless of the initial spiked concentration, and the storage conditions had little effect on the decrease of most drugs. Conversion from drug to metabolite was difficult to determine since all 26 drugs were present in each sample. Zopiclone and phenazepam were the least stable drugs; zopiclone was the only drug that completely disappeared in any matrix (both antemortem and postmortem blood). Urine was the most stable matrix with only phenazepam, 7-aminoclonazepam, 7-aminoflunitrazepam, 2-hydroxyethylflurazepam, and zopiclone decreasing >20% over the 8 months in either storage condition. Postmortem blood, the least stable matrix, had only two drugs, zolpidem and bromazepam, decreasing <20% in the 8-month time period. Further experiments on stability of these drugs should be undertaken to remove the freeze-thaw cycle effect and more thoroughly examining drug-metabolite conversion. © The Author 2016. Published by Oxford University Press. All rights reserved. For

  10. Sarcocystosis of chital-dhole: conditions for evolutionary stability of a predator parasite mutualism

    Directory of Open Access Journals (Sweden)

    Watve Milind G

    2005-02-01

    Full Text Available Abstract Background For parasites with a predator-prey life cycle, the completion of the life cycle often depends on consumption of parasitized prey by the predator. In the case of such parasite species the predator and the parasite have common interests and therefore a mutualistic relationship is possible. Some evidence of a predator-parasite mutualism was reported from spotted deer or chital (Axix axis as a prey species, dhole or Indian wild-dog (Cuon alpinus as the predator and a protozoan (Sarcocystis axicuonis as the parasite. We examine here, with the help of a model, the ecological conditions necessary for the evolution and stability of such a mutualistic relationship. A two – level game theory model was designed in which the payoff of a parasite is decided not only by alternative parasite strategies but also by alternative host strategies and vice versa. Conditions for ESS were examined. Results A tolerant predator strategy and a low or moderately virulent parasite strategy which together constitute mutualism are stable only at a high frequency of recycling of parasite and a substantial prey – capture benefit to the predator. Unlike the preliminary expectation, parasite will not evolve towards reduced virulence, but reach an optimum moderate level of virulence. Conclusion The available data on the behavioral ecology of dhole and chital suggest that they are likely to meet the stability criteria and therefore a predator-parasite mutualism can be stable in this system. The model also points out the gaps in the current data and could help directing further empirical work.

  11. Spent fuel stability under repository conditions - final report of the european project

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Ferry, C.; Kelm, M.; Cavedon, J.M.; Corbel, C.; Jegou, Ch.; Lovera, P.; Miserque, F.; Poulesquen, A.; Grambow, B.; Andriambololona, Z.; Martinez-Esparza, A.; Kelm, M.; Loida, A.; Rondinella, V.; Wegen, D.; Spahiu, K.; Johnson, L.; Cachoir, Ch.; Lemmens, K.; Quinones, J.; Bruno, J.; Christensen, H.; Grambow, B.; Pablo, J. de

    2005-01-01

    This report is the final report of the European Project 'Spent Fuel Stability under Repository Conditions' (FIKW-CT-2001-00192 SFS) funded by the European Commission from Nov.2000 to Oct.2004. Gathering the work performed by 13 partners from 6 countries, it aims to specifically focus on the spent nuclear fuel long term alteration in deep repository and the subsequent radionuclides release rate as a function of time. This report synthesised the wide experimental work performed within this project and enlightens the major outcomes, which can be summarised as follow: - A new model for defining the Instant Release Fraction was developed in order to consider the potential fuel evolution before the water penetrates the canister. Quantitative assessment has been produced and shows a significant contribution to the long term dose; - Based on new experimental data, kinetic radiolytic scheme have been upgraded and are used to determine the amount of oxidants produced at the fuel/water interface; - The existence of a dose threshold below which the water radiolysis does not influence the fuel alteration has been demonstrated and occurs between 3.5 and 33 MBq.g UO21. Above the threshold, the fuel alteration rates is directly related to the dose rate. - Hydrogen was experimentally demonstrated to be an efficient oxidants scavenger preventing therefore the fuel oxidation. Molecular mechanism still need to be understood. - Finally, a new Matrix Alteration Model integrating most of the SFS results (apart of the hydrogen effect) has been developed and used to assess the fuel long tern stability in representative conditions of deep repository in salt, clay-rock and granite. The breadth of the results and the significance of the conclusions testify of the success of the collaboration within the project. (authors)

  12. Effect of Nock-Ten Tropical Cyclone on Atmospheric Condition and Distribution of Rainfall in Gorontalo, Ternate, and Sorong Regions

    Science.gov (United States)

    Lumbangaol, A.; Serhalawan, Y. R.; Endarwin

    2017-12-01

    Nock-Ten Tropical Cyclone is an atmospheric phenomenon that has claimed many lives in the Philippines. This super-typhoon cyclone grows in the Western Pacific Ocean, North of Papua. With the area directly contiguous to the trajectory of Nock-Ten Tropical Cyclone growth, it is necessary to study about the growth activity of this tropical cyclones in Indonesia, especially in 3 different areas, namely Gorontalo, Ternate, and Sorong. This study was able to determine the impact of Nock-Ten Tropical Cyclone on atmospheric dynamics and rainfall growth distribution based on the stages of tropical cyclone development. The data used in this study include Himawari-8 IR channel satellite data to see the development stage and movement track of Tropical Cyclone Nock-Ten, rainfall data from TRMM 3B42RT satellite product to know the rain distribution in Gorontalo, Ternate, and Sorong, and reanalysis data from ECMWF such as wind direction and speed, vertical velocity, and relative vorticity to determine atmospheric conditions at the time of development of the Nock-Ten Tropical Cyclone. The results of data analysis processed using GrADS application showed the development stage of Nock-Ten Tropical Cyclone has effect of changes in atmospheric dynamics condition and wind direction pattern. In addition, tropical cyclones also contribute to very light to moderate scale intensity during the cycle period of tropical cyclone development in all three regions.

  13. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    Science.gov (United States)

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  14. Estimations of Atmospheric Conditions for Input to the Radar Performance Surface

    Science.gov (United States)

    2007-12-01

    distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) This study addresses the support of non- acoustic ASW operations by...BLANK v ABSTRACT This study addresses the support of non- acoustic ASW operations by timely atmospheric and ocean surface descriptions on features...24 Figure 12. Infrared Radiation Pyrometers , model KT15.82, Wintronics 2007

  15. Influence of PA6 nanocomposite films on the stability of vacuum-aged beef loins during storage in modified atmospheres.

    Science.gov (United States)

    Picouet, P A; Fernandez, A; Realini, C E; Lloret, E

    2014-01-01

    A masterbatch of polyamide 6 (PA6) containing dispersed nanoclays, was used to fabricate a novel multilayer film for vacuum packed meat. Performance of the nanocomposite was compared to a control PA6 multilayer and a high barrier commercial film. Addition of nanoclays improved oxygen barrier properties, UV-blocking capability and stiffness. Beef loins were vacuum-aged using the three films for 0 7, 14 and 21 days at 2°C. After each ageing time, beef steaks were packaged in commercial trays and high oxygen atmosphere and stored at 4°C for 9 days. Beef quality parameters and gas content were studied during display time in MAP (1, 3, 6 and 9 d). Beef quality parameters were not influenced by the packaging materials used during ageing and the performance of nanocomposites was comparable to high barrier films. Ageing had a positive impact on the stabilization of redness up to day 6 in MAP. Thereafter, oxymyoglobin content and oxidation levels were negatively influenced by ageing. © 2013.

  16. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  17. Sea-ice, clouds and atmospheric conditions in the arctic and their interactions as derived from a merged C3M data product

    Science.gov (United States)

    Nag, Bappaditya

    The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aimed to explore the atmospheric conditions in the Arctic on an unprecedented spatial coverage spanning 70°N to 80°N through the use of a merged data product, C3MData (derived from NASA's A-Train Series). The following three topics provide outline on how this dataset can be used to accomplish a detailed analysis of the Arctic environment and provide the modelling community with first information to update their models aimed at better forecasts. (1)The three properties of the Arctic climate system to be studied using the C3MData are sea-ice, clouds, and the atmospheric conditions. The first topic is to document the present states of the three properties and also their time evolutions or their seasonal cycles. (2)The second topic is aimed at the interactions or the feedbacks processes among the three properties. For example, the immediate alteration in the fluxes and the feedbacks arising from the change in the sea-ice cover is investigated. Seasonal and regional variations are also studied. (3)The third topics is aimed at the processes in native spatial resolution that drive or accompany with sea ice melting and sea ice growth. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally

  18. Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions

    Science.gov (United States)

    Qin, Jianqi; Celestin, Sebastien; Pasko, Victor P.

    2013-05-01

    Carrot sprites, exhibiting both upward and downward propagating streamers, and columniform sprites, characterized by predominantly vertical downward streamers, represent two distinct morphological classes of lightning-driven transient luminous events in the upper atmosphere. It is found that positive cloud-to-ground lightning discharges (+CGs) associated with large charge moment changes (QhQ) tend to produce carrot sprites with the presence of a mesospheric region where the electric field exceeds the value 0.8Ek and persists for >˜2 ms, whereas those associated with small QhQ are only able to produce columniform sprites. Columniform sprites may also appear in the periphery of a sprite halo produced by +CGs associated with large QhQ. For a sufficiently large QhQ, the time dynamics of the QhQ determines the specific shape of the carrot sprites. In the case when the sufficiently large QhQ is produced mainly by an impulsive return stroke, strong electric field is produced at high altitudes and manifests as a bright halo, and the corresponding conductivity enhancement lowers/enhances the probability of streamer initiation inside/below the sprite halo. A more impulsive return stroke leads to a more significant conductivity enhancement (i.e., a brighter halo). This conductivity enhancement also leads to fast decay and termination of the upper diffuse region of carrot sprites because it effectively screens out the electric field at high altitudes. On the contrary, if the sufficiently large QhQ is produced by a weak return stroke (i.e., a dim halo) accompanied by intense continuing current, the lightning-induced electric field at high altitudes persists at a level that is comparable to Ek, and therefore an extensive upper diffuse region can develop. Furthermore, we demonstrate that `negative sprites' (produced by -CGs) should be necessarily carrot sprites and most likely accompanied by a detectable halo, since the initiation of upward positive streamers is always easier

  19. Assessing the impacts of seasonal and vertical atmospheric conditions on air quality over the Pearl River Delta region

    Science.gov (United States)

    Tong, Cheuk Hei Marcus; Yim, Steve Hung Lam; Rothenberg, Daniel; Wang, Chien; Lin, Chuan-Yao; Chen, Yongqin David; Lau, Ngar Cheung

    2018-05-01

    Air pollution is an increasingly concerning problem in many metropolitan areas due to its adverse public health and environmental impacts. Vertical atmospheric conditions have strong effects on vertical mixing of air pollutants, which directly affects surface air quality. The characteristics and magnitude of how vertical atmospheric conditions affect surface air quality, which are critical to future air quality projections, have not yet been fully understood. This study aims to enhance understanding of the annual and seasonal sensitivities of air pollution to both surface and vertical atmospheric conditions. Based on both surface and vertical meteorological characteristics provided by 1994-2003 monthly dynamic downscaling data from the Weather and Research Forecast Model, we develop generalized linear models (GLMs) to study the relationships between surface air pollutants (ozone, respirable suspended particulates, and sulfur dioxide) and atmospheric conditions in the Pearl River Delta (PRD) region. Applying Principal Component Regression (PCR) to address multi-collinearity, we study the contributions of various meteorological variables to pollutants' concentration levels based on the loading and model coefficient of major principal components. Our results show that relatively high pollutant concentration occurs under relatively low mid-level troposphere temperature gradients, low relative humidity, weak southerly wind (or strong northerly wind) and weak westerly wind (or strong easterly wind). Moreover, the correlations vary among pollutant species, seasons, and meteorological variables at various altitudes. In general, pollutant sensitivity to meteorological variables is found to be greater in winter than in other seasons, and the sensitivity of ozone to meteorology differs from that of the other two pollutants. Applying our GLMs to anomalous air pollution episodes, we find that meteorological variables up to mid troposphere (∼700 mb) play an important role in

  20. Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation.

    Science.gov (United States)

    Yang, Haifeng; Zhang, Jincheng; Zhang, Chunfu; Chang, Jingjing; Lin, Zhenhua; Chen, Dazheng; Xi, He; Hao, Yue

    2017-07-21

    In this work, efficient mixed organic cation and mixed halide (MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃) perovskite solar cells are demonstrated by optimizing annealing conditions. AFM, XRD and PL measurements show that there is a better perovskite film quality for the annealing condition at 100 °C for 30 min. The corresponding device exhibits an optimized PCE of 16.76% with V OC of 1.02 V, J SC of 21.55 mA/cm² and FF of 76.27%. More importantly, the mixed lead halide perovskite MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃ can significantly increase the thermal stability of perovskite film. After being heated at 80 °C for 24 h, the PCE of the MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃ device still remains at 70.00% of its initial value, which is much better than the control MAPbI₃ device, where only 46.50% of its initial value could be preserved. We also successfully fabricated high-performance flexible mixed lead halide perovskite solar cells based on PEN substrates.

  1. Confinement of a self-stabilized tokamak under average magnetic well conditions

    International Nuclear Information System (INIS)

    Demchenko, V.V.; Fu, G.Y.; Van Dam, J.W.

    1987-05-01

    It is well known that the average favorable magnetic curvature of a tokamak is stabilizing with respect to pressure-driven magnetohydrodynamic instabilities at low beta and that self-stabilization occurs at finite beta in the so-called second stability regime. Here we self-consistently investigate how these two effects, viz., the mean magnetic well and the self-stabilization, influence the energy confinement time in a tokamak, using the ballooning mode transport model

  2. Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition.

    Science.gov (United States)

    Zhang, Xinxin; Niu, Peifeng; Ma, Yunpeng; Wei, Yanqiao; Li, Guoqiang

    2017-10-01

    This paper is concerned with the stability analysis issue of fractional-order impulsive neural networks. Under the one-side Lipschitz condition or the linear growth condition of activation function, the existence of solution is analyzed respectively. In addition, the existence, uniqueness and global Mittag-Leffler stability of equilibrium point of the fractional-order impulsive neural networks with one-side Lipschitz condition are investigated by the means of contraction mapping principle and Lyapunov direct method. Finally, an example with numerical simulation is given to illustrate the validity and feasibility of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Adaptive Artificial intelligence based fuzzy logic MPPTcontrol for stande-alone photovoltaic system under different atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Zaghba Layachi

    2015-08-01

    Full Text Available there is an increased need for analysing the effect of atmospheric variables on photovoltaic (PV production and performance. The outputs from the different PV cells in different atmospheric conditions, such as irradiation and temperature , differ from each other evidencing knowledge deficiency in PV systems [14]. Maximum power point tracking (MPPT methods are used to maximize the PV array output power by tracking continuously the maximum power point (MPP. Among all MPPT methods existing in the literature, perturb and observe (P&O is the most commonly used for its simplicity and ease of implementation; however, it presents drawbacks such as slow response speed, oscillation around the MPP in steady state, and even tracking in wrong way under rapidly changing atmospheric conditions. In order to allow a functioning around the optimal point Mopt, we have inserted a DC-DC converter (Buck–Boost for a better matching between the PV and the load. This paper, we study the Maximum power point tracking using adaptive Intelligent fuzzy logic and conventional (P&O control for stande-alone photovoltaic Array system .In particular, the performances of the controllers are analyzed under variation weather conditions with are constant temperature and variable irradiation. The proposed system is simulated by using MATLAB-SIMULINK. According to the results, fuzzy logic controller has shown better performance during the optimization.

  4. The Influence of atmospheric conditions to probabilistic calculation of impact of radiology accident on PWR 1000 MWe

    International Nuclear Information System (INIS)

    Pande Made Udiyani; Sri Kuntjoro

    2015-01-01

    The calculation of the radiological impact of the fission products releases due to potential accidents that may occur in the PWR (Pressurized Water Reactor) is required in a probabilistic. The atmospheric conditions greatly contribute to the dispersion of radionuclides in the environment, so that in this study will be analyzed the influence of atmospheric conditions on probabilistic calculation of the reactor accidents consequences. The objective of this study is to conduct an analysis of the influence of atmospheric conditions based on meteorological input data models on the radiological consequences of PWR 1000 MWe accidents. Simulations using PC-Cosyma code with probabilistic calculations mode, the meteorological data input executed cyclic and stratified, the meteorological input data are executed in the cyclic and stratified, and simulated in Muria Peninsula and Serang Coastal. Meteorological data were taken every hour for the duration of the year. The result showed that the cumulative frequency for the same input models for Serang coastal is higher than the Muria Peninsula. For the same site, cumulative frequency on cyclic input models is higher than stratified models. The cyclic models provide flexibility in determining the level of accuracy of calculations and do not require reference data compared to stratified models. The use of cyclic and stratified models involving large amounts of data and calculation repetition will improve the accuracy of statistical calculation values. (author)

  5. Physical modeling of flow over an axisymmetric knoll under neutral atmospheric conditions

    International Nuclear Information System (INIS)

    Cliff, W.C.; Smith, J.D.

    1980-02-01

    A glass-walled hydraulic (water) flume was used to model physically air flow near an axisymmetric knoll in a neutral atmospheric boundary layer. The knoll was a 1:250 scale model. An upstream velocity profile (1/7 power law), characteristic of a neutral atmospheric boundary layer, was produced by locating a 10-cm-high (4-in.) trip near the flume entrance and by appropriately roughening the flume floor. Mean velocity, rms velocity, and turbulence intensity profiles were measured at locations near the knoll using an existing laser Doppler anemometer system. The flow accelerated over the knoll and produced a relatively uniform velocity profile at the crest. The measured velocity profile was in close agreement with a theoretical velocity profile developed using potential flow theory and an upstream power law velocity profile. The turbulence intensity decreased at the crest of the knoll as a result of the flow acceleration

  6. Do atmospheric conditions influence the first episode of primary spontaneous pneumothorax?

    Science.gov (United States)

    Heyndrickx, Maxime; Le Rochais, Jean-Philippe; Icard, Philippe; Cantat, Olivier; Zalcman, Gérard

    2015-09-01

    Several studies suggest that changes in airway pressure may influence the onset of primary spontaneous pneumothorax (PSP). The aim of this study was to investigate the influence of atmospheric changes on the onset of the first episode of PSP. We retrospectively analysed cases of pneumothorax admitted to our department between 1 January 2009 and 31 October 2013. Patients with recurrent pneumothorax, traumatic pneumothorax, older than 35 years or presenting history of underlying pulmonary disease were excluded. Meteorological data were collected from the Météo-France archives. Variation (Δ) of mean atmospheric pressure, and relative humidity, were calculated for each day between the day at which symptoms began (D-day), the day before first symptoms (D-1), 2 days before the first symptoms (D-2) and 3 days before the first symptoms (D-3). Six hundred and thirty-eight cases of pneumothorax were observed during the period of this study; 106 of them (16.6%) were a first episode of PSP. We did not observe any significant differences between days with or without PSP admission for any of the weather parameters that we tested. We could not find any thresholds in the variation of atmospheric pressure that could be used to determine the probability of PSP occurrence. Variation of atmospheric pressure, relative humidity, rainfall, wind speed and temperature were not significantly related to the onset of the first episode of PSP in healthy patients. These results suggest that the scientific community should focus on other possible aetiological factors than airway pressure modifications. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  7. Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions

    Science.gov (United States)

    Valenti, Laura E.; Giacomelli, Carla E.

    2017-05-01

    Silver nanoparticles (Ag-NP) are the most used nanomaterial in consumer products due to the intrinsic antimicrobial capacity of silver. However, Ag-NP may be also harmful to algae, aquatic species, mammalian cells, and higher plants because both Ag+ and nanoparticles are responsible of cell damages. The oxidative dissolution of Ag-NP would proceed to completion under oxic conditions, but the rate and extent of the dissolution depend on several factors. This work correlates the effect of the capping agent (albumin and citrate) with the stability of Ag-NP towards agglomeration in simulated body fluid (SBF) and oxidation in the presence of ROS species (H2O2). Capping provides colloidal stability only through electrostatic means, whereas albumin acts as bulky ligands giving steric and electrostatic repulsion, inhibiting the agglomeration in SBF. However, citrate capping protects Ag-NP from dissolution to a major extent than albumin does because of its reducing power. Moreover, citrate in solution minimizes the oxidation of albumin-coated Ag-NP even after long incubation times. H2O2-induced dissolution proceeds to completion with Ag-NP incubated in SBF, while incubation in citrate leads to an incomplete oxidation. In short, albumin is an excellent capping agent to minimize Ag-NP agglomeration whereas citrate provides a mild-reductive medium that prevents dissolution in biological relevant media as well as in the presence of ROS species. These results provide insight into how the surface properties and media composition affect the release of Ag+ from Ag-NP, related to the cell toxicity and relevant to the storage and lifetime of silver-containing nanomaterials.

  8. Enterococci Isolated from Japanese Quails Exposed to Microgravity Conditions and Stability of their Properties

    Directory of Open Access Journals (Sweden)

    Andrea Lauková

    2009-01-01

    Full Text Available Enterococci isolated from the crop and caecum of Japanese quails exposed to 7 day conditions of microgravity were re-vitalized after their dry-freezing long storage. Originally, the strains were isolated from Japanese quails after their landing from flight onboard the orbital station Mir during the experiment in August 1990. Because taxonomy as well as the studies concerning the bacteriocins, especially those produced by enterococci, have been continually developed for years, the aim of this study was to confirm species identification, stability of the properties of enterococci as well as to test new properties after their long storage. Genotyping allotted the strains to the species E. faecium. Lactic acid production was detected in similar amounts in the strains before and after their long-storage in dry-frozen form. The strains were vancomycinsensitive and kanamycin-resistant before as well as after their long-time storage. Variability in sensitivity to different antibiotics was found among the strains tested even before and after longtime storage. Each of the strains possessed at least one structural enterocin gene. The structural genes for enterocin A, P, B, L50B were detected in E. faecium EP7. E. faecium EP2, EEP4 have the genes for ent A, B, L50B. The gene for ent P was detected only in the strain EP7. The most often detected was ent A gene followed by ent genes B, L50B. All strains inhibited growth of at least 4 out of 15 indicators. The stability of the enterococcal properties determined before as well as after their dry-freezing was not influenced during their long-term storage; moreover, new properties were determined.

  9. Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, Laura E.; Giacomelli, Carla E., E-mail: giacomel@fcq.unc.edu.ar [Universidad Nacional de Córdoba, Ciudad Universitaria, Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas (Argentina)

    2017-05-15

    Silver nanoparticles (Ag-NP) are the most used nanomaterial in consumer products due to the intrinsic antimicrobial capacity of silver. However, Ag-NP may be also harmful to algae, aquatic species, mammalian cells, and higher plants because both Ag{sup +} and nanoparticles are responsible of cell damages. The oxidative dissolution of Ag-NP would proceed to completion under oxic conditions, but the rate and extent of the dissolution depend on several factors. This work correlates the effect of the capping agent (albumin and citrate) with the stability of Ag-NP towards agglomeration in simulated body fluid (SBF) and oxidation in the presence of ROS species (H{sub 2}O{sub 2}). Capping provides colloidal stability only through electrostatic means, whereas albumin acts as bulky ligands giving steric and electrostatic repulsion, inhibiting the agglomeration in SBF. However, citrate capping protects Ag-NP from dissolution to a major extent than albumin does because of its reducing power. Moreover, citrate in solution minimizes the oxidation of albumin-coated Ag-NP even after long incubation times. H{sub 2}O{sub 2}-induced dissolution proceeds to completion with Ag-NP incubated in SBF, while incubation in citrate leads to an incomplete oxidation. In short, albumin is an excellent capping agent to minimize Ag-NP agglomeration whereas citrate provides a mild-reductive medium that prevents dissolution in biological relevant media as well as in the presence of ROS species. These results provide insight into how the surface properties and media composition affect the release of Ag{sup +} from Ag-NP, related to the cell toxicity and relevant to the storage and lifetime of silver-containing nanomaterials.

  10. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions

    Science.gov (United States)

    Snead, L. L.; Terrani, K. A.; Katoh, Y.; Silva, C.; Leonard, K. J.; Perez-Bergquist, A. G.

    2014-05-01

    This paper addresses certain key feasibility issues facing the application of SiC-matrix microencapsulated fuels for light water reactor application. Issues addressed are the irradiation stability of the SiC-based nano-powder ceramic matrix under LWR-relevant irradiation conditions, the presence or extent of reaction of the SiC matrix with zirconium-based cladding, the stability of the inner and outer pyrolytic graphite layers of the TRISO coating system at this uncharacteristically low irradiation temperature, and the state of the particle-matrix interface following irradiation which could possibly affect thermal transport. In the process of determining these feasibility issues microstructural evolution and change in dimension and thermal conductivity was studied. As a general finding the SiC matrix was found to be quite stable with behavior similar to that of CVD SiC. In magnitude the irradiation-induced swelling of the matrix material was slightly higher and irradiation-degraded thermal conductivity was slightly lower as compared to CVD SiC. No significant reaction of this SiC-based nano-powder ceramic matrix material with Zircaloy was observed. Irradiation of the sample in the 320-360 °C range to a maximum dose of 7.7 × 1025 n/m2 (E > 0.1 MeV) did not have significant negative impact on the constituent layers of the TRISO coating system. At the highest dose studied, layer structure and interface integrity remained essentially unchanged with good apparent thermal transport through the microsphere to the surrounding matrix.

  11. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions

    International Nuclear Information System (INIS)

    Snead, L.L.; Terrani, K.A.; Katoh, Y.; Silva, C.; Leonard, K.J.; Perez-Bergquist, A.G.

    2014-01-01

    This paper addresses certain key feasibility issues facing the application of SiC-matrix microencapsulated fuels for light water reactor application. Issues addressed are the irradiation stability of the SiC-based nano-powder ceramic matrix under LWR-relevant irradiation conditions, the presence or extent of reaction of the SiC matrix with zirconium-based cladding, the stability of the inner and outer pyrolytic graphite layers of the TRISO coating system at this uncharacteristically low irradiation temperature, and the state of the particle–matrix interface following irradiation which could possibly affect thermal transport. In the process of determining these feasibility issues microstructural evolution and change in dimension and thermal conductivity was studied. As a general finding the SiC matrix was found to be quite stable with behavior similar to that of CVD SiC. In magnitude the irradiation-induced swelling of the matrix material was slightly higher and irradiation-degraded thermal conductivity was slightly lower as compared to CVD SiC. No significant reaction of this SiC-based nano-powder ceramic matrix material with Zircaloy was observed. Irradiation of the sample in the 320–360 °C range to a maximum dose of 7.7 × 10 25 n/m 2 (E > 0.1 MeV) did not have significant negative impact on the constituent layers of the TRISO coating system. At the highest dose studied, layer structure and interface integrity remained essentially unchanged with good apparent thermal transport through the microsphere to the surrounding matrix

  12. Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean

    Science.gov (United States)

    Dayan, U.; Nissen, K.; Ulbrich, U.

    2015-11-01

    This review discusses published studies of heavy rainfall events over the Mediterranean Basin, combining them in a more general picture of the dynamic and thermodynamic factors and processes that produce heavy rain storms. It distinguishes the western and eastern Mediterranean in order to point out specific regional peculiarities. The crucial moisture for developing intensive convection over these regions can be originated not only from the adjacent Mediterranean Sea but also from distant upwind sources. Transport from remote sources is usually in the mid-tropospheric layers and associated with specific features and patterns of the larger-scale circulations. The synoptic systems (tropical and extratropical) that account for most of the major extreme precipitation events and the coupling of circulation and extreme rainfall patterns are presented. Heavy rainfall over the Mediterranean Basin is caused at times in concert by several atmospheric processes working at different atmospheric scales, such as local convection, upper synoptic-scale-level troughs, and mesoscale convective systems. Under tropical air-mass intrusions, convection generated by static instability seems to play a more important role than synoptic-scale vertical motions. Locally, the occurrence of torrential rains and their intensity is dependent on factors such as temperature profiles and implied instability, atmospheric moisture, and lower-level convergence.

  13. Promoting the ambient-condition stability of Zr-doped barium cerate: Toward robust solid oxide fuel cells and hydrogen separation in syngas

    Science.gov (United States)

    Yang, Ying; Zeng, Yimin; Amirkhiz, Babak S.; Luo, Jing-Li; Yan, Ning

    2018-02-01

    Increasing the stability of perovskite proton conductor against atmospheric CO2 and moisture attack at ambient conditions might be equally important as that at the elevated service temperatures. It can ease the transportation and storage of materials, potentially reducing the maintenance cost of the integral devices. In this work, we initially examined the surface degradation behaviors of various Zr-doped barium cerates (BaCe0.7Zr0.1Y0.1Me0.1O3) using XRD, SEM, STEM and electron energy loss spectroscopy. Though that the typical lanthanide (Y, Yb and Gd) and In incorporated Zr-doped cerates well resisted CO2-induced carbonation in air at elevated temperatures, they were unfortunately vulnerable at ambient conditions, suffering slow decompositions at the surface. Conversely, Sn doped samples (BCZYSn) were robust at both conditions yet showed high protonic conductivity. Thanks to that, the anode supported solid oxide fuel cells equipped with BCZYSn electrolyte delivered a maximum power density of 387 mW cm-2 at 600 °C in simulated coal-derived syngas. In the hydrogen permeation test using BCZYSn based membrane, the H2 flux reached 0.11 mL cm-2 min-1 at 850 °C when syngas was the feedstock. Both devices demonstrated excellent stability in the presence of CO2 in the syngas.

  14. The contribution of fine roots to peatland stability under changing environmental conditions

    Science.gov (United States)

    Malhotra, A.; Brice, D. J.; Childs, J.; Phillips, J.; Hanson, P. J.; Iversen, C. M.

    2017-12-01

    Fine-root production and traits are closely linked with ecosystem nutrient and water fluxes, and may regulate these fluxes in response to environmental change. Plant strategies can shift to favoring below- over aboveground biomass allocation when nutrients or moisture are limited. Fine-roots traits such as root tissue density (RTD) or specific root length (SRL) can also adapt to the environment, for example, by maximizing the area of soil exploited by decreasing RTD and increasing SRL during dry conditions. Fine-root trait plasticity could contribute to the stability of peatland carbon function in response to environmental change. However, the extent and mechanisms of peatland fine-root plasticity are unknown. We investigated fine-root growth and traits and their link to environmental factors and aboveground dynamics at SPRUCE (Spruce and Peatland Responses Under Changing Environments), a warming and elevated CO2 (eCO2) experiment in an ombrotrophic peatland. In the first growing season of whole ecosystem warming, fine-root production increased with warming and drying. Above- versus belowground allocation strategies varied by plant functional type (PFT). In shrubs, contrary to our expectation, aboveground- to fine-root production allocation ratio increased with dryer conditions, perhaps as a response to a concurrent increase in nutrients. Trait response hypotheses were largely supported, with RTD decreasing and SRL increasing with warming; however, response varied among PFTs. Once eCO2 was turned on in the second growing season, preliminary results suggest interactive effects of warming and eCO2 on total fine-root production: production decreased or increased with warming in ambient or elevated CO2 plots, respectively. Both trait and production responses to warming and eCO2 varied by microtopography and depth. Our results highlight plasticity of fine-root traits and biomass allocation strategies; the extent and mechanism of which varies by PFT. We will summarize

  15. Radiation effects on the laser ablative shockwaves from aluminum under atmospheric conditions

    International Nuclear Information System (INIS)

    Sai Shiva, S.; Leela, C.H.; Prem Kiran, P.; Sijoy, C.D.; Chaturvedi, Shashank

    2015-01-01

    The evolution of laser ablative shockwaves (LASW) from Aluminum under atmospheric pressures is numerically modeled using a one-dimensional, three-temperature (electron, ion and thermal radiation temperatures), non-equilibrium, radiation hydrodynamic (RHD) model. The governing RHD equations in Lagrangian form are solved by using an implicit scheme. Similarly, the energy relaxation between the electrons and ions and the electrons and thermal radiation are determined implicitly. Apart from these, the energy equation takes into account the flux-limited electron thermal heat flux. The RHD equations are closed by using a two temperature QEOS model for the Al. The MULTI-fs code is modified to incorporate the nanosecond laser absorption model via the photoionization (PI) and the inverse bremsstrahlung (IB) processes. The spatio-temporal evolution of the laser ablative shockwaves generated by focusing a second harmonic (532 nm, 7ns) of Nd:YAG laser on to Aluminum target under atmospheric pressures in air is captured using a shadowgraphy technique. These measurements are made from 200 ns to 10 μs after the laser pulse with a temporal resolution of 1.5 ns. We report the details of the RHD model and compare the simulated and experimental results for input laser energies in the range of 25 - 175 mJ per pulse. The evolution of the plasma parameters like electron density, charge states and the shockwaves launched into the ambient atmosphere due to expanding plasma plume are compared. The role of thermal radiation on the evolution of LASW from Al is discussed. (author)

  16. Beam wandering statistics of twin thin laser beam propagation under generalized atmospheric conditions.

    Science.gov (United States)

    Pérez, Darío G; Funes, Gustavo

    2012-12-03

    Under the Geometrics Optics approximation is possible to estimate the covariance between the displacements of two thin beams after they have propagated through a turbulent medium. Previous works have concentrated in long propagation distances to provide models for the wandering statistics. These models are useful when the separation between beams is smaller than the propagation path-regardless of the characteristics scales of the turbulence. In this work we give a complete model for these covariances, behavior introducing absolute limits to the validity of former approximations. Moreover, these generalizations are established for non-Kolmogorov atmospheric models.

  17. Global exponential stability and periodicity of reaction-diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions

    International Nuclear Information System (INIS)

    Lu Junguo; Lu Linji

    2009-01-01

    In this paper, global exponential stability and periodicity of a class of reaction-diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions are studied by constructing suitable Lyapunov functionals and utilizing some inequality techniques. We first prove global exponential convergence to 0 of the difference between any two solutions of the original neural networks, the existence and uniqueness of equilibrium is the direct results of this procedure. This approach is different from the usually used one where the existence, uniqueness of equilibrium and stability are proved in two separate steps. Secondly, we prove periodicity. Sufficient conditions ensuring the existence, uniqueness, and global exponential stability of the equilibrium and periodic solution are given. These conditions are easy to verify and our results play an important role in the design and application of globally exponentially stable neural circuits and periodic oscillatory neural circuits.

  18. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    Science.gov (United States)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  19. Improvement in simulation of Eurasian winter climate variability with a realistic Arctic sea ice condition in an atmospheric GCM

    International Nuclear Information System (INIS)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988–2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to ∼0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated. (letter)

  20. Inhibition treatment of the corrosion of lead artefacts in atmospheric conditions and by acetic acid vapour: use of sodium decanoate

    International Nuclear Information System (INIS)

    Rocca, E.; Rapin, C.; Mirambet, F.

    2004-01-01

    The efficiency of linear sodium decanoate, CH 3 (CH 2 ) 8 COONa (noted NaC 10 ), as corrosion inhibitor of lead was determined by electrochemical techniques in two corrosive mediums: ASTM D1384 standard water and acetic acid-enriched solutions. Best results were obtained with 0.05 mol l -1 of NaC 10 solution. In these conditions, the inhibition efficiency can be estimated of 99.9%. The corrosion inhibition effect was confirmed by cyclic atmospheric tests in a climatic chamber in two different conditions: water saturated vapour, and acid acetic enriched vapour simulating the atmosphere in the wooden displays in museums. Surface analyses by SEM and X-ray diffraction indicate that the metal protection is due to the formation of a protective layer mainly composed of lead decanoate Pb(C 10 ) 2 (metallic soap). This inhibition treatment was applied on objects of metallic cultural heritage: gallo-roman sarcophagus in lead. Electrochemical methods confirm the efficiency of treatment on archaeological materials. In conclusion, this inhibitor treatment seems to be very promising against the atmospheric corrosion and the corrosion by organic acid vapour in museums

  1. Influence of thermal processing conditions on flavor stability in fluid milk: benzaldehyde.

    Science.gov (United States)

    Potineni, R V; Peterson, D G

    2005-01-01

    Flavor loss in dairy products has been associated with enzymatic degradation by xanthine oxidase. This study was conducted to investigate the influence of milk thermal processing conditions (or xanthine oxidase inactivation) on benzaldehyde stability. Benzaldehyde was added to whole milk which had been thermally processed at 4 levels: (1) none or raw, (2) high temperature, short time (HTST) pasteurization, (3) HTST pasteurization, additionally heated to 100 degrees C (PAH), and (4) UHT sterilized. Additionally, PAH and UHT milk samples containing benzaldehyde (with and without ferrous sulfate) were spiked with xanthine oxidase. Azide was added as an antimicrobial agent (one additional pasteurized sample without) and the microbial load (total plate count) was determined on d 0, 2, and 6. The concentration of benzaldehyde and benzoic acid in all milk samples were determined at d 0, 1, 2, 4, and 6 (stored at 5 degrees C) by gas chromatography/mass spectrometry in selective ion monitory mode. Over the 6-d storage period, more than 80% of the benzaldehyde content was converted (oxidized) to benzoic acid in raw and pasteurized milk, whereas no change in the benzaldehyde concentration was found in PAH or UHT milk samples. Furthermore, the addition of xanthine oxidase or xanthine oxidase plus ferrous sulfate to PAH or UHT milk samples did not result in benzaldehyde degradation over the storage period.

  2. Conditions that Stabilize Membrane Domains Also Antagonize n-Alcohol Anesthesia

    Science.gov (United States)

    Machta, Benjamin B.; Gray, Ellyn; Nouri, Mariam; McCarthy, Nicola L. C.; Gray, Erin M.; Miller, Ann L.; Brooks, Nicholas J.; Veatch, Sarah L.

    2016-08-01

    Diverse molecules induce general anesthesia with potency strongly correlated both with their hydrophobicity and their effects on certain ion channels. We recently observed that several n-alcohol anesthetics inhibit heterogeneity in plasma membrane derived vesicles by lowering the critical temperature ($T_c$) for phase separation. Here we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n-alcohols and effects on $T_c$. First we show that hexadecanol acts oppositely to n-alcohol anesthetics on membrane mixing and antagonizes ethanol induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described `intoxication reversers' raise $T_c$ and counter ethanol's effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that hydrostatic pressure, long known to reverse anesthesia, also raises $T_c$ in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together, these results demonstrate that $\\Delta T_c$ predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia.

  3. Assessment of polyelectrolyte coating stability under dynamic buffer conditions in CE.

    Science.gov (United States)

    Swords, Kyleen E; Bartline, Peter B; Roguski, Katherine M; Bashaw, Sarah A; Frederick, Kimberley A

    2011-09-01

    Dynamic buffer conditions are present in many electrophoretically driven separations. Polyelectrolyte multilayer coatings have been employed in CE because of their chemical and physical stability as well as their ease of application. The goal of this study is to measure the effect of dynamic changes in buffer pH on flow using a real-time method for measuring EOF. Polyelectrolyte multilayers (PEMs) were composed of pairs of strong or completely ionized polyelectrolytes including poly(diallyldimethylammonium) chloride and poly(styrene sulfonate) and weak or ionizable polyelectrolytes including poly(allylamine) and poly(methacrylic acid). Polyelectrolyte multilayers of varying thicknesses (3, 4, 7, 8, 15, or 16 layers) were also studied. While the magnitude of the EOF was monitored every 2 s, the buffer pH was exchanged from a relatively basic pH (7.1) to increasingly acidic pHs (6.6, 6.1, 5.5, and 5.1). Strong polyelectrolytes responded minimally to changes in buffer pH (10%) and sometimes irreversible changes were measured with weak polyelectrolytes. Thicker coatings resulted in a similar magnitude of response but were more likely to degrade in response to buffer pH changes. The most stable coatings were formed from thinner layers of strong polyelectrolytes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Stability conditions of stationary rupture of liquid layers on an immiscible fluid surface

    Energy Technology Data Exchange (ETDEWEB)

    Viviani, A. [Seconda Univ. di Napoli, Aversa (Italy). Facolta di Ingegneria; Kostarev, K.; Shmyrov, A.; Zuev, A. [Inst. of Continuous Media Mechanics, Perm (Russian Federation)

    2009-07-01

    The stationary equilibrium shape of a 3-phase liquids-gas system was investigated. The system consisted of a horizontal liquid layer with an upper free boundary placed on the immiscible fluid interface. The study investigated the stability conditions of rupture of the liquid layer surface. The dependence of rupture parameters on the experimental cuvette diameter and layer thickness was investigated, as well as the difference in the values of surface tension of the examined fluids. The 2-layer system of horizontal fluid layers was formed in a glass cylindrical cuvette. The liquid substrate was tetrachloride carbon (CCI{sub 4}), while upper layers included water, glycerine, ethyleneglycol, and aqueous solutions of 1,4-butanediol C{sub 4}H{sub 10}O{sub 2} and isopropanol C{sub 3H8L}. Initially, the surface of the substrate fluid was overlaid with a horizontal liquid layer. The rupture was formed by subjecting the layer surface to short-time actions of a narrow directional air jet. After rupture formation, the layer thickness increased gradually. The measurements demonstrated that the rupture diameter depends on the initial thickness of the upper layer as well as the diameter of the cuvette, and the difference in the values of the surface tension of the examined fluids. Analysis of the experimental relationships indicated that the critical thickness of the breaking layer is a constant value for any specific pairs of fluids. 4 refs., 7 figs.

  5. Graphene-metal interaction and its effect on the interface stability under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Aiyi; Fu, Qiang, E-mail: qfu@dicp.ac.cn; Wei, Mingming; Bao, Xinhe

    2017-08-01

    Highlights: • Graphene (Gr)/transition metal (TM: Fe, Co, Pt, and Au) interfaces form through TM intercalation at Gr/Ru(0001) surface. • Graphene-metal interaction strength follows the order of Ru ≈ Fe ≈ Co > Pt > Au. • Oxygen intercalation occurs at Gr/Fe, Gr/Co, Gr/Pt, and Gr/Ru interfaces but not at Gr/Au interface in air around 100 °C. - Abstract: Interaction between graphene (Gr) and metal plays an important role in physics and chemistry of graphene/metal interfaces. In this work, well-defined interfaces between graphene and transition metals (TMs) including Fe, Co, Pt, and Au were prepared through TM intercalation on Gr/Ru(0001) surface. The Gr-metal interaction was investigated using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. We found that graphene interacts most strongly with Ru, Fe and Co and most weakly with Au, following the order of Ru ≈ Fe ≈ Co > Pt > Au. The Gr/Fe, Gr/Co, Gr/Pt, and Gr/Ru interfaces can be readily intercalated by oxygen when exposed to air and illuminated by an infrared lamp. In contrast, oxygen intercalation does not happen at the Gr/Au interface under the same condition. It is suggested that both Gr-metal interaction and oxygen adsorption on the underlying metal surface are critical in the oxygen intercalation and the Gr/metal interface stability.

  6. A kinetic model for the stability of spent fuel matrix under oxic conditions

    International Nuclear Information System (INIS)

    Bruno, J.; Cera, E.; Duro, L.; Eriksen, T.E.

    1996-01-01

    A kinetic model for the UO 2 -spent fuel dissolution has been developed by integrating all the fundamental and experimental evidence about the redox buffer capacity of the UO 2 matrix itself within the methodological framework of heterogeneous redox reactions and dissolution kinetics. The purpose of the model is to define the geochemical stability of the spent fuel matrix and its resistance to internal and external disturbances. The model has been built in basis the reductive capacity (RDC) of the spent fuel/water system. A sensitivity analysis has been performed in order to identify the main parameters that affect the RDC of the system, the oxidant consumption and the radionuclide release. The number of surface co-ordination sites, the surface area to volume ratio, the kinetics of oxidants generation by radiolysis and the kinetics of oxidative dissolution of UO 2 , have been found to be the main parameters that can affect the reductive capacity of the spent fuel matrix. The model has been checked against some selected UO 2 and spent fuel dissolution data, performed under oxidizing conditions. The results are quite encouraging. (orig.)

  7. Comparison of toluene removal in air at atmospheric conditions by different corona discharges.

    Science.gov (United States)

    Schiorlin, Milko; Marotta, Ester; Rea, Massimo; Paradisi, Cristina

    2009-12-15

    Different types of corona discharges, produced by DC of either polarity (+/-DC) and positive pulsed (+pulsed) high voltages, were applied to the removal of toluene via oxidation in air at room temperature and atmospheric pressure. Mechanistic insight was obtained through comparison of the three different corona regimes with regard to process efficiency, products, response to the presence of humidity and, for DC coronas, current/voltage characteristics coupled with ion analysis. Process efficiency increases in the order +DC toluene conversion and product selectivity were achieved, CO(2) and CO accounting for about 90% of all reacted carbon. Ion analysis, performed by APCI-MS (Atmospheric Pressure Chemical Ionization-Mass Spectrometry), provides a powerful rationale for interpreting current/voltage characteristics of DC coronas. All experimental findings are consistent with the proposal that in the case of +DC corona toluene oxidation is initiated by reactions with ions (O(2)(+*), H(3)O(+) and their hydrates, NO(+)) both in dry as well as in humid air. In contrast, with -DC no evidence is found for any significant reaction of toluene with negative ions. It is also concluded that in humid air OH radicals are involved in the initial stage of toluene oxidation induced both by -DC and +pulsed corona.

  8. Growing importance of atmospheric water demands on the hydrologcial condition of East Asia

    Science.gov (United States)

    Park, C. E.; Ho, C. H.; Jeong, S. J.; Park, H.

    2015-12-01

    As global temperature increases, enhanced exchange of fresh water between the surface and atmosphere expected to make dry regions drier and wet regions wetter. This concept is well fitted for the ocean, but oversimplified for the land. How the climate change causes the complex patterns of the continental dryness change is one of challenging questions. Here we investigate the observed dryness changes of the land surface by examining the quantitative influence of several climate parameters on the background aridity changes over East Asia, containing various climate regimes from cold-arid to warm-humid regions, using observations of 189 stations covering the period from 1961 to 2010. Overall mean aridity trend is changed from negative to positive around early 1990s. The turning of dryness trend is largely influenced by sharp increase in atmospheric water demands, regardless of the background climate. The warming induced increase in water demands is larger in warm-humid regions than in cold-arid region due to the Clausius-Clapeyron relation between air temperature and saturation vapor pressure. The results show the drying of anthropogenic warming already begins and influences on the patterns of dryness change over the land surface.

  9. Under What Conditions Can Equilibrium Gas-Particle Partitioning Be Expected to Hold in the Atmosphere?

    Science.gov (United States)

    Mai, Huajun; Shiraiwa, Manabu; Flagan, Richard C; Seinfeld, John H

    2015-10-06

    The prevailing treatment of secondary organic aerosol formation in atmospheric models is based on the assumption of instantaneous gas-particle equilibrium for the condensing species, yet compelling experimental evidence indicates that organic aerosols can exhibit the properties of highly viscous, semisolid particles, for which gas-particle equilibrium may be achieved slowly. The approach to gas-particle equilibrium partitioning is controlled by gas-phase diffusion, interfacial transport, and particle-phase diffusion. Here we evaluate the controlling processes and the time scale to achieve gas-particle equilibrium as a function of the volatility of the condensing species, its surface accommodation coefficient, and its particle-phase diffusivity. For particles in the size range of typical atmospheric organic aerosols (∼50-500 nm), the time scale to establish gas-particle equilibrium is generally governed either by interfacial accommodation or particle-phase diffusion. The rate of approach to equilibrium varies, depending on whether the bulk vapor concentration is constant, typical of an open system, or decreasing as a result of condensation into the particles, typical of a closed system.

  10. Effect of Shadowing on Survival of Bacteria under Conditions Simulating the Martian Atmosphere and UV Radiation▿ †

    Science.gov (United States)

    Osman, Shariff; Peeters, Zan; La Duc, Myron T.; Mancinelli, Rocco; Ehrenfreund, Pascale; Venkateswaran, Kasthuri

    2008-01-01

    Spacecraft-associated spores and four non-spore-forming bacterial isolates were prepared in Atacama Desert soil suspensions and tested both in solution and in a desiccated state to elucidate the shadowing effect of soil particulates on bacterial survival under simulated Martian atmospheric and UV irradiation conditions. All non-spore-forming cells that were prepared in nutrient-depleted, 0.2-μm-filtered desert soil (DSE) microcosms and desiccated for 75 days on aluminum died, whereas cells prepared similarly in 60-μm-filtered desert soil (DS) microcosms survived such conditions. Among the bacterial cells tested, Microbacterium schleiferi and Arthrobacter sp. exhibited elevated resistance to 254-nm UV irradiation (low-pressure Hg lamp), and their survival indices were comparable to those of DS- and DSE-associated Bacillus pumilus spores. Desiccated DSE-associated spores survived exposure to full Martian UV irradiation (200 to 400 nm) for 5 min and were only slightly affected by Martian atmospheric conditions in the absence of UV irradiation. Although prolonged UV irradiation (5 min to 12 h) killed substantial portions of the spores in DSE microcosms (∼5- to 6-log reduction with Martian UV irradiation), dramatic survival of spores was apparent in DS-spore microcosms. The survival of soil-associated wild-type spores under Martian conditions could have repercussions for forward contamination of extraterrestrial environments, especially Mars. PMID:18083857

  11. The conditions for attaining the greatest degree of system stability with strict generator excitation control

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, I.A.; Ekimova, M.M.; Truspekova, G.A.

    1982-01-01

    Expressions are derived for an idealized model of a complex electric power system; these expressions define the greatest level of stability of an electric power system and the optimum combination of stabilization factors with automatic excitation control in a single power system. The possibility of increasing the level of stability of an electric power system with simultaneous strict automatic excitation control of the synychronous generators in several power systems is analyzed.

  12. Effect of Light Intensities and Atmospheric Gas Conditions on Biohydrogen Production of Microalgae Isolated from Fisheries Wastewater

    Directory of Open Access Journals (Sweden)

    Mujalin Pholchan

    2017-06-01

    Full Text Available Recently, the fishery farming industry has been developed rapidly due to increasing demand and consumption as well as the depletion of wild fish resources. Production processes in the industry usually generate large amounts of wastewater containing high nutrients, posing a threat to downstream water. However, phytoplankton removal techniques commonly used to counteract the threat, though appearing to have low efficiency, are timeconsuming and less sustainable. Microalgae are photosynthetic microorganisms that convert solar energy into hydrogen. Using the isolated algae from fish farms as a source of renewable energy production could be a promising choice for handling fisheries wastewater in a more efficient manner. However, hydrogen production processes from algae still need more studies as their efficiencies vary between algae species and growth factors. In this work, the efficiency of hydrogen production from Scenedesmus accuminatus and Arthrospira platensis harvested from fish farms under three different light intensity conditions and three atmospheric gas conditions was determined. The results showed that the best conditions for hydrogen production from both species included 24 h darkness and carbon dioxide addition. Under the atmospheric gas combination of 99% argon and 1% carbon dioxide, S. accuminatus could produce hydrogen gas as high as 0.572 mol H2/mgCh h within 12 h, while the highest hydrogen production (0.348 mol H2/mgCh h obtained from A. platensis was found under the atmospheric gas mixture of 98% argon and 2% carbon dioxide. Interestingly, S. accuminatus appeared to produce more hydrogen than A. platensis under the same conditions.

  13. Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.

    Science.gov (United States)

    Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel

    2012-04-01

    The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.

  14. Carbamide peroxide gel stability under different temperature conditions: is manipulated formulation an option?

    Directory of Open Access Journals (Sweden)

    Camila de Martini Bonesi

    2011-12-01

    Full Text Available Nowadays the use of gel containing carbamide peroxide (CP prepared in Pharmacy is a normal practice in the population. However, the quality of this product is questionable concerning its stability. The aim of this study is was to synthesize and to analyze this drug alone or associated to Carbopol gel through analytical methodology compatible with the routine of the Pharmacies. The reaction between urea and hydrogen peroxide was carried out at different resting times: 24 hours (CP 24 powder and 48 hours (CP48 powder after the mixture. Both products were associated with Carbopol 940® gel 1.5% (G generating G24 and G48 samples. The stability of powders (CP24 e CP48 and the formulations (G24 and G48 were evaluated as a function of time (15, 40 and 45 days and thermal variation (refrigeration: 8 °C±1; thermal shock 32 °C±1 /8 °C±1; stove: 32 °C±1, using a standard titration method. As a result, only under refrigeration the CP24 and CP48 contents remained stable during the period of 45 days. An interesting finding was that G24 and G48 presented greater stability for at least 45-days under refrigeration and thermal shock conditions, and up to 30 days under stove conditions. The results for the G24 and G48 were slightly higher than those obtained for the control. Therefore, we were able to conclude that association with Carbopol 940® Gel 1.5 % provided greater CP stability and that manipulated formulations containing CP may be viable for use in a period of 45 days under refrigeration conditions. The titration proved to be an effective technique for the analysis of CP with or without Carbopol 940® gel 1.5%.Atualmente, a utilização de gel contendo peróxido de carbamida manipulado em Farmácia é uma prática comum na população. No entanto, a qualidade deste produto é questionada, sobretudo no que se refere à estabilidade deste fármaco. O objetivo deste trabalho consiste na avaliação da viabilidade de sintetizar e analisar

  15. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    Science.gov (United States)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  16. Stability Control of Retained Goaf-Side Gateroad under Different Roof Conditions in Deep Underground Y Type Longwall Mining

    Directory of Open Access Journals (Sweden)

    Zhiyi Zhang

    2017-09-01

    Full Text Available Stability of the retained goaf-side gateroad (RGSG is influenced mainly by the movements of the roof strata near coal seam after coalface passes by. To make effective controlling technology for the stability of the RGSG, we analyze the roof structure over the RGSG to illustrate the mechanism causing the RGSG instability under different roof conditions. We then examine the dynamic evolution of the deformation and abutment stress in the rock surrounding the RGSG during coal seam mining, using the FLAC3D numerical software to reveal the instability characteristics of the RGSG under different roof conditions. Next, corresponding stability controlling technologies for the RGSGs are proposed and tested in three typical deep underground coalmines. Results show that: sink and rotation of the roof cantilever over the RGSG impose severer influence on the stability of the RGSG. The RGSG suffers disturbances three times during the coal-seam mining, and the deformation and abutment stress in the rock surrounding the RGSG increase significantly when the main roof becomes thicker and the immediate roof becomes thinner. Staged support technology involving grout cable bolts has better controlling results of the RGSG stability than that composed of conventional rock bolts, when the RGSG is beneath weak immediate roof with large thickness. Roof structure optimizing technology involving pre-split technology can improve the stability of the RGSG effectively when the RGSG is covered by hard main roof with large thickness directly.

  17. Modelling the autoxidation of myoglobin in fresh meat under modified atmosphere packing conditions

    DEFF Research Database (Denmark)

    Tofteskov, Jon; Hansen, Jesper Schmidt; Bailey, Nicholas

    2017-01-01

    pigment concentration data is obtained, but only by substantially increasing the value of the oxygen consumption rate. Application of the model to meat stored at 5 °C shows that the metmyoglobin layer forms under the surface over a time scale of 24 h; The metmyoglobin layer forms deeper inside the meat......Modified atmosphere packing (MAP) is a technique to increase the shelf life of fresh meat. Continuing development of MAP requires better understanding of the physical and chemical processes taking place, in particular the diffusion of oxygen and its reaction with myoglobin. We model these processes...... proportional to the logarithm of the headspace oxygen partial pressure, thus improving the colour appearance of the meat....

  18. A numerical study for the assessment of pollutant dispersion from Kostolac B power plant to Viminacium for different atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Kozić Mirko S.

    2015-01-01

    Full Text Available The level of pollution concentration to the archaeological site Viminacium caused by the stack of Kostolac B power plant is analyzed using CFD software. The wind is directed from the stack toward Viminacium-Archaeological Site, Therma and Viminacium - Museum. Three different meteorological conditions resulting in fanning, fumigating and looping plume are modelled. The temperature gradient as the most important factor defining the conditions of the atmosphere is included through the appropriate boundary conditions. It is shown that concentrations of the pollutants on the objects of Viminacium are very low. It can be attributed to the stack height and high temperature of the smoke at its exit. It also indicates that other sources of pollution such as open ash dumps and acid rain should be checked.

  19. Muscodor albus Volatiles Control Toxigenic Fungi under Controlled Atmosphere (CA Storage Conditions

    Directory of Open Access Journals (Sweden)

    Gordon Braun

    2012-11-01

    Full Text Available Muscodor albus, a biofumigant fungus, has the potential to control post-harvest pathogens in storage. It has been shown to produce over 20 volatile compounds with fungicidal, bactericidal and insecticidal properties. However, M. albus is a warm climate endophyte, and its biofumigant activity is significantly inhibited at temperatures below 5 °C. Conidia of seven mycotoxin producing fungi, Aspergillus carbonarius, A. flavus, A. niger, A. ochraceus, Penicillium verrucosum, Fusarium culmorum and F. graminearum, were killed or prevented from germinating by exposure to volatiles from 2 g M. albus-colonized rye grain per L of headspace in sealed glass jars for 24 h at 20 °C. Two major volatiles of M. albus, isobutyric acid (IBA and 2-methyl-1-butanol (2MB at 50 µL/L and 100 µL/L, respectively, gave differential control of the seven fungi when applied individually at 20 °C. When the fungi were exposed to both IBA and 2MB together, an average of 94% of the conidia were killed or suppressed. In a factorial experiment with controlled atmosphere storage (CA at 3 °C and 72 h exposure to four concentrations of IBA and 2MB combinations, 50 µL/L IBA plus 100 µL/L 2MB killed or suppressed germination of the conidia of all seven fungi. Controlled atmosphere had no significant effect on conidial viability or volatile efficacy. Major volatiles of M. albus may have significant potential to control plant pathogens in either ambient air or CA storage at temperatures below 5 °C. However, combinations of volatiles may be required to provide a broader spectrum of control than individual volatiles.

  20. Evaluation of Haney-Type Surface Thermal Boundary Conditions Using a Coupled Atmosphere and Ocean Model

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    2001-01-01

    ... (Russell et al,, 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat flux Q to air / sea temperature difference DeltaT by a relaxation coefficient K...

  1. A modified surface-resistance approach for representing bare-soil evaporation: wind tunnel experiments under various atmospheric conditions

    International Nuclear Information System (INIS)

    Yamanaka, T.; Takeda, A.; Sugita, F.

    1997-01-01

    A physically based (i.e., nonempirical) representation of surface-moisture availability is proposed, and its applicability is investigated. This method is based on the surface-resistance approaches, and it uses the depth of evaporating surface rather than the water content of the surface soil as the determining factor of surface-moisture availability. A simple energy-balance model including this representation is developed and tested against wind tunnel experiments under various atmospheric conditions. This model can estimate not only the latent heat flux but also the depth of the evaporating surface simultaneously by solving the inverse problem of energy balance at both the soil surface and the evaporating surface. It was found that the depth of the evaporating surface and the latent heat flux estimated by the model agreed well with those observed. The agreements were commonly found out under different atmospheric conditions. The only limitation of this representation is that it is not valid under conditions of drastic change in the radiation input, owing to the influence of transient phase transition of water in the dry surface layer. The main advantage of the approach proposed is that it can determine the surface moisture availability on the basis of the basic properties of soils instead of empirical fitting, although further investigations on its practical use are needed

  2. Demonstration of intradyne BPSK optical free-space transmission in representative atmospheric turbulence conditions for geostationary uplink channel.

    Science.gov (United States)

    Surof, Janis; Poliak, Juraj; Calvo, Ramon Mata

    2017-06-01

    Binary phase-shift keying optical transmission in the C-band with coherent intradyne reception is demonstrated over a long-range (10.45 km) link through the atmosphere. The link emulates representative channel conditions for geostationary optical feeder uplinks in satellite communications. The digital signal processing used in recovering the transmitted data and the performed measurements are described. Finally, the bit error rate results for 10 Gbit/s, 20 Gbit/s, and 30 Gbit/s of the outdoor experiments are presented and compared with back-to-back measurements and theory.

  3. Experimental study of the influence of atmospheric conditions on the performance of natural draft dry cooling towers

    International Nuclear Information System (INIS)

    Markoczy, G.; Staempfli, E.

    1977-08-01

    The heat dissipation of cooling towers is influenced by atmospheric conditions. In order to establish these influences EIR conducted measurements on a natural draft dry cooling tower. During two measuring campaigns with a duration of total 10 weeks the performance of the cooling tower, the ambient air temperatures, the wind velocities and directions as well as air temperature at the top of the tower and in front of the heat exchangers were continuously measured and registered. The results achieved enable the quantitative description of the influence of the ambient air temperature, wind and temperature inversion on the performance of natural draft dry cooling towers. (Auth.)

  4. The Effect of Small Cosolutes that Mimic Molecular Crowding Conditions on the Stability of Triplexes Involving Duplex DNA

    Directory of Open Access Journals (Sweden)

    Anna Aviñó

    2016-02-01

    Full Text Available Triplex stability is studied in crowding conditions using small cosolutes (ethanol, acetonitrile and dimethylsulfoxide by ultraviolet (UV, circular dichroism (CD and nuclear magnetic resonance (NMR spectroscopies. The results indicate that the triplex is formed preferentially when the triplex forming oligonucleotide (TFO is RNA. In addition, DNA triplexes (D:D·D are clearly less stable in cosolute solutions while the stability of the RNA triplexes (R:D·D is only slightly decreased. The kinetic of triplex formation with RNA-TFO is slower than with DNA-TFO and the thermal stability of the triplex is increased with the salt concentration in EtOH-water solutions. Accordingly, RNA could be considered a potential molecule to form a stable triplex for regulatory purposes in molecular crowding conditions.

  5. Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies

    KAUST Repository

    Alsaadi, Ahmad S.; Francis, Lijo; Maab, Husnul; Amy, Gary L.; Ghaffour, NorEddine

    2015-01-01

    The importance of removing non-condensable gases from air gap membrane distillation (AGMD) modules in improving the water vapor flux is presented in this paper. Additionally, a previously developed AGMD mathematical model is used to predict to the degree of flux enhancement under sub-atmospheric pressure conditions. Since the mathematical model prediction is expected to be very sensitive to membrane distillation (MD) membrane resistance when the mass diffusion resistance is eliminated, the permeability of the membrane was carefully measured with two different methods (gas permeance test and vacuum MD permeability test). The mathematical model prediction was found to highly agree with the experimental data, which showed that the removal of non-condensable gases increased the flux by more than three-fold when the gap pressure was maintained at the saturation pressure of the feed temperature. The importance of staging the sub-atmospheric AGMD process and how this could give better control over the gap pressure as the feed temperature decreases are also highlighted in this paper. The effect of staging on the sub-atmospheric AGMD flux and its relation to membrane capital cost are briefly discussed.

  6. Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies

    KAUST Repository

    Alsaadi, Ahmad S.

    2015-04-16

    The importance of removing non-condensable gases from air gap membrane distillation (AGMD) modules in improving the water vapor flux is presented in this paper. Additionally, a previously developed AGMD mathematical model is used to predict to the degree of flux enhancement under sub-atmospheric pressure conditions. Since the mathematical model prediction is expected to be very sensitive to membrane distillation (MD) membrane resistance when the mass diffusion resistance is eliminated, the permeability of the membrane was carefully measured with two different methods (gas permeance test and vacuum MD permeability test). The mathematical model prediction was found to highly agree with the experimental data, which showed that the removal of non-condensable gases increased the flux by more than three-fold when the gap pressure was maintained at the saturation pressure of the feed temperature. The importance of staging the sub-atmospheric AGMD process and how this could give better control over the gap pressure as the feed temperature decreases are also highlighted in this paper. The effect of staging on the sub-atmospheric AGMD flux and its relation to membrane capital cost are briefly discussed.

  7. Stability of River Bifurcations from Bedload to Suspended Load Dominated Conditions

    Science.gov (United States)

    de Haas, T.; Kleinhans, M. G.

    2010-12-01

    Bifurcations (also called diffluences) are as common as confluences in braided and anabranched rivers, and more common than confluences on alluvial fans and deltas where the network is essentially distributary. River bifurcations control the partitioning of both water and sediment through these systems with consequences for immediate river and coastal management and long-term evolution. Their stability is poorly understood and seems to differ between braided rivers, meandering river plains and deltas. In particular, it is the question to what extent the division of flow is asymmetrical in stable condition, where highly asymmetrical refers to channel closure and avulsion. Recent work showed that bifurcations in gravel bed braided rivers become more symmetrical with increasing sediment mobility, whereas bifurcations in a lowland sand delta become more asymmetrical with increasing sediment mobility. This difference is not understood and our objective is to resolve this issue. We use a one-dimensional network model with Y-shaped bifurcations to explore the parameter space from low to high sediment mobility. The model solves gradually varied flow, bedload transport and morphological change in a straightforward manner. Sediment is divided at the bifurcation including the transverse slope effect and the spiral flow effect caused by bends at the bifurcation. Width is evolved whilst conserving mass of eroded or built banks with the bed balance. The bifurcations are perturbed from perfect symmetry either by a subtle gradient advantage for one branch or a gentle bend at the bifurcation. Sediment transport was calculated with and without a critical threshold for sediment motion. Sediment mobility, determined in the upstream channel, was varied in three different ways to isolate the causal factor: by increasing discharge, increasing channel gradient and decreasing particle size. In reality the sediment mobility is mostly determined by particle size: gravel bed rivers are near

  8. Stability of commercial glucanase and β-glucosidase preparations under hydrolysis conditions

    Directory of Open Access Journals (Sweden)

    Oscar Rosales-Calderon

    2014-06-01

    Full Text Available The cost of enzymes makes enzymatic hydrolysis one of the most expensive steps in the production of lignocellulosic ethanol. Diverse studies have used commercial enzyme cocktails assuming that change in total protein concentration during hydrolysis was solely due to adsorption of endo- and exoglucanases onto the substrate. Given the sensitivity of enzymes and proteins to media conditions this assumption was tested by evaluating and modeling the protein concentration of commercial cocktails at hydrolysis conditions. In the absence of solid substrate, the total protein concentration of a mixture of Celluclast 1.5 L and Novozyme 188 decreased by as much as 45% at 50 °C after 4 days. The individual cocktails as well as a mixture of both were stable at 20 °C. At 50 °C, the protein concentration of Celluclast 1.5 was relatively constant but Novozyme 188 decreased by as much as 77%. It was hypothesized that Novozyme 188 proteins suffer a structural change at 50 °C which leads to protein aggregation and precipitation. Lyophilized β-glucosidase (P-β-glucosidase at 50 °C exhibited an aggregation rate which was successfully modeled using first order kinetics (R2 = 0.97. By incorporating the possible presence of chaperone proteins in Novozyme 188, the protein aggregation observed for this cocktail was successfully modeled (R2 = 0.96. To accurately model the increasing protein stability observed at high cocktail loadings, the model was modified to include the presence of additives in the cocktail (R2 = 0.98. By combining the measurement of total protein concentration with the proposed Novozyme 188 protein aggregation model, the endo- and exoglucanases concentration in the solid and liquid phases during hydrolysis can be more accurately determined. This methodology can be applied to various systems leading to optimization of enzyme loading by minimizing the excess of endo- and exoglucanases. In addition, the monitoring of endo- and exoglucanases

  9. Physical and chemical stability of expired fixed dose combination artemether-lumefantrine in uncontrolled tropical conditions

    Directory of Open Access Journals (Sweden)

    Hess Kimberly

    2009-02-01

    Full Text Available Abstract Background New artemisinin combination therapies pose difficulties of implementation in developing and tropical settings because they have a short shelf-life (two years relative to the medicines they replace. This limits the reliability and cost of treatment, and the acceptability of this treatment to health care workers. A multi-pronged investigation was made into the chemical and physical stability of fixed dose combination artemether-lumefantrine (FDC-ALU stored under heterogeneous, uncontrolled African conditions, to probe if a shelf-life extension might be possible. Methods Seventy samples of expired FDC-ALU were collected from private pharmacies and malaria researchers in seven African countries. The samples were subjected to thin-layer chromatography (TLC, disintegration testing, and near infrared Raman spectrometry for ascertainment of active ingredients, tablet integrity, and chemical degradation of the tablet formulation including both active ingredients and excipients. Results Seventy samples of FDC-ALU were tested in July 2008, between one and 58 months post-expiry. 68 of 70 (97% samples passed TLC, disintegration and Raman spectrometry testing, including eight samples that were post-expiry by 20 months or longer. A weak linear association (R2 = 0.33 was observed between the age of samples and their state of degradation relative to brand-identical samples on Raman spectrometry. Sixty-eight samples were retested in February 2009 using Raman spectrometry, between eight and 65 months post-expiry. 66 of 68 (97% samples passed Raman spectrometry retesting. An unexpected observation about African drug logistics was made in three batches of FDC-ALU, which had been sold into the public sector at concessional pricing in accordance with a World Health Organization (WHO agreement, and which were illegally diverted to the private sector where they were sold for profit. Conclusion The data indicate that FDC-ALU is chemically and

  10. Addition of Pullulan to Trehalose Glasses Improves the Stability of β-Galactosidase at High Moisture Conditions

    NARCIS (Netherlands)

    Teekamp, Naomi; Tian, Yu; Visser, J. Carolina; Olinga, Peter; Frijlink, Henderik W.; Woerdenbag, Herman J.; Hinrichs, Wouter L. J.

    2017-01-01

    Incorporation of therapeutic proteins in a matrix of sugar glass is known to enhance protein stability, yet protection is often lost when exposed to high relative humidity (RH). We hypothesized that especially in these conditions the use of binary glasses of a polysaccharide and disaccharide might

  11. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts

    Directory of Open Access Journals (Sweden)

    Ameena Ali

    2018-02-01

    Full Text Available The phenolic constituents in Piper betle are well known for their antioxidant potential; however, current literature has very little information on their stability under the influence of storage factors. Present study evaluated the stability of total phenolic content (TPC and antioxidant activity together with individual phenolic constituents (hydroxychavicol, eugenol, isoeugenol and allylpyrocatechol 3,4-diacetate present in dried Piper betle’s extract under different storage temperature of 5 and 25 °C with and without light for a period of six months. Both light and temperature significantly influenced TPC and its corresponding antioxidant activity over time. More than 95% TPC and antioxidant activity was retained at 5 °C in dark condition after 180 days of storage. Hydroxychavicol demonstrated the best stability with no degradation while eugenol and isoeugenol displayed moderate stability in low temperature (5 °C and dark conditions. 4-allyl-1,2-diacetoxybenzene was the only compound that underwent complete degradation. A new compound, 2,4-di-tert-butylphenol, was detected after five weeks of storage only in the extracts exposed to light. Both zero-order and first-order kinetic models were adopted to describe the degradation kinetics of the extract’s antioxidant activity. Zero-order displayed better fit with higher correlation coefficients (R2 = 0.9046 and the half-life was determined as 62 days for the optimised storage conditions (5 °C in dark conditions.

  12. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts.

    Science.gov (United States)

    Ali, Ameena; Chong, Chien Hwa; Mah, Siau Hui; Abdullah, Luqman Chuah; Choong, Thomas Shean Yaw; Chua, Bee Lin

    2018-02-23

    The phenolic constituents in Piper betle are well known for their antioxidant potential; however, current literature has very little information on their stability under the influence of storage factors. Present study evaluated the stability of total phenolic content (TPC) and antioxidant activity together with individual phenolic constituents (hydroxychavicol, eugenol, isoeugenol and allylpyrocatechol 3,4-diacetate) present in dried Piper betle 's extract under different storage temperature of 5 and 25 °C with and without light for a period of six months. Both light and temperature significantly influenced TPC and its corresponding antioxidant activity over time. More than 95% TPC and antioxidant activity was retained at 5 °C in dark condition after 180 days of storage. Hydroxychavicol demonstrated the best stability with no degradation while eugenol and isoeugenol displayed moderate stability in low temperature (5 °C) and dark conditions. 4-allyl-1,2-diacetoxybenzene was the only compound that underwent complete degradation. A new compound, 2,4-di- tert -butylphenol, was detected after five weeks of storage only in the extracts exposed to light. Both zero-order and first-order kinetic models were adopted to describe the degradation kinetics of the extract's antioxidant activity. Zero-order displayed better fit with higher correlation coefficients ( R ² = 0.9046) and the half-life was determined as 62 days for the optimised storage conditions (5 °C in dark conditions).

  13. A Semilinear Wave Equation with a Boundary Condition of Many-Point Type: Global Existence and Stability of Weak Solutions

    Directory of Open Access Journals (Sweden)

    Giai Giang Vo

    2015-01-01

    Full Text Available This paper is devoted to the study of a wave equation with a boundary condition of many-point type. The existence of weak solutions is proved by using the Galerkin method. Also, the uniqueness and the stability of solutions are established.

  14. Stability of Ag@SiO2 core–shell particles in conditions of photocatalytic overall water-splitting

    NARCIS (Netherlands)

    Park, Sun Young; Han, Kai; O'Neill, Devin B.; Mul, Guido

    2017-01-01

    Core–shell nanoparticles containing plasmonic metals (Ag or Au) have been frequently reported to enhance performance of photo-electrochemical (PEC) devices. However, the stability of these particles in water-splitting conditions is usually not addressed. In this study we demonstrate that Ag@SiO2

  15. Two-step upflow anaerobic sludge bed system for sewage treatment under subtropical conditions with posttreatment in waste stabilization ponds

    NARCIS (Netherlands)

    Seghezzo, L.; Trupiano, A.P.; Liberal, V.; Todd, P.G.; Figueroa, M.E.; Gutierrez, M.A.; Silva Wilches, Da A.C.; Iribarnegaray, M.; Guerra, R.G.; Arena, A.; Cuevas, C.M.; Zeeman, G.; Lettinga, G.

    2003-01-01

    A pilot-scale sewage treatment system consisting of two upflow anaerobic sludge bed (UASB) reactors followed by five waste stabilization ponds (WSPs) in series was studied under subtropical conditions. The first UASB reactor started up in only 1 mo (stable operation, high chemical oxygen demand

  16. 3D elastic wave modeling using modified high‐order time stepping schemes with improved stability conditions

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.; Seif, Roustam

    2009-01-01

    We present two Lax‐Wendroff type high‐order time stepping schemes and apply them to solving the 3D elastic wave equation. The proposed schemes have the same format as the Taylor series expansion based schemes, only with modified temporal extrapolation coefficients. We demonstrate by both theoretical analysis and numerical examples that the modified schemes significantly improve the stability conditions.

  17. Heterogeneous Reactions between Toluene and NO2 on Mineral Particles under Simulated Atmospheric Conditions.

    Science.gov (United States)

    Niu, Hejingying; Li, Kezhi; Chu, Biwu; Su, Wenkang; Li, Junhua

    2017-09-05

    Heterogeneous reactions between organic and inorganic gases with aerosols are important for the study of smog occurrence and development. In this study, heterogeneous reactions between toluene and NO 2 with three atmospheric mineral particles in the presence or absence of UV light were investigated. The three mineral particles were SiO 2 , α-Fe 2 O 3 , and BS (butlerite and szmolnokite). In a dark environment, benzaldehyde was produced on α-Fe 2 O 3 . For BS, nitrotoluene and benzaldehyde were obtained. No aromatic products were produced in the absence of NO 2 in the system. In the presence of UV irradiation, benzaldehyde was detected on the SiO 2 surface. Identical products were produced in the presence and absence of UV light over α-Fe 2 O 3 and BS. UV light promoted nitrite to nitrate on mineral particles surface. On the basisi of the X-ray photoelectron spectroscopy (XPS) results, a portion of BS was reduced from Fe 3+ to Fe 2+ with the adsorption of toluene or the reaction with toluene and NO 2 . Sulfate may play a key role in the generation of nitrotoluene on BS particles. From this research, the heterogeneous reactions between organic and inorganic gases with aerosols that occur during smog events will be better understood.

  18. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [College of Material and Textile Engineering, Jiaxing University, Jiaxing 314033 (China); Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Manolache, Sorin [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); US Forest Products Laboratory, Madison, WI 53726 (United States); Qiu, Yiping, E-mail: ypqiu@dhu.edu.cn [College of Textiles, Donghua University, Shanghai 201620 (China); Sarmadi, Majid, E-mail: majidsar@wisc.edu [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-02-28

    Graphical abstract: - Highlights: • The continuous ethanol flow technique can successfully modify ramie fiber surface with an increase in IFSS value up to 50%. • Response surface methodology was applied to design the plasma treatment parameters for ramie fiber modification. • The ethanol flow rate was the most influential treatment parameter in plasma modification process. - Abstract: In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  19. Quality of Meat ( from Male Fallow Deer ( Packaged and Stored under Vacuum and Modified Atmosphere Conditions

    Directory of Open Access Journals (Sweden)

    N. Piaskowska

    2016-12-01

    Full Text Available This study evaluated the effect of vacuum and modified atmosphere (40% CO2+60% N2, MA packaging on the chemical composition, physicochemical properties and sensory attributes of chill-stored meat from 10 fallow deer (Dama dama bucks at 17 to 18 months of age. The animals were hunter-harvested in the forests of north-eastern Poland. During carcass dressing (48 to 54 h post mortem, both musculus longissimus muscles were cut out. Each muscle was divided into seven sections which were allocated to three groups: 0, A, and B. Samples 0 were immediately subjected to laboratory analyses. Samples A were vacuum-packaged, and samples B were packaged in MA. Packaged samples were stored for 7, 14, and 21 days at 2°C. The results of the present study showed that the evaluated packaging systems had no significant effect on the quality of fallow deer meat during chilled storage. However, vacuum-packaged meat samples were characterised by greater drip loss. Vacuum and MA packaging contributed to preserving the desired physicochemical properties and sensory attributes of meat during 21 days of storage. Regardless of the packaging method used, undesirable changes in the colour, water-holding capacity and juiciness of meat, accompanied by tenderness improvement, were observed during chilled storage.

  20. Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Philip G. Neudeck

    2016-12-01

    Full Text Available The prolonged operation of semiconductor integrated circuits (ICs needed for long-duration exploration of the surface of Venus has proven insurmountably challenging to date due to the ∼ 460 °C, ∼ 9.4 MPa caustic environment. Past and planned Venus landers have been limited to a few hours of surface operation, even when IC electronics needed for basic lander operation are protected with heavily cumbersome pressure vessels and cooling measures. Here we demonstrate vastly longer (weeks electrical operation of two silicon carbide (4H-SiC junction field effect transistor (JFET ring oscillator ICs tested with chips directly exposed (no cooling and no protective chip packaging to a high-fidelity physical and chemical reproduction of Venus’ surface atmosphere. This represents more than 100-fold extension of demonstrated Venus environment electronics durability. With further technology maturation, such SiC IC electronics could drastically improve Venus lander designs and mission concepts, fundamentally enabling long-duration enhanced missions to the surface of Venus.

  1. Dissolution rates of unirradiated UO2, UO2 doped with 233U, and spent fuel under normal atmospheric conditions and under reducing conditions using an isotope dilution method

    International Nuclear Information System (INIS)

    Ollila, Kaija; Albinsson, Yngve; Oversby, Virginia; Cowper, Mark

    2003-10-01

    The experimental results given in this report allow us to draw the following conclusions. 1) Tests using unirradiated fuel pellet materials from two different manufacturers gave very different dissolution rates under air atmosphere testing. Tests for fragments of pellets from different pellets made by the same manufacturer gave good agreement. This indicates that details of the manufacturing process have a large effect on the behavior of unirradiated UO 2 in dissolution experiments. Care must be taken in interpreting differences in results obtained in different laboratories because the results may be affected by manufacturing effects. 2) Long-term tests under air atmosphere have begun to show the effects of precipitation. Further testing will be needed before the samples reach steady state. 3) Testing of unirradiated UO 2 in systems containing an iron strip to produce reducing conditions gave [U] less than detection limits ( 235 U added as spike was recovered, indicating that 90% of the spike had precipitated onto the solid sample or the iron strip. 9) Tests of UO 2 pellet materials containing 233 U to provide an alpha decay activity similar to that expected for spent fuel 3000 and 10,000 years after disposal showed that the pellet materials behaved as expected under air atmosphere conditions, showing that the manufacturing method was successful. 10) Early testing of the 233 U-doped materials under reducing conditions showed relatively rapid (30 minute) dissolution of small amounts of U at the start of the puff test procedure. Results of analyses of an acidified fraction of the same solutions after 1 or 2 weeks holding indicate that the solutions were inhomogeneous, indicating the presence of colloidal material or small grains of solid. 11) Samples from the 233 U-doped tests initially indicated dissolution of solid during the first week of testing, with some indication of more rapid dissolution of the material with the higher doping. 12) The second cycle of testing

  2. Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions

    International Nuclear Information System (INIS)

    Lu Junguo

    2008-01-01

    In this paper, the global exponential stability and periodicity for a class of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions are addressed by constructing suitable Lyapunov functionals and utilizing some inequality techniques. We first prove global exponential converge to 0 of the difference between any two solutions of the original reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions, the existence and uniqueness of equilibrium is the direct results of this procedure. This approach is different from the usually used one where the existence, uniqueness of equilibrium and stability are proved in two separate steps. Furthermore, we prove periodicity of the reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Sufficient conditions ensuring the global exponential stability and the existence of periodic oscillatory solutions for the reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions are given. These conditions are easy to check and have important leading significance in the design and application of reaction-diffusion recurrent neural networks with delays. Finally, two numerical examples are given to show the effectiveness of the obtained results

  3. Interactions between vegetation, atmospheric turbulence and clouds under a wide range of background wind conditions

    NARCIS (Netherlands)

    Sikma, M.; Ouwersloot, H.G.; Pedruzo-Bagazgoitia, X.; Heerwaarden, van C.C.; Vilà-Guerau de Arellano, J.

    2018-01-01

    The effects of plant responses to cumulus (Cu) cloud shading are studied from free convective to shear-driven boundary-layer conditions. By using a large-eddy simulation (LES) coupled to a plant physiology embedded land-surface submodel, we study the vegetation-cloud feedbacks for a wide range (44)

  4. Choosing the best meteorological conditions for atmospheric diffusion experiments at the Angra site

    International Nuclear Information System (INIS)

    Nicolli, D.; Thomas, P.

    1983-01-01

    The most appropriate meteorological conditions and time of the day advisable for carrying out diffusion experiments at the Angra site are described. Two emission points were defined, and the sampling area was determined with easy access to the complex terrain taken into consideration. The onsite meteorological measuring system is briefly described. (Author) [pt

  5. Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions

    International Nuclear Information System (INIS)

    Prosek, T.; Nazarov, A.; Bexell, U.; Thierry, D.; Serak, J.

    2008-01-01

    Recently, superior corrosion properties of zinc coatings alloyed with magnesium have been reported. Corrosion behaviour of model zinc-magnesium alloys was studied to understand better the protective mechanism of magnesium in zinc. Alloys containing from 1 to 32 wt.% magnesium, pure zinc, and pure magnesium were contaminated with sodium chloride and exposed to humid air for 28 days. Composition of corrosion products was analyzed using infrared spectroscopy (FTIR), ion chromatography (IC), and Auger electron spectroscopy (AES). The exposure tests were completed with scanning Kelvin probe (SKP) and electrochemical measurements. Weight loss of ZnMg alloys with 1-16 wt.% magnesium was lower than that of pure zinc. Up to 10-fold drop in weight loss was found for materials with 4-8 wt.% Mg in the structure. The improved corrosion stability of ZnMg alloys was connected to the presence of an Mg-based film adjacent to the metal surface. It ensured stable passivity in chloride environment and limited the efficiency of oxygen reduction

  6. The influence of stabilizers on the production of gold nanoparticles by direct current atmospheric pressure glow microdischarge generated in contact with liquid flowing cathode

    Energy Technology Data Exchange (ETDEWEB)

    Dzimitrowicz, Anna; Jamroz, Piotr, E-mail: piotr.jamroz@pwr.edu.pl; Greda, Krzysztof; Nowak, Piotr; Nyk, Marcin; Pohl, Pawel [Wroclaw University of Technology, Faculty of Chemistry (Poland)

    2015-04-15

    Gold nanoparticles (Au NPs) were prepared by direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between a miniature argon flow microjet and a flowing liquid cathode. The applied discharge system was operated in a continuous flow liquid mode. The influence of various stabilizers added to the solution of the liquid cathode, i.e., gelatin (GEL), polyvinylpyrrolidone (PVP), or polyvinyl alcohol (PVA), as well as the concentration of the Au precursor (chloroauric acid, HAuCl{sub 4}) in the solution on the production growth of Au NPs was investigated. Changes in the intensity of the localized surface plasmon resonance (LSPR) band in UV/Vis absorption spectra of solutions treated by dc-μAPGD and their color were observed. The position and the intensity of the LSPR band indicated that relatively small nanoparticles were formed in solutions containing GEL as a capping agent. In these conditions, the maximum of the absorption LSPR band was at 531, 534, and 535 nm, respectively, for 50, 100, and 200 mg L{sup −1} of Au. Additionally, scanning electron microscopy (SEM) and dynamic light scattering (DLS) were used to analyze the structure and the morphology of obtained Au NPs. The shape of Au NPs was spherical and uniform. Their mean size was ca. 27, 73, and 92 nm, while the polydispersity index was 0.296, 0.348, and 0.456 for Au present in the solution of the flowing liquid cathode at a concentration of 50, 100, and 200 mg L{sup −1}, respectively. The production rate of synthesized Au NPs depended on the precursor concentration with mean values of 2.9, 3.5, and 5.7 mg h{sup −1}, respectively.

  7. The influence of stabilizers on the production of gold nanoparticles by direct current atmospheric pressure glow microdischarge generated in contact with liquid flowing cathode

    Science.gov (United States)

    Dzimitrowicz, Anna; Jamroz, Piotr; Greda, Krzysztof; Nowak, Piotr; Nyk, Marcin; Pohl, Pawel

    2015-04-01

    Gold nanoparticles (Au NPs) were prepared by direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between a miniature argon flow microjet and a flowing liquid cathode. The applied discharge system was operated in a continuous flow liquid mode. The influence of various stabilizers added to the solution of the liquid cathode, i.e., gelatin (GEL), polyvinylpyrrolidone (PVP), or polyvinyl alcohol (PVA), as well as the concentration of the Au precursor (chloroauric acid, HAuCl4) in the solution on the production growth of Au NPs was investigated. Changes in the intensity of the localized surface plasmon resonance (LSPR) band in UV/Vis absorption spectra of solutions treated by dc-μAPGD and their color were observed. The position and the intensity of the LSPR band indicated that relatively small nanoparticles were formed in solutions containing GEL as a capping agent. In these conditions, the maximum of the absorption LSPR band was at 531, 534, and 535 nm, respectively, for 50, 100, and 200 mg L-1 of Au. Additionally, scanning electron microscopy (SEM) and dynamic light scattering (DLS) were used to analyze the structure and the morphology of obtained Au NPs. The shape of Au NPs was spherical and uniform. Their mean size was ca. 27, 73, and 92 nm, while the polydispersity index was 0.296, 0.348, and 0.456 for Au present in the solution of the flowing liquid cathode at a concentration of 50, 100, and 200 mg L-1, respectively. The production rate of synthesized Au NPs depended on the precursor concentration with mean values of 2.9, 3.5, and 5.7 mg h-1, respectively.

  8. Preincubation of Penicillium commune conidia under modified atmosphere conditions: Influence on growth potential as determined by an impedimetric method

    DEFF Research Database (Denmark)

    Haasum, Iben; Nielsen, Per Væggemose

    1996-01-01

    The combined effect of preincubation time, relative humidity (r.h.), headspace carbon dioxide (CO2) and oxygen (O2) on subsequent growth potential of conidia from Penicillium commune was studied using Response Surface Modelling (RSM). Native conidia were preincubated under modified atmosphere...... conditions in sealed vials for 14, 35 and 56 d. Lag time and growth rates were determined using impedance microbiology on a Bactometer. Conidia survived and some swelling was observed during all experimental preincubation conditions. Regression analysis of the subsequent growth responses showed that relative...... humidity in the vials was the most significant factor affecting lag time of the conidia after preincubation for 14 and 35 d. Storage for 35 d extended lag times by 15 h when the level of r.h. was increased from 41% to 80%. After prolonged storage (56 d) r.h and CO2 levels elicited a significant effect...

  9. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh

    International Nuclear Information System (INIS)

    Burkart, Katrin; Schneider, Alexandra; Breitner, Susanne; Khan, Mobarak Hossain; Kraemer, Alexander; Endlicher, Wilfried

    2011-01-01

    This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas. Breakpoint models were applied for determining the increase in mortality above and below a threshold (equivalent) temperature. Generally, a 'V'-shaped (equivalent) temperature-mortality curve with increasing mortality at low and high temperatures was observed. Particularly, urban areas suffered from heat-related mortality with a steep increase above a specific threshold. This adverse heat effect may well increase with ongoing urbanization and the intensification of the urban heat island due to the densification of building structures. Moreover, rising temperatures due to climate change could aggravate thermal stress. - Highlights: → Temperature exhibits a strong influence on mortality in Bangladesh. → Mortality increases at low and high end of the temperature range. → Temperature is increased in the urban area of Dhaka, particular during summer. → Urban areas are facing increased risk of heat-related mortality. → Urbanization and climate change are likely to increase heat-related mortality. - Mortality in Bangladesh is strongly affected by thermal atmospheric conditions with particularly urban areas facing excess mortality above a specific threshold temperature.

  10. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  11. Machine-Learning Techniques for the Determination of Attrition of Forces Due to Atmospheric Conditions

    Science.gov (United States)

    2018-02-01

    selected as a proof of concept due to its vast number of data points. While this report does note some trends associated with temperature and dew...separate data sets for helicopters and airplanes, while selectively requesting the event IDs, descriptions of events, light conditions, temperature , dew...weather events) and the error rate for that class . The rows are labeled for the actual occurrence of those events. Thus, for every row–column

  12. Analytical constraints on layered gas trapping and smoothing of atmospheric variability in ice under low-accumulation conditions

    Directory of Open Access Journals (Sweden)

    K. Fourteau

    2017-12-01

    Full Text Available We investigate for the first time the loss and alteration of past atmospheric information from air trapping mechanisms under low-accumulation conditions through continuous CH4 (and CO measurements. Methane concentration changes were measured over the Dansgaard–Oeschger event 17 (DO-17,  ∼  60 000 yr BP in the Antarctic Vostok 4G-2 ice core. Measurements were performed using continuous-flow analysis combined with laser spectroscopy. The results highlight many anomalous layers at the centimeter scale that are unevenly distributed along the ice core. The anomalous methane mixing ratios differ from those in the immediate surrounding layers by up to 50 ppbv. This phenomenon can be theoretically reproduced by a simple layered trapping model, creating very localized gas age scale inversions. We propose a method for cleaning the record of anomalous values that aims at minimizing the bias in the overall signal. Once the layered-trapping-induced anomalies are removed from the record, DO-17 appears to be smoother than its equivalent record from the high-accumulation WAIS Divide ice core. This is expected due to the slower sinking and densification speeds of firn layers at lower accumulation. However, the degree of smoothing appears surprisingly similar between modern and DO-17 conditions at Vostok. This suggests that glacial records of trace gases from low-accumulation sites in the East Antarctic plateau can provide a better time resolution of past atmospheric composition changes than previously expected. We also developed a numerical method to extract the gas age distributions in ice layers after the removal of the anomalous layers based on comparison with a weakly smoothed record. It is particularly adapted for the conditions of the East Antarctic plateau, as it helps to characterize smoothing for a large range of very low-temperature and low-accumulation conditions.

  13. Can common measures of core stability distinguish performance in a shoulder pressing task under stable and unstable conditions?

    Science.gov (United States)

    Keogh, Justin W L; Aickin, Sam E; Oldham, Anthony R H

    2010-02-01

    The primary purpose of this study was to determine whether a range of static core stability (CS) measures could distinguish shoulder press performance in unstable vs. stable conditions. Thirty resistance-trained men gave informed consent to participate in this study. One-repetition maximum strength (from 0.90), moderate (0.85 Core stability training (with or without a SB) may therefore only lead to significant improvements in functional dynamic performance if the postures, mode and velocity of contraction performed in training, are similar to the competitive tasks.

  14. Long Term Behaviour of 14C and Stability Assessments of Graphite Under Repository Conditions

    International Nuclear Information System (INIS)

    Jones, Abbie N.; McDermott, Lorraine; Worth, Robert; Hagos, Bereket; Black, Greg; Marsden, Barry J

    2016-01-01

    The key objectives of the University of Manchester’s nuclear graphite research within the CRP are to provide analysis on the long term behaviour and stability assessments of irradiated graphite waste. The research will concentrate on isotopic 14 C mobility under repository environments. This also requires an understanding the long-term behaviour of the final waste form under repository conditions. Procedures to evaluate the long term leaching properties of radionuclides from irradiated graphite waste has been developed by combining ANSI 16.1 (USA) and NEN 7345 (Netherlands) standardised diffusion leaching techniques. The ANSI 16.1 standard has been followed to acquire the leachates and to determine the leach rate and diffusion coefficient. The NEN 7345 standard technique has been used to determine the diffusion mechanism of radionuclides. The investigation employs simulated Drigg groundwater as a leachant using semi-dynamic technique for the production of leachate specimens. Analysis of 3 H and 14 C activity release from Magnox graphite was measured using liquid scintillating counting. Preliminary results show that there is an initial high release of activity and decreases when the leaching period increases. This may be due to the depletion of contaminants that were initially bound by the internal pore networks and the free surface. During the leaching test approximately 275.33 ± 18.20 Bq of 3 H and 106.26 ± 7.01 Bq of 14 C was released into the leachant within 91 days. The work reported herein contributed several key findings to the international work on graphite leaching to offer guidance leading toward obtaining leaching data in the future: (a) the effective diffusion coefficient for 14 C from graphite waste has been determined. The diffusion process for 14 C has two stages resulting two different values of diffusion coefficient, i.e., for the fast and slow components; (b) the controlling leaching mechanism for 3 H radionuclide from graphite is shown to be

  15. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L; Cha, Min

    2016-01-01

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble

  16. The influence of atmospheric conditions on the cooling tower plume of nuclear power station; Uticaj atmosferskih uslova na perjanicu rashladnih tornjeva nuklearne elektrane

    Energy Technology Data Exchange (ETDEWEB)

    Vehauc, A [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1978-07-01

    The paper deals with the effect of atmospheric conditions - relative humidity, wind velocity, temperature and temperature gradient on the visible plume. For estimating cooling tower plumes, used was made of verified mathematical model. (author)

  17. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.

    Science.gov (United States)

    Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger

    2014-01-01

    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.

  18. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.; Brigmon, R.

    2009-10-20

    elevated Legionella concentrations when the dew point temperature was high--a summertime occurrence. However, analysis of the three years of Legionella monitoring data of the 14 different SRS Cooling Towers demonstrated that elevated concentrations are observed at all temperatures and seasons. The objective of this study is to evaluate the ecology of L. pneumophila including serogroups and population densities, chemical, and atmospheric data, on cooling towers at SRS to determine whether relationships exist among water chemistry, and atmospheric conditions. The goal is to more fully understand the conditions which inhibit or encourage L. pneumophila growth and supply this data and associated recommendations to SRS Cooling Tower personnel for improved management of operation. Hopefully this information could then be used to help control L. pneumophila growth more effectively in SRS cooling tower water.

  19. Kinetics and Mechanism of the Reaction of Hydoxyl Radicals with Acetonitrile under Atmospheric Conditions

    Science.gov (United States)

    Hynes, A. J.; Wine, P. H.

    1997-01-01

    scheme to extract kinetic information about the adduct reations with O2 and branching ratios for OH regeneration. A plausible mechanism for OH regeneration in (2) involves OH addition to the nitrogen atom followed by O2 addition to the cyano carbon atom, isomeriazation and decomposition to D2CO + DOCN + OH. Our results suggest that the OH + CH3CN reaction occurs via a complex mechanism involving both bimolecular and termolecular pathways, analogous to the mechanisms for the the important atmospheric reactions of OH with CO and HNO3.

  20. Improved Stabilization Conditions for Nonlinear Systems with Input and State Delays via T-S Fuzzy Model

    Directory of Open Access Journals (Sweden)

    Chang Che

    2018-01-01

    Full Text Available This paper focuses on the problem of nonlinear systems with input and state delays. The considered nonlinear systems are represented by Takagi-Sugeno (T-S fuzzy model. A new state feedback control approach is introduced for T-S fuzzy systems with input delay and state delays. A new Lyapunov-Krasovskii functional is employed to derive less conservative stability conditions by incorporating a recently developed Wirtinger-based integral inequality. Based on the Lyapunov stability criterion, a series of linear matrix inequalities (LMIs are obtained by using the slack variables and integral inequality, which guarantees the asymptotic stability of the closed-loop system. Several numerical examples are given to show the advantages of the proposed results.

  1. Reduction in Design Stability Number of Monolayer Armour Units for Singular Conditions of Projects in Rubble Mound Breakwaters

    Directory of Open Access Journals (Sweden)

    Hugo Juan Donini

    2015-07-01

    Full Text Available The evaluation of concrete single layer of breakwaters is based on the application of design coefficients obtained in laboratory tests, primarily two-dimensional and under controlled conditions. With the experience of more than 30 years in structures of this type in the world, it is important to compare the values of stability numbers used in the design with those who are in breakwaters as built. In this paper, update and increase the data collected with respect to previous publications, developing an analysis of particular situations in which the amour layer stability coefficients are reduced. A series of Accropode® and Core-LocTM recommendations concerning the design elements is also made. Also there are conclusions related to increases in the volume and the reduction in the number of blocks needed for different numbers of stability proposed.

  2. Influence of Last Glacial Maximum boundary conditions on the global water isotope distribution in an atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    T. Tharammal

    2013-03-01

    Full Text Available To understand the validity of δ18O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM. A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST, and orbital parameters were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (δ18Oprecip in response to individual climate factors. The change in topography (due to the change in land ice cover played a significant role in reducing the surface temperature and δ18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and δ18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3. Large reductions in δ18Oprecip over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the δ18Oprecip distribution among the simulations.

  3. Robust stabilization of burn conditions in subignited fusion reactors using artificial neural networks

    International Nuclear Information System (INIS)

    Vitela, E. Javier; Martinell, J. Julio

    2000-01-01

    In this work it is shown that robust burn control in long pulse operations of thermonuclear reactors can be successfully achieved with artificial neural networks. The results reported here correspond to a volume averaged zero-dimensional nonlinear model of a subignited fusion device using the design parameters of the tokamak EDA-ITER group. A Radial Basis Neural Network (RBNN) was trained to provide feedback stabilization at a fixed operating point independently of any particular scaling law that the reactor confinement time may follow. A numerically simulated transient is used to illustrate the stabilization capabilities of the resulting RBNN when the reactor follows an ELMy scaling law corrupted with Gaussian noise. (author)

  4. Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 code

    International Nuclear Information System (INIS)

    Beuzet, Emilie; Lamy, Jean-Sylvestre; Perron, Hadrien; Simoni, Eric; Ducros, Gérard

    2012-01-01

    Highlights: ► We developed a new modelling of fuel oxidation and ruthenium release in the EDF version of the MAAP4 code. ► We validated this model against some VERCORS experiments. ► Ruthenium release prediction quantitatively and qualitatively well reproduced under air and steam atmospheres. - Abstract: In a nuclear power plant (NPP), a severe accident is a low probability sequence that can lead to core fusion and fission product (FP) release to the environment (source term). For instance during a loss-of-coolant accident, water vaporization and core uncovery can occur due to decay heat. These phenomena enhance core degradation and, subsequently, molten materials can relocate to the lower head of the vessel. Heat exchange between the debris and the vessel may cause its rupture and air ingress. After lower head failure, steam and air entering in the vessel can lead to degradation and oxidation of materials that are still intact in the core. Indeed, Zircaloy-4 cladding oxidation is very exothermic and fuel interaction with the cladding material can decrease its melting temperature by several hundred of Kelvin. FP release can thus be increased, noticeably that of ruthenium under oxidizing conditions. Ruthenium is of particular interest because of its high radio-toxicity due to 103 Ru and 106 Ru isotopes and its ability to form highly volatile compounds, even at room temperature, such as gaseous ruthenium tetra-oxide (RuO 4 ). It is consequently of great need to understand phenomena governing steam and air oxidation of the fuel and ruthenium release as prerequisites for the source term issues. A review of existing data on these phenomena shows relatively good understanding. In terms of oxygen affinity, the fuel is oxidized before ruthenium, from UO 2 to UO 2+x . Its oxidation is a rate-controlling surface exchange reaction with the atmosphere, so that the stoichiometric deviation and oxygen partial pressure increase. High temperatures combined with the presence

  5. Synoptic-scale atmospheric conditions associated with flash flooding in watersheds of the Catskill Mountains, New York, USA

    Science.gov (United States)

    Teale, N. G.; Quiring, S. M.

    2015-12-01

    Understanding flash flooding is important in unfiltered watersheds, such as portions of the New York City water supply system (NYCWSS), as water quality is degraded by turbidity associated with flooding. To further understand flash flooding in watersheds of the NYCWSS, synoptic-scale atmospheric conditions most frequently associated with flash flooding between 1987 and 2013 were examined. Flash floods were identified during this time period using USGS 15-minute discharge data at the Esopus Creek near Allaben, NY and Neversink River at Claryville, NY gauges. Overall, 25 flash floods were detected, occurring over 17 separate flash flood days. These flash flood days were compared to the days on which flash flood warnings encompassing the study area was issued by the National Weather Service. The success rate for which the flash flood warnings for Ulster County coincided with flash flood in the study watershed was 0.09, demonstrating the highly localized nature of flash flooding in the Catskill Mountain region. The synoptic-scale atmospheric patterns influencing the study area were characterized by a principal component analysis and k-means clustering of NCEP/NCAR 500 mb geopotential height reanalysis data. This procedure was executed in Spatial Synoptic Typer Tools 4.0. While 17 unique synoptic patterns were identified, only 3 types were strongly associated with flash flooding events. A strong southwesterly flow suggesting advection of moisture from the Atlantic Ocean and Gulf of Mexico is shown in composites of these 3 types. This multiscalar study thereby links flash flooding in the NYCWSS with synoptic-scale atmospheric circulation.Understanding flash flooding is important in unfiltered watersheds, such as portions of the New York City water supply system (NYCWSS), as water quality is degraded by turbidity associated with flooding. To further understand flash flooding in watersheds of the NYCWSS, synoptic-scale atmospheric conditions most frequently associated with

  6. Moving from laboratory to real life conditions: Influence on the assessment of variability and stability of gait.

    Science.gov (United States)

    Tamburini, Paola; Storm, Fabio; Buckley, Chris; Bisi, Maria Cristina; Stagni, Rita; Mazzà, Claudia

    2018-01-01

    The availability of wearable sensors allows shifting gait analysis from the traditional laboratory settings, to daily life conditions. However, limited knowledge is available about whether alterations associated to different testing environment (e.g. indoor or outdoor) and walking protocols (e.g. free or controlled), result from actual differences in the motor behaviour of the tested subjects or from the sensitivity to these changes of the indexes adopted for the assessment. In this context, it was hypothesized that testing environment and walking protocols would not modify motor control stability in the gait of young healthy adults, who have a mature and structured gait pattern, but rather the variability of their motor pattern. To test this hypothesis, data from trunk and shank inertial sensors were collected from 19 young healthy participants during four walking tasks in different environments (indoor and outdoor) and in both controlled (i.e. following a predefined straight path) and free conditions. Results confirmed what hypothesized: variability indexes (Standard deviation, Coefficient of variation and Poincaré plots) were significantly influenced by both environment and walking conditions. Stability indexes (Harmonic ratio, Short term Lyapunov exponents, Recurrence quantification analysis and Sample entropy), on the contrary, did not highlight any change in the motor control. In conclusion, this study highlighted an influence of environment and testing condition on the assessment of specific characteristics of gait (i.e. variability and stability). In particular, for young healthy adults, both environment and testing conditions affect gait variability indexes, whereas neither affect gait stability indexes. Copyright © 2017. Published by Elsevier B.V.

  7. Hydrolytic stability of polycarbonate-based polyurethane elastomers tested in physiologically simulated conditions

    Czech Academy of Sciences Publication Activity Database

    Serkis, Magdalena; Špírková, Milena; Poreba, Rafal; Hodan, Jiří; Kredatusová, Jana; Kubies, Dana

    2015-01-01

    Roč. 119, September (2015), s. 23-34 ISSN 0141-3910 R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : polyurethane * elastomer * hydrolytic stability Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.120, year: 2015

  8. Kinetic study of Saponins B stability in navy beans under different processing conditions

    Science.gov (United States)

    Saponins are rich in the legumes which are known to provide many health benefits for human beings. Saponins B is the main component in the saponins group present in navy beans. The stability of saponins B during food processing is a key issue to evaluating the quality and nutrition of food products....

  9. Improved Storage Stability of Meal, Ready-To-Eat Cheese Spread Under Heat-Stressing Conditions

    Science.gov (United States)

    2009-11-01

    7 3.2 Hunter L*a*b Colorimetry ...10 4.2 Hunter L*a*b Colorimetry ...testing, the study consisted of L*a*b* colorimetry , photography, emulsion stability testing, and First Strike Ration™ field testing at Fort Bragg, NC

  10. On the stability of the bioactive flavonoids quercetin and luteolin under oxygen-free conditions

    Czech Academy of Sciences Publication Activity Database

    Ramešová, Šárka; Sokolová, Romana; Degano, I.; Kocábová, Jana; Žabka, Ján; Gál, Miroslav

    2012-01-01

    Roč. 402, č. 2 (2012), s. 975-982 ISSN 1618-2642 R&D Projects: GA ČR GA203/09/1607 Institutional research plan: CEZ:AV0Z40400503 Keywords : flavonoids * antioxidants * stability Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.659, year: 2012

  11. Stabilizing local boundary conditions for two-dimensional shallow water equations

    KAUST Repository

    Dia, Ben Mansour; Oppelstrup, Jesper

    2018-01-01

    In this article, we present a sub-critical two-dimensional shallow water flow regulation. From the energy estimate of a set of one-dimensional boundary stabilization problems, we obtain a set of polynomial equations with respect to the boundary

  12. Assessment of factors and conditions influencing bank stability of future lakes

    Czech Academy of Sciences Publication Activity Database

    Spanilá, Tamara; Kudrna, Z.; John, V.; Hartvich, Filip; Chour, V.

    2006-01-01

    Roč. 3, č. 4 (2006), s. 67-76 ISSN 1214-9705 R&D Projects: GA AV ČR IAA3046305 Institutional research plan: CEZ:AV0Z30460519 Keywords : flooding of residual mining pits * dangerous geodynamic phenomena * stability of banks and slopes Subject RIV: DB - Geology ; Mineralogy

  13. Study of atmospheric condition during the heavy rain event in Bojonegoro using weather research and forecasting (WRF) model: case study 9 February 2017

    Science.gov (United States)

    Saragih, I. J. A.; Meygatama, A. G.; Sugihartati, F. M.; Sidauruk, M.; Mulsandi, A.

    2018-03-01

    During 2016, there are frequent heavy rains in the Bojonegoro region, one of which is rain on 9 February 2016. The occurrence of heavy rainfall can cause the floods that inundate the settlements, rice fields, roads, and public facilities. This makes it important to analyze the atmospheric conditions during the heavy rainfall events in Bojonegoro. One of the analytical methods that can be used is using WRF-Advanced Research WRF (WRF-ARW) model. This study was conducted by comparing the rain analysis from WRF-ARW model with the Himawari-8 satellite imagery. The data used are Final Analysis (FNL) data for the WRF-ARW model and infrared (IR) channel for Himawari-8 satellite imagery. The data are processed into the time-series images and then analyzed descriptively. The meteorological parameters selected to be analyzed are relative humidity, vortices, divergences, air stability index, and precipitation. These parameters are expected to indicate the existence of a convective activity in Bojonegoro during the heavy rainfall event. The Himawari-8 satellite imagery shows that there is a cluster of convective clouds in Bojonegoro during the heavy rainfall event. The lowest value of the cloud top temperature indicates that the cluster of convective clouds is a cluster of Cumulonimbus cloud (CB).

  14. Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions

    Directory of Open Access Journals (Sweden)

    Zoë Lindo

    2017-03-01

    Full Text Available The predominant input of available nitrogen (N in boreal forest ecosystems originates from moss-associated cyanobacteria, which fix unavailable atmospheric N2, contribute to the soil N pool, and thereby support forest productivity. Alongside climate warming, increases in atmospheric CO2 concentrations are expected in Canada’s boreal region over the next century, yet little is known about the combined effects of these factors on N fixation by forest floor cyanobacteria. Here we assess changes in N fixation in a common forest floor, moss-associated cyanobacterium, Nostoc punctiforme Hariot, under elevated CO2 conditions over 30 days and warming combined with elevated CO2 over 90 days. We measured rates of growth and changes in the number of specialized N2 fixing heterocyst cells, as well as the overall N fixing activity of the cultures. Elevated CO2 stimulated growth and N fixation overall, but this result was influenced by the growth stage of the cyanobacteria, which in turn was influenced by our temperature treatments. Taken together, climate change factors of warming and elevated CO2 are expected to stimulate N2 fixation by moss-associated cyanobacteria in boreal forest systems.

  15. How Winter Time Atmospheric Stability Influences PM2.5 Concentration in Different Complex Terrains; Beijing in China vs Fairbanks in Alaska

    Science.gov (United States)

    Karandana Gamalathge, T. D.; Green, M.

    2017-12-01

    Consequences of air pollution is known to majority of the global population. Small particles or aerosols play a significant role in global climate change, and increasing the number of people suffer from poor health. Specially during winter seasons, people live in valleys or close to mountains experience hazy conditions and severe health problems. As a result, aerosol related research works have gained more attention over the last couple of decades. We considered PM2.5-particulate matter less than 2.5 µm of aerodynamic diameter, to see how PM2.5 varies with different atmospheric conditions during winter seasons over two different regions of the world. We selected five winter seasons from November to February from 2011 to 2015 both in Beijing and in Fairbanks. Both locations can be considered as complex terrains, as those regions are surrounded by or close to mountains. Using University of Wyoming's sounding data, we calculated a parameter called Heat Deficit (HD). Higher HD is associated with less turbulence, thus high PM2.5 concentration. On the other hand, low HD is associated with high turbulence, thus low PM2.5 concentration. So, we considered HD as a measure of stability in the region of interest. Despite geographical differences, Fairbanks was covered by snow every day over the study period while Beijing had almost no snow cover. Analysis was done in two ways, with and without paying attention to precipitation. HD was also evaluated with different levels of PM2.5, set up to multiples of average PM2.5 concentration. This was done to check whether HD correlates well with a particular range of PM2.5. A day of precipitation for Fairbanks was considered to be when the daily snowfall >1 inch, while for Beijing when any type of daily precipitation >0.1 inch. Precipitation for Beijing was rare and only 9 days were met even with the 0.1 inch criteria while Fairbanks had 61 days of exceeding the 1 inch criteria. Results revealed that precipitation doesn't impact the

  16. Influence of boundary conditions on the existence and stability of minimal surfaces of revolution made of soap films

    Science.gov (United States)

    Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent

    2014-09-01

    Because of surface tension, soap films seek the shape that minimizes their surface energy and thus their surface area. This mathematical postulate allows one to predict the existence and stability of simple minimal surfaces. After briefly recalling classical results obtained in the case of symmetric catenoids that span two circular rings with the same radius, we discuss the role of boundary conditions on such shapes, working with two rings having different radii. We then investigate the conditions of existence and stability of other shapes that include two portions of catenoids connected by a planar soap film and half-symmetric catenoids for which we introduce a method of observation. We report a variety of experimental results including metastability—an hysteretic evolution of the shape taken by a soap film—explained using simple physical arguments. Working by analogy with the theory of phase transitions, we conclude by discussing universal behaviors of the studied minimal surfaces in the vicinity of their existence thresholds.

  17. Standard practice for measurement of time-of-wetness on surfaces exposed to wetting conditions as in atmospheric corrosion testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1989-01-01

    1.1 This practice covers a technique for monitoring time-of-wetness (TOW) on surfaces exposed to cyclic atmospheric conditions which produce depositions of moisture. 1.2 The practice is also applicable for detecting and monitoring condensation within a wall or roof assembly and in test apparatus. 1.3 Exposure site calibration or characterization can be significantly enhanced if TOW is measured for comparison with other sites, particularly if this data is used in conjunction with other site-specific instrumentation techniques. 1.4 The values stated in SI units are to be regarded as the standard. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh.

    Science.gov (United States)

    Burkart, Katrin; Schneider, Alexandra; Breitner, Susanne; Khan, Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried

    2011-01-01

    This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas. Breakpoint models were applied for determining the increase in mortality above and below a threshold (equivalent) temperature. Generally, a 'V'-shaped (equivalent) temperature-mortality curve with increasing mortality at low and high temperatures was observed. Particularly, urban areas suffered from heat-related mortality with a steep increase above a specific threshold. This adverse heat effect may well increase with ongoing urbanization and the intensification of the urban heat island due to the densification of building structures. Moreover, rising temperatures due to climate change could aggravate thermal stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Determination of Conditional Stability Constants for Metal Ions with Humic Acid using Chemically Immobilised Humic Acid on Silica Gel

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, G.; Guszi, J. [Frederic Joliot-Curie' National Research Inst. for Rad iobiology and Radiohygiene, Budapest, H-1775 (Hungary)]. e-mail: szabogy@hp.osski.hu; Miyajima, T. [Dept. of Chemistry, Faculty of Science and Engineering, Saga Univ ., 1-Honjo, Saga (Japan); Geckeis, H. [Forschungszentrum Karlsruhe, Inst. fuer Nuk leare Entsorgung, 76021 Karlsruhe (Germany); Reiller, P. [Commissariat a l' Energie A tomique, CE Saclay, Laboratoire de Speciation des Radionucleides et des Molecule s, F-91191 Gif-sur-Yvette (France); Bulman, R.A. [Radiation Protection Div., Health Protection Agency, Chilton, Didcot (United Kingdom)

    2007-06-15

    Limitations on aqueous solution chemistries of humic acid, and also hydrolysis of some cationic species, restrict measurement of conditional stability constants of 4f- and 5f-series elements as humate complexes. Reported log {beta} values are determined by using non-linear regression binding isotherms, of Am(III) and Th(IV), and also Ag(I) and Sr(II), bound by a humic acid composite.

  20. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    Science.gov (United States)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  1. Production of gasoline fraction from bio-oil under atmospheric conditions by an integrated catalytic transformation process

    International Nuclear Information System (INIS)

    Zhang, Zhaoxia; Bi, Peiyan; Jiang, Peiwen; Fan, Minghui; Deng, Shumei; Zhai, Qi; Li, Quanxin

    2015-01-01

    This work aimed to develop an integrated process for production of gasoline fraction bio-fuels from bio-oil under atmospheric conditions. This novel transformation process included the catalytic cracking of bio-oil to light olefins and the subsequent synthesis of liquid hydrocarbon bio-fuels from light olefins with two reactors in series. The yield of bio-fuel was up to 193.8 g/(kg bio-oil) along with a very low oxygen content, high RONs (research octane numbers), high LHVs (lower heating values) and low benzene content under the optimizing reaction conditions. Coke deposition seems to be the main cause of catalyst deactivation in view of the fact that the deactivated catalysts was almost recovered by on-line treating the used catalyst with oxygen. The integrated transformation potentially provides a useful way for the development of gasoline range hydrocarbon fuels using renewable lignocellulose biomass. - Graphical abstract: An integrated process for production of gasoline fraction bio-fuels from bio-oil through the catalytic cracking of bio-oil to light olefins followed by the synthesis of liquid hydrocarbon bio-fuels from light olefins in series. - Highlights: • A new route for production of gasoline-range bio-fuels from bio-oil was achieved. • The process was an integrated catalytic transformation at atmospheric pressure. • Bio-oil is converted into light olefins and then converted to biofuel in series. • C_6–C_1_0 bio-fuels derived from bio-oil had high RONs and LHVs.

  2. Extreme storm surges in the south of Brazil: atmospheric conditions and shore erosion

    Directory of Open Access Journals (Sweden)

    Cláudia Klose Parise

    2009-09-01

    Full Text Available The region under study is regularly subject to the occurrence of storms associated with frontal systems and extratropical cyclones, since it is located near one of the cyclogenetic regions in South America. These storms can generate storm surges that cause anomalous high sea level rises on Cassino Beach. The use of reanalysis data along with an efficient technique for the location of the cyclone, using a vorticity threshold, has provided a new classification based upon the trajectories of events that produce positive sea level variation. Three patterns have been identified: 1 Cyclogenesis to the south of Argentina with displacement to the east and a trajectory between 47.5ºS and 57.5ºS; 2 Cyclogenesis to the south of Uruguay with displacement to the east and a trajectory between 35ºS and 42.5ºS; and 3 Cyclogenesis to the south of Uruguay with displacement to the southeast and a trajectory between 35ºS and 57.5ºS. Maximum water level elevation above the mean sea level and beach erosion were associated, respectively, with winter and summer storms. Cassino beach displayed a seasonal morphological behavior, with short periods of episodic erosion associated with winter storm events followed by long periods of accretion characterized by the dominance of fair weather conditions.Marés meteorológicas que geram sobre-elevações do nível do mar são freqüentes na costa do Rio Grande do Sul e respondem às variações ocorridas na atmosfera. Torna-se importante, dessa maneira, definir padrões meteorológicos sinóticos responsáveis por gerar eventos de marés meteorológicas intensas na Praia do Cassino como objetivo desse trabalho. O uso de dados de reanálise associados a uma técnica eficiente de localização do ciclone, aplicando o conceito de vorticidade, permitiu definir uma nova classificação com base na trajetória de ciclones extratropicais responsáveis pela subida do nível do mar. Três padrões de trajetórias foram

  3. An investigation into the stability of commercial versus MG63-derived hepatocyte growth factor under flow cultivation conditions.

    Science.gov (United States)

    Meneghello, Giulia; Storm, Michael P; Chaudhuri, Julian B; De Bank, Paul A; Ellis, Marianne J

    2015-03-01

    The scale-up of tissue engineering cell culture must ensure that conditions are maintained while also being cost effective. Here we analyse the stability of hepatocyte growth factor (HGF) to investigate whether concentrations change under dynamic conditions, and compare commercial recombinant human HGF as an additive in 'standard medium', to HGF secreted by the osteosarcoma cell line MG63 as a 'preconditioned medium'. After 3 h under flow conditions, HGF in the standard medium degraded to 40% of its original concentration but HGF in the preconditioned medium remained at 100%. The concentration of secreted HGF was 10 times greater than the working concentration of commercially-available HGF. Thus HGF within this medium has increased stability; MG63-derived HGF should therefore be investigated as a cost-effective alternative to current lyophilised powders for use in in vitro models. Furthermore, we recommend that those intending to use HGF (or other growth factors) should consider similar stability testing before embarking on experiments with media flow.

  4. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    International Nuclear Information System (INIS)

    Meakin, J.P.; Speight, J.D.; Sheridan, R.S.; Bradshaw, A.; Harris, I.R.; Williams, A.J.; Walton, A.

    2016-01-01

    Highlights: • Room temperature atmospheric oxidation behaviour of sintered NdFeB. • 3D laser confocal microscopy measurement of oxide phase growth. • Significant height increase of oxide phase only observed at triple points. • Raman spectroscopy identified oxide phase to be Nd 2 O 3 . • Diffusion coefficient determined to be 4 × 10 −13 cm 2 /s. - Abstract: Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.— computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd 2 O 3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10 −13 cm 2 /sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated

  5. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Meakin, J.P., E-mail: jxm764@bham.ac.uk; Speight, J.D.; Sheridan, R.S.; Bradshaw, A.; Harris, I.R.; Williams, A.J.; Walton, A.

    2016-08-15

    Highlights: • Room temperature atmospheric oxidation behaviour of sintered NdFeB. • 3D laser confocal microscopy measurement of oxide phase growth. • Significant height increase of oxide phase only observed at triple points. • Raman spectroscopy identified oxide phase to be Nd{sub 2}O{sub 3}. • Diffusion coefficient determined to be 4 × 10{sup −13} cm{sup 2}/s. - Abstract: Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.— computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd{sub 2}O{sub 3} and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10{sup −13} cm{sup 2}/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth

  6. Conditional stability and uniqueness for determining two coefficients in a hyperbolic–parabolic system

    International Nuclear Information System (INIS)

    Wu, Bin; Liu, Jijun

    2011-01-01

    We study the inverse problem of determining two spatially varying coefficients in a thermoelastic model with the following observation data: displacement in a subdomain ω satisfying ∂ω superset of ∂Ω along a sufficiently large time interval, both displacement and temperature at a suitable time over the whole spatial domain. Based on a Carleman estimate on the hyperbolic–parabolic system, we prove the Lipschitz stability and the uniqueness for this inverse problem under some a priori information

  7. Thermo-cleavable polymers: Materials with enhanced photochemical stability

    DEFF Research Database (Denmark)

    Manceau, Matthieu; Petersen, Martin Helgesen; Krebs, Frederik C

    2010-01-01

    Photochemical stability of three thermo-cleavable polymers was investigated as thin films under atmospheric conditions. A significant increase in lifetime was observed once the side-chain was cleaved emphasizing the detrimental effect of solubilizing groups on the photochemical stability of conju......Photochemical stability of three thermo-cleavable polymers was investigated as thin films under atmospheric conditions. A significant increase in lifetime was observed once the side-chain was cleaved emphasizing the detrimental effect of solubilizing groups on the photochemical stability...... of conjugated polymers. In addition to their ease of processing, thermo-cleavable polymers thus also offer a greater intrinsic stability under illumination....

  8. Conditional Stability of Solitary-Wave Solutions for Generalized Compound KdV Equation and Generalized Compound KdV-Burgers Equation

    International Nuclear Information System (INIS)

    Zhang Weiguo; Dong Chunyan; Fan Engui

    2006-01-01

    In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the exact solitary-wave solutions is proved for the above two types of equations when the small disturbance of travelling wave form satisfies some special conditions.

  9. Swirl-Stabilized Injector Flow and Combustion Dynamics for Liquid Propellants at Supercritical Conditions

    National Research Council Canada - National Science Library

    Yang, Vigor

    2007-01-01

    An integrated modeling and simulation program has been conducted to substantially improve the fundamental knowledge of supercritical combustion of liquid propellants under conditions representative...

  10. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    Directory of Open Access Journals (Sweden)

    Ya-Ling Teng

    Full Text Available Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99; controls (76.53±7.47; t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory

  11. Response characteristics of HPR1000 primary circuit under different working conditions of the atmospheric relief system after SBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Danting, E-mail: suidanting@163.com [School of Nuclear Science and Engineering, North China Electric Power University, Beijing (China); Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing (China); Lu, Daogang [School of Nuclear Science and Engineering, North China Electric Power University, Beijing (China); Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing (China); Shang, Changzhong; Wei, Yuanyuan [China Nuclear Power Design Co., ltd (ShenZhen), Shenzhen (China); Zhang, Xianjie [School of Nuclear Science and Engineering, North China Electric Power University, Beijing (China); Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing (China)

    2017-04-01

    Highlights: • Response of HPR1000 under different VDA conditions after SBLOCA was investigated. • Activation of VDA can trigger ACCU SI earlier with a critical point exists. • VDA capability design should compromise the critical point with reactivity feedback. - Abstract: To cope with SBLOCA in absence of High-Head Safety Injection (HHSI) from design of HPR1000, atmospheric relief system (originally named as VDA in French) is uniquely designed to help to trigger Middle Head Safety Injection (MHSI) or Low Head Safety Injection (LHSI) earlier through cooling primary system quickly after SBLOCA. To make the best use of VDA decay heat removal capability, primary and secondary system of HPR1000 was modeled with RELAP5/SCDAP computer code. After steady-state initialization, a cold leg 30 mm break SBLOCA was simulated with six simulation conditions and five additional cases including availability of ACCU, different VDA discharge locations and area. Response characteristics of primary loop under different VDA working conditions are investigated. Pressurizer pressure decreases rapidly to lower level to trigger the reactor scram, VDA activation and accumulator safety injection sequently. Peak cladding temperature is 899.45 K occurring at 222 s, which is far below the safety limit. Activation of VDA can trigger ACCU SI earlier with a critical point, while positive reactivity will be introduced due to negative moderator temperature effect and Doppler effect. Larger VDA discharge capability will introduce larger reactivity feedback, as well as induce lower core level and SG level. It's suggested that VDA discharge condition should be chosen before the critical point, with the compromise with reactivity feedback introduced due to the negative moderator temperature effect.

  12. Response characteristics of HPR1000 primary circuit under different working conditions of the atmospheric relief system after SBLOCA

    International Nuclear Information System (INIS)

    Sui, Danting; Lu, Daogang; Shang, Changzhong; Wei, Yuanyuan; Zhang, Xianjie

    2017-01-01

    Highlights: • Response of HPR1000 under different VDA conditions after SBLOCA was investigated. • Activation of VDA can trigger ACCU SI earlier with a critical point exists. • VDA capability design should compromise the critical point with reactivity feedback. - Abstract: To cope with SBLOCA in absence of High-Head Safety Injection (HHSI) from design of HPR1000, atmospheric relief system (originally named as VDA in French) is uniquely designed to help to trigger Middle Head Safety Injection (MHSI) or Low Head Safety Injection (LHSI) earlier through cooling primary system quickly after SBLOCA. To make the best use of VDA decay heat removal capability, primary and secondary system of HPR1000 was modeled with RELAP5/SCDAP computer code. After steady-state initialization, a cold leg 30 mm break SBLOCA was simulated with six simulation conditions and five additional cases including availability of ACCU, different VDA discharge locations and area. Response characteristics of primary loop under different VDA working conditions are investigated. Pressurizer pressure decreases rapidly to lower level to trigger the reactor scram, VDA activation and accumulator safety injection sequently. Peak cladding temperature is 899.45 K occurring at 222 s, which is far below the safety limit. Activation of VDA can trigger ACCU SI earlier with a critical point, while positive reactivity will be introduced due to negative moderator temperature effect and Doppler effect. Larger VDA discharge capability will introduce larger reactivity feedback, as well as induce lower core level and SG level. It's suggested that VDA discharge condition should be chosen before the critical point, with the compromise with reactivity feedback introduced due to the negative moderator temperature effect.

  13. Dispersion Stability of O/W Emulsions with Different Oil Contents Under Various Freezing and Thawing Conditions.

    Science.gov (United States)

    Katsuki, Kazutaka; Miyagawa, Yayoi; Nakagawa, Kyuya; Adachi, Shuji

    2017-07-01

    Freezing and thawing of oil-in-water (O/W) emulsion-type foods bring about oil-water separation and deterioration; hence, the effects of freezing and thawing conditions on the destabilization of O/W emulsions were examined. The freezing rate and thawing temperature hardly affected the stability of the O/W emulsion. O/W emulsions having different oil fractions were stored at temperatures ranging from -30 to -20 °C and then thawed. The stability after thawing depended on the storage temperature, irrespective of the oil fraction of the emulsion. A good correlation was found between the time at which the stability began to decrease and the time taken for the oil to crystalize. These results indicated that the dominant cause for the destabilization of the O/W emulsion during freezing and thawing is the crystallization of the oil phase and that the effects of the freezing and thawing rates on the stability are insignificant. © 2017 Institute of Food Technologists®.

  14. Stability condition of a strongly interacting boson-fermion mixture across an interspecies Feshbach resonance

    International Nuclear Information System (INIS)

    Yu Zengqiang; Zhai Hui; Zhang Shizhong

    2011-01-01

    We study the properties of dilute bosons immersed in a single-component Fermi sea across a broad boson-fermion Feshbach resonance. The stability of the mixture requires that the bare interaction between bosons exceeds a critical value, which is a universal function of the boson-fermion scattering length, and exhibits a maximum in the unitary region. We calculate the quantum depletion, momentum distribution, and the boson contact parameter across the resonance. The transition from condensate to molecular Fermi gas is also discussed.

  15. Optimal Stabilization of Social Welfare under Small Variation of Operating Condition with Bifurcation Analysis

    Science.gov (United States)

    Chanda, Sandip; De, Abhinandan

    2016-12-01

    A social welfare optimization technique has been proposed in this paper with a developed state space based model and bifurcation analysis to offer substantial stability margin even in most inadvertent states of power system networks. The restoration of the power market dynamic price equilibrium has been negotiated in this paper, by forming Jacobian of the sensitivity matrix to regulate the state variables for the standardization of the quality of solution in worst possible contingencies of the network and even with co-option of intermittent renewable energy sources. The model has been tested in IEEE 30 bus system and illustrious particle swarm optimization has assisted the fusion of the proposed model and methodology.

  16. New exponential stability conditions for linear delayed systems of differential equations

    Directory of Open Access Journals (Sweden)

    Leonid Berezansky

    2016-08-01

    where $t\\ge 0$, $m$ and $r_{ij}$, $i,j=1,\\dots,m$ are natural numbers, $a_{ij}^{k}\\colon [0,\\infty\\to\\mathbb{R}$ are measurable coefficients, and $h_{ij}^{k}\\colon [0,\\infty\\to\\mathbb{R}$ are measurable delays. The progress was achieved by using a new technique making it possible to replace the constant $1$ by the constant $1+{1}/{\\mathrm{e}}$ on the right-hand sides of crucial inequalities ensuring exponential stability.

  17. Atmospheric Dispersion Modeling of 137Cs generated from Nuclear Spent Fuel under Hypothetic Accidental Condition in the BNPP Area

    Science.gov (United States)

    Lee, Jongkuk; Lee, Kwan-Hee; Yook, Daesik; Kim, Sung Il; Lee, Byung Soo

    2016-04-01

    This study presents the results of atmosphere dispersion modeling using CALPUFF code that are based on computational simulation to evaluate the environmental characteristics of the Barakah nuclear power plant (BNPP) in west area of UAE. According to meteorological data analysis (2012~2013), the winds from the north(7.68%) and west(9.05%) including NNW(41.63%), NW(28.55%), and WNW(6.31%) winds accounted for more than 90% of the wind directions. East(0.2%) and south(0.6%) direction wind, including ESE(0.31%), SE(0.38%), and SSE(0.38%) were rarely distributed during the simulation period. Seasonal effects were not showed. However, a discrepancy in the tendency between daytime and night-time was observed. Approximately 87% of the wind speed was distributed below 5.4m/s (17%, 47% and 23% between the speeds of 0.5-1.8m/s 1.8-3.3m/s and 3.3-5.4m/s, respectively) during the annual period. Seasonal wind speed distribution results presented very similar pattern of annual distribution. Wind speed distribution of day and night, on the other hand, had a discrepancy with annual modeling results than seasonal distribution in some sections. The results for high wind speed (more than 10.8m/s) showed that this wind blew from the west. This high wind speed is known locally as the 'Shamal', which occurs rarely, lasting one or two days with the strongest winds experienced in association with gust fronts and thunderstorms. Six variations of cesium-137 (137Cs) dispersion test were simulated under hypothetic severe accidental condition. The 137Cs dispersion was strongly influenced by the direction and speed of the main wind. From the test cases, east-south area of the BNPP site was mainly influenced by 137Cs dispersion. A virtual receptor was set and calculated for observation of the 137Cs movement and accumulation. Surface roughness tests were performed for the analysis of topographic conditions. According to the surface condition, there are various surface roughness length. Four types

  18. Chemical Stability Analysis of Hair Cleansing Conditioners under High-Heat Conditions Experienced during Hair Styling Processes

    Directory of Open Access Journals (Sweden)

    Derek A. Drechsel

    2018-03-01

    Full Text Available Chemical stability is a key component of ensuring that a cosmetic product is safe for consumer use. The objective of this study was to evaluate the chemical stability of commercially available hair cleansing conditioners subjected to high heat stresses from the styling processes of blow drying or straightening. Two hair cleansing conditioners were subjected to temperatures of 60 °C and 185 °C to simulate the use of a blow dryer or flatiron hair straightener, respectively and analyzed via Gas Chromatography-Mass Spectrometry (GC-MS, High-Performance Liquid Chromatography-UV (HPLC and Fourier-Transform Infrared Spectroscopy (FT-IR to capture a chemical profile of the samples. The resulting spectra from matched heated and unheated samples were compared to identify any changes in chemical composition. Overall, no differences in the spectra were observed between the heated and unheated samples at both temperatures evaluated. Specifically, no new peaks were observed during analysis, indicating that no degradation products were formed. In addition, all chemicals identified during GC-MS analysis were known listed ingredients of the products. In summary, no measurable changes in chemical composition were observed in the hair cleansing conditioner samples under high-heat stress conditions. The presented analytical methods can serve as an initial screening tool to evaluate the chemical stability of a cosmetic product under conditions of anticipated use.

  19. Stability assessment of lycopene microemulsion prepared using tomato industrial waste against various processing conditions.

    Science.gov (United States)

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2017-11-01

    Green separation techniques are growing at a greater rate than solvent extraction as a result of the constant consumer drive to 'go natural'. Considering the increasing evidence of the health benefits of lycopene and massive tomato industrial waste, in the present study, lycopene was extracted from tomato industrial waste using microemulsion technique and its mean droplet size and size distribution was determined. Moreover, the effects of pasteurization, sterilization, freeze-thaw cycles and ultraviolet (UV) irradiation on the thermodynamic stability, turbidity and lycopene concentration of the lycopene microemulsion were monitored. Freeze-thaw cycles, pasteurization and short exposure to UV irradiation showed no or negligible influence on lycopene content and turbidity of the microemulsion. However, long exposure to UV (260 min) reduced the lycopene content and turbidity by 34% and 10%, respectively. HHST (higher-heat shorter-time) and sterilization also reduced lycopene content (25%) and increased turbidity (32%). The lycopene microemulsion showed satisfactory stability over a process where its monodispersity and nanosize could be of potential advantage to the food and related industries. Regarding the carcinogenicity of synthetic colourants, potential applications of the lycopene microemulsion include in soft drinks and minced meat, which would result in a better colour and well-documented health-promoting qualities. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Testing the stability of magnetic iron oxides/kaolinite nanocomposite under various pH conditions

    Science.gov (United States)

    Tokarčíková, Michaela; Tokarský, Jonáš; Kutláková, Kateřina Mamulová; Seidlerová, Jana

    2017-09-01

    Magnetically modified clays containing iron oxides nanoparticles (FexOy NPs) are low-cost and environmentally harmless materials suitable for sorption of pollutants from wastewaters. Stability of this smart material was evaluated both experimentally and theoretically using molecular modelling. Original kaolinite and prepared FexOy/kaolinite nanocomposite were characterized using X-ray fluorescence spectroscopy, X-ray powder diffraction, infrared spectroscopy, and transmission electron microscopy, and the stability was studied using leaching tests performed according to the European technical standard EN 12457-2 in deionized water and extraction agents with varying pH (2, 4, 9, and 11). The influence of pH on amount of FexOy NPs released from the composite and amount of the basic elements released from the kaolinite structure was studied using inductively coupled plasma atomic emission spectroscopy. All experiments proved that the magnetic properties of the nanocomposite will not change even after leaching in extraction agents with various pH.

  1. First Principles Prediction of Structure, Structure Selectivity, and Thermodynamic Stability under Realistic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ceder, Gerbrand [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials and Engineering

    2018-01-28

    Novel materials are often the enabler for new energy technologies. In ab-initio computational materials science, method are developed to predict the behavior of materials starting from the laws of physics, so that properties can be predicted before compounds have to be synthesized and tested. As such, a virtual materials laboratory can be constructed, saving time and money. The objectives of this program were to develop first-principles theory to predict the structure and thermodynamic stability of materials. Since its inception the program focused on the development of the cluster expansion to deal with the increased complexity of complex oxides. This research led to the incorporation of vibrational degrees of freedom in ab-initio thermodynamics, developed methods for multi-component cluster expansions, included the explicit configurational degrees of freedom of localized electrons, developed the formalism for stability in aqueous environments, and culminated in the first ever approach to produce exact ground state predictions of the cluster expansion. Many of these methods have been disseminated to the larger theory community through the Materials Project, pymatgen software, or individual codes. We summarize three of the main accomplishments.

  2. Local environmental conditions and the stability of protective layers on steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J P [Technical Univ. of Denmark, Lyngby (Denmark); Bursik, A

    1996-12-01

    Local environmental conditions determine whether the protective layers on steel surfaces are stable. With unfavorable local environmental conditions, the protective layers may be subject to damage. Taking the cation conductivity of all plant cycle streams <0.2 {mu}S/cm for granted, an adequate feed-water and - if applicable - boiler water conditioning is required to prevent such damage. Even if the mentioned conditions are met in a bulk, the local environmental conditions may be inadequate. The reasons for this may be the disregarding of interactions among material, design, and chemistry. The paper presents many possible mechanisms of protective layer damage that are directly influenced or exacerbated by plant cycle chemistry. Two items are discussed in more detail: First, the application of all volatile treatment for boiler water conditioning of drum boiler systems operating at low pressures and, second, the chemistry in the transition zone water/steam in the low pressure turbine. The latter is of major interest for the understanding and prevention of corrosion due to high concentration of impurities in the aqueous liquid phases. This is a typical example showing that local environmental conditions may fundamentally differ from the overall bulk chemistry. (au) 19 refs.

  3. Voltage Stability Analysis of Muscat Power System During Summer Weather Conditions

    Directory of Open Access Journals (Sweden)

    K. Ellithy

    2000-12-01

    Full Text Available A systematic and general formulation of a Propagation Simulation Program (PSP is developed for the coherent field of microwave and millimeter wave carrier signals traversing intermediate layered precipitation media taking into account the random behavior of particle size, orientation, shape and concentration distributions.  Based on a rigorous solution of the volumetric multiple-scattering integral equations, the formalism offers the capability of treating the potential transmission impairments on satellite-earth links and radar remote sensing generated by composite atmospheric layers of precipitation in conjunction with the finite polarization isolation of dual-polarized transmitting and receiving antennas. A multi-layered formulation is employed which encompasses an ensemble of discrete particles comprising an arbitrary mixture of ice crystals, melting snow and raindrops that may exist simultaneously along satellite-earth communication paths.

  4. How Does the Gibbs Inequality Condition Affect the Stability and Detachment of Floating Spheres from the Free Surface of Water?

    Science.gov (United States)

    Feng, Dong-xia; Nguyen, Anh V

    2016-03-01

    Floating objects on the air-water interfaces are central to a number of everyday activities, from walking on water by insects to flotation separation of valuable minerals using air bubbles. The available theories show that a fine sphere can float if the force of surface tension and buoyancies can support the sphere at the interface with an apical angle subtended by the circle of contact being larger than the contact angle. Here we show that the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, also plays a significant role in controlling the stability and detachment of floating spheres. Specifically, we truncated the spheres with different angles and used a force sensor device to measure the force of pushing the truncated spheres from the interface into water. We also developed a theoretical modeling to calculate the pushing force that in combination with experimental results shows different effects of the Gibbs inequality condition on the stability and detachment of the spheres from the water surface. For small angles of truncation, the Gibbs inequality condition does not affect the sphere detachment, and hence the classical theories on the floatability of spheres are valid. For large truncated angles, the Gibbs inequality condition determines the tenacity of the particle-meniscus contact and the stability and detachment of floating spheres. In this case, the classical theories on the floatability of spheres are no longer valid. A critical truncated angle for the transition from the classical to the Gibbs inequality regimes of detachment was also established. The outcomes of this research advance our understanding of the behavior of floating objects, in particular, the flotation separation of valuable minerals, which often contain various sharp edges of their crystal faces.

  5. Risk of development of solid cancer and its relation with the classes of Pasquill-Gifford atmospheric stability in RDD scenarios

    International Nuclear Information System (INIS)

    Bulhosa, Valquiria Miranda

    2018-01-01

    The release of radioactive material into the environment can lead to serious consequences that include the risk of cancer induction in the affected population. This work intends to study the influence of the Pasquill-Gilfford atmospheric stability classes on the consequences of a simulated RDD event with respect to the risk of developing solid cancer in the exposed population. The HotSpot health Physics Code software was used for the simulation of the radiological scenario that allows to estimate the doses received by exposed individuals and the environmental contamination at the event site. The HotSpot code uses the Gaussian model to simulate the dispersion of radiological material in the atmosphere. Conservatively, it generates data to evaluate the contamination of an area of interest. These data allow to know the Total Effective Equivalent Dose (TEDE), which corresponds to the combined dose of all exposure routes (external and internal). The estimated dose was used as input data for the biostatistical model developed by the Research Foundation on Radiation Effects (RERF) to estimate the risk of the related morbidity development. The model equation estimate the risk of developing solid cancer. The data from HotSpot enabled the calculation of the affected areas, doses in each area, as well as relative risk (RR) of solid cancer estimation for the affected population, taking into account age and sex and its possible relation with the classes of atmospheric stability. These estimates can be a good resource for a first evaluation of such a scenario, accounting for the recommended dose limits for shelter and evacuation and, consequently, a valuable decision support for the ongoing radiological event. (author)

  6. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a

  7. Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions

    Directory of Open Access Journals (Sweden)

    Jean-Louis eHoneine

    2014-10-01

    Full Text Available Maintaining equilibrium is basically a sensorimotor integration task. The central nervous system continually and selectively weights and rapidly integrates sensory inputs from multiple sources, and coordinates multiple outputs. The weighting process is based on the availability and accuracy of afferent signals at a given instant, on the time-period required to process each input, and possibly on the plasticity of the relevant pathways. The likelihood that sensory inflow changes while balancing under static or dynamic conditions is high, because subjects can pass from a dark to a well-lit environment or from a tactile-guided stabilization to loss of haptic inflow. This review article presents recent data on the temporal events accompanying sensory transition, on which basic information is fragmentary. The processing time from sensory shift to reaching a new steady state includes the time to (a subtract or integrate sensory inputs, (b move from allocentric to egocentric reference or vice versa, and (c adjust the calibration of motor activity in time and amplitude to the new sensory set. We present examples of processes of integration of posture-stabilizing information, and of the respective sensorimotor time-intervals while allowing or occluding vision or adding or subtracting tactile information. These intervals are short, in the order of 1-2 s for different postural conditions, modalities and deliberate or passive shift. They are just longer for haptic than visual shift, just shorter on withdrawal than on addition of stabilizing input, and on deliberate than unexpected mode. The delays are the shortest (for haptic shift in blind subjects. Since automatic balance stabilization may be vulnerable to sensory-integration delays and to interference from concurrent cognitive tasks in patients with sensorimotor problems, insight into the processing time for balance control represents a critical step in the design of new balance- and locomotion training

  8. Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions

    Science.gov (United States)

    Honeine, Jean-Louis; Schieppati, Marco

    2014-01-01

    Maintaining equilibrium is basically a sensorimotor integration task. The central nervous system (CNS) continually and selectively weights and rapidly integrates sensory inputs from multiple sources, and coordinates multiple outputs. The weighting process is based on the availability and accuracy of afferent signals at a given instant, on the time-period required to process each input, and possibly on the plasticity of the relevant pathways. The likelihood that sensory inflow changes while balancing under static or dynamic conditions is high, because subjects can pass from a dark to a well-lit environment or from a tactile-guided stabilization to loss of haptic inflow. This review article presents recent data on the temporal events accompanying sensory transition, on which basic information is fragmentary. The processing time from sensory shift to reaching a new steady state includes the time to (a) subtract or integrate sensory inputs; (b) move from allocentric to egocentric reference or vice versa; and (c) adjust the calibration of motor activity in time and amplitude to the new sensory set. We present examples of processes of integration of posture-stabilizing information, and of the respective sensorimotor time-intervals while allowing or occluding vision or adding or subtracting tactile information. These intervals are short, in the order of 1–2 s for different postural conditions, modalities and deliberate or passive shift. They are just longer for haptic than visual shift, just shorter on withdrawal than on addition of stabilizing input, and on deliberate than unexpected mode. The delays are the shortest (for haptic shift) in blind subjects. Since automatic balance stabilization may be vulnerable to sensory-integration delays and to interference from concurrent cognitive tasks in patients with sensorimotor problems, insight into the processing time for balance control represents a critical step in the design of new balance- and locomotion training devices

  9. Conditions and Linear Stability Analysis at the Transition to Synchronization of Three Coupled Phase Oscillators in a Ring

    Science.gov (United States)

    El-Nashar, Hassan F.

    2017-06-01

    We consider a system of three nonidentical coupled phase oscillators in a ring topology. We explore the conditions that must be satisfied in order to obtain the phases at the transition to a synchrony state. These conditions lead to the correct mathematical expressions of phases that aid to find a simple analytic formula for critical coupling when the oscillators transit to a synchronization state having a common frequency value. The finding of a simple expression for the critical coupling allows us to perform a linear stability analysis at the transition to the synchronization stage. The obtained analytic forms of the eigenvalues show that the three coupled phase oscillators with periodic boundary conditions transit to a synchrony state when a saddle-node bifurcation occurs.

  10. Sulfur X-ray absorption fine structure in porous Li–S cathode films measured under argon atmospheric conditions

    International Nuclear Information System (INIS)

    Müller, Matthias; Choudhury, Soumyadip; Gruber, Katharina; Cruz, Valene B.; Fuchsbichler, Bernd; Jacob, Timo; Koller, Stefan; Stamm, Manfred; Ionov, Leonid; Beckhoff, Burkhard

    2014-01-01

    In this paper we present the first results for the characterization of highly porous cathode materials with pore sizes below 1 μm for Lithium Sulfur (Li–S) batteries by Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. A novel cathode material of porous carbon films fabricated with colloidal array templates has been investigated. In addition, an electrochemical characterization has been performed aiming on an improved correlation of physical and chemical parameters with the electrochemical performance. The performed NEXAFS measurements of cathode materials allowed for a chemical speciation of the sulfur content inside the cathode material. The aim of the presented investigation was to evaluate the potential of the NEXAFS technique to characterize sulfur in novel battery material. The long term goal for the characterization of the battery materials is the sensitive identification of undesired side reactions, such as the polysulfide shuttle, which takes place during charging and discharging of the battery. The main drawback associated with the investigation of these materials is the fact that NEXAFS measurements can usually only be performed ex situ due to the limited in situ instrumentation being available. For Li–S batteries this problem is more pronounced because of the low photon energies needed to study the sulfur K absorption edge at 2472 eV. We employed 1 μm thick Si 3 N 4 windows to construct sealed argon cells for NEXAFS measurements under ultra high vacuum (UHV) conditions as a first step towards in situ measurements. The cells keep the sample under argon atmosphere at any time and the X-ray beam passes mainly through vacuum which enables the detection of the low energy X-ray emission of sulfur. Using these argon cells we found indications for the presence of lithium polysulfides in the cathode films whereas the correlations to the offline electrochemical results remain somewhat ambiguous. As a consequence of these findings one may

  11. Operator dynamics for stability condition in haptic and teleoperation system: A survey.

    Science.gov (United States)

    Li, Hongbing; Zhang, Lei; Kawashima, Kenji

    2018-04-01

    Currently, haptic systems ignore the varying impedance of the human hand with its countless configurations and thus cannot recreate the complex haptic interactions. The literature does not reveal a comprehensive survey on the methods proposed and this study is an attempt to bridge this gap. The paper includes an extensive review of human arm impedance modeling and control deployed to address inherent stability and transparency issues in haptic interaction and teleoperation systems. Detailed classification and comparative study of various contributions in human arm modeling are presented and summarized in tables and diagrams. The main challenges in modeling human arm impedance for haptic robotic applications are identified. The possible future research directions are outlined based on the gaps identified in the survey. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Storage conditions affect oxidative stability and nutritional composition of freeze-dried Nannochloropsis salina

    DEFF Research Database (Denmark)

    Safafar, Hamed; Langvad, Sten; Møller, Peter

    2017-01-01

    composition of microalgae biomass. In order to investigate the worsening of the nutritional quality of freeze dried biomass, a multifactorial storage experiment was conducted on a high EPA (eicosapentaenoic acid) Nannochloropsis salina biomass. The storage time (0–56 days), storage temperature (5, 20,and 40...... °C and packaging conditions (under vacuum and ambient pressure)used as main factors. During the 56 days of storage, both time and temperature strongly influenced the oxidation reactions which result in deterioration of bioactive compounds such as carotenoids, tocopherols, and EPA. Lipid deterioration......, or cosmetics requires the knowledge of the optimum storage conditions to prevent the value-added compounds from deterioration. Results of this study improve our understanding of the chemical deterioration under different storage conditions and can help the producers/customers to extend the shelf life...

  13. Evaluation by fluorescence resonance energy transfer of the stability of nonviral gene delivery vectors under physiological conditions.

    Science.gov (United States)

    Itaka, Keiji; Harada, Atsushi; Nakamura, Kozo; Kawaguchi, Hiroshi; Kataoka, Kazunori

    2002-01-01

    The stability in physiological medium of polyplex- and lipoplex-type nonviral gene vectors was evaluated by detecting the conformational change of complexed plasmid DNA (pDNA) labeled simultaneously with fluorescein (energy donor) and X-rhodamine (energy acceptor) through fluorescence resonance energy transfer (FRET). Upon mixing with cationic components, such as LipofectAMINE, poly(L-lysine), and poly(ethylene glycol)-poly(L-lysine) block copolymer (PEG-PLys), the fluorescence spectrum of doubly labeled pDNA underwent a drastic change due to the occurrence of FRET between the donor-acceptor pair on pDNA taking a globular conformation (condensed state) through complexation. The measurement was carried out also in the presence of 20% serum, under which conditions FRET from condensed pDNA was clearly monitored without interference from coexisting components in the medium, allowing evaluation of the condensed state of pDNA in nonviral gene vectors under physiological conditions. Serum addition immediately induced a sharp decrease in FRET for the LipofectAMINE/pDNA (lipoplex) system, which was consistent with the sharp decrease in the transfection efficiency of the lipoplex system in serum-containing medium. In contrast, the PEG-PLys/pDNA polyplex (polyion complex micelle) system maintained appreciable transfection efficiency even in serum-containing medium, and FRET efficiency remained constant for up to 12 h, indicating the high stability of the polyion complex micelle under physiological conditions.

  14. The use of a DNA stabilizer in human dental tissues stored under different temperature conditions and time intervals

    Science.gov (United States)

    TERADA, Andrea Sayuri Silveira Dias; da SILVA, Luiz Antonio Ferreira; GALO, Rodrigo; de AZEVEDO, Aline; GERLACH, Raquel Fernanda; da SILVA, Ricardo Henrique Alves

    2014-01-01

    Objective The present study evaluated the use of a reagent to stabilize the DNA extracted from human dental tissues stored under different temperature conditions and time intervals. Material and Methods A total of 161 teeth were divided into two distinct groups: intact teeth and isolated dental pulp tissue. The samples were stored with or without the product at different time intervals and temperature. After storage, DNA extraction and genomic DNA quantification were performed using real-time PCR; the fragments of the 32 samples that represented each possible condition were analyzed to find the four pre-selected markers in STR analysis. Results The results of the quantification showed values ranging from 0.01 to 10,246.88 ng/μL of DNA. The statistical difference in the quantity of DNA was observed when the factors related to the time and temperature of storage were analyzed. In relation to the use of the specific reagent, its use was relevant in the group of intact teeth when they were at room temperature for 30 and 180 days. The analysis of the fragments in the 32 selected samples was possible irrespective of the amount of DNA, confirming that the STR analysis using an automated method yields good results. Conclusions The use of a specific reagent showed a significant difference in stabilizing DNA in samples of intact human teeth stored at room temperature for 30 and 180 days, while the results showed no justification for using the product under the other conditions tested. PMID:25141206

  15. Effect of production conditions on the stability of a human bifidobacterial species Bifidobacterium longum in yogurt.

    Science.gov (United States)

    Abe, F; Tomita, S; Yaeshima, T; Iwatsuki, K

    2009-12-01

    Human bifidobacteria are more sensitive to external environmental factors than animal bifidobacteria, and it is difficult to ensure their stable survival in yogurt. The purpose of this investigation was to observe the survival of human bifidobacteria in yogurts produced under various production conditions. Frozen or lyophilized bifidobacteria starters containing Bifidobacterium longum BB536 originally isolated from an infant, and commercial lyophilized yogurt starters were used for yogurt preparation. After producing yogurts under various conditions, the survival of bifidobacteria in these yogurts over various storage periods was observed. Although there were some differences in bifidobacterial survival in yogurt between various production conditions, more than 1.0 x 10(7) CFU g(-1) of Bif. longum survived in yogurt after 35 days' storage at 5 degrees C. Lower fermentation temperature (37 degrees C) and inclusion of Lactococcus lactis in the starter significantly (P yogurt. In this investigation, the human bifidobacterial strain Bif. longum survived adequately in yogurt, although the fermentation temperature and starter composition affect bifidobacterial survival. This investigation indicates that stable probiotic yogurt using human bifidobacteria can be produced by choosing optimal production conditions.

  16. Design feasibility study on corium stabilization in bottom end-fitting for AHWR under accident condition

    International Nuclear Information System (INIS)

    Gokhale, Onkar; Mukhopadhyay, D.; Chatterjee, B.; Singh, R.K.

    2015-01-01

    Advanced Heavy Water Reactor (AHWR) is being designed in a robust way to cater both Design and Beyond Design Basis Accidents to meet all the safety functions. All the functions are met by passive means with special emphasis on 'residual heat removal' which is catered by passive natural circulation mode. In context to Design Basis Accidents, several features are designed to handle worst kind of scenario like Station Black Out. For Design Extension Conditions (DEC), the means of passive natural circulation is adopted as a design means to meet the DEC-A conditions like cooling of moderator by natural circulation means with GDWP inventory. Under the DEC-B condition where large scale of fuel melting is envisaged, a core catcher is designed with active/passive cooling modes to take care of the residual heat of the core. All the mentioned features utilizes the natural mode of heat transfer to meet one of the safety function i.e. 'residual heat removal'. The analysis shows that the tube sheet as well as lattice tube temperatures remain low and are able to take out the heat from corium through sub-cooled nucleate boiling. The ES cooling is sufficient to maintain the cooling water in subcooled condition. The integrity of tube sheet and lattice tube is maintained

  17. Stability studies needed to define the handling and transport conditions of sensitive pharmaceutical or biotechnological products.

    Science.gov (United States)

    Ammann, Claude

    2011-12-01

    Many pharmaceutical or biotechnological products require transport using temperature-controlled systems to keep their therapeutic properties. There are presently no official guidelines for testing pharmaceutical products in order to define suitable transport specifications. After reviewing the current guidance documents, this paper proposes a methodology for testing pharmaceutical products and defining appropriate transport conditions.

  18. Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications

    International Nuclear Information System (INIS)

    Chen, Haijun; Cui, Qun; Wu, Juan; Zhu, Yuezhao; Li, Quanguo; Zheng, Kai; Yao, Huqing

    2014-01-01

    Graphical abstract: The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%. - Highlights: • Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. • SAPO-34 with diethylamine as the template shows no significant reduced cyclic water uptake over 60 cycles, and most of the initial SAPO-34 phase is well maintained. • SAPO-34 has an excellent adsorption performance and a good hydrothermal stability, thus is promising for application in adsorption refrigeration. - Abstract: Hydrothermal stability is one of the crucial factors in applying SAPO-34 molecular sieve to adsorption refrigration. The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Both a vacuum gravimetric method and an intelligent gravimetric analyzer were applied to analyze the water adsorption performance of SAPO-34. Cyclic hydrothermal performance was determined on the modified simulation adsorption refrigeration test rig. Crystal phase, morphology, and porosity of SAPO-34 were characterized by X-ray diffraction, scanning electron microscopy, and N 2 sorption, respectively. The results show that, water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches

  19. Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haijun [Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, School of Mechanical and Power Engineering, Nanjing Tech University (China); Cui, Qun, E-mail: cuiqun@njtech.edu.cn [College of Chemistry and Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, Gulou District, Nanjing 210009 (China); Wu, Juan; Zhu, Yuezhao [Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, School of Mechanical and Power Engineering, Nanjing Tech University (China); Li, Quanguo; Zheng, Kai; Yao, Huqing [College of Chemistry and Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, Gulou District, Nanjing 210009 (China)

    2014-04-01

    Graphical abstract: The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%. - Highlights: • Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. • SAPO-34 with diethylamine as the template shows no significant reduced cyclic water uptake over 60 cycles, and most of the initial SAPO-34 phase is well maintained. • SAPO-34 has an excellent adsorption performance and a good hydrothermal stability, thus is promising for application in adsorption refrigeration. - Abstract: Hydrothermal stability is one of the crucial factors in applying SAPO-34 molecular sieve to adsorption refrigration. The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Both a vacuum gravimetric method and an intelligent gravimetric analyzer were applied to analyze the water adsorption performance of SAPO-34. Cyclic hydrothermal performance was determined on the modified simulation adsorption refrigeration test rig. Crystal phase, morphology, and porosity of SAPO-34 were characterized by X-ray diffraction, scanning electron microscopy, and N{sub 2} sorption, respectively. The results show that, water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake

  20. To a scientific substantiation of a practical method of inspection of radiating conditions on territories, polluted with atmospheric fallout

    International Nuclear Information System (INIS)

    Burmistrov, V.R; Makarenko, N.G.; Karimova, L.M.

    2001-01-01

    Full text: In the report a question on necessity of practical development of a method of inspection of radiating fields, adapted to a nature of pollution is put. 50-year study of radionuclides pollution, dropping out from atmosphere after nuclear tests or failures, have shown non-perspective of traditional techniques of inspection of a radiating conditions on large territories. The detailed measurements covering surface without gaps are very expensive, and use of a unloaded grid requires interpolation irregular mosaic structure. Detection Fractal structure at the analysis Chernobyl losses and pollution of fragments of Semipalatinsk test nuclear site specify necessity of the account of self-similar properties of pollution in philosophy of measurement. For realization of potential opportunities Fractal field the special circuit of measurements, distinguished from, is required standard. Fractal approach requires shooting with system of crossed vicinities on chosen detailed platforms, making a rather small part of surveyed territory. These data will allow to reveal scale laws, which are universal in a significant range of scales. Using scaling of small platforms, it is possible to receive correct estimation of structure of pollution of large territories. The stated above reasons are based on our experiments on fractal approach to the analysis of continuous shooting (aero-scale shooting of scale 1:5000) in a zone of Semipalatinsk test site on three platforms by the sizes on 1000x400 m 2 . Our results specify necessity revision almost of all conclusions, received earlier on the basis of traditional techniques

  1. Mapping land water and energy balance relations through conditional sampling of remote sensing estimates of atmospheric forcing and surface states

    Science.gov (United States)

    Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido

    2016-04-01

    In this study, we develop and apply a mapping estimation capability for key unknown parameters that link the surface water and energy balance equations. The method is applied to the Gourma region in West Africa. The accuracy of the estimation method at point scale was previously examined using flux tower data. In this study, the capability is scaled to be applicable with remotely sensed data products and hence allow mapping. Parameters of the system are estimated through a process that links atmospheric forcing (precipitation and incident radiation), surface states, and unknown parameters. Based on conditional averaging of land surface temperature and moisture states, respectively, a single objective function is posed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to parameters to identify evapotranspiration and drainage models and estimate water and energy balance flux components. The uncertainty of the estimated parameters (and associated statistical confidence limits) is obtained through the inverse of Hessian of the objective function, which is an approximation of the covariance matrix. This calibration-free method is applied to the mesoscale region of Gourma in West Africa using multiplatform remote sensing data. The retrievals are verified against tower-flux field site data and physiographic characteristics of the region. The focus is to find the functional form of the evaporative fraction dependence on soil moisture, a key closure function for surface and subsurface heat and moisture dynamics, using remote sensing data.

  2. Increasing Juniperus virginiana L. pollen in the Tulsa atmosphere: long-term trends, variability, and influence of meteorological conditions

    Science.gov (United States)

    Flonard, Michaela; Lo, Esther; Levetin, Estelle

    2018-02-01

    In the Tulsa area, the Cupressaceae is largely represented by eastern red cedar ( Juniperus virginiana L.). The encroachment of this species into the grasslands of Oklahoma has been well documented, and it is believed this trend will continue. The pollen is known to be allergenic and is a major component of the Tulsa atmosphere in February and March. This study examined airborne Cupressaceae pollen data from 1987 to 2016 to determine long-term trends, pollen seasonal variability, and influence of meteorological variables on airborne pollen concentrations. Pollen was collected through means of a Burkard sampler and analyzed with microscopy. Daily pollen concentrations and yearly pollen metrics showed a high degree of variability. In addition, there were significant increases over time in the seasonal pollen index and in peak concentrations. These increases parallel the increasing population of J. virginiana in the region. Pollen data were split into pre- and post-peak categories for statistical analyses, which revealed significant differences in correlations of the two datasets when analyzed with meteorological conditions. While temperature and dew point, among others were significant in both datasets, other factors, like relative humidity, were significant only in one dataset. Analyses using wind direction showed that southerly and southwestern winds contributed to increased pollen concentrations. This study confirms that J. virginiana pollen has become an increasing risk for individuals sensitive to this pollen and emphasizes the need for long-term aerobiological monitoring in other areas.

  3. A Narrow-Linewidth Atomic Line Filter for Free Space Quantum Key Distribution under Daytime Atmospheric Conditions

    Science.gov (United States)

    Brown, Justin; Woolf, David; Hensley, Joel

    2016-05-01

    Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.

  4. Stability parameters and their inter-relationships at the naviface

    Digital Repository Service at National Institute of Oceanography (India)

    Anto, A.F.; Hasse, L.; Murty, C.S.

    Different forms of stability parameters used for the estimation of fluxes and studies on the structure of surface boundary layer of the marine atmosphere and their inter-relationships under the varying conditions of thermal stratifications...

  5. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  6. Effects of Pretreatments and Storage Conditions on the Stability of Orange Peel Carotenoids (Turkish with English Abstract

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Carotenoids, being colorful pigments with colors ranging from yellow to red, are important in food industry providing both lipophilic and hydrophilic groups, provitamin A activity and anticarciogenic properties. The commercial value of carotenoids is closely related to the color stability. Therefore, this work aims to study the stability of enzyme extracted carotenoid pigments under different processing and storage conditions. Orange peels from the wastes of fruit juice production were used as a potential rich source of pigments. Orange peel samples were either directly extracted or pretreatments of blanching, 0.2% sodium-bisulfıte solution or combinations of these two were applied. Extracted pigments were stored at 4 oC, 25 oC (under light and dark and 40 oC. Stability of enzyme extracted pigments were higher than that of solvent extracted whereas pretreatments were resulted in pigment loss. Half-life, defined as the time corresponding 50% loss of pigments, of the samples stored at 4 oC was 78 days in directly extracted, 27 days in blanched, 31 days in Na-bisulfite treated and 30 days in the combination of the last two. This work can be considered as a preliminary study on the industrial scale production and potential usage of the carotenoid pigments as fully natural food coloring agent in food systems.

  7. Infant Milk Formulas: Effect of Storage Conditions on the Stability of Powdered Products towards Autoxidation

    Directory of Open Access Journals (Sweden)

    Stefania Cesa

    2015-09-01

    Full Text Available Thirty samples of powdered infant milk formulas containing polyunsaturated fatty acids (PUFAs have been stored at four different temperatures (20, 28, 40 and 55 °C and periodically monitored for their malondialdehyde (MDA content up to one year. MDA levels ranged between 250 and 350 ng/kg in sealed samples with a maximum of 566 ng/kg in samples stored at 28 °C for three weeks after opening of their original packages, previously maintained for ten months at 20 °C. Sample stored at 40° and 55 °C were also submitted to CIE (Commission Internationale de l’Eclairage colorimetric analysis, since color is the first sensorial property that consumers may evaluate. Overall, the results demonstrated a good stability of PUFA-enriched infant milk formulas in terms of MDA content. However, some care has to be paid when these products are not promptly consumed and stored for a long time after first opening.

  8. Numerical analysis of the stability of inhomogeneous slopes considering partially saturated conditions

    Directory of Open Access Journals (Sweden)

    Pichler Patrick P.

    2016-01-01

    Full Text Available It is well accepted that rainfall could play a significant role in instability of slopes. The main objective of the presented study is to quantify the influence of varying characteristics of water flow, its associated changes of pore-water pressures and shear strength on the stability of simplified, but inhomogeneous, slope geometries. The commonly used van Genuchten model was used to describe the Soil Water Characteristic Curve (SWCC mathematically. In the context of this study, the influence of different hydraulic behaviour of soil layers, i.e. different SWCC, on the factor of safety (FoS is evaluated by means of fully coupled flow-deformation analyses employing the finite element method. To quantify the slopes’ factor of safety during rainfall events after specified times of infiltration or evaporation, the strength reduction method was applied. In addition to various combinations of soil layers, the influence of a water bearing high permeable soil layer between two less permeable soil layers, a situation which is often encountered in practice, on the factor of safety has been investigated.

  9. Harvest time in sugar cane and varietal stability in five environmental conditions of Cuba

    Directory of Open Access Journals (Sweden)

    Irenaldo Delgado

    2015-01-01

    Full Text Available Harvesting of sugarcane at a proper time, by adopting right techniques, is necessary to make better use of the available genetic material. By determining the harvesting time period for each sugarcane variety to show its highest potential, both yield and sugar quality, higher levels of profitability are achieved. The aim of this study is to identify the harvest time of sugarcane cultivars, as well as the stability of the cultivars studied in five localities. The study was conducted at the Sugarcane Research Stations in Villa Clara, Sancti Spiritus, Camagüey, Holguin and Santiago de Cuba. Five experiments were planted (one for each locality, in a randomized complete block design with three replications under rainfed agriculture. Two harvest times were established, time 1 (M1, according to the harvest data from November to January (beginning of harvest, and time 2 (M2 taking into account the data collected from February to April (average stage- end of harvest. The discriminant analysis results allowed establishing two harvest times (November to January and February to April in these five localities, where the effectiveness of each cultivar-Iocality-harvest time combination was higher than 74%. In general, it is advisable the use of cultivars C86-12 and C92-514 during M1 in these five localities, as well as the use of C90-530 in specific zones; and the use of cultivars C92-514 and C89-165 during M2. .

  10. Rock Strength Anisotropy in High Stress Conditions: A Case Study for Application to Shaft Stability Assessments

    Directory of Open Access Journals (Sweden)

    Watson Julian Matthew

    2015-03-01

    Full Text Available Although rock strength anisotropy is a well-known phenomenon in rock mechanics, its impact on geotechnical design is often ignored or underestimated. This paper explores the concept of anisotropy in a high stress environment using an improved unified constitutive model (IUCM, which can account for more complex failure mechanisms. The IUCM is used to better understand the typical responses of anisotropic rocks to underground mining. This study applies the IUCM to a proposed rock shaft located in high stress/anisotropic conditions. Results suggest that the effect of rock strength anisotropy must be taken into consideration when assessing the rock mass response to mining in high stress and anisotropic rock conditions.

  11. Pu Sorption, Desorption and Intrinsic Colloid Stability under Granitic Chemical Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pihong [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Zurong [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-04

    This progress report (M4FT-14LL0807031) describes research conducted at LLNL as part of the Crystalline Repository effort within the UFD program. Part I describes the dissolution kinetics of intrinsic Pu colloids synthesized in an alkaline solution. Part II describes the morphology and dissolution characteristics of various forms of Pu oxides prepared over a range of solution and temperature conditions. Proposed FY15 activities are identified.

  12. Stabilization Mechanism of Roxithromycin Tablets under Gastric pH Conditions.

    Science.gov (United States)

    Inukai, Koki; Noguchi, Shuji; Kimura, Shin-Ichiro; Itai, Shigeru; Iwao, Yasunori

    2018-05-31

    Macrolide antibiotics are widely used at clinical sites. Clarithromycin (CAM), a 14-membered macrolide antibiotic, was reported to gelate under acidic conditions. Gelation allows oral administration of acid-sensitive CAM without enteric coating by hindering the penetration of gastric fluid into CAM tablets. However, it is unknown whether this phenomenon occurs in other macrolide antibiotics. In this study, we examined the gelation ability of three widely used macrolide antibiotics, roxithromycin (RXM), erythromycin A (EM), and azithromycin (AZM). The results indicated that not only CAM but also RXM gelated under acidic conditions. EM and AZM did not gelate under the same conditions. Gelation of RXM delayed the disintegration of the tablet and release of RXM from the tablet. Disintegration and release were also delayed in commercial RXM tablets containing disintegrants. This study showed that two of the four macrolides gelated, which affects tablet disintegration and dissolution and suggests that this phenomenon might also occur in other macrolides. Copyright © 2018. Published by Elsevier Inc.

  13. A theoretical study of stability and vacancy replenishing of MoO{sub 3}(0 1 0) surfaces in oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yan-Hua; Chen, Zhao-Xu, E-mail: zxchen@nju.edu.cn

    2016-01-15

    Graphical abstract: - Highlights: • Under normal experimental conditions perfect surface of MoO{sub 3}(0 1 0) is favorable. • Line defects along asymmetric oxygen direction in lean oxygen condition are favored. • Vacancy replenishing occurs on vacancies formed by terminal and asymmetrical oxygen. - Abstract: Oxygen vacancies on transition metal oxide surfaces are catalytically very important. The stability, shape and replenishing process of the vacancies are critical to understanding reactions happening on the surfaces. In this paper we investigate the stability of various defective MoO{sub 3}(0 1 0) surfaces and examine the influence of environmental oxygen on the stability as well as the active sites for the replenishing process. Our calculations reveal that the line oxygen defect along a (asymmetric oxygen) direction is thermodynamically most favorable at higher defect concentration whereas point defect surfaces are unfavorable. Under normal experimental conditions the perfect surface dominates the MoO{sub 3}(0 1 0). We show that for stoichiometric surfaces of any oxides (A{sub x}O{sub y}) the formation energy per vacancy controls the favorable defect shape (line or point defects). Calculations indicate that O{sub 2} can dissociate readily on the surfaces that double vacancies share one Mo atom. The replenishing process of the oxygen vacancies through O{sub 2} dissociation most likely occurs on the double-vacancy containing one terminal and one asymmetrical oxygen vacancies.

  14. DEVELOPMENTAL STABILITY AND CYTOGENETIC HOMEOSTASIS OF FISH FAUNA OF THE SLUCH RIVER IN CURRENT CONDITIONS OF ANTHROPOGENIC STRESS

    Directory of Open Access Journals (Sweden)

    O. Bedunkova

    2015-03-01

    Full Text Available Purpose. To assess the developmental stability and cytogenetic homeostasis of fish populations in the Sluch River in the watercourse areas subjected to anthropogenic stress of different intensities. Methodology. Studies of fish populations in the Sluch River were carried out within Berezne district of Rivne region. The condition of individual fish in the populations were evaluated integrally using morphological (evaluation of the stability of development based on the level of fluctuating asymmetry (FA and cytogenetic (micronucleus (MN test of peripheral blood erythrocytes of fish methods. The methods used allowed identifying the destabilization level of organism development, even in the cases when there is no direct disturbance of population homeostasis. Findings. The found FA levels reflect minor (initial deviations from the normal developmental processes of fish populations in in the studied watercourse areas. Especially significantly this is reflected in a high proportion of individuals with FA in the samples of roach (Rutilus rutilus, bleak (Alburnus alburnus, bream (Abramis brama and perch (Perca fluviatilis. An excess in the frequency of MN erythrocyte cells in roach and pike (Esox lucius blood relatively the level of spontaneous mutagenesis was observed in the cross section №2, which is exposed to sewage waters. The observed manifestation of degenerative processes in fish organisms at this stage can be evaluated as an increased reactivity of sensitive species to the presence of mutagenic agents in the composition of river pollution. The functioning of spawning populations gives reason to believe that the current level of human impact is not critical for the hydroecosystem. Originality. For the first time we obtained data on the stability of development and cytogenetic homeostasis of fish populations in the hydroecosystem of Rivne region in current conditions of anthropogenic stress. Practical value. The obtained results can be used for

  15. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    Science.gov (United States)

    Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung

    2016-01-01

    Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, pmaintain balance compared to the controls.

  16. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    Science.gov (United States)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  17. Critical stability conditions of the fuel element cladding; Kriticni uslovi stabilnosti kosuljice G.E

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, M; Savic, D [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1968-12-15

    The role of the fuel element cladding being the first safety barrier, is to prevent contamination by the fission products. Construction of the fuel element cladding depends on the reactor type, coolant type, fuel type, technology of material fabrication, influence of the material on the neutron economy, thermal conditions, etc. That is why an optimum solution has to be found. This paper deals with mechanical properties of ceramic natural UO{sub 2} sintered fuel pellets in the zircaloy-2 cladding. This type of fuel is used in heavy water reactors.

  18. Monitoring of the stability of underground workings in Polish copper mines conditions

    Science.gov (United States)

    Fuławka, Krzysztof; Mertuszka, Piotr; Pytel, Witold

    2018-01-01

    One of the problems associated with the excavation of deposit in underground mines is the local disturbance in a state of unstable equilibrium results in the sudden release of energy, mainly in the form of roof falls. The scale and intensity of this type of events depends on a number of factors. To minimize the risk of instability occurrence, continuous observations of the roof strata condition are recommended. Different roof strata observation methods used in the Polish copper mines have been analysed within the framework of presented paper. In addition, selected prospective methods, which could significantly increase efficiency of rock fall prevention are presented.

  19. Chemical vapour deposition at atmospheric pressure of graphene on molybdenum foil: Effect of annealing time on characteristics and corrosion stability of graphene coatings

    International Nuclear Information System (INIS)

    Naghdi, Samira; Jevremović, Ivana; Mišković-Stanković, Vesna; Rhee, Kyong Yop

    2016-01-01

    Highlights: • Atmospheric pressure chemical vapor deposition of graphene on molybdenum foils. • Quality and domain size of graphene layers increased with longer annealing times. • The number of graphene layers decreased with longer annealing times. • Graphene coatings on molybdenum foils exhibited corrosion inhibitive properties. - Abstract: In this work, the effect of pre-annealing of Mo substrate on the quality of graphene layers grown by chemical vapour deposition was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. Moreover, different electrochemical techniques were employed to investigate the corrosion stability of the graphene coated Mo in 0.1 M NaCl. Longer annealing time resulted in less defective graphene coatings with fewer layers. Graphene coating on the annealed Mo provided better protection against corrosion during the initial exposure times, while after prolonged exposure times, both graphene coatings on annealed and non-annealed Mo exhibited nearly the same corrosion inhibitive properties.

  20. Cable Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bottura, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    Superconductor stability is at the core of the design of any successful cable and magnet application. This chapter reviews the initial understanding of the stability mechanism, and reviews matters of importance for stability such as the nature and magnitude of the perturbation spectrum and the cooling mechanisms. Various stability strategies are studied, providing criteria that depend on the desired design and operating conditions.