Sample records for atmospheric radiative transfer

  1. Radiative transfer in atmosphere-sea ice-ocean system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)


    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  2. Atmospheric Radiative Transfer for Satellite Remote Sensing: Validation and Uncertainty (United States)

    Marshak, Alexander


    My presentation will begin with the discussion of the Intercomparison of three-dimensional (3D) Radiative Codes (13RC) project that has been started in 1997. I will highlight the question of how well the atmospheric science community can solve the 3D radiative transfer equation. Initially I3RC was focused only on algorithm intercomparison; now it has acquired a broader identity providing new insights and creating new community resources for 3D radiative transfer calculations. Then I will switch to satellite remote sensing. Almost all radiative transfer calculations for satellite remote sensing are one-dimensional (1D) assuming (i) no variability inside a satellite pixel and (ii) no radiative interactions between pixels. The assumptions behind the 1D approach will be checked using cloud and aerosol data measured by the MODerate Resolution Imaging Spectroradiometer (MODIS) on board of two NASA satellites TERRA and AQUA. In the discussion, I will use both analysis technique: statistical analysis over large areas and time intervals, and single scene analysis to validate how well the 1D radiative transfer equation describes radiative regime in cloudy atmospheres.

  3. Computational Challenges of 3D Radiative Transfer in Atmospheric Models (United States)

    Jakub, Fabian; Bernhard, Mayer


    The computation of radiative heating and cooling rates is one of the most expensive components in todays atmospheric models. The high computational cost stems not only from the laborious integration over a wide range of the electromagnetic spectrum but also from the fact that solving the integro-differential radiative transfer equation for monochromatic light is already rather involved. This lead to the advent of numerous approximations and parameterizations to reduce the cost of the solver. One of the most prominent one is the so called independent pixel approximations (IPA) where horizontal energy transfer is neglected whatsoever and radiation may only propagate in the vertical direction (1D). Recent studies implicate that the IPA introduces significant errors in high resolution simulations and affects the evolution and development of convective systems. However, using fully 3D solvers such as for example MonteCarlo methods is not even on state of the art supercomputers feasible. The parallelization of atmospheric models is often realized by a horizontal domain decomposition, and hence, horizontal transfer of energy necessitates communication. E.g. a cloud's shadow at a low zenith angle will cast a long shadow and potentially needs to communication through a multitude of processors. Especially light in the solar spectral range may travel long distances through the atmosphere. Concerning highly parallel simulations, it is vital that 3D radiative transfer solvers put a special emphasis on parallel scalability. We will present an introduction to intricacies computing 3D radiative heating and cooling rates as well as report on the parallel performance of the TenStream solver. The TenStream is a 3D radiative transfer solver using the PETSc framework to iteratively solve a set of partial differential equation. We investigate two matrix preconditioners, (a) geometric algebraic multigrid preconditioning(MG+GAMG) and (b) block Jacobi incomplete LU (ILU) factorization. The

  4. SAFARI 2000 Surface Atmospheric Radiative Transfer (SMART), Dry Season 2000 (United States)

    National Aeronautics and Space Administration — ABSTRACT: Surface-sensing Measurements for Radiative Transfer (SMART) and Chemical, Optical, and Microphysical Measurements of In-situ Troposphere (COMMIT) consist...

  5. Lessons Learned from Radiative Transfer Simulations of the Venus Atmosphere (United States)

    Arney, G.; Meadows, V. S.; Lincowski, A.


    The Venus atmosphere is extremely complex, and because of this the spectrum of Earths sister planet is likewise intricate and a challenge to model accurately. However, accurate modeling of Venus spectrum opens up multiple opportunities to better understand the planet next door, and even for understanding Venus-like planets beyond our solar system. Near-infrared (1-2.5 um, NIR) spectral windows observable on the Venus nigthside present the opportunity to probe beneath the Venusian cloud deck and measure thermal emission from the surface and lower atmosphere remotely from Earth or from orbit. These nigthside spectral windows were discovered by Allen and Crawford (1984) and have since been used measure trace gas abundances in the Venus lower atmosphere (less than 45 km), map surface emissivity varisions, and measure properties of the lower cloud deck. These windows sample radiation from below the cloud base at roughly 45 km, and pressures in this region range from roughly Earthlike (approx. 1 bar) up to 90 bars at the surface. Temperatures in this region are high: they range from about 400 K at the base of the cloud deck up to about 740 K at the surface. This high temperature and pressure presents several challenges to modelers attempting radiative transfer simulations of this region of the atmosphere, which we will review. Venus is also important to spectrally model to predict the remote observables of Venus-like exoplanets in anticipation of data from future observatories. Venus-like planets are likely one of the most common types of terrestrial planets and so simulations of them are valuable for planning observatory and detector properties of future telescopes being designed, as well as predicting the types of observations required to characterize them.

  6. Atmospheric Athena: 3D Atmospheric escape model with ionizing radiative transfer (United States)

    Tripathi, Anjali; Krumholz, Mark R.


    Atmospheric Athena simulates hydrodynamic escape from close-in giant planets in 3D. It uses the Athena hydrodynamics code (ascl:1010.014) with a new ionizing radiative transfer implementation to self-consistently model photoionization driven winds from the planet. The code is fully compatible with static mesh refinement and MPI parallelization and can handle arbitrary planet potentials and stellar initial conditions.

  7. Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer (United States)

    Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian


    Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.

  8. SAFARI 2000 Surface Atmospheric Radiative Transfer (SMART), Dry Season 2000 (United States)

    National Aeronautics and Space Administration — Surface-sensing Measurements for Radiative Transfer (SMART) and Chemical, Optical, and Microphysical Measurements of In-situ Troposphere (COMMIT) consist of a suite...

  9. Fractional integration and radiative transfer in a multifractal atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Naud, C.; Schertzer, D. [Universite Pierre et Marie Curie, Paris (France); Lovejoy, S. [McGill Univ., Montreal (Canada)


    Recently, Cess et al. (1995) and Ramathan et al. (1995) cited observations which exhibit an anomalous absorption of cloudy skies in comparison with the value predicted by usual models and which thus introduce large uncertainties for climatic change assessments. These observation raise questions concerning the way general circulation models have been tuned for decades, relying on classical methods, of both radiative transfer and dynamical modeling. The observations also tend to demonstrate that homogeneous models are simply not relevant in relating the highly variable properties of clouds and radiation fields. However smoothed, the intensity of cloud`s multi-scattered radiation fields reflect this extreme variability.

  10. Radiative Transfer in the Refractive Atmospheres of Very Cool White Dwarfs


    Piotr Kowalski; Saumon, D.; [Philo-Dicaeus] 


    We consider the problem of radiative transfer in stellar atmospheres where the index of refraction departs from unity and is a function of density and temperature. We present modified Feautrier and Lambda-iteration methods to solve the equation of radiative transfer with refraction in a plane parallel atmosphere. These methods are general and can be used in any problem with 1-D geometry where the index of refraction is a monotonically varying function of vertical optical depth. We present an ...

  11. Radiation and Heat Transfer in the Atmosphere: A Comprehensive Approach on a Molecular Basis

    Directory of Open Access Journals (Sweden)

    Hermann Harde


    Full Text Available We investigate the interaction of infrared active molecules in the atmosphere with their own thermal background radiation as well as with radiation from an external blackbody radiator. We show that the background radiation can be well understood only in terms of the spontaneous emission of the molecules. The radiation and heat transfer processes in the atmosphere are described by rate equations which are solved numerically for typical conditions as found in the troposphere and stratosphere, showing the conversion of heat to radiation and vice versa. Consideration of the interaction processes on a molecular scale allows to develop a comprehensive theoretical concept for the description of the radiation transfer in the atmosphere. A generalized form of the radiation transfer equation is presented, which covers both limiting cases of thin and dense atmospheres and allows a continuous transition from low to high densities, controlled by a density dependent parameter. Simulations of the up- and down-welling radiation and its interaction with the most prominent greenhouse gases water vapour, carbon dioxide, methane, and ozone in the atmosphere are presented. The radiative forcing at doubled CO2 concentration is found to be 30% smaller than the IPCC-value.

  12. Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique (United States)

    Hollstein, André; Fischer, Jürgen


    Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.

  13. Sensitivity analysis of radiative transfer for atmospheric remote sensing in thermal IR: atmospheric weighting functions and surface partials (United States)

    Ustinov, E. A.


    In this presentation, we apply the adjoint sensitivity analysis of radiative transfer in thermal IR to the general case of the analytic evaluation of the weighting functions of atmospheric parameters together with the partial derivatives for the surface parameters. Applications to remote sensing of atmospheres of Mars and Venus are discussed.

  14. Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: Software package SCIATRAN (United States)

    Rozanov, V. V.; Dinter, T.; Rozanov, A. V.; Wolanin, A.; Bracher, A.; Burrows, J. P.


    SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18-40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean-atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean-atmosphere radiative transfer solver presented by Rozanov et al. [61] we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen:

  15. Non-Equilibrium Radiative Transfer in Structured Atmospheres

    National Research Council Canada - National Science Library

    Picard, R. H; Winick, J. R; Wintersteiner, P. P


    ... passage of both atmospheric gravity waves and transient frontal disturbances or bores. The infrared emissions from this part of the atmosphere are already typically not in local thermodynamic equilibrium (LTE...

  16. BARTTest: Community-Standard Atmospheric Radiative-Transfer and Retrieval Tests (United States)

    Harrington, Joseph; Himes, Michael D.; Cubillos, Patricio E.; Blecic, Jasmina; Challener, Ryan C.


    Atmospheric radiative transfer (RT) codes are used both to predict planetary and brown-dwarf spectra and in retrieval algorithms to infer atmospheric chemistry, clouds, and thermal structure from observations. Observational plans, theoretical models, and scientific results depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. The community needs a suite of test calculations with analytically, numerically, or at least community-verified results. We therefore present the Bayesian Atmospheric Radiative Transfer Test Suite, or BARTTest. BARTTest has four categories of tests: analytically verified RT tests of simple atmospheres (single line in single layer, line blends, saturation, isothermal, multiple line-list combination, etc.), community-verified RT tests of complex atmospheres, synthetic retrieval tests on simulated data with known answers, and community-verified real-data retrieval tests.BARTTest is open-source software intended for community use and further development. It is available at We propose this test suite as a standard for verifying atmospheric RT and retrieval codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G, NASA Astrophysics Data Analysis Program grant NNX13AF38G, and NASA Exoplanets Research Program grant NNX17AB62G.

  17. The 13RC -- Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Cahalan, Robert F.; Oreopoulos, L.; Marshak, A.; Evans, K. F.; Davis, Anthony B; Pincus, Robert M.; Yetzer, K. H.; Mayer, B.; Davies, Roger; Ackerman, Thomas P.; Barker, H. W.; Clothiaux, Eugene E.; Ellingson, Robert G.; Garay, Michael J.; Kassianov, Evgueni I.; Kinne, Stefan; Macke, Andreas; O' Hirok, William; Partain, Philip T.; Prigarin, Sergei M.; Rublev, Alexei N.; Stephens, Graeme L.; Szczap, Frederic; Takara, Ezra E.; Varnai, Tamas; Wen, Guoyong; Zhuravleva, Tatiana B.


    The interaction of clouds with solar and terrestrial radiation is one of the most important topics of climate research. In recent years it has been recognized that only full three-dimensional (3D) treatment of this interaction can provide answers to many climate and remote sensing problems, leading to worldwide development of numerous 3D radiative transfer (RT) codes. The international "Intercomparison of 3-Dimensional Radiation Codes," or I3RC, described in this paper, sprung from the natural need to compare the performance of these 3D RT codes used in a variety of current scientific work in the atmospheric sciences. I3RC supports intercomparison and development of both exact and approximate 3D methods in its effort to (1) understand and document the errors/limits of 3D algorithms and their sources; (2) provide "baseline" cases for future code development for 3D radiation; (3) promote sharing and production of 3D radiative tools; (4) derive guidelines for 3D radiative tool selection; and (5) improve atmospheric science education in 3D RT. Results from the two completed phases of I3RC have been presented in two workshops and are expected to guide improvements in both remote sensing and radiative energy budget calculations in cloudy atmospheres.

  18. Two-dimensional radiative transfer in cloudy atmospheres - The spherical harmonic spatial grid method (United States)

    Evans, K. F.


    A new two-dimensional monochromatic method that computes the transfer of solar or thermal radiation through atmospheres with arbitrary optical properties is described. The model discretizes the radiative transfer equation by expanding the angular part of the radiance field in a spherical harmonic series and representing the spatial part with a discrete grid. The resulting sparse coupled system of equations is solved iteratively with the conjugate gradient method. A Monte Carlo model is used for extensive verification of outgoing flux and radiance values from both smooth and highly variable (multifractal) media. The spherical harmonic expansion naturally allows for different levels of approximation, but tests show that the 2D equivalent of the two-stream approximation is poor at approximating variations in the outgoing flux. The model developed here is shown to be highly efficient so that media with tens of thousands of grid points can be computed in minutes. The large improvement in efficiency will permit quick, accurate radiative transfer calculations of realistic cloud fields and improve our understanding of the effect of inhomogeneity on radiative transfer in cloudy atmospheres.

  19. The COBAIN (COntact Binary Atmospheres with INterpolation) Code for Radiative Transfer (United States)

    Kochoska, Angela; Prša, Andrej; Horvat, Martin


    Standard binary star modeling codes make use of pre-existing solutions of the radiative transfer equation in stellar atmospheres. The various model atmospheres available today are consistently computed for single stars, under different assumptions - plane-parallel or spherical atmosphere approximation, local thermodynamical equilibrium (LTE) or non-LTE (NLTE), etc. However, they are nonetheless being applied to contact binary atmospheres by populating the surface corresponding to each component separately and neglecting any mixing that would typically occur at the contact boundary. In addition, single stellar atmosphere models do not take into account irradiance from a companion star, which can pose a serious problem when modeling close binaries. 1D atmosphere models are also solved under the assumption of an atmosphere in hydrodynamical equilibrium, which is not necessarily the case for contact atmospheres, as the potentially different densities and temperatures can give rise to flows that play a key role in the heat and radiation transfer.To resolve the issue of erroneous modeling of contact binary atmospheres using single star atmosphere tables, we have developed a generalized radiative transfer code for computation of the normal emergent intensity of a stellar surface, given its geometry and internal structure. The code uses a regular mesh of equipotential surfaces in a discrete set of spherical coordinates, which are then used to interpolate the values of the structural quantites (density, temperature, opacity) in any given point inside the mesh. The radiaitive transfer equation is numerically integrated in a set of directions spanning the unit sphere around each point and iterated until the intensity values for all directions and all mesh points converge within a given tolerance. We have found that this approach, albeit computationally expensive, is the only one that can reproduce the intensity distribution of the non-symmetric contact binary atmosphere and

  20. Development of an accurate 3D Monte Carlo broadband atmospheric radiative transfer model (United States)

    Jones, Alexandra L.

    Radiation is the ultimate source of energy that drives our weather and climate. It is also the fundamental quantity detected by satellite sensors from which earth's properties are inferred. Radiative energy from the sun and emitted from the earth and atmosphere is redistributed by clouds in one of their most important roles in the atmosphere. Without accurately representing these interactions we greatly decrease our ability to successfully predict climate change, weather patterns, and to observe our environment from space. The remote sensing algorithms and dynamic models used to study and observe earth's atmosphere all parameterize radiative transfer with approximations that reduce or neglect horizontal variation of the radiation field, even in the presence of clouds. Despite having complete knowledge of the underlying physics at work, these approximations persist due to perceived computational expense. In the current context of high resolution modeling and remote sensing observations of clouds, from shallow cumulus to deep convective clouds, and given our ever advancing technological capabilities, these approximations have been exposed as inappropriate in many situations. This presents a need for accurate 3D spectral and broadband radiative transfer models to provide bounds on the interactions between clouds and radiation to judge the accuracy of similar but less expensive models and to aid in new parameterizations that take into account 3D effects when coupled to dynamic models of the atmosphere. Developing such a state of the art model based on the open source, object-oriented framework of the I3RC Monte Carlo Community Radiative Transfer ("IMC-original") Model is the task at hand. It has involved incorporating (1) thermal emission sources of radiation ("IMC+emission model"), allowing it to address remote sensing problems involving scattering of light emitted at earthly temperatures as well as spectral cooling rates, (2) spectral integration across an arbitrary

  1. [Atmospheric correction method for HJ-1 CCD imagery over waters based on radiative transfer model]. (United States)

    Xu, Hua; Gu, Xing-Fa; Li, Zheng-Qiang; Li, Li; Chen, Xing-Feng


    Atmospheric correction is a bottleneck in quantitative application of Chinese satellites HJ-1 data to remote sensing of water color. According to the characteristics of CCD sensors, the present paper made use of air-water coupled radiative transfer model to work out the look-up table (LUT) of atmospheric corrected parameters, and thereafter developed pixel-by-pixel atmospheric correction method over waters accomplishing the water-leaving remote sensing reflectance with accessorial meteorological input. The paper validates the HJ-1 CCD retrievals with MODIS and in-situ results. It was found that the accuracy in blue and green bands is good. However, the accuracy in red or NIR bands is much worse than blue or green ones. It was also demonstrated that the aerosol model is a sensitive factor to the atmospheric correction accuracy.

  2. Accretion shock stability on a dynamically heated YSO atmosphere with radiative transfer (United States)

    de Sá, Lionel; Chièze, Jean-Pierre; Stehlé, Chantal; Matsakos, Titos; Ibgui, Laurent; Lanz, Thierry; Hubeny, Ivan


    Theory and simulations predict Quasi-Periodic Oscillations of shocks which develop in magnetically driven accretion funnels connecting the stellar disc to the photosphere of Young Stellar Objects (YSO). X-ray observations however do not show evidence of the expected periodicity. We examine here, in a first attempt, the influence of radiative transfer on the evolution of material impinging on a dynamically heated stellar atmosphere, using the 1D ALE-RHD code ASTROLABE. The mechanical shock heating mechanism of the chromosphere only slightly perturbs the flow. We also show that, since the impacting flow, and especially the part which penetrates into the chromosphere, is not treated as a purely radiating transparent medium, a sufficiently efficient coupling between gas and radiation may affect or even suppress the oscillations of the shocked column. This study shows the importance of the description of the radiation effects in the hydrodynamics and of the accuracy of the opacities for an adequate modeling.

  3. Radiative transfer with partial frequency redistribution in inhomogeneous atmospheres - Application to the Jovian aurora (United States)

    Gladstone, G. R.


    A direct finite difference numerical solution for the equation of radiative transfer by the Feautrier method is developed for use in planetary atmospheres. The procedure described here uses a plane-parallel atmosphere, and can treat partial frequency redistribution, inhomogeneity, external or internal sources, and various boundary conditions. Isotropic scattering is assumed, but in the case of no frequency redistribution, Rayleigh scattering can also be handled. A program utilizing this method is tested in a variety of situations against more powerful and elaborate methods. The case of the Lyman alpha aurora on Jupiter is then considered, where the effects of partial frequency redistribution are shown to be of great importance. New results for the detailed line profiles for Lyman alpha in the Jovian aurora are presented. The method is quite versatile, and should be especially useful in studying a wide range of problems related to auroral or dayglow emissions in planetary atmospheres.

  4. Light scattering reviews 7 radiative transfer and optical properties of atmosphere and underlying surface

    CERN Document Server

    Kokhanovsky, Alexander A


    This book describes modern advances in radiative transfer and light scattering. Coverage includes fast radiative transfer techniques, use of polarization in remote sensing and recent developments in remote sensing of snow properties from space observations.

  5. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring (United States)

    Fymat, A. L.


    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  6. A study of the 3D radiative transfer effect in cloudy atmospheres (United States)

    Okata, M.; Teruyuki, N.; Suzuki, K.


    Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.

  7. Bayesian Atmospheric Radiative Transfer (BART): Model, Statistics Driver, and Application to HD 209458b (United States)

    Cubillos, Patricio; Harrington, Joseph; Blecic, Jasmina; Stemm, Madison M.; Lust, Nate B.; Foster, Andrew S.; Rojo, Patricio M.; Loredo, Thomas J.


    Multi-wavelength secondary-eclipse and transit depths probe the thermo-chemical properties of exoplanets. In recent years, several research groups have developed retrieval codes to analyze the existing data and study the prospects of future facilities. However, the scientific community has limited access to these packages. Here we premiere the open-source Bayesian Atmospheric Radiative Transfer (BART) code. We discuss the key aspects of the radiative-transfer algorithm and the statistical package. The radiation code includes line databases for all HITRAN molecules, high-temperature H2O, TiO, and VO, and includes a preprocessor for adding additional line databases without recompiling the radiation code. Collision-induced absorption lines are available for H2-H2 and H2-He. The parameterized thermal and molecular abundance profiles can be modified arbitrarily without recompilation. The generated spectra are integrated over arbitrary bandpasses for comparison to data. BART's statistical package, Multi-core Markov-chain Monte Carlo (MC3), is a general-purpose MCMC module. MC3 implements the Differental-evolution Markov-chain Monte Carlo algorithm (ter Braak 2006, 2009). MC3 converges 20-400 times faster than the usual Metropolis-Hastings MCMC algorithm, and in addition uses the Message Passing Interface (MPI) to parallelize the MCMC chains. We apply the BART retrieval code to the HD 209458b data set to estimate the planet's temperature profile and molecular abundances. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.

  8. Solar radiation transfer in the inhomogeneous atmosphere; Solarer Strahlungstransport in der inhomogenen Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Scheirer, R.


    A most profound knowledge about the radiative characteristics of clouds is required for the development of realistic atmospheric circulation models and cloud remote sensing algorithms. At present, cloud fields are treated extremely simplified in both application areas. Cloud radiative flux parameterizations in atmospheric circulation models as well as the correlation between radiance and cloud properties as required for remote sensing algorithm are usually based on the assumption of plane-parallel homogeneous (PPHOM) clouds. Compared to realistically 3D cloud fields, this simplification leads to large systematic errors. In order to quantify these errors a Monte Carlo radiative transfer model has been developed and applied to 3D cloud fields. The latter origin from the non-hydrostatic 3D atmospheric model GESIMA. Absorption and scattering properties of the cloud particles have been calculated by means of Mie-theory for spherical water droplets and a ray-tracing code for non-spherical ice, rain, and snow particles. Line by line calculations have been used to obtain the absorption properties of the relevant atmospheric gases. (orig.) [German] Die Erstellung realistischer Zirkulationsmodelle der Atmosphaere erfordert unter Anderem eine moeglichst genaue Kenntnis der Strahlungseigenschaften von Wolken. Auch fuer Ableitung und Korrektur von Fernerkundungsalgorithmen sind die Einfluesse der Wolken auf die zu messenden Strahldichten von grosser Bedeutung. In den beiden genannten Anwendungen werden Wolkenfelder zur Zeit nur in stark vereinfachter Weise beruecksichtigt. Parameterisierungen der Strahlungsfluesse bei bewoelkter Atmosphaere in atmosphaerischen Zirkulationsmodellen, sowie die Ableitung der Zusammenhaenge zwischen Strahldichten und optischen Wolkeneigenschaften basieren auf der Annahme von planparallelen und horizontal homogenen Wolken (PPHOM). Diese Approximation kann gegenueber der dreidimensionalen Strahlungstransportberechnung (3D) zu erheblichen Fehlern

  9. Emulation of Leaf, Canopy and Atmosphere Radiative Transfer Models for Fast Global Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Jochem Verrelst


    Full Text Available Physically-based radiative transfer models (RTMs help understand the interactions of radiation with vegetation and atmosphere. However, advanced RTMs can be computationally burdensome, which makes them impractical in many real applications, especially when many state conditions and model couplings need to be studied. To overcome this problem, it is proposed to substitute RTMs through surrogate meta-models also named emulators. Emulators approximate the functioning of RTMs through statistical learning regression methods, and can open many new applications because of their computational efficiency and outstanding accuracy. Emulators allow fast global sensitivity analysis (GSA studies on advanced, computationally expensive RTMs. As a proof-of-concept, three machine learning regression algorithms (MLRAs were tested to function as emulators for the leaf RTM PROSPECT-4, the canopy RTM PROSAIL, and the computationally expensive atmospheric RTM MODTRAN5. Selected MLRAs were: kernel ridge regression (KRR, neural networks (NN and Gaussian processes regression (GPR. For each RTM, 500 simulations were generated for training and validation. The majority of MLRAs were excellently validated to function as emulators with relative errors well below 0.2%. The emulators were then put into a GSA scheme and compared against GSA results as generated by original PROSPECT-4 and PROSAIL runs. NN and GPR emulators delivered identical GSA results, while processing speed compared to the original RTMs doubled for PROSPECT-4 and tripled for PROSAIL. Having the emulator-GSA concept successfully tested, for six MODTRAN5 atmospheric transfer functions (outputs, i.e., direct and diffuse at-surface solar irradiance ( E d i f , E d i r , direct and diffuse upward transmittance ( T d i r , T d i f , spherical albedo (S and path radiance ( L 0 , the most accurate MLRA’s were subsequently applied as emulator into the GSA scheme. The sensitivity analysis along the 400–2500 nm

  10. WASP-12b According to the Bayesian Atmospheric Radiative Transfer (BART) Code (United States)

    Harrington, Joseph; Cubillos, Patricio E.; Blecic, Jasmina; Challener, Ryan C.; Rojo, Patricio M.; Lust, Nate B.; Bowman, M. Oliver; Blumenthal, Sarah D.; Foster, Andrew SD; Foster, A. J.


    We present the Bayesian Atmospheric Radiative Transfer (BART) code for atmospheric property retrievals from transit and eclipse spectra, and apply it to WASP-12b, a hot (~3000 K) exoplanet with a high eclipse signal-to-noise ratio. WASP-12b has been controversial. We (Madhusudhan et al. 2011, Nature) claimed it was the first planet with a high C/O abundance ratio. Line et al. (2014, ApJ) suggested a high CO2 abundance to explain the data. Stevenson et al. (2014, ApJ, atmospheric model by Madhusudhan) add additional data and reaffirm the original result, stating that C2H2 and HCN, not included in the Line et al. models, explain the data. We explore several modeling configurations and include Hubble, Spitzer, and ground-based eclipse data.BART consists of a differential-evolution Markov-Chain Monte Carlo sampler that drives a line-by-line radiative transfer code through the phase space of thermal- and abundance-profile parameters. BART is written in Python and C. Python modules generate atmospheric profiles from sets of MCMC parameters and integrate the resulting spectra over observational bandpasses, allowing high flexibility in modeling the planet without interacting with the fast, C portions that calculate the spectra. BART's shared memory and optimized opacity calculation allow it to run on a laptop, enabling classroom use. Runs can scale constant abundance profiles, profiles of thermochemical equilibrium abundances (TEA) calculated by the included TEA code, or arbitrary curves. Several thermal profile parameterizations are available. BART is an open-source, reproducible-research code. Users must release any code or data modifications if they publish results from it, and we encourage the community to use it and to participate in its development via work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. J. Blecic holds a NASA Earth and Space Science

  11. A Random Walk on WASP-12b with the Bayesian Atmospheric Radiative Transfer (BART) Code (United States)

    Harrington, Joseph; Cubillos, Patricio; Blecic, Jasmina; Challener, Ryan; Rojo, Patricio; Lust, Nathaniel B.; Bowman, Oliver; Blumenthal, Sarah D.; Foster, Andrew S. D.; Foster, Austin James; Stemm, Madison; Bruce, Dylan


    We present the Bayesian Atmospheric Radiative Transfer (BART) code for atmospheric property retrievals from transit and eclipse spectra, and apply it to WASP-12b, a hot (~3000 K) exoplanet with a high eclipse signal-to-noise ratio. WASP-12b has been controversial. We (Madhusudhan et al. 2011, Nature) claimed it was the first planet with a high C/O abundance ratio. Line et al. (2014, ApJ) suggested a high CO2 abundance to explain the data. Stevenson et al. (2014, ApJ, atmospheric model by Madhusudhan) add additional data and reaffirm the original result, stating that C2H2 and HCN, not included in the Line et al. models, explain the data. We explore several modeling configurations and include Hubble, Spitzer, and ground-based eclipse data.BART consists of a differential-evolution Markov-Chain Monte Carlo sampler that drives a line-by-line radiative transfer code through the phase space of thermal- and abundance-profile parameters. BART is written in Python and C. Python modules generate atmospheric profiles from sets of MCMC parameters and integrate the resulting spectra over observational bandpasses, allowing high flexibility in modeling the planet without interacting with the fast, C portions that calculate the spectra. BART's shared memory and optimized opacity calculation allow it to run on a laptop, enabling classroom use. Runs can scale constant abundance profiles, profiles of thermochemical equilibrium abundances (TEA) calculated by the included TEA code, or arbitrary curves. Several thermal profile parameterizations are available. BART is an open-source, reproducible-research code. Users must release any code or data modifications if they publish results from it, and we encourage the community to use it and to participate in its development via work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. J. Blecic holds a NASA Earth and Space Science

  12. Modeling the Atmosphere of Solar and Other Stars: Radiative Transfer with PHOENIX/3D (United States)

    Baron, Edward

    The chemical composition of stars is an important ingredient in our understanding of the formation, structure, and evolution of both the Galaxy and the Solar System. The composition of the sun itself is an essential reference standard against which the elemental contents of other astronomical objects are compared. Recently, redetermination of the elemental abundances using three-dimensional, time-dependent hydrodynamical models of the solar atmosphere has led to a reduction in the inferred metal abundances, particularly C, N, O, and Ne. However, this reduction in metals reduces the opacity such that models of the Sun no longer agree with the observed results obtained using helioseismology. Three dimensional (3-D) radiative transfer is an important problem in physics, astrophysics, and meteorology. Radiative transfer is extremely computationally complex and it is a natural problem that requires computation on the exascale. We intend to calculate the detailed compositional structure of the Sun and other stars at high resolution with full NLTE, treating the turbulent velocity flows in full detail in order to compare results from hydrodynamics and helioseismology, and understand the nature of the discrepancies found between the two approaches. We propose to perform 3-D high-resolution radiative transfer calculations with the PHOENIX/3D suite of solar and other stars using 3-D hydrodynamic models from different groups. While NLTE radiative transfer has been treated by the groups doing hydrodynamics, they are necessarily limited in their resolution to the consideration of only a few (4-20) frequency bins, whereas we can calculate full NLTE including thousands of wavelength points, resolving the line profiles, and solving the scattering problem with extremely high angular resolution. The code has been used for the analysis of supernova spectra, stellar and planetary spectra, and for time-dependent modeling of transient objects. PHOENIX/3D runs and scales very well on Cray

  13. Optical constants of sulphuric acid in the far infrared. [laboratory spectra for radiative transfer measurements of Venus atmosphere (United States)

    Jones, A. D.


    The IR absorption spectrum of a 75% sulphuric acid solution is obtained experimentally in the 20-50 micron wavelength region. The complex refractive index is determined from these measurements by integration of the Kramers-Kronig dispersion relation. The application of this data to radiative transfer processes in the atmosphere of Venus is briefly discussed.

  14. Adjoint Sensitivity Analysis of Radiative Transfer Equation: Temperature and Gas Mixing Ratio Weighting Functions for Remote Sensing of Scattering Atmospheres in Thermal IR (United States)

    Ustinov, E.


    Sensitivity analysis based on using of the adjoint equation of radiative transfer is applied to the case of atmospheric remote sensing in the thermal spectral region with non-negligeable atmospheric scattering.

  15. The SARTre model for radiative transfer in spherical atmospheres and its application to the derivation of cirrus cloud properties

    Energy Technology Data Exchange (ETDEWEB)

    Mendrock, J.


    Modeling of radiative transfer (RT) is one of the essentials of atmospheric remote sensing. It has been common to use separate models for the simulation of shortwave radiation dominated by scattering of sunlight and longwave radiation characterized by emission from trace gases. These days also shortwave instruments are operated in limb mode, which demand models taking the sphericity of the Earth and atmosphere into account. On the other hand, infrared and microwave sounders are increasingly being used for the observation of ice clouds, that necessitate the modeling of scattering by cloud particles. Both trends require RT models, that are capable of taking into account scattering as well as the sphericity of the atmosphere. This suggests a unified handling of short- and longwave radiation, which furthermore allows for a consistent evaluation of multispectral data. Focusing on these aspects, the RT-model SARTre ([Approximate] Spherical Atmospheric Radiative Transfer model) has been developed. To our knowledge, SARTre is the first model, that is capable of limb modeling in the ultraviolet, visible, near to far infrared, and microwave spectral region. Here, algorithm baseline, implementation, verification and validation of SARTre are presented. SARTre has been used to study effects of cirrus clouds on infrared limb emission spectra. An exemplary retrieval of cirrus parameters from MIPAS measurements is demonstrated, and the plausibility of the results is discussed. (orig.)

  16. Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data

    NARCIS (Netherlands)

    Verhoef, W.; Bach, H.


    Coupling radiative transfer models for the soil background and vegetation canopy layers is facilitated by means of the four-stream flux interaction concept and use of the adding method. Also the coupling to a state-of-the-art atmospheric radiative transfer model like MODTRAN4 can be established in

  17. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Siegel, Robert


    Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE.

  18. GARLIC - A general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation (United States)

    Schreier, Franz; Gimeno García, Sebastián; Hedelt, Pascal; Hess, Michael; Mendrok, Jana; Vasquez, Mayte; Xu, Jian


    A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code - GARLIC - is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus.

  19. McSCIA: application of the Equivalence Theorem in a Monte Carlo radiative transfer model for spherical shell atmospheres

    Directory of Open Access Journals (Sweden)

    F. Spada


    Full Text Available A new multiple-scattering Monte Carlo 3-D radiative transfer model named McSCIA (Monte Carlo for SCIAmachy is presented. The backward technique is used to efficiently simulate narrow field of view instruments. The McSCIA algorithm has been formulated as a function of the Earth's radius, and can thus perform simulations for both plane-parallel and spherical atmospheres. The latter geometry is essential for the interpretation of limb satellite measurements, as performed by SCIAMACHY on board of ESA's Envisat. The model can simulate UV-vis-NIR radiation. First the ray-tracing algorithm is presented in detail, and then successfully validated against literature references, both in plane-parallel and in spherical geometry. A simple 1-D model is used to explain two different ways of treating absorption. One method uses the single scattering albedo while the other uses the equivalence theorem. The equivalence theorem is based on a separation of absorption and scattering. It is shown that both methods give, in a statistical way, identical results for a wide variety of scenarios. Both absorption methods are included in McSCIA, and it is shown that also for a 3-D case both formulations give identical results. McSCIA limb profiles for atmospheres with and without absorption compare well with the one of the state of the art Monte Carlo radiative transfer model MCC++. A simplification of the photon statistics may lead to very fast calculations of absorption features in the atmosphere. However, these simplifications potentially introduce biases in the results. McSCIA does not use simplifications and is therefore a relatively slow implementation of the equivalence theorem.

  20. Comment on "Radiative Transfer in CO2-Rich Atmospheres: 1. Collisional Line Mixing Implies a Colder Early Mars" (United States)

    Turbet, M.; Tran, H.


    Ozak et al. (2016) claimed that explicitly including the effect of CO2 collisional line mixing in their radiative transfer calculations yield CO2 atmospheres that are more transparent to infrared radiation than when spectra calculations are made using sub-Lorentzian line shapes. This would in particular imply significantly colder surface temperatures (up to 15 K) for early Mars than estimated in previous studies. Here we show that the relative cooling that Ozak et al. (2016) associated to the effect of collisional line mixing is in fact due to a wrong choice of broadening species (air instead of CO2). We then calculated line-by-line spectra of pure CO2 atmospheres using a line-mixing model developed for self-broadened CO2. Using the LMD Generic model (in 1-D radiative-convective mode), we find that calculations made with the proper collisional line mixing model and with sub-Lorentzian line shapes lead to differences between early Mars surface temperatures smaller than 2 K only.

  1. Thermal radiation heat transfer. (United States)

    Siegel, R.; Howell, J. R.


    A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.

  2. Essentials of radiation heat transfer

    CERN Document Server



    Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...

  3. A radiative transfer model to treat infrared molecular excitation in cometary atmospheres (United States)

    Debout, V.; Bockelée-Morvan, D.; Zakharov, V.


    The exospheres of small Solar System bodies are now observed with high spatial resolution from space missions. Interpreting infrared spectra of cometary gases obtained with the VIRTIS experiment onboard the Rosetta cometary mission requires detailed modeling of infrared fluorescence emission in optically thick conditions. Efficient computing methods are required since numerous ro-vibrational lines excited by the Sun need to be considered. We propose a new model working in a 3-D environment to compute numerically the local incoming radiation. It uses a new algorithm using pre-defined directions of ray propagation and ray grids to reduce the CPU cost in time with respect to Monte Carlo methods and to treat correctly the sunlight direction. The model is applied to the ν3 bands of CO2 and H2O at 4.3 μ m and 2.7 μ m respectively, and to the CO ∨ (1 → 0) band at 4.7 μ m. The results are compared to the ones obtained by a 1-D algorithm which uses the Escape Probability (EP) method, and by a 3-D ;Coupled Escape Probability; (CEP) model, for different levels of optical thickness. Our results suggest that the total band flux may vary strongly with azimuth for optically thick cases whereas the azimuth average total band flux computed is close to the one obtained with EP. Our model globally predicts less intensity reduction from opacity than the CEP model of Gersch and A'Hearn (Gersch, A.M., A'Hearn, M.F. [2014]. Astrophys. J. 787, 36-56). An application of the model to the observation of CO2, CO and H2O bands in 67/P atmosphere with VIRTIS is presented to predict the evolution of band optical thickness along the mission.

  4. SMART and SMARTI: visible and IR atmospheric radiative-transfer libraries optimized for wide-band applications (United States)

    Ross, Vincent; Dion, Denis


    A new C++ library for radiative transfer calculations in the visible and infrared bands which uses MODTRAN as a primary source for atmospheric optical parameters has been developed at Defense R&D Canada, Valcartier (DRDC Valcartier). The main benefit of the library is its capability to perform fast wide spectral band calculations with an appreciably high accuracy. Coherent calculations on wide bands are made possible by using a modified version of the correlated-k theory. The main features of the library are discussed, and comparisons with conventional spectral MODTRAN 4 calculations are presented. It is shown that the library is capable of producing band results that are usually within 5% of MODTRAN 4 with computation times that are thousands of times faster.

  5. Analytical Models of Exoplanetary Atmospheres. IV. Improved Two-stream Radiative Transfer for the Treatment of Aerosols (United States)

    Heng, Kevin; Kitzmann, Daniel


    We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetry factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.

  6. Utrecht Radiative Transfer Courses (United States)

    Rutten, R. J.


    The Utrecht course ``The Generation and Transport of Radiation'' teaches basic radiative transfer to second-year students. It is a much-expanded version of the first chapter of Rybicki & Lightman's ``Radiative Processes in Astrophysics''. After this course, students understand why intensity is measured per steradian, have an Eddington-Barbier feel for optically thick line formation, and know that scattering upsets LTE. The text is a computer-aided translation by Ruth Peterson of my 1992 Dutch-language course. My aim is to rewrite this course in non-computer English and make it web-available at some time. In the meantime, copies of the Peterson translation are made yearly at Uppsala -- ask them, not me. Eventually it should become a textbook. The Utrecht course ``Radiative Transfer in Stellar Atmospheres'' is a 30-hour course for third-year students. It treats NLTE line formation in plane-parallel stellar atmospheres at a level intermediate between the books by Novotny and Boehm-Vitense, and Mihalas' ``Stellar Atmospheres''. After this course, students appreciate that epsilon is small, that radiation can heat or cool, and that computers have changed the field. This course is web-available since 1995 and is regularly improved -- but remains incomplete. Eventually it should become a textbook. The three Utrecht exercise sets ``Stellar Spectra A: Basic Line Formation'', ``Stellar Spectra B: LTE Line Formation'', and ``Stellar Spectra C: NLTE Line Formation'' are IDL-based computer exercises for first-year, second-year, and third-year students, respectively. They treat spectral classification, Saha-Boltzmann population statistics, the curve of growth, the FAL-C solar atmosphere model, the role of H-minus in the solar continuum, LTE formation of Fraunhofer lines, inversion tactics, the Feautrier method, classical lambda iteration, and ALI computation. The first two sets are web-available since 1998; the third will follow. Acknowledgement. Both courses owe much to previous

  7. Polarized radiative transfer through terrestrial atmosphere accounting for rotational Raman scattering (United States)

    Lelli, Luca; Rozanov, Vladimir V.; Vountas, Marco; Burrows, John P.


    This paper is devoted to the phenomenological derivation of the vector radiative transfer equation (VRTE) accounting for first-order source terms of rotational Raman scattering (RRS), which is responsible for the in-filling of Fraunhofer and telluric lines by inelastic scattered photons. The implementation of the solution of the VRTE within the framework of the forward-adjoint method is given. For the Ca II and the oxygen A-band (O2 A) spectral windows, values of reflectance, degree of linear polarization (DOLP) and in-filling, in zenith and nadir geometry, are compared with results given in literature. Moreover, the dependence of these quantities on the columnar loading and vertical layering of non-spherical dust aerosols is investigated, together with their changes as function of two habits of ice crystals, modeled as regular icosahedra and severely rough aggregated columns. Bi-directional effects of an underlying polarizing surface are accounted for. The forward simulations are performed for one selected wavelength in the continuum and one in the strong absorption of the O2 A, as their combination can be exploited for the spaceborne retrieval of aerosol and cloud properties. For this reason, we also mimic seasonal maps of reflectance, DOLP and in-filling, that are prototypical measurements of the Ultraviolet-Visible-Near Infrared (UVN) sensor, at a nominal spectral resolution of 0.12 nm. UVN is the core payload of the upcoming European Sentinel-4 mission, that will observe Europe in geostationary orbit for air quality monitoring purposes. In general, in the core of O2 A, depending on the optical thickness and altitude of the scatterers, we find RRS-induced in-filling values ranging from 1.3% to 1.8%, while DOLP decreases by 1%. Conversely, while negligible differences of RRS in-filling are calculated with different ice crystal habits, the severely rough aggregated column model can reduce DOLP by a factor up to 10%. The UVN maps of in-filling show values varying

  8. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A


    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  9. Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models

    NARCIS (Netherlands)

    Laurent, V.C.E.; Verhoef, W.; Clevers, J.G.P.W.; Schaepman, M.E.


    Traditionally, it is necessary to pre-process remote sensing data to obtain top of canopy (TOC) reflectances before applying physically-based model inversion techniques to estimate forest variables. Corrections for atmospheric, adjacency, topography, and surface directional effects are applied

  10. An improved fast radiative transfer model for special sensor microwave imager/sounder upper atmosphere sounding channels (United States)

    Han, Yong; van Delst, Paul; Weng, Fuzhong


    Special sensor microwave imager/sounder (SSMIS) on board the U. S. Defense Meteorology Satellite Program satellites includes six upper atmosphere sounding (UAS) channels for probing air temperature in the upper stratosphere and mesosphere. Three of the UAS channels 19-21 are sensitive to the Doppler frequency shift due to Earth's rotation. The sensitivity to the frequency shift in large degree depends on the O2 Zeeman splitting effect, which is a function of the Earth's magnetic field strength and the angle between the Earth's magnetic field and propagation direction of the electromagnetic wave. Since the brightness temperatures can change up to 2 K as a result of the Doppler shift, the fast radiative transfer model developed earlier for the SSMIS UAS channels has recently been improved to take the Doppler shift into account. In the fast model, an averaged transmittance within the channel frequency passbands is parameterized and trained with a line-by-line radiative transfer model that accurately computes the monochromatic transmittances at fine frequency steps within each passband. The model is evaluated by comparing it with the line-by-line model in an independent experiment. The root mean square differences between the two models are 0.21, 0.39, 0.34, and 0.19 K for channels 19-22, respectively. Using the model, the sensitivities of the radiances to the Doppler shift are analyzed through simulations. A theoretical explanation is given for the dependence of the sensitivities on the Zeeman splitting effect. Results from the analysis are then compared to the observations and a good agreement is achieved.

  11. Dust signatures observed in atmospheric aerosols and related to radiative transfer algorithms


    Boccone, Marzia


    The Natural Sources of pollutants, such as Sahara desert dust outbreaks or ashes from vulcanoes, in many cases, could grow the bad air quality forecast and PM limits values measured could exeed the European Law recomendations, in that case the country have to pay to the Community if an evidence of that is a Natural Pollutant is not brought to the European Court. The goal to control air quality could be reached studying the pollution sources, the dispersion with atmospheric model, the chemical...

  12. Atmospheric radiation flight dose rates (United States)

    Tobiska, W. K.


    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  13. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Mengüç, M Pinar


    Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...

  14. Fundamentals of Atmospheric Radiation (United States)

    Bohren, Craig F.; Clothiaux, Eugene E.


    This textbook fills a gap in the literature for teaching material suitable for students of atmospheric science and courses on atmospheric radiation. It covers the fundamentals of emission, absorption, and scattering of electromagnetic radiation from ultraviolet to infrared and beyond. Much of the book applies to planetary atmosphere. The authors are physicists and teach at the largest meteorology department of the US at Penn State. Craig T. Bohren has taught the atmospheric radiation course there for the past 20 years with no book. Eugene Clothiaux has taken over and added to the course notes. Problems given in the text come from students, colleagues, and correspondents. The design of the figures especially for this book is meant to ease comprehension. Discussions have a graded approach with a thorough treatment of subjects, such as single scattering by particles, at different levels of complexity. The discussion of the multiple scattering theory begins with piles of plates. This simple theory introduces concepts in more advanced theories, i.e. optical thickness, single-scattering albedo, asymmetry parameter. The more complicated theory, the two-stream theory, then takes the reader beyond the pile-of-plates theory. Ideal for advanced undergraduate and graduate students of atmospheric science.

  15. Radiative heat transfer

    CERN Document Server

    Modest, Michael F


    The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...

  16. A Polarized Atmospheric Radiative Transfer Model for Calculations of Spectra of the Stokes Parameters of Shortwave Radiation Based on the Line-by-Line and Monte Carlo Methods

    Directory of Open Access Journals (Sweden)

    Boris Fomin


    Full Text Available This paper presents a new version of radiative transfer model called the Fast Line-by-Line Model (FLBLM, which is based on the Line-by-Line (LbL and Monte Carlo (MC methods and rigorously treats particulate and molecular scattering alongside absorption. The advantage of this model consists in the use of the line-by-line model that allows for the computing of high-resolution spectra quite quickly. We have developed the model by taking into account the polarization state of light and carried out some validations by comparison against benchmark results. FLBLM calculates the Stokes parameters spectra of shortwave radiation in vertically inhomogeneous atmospheres. This update makes the model applicable for the assessment of cloud and aerosol influence on radiances as measured by the SW high-resolution polarization spectrometers. In sample results we demonstrate that the high-resolution spectra of the Stokes parameters contain more detailed information about clouds and aerosols than the medium- and low-resolution spectra wherein lines are not resolved. The presented model is rapid enough for many practical applications (e.g., validations and might be useful especially for the remote sensing. FLBLM is suitable for development of the reliable technique for retrieval of optical and microphysical properties of clouds and aerosols from high-resolution satellites data.

  17. Simulation of Sentinel-3 images by four stream surface atmosphere radiative transfer modeling in the optical and thermal domains

    NARCIS (Netherlands)

    Verhoef, W.; Bach, H.


    Simulation of future satellite images can be applied in order to validate the general mission concept and to test the performance of advanced multi-sensor algorithms for the retrieval of surface parameters. This paper describes the radiative transfer modeling part of a so-called Land Scene Generator

  18. Radiative transfer and remote sensing (United States)

    Conrath, B. J.


    Radiative transfer, the basic theoretical tool for the quantitative interpretation of planetary infrared spectra, is discussed. The function it plays in linking the remotely sensed data to the properties of the atmosphere (composition, thermal structure, dynamics, etc.), is inferred. A brief overview of the remote sensing problem as it pertains to the interpretation of planetary spectra is presented. The presentation is tutorial rather than exhaustive.

  19. Comparison of top of the atmosphere GERB measured radiances with independent radiative transfer simulations obtained at the Valencia Anchor Station area (United States)

    Velazquez Blazquez, A.; Alonso, S.; Bodas-Salcedo, A.; Dewitte, S.; Domenech, C.; Gimeno, J.; Harries, J.; Jorge Sanchez, J.; Labajo, A.; Loeb, N. G.; Pino, D.; Sanchis, A. D.; Smith, G. L.; Szewczyk, Z. P.; Tarruella, R.; Torrobella, J.; Lopez-Baeza, E.


    The purpose of this work is to compare top of the atmosphere (TOA) radiances as measured by the Geostationary Earth Radiation Budget (GERB) instrument on board the METEOSAT-8 (METEOSAT Second Generation) satellite to equivalent independent radiances obtained from radiative transfer simulations performed using surface and atmospheric measured parameters gathered during the GERB Surface Ground Validation Campaign at the Valencia Anchor Station (VAS) reference area in February 2004. In this paper we try to extend the methodology previously developed and tested for the NASA Clouds and the Earth's Radiant Energy System (CERES) instrument in the framework of the SEVIRI and GERB Cal/val Area for Large scale field ExperimentS (SCALES) project, to validate GERB much lower spatial resolution data (pixel size of the order of 60 x 60 km2 over the VAS). The study also includes the selection of atmospheric profiles from on-purpose radiosonde and GPS (Global Positioning System) data, a BRDF (Bidirectional Reflectance Distribution Function) estimation for the large-scale study area and Streamer radiative transfer simulations of TOA shortwave and longwave radiances.

  20. Atmospheric radon: origin and transfer

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N.; Tamez, E.; Pena, P.; Gaso, I. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico); Mireles, F.; Davila, I.; Quirino, L. [Universidad Autonoma de Zacatecas (Mexico). Centro Regional de Estudios Nucleares


    Atmospheric indoor and outdoor radon surveys have been performed in several locations of Mexico. In order to estimate the radon transfer from different origins to the atmosphere, soil and ground water, together with the exhalation rate from bare and coated building materials have also been studied. The radon detection was performed with SSNTD, an automatic silicon-based radon monitor and the liquid scintillation technique. The results from several years of monitoring indicate that the atmospheric radon behaviour is different for the countryside as compared with more complex inhabited regions; transfer from soil being inhibited by the specific structures of the cities. The effect of wall coatings reduced from 50% to 90% the radon exhalation from bare building materials. A low radon content was observed in the ground water samples studied. (Author).

  1. Dynamic mineral clouds on HD 189733b. II. Monte Carlo radiative transfer for 3D cloudy exoplanet atmospheres: combining scattering and emission spectra (United States)

    Lee, G. K. H.; Wood, K.; Dobbs-Dixon, I.; Rice, A.; Helling, Ch.


    Context. As the 3D spatial properties of exoplanet atmospheres are being observed in increasing detail by current and new generations of telescopes, the modelling of the 3D scattering effects of cloud forming atmospheres with inhomogeneous opacity structures becomes increasingly important to interpret observational data. Aims: We model the scattering and emission properties of a simulated cloud forming, inhomogeneous opacity, hot Jupiter atmosphere of HD 189733b. We compare our results to available Hubble Space Telescope (HST) and Spitzer data and quantify the effects of 3D multiple scattering on observable properties of the atmosphere. We discuss potential observational properties of HD 189733b for the upcoming Transiting Exoplanet Survey Satellite (TESS) and CHaracterising ExOPlanet Satellite (CHEOPS) missions. Methods: We developed a Monte Carlo radiative transfer code and applied it to post-process output of our 3D radiative-hydrodynamic, cloud formation simulation of HD 189733b. We employed three variance reduction techniques, I.e. next event estimation, survival biasing, and composite emission biasing, to improve signal to noise of the output. For cloud particle scattering events, we constructed a log-normal area distribution from the 3D cloud formation radiative-hydrodynamic results, which is stochastically sampled in order to model the Rayleigh and Mie scattering behaviour of a mixture of grain sizes. Results: Stellar photon packets incident on the eastern dayside hemisphere show predominantly Rayleigh, single-scattering behaviour, while multiple scattering occurs on the western hemisphere. Combined scattered and thermal emitted light predictions are consistent with published HST and Spitzer secondary transit observations. Our model predictions are also consistent with geometric albedo constraints from optical wavelength ground-based polarimetry and HST B band measurements. We predict an apparent geometric albedo for HD 189733b of 0.205 and 0.229, in the

  2. Study of trace gases in the Martian atmosphere: Groundbased observation using SUBARU/IRCS and development of radiative transfer model for MEX/PFS limb observation (United States)

    Aoki, S.; Nakagawa, H.; Kasaba, Y.; Giuranna, M.; Geminale, A.; Sindoni, G.; Sagawa, H.; Mendrok, J.; Kasai, Y.; Formisano, V.


    We observed Martian atmosphere to investigate CH4, H2O, and HDO on 30 November 2011, 4-5 January 2012, and 12 April 2012 using SUBARU/ IRCS. This observation aims to verify CH4 on Mars, constrain its source, and investigate the distribution of H2O/HDO ratio. Our observation covered possible source areas of CH4, i.e. the areas where the extend plumes of CH4 were detected by previous groundbased and MEX/PFS observations [1,2] and the potential mud volcanism areas [3,4]. This paper will show some preliminary results. Vertical profiles of these trace gases are crucial for understanding their chemistry and transportation. Limb observations by MEX/PFS are a powerful tool to retrieve vertical profiles of H2O, CO, and CH4. For this purpose, we adapted the SARTre model, a radiative transfer code which includes multiple scattering for limb geometry observations developed for the terrestrial atmosphere [5], to the Martian atmosphere. In order to validate our model, SARTre model for Martian limb, we first compared of our synthetic spectra in nadir geometry with the result from ARS [6] which has been widely used for previous studies of MEX/PFS nadir-observation. We concluded that the difference between them is small offset (below 3%) in the spectral range between 3000 and 3030 cm-1.

  3. Atmospheric propagation of THz radiation.

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.


    In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.

  4. LRAT: Lightning Radiative Transfer (United States)

    Phanord, Dieudonne D.


    In this report, we extend to cloud physics the work done for single and multiple scattering of electromagnetic waves. We consider the scattering of light, visible or infrared, by a spherical cloud represented by a statistically homogeneous ensemble of configurations of N identical spherical water droplets whose centers are uniformly distributed in its volume V. The ensemble is specified by the average number rho of scatterers in unit volume and by rho f(R) with f(R) as the distribution function for separations R of pairs. The incident light, vector-phi(sub 0) a plane electromagnetic wave with harmonic time dependence, is from outside the cloud. The propagation parameter kappa(sub 0) and the index of refraction eta(sub 0) determine physically the medium outside the distribution of scatterers. We solve the interior problem separately to obtain the bulk parameters for the scatterer equivalent to the ensemble of spherical droplets. With the interior solution or the equivalent medium approach, the multiple scattering problem is reduced to that of an equivalent single scatterer excited from outside illumination. A dispersion relation which determines the bulk propagation parameter K and the bulk index of refraction eta of the cloud is given in terms of the vector equivalent scattering amplitude vector-G and the dyadic scattering amplitude tilde-g of the single object in isolation. Based on this transfer model we will have the ability to consider clouds composed of inhomogeneous distribution of water and/or ice particles and we will be able to take into account particle size distributions within the cloud. We will also be able to study the effects of cloud composition (i.e., particle shape, size, composition, orientation, location) on the polarization of the single or the multiple scattered waves. Finally, this study will provide a new starting point for studying the problem of lightning radiative transfer.

  5. 3D Time Dependent Stokes Vector Radiative Transfer in an Atmosphere-Ocean System Including a Stochastic Interface (United States)


    and in the atmosphere in the presence of a stochastically varying interface which may also be perturbed by sea foam, air bubbles , surfactants , rain...perturbed by foam, bubbles , etc. then these can be added and the matrix operator theory will be used to calculate the effective reflection and transmission

  6. RRTM: A rapid radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)


    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  7. Engineering calculations in radiative heat transfer

    CERN Document Server

    Gray, W A; Hopkins, D W


    Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.

  8. Radiative transfer dynamo effect. (United States)

    Munirov, Vadim R; Fisch, Nathaniel J


    Magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  9. Radiative transfer on discrete spaces

    CERN Document Server

    Preisendorfer, Rudolph W; Stark, M; Ulam, S


    Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran

  10. Using MERRA-2 analysis fields to simulate limb scattered radiance profiles for inhomogeneous atmospheric lines of sight: Preparation for data assimilation of OMPS LP radiances through 2D single-scattering GSLS radiative transfer model development (United States)

    Loughman, R. P.; Bhartia, P. K.; Moy, L.; Kramarova, N. A.; Wargan, K.


    Many remote sensing techniques used to monitor the Earth's upper atmosphere fall into the broad category of "limb viewing" (LV) measurements, which includes any method for which the line of sight (LOS) fails to intersect the surface. Occultation, limb emission and limb scattering (LS) measurements are all LV methods that offer strong sensitivity to changes in the atmosphere near the tangent point of the LOS, due to the enhanced geometric path through the tangent layer (where the concentration also typically peaks, for most atmospheric species). But many of the retrieval algorithms used to interpret LV measurements assume that the atmosphere consists of "spherical shells", in which the atmospheric properties vary only with altitude (creating a 1D atmosphere). This assumption simplifies the analysis, but at the possible price of misinterpreting measurements made in the real atmosphere. In this presentation, we focus on the problem of LOS inhomogeneity for LS measurements made by the OMPS Limb Profiler (LP) instrument during the 2015 ozone hole period. The GSLS radiative transfer model (RTM) used in the default OMPS LP algorithms assumes a spherical-shell atmosphere defined at levels spaced 1 km apart, with extinction coefficients assumed to vary linearly with height between levels. Several recent improvements enable an updated single-scattering version of the GSLS RTM to ingest 3D MERRA-2 analysis fields (including temperature, pressure, and ozone concentration) when creating the model atmosphere, by introducing flexible altitude grids, flexible atmospheric specification along the LOS, and improved treatment of the radiative transfer within each atmospheric layer. As a result, the effect of LOS inhomogeneity on the current (1D) OMPS LP retrieval algorithm can now be studied theoretically, using realistic 3D atmospheric profiles. This work also represents a step towards enabling OMPS LP data to be ingested as part of future data assimilation efforts.

  11. Titan Atmospheric Entry Radiative Heating (United States)

    Brandis, Aaron; Cruden, Brett


    Detailed spectrally and spatially resolved radiance has been measured in the Electric Arc Shock Tube for conditions relevant to Titan entry, varying atmospheric composition, free-stream density (equivalent to altitude) and shock velocity. Permutations in atmospheric composition include 1.1, 2, 5 and 8.6 CH4 by mole with a balance of N2 and 1.5 CH4 0.5 Ar 98 N2 by mole, which is consistent with the current understanding of Titan's atmosphere. The effect of gas impurities identified in previous shock tube studies were also examined by testing in pure N2 and deliberate addition of air to the CH4N2 mixtures. The test campaign measured radiation at velocities from 4.7 kms to 8 kms and free-stream pressures from 0.1 to 0.47 Torr. These conditions cover a range of potential trajectories for flight missions, including a direct ballistic trajectory, a fly by or an extremely high speed entry. Radiances measured in this work are substantially larger compared to that reported both in past EAST test campaigns and other shock tube facilities. Depending on the metric used for comparison, the discrepancy can be as high as an order of magnitude. Potential causes for the discrepancy, such as the effect of oxygen due to Air leakage, gas composition and purity are discussed. The present work provides a new benchmark set of data to replace those published in previous studies.

  12. A modular radiative transfer program for gas filter correlation radiometry (United States)

    Casas, J. C.; Campbell, S. A.


    The fundamentals of a computer program, simulated monochromatic atmospheric radiative transfer (SMART), which calculates atmospheric path transmission, solar radiation, and thermal radiation in the 4.6 micrometer spectral region, are described. A brief outline of atmospheric absorption properties and line by line transmission calculations is explained in conjunction with an outline of the SMART computational procedures. Program flexibility is demonstrated by simulating the response of a gas filter correlation radiometer as one example of an atmospheric infrared sensor. Program limitations, input data requirements, program listing, and comparison of SMART transmission calculations are presented.

  13. A Fast Atmospheric Trace Gas Retrieval for Hyperspectral Instruments Approximating Multiple Scattering—Part 1: Radiative Transfer and a Potential OCO-2 XCO2 Retrieval Setup

    Directory of Open Access Journals (Sweden)

    Maximilian Reuter


    Full Text Available Satellite retrievals of the atmospheric dry-air column-average mole fraction of CO 2 (XCO 2 based on hyperspectral measurements in appropriate near (NIR and short wave infrared (SWIR O 2 and CO 2 absorption bands can help to answer important questions about the carbon cycle but the precision and accuracy requirements for XCO 2 data products are demanding. Multiple scattering of light at aerosols and clouds can be a significant error source for XCO 2 retrievals. Therefore, so called full physics retrieval algorithms were developed aiming to minimize scattering related errors by explicitly fitting scattering related properties such as cloud water/ice content, aerosol optical thickness, cloud height, etc. However, the computational costs for multiple scattering radiative transfer (RT calculations can be immense. Processing all data of the Orbiting Carbon Observatory-2 (OCO-2 can require up to thousands of CPU cores and the next generation of CO 2 monitoring satellites will produce at least an order of magnitude more data. Here we introduce the Fast atmOspheric traCe gAs retrievaL FOCAL including a scalar RT model which approximates multiple scattering effects with an analytic solution of the RT problem of an isotropic scattering layer and a Lambertian surface. The computational performance is similar to an absorption only model and currently determined by the convolution of the simulated spectra with the instrumental line shape function (ILS. We assess FOCAL’s quality by confronting it with accurate multiple scattering vector RT simulations using SCIATRAN. The simulated scenarios do not cover all possible geophysical conditions but represent, among others, some typical cloud and aerosol scattering scenarios with optical thicknesses of up to 0.7 which have the potential to survive the pre-processing of a XCO 2 algorithm for real OCO-2 measurements. Systematic errors of XCO 2 range from −2.5 ppm (−6.3‰ to 3.0 ppm (7.6‰ and are usually

  14. Radiation and critical shocks in atmospheric entry

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.


    Sub- and supercritical shock waves are produced during atmospheric entry. The radiation efficiency of the former increases strongly with velocity and altitude; that of the latter increases with altitude, but decreases with supercritical velocities. These efficiencies shift the region of maximum radiation one to two scale heights higher and decrease overall radiation efficiency.

  15. GLERL Radiation Transfer Through Freshwater Ice (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...

  16. Southern Great Plains Atmospheric Radiation Measurement Site (United States)

    Federal Laboratory Consortium — The Southern Great Plains Atmospheric Radiation Measurement Site (SGP-ARM) is the oldest and largest of DOE's Arm sites. It was established in 1992. It consists of...

  17. The Radiation Environment of Exoplanet Atmospheres

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Linsky


    Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.


    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Tyler D. [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Catling, David C., E-mail: [Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195-1310 (United States)


    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  19. Stochastic Radiative transfer and real cloudiness

    Energy Technology Data Exchange (ETDEWEB)

    Evans, F. [Univ. of Colorado, Boulder, CO (United States)


    Plane-parallel radiative transfer modeling of clouds in GCMs is thought to be an inadequate representation of the effects of real cloudiness. A promising new approach for studying the effects of cloud horizontal inhomogeneity is stochastic radiative transfer, which computes the radiative effects of ensembles of cloud structures described by probability distributions. This approach is appropriate because cloud information is inherently statistical, and it is the mean radiative effect of complex 3D cloud structure that is desired. 2 refs., 1 fig.

  20. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder


    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  1. Radiative transfer in silylidene molecule

    Directory of Open Access Journals (Sweden)

    Sharma M.


    Full Text Available In order to search for silylidene (H2CSi in the interstellar medium, Izuha et al. (1996 recorded microwave spectrum of H2CSi in laboratory and made an unsuccessful attempt of its identification in IRC +10216, Ori KL, Sgr B2, through its 717-616 transition at 222.055 GHz. For finding out if there are other transitions of H2CSi which may help in its identification in the interstellar medium, we have considered 25 rotational levels of ortho-H2CSi connected by collisional transitions and 35 radiative transitions, and solved radiative transfer problem using the LVG approximation. We have found that the brightness temperatures of 919-818, 918-817, 101,10-919, 1019-918, 111,11-101,10, 111,10-1019 and 121,12-111,11 transition are larger than that of 717-616 transition. Thus, these transitions may help in detection of H2CSi in the interstellar medium.

  2. Radiative transfer in a polluted urban planetary boundary layer (United States)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.


    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  3. An artificial neural network based fast radiative transfer model for ...

    Indian Academy of Sciences (India)

    In the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of INSAT-3D. Realistic atmospheric temperature and humidity profiles have been used for training the network. Spectral response functions of GOES-13, a satellite similar in ...

  4. A Radiative Transfer Model for Climate Calculations (United States)

    Bergstrom, Robert W.; Mlawer, Eli J.; Sokolik, Irina N.; Clough, Shepard A.; Toon, Owen B.


    This paper describes a radiative transfer model developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. We use a newly developed k-distribution model for both the thermal and solar parts of the spectrum. We employ a generalized two-stream approximation for the scattering by aerosol and clouds. To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. We perform several calculations focussing primarily on the question of absorption of solar radiation by gases and aerosols. We estimate the accuracy of the k-distribution to be approx. 1 W/sq m for the gaseous absorption in the solar spectrum. We estimate the accuracy of the two-stream method to be 3-12 W/sq m for the downward solar flux and 1-5 W/sq m for the upward solar flux at the top of atmosphere depending on the optical depth of the aerosol layer. We also show that the effect of ignoring aerosol absorption on the downward solar flux at the surface is 50 W/sq m for the TARFOX aerosol for an optical depth of 0.5 and 150 W/sq m for a highly absorbing mineral aerosol. Thus, we conclude that the uncertainty introduced by the aerosol solar radiative properties (and merely assuming some "representative" model) can be considerably larger than the error introduced by the use of a two-stream method.

  5. Radiative Heat Transfer in Fractal Structures


    Nikbakht, Moladad


    The radiative properties of most structures are intimately connected to the way in which their constituents are ordered on the nano-scale. We have proposed a new representation for radiative heat transfer formalism in many-body systems. In this representation, we explain why collective effects depend on the morphology of structures, and how the arrangement of nanoparticles and their material affects the thermal properties in many-body systems. We investigated the radiative heat transfer probl...

  6. Numerical methods in multidimensional radiative transfer

    CERN Document Server

    Meinköhn, Erik


    Offers an overview of the numerical modelling of radiation fields in multidimensional geometries. This book covers advances and problems in the mathematical treatment of the radiative transfer equation, a partial integro-differential equation of high dimension that describes the propagation of the radiation in various fields.

  7. Radiative Transfer on Mesoscopic Spatial Scales (United States)

    Gardner, Adam Ronald

    Accurate predictions of light transport produced by illumination of turbid media such as biological tissues, cloudy atmospheres, terrestrial surfaces, and soft matter is essential in many applications including remote sensing, functional optical imaging, realistic image synthesis, and materials characterization. The inability to model light transport on mesoscopic scales limits the spatial resolution and information content that can be extracted from optical measurements. While effective approaches exist to model light transport in singly- and diffusely-scattering regimes, modeling light propagation over the mesoscopic spatial scales remains an important challenge. Radiative transfer on these scales must account for the complete 5-dimensional spatial and angular distributions of the radiant field. Here, we present novel stochastic and analytic methods to analyze and predict light propagation in turbid media generated by collimated illumination on mesoscopic scales. We also consider coupled transport problems, resulting from illumination and detection, to facilitate measurement design and inverse problems. Specifically, we introduce a coupled Forward-Adjoint Monte Carlo (cFAMC) method that leverages generalized optical reciprocity to enable the computation of spatially-resolved distributions of light interrogation for specific source-detector pairs. cFAMC can aid the design of optical diagnostic measurements by tailoring the light field to interrogate specific sub-volumes of interest. We use cFAMC to examine the effects of angular resolution on the resulting interrogation distributions and analyze a diagnostically-relevant compact fiber probe design for the detection of epithelial precancer. While Monte Carlo simulation is considered a gold standard method to solve the equation of radiative transfer (ERT), it is computationally expensive. Thus, methods to obtain ERT solutions at lower computational cost are valuable. We introduce a general analytical framework to

  8. The Inclusion of Raman Scattering Effects in the Combined Ocean-Atmosphere Radiative Transfer Model MOMO to Estimate the Influence of Raman Scattering in Case 1 Waters on Satellite Ocean Remote Sensing Applications (United States)

    von Bismarck, J.; Fischer, J.


    Raman scattering of the solar lightfield, due to energy absorption by vibrational modes of water molecules, may contribute significantly to the signals observed by remote sensing satellites over water. The inelastic fraction of the water-leaving radiance for clear water reaches values of 30% in the red part of the visible spectrum, and still reaches values of several percent in moderately turbid waters. Furthermore, inelastic scattering due to chlorophyll and yellow substance fluorescence adds to this fraction. For these reasons the inclusion of inelastic scattering sources into radiative-transfer models, used in ocean remote sensing applications or atmosphere remote sensing over the ocean, can be important. MOMO is a computer code based on the matrix-operator method designed to calculate the lightfield in the stratified atmosphere-ocean system. It has been developed at the Institute for Space Sciences of the Freie Universität Berlin and provides the full polarization state (in the newest version) and an air-sea interface accounting for radiative effects of the wind roughened water surface. The inclusion of Raman scattering effects is done by a processing module, that starts a primary MOMO program run with a high spectral resolution, to calculate the radiative energy available for inelastic scattering at each model layer boundary. The processing module then calculates the first order Raman source-terms for every observation wavelength at every layer boundary, accounting for the non-isotropicity (including the azimuthal dependence) of the Raman phase-function, the spectral redistribution, and the spectral dependence of the Raman scattering coefficient. These elementary source-terms then serve as input for the second program run, which then calculates the source-terms of all model layers, using the doubling-adding method, and the resulting radiance field. Higher orders of the Raman contribution can be computed with additional program runs. Apart from the Raman

  9. A Paradox in Radiation Heat Transfer

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 4. A Paradox in Radiation Heat Transfer. J Srinivasan. Classroom Volume 12 Issue 4 April 2007 pp 85-91. Fulltext. Click here to view fulltext PDF. Permanent link: Keywords. Radiation ...

  10. Preliminary results of a three-dimensional radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    O`Hirok, W. [Univ. of California, Santa Barbara, CA (United States)


    Clouds act as the primary modulator of the Earth`s radiation at the top of the atmosphere, within the atmospheric column, and at the Earth`s surface. They interact with both shortwave and longwave radiation, but it is primarily in the case of shortwave where most of the uncertainty lies because of the difficulties in treating scattered solar radiation. To understand cloud-radiative interactions, radiative transfer models portray clouds as plane-parallel homogeneous entities to ease the computational physics. Unfortunately, clouds are far from being homogeneous, and large differences between measurement and theory point to a stronger need to understand and model cloud macrophysical properties. In an attempt to better comprehend the role of cloud morphology on the 3-dimensional radiation field, a Monte Carlo model has been developed. This model can simulate broadband shortwave radiation fluxes while incorporating all of the major atmospheric constituents. The model is used to investigate the cloud absorption anomaly where cloud absorption measurements exceed theoretical estimates and to examine the efficacy of ERBE measurements and cloud field experiments. 3 figs.

  11. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.


    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  12. Sound radiation in atmosphere during underwater earthquake (United States)

    Vdovichenko, S. P.; Zaslavskiy, Y. M.


    Acoustic fields in the atmosphere generated by hydroacoustic disturbances which are caused by seismic movements of bottom rocks during an underwater earthquake are used to predict tsunami waves. Different models of deepened seismic sources equivalent to an earthquake focus with respect to the total quantity of released energy are outlined. The characteristics of radiation introduced by the ocean water layer are examined. The dependence of the level and directional diagram of radiation of focal depth is examined. The level of acoustic oscillations is examined at the maximum of the diagram at altitudes were the appearance of ionized regions detectable during sounding by Doppler radars is possible.

  13. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes


    Q. Xin; Gong, P.; W. Li


    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we a...

  14. Community Radiative Transfer Model Applications - A Study of the Retrieval of Trace Gases in the Atmosphere from Cross-track Infrared Sounder (CrIS) Data of a Full-spectral Resolution (United States)

    Liu, Q.; Nalli, N. R.; Tan, C.; Zhang, K.; Iturbide, F.; Wilson, M.; Zhou, L.


    The Community Radiative Transfer Model (CRTM) [3] operationally supports satellite radiance assimilation for weather forecasting, sensor data verification, and the retrievals of satellite products. The CRTM has been applied to UV and visible sensors, infrared and microwave sensors. The paper will demonstrate the applications of the CRTM, in particular radiative transfer in the retrieva algorithm. The NOAA Unique CrIS/ATMS Processing System (NUCAPS) operationally generates vertical profiles of atmospheric temperature (AVTP) and moisture (AVMP) from Suomi NPP Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) measurements. Current operational CrIS data have reduced spectral resolution: 1.25 cm-1 for a middle wave band and 2.5 cm-1 for a short-wave wave band [1]. The reduced spectral data largely degraded the retrieval accuracy of trace gases. CrIS full spectral data are also available now which have single spectral resolution of 0.625 cm-1 for all of the three bands: long-wave band, middle wave band, and short-wave band. The CrIS full-spectral resolution data is critical to the retrieval of trace gases such as O3, CO [2], CO2, and CH4. In this paper, we use the Community Radiative Transfer Model (CRTM) to study the impact of the CrIS spectral resolution on the retrieval accuracy of trace gases. The newly released CRTM version 2.2.1 can simulates Hamming-apodized CrIS radiance of a full-spectral resolution. We developed a small utility that can convert the CRTM simulated radiance to un-apodized radiance. The latter has better spectral information which can be helpful to the retrievals of the trace gases. The retrievals will be validated using both NWP model data as well as the data collected during AEROSE expeditions [4]. We will also discuss the sensitivity on trace gases between apodized and un-apodized radiances. References[1] Gambacorta, A., et al.(2013), IEEE Lett., 11(9), doi:10.1109/LGRS.2014.230364, 1639-1643. [2] Han, Y., et

  15. Radiative Transfer Analysis of Neptune’s New Dark Vortex (United States)

    Tollefson, Joshua; Luszcz-Cook, Statia H.; Wong, Michael H.; de Pater, Imke


    A new dark spot on Neptune was discovered in late 2015, named: "SDS-2015" for "Southern Dark Spot discovered in 2015". Subsequent observations from Hubble Space Telescope Mid-Cycle 23 (PI: Wong) and the Outer Planetary Atmospheres Legacy (OPAL) programs (PI: Simon-Miller) took the first multispectral data over multiple viewing geometries of a Neptunian dark spot, spanning wavelengths from 336 to 763nm. SDS-2015 is visible at blue wavelengths, with contrast from the background atmosphere peaking at 467nm. In this abstract, we present a radiative transfer analysis of the dark spot and surrounding background atmosphere. We summarize our retrieved properties of Neptune's background atmosphere, including its aerosol structure and methane profile, and compare our findings in the optical wavelengths to those in the near-infrared. We then discuss various hypotheses about the make up of SDS-2015 and its interaction with the background atmosphere.

  16. An Analytic Radiative-Convective Model for Planetary Atmospheres (United States)

    Robinson, T. D.; Catling, D. C.


    A fundamental aspect of planetary atmospheres is the vertical thermal structure. Simple one-dimensional (vertical) models can provide reasonable estimates of a planet's global-mean temperature profile while providing insights into the physics behind the thermal profile of an atmosphere. The best basic models are those that incorporate the minimum amount of complexity while still remaining general enough to provide intuitive understanding. Here, we present an analytic 1-D radiative-convective model of the thermal structure of planetary atmospheres [1]. We assume that thermal radiative transfer is gray, and we include two shortwave channels for absorbed solar (or stellar) light so that the model can compute realistic stratospheric temperature inversions. A convective profile is placed at the base of the portion of the atmosphere that is in radiative equilibrium, and the model ensures that both the temperature profile and the upwelling flux profile are continuous across the radiation-convection boundary. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce analytic expressions that allow calculations of the atmospheric pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. The utility, validity, and generality of our model are demonstrated by applying it to a disparate range of worlds, including Jupiter, Venus, and Titan. Our model can be used to explain general observed phenomena in the Solar System [2], and we explore the behaviors of variants of our model, showing its ability to provide clear insights. Given the wealth of new problems posed by exoplanets, development of an analytic model with few parameters is likely to be useful for future application to such worlds, for which only limited data will be known. Our model can be used to help interpret

  17. Radiative heat transfer in fractal structures (United States)

    Nikbakht, M.


    The radiative properties of most structures are intimately connected to the way in which their constituents are ordered on the nanoscale. We have proposed a new representation for radiative heat transfer formalism in many-body systems. In this representation, we explain why collective effects depend on the morphology of structures, and how the arrangement of nanoparticles and their material affects the thermal properties in many-body systems. We investigated the radiative heat transfer problem in fractal (i.e., scale invariant) structures. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer and radiative cooling are studied and the results are compared for fractal and nonfractal structures. It is shown that fractal arranged nanoparticles display complex radiative behavior related to their scaling properties. We showed that, in contrast to nonfractal structures, heat flux in fractals is not of large-range character. By using the fractal dimension as a means to describe the structure morphology, we present a universal scaling behavior that quantitatively links the structure radiative cooling to the structure gyration radius.

  18. SGPGET: AN SBDART Module for Aerosol Radiative Transfer

    Energy Technology Data Exchange (ETDEWEB)

    McComiskey, A.; Ricchiazzi, P.; Ogren, J.A.; Dutton, E.


    Quantification of the aerosol direct effect and climate sensitivity requires accurate estimates of optical properties as inputs to a radiative transfer model. Long-term measurements of aerosol properties at the Southern Great Plains (SGP) site can be used as an improvement over a best guess or global average for optical properties (e.g., asymmetry factor of 0.7) used in Atmospheric Radiation Measurement (ARM) products such as the Broadband Heating Rate Profile VAP. To make this information readily available to the ARM community and others, an add-on module for a commonly used radiative transfer model, SBDART (Ricchiazzi et al. 1998), is being developed. A look up table and algorithm will provide aerosol related model inputs including aerosol optical and atmospheric state properties at high temporal resolution. These inputs can be used in conjunction with any mode of operation and with any other information, for example, cloud properties, in SBDART or any other radiative transfer model. Aerosol properties measured at three visible wavelengths are extrapolated so that flux calculations can be made in any desired wavelength across the shortwave spectrum. Several sources of uncertainty contribute to degraded accuracy of the aerosol property estimation. The effect of these uncertainties is shown through error analysis and comparisons of modeled and observed surface irradiance. A module is also being developed for the North Slope of Alaska site.

  19. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

    Directory of Open Access Journals (Sweden)

    C. A. Randles


    Full Text Available In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere, with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly −10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

  20. The atmospheric implications of radiation belt remediation

    Directory of Open Access Journals (Sweden)

    C. J. Rodger


    Full Text Available High altitude nuclear explosions (HANEs and geomagnetic storms can produce large scale injections of relativistic particles into the inner radiation belts. It is recognised that these large increases in >1 MeV trapped electron fluxes can shorten the operational lifetime of low Earth orbiting satellites, threatening a large, valuable population. Therefore, studies are being undertaken to bring about practical human control of the radiation belts, termed "Radiation Belt Remediation" (RBR. Here we consider the upper atmospheric consequences of an RBR system operating over either 1 or 10 days. The RBR-forced neutral chemistry changes, leading to NOx enhancements and Ox depletions, are significant during the timescale of the precipitation but are generally not long-lasting. The magnitudes, time-scales, and altitudes of these changes are no more significant than those observed during large solar proton events. In contrast, RBR-operation will lead to unusually intense HF blackouts for about the first half of the operation time, producing large scale disruptions to radio communication and navigation systems. While the neutral atmosphere changes are not particularly important, HF disruptions could be an important area for policy makers to consider, particularly for the remediation of natural injections.

  1. The atmospheric implications of radiation belt remediation

    Directory of Open Access Journals (Sweden)

    C. J. Rodger


    Full Text Available High altitude nuclear explosions (HANEs and geomagnetic storms can produce large scale injections of relativistic particles into the inner radiation belts. It is recognised that these large increases in >1 MeV trapped electron fluxes can shorten the operational lifetime of low Earth orbiting satellites, threatening a large, valuable population. Therefore, studies are being undertaken to bring about practical human control of the radiation belts, termed "Radiation Belt Remediation" (RBR. Here we consider the upper atmospheric consequences of an RBR system operating over either 1 or 10 days. The RBR-forced neutral chemistry changes, leading to NOx enhancements and Ox depletions, are significant during the timescale of the precipitation but are generally not long-lasting. The magnitudes, time-scales, and altitudes of these changes are no more significant than those observed during large solar proton events. In contrast, RBR-operation will lead to unusually intense HF blackouts for about the first half of the operation time, producing large scale disruptions to radio communication and navigation systems. While the neutral atmosphere changes are not particularly important, HF disruptions could be an important area for policy makers to consider, particularly for the remediation of natural injections.

  2. Surface-Satellite Measurements for Atmospheric Radiative Transfer (SMART)and Chemical, Optical and Microphysical Measurements of In-Situ Troposphere (COMMIT) Research Activities (United States)

    Tsay, Si-Chee


    The GSFC SMART consists of a suite of remote sensing instruments, including many commercially available radiometers, spectrometer, interferometer, and three in-house developed inskuments: micro-pulse lidar (MPL), scanning microwave radiometer (SMiR), and sun-sky-surface photometer (S(sup 3)). SMART cover the spectral range from UV to microwave, and passive to active remote sensing. This is to enrich the EOS-like research activities (i.e., EOS validation, innovative investigations, and long-term local environmental observations). During past years, SMART has been deployed in many NASA supported field campaigns to collocate with satellite nadir overpass for intercomparisons, and for initializing model simulations. Built on the successful experience of SMART, we are currently developing a new ground-based in-situ sampling package, COMMIT, including measurements of trace gases (CO, SO2, NOx, and O3,) concentrations, fine/coarse particle sizers and chemical composition, single- and three-wavelength nephelometers, and surface meteorological probes. COMMIT is built for seeking a relationship between surface in-situ measurements and boundary layer characteristics. This is to enrich EOS-like research on removing boundary layer signal from the entire column from space observation - to deduce the stable (less variability) free-troposphere observations. The COMMIT will try its best to link the chemical, microphysical, and optical properties of the boundary layer with radiation. The next major activities for SMART-COMMIT are scheduled for 2004-2006 in BASE-ASIA and EAST-AIRE. The expected close collaboration of BASE-ASIA with various research projects in Asia (i.e., ABC in South Asia, led by Ramanathan et al.; EAST-AIRE in East Asia, led by Li et al.; and APEX in Northeast Asia, led by Nakajima et al.) will definitely provide a better understanding of the impact of the biomass burning and air pollutants on regional-to-global climate, hydrological and carbon cycles, and

  3. Lattice Boltzmann method for one-dimensional vector radiative transfer. (United States)

    Zhang, Yong; Yi, Hongliang; Tan, Heping


    A one-dimensional vector radiative transfer (VRT) model based on lattice Boltzmann method (LBM) that considers polarization using four Stokes parameters is developed. The angular space is discretized by the discrete-ordinates approach, and the spatial discretization is conducted by LBM. LBM has such attractive properties as simple calculation procedure, straightforward and efficient handing of boundary conditions, and capability of stable and accurate simulation. To validate the performance of LBM for vector radiative transfer, four various test problems are examined. The first case investigates the non-scattering thermal-emitting atmosphere with no external collimated solar. For the other three cases, the external collimated solar and three different scattering types are considered. Particularly, the LBM is extended to solve VRT in the atmospheric aerosol system where the scattering function contains singularities and the hemisphere space distributions for the Stokes vector are presented and discussed. The accuracy and computational efficiency of this algorithm are discussed. Numerical results show that the LBM is accurate, flexible and effective to solve one-dimensional polarized radiative transfer problems.

  4. Enhancing radiative energy transfer through thermal extraction

    Directory of Open Access Journals (Sweden)

    Tan Yixuan


    Full Text Available Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a. In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.

  5. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model) (United States)


    ARL-TR-8155 ● SEP 2017 US Army Research Laboratory Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model... Energy Research, Volume 5 (Solar Radiation Flux Model) by Clayton Walker and Gail Vaucher Computational and Information Sciences Directorate, ARL...2017 June 28 4. TITLE AND SUBTITLE Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model) 5a. CONTRACT NUMBER ROTC Internship

  6. How do rain drops affect atmospheric radiative fluxes and heating rates? (United States)

    Hill, Peter; Chiu, Christine; Chern, Jiun-Dar; Allan, Richard; Hill, Adrian


    General circulation model (GCM) radiation schemes are becoming increasingly sophisticated; the treatment of clouds has become more refined while the number of gases and aerosol species that are represented continues to rise. However, all GCMs continue to ignore the radiative effect of precipitating liquid water (rain). The resulting biases are expected to be small, but they have yet to be quantified. This study aims to provide a first estimate of how rain affects the atmospheric radiation budget at a range of temporal and spatial scales. This is a necessary first step towards determining whether GCM radiation schemes should include rain. We define the rain radiative effect here as the difference between radiative fluxes calculated with and without rain. We perform calculations using the SOCRATES (Suite Of Community Radiative Transfer codes based on Edwards-Slingo) radiative tranfser scheme. Input atmospheric profiles are taken from two weeks (one week during boreal winter and the other during boreal summer) of a Goddard multiscale modelling framework (MMF) simulation. Based on these calculations, we shall quantify and explain how rain affects the transfer of radiation through the atmosphere and thus radiative heating rates and fluxes at both the surface and top of atmosphere.

  7. Enhancing radiative energy transfer through thermal extraction (United States)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu


    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal


    Energy Technology Data Exchange (ETDEWEB)

    Davis, Shane W. [Canadian Institute for Theoretical Astrophysics, Toronto, ON M5S 3H4 (Canada); Stone, James M.; Jiang Yanfei [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)


    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

  9. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)


    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  10. Charge Transfer Scheme for Atmospheric Ice Sensing

    Directory of Open Access Journals (Sweden)

    Umair Najeeb MUGHAL


    Full Text Available The atmospheric icing parameters are being measured nowadays with the aid of more customized yet limited commercial equipment. The parameters include atmospheric ice detection, icing load and icing rate. The robustness of such equipment is usually under scrutiny when it comes to cold/harsh environment operations. This phenomenon was experienced consistently by the atmospheric Icing Research Team at Narvik University College during data retrieval exercises from its atmospheric icing stations installed at Fargnesfjellet during 2012-13. In this paper it is aimed to address the potential feasibility to produce a robust hardware addressing the icing measurements signals, which includes instrumentation hardware giving icing indications, icing type and de- icing rate measurements in a single platform (not commercially available till date.

  11. UV- Radiation Absorption by Ozone in a Model Atmosphere using ...

    African Journals Online (AJOL)

    UV- radiation absorption is studied through variation of ozone transmittance with altitude in the atmosphere for radiation in the 9.6μm absorption band using Goody's model atmosphere with cubic spline interpolation technique to improve the quality of the curve. The data comprising of pressure and temperature at different ...

  12. SMRT: A new, modular snow microwave radiative transfer model (United States)

    Picard, Ghislain; Sandells, Melody; Löwe, Henning; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas


    Forward models of radiative transfer processes are needed to interpret remote sensing data and derive measurements of snow properties such as snow mass. A key requirement and challenge for microwave emission and scattering models is an accurate description of the snow microstructure. The snow microwave radiative transfer model (SMRT) was designed to cater for potential future active and/or passive satellite missions and developed to improve understanding of how to parameterize snow microstructure. SMRT is implemented in Python and is modular to allow easy intercomparison of different theoretical approaches. Separate modules are included for the snow microstructure model, electromagnetic module, radiative transfer solver, substrate, interface reflectivities, atmosphere and permittivities. An object-oriented approach is used with carefully specified exchanges between modules to allow future extensibility i.e. without constraining the parameter list requirements. This presentation illustrates the capabilities of SMRT. At present, five different snow microstructure models have been implemented, and direct insertion of the autocorrelation function from microtomography data is also foreseen with SMRT. Three electromagnetic modules are currently available. While DMRT-QCA and Rayleigh models need specific microstructure models, the Improved Born Approximation may be used with any microstructure representation. A discrete ordinates approach with stream connection is used to solve the radiative transfer equations, although future inclusion of 6-flux and 2-flux solvers are envisioned. Wrappers have been included to allow existing microwave emission models (MEMLS, HUT, DMRT-QMS) to be run with the same inputs and minimal extra code (2 lines). Comparisons between theoretical approaches will be shown, and evaluation against field experiments in the frequency range 5-150 GHz. SMRT is simple and elegant to use whilst providing a framework for future development within the

  13. Composite biasing in Monte Carlo radiative transfer (United States)

    Baes, Maarten; Gordon, Karl D.; Lunttila, Tuomas; Bianchi, Simone; Camps, Peter; Juvela, Mika; Kuiper, Rolf


    Biasing or importance sampling is a powerful technique in Monte Carlo radiative transfer, and can be applied in different forms to increase the accuracy and efficiency of simulations. One of the drawbacks of the use of biasing is the potential introduction of large weight factors. We discuss a general strategy, composite biasing, to suppress the appearance of large weight factors. We use this composite biasing approach for two different problems faced by current state-of-the-art Monte Carlo radiative transfer codes: the generation of photon packages from multiple components, and the penetration of radiation through high optical depth barriers. In both cases, the implementation of the relevant algorithms is trivial and does not interfere with any other optimisation techniques. Through simple test models, we demonstrate the general applicability, accuracy and efficiency of the composite biasing approach. In particular, for the penetration of high optical depths, the gain in efficiency is spectacular for the specific problems that we consider: in simulations with composite path length stretching, high accuracy results are obtained even for simulations with modest numbers of photon packages, while simulations without biasing cannot reach convergence, even with a huge number of photon packages.

  14. An Introduction to Atmospheric Radiation: Review for the Bulletin of AMS (United States)

    Marshak, Alexander


    Whether you like a certain geophysical book or not, largely depends on your background. The field of radiative transfer and atmospheric radiation, in particular, combines people with a wide range of mathematical skills: from theoretical astrophysicists and nuclear physicists to meteorologists and ecologists. There is always a delicate balance between physical explanations and their mathematical interpretations. This balance is very personal and is based on your background. I came to the field of atmospheric radiative transfer as a mathematician with little knowledge of atmospheric physics. After being in the field for more than a decade, I still have gaps in my atmospheric science education. Thus I assess a radiative transfer book fi-om two main criteria: how well does it describe the material that is familiar to me (the radiative transfer equation and its numerical solutions) and how well does it help me to fill the gaps in my personal knowledge. So I present this review fi-om the perspective of a former mathematician working in the field of atmospheric radiation. . After being asked to review the book, my first intention was to compare the new edition with the previous one (Liou, 1980). In doing so, you can clearly follow the progress made in the field of atmospheric radiation over the past two decades. If there are few changes (as in Fundamental Radiative Transfer) or no changes at all (as in the Maxwell s equations), then the field has not seen much development. To the contrary, many differences between the two editions illustrate areas of major progress in the field, such as evidenced in Thermal Ineared Radiative Transfer and even in the creations of completely new fields like Three-Dimensional Radiative Transfer or Light Scattering by Nonspherical Particles. Obviously, the major changes happened not in the theory, which is at least half a century old, but in data quality and completely new measurements (mostly due to new satellite data) with higher accuracy

  15. Enhancement of atmospheric radiation by an aerosol layer (United States)

    Michelangeli, Diane V.; Yung, Yuk L.; Shia, Run-Lie; Eluszkiewicz, Janusz; Allen, Mark; Crisp, David


    The presence of a stratospheric haze layer may produce increases in both the actinic flux and the irradiance below this layer. Such haze layers result from the injection of aerosol-forming material into the stratosphere by volcanic eruptions. Simple heuristic arguments show that the increase in flux below the haze layer, relative to a clear sky case, is a consequence of 'photon trapping'. The magnitude of these flux perturbations, as a function of aerosol properties and illumination conditions, is explored with a new radiative transfer model that can accurately compute fluxes in an inhomogeneous atmosphere with nonconservative scatterers having arbitrary phase function. One calculated consequence of the El Chichon volcanic eruption is an increase in the midday surface actinic flux at 20 deg N latitude, summer, by as much as 45 percent at 2900 A. This increase in flux in the UV-B wavelength range was caused entirely by aerosol scattering, without any reduction in the overhead ozone column.

  16. Radiation Belt Electron Dynamics: Modeling Atmospheric Losses (United States)

    Selesnick, R. S.


    The first year of work on this project has been completed. This report provides a summary of the progress made and the plan for the coming year. Also included with this report is a preprint of an article that was accepted for publication in Journal of Geophysical Research and describes in detail most of the results from the first year of effort. The goal for the first year was to develop a radiation belt electron model for fitting to data from the SAMPEX and Polar satellites that would provide an empirical description of the electron losses into the upper atmosphere. This was largely accomplished according to the original plan (with one exception being that, for reasons described below, the inclusion of the loss cone electrons in the model was deferred). The main concerns at the start were to accurately represent the balance between pitch angle diffusion and eastward drift that determines the dominant features of the low altitude data, and then to accurately convert the model into simulated data based on the characteristics of the particular electron detectors. Considerable effort was devoted to achieving these ends. Once the model was providing accurate results it was applied to data sets selected from appropriate periods in 1997, 1998, and 1999. For each interval of -30 to 60 days, the model parameters were calculated daily, thus providing good short and long term temporal resolution, and for a range of radial locations from L = 2.7 to 3.9. .

  17. SKIRT: Hybrid parallelization of radiative transfer simulations (United States)

    Verstocken, S.; Van De Putte, D.; Camps, P.; Baes, M.


    We describe the design, implementation and performance of the new hybrid parallelization scheme in our Monte Carlo radiative transfer code SKIRT, which has been used extensively for modelling the continuum radiation of dusty astrophysical systems including late-type galaxies and dusty tori. The hybrid scheme combines distributed memory parallelization, using the standard Message Passing Interface (MPI) to communicate between processes, and shared memory parallelization, providing multiple execution threads within each process to avoid duplication of data structures. The synchronization between multiple threads is accomplished through atomic operations without high-level locking (also called lock-free programming). This improves the scaling behaviour of the code and substantially simplifies the implementation of the hybrid scheme. The result is an extremely flexible solution that adjusts to the number of available nodes, processors and memory, and consequently performs well on a wide variety of computing architectures.

  18. OSOAA: A Vector Radiative Transfer Model of Coupled Atmosphere-Ocean System for a Rough Sea Surface Application to the Estimates of the Directional Variations of the Water Leaving Reflectance to Better Process Multi-angular Satellite Sensors Data Over the Ocean (United States)

    Chami, Malik; LaFrance, Bruno; Fougnie, Bertrand; Chowdhary, Jacek; Harmel, Tristan; Waquet, Fabien


    In this study, we present a radiative transfer model, so-called OSOAA, that is able to predict the radiance and degree of polarization within the coupled atmosphere-ocean system in the presence of a rough sea surface. The OSOAA model solves the radiative transfer equation using the successive orders of scattering method. Comparisons with another operational radiative transfer model showed a satisfactory agreement within 0.8%. The OSOAA model has been designed with a graphical user interface to make it user friendly for the community. The radiance and degree of polarization are provided at any level, from the top of atmosphere to the ocean bottom. An application of the OSOAA model is carried out to quantify the directional variations of the water leaving reflectance and degree of polarization for phytoplankton and mineral-like dominated waters. The difference between the water leaving reflectance at a given geometry and that obtained for the nadir direction could reach 40%, thus questioning the Lambertian assumption of the sea surface that is used by inverse satellite algorithms dedicated to multi-angular sensors. It is shown as well that the directional features of the water leaving reflectance are weakly dependent on wind speed. The quantification of the directional variations of the water leaving reflectance obtained in this study should help to correctly exploit the satellite data that will be acquired by the current or forthcoming multi-angular satellite sensors.

  19. Double-delta-function adjustment in thermal radiative transfer (United States)

    Wu, Kun; Zhang, Feng; Iwabuchi, Hironobu; Shi, Yi-Ning; Duan, Mingkeng


    For atmospheric scattering, the weak backward scattering peak is always ignored, in contrast with the strong forward scattering peak. In this paper, the backward peak contribution is incorporated in multiple scattering, along with the forward peak contribution. Thus, a new parameterization, the double- δ -function adjustment, is proposed and its application in a two-stream approximation for infrared radiative transfer is shown. The accuracy of the adding method for the double- δ -two-stream discrete-ordinates approximation (2 δ -2DDA) is evaluated by the emissivities in a single layer of atmosphere and the fluxes and heating rate in a multi-layer atmosphere with a realistic atmospheric profile. The results show that 2 δ -2DDA produces less bias than the δ -two-stream approximation (δ -2DDA) for thick optical depths, such as water cloud conditions. For thin optical depths, such as ice cloud, δ -2DDA and 2 δ -2DDA produce similar errors. Generally, 2 δ -2DDA is more accurate than δ -2DDA, and it can be easily applied in climate models.

  20. A stochastic formation of radiative transfer in clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, G.L.; Gabriel, P.M.


    The research carried out under this award dealt with issues involving deterministic radiative transfer, remote sensing, Stochastic radiative transfer, and parameterization of cloud optical properties. A number of different forms of radiative transfer models in one, two, and three dimensions were developed in an attempt to build an understanding of the radiative transfer in clouds with realistic spatial structure and to determine the key geometrical parameter that influence this transfer. The research conducted also seeks to assess the relative importance of these geometrical effects in contrast to microphysical effects of clouds. The main conclusion of the work is that geometry has a profound influence on all aspects of radiative transfer and the interpretation of this transfer. We demonstrate how this geometry can influence estimate of particle effective radius to the 30-50% level and also how geometry can significantly bias the remote sensing of cloud optical depth.

  1. BARTTest: Community-Standard Radiative-Transfer Tests I: Forward Models (United States)

    Himes, Michael D.; Harrington, Joseph; Cubillos, Patricio; Blecic, Jasmina; Challener, Ryan C.


    Atmospheric radiative transfer codes are used both to predict planetary spectra and in retrieval algorithms to interpret data. Observational plans, theoretical models, and scientific results thus depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. The community needs a suite of test calculations with analytically, numerically, or at least communally verified results. We therefore offer the Bayesian Atmospheric Radiative Transfer Test Suite, or BARTTest, a collection of tests offered for community use and development.This presentation focuses on forward models. Tests include a single-line, single layer atmosphere verified by an independent numerical line-broadening code included with the test, an isothermal atmoshere with hundreds of millions of lines (which should emit as a blackbody of the same temperature), and realistic atmospheres verified by an independent radiative transfer model.BARTTest is open-source software. We propose this test suite as a standard for verifying radiative-transfer codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  2. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes (United States)

    Xin, Q.; Gong, P.; Li, W.


    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  3. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder


    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  4. Influence of radiation heat transfer during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Polo L, M. A., E-mail: [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)


    The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)


    Energy Technology Data Exchange (ETDEWEB)

    Blandford, R


    Accretion onto compact objects plays a central role in high energy astrophysics. In these environments, both general relativistic and plasma effects may have significant impacts upon the spectral and polarimetric properties of the accretion flow. In paper I we presented a fully general relativistic magnetoionic theory, capable of tracing rays in the geometric optics approximation through a magnetized plasma in the vicinity of a compact object. In this paper we discuss how to perform polarized radiative transfer along these rays. In addition we apply the formalism to a barotropic thick disk model, appropriate for low luminosity active galactic nuclei. We find that it is possible to generate large fractional polarizations over the innermost portions of the accretion flow, even when the emission mechanism is unpolarized. This has implications for accreting systems ranging from pulsars and X-ray binaries to AGN.

  6. Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method (United States)

    Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.


    The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.

  7. Solar radiation transport in the cloudy atmosphere: a 3D perspective on observations and climate impacts (United States)

    Davis, Anthony B.; Marshak, Alexander


    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  8. Remote sensing data assimilation using coupled radiative transfer models (United States)

    Verhoef, Wout; Bach, Heike

    This paper discusses data assimilation of biophysical parameters retrieved from optical remote sensing images in land surface process models by means of image simulation and model inversion. Two different approaches are presented. The first is based on model inversion of atmospherically corrected Landsat TM surface reflectance images and assimilation of the retrieved parameters in a crop growth model. In the second approach top-of-atmosphere (TOA) hyperspectral radiance images have been simulated for the future ESA mission SPECTRA. In this case only the simulation of the images has been executed in order to demonstrate the feasibility of this task with existing software running on a PC. The radiative transfer models that have been used are PROSPECT (leaf level), GeoSAIL (canopy level) and MODTRAN4 (atmosphere). Coupling of this chain of models to land use information of the area can be used to generate TOA radiance images. Comparison of simulated images with actual remote sensing data can be applied to retrieve biophysical parameters and in turn these can be employed to update process models of crop growth.

  9. Radiative transfer model of snow for bare ice regions (United States)

    Tanikawa, T.; Aoki, T.; Niwano, M.; Hosaka, M.; Shimada, R.; Hori, M.; Yamaguchi, S.


    Modeling a radiative transfer (RT) for coupled atmosphere-snow-bare ice systems is of fundamental importance for remote sensing applications to monitor snow and bare ice regions in the Greenland ice sheet and for accurate climate change predictions by regional and global climate models. Recently, the RT model for atmosphere-snow system was implemented for our regional and global climate models. However, the bare ice region where recently it has been expanded on the Greenland ice sheet due to the global warming, has not been implemented for these models, implying that this region leads miscalculations in these climate models. Thus, the RT model of snow for bare ice regions is needed for accurate climate change predictions. We developed the RT model for coupled atmosphere-snow-bare ice systems, and conducted a sensitivity analysis of the RT model to know the effect of snow, bare ice and geometry parameters on the spectral radiant quantities. The RT model considers snow and bare-ice inherent optical properties (IOPs), including snow grain size, air bubble size and its concentration and bare ice thickness. The conventional light scattering theory, Mie theory, was used for IOP calculations. Monte Carlo method was used for the multiple scattering. The sensitivity analyses showed that spectral albedo for the bare ice increased with increasing the concentration of the air bubble in the bare ice for visible wavelengths because the air bubble is scatterer with no absorption. For near infrared wavelengths, spectral albedo has no dependence on the air bubble due to the strong light absorption by ice. When increasing solar zenith angle, the spectral albedo were increased for all wavelengths. This is the similar trend with spectral snow albedo. Cloud cover influenced the bare ice spectral albedo by covering direct radiation into diffuse radiation. The purely diffuse radiation has an effective solar zenith angle near 50°. Converting direct into diffuse radiation reduces the

  10. Theory of radiative transfer models applied in optical remote sensing of vegetation canopies

    NARCIS (Netherlands)

    Verhoef, W.


    In this thesis the work of the author on the modelling of radiative transfer in vegetation canopies and the terrestrial atmosphere is summarized. The activities span a period of more than fifteen years of research in this field carried out at the National Aerospace Laboratory

  11. Atmospheric composition affects heat- and mass-transfer processes (United States)

    Blakely, R. L.; Nelson, W. G.


    For environmental control system functions sensitive to atmospheric composition, components are test-operated in helium-oxygen and nitrogen-oxygen mixtures, pure oxygen, and air. Transient heat- and mass-transfer tests are conducted for carbon dioxide adsorption on molecular sieve and for water vapor adsorption on silica gel.

  12. International radiation commissions 1896 to 2008. Research into atmospheric radiation from IMO to IAMAS

    Energy Technology Data Exchange (ETDEWEB)

    Bolle, H.J. (comp.); Moeller, F.; London, J.


    The document covers a historical compilation on research into atmospheric radiation from 1896 to 2008. The first part is a brief history of the radiation commissions of IMO (International Meteorological Organization) and IUGG (International Union of Geodesy and Geophysics) for the period 1824 to 1948. Part 2 Covers the International Radiation Commission (IRC) of IAM (International Association of Meteorology)/IAMAS (International Association of Meteorology and Atmospheric Sciences)/IAMAP (International Association of Meteorology and Atmospheric Physics); the Re-constitution of the IUGG Radiation Commision, the Officers of the International Radiation Commission of IUUG 1948-2008, and the activities of the Radiation Commision of the IUGG 1948-2008. The appendices include the Radiation Commission Members, the summaries of presented papers from 1954 and 1957, the IRC publications, and acronyms.

  13. Comparing the Effect of Radiative Transfer Schemes on Convection Simulations


    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre


    We examine the effect of different radiative transfer schemes on the properties of 3D simulations of near-surface stellar convection in the superadiabatic layer, where energy transport transitions from fully convective to fully radiative. We employ two radiative transfer schemes that fundamentally differ in the way they cover the 3D domain. The first solver approximates domain coverage with moments, while the second solver samples the 3D domain with ray integrations. By comparing simulations ...

  14. Study on radiation transfer in human skin for cosmetics (United States)

    Yamada, Jun; Kawamura, Ayumu; Miura, Yoshimasa; Takata, Sadaki; Ogawa, Katsuki


    In order to design cosmetics producing the optical properties that are required for a beautiful skin, the radiation transfer in the skin has been numerically investigated by the Monte Carlo method and the effects of skin texture and cosmetics on the radiation transfer have been empirically investigated using an artificial skin. The numerical analysis showed that the total internal reflection suppresses large portion of radiation going out through the skin surface Additionally, the experimental study revealed that skin texture and cosmetics not only diffusely reflect the incoming radiation, but also lead the internally reflected radiation to the outside of the skin.

  15. Rocket Measurements of the Direct Solar Lyman-alpha Radiation Penetrating in the Atmosphere (United States)

    Guineva, V. H.; Witt, G.; Gumbel, J.; Khaplanov, M.; Tashev, V. L.


    The resonance transition 2P-2S of the atomic hydrogen (Lyman-alpha emission) is the strongest and most conspicuous feature in the solar EUV spectrum. The Lyman-alpha radiation transfer depends on the resonance scattering from the hydrogen atoms in the atmosphere and on the O2 absorption. Since the Lyman-alpha extinction in the atmosphere is a measure for the column density of the oxygen molecules, the atmospheric temperature profile can be calculated thereof. Rocket measurements of the direct Lyman-alpha radiation vertical profile in the summer mesosphere and thermosphere (up to 120 km), at high latitudes will be carried out in June 2006. The Lyman-alpha flux will be registered by a detector of solar Lyman-alpha radiation, manufactured in the Stara Zagora Department of the Solar-Terrestrial Influences Laboratory (STIL BAS). Its basic part is an ionization camera, filled in with NO. The scientific data analysis will include raw data reduction, radiative transfer simulations, temperature retrieval as well as co-analysis with other parameters, measured near the polar summer mesopause. This project is a scientific cooperation between STIL-BAS, Stara Zagora Department and the Atmospheric Physics Group at the Department of Meteorology (MISU), Stockholm University, Sweden. The joint project is part from the rocket experiment HotPay I, in the ALOMAR eARI Project, EU's 6th Framework Programme, Andoya Rocket Range, Andenes, Norway.

  16. Free convection effects and radiative heat transfer in MHD Stokes ...

    Indian Academy of Sciences (India)

    which controls the gasification rate of the energetic material for estimating heat transfer. Radiation effect on flow and heat transfer is important in the context of space technology and processes involving high temperature. In recent years, the problems of free convective and heat transfer flows through a porous medium under ...

  17. A New Perspective on Trapped Radiation Belts in Planetary Atmospheres (United States)

    Diaz, A.; Lodhi, M. A. K.; Wilson, T. L.


    The charged particle fluxes trapped in the magnetic dipole fields of certain planets in our Solar System are interesting signatures of planetary properties in space physics. They also represent a source of potentially hazardous radiation to spacecraft during planetary and interplanetary exploration. The Earth s trapped radiation belts have been studied for years and the physical mechanisms by which primary radiation from the Sun and Galaxy is captured is well understood. The higher-energy particles collide with molecules in the planetary atmosphere and initiate large cascades of secondary radiation which itself becomes trapped by the magnetic dipole field of the planet. Some of it is even backscattered as albedo neutrons.

  18. Investigation of aerosol radiative forcing and atmosphere-ocean remote sensing in Northern Norway (United States)

    Chen, Yi-Chun; Hamre, Børge; Stamnes, Snorre; Frette, Øyvind; Stamnes, Kunt; Stamnes, Jakob J.


    We examine aerosol optical properties and radiative forcing at Andenes, Northern Norway (69N, 16E, 379 m altitude) during a two-year period (2008-2010) using AERONET data, radiative transfer modelling (C-DISORT), and Mie-scattering computations. We show that the mean value of the aerosol optical thickness at 500 nm derived from AERONET measurements is close to that obtained from Mie-scattering computations with input of aerosol size distribution and refractive index as derived from AERONET measurements. Also, different models for the ground reflectance used as input to the radiative transfer computations are shown to have little impact on the aerosol radiative forcing both at the top and bottom of the atmosphere. The coupled atmosphere-surface system accounted for by C-DISORT is suitable for radiative transfer calculations over open ocean and coastal water areas, and we discuss how it can be used to make simultaneous retrieval of aerosol and marine parameters from ocean colour data.

  19. Investigations of Planet Formation with Combined Hydrodynamics and Radiative Transfer (United States)

    Jang-Condell, Hannah; Kloster, D.


    Our aim is to investigate how the dynamics of protoplanetary disks are affected by environmental factors such as the presence of a planetary-mass object orbiting at the midplane and the radiation produced by the disk's host star. To accomplish this task we utilize the finite-volume numerical code PLUTO (Mignone, et al. 2007) to compute the evolution of the disk as a magnetohydrodynamics (MHD) simulation in 3D spherical coordinates, combined with a radiative transfer code (Jang-Condell 2008). At each iteration of the PLUTO simulation we will apply the radiative transfer code to the disk profile to model both processes simultaneously. The combined MHD and radiative transfer simulation will provide us with a much more accurate description of protoplanetary disk evolution than either isolated disk MHD or static disk radiative transfer models could individually.

  20. Inversion of the radiative transfer equation for polarized light

    Directory of Open Access Journals (Sweden)

    Jose Carlos del Toro Iniesta


    Full Text Available Abstract Since the early 1970s, inversion techniques have become the most useful tool for inferring the magnetic, dynamic, and thermodynamic properties of the solar atmosphere. Inversions have been proposed in the literature with a sequential increase in model complexity: astrophysical inferences depend not only on measurements but also on the physics assumed to prevail both on the formation of the spectral line Stokes profiles and on their detection with the instrument. Such an intrinsic model dependence makes it necessary to formulate specific means that include the physics in a properly quantitative way. The core of this physics lies in the radiative transfer equation (RTE, where the properties of the atmosphere are assumed to be known while the unknowns are the four Stokes profiles. The solution of the (differential RTE is known as the direct or forward problem. From an observational point of view, the problem is rather the opposite: the data are made up of the observed Stokes profiles and the unknowns are the solar physical quantities. Inverting the RTE is therefore mandatory. Indeed, the formal solution of this equation can be considered an integral equation. The solution of such an integral equation is called the inverse problem. Inversion techniques are automated codes aimed at solving the inverse problem. The foundations of inversion techniques are critically revisited with an emphasis on making explicit the many assumptions underlying each of them.

  1. The impacts of light scattering by clouds on longwave radiative transfer (United States)

    Kuo, C. P.; Yang, P.; Huang, X.; Feldman, D.; Flanner, M.


    In the longwave spectrum, clouds modulate energy budgets in the climate system through scattering, absorbing and emitting radiation. On the average, ice clouds tend to warm the climate, while liquid water clouds cool the climate, due to the distinct physical and optical properties of ice and liquid water clouds. General circulation models (GCMs) are the most popular tool to investigate the influences of clouds on climate. However, most GCMs, due to computational complexity, neglect multiple scattering effects in longwave radiative transfer calculations. To evaluate the potential impacts of neglecting longwave multiple scattering, we conduct sensitivity studies, utilizing the ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis atmospheric profiles, a modified RRTMG_LW (Longwave Rapid Radiative Transfer Model for GCM applications) and the MODIS (Moderate Resolution Imaging Spectroradiometer) collection 6 level 3 cloud retrieval products. The modified RRTMG_LW uses the 16-stream DISORT (Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane-Parallel Medium) as a robust radiative solver to calculate longwave fluxes. In the study, the bias in longwave flux (simulated without, minus simulated with, light scattering by ice and liquid water clouds) represents the influence of neglecting light scattering. Biases of upward flux at the top of the atmosphere, downward flux at the surface, and net flux into the atmosphere are presented. The preliminary results show that the absence of longwave light scattering could lead to considerable biases in global and regional flux simulations.

  2. Fast radiative transfer modeling for infrared imaging radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Dubuisson, P. [ELICO, Federation de Recherche CNRS 1818, Universite Littoral Cote d' Opale, 32 Av. Foch, 62930 Wimereux (France)]. E-mail:; Giraud, V. [Laboratoire d' Optique Atmospherique, FR1818, Universite de Lille1, 59655 Villeneuve d' Ascq Cedex (France); Chomette, O. [Laboratoire de Meteorologie Dynamique, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Chepfer, H. [Laboratoire de Meteorologie Dynamique, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Pelon, J. [Service d' Aeronomie, Universite Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)


    Fast radiative transfer codes have been developed for simulating the outgoing radiance (and corresponding brightness temperature) to be measured by the Infrared Imaging Radiometer (IIR) of the space Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission. Two simple codes (FASRAD and FASAA), for which scattering is neglected, as well as an accurate code (FASDOM), accounting for scattering and absorption with the Discrete Ordinate Method (DOM), are presented. Their accuracy has been estimated with a reference code including a line-by-line model and the DOM. Simulations have shown that the accuracy is generally better than 0.3K on the brightness temperature for clear or cloudy atmospheres. This accuracy agrees with the expected one of future IIR measurements. In addition, the impact of scattering on the brightness temperature has been evaluated for semi-transparent liquid clouds in the IIR spectral range. Especially, simulations have shown that cloud microphysics retrieval might be possible with the Brightness Temperature Difference (BTD) between two IIR bands, using the couple of wavelengths (8.7-12{mu}m) or (10.6-12{mu}m). However, scattering strongly influences the radiation for shorter wavelengths. The error on the BTD with (8.7-12{mu}m) can reach 4K when scattering is neglected, leading to large uncertainties in the retrieval of droplet effective radius.

  3. Further considerations of cosmic ray modulation of infra-red radiation in the atmosphere

    CERN Document Server

    Aplin, Karen


    Understanding effects of ionisation in the lower atmosphere is a new interdisciplinary area, crossing traditionally distinct scientific boundaries. Following the paper of Erlykin et al. (Astropart. Phys. 57--58 (2014) 26--29) we develop the interpretation of observed changes in long-wave (LW) radiation (Aplin and Lockwood, Env. Res. Letts. 8, 015026 (2013)), by taking account of cosmic ray ionisation yields and atmospheric radiative transfer. To demonstrate this, we show that the thermal structure of the whole atmosphere needs to be considered along with the vertical profile of ionisation. Allowing for ionisation by all components of a cosmic ray shower and not just by the muons, reveals that the effect we have detected is certainly not inconsistent with laboratory observations of the LW absorption cross section. The analysis presented here, although very different from that of Erlykin et al., does come to the same conclusion that the events detected were not caused by individual cosmic ray primaries -- not b...

  4. Investigation of radiative heat transfer in fixed bed biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    T. Klason; X.S. Bai; M. Bahador; T.K. Nilsson; B. Sunden [Lund Institute of Technology, Lund (Sweden). Division of Fluid Mechanics


    This paper presents an investigation of the radiative heat transfer process in two fixed bed furnaces firing biomass fuels and the performance of several widely used models for calculation of radiative heat transfer in the free-room of fixed bed furnaces. The effective mean grey gas absorption coefficients are calculated using an optimised version of the exponential wide band model (EWBM) based on an optical mean beam length. Fly-ash and char particles are taken into account using Mie scattering. In the investigated updraft small-scale fixed bed furnace radiative transfer carries heat from the bed to the free-room, whereas in the cross-current bed large-scale industry furnace, radiative transfer brings heat from the hot zones in the free-room to the drying zone of the bed. Not all the investigated models can predict these heat transfer trends, and the sensitivity of results to model parameters is fairly different in the two furnaces. In the small-scale furnace, the gas absorption coefficient predicted by using different optical lengths has great impact on the predicted temperature field. In the large-scale furnaces, the predicted temperature field is less sensitive to the optical length. In both furnaces, with the same radiative properties, the low-computational-cost P1 model predicts a temperature field in the free-room similar to that by the more time consuming SLW model. In general, the radiative heat transfer rates to the fuel bed are not very sensitive to the radiative properties, but they are sensitive to the different radiative heat transfer models. For a realistic prediction of the radiative heat transfer rate to the fuel bed or to the walls, more computationally demanding models such as the FGG or SLW models should be used. 37 refs., 7 figs., 2 tabs.

  5. Atmospheric Radiation Measurement Program facilities newsletter, November 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Holdridge, D. J.


    Fall 2002 Intensive Operation Periods: Single Column Model and Unmanned Aerospace Vehicle--In an Intensive Operation Period (IOP) on November 3-23, 2002, researchers at the SGP CART site are collecting a detailed data set for use in improving the Single Column Model (SCM), a scaled-down climate model. The SCM represents one vertical column of air above Earth's surface and requires less computation time than a full-scale global climate model. Researchers first use the SCM to efficiently improve submodels of clouds, solar radiation transfer, and atmosphere-surface interactions, then implement the results in large-scale global models. With measured values for a starting point, the SCM predicts atmospheric variables during prescribed time periods. A computer calculates values for such quantities as the amount of solar radiation reaching the surface and predicts how clouds will evolve and interact with incoming light from the sun. Researchers compare the SCM's predictions with actual measurements made during the IOP, then adjust the submodels to make predictions more reliable. A second IOP conducted concurrently with the SCM IOP involves high-altitude, long-duration aircraft flights. The original plan was to use an unmanned aerospace vehicle (UAV), but the National Aeronautics and Space Administration (NASA) aircraft Proteus will be substituted because all UAVs have been deployed elsewhere. The UAV is a small, instrument-equipped, remote-control plane that is operated from the ground by a computer. The Proteus is a manned aircraft, originally designed to carry telecommunications relay equipment, that can be reconfigured for uses such as reconnaissance and surveillance, commercial imaging, launching of small space satellites, and atmospheric research. The plane is designed for two on-board pilots in a pressurized cabin, flying to altitudes up to 65,000 feet for as long as 18 hours. The Proteus has a variable wingspan of 77-92 feet and is 56 feet long. The plane

  6. Alternative application for the radiation background in the development of the atlas database of atmospheric radiation

    CERN Document Server

    De la Hoz, Ivan Arturo Morales


    Nowadays radiation is one of the variables to be considered in the environmental forecasting and it is meaningful in the increase of global warming, together greenhouse effect. The radiation considered by the meteorological organizations depends on the World Radiometric Reference (WRR), the World Standard Group (WSG), addressed by the World Meteorological Organization (WMO). This work is based on the cosmic microwave background, as a variable to be estimated in order to get information about the incident radiation in the Earth's atmosphere, as a valuable and meaningful contribution in the building of the radiation atlas by the (UPME) and (IDEAM). Due to the fact that the variables considered are ultraviolet and infrared radiation, ozone column, direct radiation and diffuse radiation, the last two get the global radiation, and are the only ones to be evaluated by the national meteorological organizations in the country. The study of the cosmic background radiation as a research project will provide data which ...

  7. VUV photochemistry simulation of planetary upper atmosphere using synchrotron radiation. (United States)

    Carrasco, Nathalie; Giuliani, Alexandre; Correia, Jean Jacques; Cernogora, Guy


    The coupling of a gas reactor, named APSIS, with a vacuum-ultraviolet (VUV) beamline at the SOLEIL synchrotron radiation facility, for a photochemistry study of gas mixtures, is reported. The reactor may be irradiated windowless with gas pressures up to hundreds of millibar, and thus allows the effect of energetic photons below 100 nm wavelength to be studied on possibly dense media. This set-up is perfectly suited to atmospheric photochemistry investigations, as illustrated by a preliminary report of a simulation of the upper atmospheric photochemistry of Titan, the largest satellite of Saturn. Titan's atmosphere is mainly composed of molecular nitrogen and methane. Solar VUV irradiation with wavelengths no longer than 100 nm on the top of the atmosphere enables the dissociation and ionization of nitrogen, involving a nitrogen chemistry specific to nitrogen-rich upper atmospheres.

  8. Light scattering reviews 9 light scattering and radiative transfer

    CERN Document Server

    Kokhanovsky, Alexander A


    This book details modern methods of the radiative transfer theory. It presents recent advances in light scattering (measurements and theory) and highlights the newest developments in remote sensing of aerosol and cloud properties.

  9. Near-field radiative heat transfer between metasurfaces

    DEFF Research Database (Denmark)

    Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.


    Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two...

  10. Modeling of Radiative Heat Transfer in an Electric Arc Furnace (United States)

    Opitz, Florian; Treffinger, Peter; Wöllenstein, Jürgen


    Radiation is an important means of heat transfer inside an electric arc furnace (EAF). To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered. Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process. The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces and the participating medium. This is attained by the development of a simplified geometrical model, the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation. The simulation results were compared with the data of real EAF plants available in literature.

  11. Radiative Transfer Effects during Photoheating of the Intergalactic Medium


    Abel, Tom; Haehnelt, Martin G.


    The thermal history of the intergalactic medium (IGM) after reionization is to a large extent determined by photoheating. Here we demonstrate that calculations of the photoheating rate which neglect radiative transfer effects substantially underestimate the energy input during and after reionization. The neglect of radiative transfer effects results in temperatures of the IGM which are too low by a factor of two after HeII reionization. We briefly discuss implications for the absorption prope...

  12. Dynamic measurement of near-field radiative heat transfer


    Lang, S.; G. Sharma; Molesky, S.; Kränzien, P. U.; Jalas, T.; Z. Jacob; Petrov, A. Yu.; Eich, M.


    Super-Planckian near-field radiative heat transfer allows effective heat transfer between a hot and a cold body to increase beyond the limits long known for black bodies. Until present, experimental techniques to measure the radiative heat flow relied on steady-state systems. Here, we present a dynamic measurement approach based on the transient plane source technique, which extracts thermal properties from a temperature transient caused by a step input power function. Using this versatile me...

  13. Science Plan for the Atmospheric Radiation Measurement Program (ARM)

    Energy Technology Data Exchange (ETDEWEB)



    The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

  14. Satellite data sets for the atmospheric radiation measurement (ARM) program

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Bernstein, R.L. [SeaSpace Corp., San Diego, CA (United States)


    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  15. High Resolution Infrared Radiative Transfer of Earth-like planets Influenced by Multiple Clouds (United States)

    Vasquez, Mayte; Schreier, Franz; Trautmann, Thomas; Rauer, Heike; Kitzmann, Daniel; Patzer, A. B. C.; Gimeno Garc&ía, Sebastián.


    Background:, The emission spectrum of the modern Earth around different types of stars has been modeled in order to study the effects of different incident stellar radiation in the atmosphere. The Earth-like planetary spectra have also been studied in the presence of clouds. Clouds have an impact on the radiative transfer in planetary atmospheres by changing the spectra (intensities and shapes) due to extinction events (scattering and absorption). Thereby, they can influence the atmospheric and surface temperatures and can also generate false-negative biomarker signatures. Methods:, The spectra of Earth-like have been modeled using a line-by-line radiative transfer model coupled with a multiple scattering solver. The atmospheres of these planets were calculated using a convective climate model taking as reference the atmospheric profile from the modern Earth. All main molecular bands found in the thermal region (H2O, CO2, N2O, CH4 and O3) were analyzed at high resolution in order to assess their detectability in the presence of low (water) and high-level (ice) clouds for different percent coverage. Results:, The resulting calculations indicate that the modern Earth spectrum for a cloud-free atmosphere changes in the presence of different stellar types. The pressure-temperature profile and the molecular concentrations of the Earth were altered. In the presence of clouds, the atmospheric temperatures were modified as well. The water cloud cooled down the surface and tropospheric temperatures of the planets while the ice cloud warmed them up. The presence of clouds also decreased the depth of the absorption bands and modified their shapes, consequently producing a false-negative detection of some of the bands. Keywords:, radiation, planets, atmospheres, clouds, aerosols, molecules, scattering, habitability, modeling.

  16. The radiation in the atmosphere during major solar particle events (United States)

    Clucas, Simon N.; Dyer, Clive S.; Lei, Fan

    Major solar particle events can give rise to greatly enhanced radiation throughout the entire atmosphere including at aircraft altitudes. These particle events are very hard to predict and their effect on aircraft is difficult to calculate. A comprehensive model of the energetic radiation in the atmosphere has been developed based on a response matrix of the atmosphere to energetic particle incidence. This model has previously been used to determine the spectral form of several ground level neutron events including February 1956 and September/October 1989. Significant validation of the model has been possible using CREAM data flying onboard Concorde during the September/October 1989 events. Further work has been carried out for the current solar maximum, including estimates of the solar particle spectra during the July 2000, April 2001, and October 2003 events and comparisons of predicted atmospheric measurements with limited flight data. Further CREAM data have been obtained onboard commercial airlines and high altitude business jets during quiet time periods. In addition, the atmospheric radiation model, along with solar particle spectra, have been used to calculate the neutron flux and dose rates along several commercial aircraft flight paths including London to Los Angeles. The influence of rigidity cut-off suppression by geomagnetic storms is examined and shows that the received flight dose during disturbed periods can be significantly enhanced compared with quiet periods.

  17. Thermal radiation heat transfer (3rd revised and enlarged edition) (United States)

    Siegel, Robert; Howell, John R.

    This book first reviews the overall aspects and background information related to thermal radiation heat transfer and incorporates new general information, advances in analytical and computational techniques, and new reference material. Coverage focuses on radiation from opaque surfaces, radiation interchange between various types of surfaces enclosing a vacuum or transparent medium, and radiation including the effects of partially transmitting media, such as combustion gases, soot, or windows. Boundary conditions and multiple layers are discussed with information on radiation in materials with nonunity refractive indices.

  18. Differential Radiative Heating Drives Tropical Atmospheric Circulation Weakening (United States)

    Xia, Yan; Huang, Yi


    The tropical atmospheric circulation is projected to weaken during global warming, although the mechanisms that cause the weakening remain to be elucidated. We hypothesize that the weakening is related to the inhomogeneous distribution of the radiative forcing and feedback, which heats the tropical atmosphere in the ascending and subsiding regions differentially and thus requires the circulation to weaken due to energetic constraints. We test this hypothesis in a series of numerical experiments using a fully coupled general circulation model (GCM), in which the radiative forcing distribution is controlled using a novel method. The results affirm the effect of inhomogeneous forcing on the tropical circulation weakening, and this effect is greatly amplified by radiative feedback, especially that of clouds. In addition, we find that differential heating explains the intermodel differences in tropical circulation response to CO2 forcing in the GCM ensemble of the Climate Model Intercomparison Project.

  19. A study of Monte Carlo radiative transfer through fractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P. [Univ. of California, Santa Barbara, CA (United States)] [and others


    An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.

  20. Radiative Transfer Reconsidered as a Quantum Kinetic Theory ...

    Indian Academy of Sciences (India)

    electromagnetic radiation energy (Chandrasekhar 1960; Pomraning 1973; Mihalas. 1978; Oxenius 1986; Milonni ... transfer equation can be inaccurate if the radiation has a narrow spectral band k, sufficiently so that the ... (Wigner) distribution, which can take negative values on phase space volumes of typical extent h3.

  1. Radiative Processes in Astrophysical Gases: From the Intergalactic and Interstellar Medium to Exoplanetary Atmospheres (United States)

    Oklopi'c, Antonija


    This thesis presents theoretical investigations in three areas of astrophysics, all related to radiative processes and interactions between stellar radiation and gaseous media in the Universe, ranging from the intergalactic and interstellar medium to planetary atmospheres. Part I of the thesis consists of two independent investigations in which we study the effects of stellar feedback in high-redshift environments. The topic of Chapter 2 is the intergalactic medium (IGM) in the epoch just after the formation of the first stars in the Universe, but before the cosmic reionization was completed. This epoch is of great interest for the ongoing and future experiments aimed at observing the neutral IGM via the redshifted 21 cm line of hydrogen. We study the effects of resonant scattering of Lyman-α photons produced by early stars on the structure of temperature fluctuations in the IGM. In Chapter 3, we use cosmological hydrodynamic simulations of galaxy evolution to study the effects of stellar feedback on the clumpy structure of star-forming galaxies at i>zproject. Part II of the thesis is devoted to the effects of Raman scattering of stellar radiation in the atmospheres of extrasolar planets. Spectral signatures of Raman scattering imprinted in the geometric albedo spectrum of a gaseous planet carry information about the properties of the planet's atmosphere--its composition, temperature, and the radiation-penetration depth. In Chapter 5, we present the results of radiative transfer calculations including the treatment of Raman scattering for different types of planetary atmospheres and analyze the feasibility of detecting the spectral signatures of Raman scattering in nearby exoplanets. The structure and the intensity of Raman spectral features depends on both the atmospheric properties and the shape of the stellar spectrum irradiating the atmosphere. In Chapter 6, we analyze the diversity of Raman features in the geometric albedo spectra of planets hosted by

  2. HELIOS: A new open-source radiative transfer code (United States)

    Malik, Matej; Grosheintz, Luc; Lukas Grimm, Simon; Mendonça, João; Kitzmann, Daniel; Heng, Kevin


    I present the new open-source code HELIOS, developed to accurately describe radiative transfer in a wide variety of irradiated atmospheres. We employ a one-dimensional multi-wavelength two-stream approach with scattering. Written in Cuda C++, HELIOS uses the GPU’s potential of massive parallelization and is able to compute the TP-profile of an atmosphere in radiative equilibrium and the subsequent emission spectrum in a few minutes on a single computer (for 60 layers and 1000 wavelength bins).The required molecular opacities are obtained with the recently published code HELIOS-K [1], which calculates the line shapes from an input line list and resamples the numerous line-by-line data into a manageable k-distribution format. Based on simple equilibrium chemistry theory [2] we combine the k-distribution functions of the molecules H2O, CO2, CO & CH4 to generate a k-table, which we then employ in HELIOS.I present our results of the following: (i) Various numerical tests, e.g. isothermal vs. non-isothermal treatment of layers. (ii) Comparison of iteratively determined TP-profiles with their analytical parametric prescriptions [3] and of the corresponding spectra. (iii) Benchmarks of TP-profiles & spectra for various elemental abundances. (iv) Benchmarks of averaged TP-profiles & spectra for the exoplanets GJ1214b, HD189733b & HD209458b. (v) Comparison with secondary eclipse data for HD189733b, XO-1b & Corot-2b.HELIOS is being developed, together with the dynamical core THOR and the chemistry solver VULCAN, in the group of Kevin Heng at the University of Bern as part of the Exoclimes Simulation Platform (ESP) [4], which is an open-source project aimed to provide community tools to model exoplanetary atmospheres.-----------------------------[1] Grimm & Heng 2015, ArXiv, 1503.03806[2] Heng, Lyons & Tsai, Arxiv, 1506.05501Heng & Lyons, ArXiv, 1507.01944[3] e.g. Heng, Mendonca & Lee, 2014, ApJS, 215, 4H[4]

  3. Principal Component-Based Radiative Transfer Model (PCRTM) for Hyperspectral Sensors. Part I; Theoretical Concept (United States)

    Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen


    Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.

  4. The Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP: experimental design and protocols

    Directory of Open Access Journals (Sweden)

    C. Goldblatt


    Full Text Available Accurate radiative transfer calculation is fundamental to all climate modelling. For deep palaeoclimate, and increasingly terrestrial exoplanet climate science, this brings both the joy and the challenge of exotic atmospheric compositions. The challenge here is that most standard radiation codes for climate modelling have been developed for modern atmospheric conditions and may perform poorly away from these. The palaeoclimate or exoclimate modeller must either rely on these or use bespoke radiation codes, and in both cases rely on either blind faith or ad hoc testing of the code. In this paper, we describe the protocols for the Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP to systematically address this. This will compare as many radiation codes used for palaeoclimate or exoplanets as possible, with the aim of identifying the ranges of far-from-modern atmospheric compositions in which the codes perform well. This paper describes the experimental protocol and invites community participation in the project through 2017–2018.

  5. HO-CHUNK: Radiation Transfer code (United States)

    Whitney, Barbara A.; Wood, Kenneth; Bjorkman, J. E.; Cohen, Martin; Wolff, Michael J.


    HO-CHUNK calculates radiative equilibrium temperature solution, thermal and PAH/vsg emission, scattering and polarization in protostellar geometries. It is useful for computing spectral energy distributions (SEDs), polarization spectra, and images.

  6. Dynamic measurement of near-field radiative heat transfer. (United States)

    Lang, S; Sharma, G; Molesky, S; Kränzien, P U; Jalas, T; Jacob, Z; Petrov, A Yu; Eich, M


    Super-Planckian near-field radiative heat transfer allows effective heat transfer between a hot and a cold body to increase beyond the limits long known for black bodies. Until present, experimental techniques to measure the radiative heat flow relied on steady-state systems. Here, we present a dynamic measurement approach based on the transient plane source technique, which extracts thermal properties from a temperature transient caused by a step input power function. Using this versatile method, that requires only single sided contact, we measure enhanced radiative conduction up to 16 times higher than the blackbody limit on centimeter sized glass samples without any specialized sample preparation or nanofabrication.

  7. Radiative heat transfer estimation in pipes with various wall emissivities (United States)

    Robin, Langebach; Christoph, Haberstroh


    Radiative heat transfer is usually of substantial importance in cryogenics when systems are designed and thermal budgeting is carried out. However, the contribution of pipes is commonly assumed to be comparably low since the warm and cold ends as well as their cross section are fairly small. Nevertheless, for a first assessment of each pipe rough estimates are always appreciated. In order to estimate the radiative heat transfer with traditional “paper and pencil“ methods there is only one analytical case available in literature - the case of plane-parallel plates. This case can only be used to calculate the theoretical lower and the upper asymptotic values of the radiative heat transfer, since pipe wall radiation properties are not taken into account. For this paper we investigated the radiative heat transfer estimation in pipes with various wall emissivities with the help of numerical simulations. Out of a number of calculation series we could gain an empirical extension for the used approach of plane-parallel plates. The model equation can be used to carry out enhanced paper and pencil estimations for the radiative heat transfer through pipes without demanding numerical simulations.

  8. Radiative heat transfer in low-dimensional systems -- microscopic mode (United States)

    Woods, Lilia; Phan, Anh; Drosdoff, David


    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  9. Heat radiation and transfer for point particles in arbitrary geometries (United States)

    Asheichyk, Kiryl; Müller, Boris; Krüger, Matthias


    We study heat radiation and heat transfer for pointlike particles in a system of other objects. Starting from exact many-body expressions found from scattering theory and fluctuational electrodynamics, we find that transfer and radiation for point particles are given in terms of the Green's function of the system in the absence of the point particles. These general expressions contain no approximation for the surrounding objects. As an application, we compute the heat transfer between two point particles in the presence of a sphere of arbitrary size and show that the transfer is enhanced by several orders of magnitude through the presence of the sphere, depending on the materials. Furthermore, we compute the heat emission of a point particle in front of a planar mirror. Finally, we show that a particle placed inside a spherical mirror cavity does not radiate energy.

  10. Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Penner, J.E. [Lawrence Livermore National Lab., CA (United States). Global Climate Research Div.


    Carbonaceous particles in the atmosphere may both scatter and absorb solar radiation. The fraction associated with the absorbing component is generally referred to as black carbon (BC) and is mainly produced from incomplete combustion processes. The fraction associated with condensed organic compounds is generally referred to as organic carbon (OC) or organic matter and is mainly scattering. Absorption of solar radiation by carbonaceous aerosols may heat the atmosphere, thereby altering the vertical temperature profile, while scattering of solar radiation may lead to a net cooling of the atmosphere/ocean system. Carbonaceous aerosols may also enhance the concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the fine particle (D < 2.5 {mu}m) source rates of both OC and BC. The source rates for anthropogenic organic aerosols may be as large as the source rates for anthropogenic sulfate aerosols, suggesting a similar magnitude of direct forcing of climate. The role of BC in decreasing the amount of reflected solar radiation by OC and sulfates is discussed. The total estimated forcing depends on the source estimates for organic and black carbon aerosols which are highly uncertain. The role of organic aerosols acting as cloud condensation nuclei (CCN) is also described.

  11. High-Order Thermal Radiative Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Douglas Nelson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cleveland, Mathew Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wollaeger, Ryan Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warsa, James S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The objective of this research is to asses the sensitivity of the linearized thermal radiation transport equations to finite element order on unstructured meshes and to investigate the sensitivity of the nonlinear TRT equations due to evaluating the opacities and heat capacity at nodal temperatures in 2-D using high-order finite elements.

  12. Super-Planckian far-field radiative heat transfer (United States)

    Fernández-Hurtado, V.; Fernández-Domínguez, A. I.; Feist, J.; García-Vidal, F. J.; Cuevas, J. C.


    We present here a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. To guide the search for super-Planckian far-field radiative heat transfer, we make use of the theory of fluctuational electrodynamics and derive a relation between the far-field radiative heat transfer and the directional absorption efficiency of the objects involved. Guided by this relation, and making use of state-of-the-art numerical simulations, we show that the far-field radiative heat transfer between highly anisotropic objects can largely overcome the black-body limit when some of their dimensions are smaller than the thermal wavelength. In particular, we illustrate this phenomenon in the case of suspended pads made of polar dielectrics like SiN or SiO2. These structures are widely used to measure the thermal transport through nanowires and low-dimensional systems and can be employed to test our predictions. Our work illustrates the dramatic failure of the classical theory to predict the far-field radiative heat transfer between micro- and nanodevices.

  13. A computation of the stratospheric diabatic circulation using an accurate radiative transfer model (United States)

    Rosenfield, Joan E.; Schoeberl, Mark R.; Geller, Marvin A.


    The global diabatic circulation is computed for the months of January, April, July and October over the altitude region 100 to 0.1 mb using an accurate troposphere-stratosphere radiative transfer model, SBUV and SME ozone data, and NMC temperatures. There is high correlation between the level of wave activity and the local departure of the atmosphere from radiative equilibrium. An excess in the globally averaged net stratospheric heating from 40 to 50 km is computed for all months, and a deficit from 50 to 60 km is computed during solstice. A 20 percent uniform reduction in ozone from 40 to 50 km, or a temperature perturbation with an increase of 5 K at 1 mb, will bring the atmosphere into global radiative equilibrium without significant impact on the diabatic circulation. In the transitional months of April and October, the net heating in the fall hemispheres are very similar, while substantial differences exist between the spring hemispheres.

  14. Early warning of atmospheric regime transitions using transfer operators (United States)

    Tantet, Alexis; Dijkstra, Henk


    The existence of persistent midlatitude atmospheric regimes, such as blocking events, with time scales larger than 5-10 days and indications of preferred transition paths between them motivates the development of early-warning indicators of regime transitions. Here, we use a barotropic model of the northern midlatitudes winter flow to study such meta-stable regimes. We look at estimates of transfer operators acting on densities evolving on a reduced phase space spanned by the first Empirical Orthogonal Functions of the streamfunction and develop an early-warning indicator of zonal to blocked flow transition. The study of the spectra of transfer operators estimated for different lags reveals a multi-level structure in the flow as well as the effect of memory on the reduced dynamics due to past interactions between the resolved and unresolved variables. The slowest motions in the reduced phase space are thereby found to have time scales larger than 8 days and to behave as Markovian for larger lags. These motions are associated with meta-stable regimes and their transitions and can be detected as almost-invariant sets of the transfer operator. The early-warning indicator is based on the action on an initial density of products of the transfer operators estimated for sufficiently long lags, making use of the semi-group property of these operators and shows relatively good Peirce skill score. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths as the manifestation of barotropic instability. Finally, even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty.

  15. BARTTest: Community-Standard Radiative-Transfer Tests II: Retrieval Models (United States)

    Harrington, Joseph; Himes, Michael D.; Cubillos, Patricio; Blecic, Jasmina; Challener, Ryan C.


    Atmospheric radiative transfer codes are used both to predict planetary spectra and in retrieval algorithms to interpret data. Observational plans, theoretical models, and scientific results thus depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. The community needs a suite of test calculations with analytically, numerically, or at least communally verified results. We therefore offer the Bayesian Atmospheric Radiative Transfer Test Suite, or BARTTest, a collection of tests offered for community use and development.This presentation focuses on Bayesian retrieval. Tests include adding noise to and retrieving the BARTTest forward models using the photometric bandpasses and spectroscopic resolutions of the Spitzer, Hubble, Webb, and larger space telescopes for several model exoplanets. A community-verified test on real data for WASP-12b is also included.BARTTest is open-source software. We propose this test suite as a standard for verifying radiative-transfer codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  16. Effects of hydrodynamics and thermal radiation in the atmosphere after comet impacts (United States)

    Nemchinov, I. V.; Popova, M. P.; Shubadeeva, L. P.; Shuvalov, V. V.; Svetsov, V. V.


    Radiation phenomena in the atmosphere after impacts of cosmic bodies have special features in comparison with the surface nuclear explosions. First, initial concentration of energy after the impact is lower, and second, a wake after the passage of the meteoroid through the atmosphere has a dramatic effect on the atmospheric flow and radiation transfer. Consequently, scaling laws can not be employed for prediction of the flow in the atmosphere and the light flux on the Earth's surface. If a density of high-velocity impactor is low relative to the ground, as in a case of a comet impact on rocks, a major part of the kinetic energy is converted to internal energy of dense hot vapors. But radiation effects can be essential even for fairly low velocities of the impactor. To clarify this issue we have undertaken calculations of 100-Mt explosions at the Earth's surface caused by small comets with velocities from 10 to 70 km/sec. That is, the initial concentration of energy has been varied. The calculations have shown that for velocities of the comet greater or about 20 km/sec a portion of energy emitted from the fireball exceeds 20% of the total energy of the explosion and this quantity does not change very much with the velocity. Other aspects of this investigation are discussed.

  17. Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data (United States)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.


    NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.

  18. Radiation Heat Transfer Procedures for Space-Related Applications (United States)

    Chai, John C.


    Over the last contract year, a numerical procedure for combined conduction-radiation heat transfer using unstructured grids has been developed. As a result of this research, one paper has been published in the Numerical Heat Transfer Journal. One paper has been accepted for presentation at the International Center for Heat and Mass Transfer's International Symposium on Computational Heat Transfer to be held in Australia next year. A journal paper is under review by my NASA's contact. A conference paper for the ASME National Heat Transfer conference is under preparation. In summary, a total of four (4) papers (two journal and two conference) have been published, accepted or are under preparation. There are two (2) to three (3) more papers to be written for the project. In addition to the above publications, one book chapter, one journal paper and six conference papers have been published as a result of this project. Over the last contract year, the research project resulted in one Ph.D. thesis and partially supported another Ph.D. student. My NASA contact and myself have formulated radiation heat transfer procedures for materials with different indices of refraction and for combined conduction-radiation heat transfer. We are trying to find other applications for the procedures developed under this grant.

  19. Transfer of polarized light in planetary atmospheres basic concepts and practical methods

    CERN Document Server

    Hovenier, Joop W; Domke, Helmut


    The principal elements of the theory of polarized light transfer in planetary atmospheres are expounded in a systematic but concise way. Basic concepts and practical methods are emphasized, both for single and multiple scattering of electromagnetic radiation by molecules and particles in the atmospheres of planets in the Solar System, including the Earth, and beyond. A large part of the book is also useful for studies of light scattering by particles in comets, the interplanetary and interstellar medium, circumstellar disks, reflection nebulae, water bodies like oceans and suspensions of particles in a gas or liquid in the laboratory. Throughout the book symmetry principles, such as the reciprocity principle and the mirror symmetry principle, are employed. In this way the theory is made more transparent and easier to understand than in most papers on the subject. In addition, significant computational reductions, resulting from symmetry principles, are presented. Hundreds of references to relevant literature ...

  20. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, A., E-mail: [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Giorgetta, J.-L.; Ricaud, J.-P. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Jamme, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Rouam, V.; Wien, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Laprevote, O. [Laboratoire de Spectrometrie de Masse, ICSN-CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette (France); Laboratoire de Chimie-Toxicologie Analytique et cellulaire, IFR 71, Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France); Refregiers, M. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France)


    Highlights: Black-Right-Pointing-Pointer Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. Black-Right-Pointing-Pointer The set up allows photoionization up to 20 eV. Black-Right-Pointing-Pointer Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. Black-Right-Pointing-Pointer Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4-20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  1. Vector radiative transfer code SORD: Performance analysis and quick start guide (United States)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Alexander; Holben, Brent; Kokhanovsky, Alexander


    We present a new open source polarized radiative transfer code SORD written in Fortran 90/95. SORD numerically simulates propagation of monochromatic solar radiation in a plane-parallel atmosphere over a reflecting surface using the method of successive orders of scattering (hence the name). Thermal emission is ignored. We did not improve the method in any way, but report the accuracy and runtime in 52 benchmark scenarios. This paper also serves as a quick start user's guide for the code available from, from the JQSRT website, or from the corresponding (first) author.

  2. Radiative heat transfer by the Monte Carlo method

    CERN Document Server

    Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko


    This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering

  3. Atmospheric Ionizing Radiation (AIR) ER-2 Preflight Analysis (United States)

    Tai, Hsiang; Wilson, John W.; Maiden, D. L.


    Atmospheric ionizing radiation (AIR) produces chemically active radicals in biological tissues that alter the cell function or result in cell death. The AIR ER-2 flight measurements will enable scientists to study the radiation risk associated with the high-altitude operation of a commercial supersonic transport. The ER-2 radiation measurement flights will follow predetermined, carefully chosen courses to provide an appropriate database matrix which will enable the evaluation of predictive modeling techniques. Explicit scientific results such as dose rate, dose equivalent rate, magnetic cutoff, neutron flux, and air ionization rate associated with those flights are predicted by using the AIR model. Through these flight experiments, we will further increase our knowledge and understanding of the AIR environment and our ability to assess the risk from the associated hazard.

  4. Modeling photosynthesis of discontinuous plant canopies by linking the Geometric Optical Radiative Transfer model with biochemical processes

    Directory of Open Access Journals (Sweden)

    Q. Xin


    Full Text Available Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily timescales. We demonstrate that ambient CO2 concentrations influence daytime vegetation photosynthesis, which needs to be considered in biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  5. Modeling photosynthesis of discontinuous plant canopies by linking the Geometric Optical Radiative Transfer model with biochemical processes (United States)

    Xin, Q.; Gong, P.; Li, W.


    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily timescales. We demonstrate that ambient CO2 concentrations influence daytime vegetation photosynthesis, which needs to be considered in biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  6. Ultraviolet radiation climatology of the Earth`s surface and lower atmosphere. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Madronich, S. [National Center for Atmospheric Research, Boulder, CO (United States). Atmospheric Chemistry Div.; Stamnes, K. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics


    Ultraviolet (UV) radiation is the driving force of tropospheric chemistry and is furthermore detrimental to most living tissues. A three year modeling program was carried out to characterize the UV radiation in the lower atmosphere, with the objective of development a climatology of UV biologically active radiation, and of photo-dissociation reaction rates that are key to tropospheric chemistry. A comprehensive model, the Tropospheric Ultraviolet-Visible (TUV) model, was developed and made available to the scientific community. The model incorporates updated spectroscopic data, recent advances in radiative transfer theory, and allows flexible customization for the needs of different users. The TUV model has been used in conjunction with satellite-derived measurements of total atmospheric ozone and cloud amount, to develop a global climatology of UV radiation reaching the surface of the Earth. Initial validation studies are highly encouraging, showing that model predictions agree with direct measurements to ca. 5--10% at times when environmental conditions are well known, and to 10--30% for monthly averages when local environmental conditions can only be estimated remotely from satellite-based measurements. Additional validation studies are continuing.

  7. Effects of a large asteroid impact on ultra-violet radiation in the atmosphere (United States)

    Ishida, Haruma; Kaiho, Kunio; Asano, Shoji


    The effects of sulfate aerosols produced as a result of an asteroid impact on the ultra-violet (UV) radiation are investigated by radiative transfer calculations. After an impact, a reduction in the solar incident radiation and ozone depletion are expected to occur, each of which, in turn, are counteract their on effects on the UV radiation. We estimate reasonable ranges for the amounts of sulfate aerosols and ozone depletion after an impact, and calculate the UV radiation at the Earth's surface, besides absorption in the stratosphere, by changing the aerosol and ozone concentrations within the ranges. The calculation results reveal that the UV-B (0.28-0.315 μm) radiation depends on both aerosol and ozone concentrations. The reflection of UV-B radiation by sulfate aerosols cancels out the increase in surface UV-B radiation due to ozone depletion. This study suggests that, immediately after the Chicxulub impact event, the UV-B radiation at the Earth's surface would not increase as compared to the pre-impact levels, since large amount of sulfate aerosols would exist in the stratosphere. Several years after the impact, the UV-B radiation would increase, because most of the sulfate aerosols would be removed from the atmosphere but their amount would still be enough to destroy ozone and keep it below the harmful level for terrestrial life. In case of the Chicxulub impact, an increase in the UV-B radiation would have occurred several years after the impact and might have contributed to the mass extinction at the end of the Cretaceous period.

  8. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne


    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  9. Radiative Heat Transfer Between Core-Shell Nanoparticles


    Nikbakht, Moladad


    Radiative heat transfer in systems with core-shell nanoparticles may exhibit not only a combination of disparate physical properties of its components but also further enhanced properties that arise from the synergistic properties of the core and shell components. We study the thermal conductance between two core-shell nanoparticles (CSNPs). We predict that the radiative heat transfer in a dimer of Au@SiO$_2$ CSNPs (i.e., silica-coated gold nanoparticles) could be enhanced several order of ma...

  10. Numerical test of an inverse polarized radiative transfer algorithm

    CERN Document Server

    Viik, T


    A procedure is tested with which to determine the single-scattering albedo from polarization measurements of the angle-dependent intensity at two locations within, or on the boundaries of, a homogeneous finite or infinite atmosphere that scatters radiation according to the Rayleigh law with true absorption.

  11. Atmospheric turbulence affects wind turbine nacelle transfer functions

    Directory of Open Access Journals (Sweden)

    C. M. St. Martin


    Full Text Available Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE 1.5sle model, we calculate empirical nacelle transfer functions (NTFs and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a steeper NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence

  12. Polarized scattered light from self-luminous exoplanets. Three-dimensional scattering radiative transfer with ARTES (United States)

    Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.


    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron

  13. Radiative transfer simulations for the MADRAS imager of Megha ...

    Indian Academy of Sciences (India)

    These simulations have been performed by employing an in-house polarized radiative transfer code for raining systems ranging from depression and tropical ... with a parametric study of the effect of four hydrometeors (cloud liquid water, cloud ice, precipitating water and precipitating ice) on the brightness temperatures.

  14. Radiative transfer code: Application to the calculation of PAR

    Indian Academy of Sciences (India)

    Radiative transfer code: Application to the calculation of PAR. DEVRED EMMANUEL, DUBUISSON .... water vapor from Leckner (1978), with absorption coefficients for these gases taken from Gregg and. Carder (1990). ... law for the size distribution. The particle size ranges from 0.01 "m to 50 "m. 3. Validation of the code.

  15. An artificial neural network based fast radiative transfer model for ...

    Indian Academy of Sciences (India)

    the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of ... in construction, purpose and design and already in use are used. The fast RT model is able to ... porates measurements from various instruments in comparison with other ...

  16. Heat transfer with thermal radiation on MHD particle–fluid ...

    Indian Academy of Sciences (India)


    Sep 12, 2017 ... In this article, effects of heat transfer on particle–fluid suspension induced by metachronal wave have been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm's law and Roseland's approximation. The governing flow problem for ...

  17. Thermosolutal MHD flow and radiative heat transfer with viscous ...

    African Journals Online (AJOL)

    This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...

  18. Free convection effects and radiative heat transfer in MHD Stokes ...

    Indian Academy of Sciences (India)

    The present note deals with the effects of radiative heat transfer and free convection in MHD for a flow of an electrically conducting, incompressible, dusty viscous fluid past an impulsively started vertical non-conducting plate, under the influence of transversely applied magnetic field. The heat due to viscous dissipation and ...

  19. Thermosolutal MHD flow and radiative heat transfer with viscous ...

    African Journals Online (AJOL)

    porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic solutions for the steady velocity, temperature and concentration. The parameters ...


    Energy Technology Data Exchange (ETDEWEB)

    Kopparla, Pushkar; Yung, Yuk L. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Natraj, Vijay; Swain, Mark R. [Jet Propulsion Laboratory (NASA-JPL), Pasadena, CA (United States); Zhang, Xi [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States); Wiktorowicz, Sloane J., E-mail: [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States)


    We present a multiple scattering vector radiative transfer model that produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet’s atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partially covered by clouds or hazes, exhibit larger contrasts in polarized light when compared to clear atmospheres. This effect can potentially be used to identify patchy clouds in exoplanets. Given a set of full phase polarimetric measurements, this model can constrain the geometric albedo, properties of scattering particles in the atmosphere, and the longitude of the ascending node of the orbit. The model is used to interpret new polarimetric observations of HD 189733b in a companion paper.

  1. Shortwave radiative heating rate profiles in hazy and clear atmosphere: a sensitivity study (United States)

    Doppler, Lionel; Fischer, Jürgen; Ravetta, François; Pelon, Jacques; Preusker, René


    Aerosols have an impact on shortwave heating rate profiles (additional heating or cooling). In this survey, we quantify the impact of several key-parameters on the heating rate profiles of the atmosphere with and without aerosols. These key-parameters are: (1) the atmospheric model (tropical, midlatitude summer or winter, US Standard), (2) the integrated water vapor amount (IWV ), (3) the ground surface (flat and rough ocean, isotropic surface albedo for land), (4) the aerosol composition (dusts, soots or maritimes mixtures with respect to the OPAC-database classification), (5) the aerosol optical depth and (6) vertical postion, and (7) the single-scattering albedo (?o) of the aerosol mixture. This study enables us to evaluate which parameters are most important to take into account in a radiative energy budget of the atmosphere and will be useful for a future study: the retrieval of heating rates profiles from satellite data (CALIPSO, MODIS, MERIS) over the Mediterranean Sea. All the heating rates are computed by using the vector irradiances computed at each pressure level in the spectral interval 0.2 - 3.6μm (shortwave) by the 1D radiative transfer model for atmosphere and ocean: MOMO (Matrix-Operator MOdel) of the Institute for Space Science, FU Berlin 1

  2. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    Energy Technology Data Exchange (ETDEWEB)

    Dana E. Veron


    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  3. Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Mission and Vision Statements for the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mission The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface. Vision To provide a detailed and accurate description of the Earth atmosphere in diverse climate regimes to resolve the uncertainties in climate and Earth system models toward the development of sustainable solutions for the nation's energy and environmental challenges.

  4. Surface energy budget from a Titan GCM with realistic radiative transfer (United States)

    Lora, Juan M.; Russell, J.; Lunine, J.


    The existence of Titan's seasonal convective cloud activity, despite the atmosphere's huge thermal inertia, has been explained as resulting from variations in surface temperatures that drive cloud formation. General circulation models (GCMs) that produce significant summer precipitation have typically employed simplified radiative transfer that allows the summer polar surface to receive the maximum insolation, thus allowing vigorous convection to occur there. However, surface energetics from a GCM with nongray radiative transfer that uses optical properties derived from Cassini/Huygens data, and correlated k coefficients, indicate that this may not be entirely realistic. The surface energy budget in equilibrium is a balance between net surface radiation and turbulent surface fluxes of latent and sensible energy; because the maximum surface insolation oscillates seasonally between mid-latitudes, so too do the turbulent fluxes. Thus, the destabilizing influence of surface energy fluxes into the atmosphere with respect to convection is lower than previously suggested at the poles, but higher near midlatitudes. Methane is not available in infinite supply at the surface, and therefore sensible heat flux plays an equally important role as evaporation in balancing the surface radiative imbalance. The modeled moist static energy maximum also oscillates only between midlatitudes, in part because polar surface methane is limited as a source, boosting the possibility of midlatitude clouds. This may help to explain the observed persistence of southern mid-latitude clouds as the seasons change.

  5. Stochastic radiative transfer model for mixture of discontinuous vegetation canopies

    Energy Technology Data Exchange (ETDEWEB)

    Shabanov, Nikolay V. [Department of Geography, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States)]. E-mail:; Huang, D. [Brookhaven National Laboratory, Environmental Sciences Department, P.O. Box 5000, Upton, NY 11973 (United States); Knjazikhin, Y. [Department of Geography, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Dickinson, R.E. [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Myneni, Ranga B. [Department of Geography, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States)


    Modeling of the radiation regime of a mixture of vegetation species is a fundamental problem of the Earth's land remote sensing and climate applications. The major existing approaches, including the linear mixture model and the turbid medium (TM) mixture radiative transfer model, provide only an approximate solution to this problem. In this study, we developed the stochastic mixture radiative transfer (SMRT) model, a mathematically exact tool to evaluate radiation regime in a natural canopy with spatially varying optical properties, that is, canopy, which exhibits a structured mixture of vegetation species and gaps. The model solves for the radiation quantities, direct input to the remote sensing/climate applications: mean radiation fluxes over whole mixture and over individual species. The canopy structure is parameterized in the SMRT model in terms of two stochastic moments: the probability of finding species and the conditional pair-correlation of species. The second moment is responsible for the 3D radiation effects, namely, radiation streaming through gaps without interaction with vegetation and variation of the radiation fluxes between different species. We performed analytical and numerical analysis of the radiation effects, simulated with the SMRT model for the three cases of canopy structure: (a) non-ordered mixture of species and gaps (TM); (b) ordered mixture of species without gaps; and (c) ordered mixture of species with gaps. The analysis indicates that the variation of radiation fluxes between different species is proportional to the variation of species optical properties (leaf albedo, density of foliage, etc.) Gaps introduce significant disturbance to the radiation regime in the canopy as their optical properties constitute major contrast to those of any vegetation species. The SMRT model resolves deficiencies of the major existing mixture models: ignorance of species radiation coupling via multiple scattering of photons (the linear mixture

  6. Discrete Anisotropic Radiative Transfer (DART 5 for Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of Natural and Urban Landscapes

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Gastellu-Etchegorry


    Full Text Available Satellite and airborne optical sensors are increasingly used by scientists, and policy makers, and managers for studying and managing forests, agriculture crops, and urban areas. Their data acquired with given instrumental specifications (spectral resolution, viewing direction, sensor field-of-view, etc. and for a specific experimental configuration (surface and atmosphere conditions, sun direction, etc. are commonly translated into qualitative and quantitative Earth surface parameters. However, atmosphere properties and Earth surface 3D architecture often confound their interpretation. Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for linking remotely sensed data to the surface parameters. Still, many existing models are oversimplifying the Earth-atmosphere system interactions and their parameterization of sensor specifications is often neglected or poorly considered. The Discrete Anisotropic Radiative Transfer (DART model is one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths. It has been developed since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental configuration and instrumental specification. It is freely distributed for research and teaching activities. This paper presents DART physical bases and its latest functionality for simulating imaging spectroscopy of natural and urban landscapes with atmosphere, including the perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR waveform and photon counting signals.

  7. Design of horizontal fin array for radiative heat transfer (United States)

    Ali, Mutari Hajara; Shuaibu, Bilyaminu


    This paper presents the analytical and simulation results of optimizing the radiative heat transfer performance of horizontal rectangular fin array heat sink. The fin thickness and inter-fin spacing need to be properly designed to eliminate surface area changes accompanying the creation of fin structures. Analytical expression for this change in area is developed in this work and used in identifying the optimum number of fins and their corresponding inter-fin spacing for a given rectangular space of a radiative heat sink. COMSOL Multiphysics software is used to simulate the structures considered in the above analysis. The performances of the simulated structures as radiative heat sinks are compared with the ones suggested by the developed empirical equation. The results from the two methods agreed with each successfully in the sense that the structures with large numerical radiative power from the simulations are found to also be the optimum structures suggested by the analytical formula derived in this work.

  8. An anisotropic diffusion approximation to thermal radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Seth R.; Larsen, Edward W., E-mail:, E-mail: [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)


    This paper describes an anisotropic diffusion (AD) method that uses transport-calculated AD coefficients to efficiently and accurately solve the thermal radiative transfer (TRT) equations. By assuming weak gradients and angular moments in the radiation intensity, we derive an expression for the radiation energy density that depends on a non-local function of the opacity. This nonlocal function is the solution of a transport equation that can be solved with a single steady-state transport sweep once per time step, and the function's second angular moment is the anisotropic diffusion tensor. To demonstrate the AD method's efficacy, we model radiation flow down a channel in 'flatland' geometry. (author)

  9. Coupling hydrodynamics with comoving frame radiative transfer. I. A unified approach for OB and WR stars (United States)

    Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.


    Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims: We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (non-LTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods: Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results: The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant ζPup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions: For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard β-law occur.

  10. Critical ingredients of Type Ia supernova radiative-transfer modelling (United States)

    Dessart, Luc; Hillier, D. John; Blondin, Stéphane; Khokhlov, Alexei


    We explore the physics of Type Ia supernova (SN Ia) light curves and spectra using the 1D non-local thermodynamic equilibrium (non-LTE) time-dependent radiative-transfer code CMFGEN. Rather than adjusting ejecta properties to match observations, we select as input one `standard' 1D Chandrasekhar-mass delayed-detonation hydrodynamical model, and then explore the sensitivity of radiation and gas properties of the ejecta on radiative-transfer modelling assumptions. The correct computation of SN Ia radiation is not exclusively a solution to an `opacity problem', characterized by the treatment of a large number of lines. We demonstrate that the key is to identify and treat important atomic processes consistently. This is not limited to treating line blanketing in non-LTE. We show that including forbidden-line transitions of metals, and in particular Co, is increasingly important for the temperature and ionization of the gas beyond maximum light. Non-thermal ionization and excitation are also critical since they affect the colour evolution and the ΔM15 decline rate of our model. While impacting little the bolometric luminosity, a more complete treatment of decay routes leads to enhanced line blanketing, e.g. associated with 48Ti in the U and B bands. Overall, we find that SN Ia radiation properties are influenced in a complicated way by the atomic data we employ, so that obtaining converged results is a real challenge. Nonetheless, with our fully fledged CMFGEN model, we obtain good agreement with the golden standard Type Ia SN 2005cf in the optical and near-IR, from 5 to 60 d after explosion, suggesting that assuming spherical symmetry is not detrimental to SN Ia radiative-transfer modelling at these times. Multi-D effects no doubt matter, but they are perhaps less important than accurately treating the non-LTE processes that are crucial to obtain reliable temperature and ionization structures.

  11. Toward a new radiative-transfer-based model for remote sensing of terrestrial surface albedo. (United States)

    Cui, Shengcheng; Zhen, Xiaobing; Wang, Zhen; Yang, Shizhi; Zhu, WenYue; Li, Xuebin; Huang, Honghua; Wei, Heli


    This Letter formulates a simple yet accurate radiative-transfer-based theoretical model to characterize the fraction of radiation reflected by terrestrial surfaces. Emphasis is placed on the concept of inhomogeneous distribution of the diffuse sky radiation function (DSRF) and multiple interaction effects (MIE). Neglecting DSRF and MIE produces a -1.55% mean relative bias in albedo estimates. The presented model can elucidate the impact of DSRF on the surface volume scattering and geometry-optical scattering components, respectively, especially for slant illuminations with solar zenith angles (SZA) larger than 50°. Particularly striking in the comparisons between our model and ground-based observations is the achievement of the agreement level, indicating that our model can effectively resolve the longstanding issue in accurately estimating albedo at extremely large SZAs and is promising for land-atmosphere interactions studies.

  12. Fire Intensity Data for Validation of the Radiative Transfer Equation

    Energy Technology Data Exchange (ETDEWEB)

    Blanchat, Thomas K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jernigan, Dann A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.

  13. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere (United States)

    Zhang, Yuzhong; Forrister, Haviland; Liu, Jiumeng; Dibb, Jack; Anderson, Bruce; Schwarz, Joshua P.; Perring, Anne E.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Wang, Yuhang; Nenes, Athanasios; Weber, Rodney J.


    Carbonaceous aerosols affect the global radiative balance by absorbing and scattering radiation, which leads to warming or cooling of the atmosphere, respectively. Black carbon is the main light-absorbing component. A portion of the organic aerosol known as brown carbon also absorbs light. The climate sensitivity to absorbing aerosols rapidly increases with altitude, but brown carbon measurements are limited in the upper troposphere. Here we present aircraft observations of vertical aerosol distributions over the continental United States in May and June 2012 to show that light-absorbing brown carbon is prevalent in the troposphere, and absorbs more short-wavelength radiation than black carbon at altitudes between 5 and 12 km. We find that brown carbon is transported to these altitudes by deep convection, and that in-cloud heterogeneous processing may produce brown carbon. Radiative transfer calculations suggest that brown carbon accounts for about 24% of combined black and brown carbon warming effect at the tropopause. Roughly two-thirds of the estimated brown carbon forcing occurs above 5 km, although most brown carbon is found below 5 km. The highest radiative absorption occurred during an event that ingested a wildfire plume. We conclude that high-altitude brown carbon from biomass burning is an unappreciated component of climate forcing.

  14. Radiative Heat Transfer Modeling in Fibrous Porous Media (United States)

    Sobhani, Sadaf; Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Wray, Alan; Mansour, Nagi N.


    Phenolic-Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center as a lightweight thermal protection system material for successful atmospheric entries. The objective of the current work is to compute the effective radiative conductivity of fibrous porous media, such as preforms used to make PICA, to enable the efficient design of materials that can meet the thermal performance goals of forthcoming space exploration missions.

  15. Overview of atmospheric ionizing radiation (AIR) Research: SST-present (United States)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    The Supersonic Transport (SST) program proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits 1990 with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum June 1997 and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  16. Advanced Computational Methods for Thermal Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,


    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  17. Radiation and dynamics in Titan's atmosphere: Investigations of Titan's present and past climate (United States)

    Lora, Juan Manuel

    This dissertation explores the coupling between radiative and three-dimensional dynamical processes in the atmosphere of Titan, and their impact on the seasonal climate and recent paleoclimate. First, a simple calculation is used to demonstrate the atmospheric attenuation on the distribution of insolation. The maximum diurnal-mean surface insolation does not reach the polar regions in summertime, and this impacts both surface temperatures and their destabilizing effect on the atmosphere. Second, a detailed two-stream, fully non-gray radiative transfer model, written specifically for Titan but with high flexibility, is used to calculate radiative fluxes and the associated heating rates. This model reproduces Titan's temperature structure from the surface through the stratopause, over nearly six decades of pressure. Additionally, a physics parameterizations package is developed for Titan, in part based on similar methods from Earth atmospheric models, for use in a Titan general circulation model (GCM). Simulations with this model, including Titan's methane cycle, reproduce two important observational constraints---Titan's temperature profile and atmospheric superrotation---that have proven difficult to satisfy simultaneously for previous models. Simulations with the observed distribution of seas are used to examine the resulting distribution of cloud activity, atmospheric humidity, and temperatures, and show that these are consistent with dry mid- and low-latitudes, while the observed polar temperatures are reproduced as a consequence of evaporative cooling. Analysis of the surface energy budget shows that turbulent fluxes react to the surface insolation, confirming the importance of its distribution. Finally, the GCM is used to simulate Titan's climate during snapshots over the past 42 kyr that capture the amplitude range of variations in eccentricity and longitude of perihelion. The results show that the atmosphere is largely insensitive to orbital forcing, and

  18. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)


    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  19. Radiative charge transfer in collisions of C with He+

    CERN Document Server

    Babb, James F


    Radiative charge exchange collisions between a carbon atom C(${}^3$P) and a helium ion He+, both in their ground state, are investigated theoretically. Detailed quantum chemistry calculations are carried out to obtain potential energy curves and transition dipole matrix elements for doublet and quartet molecular states of the HeC+ cation. Radiative charge transfer cross sections and rate coefficients are calculated and are found at thermal and lower energies to be large compared to those for direct charge transfer. The present results might be applicable to modelling the complex interplay of [C II] (or C+), C, and CO at the boundaries of photon dominated regions (PDRs) and in xray dominated regions (XDRs), where the abundance of He+ affects the abundance of CO.

  20. Asymmetric radiation transfer based on linear light-matter interaction (United States)

    Jia, Zi-xun; Shuai, Yong; Zhang, Jia-hui; Tan, He-ping


    In this paper, asymmetric radiation transfer based on linear light-matter interaction has been proposed. Two naturally different numerical methods, finite difference time domain (FDTD) and rigorous coupled wave analysis (RCWA), are utilized to verify that asymmetric radiation transfer can exist for linear plasmonic meta-material. The overall asymmetry has been introduced to evaluate bifacial transmission. Physics for the asymmetric optical responses have been understood via electromagnetic field distributions. Dispersion relation for surface plasmon polariton (SPP) and temporal coupled mode theory (TCMT) have been employed to verify the physics discussed in the paper. Geometric effects and the disappearing of asymmetric transmission have also been investigated. The results gained herein broaden the cognition of linear optical system, facilitate the design of novel energy harvesting device.

  1. An alternative method for calibration of narrow band radiometer using a radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, J; Wolfram, E; D' Elia, R [Centro de Investigaciones en Laseres y Aplicaciones, CEILAP (CITEFA-CONICET), Juan B. de La Salle 4397 (B1603ALO), Villa Martelli, Buenos Aires (Argentina); Zamorano, F; Casiccia, C [Laboratorio de Ozono y Radiacion UV, Universidad de Magallanes, Punta Arenas (Chile) (Chile); Rosales, A [Universidad Nacional de la Patagonia San Juan Bosco, UNPSJB, Facultad de Ingenieria, Trelew (Argentina) (Argentina); Quel, E, E-mail: [Universidad Nacional de la Patagonia Austral, Unidad Academica Rio Gallegos Avda. Lisandro de la Torre 1070 ciudad de Rio Gallegos-Sta Cruz (Argentina) (Argentina)


    The continual monitoring of solar UV radiation is one of the major objectives proposed by many atmosphere research groups. The purpose of this task is to determine the status and degree of progress over time of the anthropogenic composition perturbation of the atmosphere. Such changes affect the intensity of the UV solar radiation transmitted through the atmosphere that then interacts with living organisms and all materials, causing serious consequences in terms of human health and durability of materials that interact with this radiation. One of the many challenges that need to be faced to perform these measurements correctly is the maintenance of periodic calibrations of these instruments. Otherwise, damage caused by the UV radiation received will render any one calibration useless after the passage of some time. This requirement makes the usage of these instruments unattractive, and the lack of frequent calibration may lead to the loss of large amounts of acquired data. Motivated by this need to maintain calibration or, at least, know the degree of stability of instrumental behavior, we have developed a calibration methodology that uses the potential of radiative transfer models to model solar radiation with 5% accuracy or better relative to actual conditions. Voltage values in each radiometer channel involved in the calibration process are carefully selected from clear sky data. Thus, tables are constructed with voltage values corresponding to various atmospheric conditions for a given solar zenith angle. Then we model with a radiative transfer model using the same conditions as for the measurements to assemble sets of values for each zenith angle. The ratio of each group (measured and modeled) allows us to calculate the calibration coefficient value as a function of zenith angle as well as the cosine response presented by the radiometer. The calibration results obtained by this method were compared with those obtained with a Brewer MKIII SN 80 located in the

  2. TWILIGHT: A Cellular Framework for Three-Dimensional Radiative Transfer (United States)

    Khatami, David; Madore, Barry


    We describe a new framework for solving three-dimensional radiative transfer of arbitrary geometries, including a full characterisation of the wavelength-dependent anisotropic scattering, absorption, and thermal reemission of light by dust. By adopting a cellular approach to discretising the light and dust, the problem can be efficiently solved through a fully deterministic iterative process. As a proof of concept we present TWILIGHT, our implementation of the cellular approach, in order to demonstrate and benchmark the new method. TWILIGHT simultaneously renders over one hundred unique images of a given environment with no additional slowdown, enabling a close study of inclination effects of three-dimensional dust geometries. In addition to qualitative rendering tests, TWILIGHT is successfully tested against two Monte-Carlo radiative transfer benchmarks, producing similar brightness profiles at varying inclinations. With the proof-of-concept established, we describe the improvements and current developments underway using the cellular framework, including a technique to resolve the subgrid physics of dust radiative transfer from micron-scale grain models to kiloparsec-sized dust environments.

  3. NUCAPS: NOAA Unique Combined Atmospheric Processing System Outgoing Longwave Radiation (OLR) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of Outgoing Longwave Radiation (OLR) from the NOAA Unique Combined Atmospheric Processing System (NUCAPS). NUCAPS was developed by the...

  4. Dust vertical profile impact on global radiative forcing estimation using a coupled chemical-transport–radiative-transfer model

    Directory of Open Access Journals (Sweden)

    L. Zhang


    Full Text Available Atmospheric mineral dust particles exert significant direct radiative forcings and are important drivers of climate and climate change. We used the GEOS-Chem global three-dimensional chemical transport model (CTM coupled with the Fu-Liou-Gu (FLG radiative transfer model (RTM to investigate the dust radiative forcing and heating rate based on different vertical profiles for April 2006. We attempt to actually quantify the sensitivities of radiative forcing to dust vertical profiles, especially the discrepancies between using realistic and climatological vertical profiles. In these calculations, dust emissions were constrained by observations of aerosol optical depth (AOD. The coupled calculations utilizing a more realistic dust vertical profile simulated by GEOS-Chem minimize the physical inconsistencies between 3-D CTM aerosol fields and the RTM. The use of GEOS-Chem simulated vertical profile of dust extinction, as opposed to the FLG prescribed vertical profile, leads to greater and more spatially heterogeneous changes in the estimated radiative forcing and heating rate produced by dust. Both changes can be attributed to a different vertical structure between dust and non-dust source regions. Values of the dust vertically resolved AOD per grid level (VRAOD are much larger in the middle troposphere, though smaller at the surface when the GEOS-Chem simulated vertical profile is used, which leads to a much stronger heating rate in the middle troposphere. Compared to the FLG vertical profile, the use of GEOS-Chem vertical profile reduces the solar radiative forcing at the top of atmosphere (TOA by approximately 0.2–0.25 W m−2 over the African and Asian dust source regions. While the Infrared (IR radiative forcing decreases 0.2 W m−2 over African dust belt, it increases 0.06 W m−2 over the Asian dust belt when the GEOS-Chem vertical profile is used. Differences in the solar radiative forcing at the surface between the use of the GEOS-Chem and

  5. Lidar Atmospheric Sensing Experiment (LASE) Data Obtained During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) (United States)

    National Aeronautics and Space Administration — The Lidar Atmospheric Sensing Experiment (LASE) Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) data set was collected over the Western...

  6. Radiation doses from Hanford site releases to the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Farris, W.T.; Napier, B.A.; Ikenberry, T.A.


    Radiation doses to individuals were estimated for the years 1944-1992. The dose estimates were based on the radioactive-releases from the Hanford Site in south central Washington. Conceptual models and computer codes were used to reconstruct doses through the early 1970s. The published Hanford Site annual environmental data were used to complete the does history through 1992. The most significant exposure pathway was found to be the consumption of cow`s milk containing iodine-131. For the atmospheric pathway, median cumulative dose estimates to the thyroid of children ranged from < 0.1 to 235 rad throughout the area studied. The geographic distribution of the dose levels was directly related to the pattern of iodine-131 deposition and was affected by the distribution of commercial milk and leafy vegetables. For the atmospheric pathway, the-highest estimated cumulative-effective-dose-equivalent (EDE) to an adult was estimated to be 1 rem at Ringold, Washington for the period 1944-1992. For the Columbia River pathway, cumulative EDE estimates ranged from <0.5 to l.5 rem cumulative dose to maximally exposed adults downriver from the Hanford Site for the years 1944-1992. The most significant river exposure pathway was consumption of resident fish containing phosphorus-32 and zinc-65.

  7. A Solar Radiation Parameterization for Atmospheric Studies. Volume 15 (United States)

    Chou, Ming-Dah; Suarez, Max J. (Editor)


    The solar radiation parameterization (CLIRAD-SW) developed at the Goddard Climate and Radiation Branch for application to atmospheric models are described. It includes the absorption by water vapor, O3, O2, CO2, clouds, and aerosols and the scattering by clouds, aerosols, and gases. Depending upon the nature of absorption, different approaches are applied to different absorbers. In the ultraviolet and visible regions, the spectrum is divided into 8 bands, and single O3 absorption coefficient and Rayleigh scattering coefficient are used for each band. In the infrared, the spectrum is divided into 3 bands, and the k-distribution method is applied for water vapor absorption. The flux reduction due to O2 is derived from a simple function, while the flux reduction due to CO2 is derived from precomputed tables. Cloud single-scattering properties are parameterized, separately for liquid drops and ice, as functions of water amount and effective particle size. A maximum-random approximation is adopted for the overlapping of clouds at different heights. Fluxes are computed using the Delta-Eddington approximation.

  8. Contributions of the ARM Program to Radiative Transfer Modeling for Climate and Weather Applications (United States)

    Mlawer, Eli J.; Iacono, Michael J.; Pincus, Robert; Barker, Howard W.; Oreopoulos, Lazaros; Mitchell, David L.


    Accurate climate and weather simulations must account for all relevant physical processes and their complex interactions. Each of these atmospheric, ocean, and land processes must be considered on an appropriate spatial and temporal scale, which leads these simulations to require a substantial computational burden. One especially critical physical process is the flow of solar and thermal radiant energy through the atmosphere, which controls planetary heating and cooling and drives the large-scale dynamics that moves energy from the tropics toward the poles. Radiation calculations are therefore essential for climate and weather simulations, but are themselves quite complex even without considering the effects of variable and inhomogeneous clouds. Clear-sky radiative transfer calculations have to account for thousands of absorption lines due to water vapor, carbon dioxide, and other gases, which are irregularly distributed across the spectrum and have shapes dependent on pressure and temperature. The line-by-line (LBL) codes that treat these details have a far greater computational cost than can be afforded by global models. Therefore, the crucial requirement for accurate radiation calculations in climate and weather prediction models must be satisfied by fast solar and thermal radiation parameterizations with a high level of accuracy that has been demonstrated through extensive comparisons with LBL codes. See attachment for continuation.

  9. A new nonlocal thermodynamical equilibrium radiative transfer method for cool stars. Method and numerical implementation (United States)

    Lambert, J.; Josselin, E.; Ryde, N.; Faure, A.


    Context. The solution of the nonlocal thermodynamical equilibrium (non-LTE) radiative transfer equation usually relies on stationary iterative methods, which may falsely converge in some cases. Furthermore, these methods are often unable to handle large-scale systems, such as molecular spectra emerging from, for example, cool stellar atmospheres. Aims: Our objective is to develop a new method, which aims to circumvent these problems, using nonstationary numerical techniques and taking advantage of parallel computers. Methods: The technique we develop may be seen as a generalization of the coupled escape probability method. It solves the statistical equilibrium equations in all layers of a discretized model simultaneously. The numerical scheme adopted is based on the generalized minimum residual method. Results: The code has already been applied to the special case of the water spectrum in a red supergiant stellar atmosphere. This demonstrates the fast convergence of this method, and opens the way to a wide variety of astrophysical problems.

  10. PCA-based radiative transfer: Improvements to aerosol scheme, vertical layering and spectral binning (United States)

    Kopparla, Pushkar; Natraj, Vijay; Limpasuvan, Drew; Spurr, Robert; Crisp, David; Shia, Run-Lie; Somkuti, Peter; Yung, Yuk L.


    The Principal Component Analysis (PCA)-based fast radiative transfer method has been shown to have at least an order of magnitude increase in computational speed while maintaining an overall accuracy of 0.01% (compared to line-by-line calculations) over narrow and broad spectral bands. In this paper, we describe several improvements made to the method and provide a discussion of the method's performance over a diverse set of atmospheric profiles and land surface types. We also test the model over uniform pressure level profiles. The method is now capable of providing atmospheric spectra with residuals under 0.1%, calculated with respect to the continuum, throughout the shortwave region between 0.3 - 3 μm at high resolution, which is substantial improvement over errors reported in earlier work. Future directions for applications and further optimization are examined.

  11. Modelling artificial night-sky brightness with a polarized multiple scattering radiative transfer computer code (United States)

    Kerola, Dana Xavier


    As part of an ongoing investigation of radiative effects produced by hazy atmospheres, computational procedures have been developed for use in determining the brightening of the night sky as a result of urban illumination. The downwardly and upwardly directed radiances of multiply scattered light from an offending metropolitan source are computed by a straightforward Gauss-Seidel (G-S) iterative technique applied directly to the integrated form of Chandrasekhar's vectorized radiative transfer equation. Initial benchmark night-sky brightness tests of the present G-S model using fully consistent optical emission and extinction input parameters yield very encouraging results when compared with the double scattering treatment of Garstang, the only full-fledged previously available model.

  12. A field test of a simple stochastic radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, N. [Science Applications International Corp., San Diego, CA (United States)


    The problem of determining the effect of clouds on the radiative energy balance of the globe is of well-recognized importance. One can in principle solve the problem for any given configuration of clouds using numerical techniques. This knowledge is not useful however, because of the amount of input data and computer resources required. Besides, we need only the average of the resulting solution over the grid scale of a general circulation model (GCM). Therefore, we are interested in estimating the average of the solutions of such fine-grained problems using only coarse grained data, a science or art called stochastic radiation transfer. Results of the described field test indicate that the stochastic description is a somewhat better fit to the data than is a fractional cloud cover model, but more data are needed. 1 ref., 3 figs.

  13. Estimation of presampling modulation transfer function in synchrotron radiation microtomography

    CERN Document Server

    Mizutani, Ryuta; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio


    The spatial resolution achieved by recent synchrotron radiation microtomographs should be estimated from the modulation transfer function (MTF) on the micrometer scale. Step response functions of a synchrotron radiation microtomograph were determined by the slanted edge method by using high-precision surfaces of diamond crystal and ion-milled aluminum wire. Tilted reconstruction was introduced to enable any edge to be used as the slanted edge by defining the reconstruction pixel matrix in an arbitrary orientation. MTFs were estimated from the step response functions of the slanted edges. The obtained MTFs coincided with MTF values estimated from square-wave patterns milled on the aluminum surface. Although x-ray refraction influences should be taken into account to evaluate MTFs, any flat surfaces with nanometer roughness can be used to determine the spatial resolutions of microtomographs.

  14. Nonequilibrium Fluctuational Quantum Electrodynamics: Heat Radiation, Heat Transfer, and Force (United States)

    Bimonte, Giuseppe; Emig, Thorsten; Kardar, Mehran; Krüger, Matthias


    Quantum-thermal fluctuations of electromagnetic waves are the cornerstone of quantum statistics and inherent to phenomena such as thermal radiation and van der Waals forces. Although the principles are found in elementary texts, recent experimental and technological advances make it necessary to come to terms with counterintuitive consequences at short scales—the so-called near-field regime. We focus on three manifestations: (a) The Stefan-Boltzmann law describes radiation from macroscopic bodies but fails for small objects. (b) The heat transfer between two bodies at close proximity is dominated by evanescent waves and can be orders of magnitude larger than the classical (propagating) contribution. (c) Casimir forces, dominant at submicron separation, are not sufficiently explored for objects at different temperatures (at least experimentally). We explore these phenomena using fluctuational quantum electrodynamics (QED), introduced by Rytov in the 1950s, combined with scattering formalisms. This enables investigation of different material properties, shapes, separations, and arrangements.

  15. Unravelling radiative energy transfer in solid-state lighting (United States)

    Melikov, Rustamzhon; Press, Daniel Aaron; Ganesh Kumar, Baskaran; Sadeghi, Sadra; Nizamoglu, Sedat


    Today, a wide variety of organic and inorganic luminescent materials (e.g., phosphors, quantum dots, etc.) are being used for lighting and new materials (e.g., graphene, perovskite, etc.) are currently under investigation. However, the understanding of radiative energy transfer is limited, even though it is critical to understand and improve the performance levels of solid-state lighting devices. In this study, we derived a matrix approach that includes absorption, reabsorption, inter-absorption and their iterative and combinatorial interactions for one and multiple types of fluorophores, which is simplified to an analytical matrix. This mathematical approach gives results that agree well with the measured spectral and efficiency characteristics of color-conversion light-emitting diodes. Moreover, it also provides a deep physical insight by uncovering the entire radiative interactions and their contribution to the output optical spectrum. The model is universal and applicable for all kinds of fluorophores.

  16. Uncertainities in carbon dioxide radiative forcing in atmospheric general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Cess, R.D.; Zhang, M.H. (State Univ. of New York, Stony Brook, NY (United States)); Potter, G.L.; Gates, W.L.; Taylor, K.E. (Lawrence Livermore National Laboratory, CA (United States)); Colman, R.A.; Fraser, J.R.; McAvaney, B.J. (Bureau of Meterorology Research Centre, Victoria (Australia)); Dazlich, D.A.; Randall, D.A. (Colorado State Univ., Fort Collins, CO (United States)); Del Genio, A.D.; Lacis, A.A. (Goddard Institute for Space Studies, New York, NY (United States)); Esch, M.; Roeckner, E. (Max Planck Institute for Meteorology, Hamburg (Germany)); Galin, V. (Russian Academy of Sciences, Moscow (Russian Federation)); Hack, J.J.; Kiehl, J.T. (National Center for Atmospheric Research, Boulder, CO (United States)); Ingram, W.J. (Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)); Le Treut, H.; Lli, Z.X. (Laboratoire de Meteorologie Dynamique, Paris (France)); Liang, X.Z.; Wang, W.C. (State Univ. of New York, Albany, NY (United States)); Mahfouf,


    Global warming, caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.

  17. A multilevel method for conductive-radiative heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Banoczi, J.M.; Kelley, C.T. [North Carolina State Univ., Raleigh, NC (United States)


    We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.

  18. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region (United States)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping


    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  19. Numerical Radiative Transfer and the Hydrogen Reionization of the Universe (United States)

    Petkova, M.


    One of the most interesting questions in cosmology is to understand how the Universe evolved from its nearly uniform and simple state briefly after the Big Bang to the complex state we see around us today. In particular, we would like to explain how galaxies have formed, and why they have the properties that we observe in the local Universe. Computer simulations play a highly important role in studying these questions, because they allow one to follow the dynamical equations of gravity and hydrodynamics well into the non-linear regime of the growth of cosmic structures. The current generation of simulation codes for cosmological structure formation calculates the self-gravity of dark matter and cosmic gas, and the fluid dynamics of the cosmic gas, but radiation processes are typically not taken into account, or only at the level of a spatially uniform, externally imposed background field. However, we know that the radiation field has been highly inhomogeneous during certain phases of the growth of structure, and may have in fact provided important feedback effects for galaxy formation. In particular, it is well established that the diffuse gas in the universe was nearly fully neutral after recombination at very high redshift, but today this gas is highly ionized. Sometime during the evolution, a transition to the ionized state must have occurred, a process we refer to as reionization. The UV radiation responsible for this reionization is now permeating the universe and may in part explain why small dwarf galaxies have so low luminosities. It is therefore clear that accurate and self-consistent studies of galaxy formation and of the dynamics of the reionization process should ideally be done with simulation codes that directly include a treatment of radiative transfer, and that account for all relevant source and sink terms of the radiation. We present a novel numerical implementation of radiative transfer in the cosmological smoothed particle hydrodynamics (SPH

  20. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes


    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  1. Radiative Transfer Study of Exposure of Terrestrial and Martian Organisms During a Large Solar Flare (United States)

    Scalo, J.; Smith, D. S.; Wheeler, J. C.


    We have developed a Monte Carlo code for calculations of the transport of high-energy irradiation of the atmospheres of ancient and contemporary Earth and Mars by solar flares and stellar explosions. We have calculated the dose spectrum to which surface organisms would be exposed during a large solar flare. We include details of Compton scattering and X-ray photoabsorption and an approximate treatment of the redistribution of the incident energy to ultraviolet and visible radiation by secondary electron excitation of atmospheric molecules, and its transfer to the surface, using Rayleigh scattering and scaled terrestrial ozone distribution as examples of UV shields. We find that for thick atmospheres (column densities greater than about 100 g/cm2 much of the incident ionizing radiation can be redistributed to biologically and chemically important ultraviolet wavelengths, a significant fraction of which can reach the surface. This radiation will consist primarily of a large number of auroral-like emission bands. This result is relevant to Earth and early Mars. For contemporary Mars, most of the energy reaches the surface as X-rays due to Compton scattering and photoabsorption, with a characteristic spectrum that is essentially independent of atmospheric composition. We calculate the dose per unit flare energy for water and for a DNA action spectrum, and we estimate the frequency of biologically significant flares from the Sun at Mars as a function of time using present-day flare statistics and studies of solar proxies of various ages. The question of sterilization of exposed organisms at the Martian surface is discussed using lethal dose data for prokaryotic and eukaryotic terrestrial organisms.

  2. Radiation Transfer Calculations and Assessment of Global Warming by CO2

    Directory of Open Access Journals (Sweden)

    Hermann Harde


    Full Text Available We present detailed line-by-line radiation transfer calculations, which were performed under different atmospheric conditions for the most important greenhouse gases water vapor, carbon dioxide, methane, and ozone. Particularly cloud effects, surface temperature variations, and humidity changes as well as molecular lineshape effects are investigated to examine their specific influence on some basic climatologic parameters like the radiative forcing, the long wave absorptivity, and back-radiation as a function of an increasing CO2 concentration in the atmosphere. These calculations are used to assess the CO2 global warming by means of an advanced two-layer climate model and to disclose some larger discrepancies in calculating the climate sensitivity. Including solar and cloud effects as well as all relevant feedback processes our simulations give an equilibrium climate sensitivity of CS = 0.7°C (temperature increase at doubled CO2 and a solar sensitivity of SS = 0.17°C (at 0.1% increase of the total solar irradiance. Then CO2 contributes 40% and the Sun 60% to global warming over the last century.

  3. Radiative transfer model for contaminated slabs : experimental validations

    CERN Document Server

    Andrieu, François; Schmitt, Bernard; Douté, Sylvain; Brissaud, Olivier


    This article presents a set of spectro-goniometric measurements of different water ice samples and the comparison with an approximated radiative transfer model. The experiments were done using the spectro-radiogoniometer described in Brissaud et al. (2004). The radiative transfer model assumes an isotropization of the flux after the second interface and is fully described in Andrieu et al. (2015). Two kind of experiments were conducted. First, the specular spot was closely investigated, at high angular resolution, at the wavelength of $1.5\\,\\mbox{\\mu m}$, where ice behaves as a very absorbing media. Second, the bidirectional reflectance was sampled at various geometries, including low phase angles on 61 wavelengths ranging from $0.8\\,\\mbox{\\mu m}$ to $2.0\\,\\mbox{\\mu m}$. In order to validate the model, we made a qualitative test to demonstrate the relative isotropization of the flux. We also conducted quantitative assessments by using a bayesian inversion method in order to estimate the parameters (e.g. sampl...

  4. Discrete ordinates quadrature schemes for multidimensional radiative transfer (United States)

    Koch, R.; Krebs, W.; Wittig, S.; Viskanta, R.


    The fundamental problem of applying the method of discrete ordinates to radiative transfer predictions is the selection of the discrete directions and their associated weights. Both the accuracy of the solution and the computational effort depend on the angular discretization. This paper provides a sound mathematical methodology for the derivation of angular quadratures. By applying the collocation principle, the errors introduced by a quadrature are analyzed and the constituting equations of angular quadratures are identified. Special emphasis is placed on the rotational invariance of the qudrature schemes. Multidimensional radiative transfer in participating media with isotropic and anisotropic scattering is accounted for thoughout the analysis. A major goal of the present study is the construction of a new principle for multidimensional angular quadratures which is essentially a generalization of the principles employed for the well-known S(sub n) quadratures. The new construction principle has two major advantages. First, it enables a very flexible tailoring of quadratures according to the actual requirements. Second, compared to the S(sub n) quadratures, the new types of quadratures provide a higher accuracy while using the same number of nodal points.

  5. Polarized radiative transfer modeling of warped and clumpy dusty tori (United States)

    Marin, F.; Schartmann, M.


    Context. Active galactic nuclei (AGN) are anisotropic objects surrounded by an optically thick equatorial medium whose true geometry still defies observers. Aims: We aim to explore the optical scattering-induced polarization that emerges from clumpy and warped dusty tori to check whether they can fit the unified model predictions. Methods: We ran polarized radiative transfer simulations in a set of warped and non-warped clumpy tori to explore the differences induced by distorted dust distributions. We then included warped tori in a more complex model representative of an AGN to check, using polarimetry and imaging methods, whether warps can reproduce the expected polarization dichotomy between Seyfert-I and Seyfert-II AGN. Results: The main results from our simulations highlight that isolated warped structures imprint the polarization degree and angle with distinctive signatures at Seyfert-I orientations. Included in an AGN model, the signatures of warps are easily (but not always) washed out by multiple scattering in a clumpy environment. Imaging polarimetry may help to detect warped tori, but we prove that warps can exist in AGN circumnuclear regions without contradicting observations. Conclusions: Two warped tori with a non-significant difference in geometry in terms of photometry or spectroscopy can have entirely different signatures in polarimetry. Testing the geometry of any alternative model to the usual dusty torus using polarized radiative transfer is a necessary approach to verify or reject a hypothesis.

  6. Impact of surface inhomogeneity on solar radiative transfer under overcast conditions (United States)

    Li, Zhanqing; Cribb, Maureen C.; Trishchenko, Alexander P.


    The goal of this study was to assess the ability of the Moderate-Resolution Transmittance 4 (MODTRAN-4) code to simulate high-resolution shortwave (SW) fluxes given detailed and complete input information under overcast conditions. The study underlines the impact of surface inhomogeneity on the closure of SW radiative transfer. It also leads to a method of estimating surface spectral areal-mean albedo from downwelling solar transmittance measurements. The investigation made use of ample Atmospheric Radiation Measurement (ARM) field data collected by a suite of instruments, including broadband and narrowband radiometers and spectrometers, cloud radar and lidar, microwave radiometer, atmospheric sounding instruments, and satellite data. Furnishing the MODTRAN-4 code with observed atmospheric, cloud, and surface parameters generates spectral solar transmittance at the surface and reflectance at the top of the atmosphere (TOA). The transmittances were compared with the Rotating Shadowband Spectroradiometer measurements and showed significant discrepancies in the near-infrared (NIR) region, the bulk of which was attributed to the use of unrepresentative surface spectral albedos. A field campaign was undertaken to collect surface albedo data for a wide variety of land cover types near the ARM Central Facility. The sampled data were combined with thematic mapper/Landsat-based land cover classification data to map surface spectral albedo. Substitution of the derived areal-mean spectral albedo into the MODTRAN-4 model eliminates major discrepancies in the NIR, and also leads to good agreements with surface solar broadband fluxes and TOA satellite spectral reflectance. On the basis of these findings, one may use downwelling spectral transmittance data, together with detailed cloud and atmospheric information, to estimate surface effective areal-mean albedo. The estimated values agree well with those derived from the ground survey data. Following the method, a data set of

  7. Effect of high linear energy transfer radiation on biological membranes

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, D.; Srivastava, M.; Kale, R.K. [Radiation Biology Lab., Jawaharlal Nehru Univ., New Delhi (India); Sarma, A. [Nuclear Science Centre, New Delhi (India)


    Cellular membranes are vital elements, and their integrity is extremely essential for the viability of the cells. We studied the effects of high linear energy transfer (LET) radiation on the membranes. Rabbit erythrocytes (1 x 10{sup 7} cells/ml) and microsomes (0.6 mg protein/ml) prepared from liver of rats were irradiated with {sup 7}Li ions of energy 6.42 MeV/u and {sup 16}O ions of energy 4.25 MeV/u having maximum LET values of 354 keV/{mu}m and 1130 keV/{mu}m, respectively. {sup 7}Li- and {sup 16}O-induced microsomal lipid peroxidation was found to increase with fluence. The {sup 16}O ions were more effective than {sup 7}Li ions, which could be due to the denser energy distribution in the track and the yield of free radicals. These findings suggested that the biological membranes could be peroxidized on exposure to high-LET radiation. Inhibition of the lipid peroxidation was observed in the presence of a membrane-active drug, chlorpromazine (CPZ), which could be due to scavenging of free radicals (mainly HO. and ROO.), electron donation, and hydrogen transfer reactions. The {sup 7}Li and {sup 16}O ions also induced hemolysis in erythrocytes. The extent of hemolysis was found to be a function of time and fluence, and showed a characteristic sigmoidal pattern. The {sup 16}O ions were more effective in the lower fluence range than {sup 7}Li ions. These results were compared with lipid peroxidation and hemolysis induced by gamma-radiation. (orig.) With 7 figs., 3 tabs., 30 refs.

  8. Comparison of linear forms of the radiative transfer equation with analytic Jacobians. (United States)

    Huang, Bormin; Smith, William L; Huang, Hung-Lung; Woolf, Harold M


    Determining the Jacobians of the radiative transfer equation (RTE) is important to the qualities of the simultaneous retrieval of geophysical parameters from satellite radiance observations and the assimilation of radiance data into a numerical weather prediction system. Two linear forms of the RTE with analytic Jacobians are formulated. The first linear form has approximate analytic Jacobians, which involves some monochromatic approximation applied to a fast transmittance model. Unlike previous research, which lacks the transmittance Jacobian with respect to the atmospheric temperature profile, this form is complete in the sense that the transmittance Jacobians with respect to atmospheric temperature and absorbing constituent profiles are both present. The second linear form has exact analytic Jacobians derived consistently from the same fast transmittance model without using any monochromatic approximation. By numerical comparison between the two linear forms for the NOAA-12 High-Resolution Infrared Sounder, we show significant errors in the linear form with approximate analytic Jacobians. The relative absolute linearization error from the linear form with approximate analytic Jacobians is shown to be 2-4 orders of magnitude larger than that from the linear form with exact analytic Jacobians, even for the case of a 0.1% perturbation of the U.S. Standard Atmosphere. The errors unnecessarily complicate the ill-posed retrieval problem of atmospheric remote sensing and can be avoided if the correct linear form of the RTE with exact analytic Jacobians is adopted.

  9. Thermal protection for hypervelocity flight in earth's atmosphere by use of radiation backscattering ablating materials (United States)

    Howe, John T.; Yang, Lily


    A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.

  10. Ionizing radiation in earth's atmosphere and in space near earth. (United States)


    The Civil Aerospace Medical Institute of the FAA is charged with identifying health hazards in air travel and in : commercial human space travel. This report addresses one of these hazards ionizing radiation. : Ionizing radiation is a subatomic p...

  11. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    Energy Technology Data Exchange (ETDEWEB)

    Keene, William C. [University of Virginia; Long, Michael S. [University of Virginia


    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences

  12. Effect of atmospheric gases, surface albedo and cloud overlap on the absorbed solar radiation

    Directory of Open Access Journals (Sweden)

    Ashok Sinha

    Full Text Available Recent studies have provided new evidence that models may systematically underestimate cloud solar absorption compared to observations. This study extends previous work on this "absorption anomaly'' by using observational data together with solar radiative transfer parameterisations to calculate fs (the ratio of surface and top of the atmosphere net cloud forcings and its latitudinal variation for a range of cloud types. Principally, it is found that (a the zonal mean behaviour of fs varies substantially with cloud type, with the highest values obtained for low clouds; (b gaseous absorption and scattering can radically alter the pattern of the variation of fs with latitude, but gaseous effects cannot in general raise fs to the level of around 1.5 as recently determined; (c the importance of the gaseous contribution to the atmospheric ASR is such that whilst fs rises with surface albedo, the net cloud contribution to the atmospheric ASR falls; (d the assumed form of the degree of cloud overlap in the model can substantially affect the cloud contribution to the atmospheric ASR whilst leaving the parameter fs largely unaffected; (e even large uncertainties in the observed optical depths alone cannot account for discrepancies apparent between modelled and newly observed cloud solar absorption. It is concluded that the main source of the anomaly may derive from the considerable uncertainties regarding impure droplet microphysics rather than, or together with, uncertainties in macroscopic quantities. Further, variable surface albedos and gaseous effects may limit the use of contemporaneous satellite and ground-based measurements to infer the cloud solar absorption from the parameter fs.

  13. Incident energy transfer equation and its solution by collocation spectral method for one-dimensional radiative heat transfer (United States)

    Hu, Zhang-Mao; Tian, Hong; Li, Ben-Wen; Zhang, Wei; Yin, Yan-Shan; Ruan, Min; Chen, Dong-Lin


    The ray-effect is a major discretization error in the approximate solution method for the radiative transfer equation (RTE). To overcome this problem, the incident energy transfer equation (IETE) is proposed. The incident energy, instead of radiation intensity, is obtained by directly solving this new equation. Good numerical properties are found for the incident energy transfer equation. To show the properties of numerical solution, the collocation spectral method (CSM) is employed to solve the incident energy transfer equation. Three test cases are taken into account to verify the performance of the incident energy transfer equation. The result shows that the radiative heat flux obtained based on IETE is much more accurate than that based on RTE, which means that the IETE is very effective in eliminating the impacts of ray-effect on the heat flux. However, on the contrary, the radiative intensity obtained based on IETE is less accurate than that based on RTE due to the ray-effect. So, this equation is more suitable for those radiative heat transfer problems, in which the radiation heat flux and incident energy are needed rather than the radiation intensity.

  14. Radiative transfer theory applied to ocean bottom modeling. (United States)

    Quijano, Jorge E; Zurk, Lisa M


    Research on the propagation of acoustic waves in the ocean bottom sediment is of interest for active sonar applications such as target detection and remote sensing. The interaction of acoustic energy with the sea floor sublayers is usually modeled with techniques based on the full solution of the wave equation, which sometimes leads to mathematically intractable problems. An alternative way to model wave propagation in layered media containing random scatterers is the radiative transfer (RT) formulation, which is a well established technique in the electromagnetics community and is based on the principle of conservation of energy. In this paper, the RT equation is used to model the backscattering of acoustic energy from a layered elastic bottom sediment containing distributions of independent scatterers due to a constant single frequency excitation in the water column. It is shown that the RT formulation provides insight into the physical phenomena of scattering and conversion of energy between waves of different polarizations.

  15. Radiative Transfer Theory Verified by Controlled Laboratory Experiments (United States)

    Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur


    We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.

  16. Gas transfer between the atmosphere and irrigated sugarcane plantation sites under different rainfall in Hawai'i (United States)

    Miyazawa, Y.; Giambelluca, T. W.; Crow, S. E.; Mudd, R. G.; Youkhana, A.; Nullet, M.; Nakahata, M.


    Sugarcane plantation land cover is increasing in area in Brazil, South Asia and the Pacific Islands because of the growing demand for sugar and biofuel production. While a large portion of sugarcane cultivated in Brazil is rain-fed and experiences drought influences on gas exchange, sugarcane in Hawai'i is thought to be buffered from drought effects because it is drip irrigated. Knowledge about carbon sequestration and evapotranspiration rates is fundamental both for the prediction of sugar and biofuel production and for water resource management for the large plantations. To understand gas transfer under spatially and temporally heterogeneous environments, we investigated the leaf- soil- and stand-scale gas transfer processes at two irrigated sugarcane plantation study sites in Hawai'i with contrasting rainfall. Gas and energy transfers were monitored using eddy covariance systems for a full- and later half- crop cycle. Leaf ecophysiological traits were measured for stands of different ages to evaluate the effects of stand age on gas transfer. Carbon sequestration rates (Fc) showed a strong relationship with solar radiation with small differences between sites. Latent heat flux expressed as the evapotranspiration rates (ET) also had a strong relationship with solar radiation, but showed seasonality due to variations in biological control (surface conductance) and atmospheric evaporative demand. The difference in ET and its responses to environments was less clear partly buffered by the differences in the stand age and seasons. The stable Fc-solar radiation relationship despite the variation in surface conductance was partly due to the saturation of net photosynthetic rates with intercellular CO2 concentration and the low sensitivity of net photosynthesis to variations in surface conductance in sugarcane with the C4 photosynthesis pathway. The response of gas transfer to periodic irrigation, rainfall and age-related changes in leaf ecophysiological traits will be

  17. The role of DYNAMO in situ observations in improving NASA CERES-like daily surface and atmospheric radiative flux estimates (United States)

    Wang, Hailan; Su, Wenying; Loeb, Norman G.; Achuthavarier, Deepthi; Schubert, Siegfried D.


    The daily surface and atmospheric radiative fluxes from NASA Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1 degree (SYN1deg) Ed3A are among the most widely used data to study cloud-radiative feedback. The CERES SYN1deg data are based on Fu-Liou radiative transfer computations that use specific humidity (Q) and air temperature (T) from NASA Global Modeling and Assimilation Office (GMAO) reanalyses as inputs and are therefore subject to the quality of those fields. This study uses in situ Q and T observations collected during the Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign to augment the input stream used in the NASA GMAO reanalysis and assess the impact on the CERES daily surface and atmospheric longwave estimates. The results show that the assimilation of DYNAMO observations considerably improves the vertical profiles of analyzed Q and T over and near DYNAMO stations by moistening and warming the lower troposphere and upper troposphere and drying and cooling the mid-upper troposphere. As a result of these changes in Q and T, the computed CERES daily surface downward longwave flux increases by about 5 W m-2, due mainly to the warming and moistening in the lower troposphere; the computed daily top-of-atmosphere (TOA) outgoing longwave radiation increases by 2-3 W m-2 during dry periods only. Correspondingly, the estimated local atmospheric longwave radiative cooling enhances by about 5 W m-2 (7-8 W m-2) during wet (dry) periods. These changes reduce the bias in the CERES SYN1deg-like daily longwave estimates at both the TOA and surface and represent an improvement over the DYNAMO region.

  18. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation (United States)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang; Chen, Shiji


    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau (TP) are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ˜0.128 and 0.47 m, and ˜0.223 and 0.01 m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47 × 10-2 and 7.13 × 10-3, and 2.91 × 10-3 and 1.96 × 10-3, for banana plantation and alpine meadow areas, respectively.

  19. Skill Assessment of a Spectral Ocean-Atmosphere Radiative Model (United States)

    Gregg, Watson, W.; Casey, Nancy W.


    Ocean phytoplankton, detrital material, and water absorb and scatter light spectrally. The Ocean- Atmosphere Spectral Irradiance Model (OASIM) is intended to provide surface irradiance over the oceans with sufficient spectral resolution to support ocean ecology, biogeochemistry, and heat exchange investigations, and of sufficient duration to support inter-annual and decadal investigations. OASIM total surface irradiance (integrated 200 nm to 4 microns) was compared to in situ data and three publicly available global data products at monthly 1-degree resolution. OASIM spectrally-integrated surface irradiance had root mean square (RMS) difference= 20.1 W/sq m (about 11%), bias=1.6 W/sq m (about 0.8%), regression slope= 1.01 and correlation coefficient= 0.89, when compared to 2322 in situ observations. OASIM had the lowest bias of any of the global data products evaluated (ISCCP-FD, NCEP, and ISLSCP 11), and the best slope (nearest to unity). It had the second best RMS, and the third best correlation coefficient. OASIM total surface irradiance compared well with ISCCP-FD (RMS= 20.7 W/sq m; bias=-11.4 W/sq m, r=0.98) and ISLSCP II (RMS =25.2 W/sq m; bias= -13.8 W/sq m; r=0.97), but less well with NCEP (RMS =43.0 W/sq m ;bias=-22.6 W/sq m; x=0.91). Comparisons of OASIM photosynthetically available radiation (PAR) with PAR derived from SeaWiFS showed low bias (-1.8 mol photons /sq m/d, or about 5%), RMS (4.25 mol photons /sq m/d ' or about 12%), near unity slope (1.03) and high correlation coefficient (0.97). Coupled with previous estimates of clear sky spectral irradiance in OASIM (6.6% RMS at 1 nm resolution), these results suggest that OASIM provides reasonable estimates of surface broadband and spectral irradiance in the oceans, and can support studies on ocean ecosystems, carbon cycling, and heat exchange.

  20. A Neural Network Correction to the Scalar Approximation in Radiative Transfer (United States)

    Castellanos, P.; da Silva, A. M., Jr.


    Radiative transfer models (RTMs) are essential tools in a wide range of applications that help us understand atmospheric processes and atmosphere-land interactions. RTMs are often used to generate artificial scenes as would be observed by an optical sensor. These instrument simulators function as a virtual laboratory, often referred to as an observing system simulation experiment (OSSE), during the development of remote sensing missions. Advanced detailed RTMs are computationally intensive, and the next generation of remote sensing instruments will have increasingly high spatial, temporal, and spectral resolutions. This can make using detailed RTMs in instrument simulators unfeasible in a practical sense. To overcome this, often the scalar approximation is used in radiative transfer calculations. However, this approximation, which neglects polarization, can produce errors in top of the atmosphere (TOA) radiance calculations as large as 10%, depending on the optical depth, atmospheric composition, and scattering geometry. These errors are particularly important in the UV-Vis where polarized light scattering is significant. Concentrations of air quality and climate relevant trace gases as well as aerosol optical properties are retrieved at these wavelengths. We will present an approach for correcting the errors in TOA radiances calculated with the scalar approximation that utilizes an artificial neural network. The neural network is used as an empirical statistical technique for fast and accurate approximation between RTM input parameters and the scalar error. Our results show that with just a few basic input parameters, a neural network can represent the complex nonlinear relationships between the errors in the scalar approximation and solar-sensor geometry, surface reflectance, and atmospheric composition. Our validation results indicate that the neural network is able to correct the scalar radiance to within 1% of the vector radiance, comparable to the error in

  1. Uncertainties in radiative transfer computations: consequences on the ocean color products (United States)

    Dilligeard, Eric; Zagolski, Francis; Fischer, Juergen; Santer, Richard P.


    Operational MERIS (MEdium Resolution Imaging Spectrometer) level-2 processing uses auxiliary data generated by two radiative transfer tools. These two codes simulate upwelling radiances within a coupled 'Atmosphere-Ocean' system, using different approaches based on the matrix-operator method (MOMO) and the successive orders (SO) technique. Intervalidation of these two radiative transfer codes was performed in order to implement them in the MERIS level-2 processing. MOMO and SO simulations were then conducted on a set of representative test cases. Results stressed both for all test cases good agreements were observed. The scattering processes are retrieved within a few tenths of a percent. Nevertheless, some substantial discrepancies occurred if the polarization is not taken into account mainly in the Rayleigh scattering computations. A preliminary study indicates that the impact of the code inaccuracy in the water leaving radiances retrieval (a level-2 MERIS product) is large, up to 50% in relative difference. Applying the OC2 algorithm, the effect on the retrieval chlorophyll concentration is less than 10%.

  2. Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach (United States)

    Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume


    Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.

  3. Aerosols in the Convective Boundary Layer: Radiation Effects on the Coupled Land-Atmosphere System (United States)

    Barbaro, E.; Vila-Guerau Arellano, J.; Ouwersloot, H. G.; Schroter, J.; Donovan, D. P.; Krol, M. C.


    We investigate the responses of the surface energy budget and the convective boundary-layer (CBL) dynamics to the presence of aerosols using a combination of observations and numerical simulations. A detailed observational dataset containing (thermo)dynamic variables observed at CESAR (Cabauw Experimental Site for Atmospheric Research) and aerosol information from the European Integrated Project on Aerosol, Cloud, Climate, and Air Quality Interactions (IMPACT/EUCAARI) campaign is employed to design numerical experiments reproducing two prototype clear-sky days characterized by: (i) a well-mixed residual layer above a ground inversion and (ii) a continuously growing CBL. A large-eddy simulation (LES) model and a mixed-layer (MXL) model, both coupled to a broadband radiative transfer code and a land-surface model, are used to study the impacts of aerosol scattering and absorption of shortwave radiation on the land-atmosphere system. We successfully validate our model results using the measurements of (thermo)dynamic variables and aerosol properties for the two different CBL prototypes studied here. Our findings indicate that in order to reproduce the observed surface energy budget and CBL dynamics, information of the vertical structure and temporal evolution of the aerosols is necessary. Given the good agreement between the LES and the MXL model results, we use the MXL model to explore the aerosol effect on the land-atmosphere system for a wide range of optical depths and single scattering albedos. Our results show that higher loads of aerosols decrease irradiance, imposing an energy restriction at the surface. Over the studied well-watered grassland, aerosols reduce the sensible heat flux more than the latent heat flux. As a result, aerosols increase the evaporative fraction. Moreover, aerosols also delay the CBL morning onset and anticipate its afternoon collapse. If also present above the CBL during the morning transition, aerosols maintain a persistent near

  4. Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data (United States)

    Barker, Howard W.; Kato, Serji; Wehr, T.


    The main point of this study was to use realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE satellite mission, was applied to CloudSat, CALIPSO, and MODIS satellite data thus producing 3D cloudy atmospheres measuring 60 km wide by 13,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances for each (1 km)2 column where then produced by a Monte Carlo photon transfer model run in both full 3D and independent column approximation mode (i.e., a 1D model).

  5. Investigation of Improved Methods in Power Transfer Efficiency for Radiating Near-Field Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Hesheng Cheng


    Full Text Available A metamaterial-inspired efficient electrically small antenna is proposed, firstly. And then several improving power transfer efficiency (PTE methods for wireless power transfer (WPT systems composed of the proposed antenna in the radiating near-field region are investigated. Method one is using a proposed antenna as a power retriever. This WPT system consisted of three proposed antennas: a transmitter, a receiver, and a retriever. The system is fed by only one power source. At a fixed distance from receiver to transmitter, the distance between the transmitter and the retriever is turned to maximize power transfer from the transmitter to the receiver. Method two is using two proposed antennas as transmitters and one antenna as receiver. The receiver is placed between the two transmitters. In this system, two power sources are used to feed the two transmitters, respectively. By adjusting the phase difference between the two feeding sources, the maximum PTE can be obtained at the optimal phase difference. Using the same configuration as method two, method three, where the maximum PTE can be increased by regulating the voltage (or power ratio of the two feeding sources, is proposed. In addition, we combine the proposed methods to construct another two schemes, which improve the PTE at different extent than classical WPT system.

  6. A correlated-k model of radiative transfer in the near-infrared windows of Venus

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, C.C.C. [Atmospheric, Oceanic and Planetary Physics, Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, Oxon OX1 3BH (United Kingdom)], E-mail:; Irwin, P.G.J.; Taylor, F.W.; Wilson, C.F. [Atmospheric, Oceanic and Planetary Physics, Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, Oxon OX1 3BH (United Kingdom)


    We present a correlated-k-based model for generating synthetic spectra in the near-infrared window regions, from 1.0 to 2.5 {mu}m, emitted from the deep atmosphere of Venus on the nightside. This approach is applicable for use with any near-infrared instrument, ground-based and space-borne, for analysis of the thermal emissions in this spectral range. We also approach this work with the view of using the model, in conjunction with a retrieval algorithm, to retrieve minor species from the Venus Express/VIRTIS instrument. An existing radiative-transfer model was adapted for Venusian conditions to deal with the prevailing high pressures and temperatures and other conditions. A comprehensive four-modal cloud structure model based on Pollack et al. [Near-infrared light from venus' nightside: a spectroscopic analysis. Icarus 1993;103:1-42], using refractive indices for a 75% H{sub 2}SO{sub 4}25% H{sub 2}O mixture from Palmer and Williams [Optical constants of sulfuric acid; application to the clouds of Venus? Appl Opt 1975;14(1):208-19], was also implemented. We then utilized a Mie scattering algorithm to account for the multiple scattering effect between cloud and haze layers that occur in the Venusian atmosphere. The correlated-k model is shown to produce good agreement with ground-based spectra of Venus in the near infrared, and to match the output from a line-by-line radiative-transfer model to better than 10%.

  7. Assessing the influence of spectral band configuration on automated radiative transfer model inversion

    NARCIS (Netherlands)

    Dorigo, W.A.; Richter, R.; Schneider, T.; Schaepman, M.E.; Müller, A.; Wagner, W.


    The success of radiative transfer model (RTM) inversion strongly depends on various factors, including the choice of a suited radiative transfer model, the followed inversion strategy, and the band configuration of the remote sensing system. Current study aims at addressing the latter, by

  8. Incorporating boundary conditions in the integral form of the radiative transfer equation for transcranial imaging

    DEFF Research Database (Denmark)

    Jha, Abhinav K.; Zhu, Yansong; Kang, Jin U.


    An integral Neumann-series implementation of the Radiative Transfer Equation that accounts for boundary conditions is proposed to simulate photon transport through tissue for transcranial optical imaging.......An integral Neumann-series implementation of the Radiative Transfer Equation that accounts for boundary conditions is proposed to simulate photon transport through tissue for transcranial optical imaging....

  9. A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing (United States)

    A new model for radiative transfer in participating media and its application to complex plant canopies is presented. The goal was to be able to efficiently solve complex canopy-scale radiative transfer problems while also representing sub-plant heterogeneity. In the model, individual leaf surfaces ...

  10. Numerical study of radiative heat transfer and effects of thermal boundary conditions on CLC fuel reactor (United States)

    Ben-Mansour, R.; Li, H.; Habib, M. A.; Hossain, M. M.


    Global warming has become a worldwide concern due to its severe impacts and consequences on the climate system and ecosystem. As a promising technology proving good carbon capture ability with low-efficiency penalty, Chemical Looping Combustion technology has risen much interest. However, the radiative heat transfer was hardly studied, nor its effects were clearly declared. The present work provides a mathematical model for radiative heat transfer within fuel reactor of chemical looping combustion systems and conducts a numerical research on the effects of boundary conditions, solid particles reflectivity, particles size, and the operating temperature. The results indicate that radiative heat transfer has very limited impacts on the flow pattern. Meanwhile, the temperature variations in the static bed region (where solid particles are dense) brought by radiation are also insignificant. However, the effects of radiation on temperature profiles within free bed region (where solid particles are very sparse) are obvious, especially when convective-radiative (mixed) boundary condition is applied on fuel reactor walls. Smaller oxygen carrier particle size results in larger absorption & scattering coefficients. The consideration of radiative heat transfer within fuel reactor increases the temperature gradient within free bed region. On the other hand, the conversion performance of fuel is nearly not affected by radiation heat transfer within fuel reactor. However, the consideration of radiative heat transfer enhances the heat transfer between the gas phase and solid phase, especially when the operating temperature is low.

  11. Numerical study of radiative heat transfer and effects of thermal boundary conditions on CLC fuel reactor (United States)

    Ben-Mansour, R.; Li, H.; Habib, M. A.; Hossain, M. M.


    Global warming has become a worldwide concern due to its severe impacts and consequences on the climate system and ecosystem. As a promising technology proving good carbon capture ability with low-efficiency penalty, Chemical Looping Combustion technology has risen much interest. However, the radiative heat transfer was hardly studied, nor its effects were clearly declared. The present work provides a mathematical model for radiative heat transfer within fuel reactor of chemical looping combustion systems and conducts a numerical research on the effects of boundary conditions, solid particles reflectivity, particles size, and the operating temperature. The results indicate that radiative heat transfer has very limited impacts on the flow pattern. Meanwhile, the temperature variations in the static bed region (where solid particles are dense) brought by radiation are also insignificant. However, the effects of radiation on temperature profiles within free bed region (where solid particles are very sparse) are obvious, especially when convective-radiative (mixed) boundary condition is applied on fuel reactor walls. Smaller oxygen carrier particle size results in larger absorption & scattering coefficients. The consideration of radiative heat transfer within fuel reactor increases the temperature gradient within free bed region. On the other hand, the conversion performance of fuel is nearly not affected by radiation heat transfer within fuel reactor. However, the consideration of radiative heat transfer enhances the heat transfer between the gas phase and solid phase, especially when the operating temperature is low.

  12. Sensitivity analysis of radiative heating and cooling rates in planetary atmospheres: general linearization and adjoint approaches (United States)

    Ustinov, E. A.


    Radiative heating and cooling provide primary source and ultimate sink of energy driving lower planetary atmospheres. Evaluating the sensitivities of atmospheric dynamics models on these primary atmospheric parameters requires knowing how heating and cooling rates depend on these same parameters. We discuss two approaches that make it possible to directly compute the sensitivities of heating and cooling rates in parallel with evaluation of heating and cooling rates themselves.

  13. Classification and radiative-transfer modeling of meteorite spectra (United States)

    Pentikäinen, H.; Penttilä, A.; Peltoniemi, J.; Muinonen, K.


    The interpretation of asteroid spectra is closely tied to surface structure and composition. Asteroid surfaces are usually assumed to be covered with a regolith, which is a mixture of mineral grains ranging from micrometers to centimeters in size. The inverse problem of deducing the characteristics of the grains from the scattering of light (e.g., using photometric and polarimetric observations) is difficult. Meteorite spectroscopy can be a valuable alternative source of information considering that unweathered meteoritic ''falls'' are almost pristine samples of their parent bodies. Reflectance spectra of 18 different meteorite samples were measured with the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO) covering a wavelength range of 450--2250 nm [1,2]. The measurements expand the database of reflectance spectra obtained by Paton et al. [3] and Gaffey [4]. Principal Component Analysis (PCA) performed on the spectra indicates a separation of the undifferentiated ordinary chondrites and the differentiated achondrites. The principal components also suggest a discrimination between the spectra of ordinary chondrites with petrologic grades 5 and 6. The distinction is not present when the data are supplemented with the spectra from the two other data sets obtained with differing measuring techniques. To further investigate the different classifications, the PCA is implemented with selected spectral features contrary to the previous analyses, which encompassed the complete spectra. Single-scattering albedos for meteoritic fundamental scatterers were derived with a Monte Carlo radiative-transfer model [1]. In the derivation, realistic scattering phase functions were utilized. The functions were obtained by fitting triple Henyey-Greenstein functions to the measured scattering phase functions of olivine powder for two different size distributions [5,6]. The simulated reflectances for different scattering phase functions were matched to the measured meteorite

  14. Radiative transfer modeling for analyses with Akatsuki/IR2 images (United States)

    Sato, Takao M.; Satoh, Takehiko; Hashimoto, George L.; Lee, Yeon Joo; Sagawa, Hideo; Kasaba, Yasumasa


    The 2-micron camera (IR2) onboard Japanese Venus orbiter, Akatsuki had regularly observed Venus with four narrow-band filters (1.735, 2.02, 2.26, and 2.32 micron) from the late of March, 2016 until the electronic device was unable to control IR2 on December 9, 2016. For approximately nine months, we accumulated more than 3,000 dayside and nightside images of Venus. The main purposes of analyzing IR2 data are (i) to study the dynamics in the upper, middle, and lower atmosphere with the cloud-tracked winds, (ii) to derive the cloud top altitude with the 2.02 micron channel which is located in a CO2 absorption band, (iii) to deduce CO distribution, which is thought to be a good tracer of the atmospheric circulation below the massive clouds, by utilizing the 2.26 and 2.32 micron channels, and (iv) to investigate aerosol properties of the lower clouds with the 1.735 and 2.26 micron channels. For purposes (ii)-(iv), we have developed a line-by-line based radiative transfer model for generating synthetic radiance at the IR2 channels. For both solar and thermal radiation cases, adding doubling method (Hovenier et al., 2004; Liu and Weng, 2006) is selected for solving multiple scattering by clouds and molecules. We considered a total of eight molecules (H2O, CO2, CO, SO2, HF, HCl, OCS, and N2) and line parameters of the first three molecules are taken from HITEMP10 and those of the others are from HITRAN12. For all considered molecules, their line shapes are modelled as Voigt function with cutoff of 125 cm-1. For CO2, additional modification is done based on Tonkov et al. (1996). A cloud model consisting of four modal cloud particles with a mixture of 75% H2SO4 and 25% H2O is taken from Haus et al. (2013). This model was tested from near-infrared to mid-infrared ranges for the spectral analyses of Venus Express and Venera 15 data, which is useful for interpreting the very limited spectral information such as Akatsuki data. In this presentation, we will show the detail of

  15. Mobile Atmospheric Aerosol and Radiation Characterization Observatory (MAARCO) (United States)

    Federal Laboratory Consortium — FUNCTION: MAARCO is designed as a stand-alone facility for basic atmospheric research and the collection of data to assist in validating aerosol and weather models....

  16. The Role of DYNAMO in Situ Observations in Improving NASA Ceres-like Daily Surface and Atmospheric Radiative Flux Estimates (United States)

    Wang, Hailan; Su, Wenying; Loeb, Norman G.; Achuthavarier, Deepthi; Schubert, Siegfried D.


    The daily surface and atmospheric radiative fluxes from NASA Clouds and the Earths RadiantEnergy System (CERES) Synoptic 1 degree (SYN1deg) Ed3A are among the most widely used data to studycloud-radiative feedback. The CERES SYN1deg data are based on Fu-Liou radiative transfer computations thatuse specific humidity (Q) and air temperature (T) from NASA Global Modeling and Assimilation Office (GMAO)reanalyses as inputs and are therefore subject to the quality of those fields. This study uses in situ Q and Tobservations collected during the Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign toaugment the input stream used in the NASA GMAO reanalysis and assess the impact on the CERES dailysurface and atmospheric longwave estimates. The results show that the assimilation of DYNAMOobservations considerably improves the vertical profiles of analyzed Q and T over and near DYNAMO stationsby moistening and warming the lower troposphere and upper troposphere and drying and cooling themid-upper troposphere. As a result of these changes in Q and T, the computed CERES daily surface downwardlongwave flux increases by about 5 W m(exp -2), due mainly to the warming and moistening in the lowertroposphere; the computed daily top-of-atmosphere (TOA) outgoing longwave radiation increases by2-3 W m(exp -2) during dry periods only. Correspondingly, the estimated local atmospheric longwave radiativecooling enhances by about 5 W m(exp -2) (7-8 W m(exp -2)) during wet (dry) periods. These changes reduce the bias inthe CERES SYN1deg-like daily longwave estimates at both the TOA and surface and represent animprovement over the DYNAMO region.

  17. Comparison between Satellite Water Vapour Observations and Atmospheric Models’ Predictions of the Upper Tropospheric Thermal Radiation

    Directory of Open Access Journals (Sweden)

    J. R. Dim


    Full Text Available Atmospheric profiles (temperature, pressure, and humidity are commonly used parameters for aerosols and cloud properties retrievals. In preparation of the launch of the Global Change Observation Mission-Climate/Second-Generation GLobal Imager (GCOM-C/SGLI satellite, an evaluation study on the sensitivity of atmospheric models to variations of atmospheric conditions is conducted. In this evaluation, clear sky and above low clouds water vapour radiances of the upper troposphere obtained from satellite observations and those simulated by atmospheric models are compared. The models studied are the Nonhydrostatic ICosahedral Atmospheric Model (NICAM and the National Center for Environmental Protection/Department Of Energy (NCEP/DOE. The satellite observations are from the Terra/Moderate Resolution Imaging Spectroradiometer (Terra/MODIS satellite. The simulations performed are obtained through a forward radiative transfer calculation procedure. The resulting radiances are transformed into the upper tropospheric brightness temperature (UTBT and relative humidity (UTRH. The discrepancies between the simulated data and the observations are analyzed. These analyses show that both the NICAM and the NCEP/DOE simulated UTBT and UTRH have comparable distribution patterns. However the simulations’ differences with the observations are generally lower with the NCEP/DOE than with the NICAM. The NCEP/DOE model outputs very often overestimate the UTBT and therefore present a drier upper troposphere. The impact of the lower troposphere instability (dry convection on the upper tropospheric moisture and the consequences on the models’ results are evaluated through a thunderstorm and moisture predictor (the K-stability index. The results obtained show a positive relation between the instability and the root mean square error (RMSE: observation versus models. The study of the impact of convective clouds shows that the area covered by these clouds increases with the

  18. Radiative heat transfer in turbulent combustion systems theory and applications

    CERN Document Server

    Modest, Michael F


    This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.

  19. Modulation Transfer Function of a Gaussian Beam Based on the Generalized Modified Atmospheric Spectrum

    Directory of Open Access Journals (Sweden)

    Chao Gao


    Full Text Available This paper investigates the modulation transfer function of a Gaussian beam propagating through a horizontal path in weak-fluctuation non-Kolmogorov turbulence. Mathematical expressions are obtained based on the generalized modified atmospheric spectrum, which includes the spectral power law value of non-Kolmogorov turbulence, the finite inner and outer scales of turbulence, and other optical parameters of the Gaussian beam. The numerical results indicate that the atmospheric turbulence would produce less negative effects on the wireless optical communication system with an increase in the inner scale of turbulence. Additionally, the increased outer scale of turbulence makes a Gaussian beam influenced more seriously by the atmospheric turbulence.

  20. Thermal radiation heat transfer in participating media by finite volume discretization using collimated beam incidence (United States)

    Harijishnu, R.; Jayakumar, J. S.


    The main objective of this paper is to study the heat transfer rate of thermal radiation in participating media. For that, a generated collimated beam has been passed through a two dimensional slab model of flint glass with a refractive index 2. Both Polar and azimuthal angle have been varied to generate such a beam. The Temperature of the slab and Snells law has been validated by Radiation Transfer Equation (RTE) in OpenFOAM (Open Field Operation and Manipulation), a CFD software which is the major computational tool used in Industry and research applications where the source code is modified in which radiation heat transfer equation is added to the case and different radiation heat transfer models are utilized. This work concentrates on the numerical strategies involving both transparent and participating media. Since Radiation Transfer Equation (RTE) is difficult to solve, the purpose of this paper is to use existing solver buoyantSimlpeFoam to solve radiation model in the participating media by compiling the source code to obtain the heat transfer rate inside the slab by varying the Intensity of radiation. The Finite Volume Method (FVM) is applied to solve the Radiation Transfer Equation (RTE) governing the above said physical phenomena.

  1. Test plan for validation of the radiative transfer equation.

    Energy Technology Data Exchange (ETDEWEB)

    Ricks, Allen Joseph; Grasser, Thomas W.; Kearney, Sean Patrick; Jernigan, Dann A.; Blanchat, Thomas K.


    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).

  2. Enabling Radiative Transfer on AMR grids in CRASH (United States)

    Hariharan, N.; Graziani, L.; Ciardi, B.; Miniati, F.; Bungartz, H.-J.


    We introduce crash-amr, a new version of the cosmological radiative transfer (RT) code crash, enabled to use refined grids. This new feature allows us to attain higher resolution in our RT simulations and thus to describe more accurately ionization and temperature patterns in high-density regions. We have tested crash-amr by simulating the evolution of an ionized region produced by a single source embedded in gas at constant density, as well as by a more realistic configuration of multiple sources in an inhomogeneous density field. While we find an excellent agreement with the previous version of crash when the adaptive mesh refinement (AMR) feature is disabled, showing that no numerical artefact has been introduced in crash-amr, when additional refinement levels are used the code can simulate more accurately the physics of ionized gas in high-density regions. This result has been attained at no computational loss, as RT simulations on AMR grids with maximum resolution equivalent to that of a uniform Cartesian grid can be run with a gain of up to 60 per cent in computational time.

  3. Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat‑4 method

    Directory of Open Access Journals (Sweden)

    Zhipeng Qu


    Full Text Available The new Heliosat‑4 method estimates the downwelling shortwave irradiance received at ground level in all sky conditions. It provides the global irradiance and its direct and diffuse components on a horizontal plane and the direct irradiance for a plane normal to sun rays. It is a fully physical model using a fast, but still accurate approximation of radiative transfer modelling and is therefore well suited for geostationary satellite retrievals. It can also be used as a fast radiative transfer model in numerical weather prediction models. It is composed of two models based on abaci, also called look-up tables: the already-published McClear model calculating the irradiance under cloud-free conditions and the new McCloud model calculating the extinction of irradiance due to clouds. Both have been realized by using the libRadtran radiative transfer model. The main inputs to Heliosat‑4 are aerosol properties, total column water vapour and ozone content as provided by the Copernicus Atmosphere Monitoring Service (CAMS every 3 h. Cloud properties are derived from images of the Meteosat Second Generation (MSG satellites in their 15 min temporal resolution using an adapted APOLLO (AVHRR Processing scheme Over cLouds, Land and Ocean scheme. The 15 min means of irradiance estimated by Heliosat‑4 are compared to corresponding measurements made at 13 stations within the Baseline Surface Radiation Network and being located in the field of view of MSG and in various climates. The bias for global irradiance is comprised between 2 and 32 W m−2. The root mean square error (RMSE ranges between 74 and 94 W m−2. Relative RMSE values range between 15 % and 20 % of the mean observed irradiance for stations in desert and Mediterranean climates, and between 26 % and 43 % for rainy climates with mild winters. Correlation coefficients between 0.91 and 0.97 are found. The bias for the direct irradiance at normal incidence is comprised

  4. Atmospheric turbulence effects on the performance of the laser wireless power transfer system (United States)

    Kapranov, V. V.; Matsak, I. S.; Tugaenko, V. Yu.; Blank, A. V.; Suhareva, N. A.


    Application of adaptive correction is necessary to control wandering of the laser beam in wireless power transfer (WPT) system. In this paper we describe experimental results of using different adaptive correction techniques for both weak and strong turbulence conditions. All experiments were performed over a 1.5 km near-horizontal atmospheric path. Some criteria for choosing parameters of adaptive correction are given.

  5. Retrieval of cloud microphysical parameters from INSAT-3D: a feasibility study using radiative transfer simulations (United States)

    Jinya, John; Bipasha, Paul S.


    Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website

  6. Atmospheric Chemistry of Six Methyl-perfluoroheptene-ethers Used as Heat Transfer Fluid Replacement Compounds: Measured OH Radical Reaction Rate Coefficients, Atmospheric Lifetimes, and Global Warming Potentials (United States)

    Jubb, A. M.; Gierczak, T.; Baasandorj, M.; Waterland, R. L.; Burkholder, J. B.


    Mixtures of methyl-perfluoroheptene-ethers (C7F13OCH3, MPHEs) are currently in use as a replacement for perfluorinated alkane (PFC) and polyether mixtures (both persistent greenhouse gases with atmospheric lifetimes >1000 years) used as heat transfer fluids. Currently, the atmospheric fate of the MPHE isomers are not well characterized, however, reaction with the OH radical is expected to be a dominant tropospheric loss process for these compounds. In order to assess the atmospheric lifetimes and environmental implications of MPHE use, rate coefficients for MPHE isomers' reaction with OH radicals are desired. In the work presented here, rate coefficients, k, for the gas-phase reaction of the OH radical with six MPHEs commonly used in commercial mixtures (isomers and stereoisomers) and their deuterated analogs (d3-MPHE) were determined at 296 K using a relative rate method with combined gas-chromatography/IR spectroscopy detection. A range of OH rate coefficient values was observed, up to a factor of 20× different, between the MPHE isomers with the (E)-stereoisomers exhibiting the greatest reactivity. The measured OH reaction rate coefficients for the d3-MPHE isomers were lower than the observed MPHE values although a large range of k values between isomers was still observed. The reduction in reactivity with deuteration signifies that the MPHE + OH reaction proceeds via both addition to the olefinic C=C bond and H-abstraction from the methyl ester group. OH addition to the C=C bond was determined to be the primary reaction channel. Atmospheric lifetimes with respect to the OH reaction for the six MPHE isomers were found to be in the range of days to months. The short lifetimes indicate that MPHE use will primarily impact tropospheric local and regional air quality. A MPHE atmospheric degradation mechanism will be presented. As part of this work, radiative efficiencies and global warming potentials (GWPs) for the MPHE isomers were estimated based on measured

  7. High-order solution methods for grey discrete ordinates thermal radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Maginot, Peter G., E-mail: [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Ragusa, Jean C., E-mail: [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States); Morel, Jim E., E-mail: [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)


    This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation is accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.

  8. High-order solution methods for grey discrete ordinates thermal radiative transfer (United States)

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.


    This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge-Kutta time integration techniques. Iterative convergence of the radiation equation is accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.

  9. Magnetic field and radiative transfer modelling of a quiescent prominence (United States)

    Gunár, S.; Schwartz, P.; Dudík, J.; Schmieder, B.; Heinzel, P.; Jurčák, J.


    Aims: The aim of this work is to analyse the multi-instrument observations of the June 22, 2010 prominence to study its structure in detail, including the prominence-corona transition region and the dark bubble located below the prominence body. Methods: We combined results of the 3D magnetic field modelling with 2D prominence fine structure radiative transfer models to fully exploit the available observations. Results: The 3D linear force-free field model with the unsheared bipole reproduces the morphology of the analysed prominence reasonably well, thus providing useful information about its magnetic field configuration and the location of the magnetic dips. The 2D models of the prominence fine structures provide a good representation of the local plasma configuration in the region dominated by the quasi-vertical threads. However, the low observed Lyman-α central intensities and the morphology of the analysed prominence suggest that its upper central part is not directly illuminated from the solar surface. Conclusions: This multi-disciplinary prominence study allows us to argue that a large part of the prominence-corona transition region plasma can be located inside the magnetic dips in small-scale features that surround the cool prominence material located in the dip centre. We also argue that the dark prominence bubbles can be formed because of perturbations of the prominence magnetic field by parasitic bipoles, causing them to be devoid of the magnetic dips. Magnetic dips, however, form thin layers that surround these bubbles, which might explain the occurrence of the cool prominence material in the lines of sight intersecting the prominence bubbles. Movie and Appendix A are available in electronic form at

  10. Spectrally-invariant behavior of zenith radiance around cloud edges simulated by radiative transfer

    Directory of Open Access Journals (Sweden)

    J. C. Chiu


    Full Text Available In a previous paper, we discovered a surprising spectrally-invariant relationship in shortwave spectrometer observations taken by the Atmospheric Radiation Measurement (ARM program. The relationship suggests that the shortwave spectrum near cloud edges can be determined by a linear combination of zenith radiance spectra of the cloudy and clear regions. Here, using radiative transfer simulations, we study the sensitivity of this relationship to the properties of aerosols and clouds, to the underlying surface type, and to the finite field-of-view (FOV of the spectrometer. Overall, the relationship is mostly sensitive to cloud properties and has little sensitivity to other factors. At visible wavelengths, the relationship primarily depends on cloud optical depth regardless of cloud phase function, thermodynamic phase and drop size. At water-absorbing wavelengths, the slope of the relationship depends primarily on cloud optical depth; the intercept, by contrast, depends primarily on cloud absorbing and scattering properties, suggesting a new retrieval method for cloud drop effective radius. These results suggest that the spectrally-invariant relationship can be used to infer cloud properties near cloud edges even with insufficient or no knowledge about spectral surface albedo and aerosol properties.

  11. Entanglement generation via non-Gaussian transfer over atmospheric fading channels (United States)

    Hosseinidehaj, Nedasadat; Malaney, Robert


    In this work we probe the usefulness of non-Gaussian entangled states as a resource for quantum communication through atmospheric channels. We outline the initial conditions in which non-Gaussian state transfer leads to enhanced entanglement transfer relative to that obtainable via Gaussian state transfer. However, we conclude that in (anticipated) operational scenarios—where most of the non-Gaussian states to be transferred over the air are created just in time via photonic subtraction, addition, or replacement from incoming Gaussian states—the entanglement-generation rate between stations via non-Gaussian state transfer will be substantially less than that created by direct Gaussian state transfer. The role of postselection, distillation, and quantum memory in altering this conclusion is discussed, and comparison with entanglement rates produced via single-photon technologies is provided. Our results suggest that in the near term entangled Gaussian states, squeezed beyond some modest level, offer the most attractive proposition for the distribution of entanglement through high-loss atmospheric channels. The implications of our results for entanglement-based quantum key distribution to low-Earth orbit are presented.

  12. Atmospheric humidity (United States)

    Water vapor plays a critical role in earth's atmosphere. It helps to maintain a habitable surface temperature through absorption of outgoing longwave radiation, and it transfers trmendous amounts of energy from the tropics toward the poles by absorbing latent heat during evaporation and subsequently...

  13. An Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rivera


    Full Text Available Physically-based radiative transfer models (RTMs help in understanding the processes occurring on the Earth’s surface and their interactions with vegetation and atmosphere. When it comes to studying vegetation properties, RTMs allows us to study light interception by plant canopies and are used in the retrieval of biophysical variables through model inversion. However, advanced RTMs can take a long computational time, which makes them unfeasible in many real applications. To overcome this problem, it has been proposed to substitute RTMs through so-called emulators. Emulators are statistical models that approximate the functioning of RTMs. Emulators are advantageous in real practice because of the computational efficiency and excellent accuracy and flexibility for extrapolation. We hereby present an “Emulator toolbox” that enables analysing multi-output machine learning regression algorithms (MO-MLRAs on their ability to approximate an RTM. The toolbox is included in the free-access ARTMO’s MATLAB suite for parameter retrieval and model inversion and currently contains both linear and non-linear MO-MLRAs, namely partial least squares regression (PLSR, kernel ridge regression (KRR and neural networks (NN. These MO-MLRAs have been evaluated on their precision and speed to approximate the soil vegetation atmosphere transfer model SCOPE (Soil Canopy Observation, Photochemistry and Energy balance. SCOPE generates, amongst others, sun-induced chlorophyll fluorescence as the output signal. KRR and NN were evaluated as capable of reconstructing fluorescence spectra with great precision. Relative errors fell below 0.5% when trained with 500 or more samples using cross-validation and principal component analysis to alleviate the underdetermination problem. Moreover, NN reconstructed fluorescence spectra about 50-times faster and KRR about 800-times faster than SCOPE. The Emulator toolbox is foreseen to open new opportunities in the use of advanced

  14. Radiation resistance and loss of crystal violet binding activity in Yersinia enterocolitica suspended in raw ground pork exposed to gamma radiation and modified atmosphere. (United States)

    Bhaduri, Saumya; Sheen, Shiowshuh; Sommers, Christopher H


    Virulence of many foodborne pathogens is directly linked to genes carried on self-replicating extra-chromosomal elements, which can transfer genetic material, both vertically and horizontally, between bacteria of the same and different species. Pathogenic Yersinia enterocolitica harbors a 70-kb virulence plasmid (pYV) that encodes genes for low calcium response, crystal violet (CV) binding, Congo red uptake, autoagglutination (AA), hydrophobicity (HP), type III secretion channels, host immune suppression factors, and biofilm formation. Ionizing radiation and modified atmosphere packaging (MAP) are used to control foodborne pathogens and meat spoilage. In this study, the effect of gamma radiation and modified atmosphere (air, 100% N2 , 75% N2 : 25% CO2 , 50% N2 : 50% CO2 , 25% N2 : 75% CO2 , 100% CO2 ) were examined by using the CV binding phenotype, for the presence or absence of pYV in Y. enterocolitica, suspended in raw ground pork. All Y. enterocolitica serovars used (O:3, O:8, and O5,27) were more sensitive to radiation as the CO2 concentration increased above 50%. Crystal violet binding following a radiation dose of 1.0 kGy, which reduced the Y. enterocolitica serovars >5 log, was greatest in the presence of air (ca. 8%), but was not affected by N2 or CO2 concentration (ca. 5%). Following release from modified atmosphere after irradiation, the loss of CV binding rose from 5% to 8% immediately following irradiation to >30% after outgrowth at 25 °C for 24 h. These results, using Y. enterocolitica as a model system, indicate that the risk of foodborne illness could be affected by the loss of virulence factors when postprocess intervention technologies are used. Provides gamma radiation D10 data for inactivation data for Y. enterocolitica irradiated under modified atmosphere and information to risk assessors regarding the difference between pathogen presence versus actual virulence. Published 2014. This article is a U.S. Government work and is in the public

  15. Clues to Coral Reef Ecosystem Health: Spectral Analysis Coupled with Radiative Transfer Modeling (United States)

    Guild, L.; Ganapol, B.; Kramer, P.; Armstrong, R.; Gleason, A.; Torres, J.; Johnson, L.; Garfield, N.


    Coral reefs are among the world's most productive and biologically rich ecosystems and are some of the oldest ecosystems on Earth. Coralline structures protect coastlines from storms, maintain high diversity of marine life, and provide nurseries for marine species. Coral reefs play a role in carbon cycling through high rates of organic carbon metabolism and calcification. Coral reefs provide fisheries habitat that are the sole protein source for humans on remote islands. Reefs respond immediately to environmental change and therefore are considered "canaries" of the oceans. However, the world's reefs are in peril: they have shrunk 10-50% from their historical extent due to climate change and anthropogenic activity. An important contribution to coral reef research is improved spectral distinction of reef species' health where anthropogenic activity and climate change impacts are high. Relatively little is known concerning the spectral properties of coral or how coral structures reflect and transmit light. New insights into optical processes of corals under stressed conditions can lead to improved interpretation of airborne and satellite data and forecasting of immediate or long-term impacts of events such as bleaching and disease in coral. We are investigating the spatial and spectral resolution required to detect remotely changes in reef health by coupling spectral analysis of in situ spectra and airborne spectral data with a new radiative transfer model called CorMOD2. Challenges include light attenuation by the water column, atmospheric scattering, and scattering caused by the coral themselves that confound the spectral signal. In CorMOD2, input coral reflectance measurements produce modeled absorption through an inversion at each visible wavelength. The first model development phase of CorMOD2 imposes a scattering baseline that is constant regardless of coral condition, and further specifies that coral is optically thick. Evolution of CorMOD2 is towards a coral

  16. Development of a wide band radiative transfer model based on a fast correlated k-distributions generation (United States)

    Croize, Laurence; Pierro, Jean; Huet, Thierry; Labarre, Luc


    MATISSE which acronym means Advanced Modeling of the Earth for Environment and Scenes Simulation is developed by ONERA since the mid 1990's. The code main functionality is to compute spectral or integrated natural background radiance images. Natural backgrounds include the atmosphere, low and high altitude clouds, sea and land. It can also provide specific radiative atmospheric terms as path transmission, path radiances, sky radiances or local illumination around a target point. Spectral bandwidth ranges from 700 to 25000 cm-1 wavenumber (i.e. from 0.4 to 14 μm). As far as molecular absorption is concerned, MATISSE v2.0 is based on a correlated K (CK) model and needs a pre-generation of the k-distributions. This method is very precise but is time consuming and is done as an offline calculation. In answer to the increasing need of rapid radiative transfer codes, the future version of the MATISSE v3.0 will include a fast radiative transfer model at low and at medium spectral resolution. This work aims to develop a fast wide band CK model for the acceleration of radiative transfer calculation. As a first step, a statistical k-distributions fast generator was developed. It allows generating k-distributions from 700 to 25000 cm-1 with a spectral resolution of 1 cm-1 in less than 30 ms(*) for one altitude (that means about three orders of magnitude faster than before). Such speed allows generating k-distributions online. To validate the model, we have compared the obtained transmission spectra with reference spectra using a mix of 6 molecules (H2O, CO2, O3, N2O, CO, CH4) in homogenous atmosphere corresponding to different altitudes from 0 to 105 km. Reference spectra were calculated as the convolution of a spectrum obtained with a line by line model and a gate function of 1 cm-1 wide. An average difference of 3×10-3 % and a standard deviation of 3.3% were typically obtained. As a second step, this method of rapid k-distributions generation is now being coupled with a

  17. Cosmic ray modulation of infra-red radiation in the atmosphere

    CERN Document Server

    Aplin, K L


    Cosmic rays produce charged molecular clusters by ionisation as they pass through the lower atmosphere. Neutral molecular clusters such as dimers and complexes are expected to make a small contribution to the radiative balance, but atmospheric absorption by charged clusters has not hitherto been observed. In an atmospheric experiment, a filter radiometer tuned to the 9.15 um absorption band associated with infra-red absorption of charged molecular clusters was used to monitor changes immediately following events identified by a cosmic ray telescope sensitive to high energy (>400MeV) particles, principally muons. The change in longwave radiation in this absorption band due to charged molecular clusters is 7 mW^m-2. The integrated atmospheric energy change for each event is 2J, representing an amplification factor of 10^10 compared to the 2GeV energy of a typical tropospheric cosmic ray. This absorption is expected to occur continuously and globally.

  18. PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres (United States)

    García Muñoz, A.; Mills, F. P.


    PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

  19. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish

    DEFF Research Database (Denmark)

    Dahl, Tais W.; Hammarlund, Emma U.; Anbar, Ariel D.


    The evolution of Earth’s biota is intimately linked to the oxygenation of the oceans and atmosphere. We use the isotopic composition and concentration of molybdenum (Mo) in sedimentary rocks to explore this relationship. Our results indicate two episodes of global ocean oxygenation. The first coi...... in sediments. It also correlates with a pronounced radiation of large predatory fish, animals with high oxygen demand. We thereby couple the redox history of the atmosphere and oceans to major events in animal evolution....

  20. Near-field radiative heat transfer under temperature gradients and conductive transfer

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Weiliang; Rodriguez, Alejandro W. [Princeton Univ., NJ (United States). Dept. of Electrical Engineering; Messina, Riccardo [CNRS-Univ. de Montpellier (France). Lab. Charles Coulomb


    We describe a recently developed formulation of coupled conductive and radiative heat transfer (RHT) between objects separated by nanometric, vacuum gaps. Our results rely on analytical formulas of RHT between planar slabs (based on the scattering-matrix method) as well as a general formulation of RHT between arbitrarily shaped bodies (based on the fluctuating-volume current method), which fully captures the existence of temperature inhomogeneities. In particular, the impact of RHT on conduction, and vice versa, is obtained via self-consistent solutions of the Fourier heat equation and Maxwell's equations. We show that in materials with low thermal conductivities (e.g. zinc oxides and glasses), the interplay of conduction and RHT can strongly modify heat exchange, exemplified for instance by the presence of large temperature gradients and saturating flux rates at short (nanometric) distances. More generally, we show that the ability to tailor the temperature distribution of an object can modify the behaviour of RHT with respect to gap separations, e.g. qualitatively changing the asymptotic scaling at short separations from quadratic to linear or logarithmic. Our results could be relevant to the interpretation of both past and future experimental measurements of RHT at nanometric distances.

  1. Atmospheric Ionizing Radiation (AIR): Analysis, Results, and Lessons Learned From the June 1997 ER-2 Campaign (United States)

    Wilson, J. W. (Editor); Jones, I. W. (Editor); Maiden, D. L. (Editor); Goldhagen, P. (Editor)


    The United States initiated a program to assess the technology required for an environmentally safe and operationally efficient High Speed Civil Transport (HSCT) for entrance on the world market after the turn of the century. Due to the changing regulations on radiation exposures and the growing concerns over uncertainty in our knowledge of atmospheric radiations, the NASA High Speed Research Project Office (HSRPO) commissioned a review of "Radiation Exposure and High-Altitude Flight" by the National Council on Radiation Protection and Measurements (NCRP). On the basis of the NCRP recommendations, the HSRPO funded a flight experiment to resolve the environmental uncertainty in the atmospheric ionizing radiation levels as a step in developing an approach to minimize the radiation impact on HSCT operations. To minimize costs in this project, an international investigator approach was taken to assure coverage with instrument sensitivity across the range of particle types and energies to allow unique characterization of the diverse radiation components. The present workshop is a result of the flight measurements made at the maximum intensity of the solar cycle modulated background radiation levels during the month of June 1997.

  2. Analysis of Radiation Levels Associated with Operation of the RHIC Transfer Line

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)


    This note is intended to document calculations of prompt radiation dose in regions exterior to the berm which now exists over the Transfer Line between the AGS and the Relativistic Heavy Ion Collider.

  3. A Numerical Study of Combined Convective and Radiative Heat Transfer in a Rocket Engine Combustion Chamber

    National Research Council Canada - National Science Library

    Savur, Mehmet


    A numerical study was conducted to predict the combined convective and radiative heat transfer rates on the walls of a small aspect ratio cylinder representative of the scaled model of a rocket engine combustion chamber...

  4. Directional radiometry and radiative transfer: The convoluted path from centuries-old phenomenology to physical optics (United States)

    Mishchenko, Michael I.


    This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.

  5. Chebyshev collocation spectral method for radiative transfer in participating media with variable physical properties (United States)

    Li, Guo-jun; Wei, Lin-Yang


    Chebyshev collocation spectral method based on discrete ordinates equation is employed to solve radiative heat transfer problems in participating media with variable physical prosperities (including space-dependent or temperature-dependent refractive index, absorption coefficient and scattering coefficient). Discrete ordinates method is employed to discretize the solid angle domain. Chebyshev polynomial and collocation spectral method are adopted to express and discretize space domain, respectively. Numerical results obtained by the Chebyshev collocation spectral-discrete ordinates method (CCS-DOM) are presented in this paper and the results show the CCS-DOM has a good accuracy and efficiency for radiative heat transfer problems in participating media. At last, the effects of variable physical properties on radiative heat transfer are analyzed and it can be found that the distributions of refractive index, absorption coefficient and scattering coefficient have a significant effect on radiative transfer and energy distribution.

  6. Directional Radiometry and Radiative Transfer: the Convoluted Path From Centuries-old Phenomenology to Physical Optics (United States)

    Mishchenko, Michael I.


    This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.

  7. Polarized scattered light from self-luminous exoplanets : Three-dimensional scattering radiative transfer with ARTES

    NARCIS (Netherlands)

    Stolker, T.; Min, M.; Stam, D.M.; Mollière, P.; Dominik, C.; Waters, L. B.F.M.


    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest

  8. A Thermal Infrared Radiation Parameterization for Atmospheric Studies (United States)

    Chou, Ming-Dah; Suarez, Max J.; Liang, Xin-Zhong; Yan, Michael M.-H.; Cote, Charles (Technical Monitor)


    This technical memorandum documents the longwave radiation parameterization developed at the Climate and Radiation Branch, NASA Goddard Space Flight Center, for a wide variety of weather and climate applications. Based on the 1996-version of the Air Force Geophysical Laboratory HITRAN data, the parameterization includes the absorption due to major gaseous absorption (water vapor, CO2, O3) and most of the minor trace gases (N2O, CH4, CFCs), as well as clouds and aerosols. The thermal infrared spectrum is divided into nine bands. To achieve a high degree of accuracy and speed, various approaches of computing the transmission function are applied to different spectral bands and gases. The gaseous transmission function is computed either using the k-distribution method or the table look-up method. To include the effect of scattering due to clouds and aerosols, the optical thickness is scaled by the single-scattering albedo and asymmetry factor. The parameterization can accurately compute fluxes to within 1% of the high spectral-resolution line-by-line calculations. The cooling rate can be accurately computed in the region extending from the surface to the 0.01-hPa level.

  9. Low cost transportable device for transference of atmosphere sensitive materials from glove box to SEM

    DEFF Research Database (Denmark)

    Bentzen, Janet Jonna; Saxild, Finn B.

    Moisture or air sensitive materials are often encountered within several highly important fields such as catalyst R&D, pharmaceutical R&D, and battery R&D. Essential to all materials research and development is microstructure characterization, which often implies electron microscopy. Entering...... the field of high energy battery research involving highly reactive metals, e.g. lithium, we needed a means of transferring atmosphere sensitive materials from the protective atmosphere of a glove box, avoiding air exposure, to a sample chamber of a scanning electron microscope. Thus, we constructed a low...

  10. Transfer Trajectory Design for the Mars Atmosphere and Volatile Evolution (MAVEN) Mission (United States)

    Folta, David; Demcak, Stuart; Young, Brian; Berry, Kevin


    The Mars Atmosphere and Volatile Evolution (MAVEN) mission will determine the history of the loss of volatiles from the Martian atmosphere from a highly inclined elliptical orbit. MAVEN will launch from Cape Canaveral Air Force Station on an Atlas-V 401 during an extended 36-day launch period opening November 18, 2013. The MAVEN Navigation and Mission Design team performed a Monte Carlo analysis of the Type-II transfer to characterize; dispersions of the arrival B-Plane, trajectory correction maneuvers (TCMs), and the probability of Mars impact. This paper presents detailed analysis of critical MOI event coverage, maneuver constraints, deltaV-99 budgets, and Planetary Protection requirements.

  11. Some solar radiation ratios and their interpretations with regards to ...

    African Journals Online (AJOL)

    Ratios of some radiation fluxes such as global (total) solar radiation, H, direct solar radiation, Hb, diffuse solar radiation, Hd, and extraterrestrial radiation, Ho were proposed to define radiation coefficients related to radiation transfer in the atmosphere and solar radiation measurement on the ground surface. The irradiative ...

  12. Radiating heat transfer in the power boiler downtake gas duct when firing high-ash coal

    Energy Technology Data Exchange (ETDEWEB)

    Sudarev, A.V.; Antonovsky, V.I.; Kiselev, O.V.; Sivchikov, S.B. (VTUS-Leningrad Metal Plant-LMZ, Leningrad (USSR))


    The experimental study of radiation heat transfer in the downtake gas duct of the pulverized-coal fired steam boiler for 500 MW power unit when firing high-ash (40% ash content) coal from Ekibastuz coal field was carried out by means of the radiometer probe with rotary optical axis. The local values of the combustion product temperature were measured simultaneously in the down-take and the operation parameters for boiler gas and steam ducts were registered. The dependence of the extinction coefficient of combustion products on the radiating layer thickness was obtained. The radiating power, generated in the gas space, remote from the steam superheater and reaching the super heater boundaries, was measured. The heat release coefficients from radiation and heat transfer coefficients, were determined for definite operation conditions of the superheater working. The contribution of the gas space outside the steam superheater into the radiating heat transfer negligible.

  13. Monte Carlo method based radiative transfer simulation of stochastic open forest generated by circle packing application (United States)

    Jin, Shengye; Tamura, Masayuki


    Monte Carlo Ray Tracing (MCRT) method is a versatile application for simulating radiative transfer regime of the Solar - Atmosphere - Landscape system. Moreover, it can be used to compute the radiation distribution over a complex landscape configuration, as an example like a forest area. Due to its robustness to the complexity of the 3-D scene altering, MCRT method is also employed for simulating canopy radiative transfer regime as the validation source of other radiative transfer models. In MCRT modeling within vegetation, one basic step is the canopy scene set up. 3-D scanning application was used for representing canopy structure as accurately as possible, but it is time consuming. Botanical growth function can be used to model the single tree growth, but cannot be used to express the impaction among trees. L-System is also a functional controlled tree growth simulation model, but it costs large computing memory. Additionally, it only models the current tree patterns rather than tree growth during we simulate the radiative transfer regime. Therefore, it is much more constructive to use regular solid pattern like ellipsoidal, cone, cylinder etc. to indicate single canopy. Considering the allelopathy phenomenon in some open forest optical images, each tree in its own `domain' repels other trees. According to this assumption a stochastic circle packing algorithm is developed to generate the 3-D canopy scene in this study. The canopy coverage (%) and the tree amount (N) of the 3-D scene are declared at first, similar to the random open forest image. Accordingly, we randomly generate each canopy radius (rc). Then we set the circle central coordinate on XY-plane as well as to keep circles separate from each other by the circle packing algorithm. To model the individual tree, we employ the Ishikawa's tree growth regressive model to set the tree parameters including DBH (dt), tree height (H). However, the relationship between canopy height (Hc) and trunk height (Ht) is

  14. Mathematical modeling of radiative-conductive heat transfer in semitransparent medium with phase change (United States)

    Savvinova, Nadezhda A.; Sleptsov, Semen D.; Rubtsov, Nikolai A.


    A mathematical phase change model is a formulation of the Stefan problem. Various formulations of the Stefan problem modeling of radiative-conductive heat transfer during melting or solidification of a semitransparent material are presented. Analysis of numerical results show that the radiative heat transfer has a significant effect on temperature distributions during melting (solidification) of the semitransparent material. In this paper conditions for application of various statements of the Stefan problem are analyzed.

  15. Nanoscale Heat Transfer Due to Near Field Radiation and Nanofluidic Flows (United States)


    AFRL-OSR-VA-TR-2015-0205 Nanoscale heat transfer due to near field radiation and nanofluidic flows Peter Taborek UNIVERSITY OF CALIFORNIA IRVINE...TITLE AND SUBTITLE Nanoscale heat transfer due to near field radiation and nanofluidic flows 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0065...ballistic to hydrodynamic flow in the smallest pipes ever investigated. Because of the vacuum conditions at the low pressure end of our nanopipes

  16. Properties of a local dust storm on Mars' Atlantis Chaos by means of radiative transfer modeling. (United States)

    Oliva, Fabrizio; Altieri, Francesca; Geminale, Anna; Bellucci, Giancarlo; D'Aversa, Emiliano; Carrozzo, Giacomo; Sindoni, Giuseppe; Grassi, Davide


    In this study we present the analysis of the dust properties in a local storm imaged in the Atlantis Chaos region on Mars by the OMEGA spectrometer (Bibring et al., 2004) on March 2nd 2005 (ORB1441_5). By means of an inverse radiative transfer code we study the dust properties across the region and try to infer the connection be-tween the local storm dynamics and the orography. OMEGA is a visible and near-IR mapping spectrometer, operating in the spectral range 0.38-5.1 μm with three separate channels with different spectral resolution. The instrument's IFOV is 1.2 mrad. To analyze the storm properties we have used the inverse radiative transfer model MITRA (Oliva et al., 2016; Sindoni et al., 2013) to retrieve the effective radius reff, the optical depth at 880 nm τ880 and the top pressure tp of the dust layer. We used the Mars Climate Database (MCD, Forget et al., 1999) to obtain the atmospheric properties of the studied region to be used as input in our model. Moreover we used the optical constants from Wolff et al. (2009) to describe the dust composition. The properties from the surface have been obtained by ap-plying the SAS method (Geminale et al., 2015) to observations of the same region relatively clear from dust. All retrievals have been performed in the spectral range 500 ÷ 2500 nm. Here we describe the result from our analysis carried out on selected regions of the storm and characterized by a different optical depth of the dust. Aknowledgements: This study has been performed within the UPWARDS project and funded in the context of the European Union's Horizon 2020 Programme (H2020-Compet-08-2014), grant agreement UPWARDS-633127. References: Bibring, J-P. et al., 2004. OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité. Mars Express: the scientific payload, Ed. by Andrew Wilson, scientific coordination: Agustin Chicarro. ESA SP-1240, Noordwijk, Netherlands: ESA Publications Division, ISBN 92-9092-556-6, 2004, p. 37 - 49. Forget

  17. Radiation Budget Profiles measured through the Atmosphere with a Return Glider Radiosonde (United States)

    Philipona, R.; Kraeuchi, A.; Kivi, R.


    Very promising radiation budget profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a release mechanism and an autopilot that flies the glider radiosonde back to the launch site, or to a predefined open space, where it releases a parachute for landing once it is 100 meter above ground. The RG-R was successfully tested and deployed for tropospheric and stratospheric radiation measurements up to 30 hPa (24 km altitude) at the GRUAN sites Payerne (Switzerland) and Sodankylä (Finland). Radiation profiles and the radiation budget through the atmosphere during different daytimes and under cloud-free and cloudy situations will be shown in relation to temperature and humidity at the surface and in the atmosphere. The RG-R flight characteristics and new measurement possibilities will also be discussed.

  18. Survey of literature on convective heat transfer coefficients and recovery factors for high atmosphere thermometry (United States)

    Chung, S.


    Heat transfer phenomena of rarefied gas flows is discussed based on a literature survey of analytical and experimental rarefied gas dynamics. Subsonic flows are emphasized for the purposes of meteorological thermometry in the high atmosphere. The heat transfer coefficients for three basic geometries are given in the regimes of free molecular flow, transition flow, slip flow, and continuum flow. Different types of heat phenomena, and the analysis of theoretical and experimental data are presented. The uncertainties calculated from the interpolation rule compared with the available experimental data are discussed. The recovery factor for each geometry in subsonic rarefied flows is also given.

  19. Development of an atmospheric infrared radiation model with high clouds for target detection (United States)

    Bellisario, Christophe; Malherbe, Claire; Schweitzer, Caroline; Stein, Karin


    dimension of 10 km x 10 km and a resolution of 0.1 km with each contribution of the radiance separated. We present here the first results with examples of a typical scenarii. A 1D comparison in results is made with the use of the MATISSE model by separating each radiance calculated, in order to validate outputs. The code performance in 3D is shown by comparing LUCI to SHDOM model, referency code which uses the Spherical Harmonic Discrete Ordinate Method for 3D Atmospheric Radiative Transfer model. The results obtained by the different codes present a strong agreement and the sources of small differences are considered. An important gain in time is observed for LUCI versus SHDOM. We finally conclude on various scenarios for case analysis.

  20. 3D radiative transfer code for polarized scattered light with aligned grains (United States)

    Pelkonen, V.-M.; Penttilä, A.; Juvela, M.; Muinonen, K.


    We are working on a 3D Monte Carlo radiative transfer code which incorporates hierarchical grid structure (octree) and the full Stokes vector for both the incoming radiation and the radiation scattered by dust grains. The dust model can include different populations of dust, differing in composition, size distribution, shapes, and orientation. The non-spherical dust grains can be randomly aligned, or a fraction of them can be aligned with the magnetic fields (in particular, by the radiation field via radiative torques, RATs). The code will be a valuable tool in studying polarized scattered light from cometary comae in the solar system and from protoplanetary disks in the exoplanetary context.

  1. Validation of Aquarius Measurements Using Radiative Transfer Models at L-Band (United States)

    Dinnat, E.; LeVine, David M.; Abraham, S.; DeMattheis, P.; Utku, C.


    Aquarius/SAC-D was launched in June 2011 by NASA and CONAE (Argentine space agency). Aquarius includes three L-band (1.4 GHz) radiometers dedicated to measuring sea surface salinity. We report detailed comparisons of Aquarius measurements with radiative transfer model predictions. These comparisons were used as part ofthe initial assessment of Aquarius data. In particular, they were used successfully to estimate the radiometer calibration bias and stability. Further comparisons are being performed to assess the performance of models in the retrieval algorithm for correcting the effect of sources of geophysical "noise" (e.g. the galactic background, atmospheric attenuation and reflected signal from the Sun). Such corrections are critical in bringing the error in retrieved salinity down to the required 0.2 practical salinity unit (psu) on monthly global maps at 150 km by 150 km resolution. The forward models making up the Aquarius simulator have been very useful for preparatory studies in the years leading to Aquarius' launch. The simulator includes various components to compute effects ofthe following processes on the measured signal: 1) emission from Earth surfaces (ocean, land, ice), 2) atmospheric emission and absorption, 3) emission from the Sun, Moon and celestial Sky (directly through the antenna sidelobes or after reflection/scattering at the Earth surface), 4) Faraday rotation, and 5) convolution of the scene by the antenna gain patterns. Since the Aquarius radiometers tum-on in late July 2011, the simulator has been used to perform a first order validation of the data. This included checking the order of magnitude ofthe signal over ocean, land and ice surfaces, checking the relative amplitude of signal at different polarizations, and checking the variation with incidence angle. The comparisons were also used to assess calibration bias and monitor instruments calibration drift. The simulator is also being used in the salinity retrieval. For example, initial

  2. Glow plasma jet - experimental study of a transferred atmospheric pressure glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Guerra-Mutis, Marlon H [Mares Oil Ltd., Instituto Colombiano del Petroleo (ICP) - ECOPETROL (Colombia); U, Carlos V Pelaez [Laboratorio de Control Magnetico de Fluidos, Instituto Colombiano del Petroleo (ICP) - ECOPETROL (Colombia); H, Rafael Cabanzo [Laboratorio de Espectroscopia Atomico-Molecular (LEAM) - UIS (Colombia)


    In this paper we present the experimental study of a glow plasma jet (GPJ) obtained from a transferred atmospheric pressure glow discharge (APGD) operating at 60 Hz. The characterization of the emission spectra for both electrical discharges is presented and the electrical circuit features for APGD generation are discussed. The potentiality of GPJ as a source of active species for depletion of contaminants in liquid hydrocarbon fractions is also established.

  3. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation

    DEFF Research Database (Denmark)

    Janssen, Hans; Blocken, Bert; Carmeliet, Jan


    While the transfer equations for moisture and heat in building components are currently undergoing standardisation, atmospheric boundary conditions, conservative modelling and numerical efficiency are not addressed. In a first part, this paper adds a comprehensive description of those boundary...... conditions, emphasising wind-driven rain and vapour exchange, the main moisture supply and removal mechanism, respectively. In the second part the numerical implementation is tackled, with specific attention to the monotony of the spatial discretisation, and to the mass and energy conservation...

  4. Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, W.R. [Sandia National Laboratories, Livermore, CA (United States)


    ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, using two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.

  5. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    Energy Technology Data Exchange (ETDEWEB)


    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

  6. Downward Atmospheric longwave radiation in the city of São Paulo

    NARCIS (Netherlands)

    Barbaro, E.W.; Oliveira, A.P.; Soares, J.; Ferreira, M.J.; Boznar, M.Z.; Mlakar, P.


    This work evaluates objectively the consistency and quality of a 9 year dataset based on 5 minute average values of downward longwave atmospheric (LW) emission, shortwave radiation, temperature and relative humidity. All these parameters were observed simultaneously and continuously from 1997 to

  7. Impact of aerosol heat radiation absorption on the dynamics of an atmospheric boundary layer in equilibrium

    NARCIS (Netherlands)

    Barbaro, E.W.; Vilà-Guerau de Arellano, J.; Krol, M.C.; Holtslag, A.A.M.


    The objective of this work is to investigate the influence of the shortwave radiation (SW) absorption by aerosols on the dynamics and heat budget of the atmospheric boundary layer (ABL). This study is relevant for areas characterized by large concentrations of light-absorbing aerosol, which are

  8. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles


    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  9. Laboratory modelling of the transfer processes between the ocean and atmosphere in the boundary layers (United States)

    Sergeev, Daniil; Kandaurov, Alexander; Troitskaya, Yuliya; Vdovin, Maxim

    The processes of momentum and heat transfer between ocean and atmosphere in the boundary layer were investigated within laboratory modeling for a wide range of wind speed and surface wave including hurricane conditions. Experiments were carried out on the Wind-Wave Flume of the Large Thermostratified Tank of IAP RAS. A special net located under the surface at different depths allows to vary parameters of surface waves independently on wind parameters. Theory of self-similarity of air flow parameters in the flume was used to calculate values aerodynamic and heat transfer coefficients from the measured velocity and temperature profiles by Pito and hotfilm gauges respectively. Simultaneous measurements of surface elevation with system wire allow to obtain spectra and integral parameters of waves. It was demonstrated that in contrast to the drag coefficient, heat transfer coefficient is virtually independent of wind speed and wave parameters to the moment of the beginning of spray generation and then increases rapidly.

  10. Laboratory modelling of the transfer processes between the ocean and atmosphere in the boundary layers

    Directory of Open Access Journals (Sweden)

    Sergeev Daniil


    Full Text Available The processes of momentum and heat transfer between ocean and atmosphere in the boundary layer were investigated within laboratory modeling for a wide range of wind speed and surface wave including hurricane conditions. Experiments were carried out on the Wind-Wave Flume of the Large Thermostratified Tank of IAP RAS. A special net located under the surface at different depths allows to vary parameters of surface waves independently on wind parameters. Theory of self-similarity of air flow parameters in the flume was used to calculate values aerodynamic and heat transfer coefficients from the measured velocity and temperature profiles by Pito and hotfilm gauges respectively. Simultaneous measurements of surface elevation with system wire allow to obtain spectra and integral parameters of waves. It was demonstrated that in contrast to the drag coefficient, heat transfer coefficient is virtually independent of wind speed and wave parameters to the moment of the beginning of spray generation and then increases rapidly.

  11. The transfer of atmospheric-pressure ionization waves via a metal wire

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yang; Liu, Dongping, E-mail: [Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wang, Wenchun [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Peng, Yifeng; Niu, Jinhai; Bi, Zhenhua; Ji, Longfei; Song, Ying; Wang, Xueyang; Qi, Zhihua [Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)


    Our study has shown that the atmospheric-pressure He ionization waves (IWs) may be transferred from one dielectric tube (tube 1) to the other one (tube 2) via a floating metal wire. The propagation of IWs along the two tubes is not affected by the diameter of a floating metal wire, however, their propagation is strongly dependent on the length of a floating metal wire. The propagation of one IW along the tube 1 may result in the second IW propagating reversely inside the tube in vicinity of a floating metal wire, which keeps from their further propagation through the tube 1. After they merge together as one conduction channel inside the tube 1, the transferred plasma bullet starts to propagate along the tube 2. The propagation of transferred plasma bullets along the tube 2 is mainly determined by the capacitance and inductance effects, and their velocity and density can be controlled by the length of a floating metal wire.

  12. The direct effect of aerosols on the radiation budget and climate of the Earth-atmosphere system: its variability in space and time (United States)

    Hatzianastassiou, N.


    Atmospheric aerosols, these tiny particles suspended in the air, play a very important role for the Earth-atmosphere climate system on both global and regional scales through various mechanisms and physical processes. The climatic effects of aerosols are determined by modifications they induce on the various components of the Earth's radiation budget. Despite the progress that has been made lately, there is still much to learn about the climatic role of aerosols in various aspects. One of the most important issues that has to be addressed is the spatial and temporal variability, especially the temporal variability of aerosol properties and their consequent radiative effects. For example, there is uncertainty with regard to aerosol radiative properties and whether or not aerosol loads are increasing or decreasing with time, and what the consequences are. Moreover, the extent to which aerosols cool or warm the planet is not clear, as well as the contribution to this cooling/warming by aerosols of natural and anthropogenic origin. Given that the aerosol radiative effects, especially on radiation reaching the Earth's surface and in the atmosphere, cannot be directly measured/observed, models are necessary to overcome this problem. Specifically, radiative transfer models (RTMs) are able to calculate the radiation fluxes within the entire Earth-atmosphere system from regional to planetary scale, and the flux changes caused by aerosols. Yet, what is more interesting for models is that they allow us to study in detail the space and time resolved aerosol radiative effects and their sensitivity to various physical parameters. Using RTMs the aerosol direct effect on solar radiation can be determined at the top of the atmosphere (DRETOA) in the atmosphere (DREatm) and at the Earth's surface (DREsurf). Using a detailed radiative transfer model together with climatological input data for surface and atmospheric variables, the direct radiative effects of aerosols (DREs) were

  13. Monte Carlo simulation of radiative heat transfer in coarse fibrous media

    Energy Technology Data Exchange (ETDEWEB)

    Nisipeanu, E.; Jones, P.D.


    Radiative transfer through a medium made up of a multitude of randomly oriented opaque cylindrical fibers is examined using Monte Carlo simulation of multiple surface radiative exchange for energy bundles interacting with each fiber in their path. The method is termed Monte Carlo Discontinuous Medium (MCDM). As compared to radiative continuum methods, the present approach does not require specification of extinction coefficient, scattering albedo, or scattering phase function. Instead, only volume fraction, fiber diameter, and fiber material complex index of refraction are required as parameters. Although the MCDM method is only strictly valid for the geometric limit, comparison with previous experiments on the edge of this limit (5 {lt} x {lt} 11) is qualitatively good. For the low (solid) volume fractions considered here, comparison is excellent between MCDM results and radiative continuum results, the later being solved by both Monte Carlo simulation and by exact integral solution of the Radiative Transfer Equation (RTE). MCDM results show a sensitivity to directional bias of the fibers in the medium, suggesting that bias parameters are necessary to solve radiative transfer in media with non-random fiber orientations. MCDM results for fibrous media are very similar to those for spherical suspensions at the same volume fraction and scatterer diameter, suggesting that the precise shape of a scattering particle may be relatively less important for radiation heat transfer through randomly oriented solid matrix materials.

  14. Sensitivity of clear-sky direct radiative effect of the aerosol to micro-physical properties by using 6SV radiative transfer model: preliminary results (United States)

    Bassani, Cristiana; Tirelli, Cecilia; Manzo, Ciro; Pietrodangelo, Adriana; Curci, Gabriele


    The aerosol micro-physical properties are crucial to analyze their radiative impact on the Earth's radiation budget [IPCC, 2007]. The 6SV model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997] has been used to perform physically-based atmospheric correction of hyperspectral airborne and aircraft remote sensing data [Vermote et al., 2009; Bassani et al. 2010; Tirelli et al., 2014]. The atmospheric correction of hyperspectral data has been shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. The role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of hyperspectral data acquired over water and land targets is investigated within the framework of CLAM-PHYM (Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission) and PRIMES (Synergistic use of PRISMA products with high resolution meteo-chemical simulations and their validation on ground and from satellite) projects, both funded by Italian Space Agency (ASI). In this work, the results of the radiative field of the Earth/Atmosphere coupled system simulated by using 6SV during the atmospheric correction of hyperspectral data are presented. The analysis of the clear-sky direct radiative effect is performed considering the aerosol micro-physical properties used to define the aerosol model during the atmospheric correction process. In particular, the AERONET [Holben et al., 1998] and FLEXAOD [Curci et al., 2014] micro-physical properties are used for each image to evaluate the contribution of the size distribution and refractive index of the aerosol type on the surface reflectance and on the direct radiative forcing. The results highlight the potential of the hyperspectral remote sensing data for atmospheric studies as well as for environmental studies. Currently, the future hyperspectral missions, such as the

  15. Improvement of a snow albedo parameterization in the Snow-Atmosphere-Soil Transfer model: evaluation of impacts of aerosol on seasonal snow cover (United States)

    Zhong, Efang; Li, Qian; Sun, Shufen; Chen, Wen; Chen, Shangfeng; Nath, Debashis


    The presence of light-absorbing aerosols (LAA) in snow profoundly influence the surface energy balance and water budget. However, most snow-process schemes in land-surface and climate models currently do not take this into consideration. To better represent the snow process and to evaluate the impacts of LAA on snow, this study presents an improved snow albedo parameterization in the Snow-Atmosphere-Soil Transfer (SAST) model, which includes the impacts of LAA on snow. Specifically, the Snow, Ice and Aerosol Radiation (SNICAR) model is incorporated into the SAST model with an LAA mass stratigraphy scheme. The new coupled model is validated against in-situ measurements at the Swamp Angel Study Plot (SASP), Colorado, USA. Results show that the snow albedo and snow depth are better reproduced than those in the original SAST, particularly during the period of snow ablation. Furthermore, the impacts of LAA on snow are estimated in the coupled model through case comparisons of the snowpack, with or without LAA. The LAA particles directly absorb extra solar radiation, which accelerates the growth rate of the snow grain size. Meanwhile, these larger snow particles favor more radiative absorption. The average total radiative forcing of the LAA at the SASP is 47.5 W m-2. This extra radiative absorption enhances the snowmelt rate. As a result, the peak runoff time and "snow all gone" day have shifted 18 and 19.5 days earlier, respectively, which could further impose substantial impacts on the hydrologic cycle and atmospheric processes.

  16. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    Energy Technology Data Exchange (ETDEWEB)

    SA Edgerton; LR Roeder


    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  17. Improvements on the ice cloud modeling capabilities of the Community Radiative Transfer Model (United States)

    Yi, Bingqi; Yang, Ping; Liu, Quanhua; van Delst, Paul; Boukabara, Sid-Ahmed; Weng, Fuzhong


    Noticeable improvements on the ice cloud modeling capabilities of the Community Radiative Transfer Model (CRTM) are reported, which are based on the most recent advances in understanding ice cloud microphysical (particularly, ice particle habit/shape characteristics) and optical properties. The new CRTM ice cloud model is derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 ice cloud habit model, which represents ice particles as severely roughened hexagonal ice column aggregates with a gamma size distribution. The single-scattering properties of the new ice particle model are derived from a state-of-the-art ice optical property library and are constructed as look-up tables for rapid CRTM computations. Various sensitivity studies concerning instrument-specific applications and simulations are performed to validate CRTM against satellite observations. In particular, radiances in a spectral region covering the infrared wavelengths are simulated. Comparisons of brightness temperatures between CRTM simulations and observations (from MODIS, the Atmospheric Infrared Sounder, and the Advanced Microwave Sounding Unit) show that the new ice cloud optical property look-up table substantially enhances the performance of the CRTM under ice cloud conditions.

  18. DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation

    Directory of Open Access Journals (Sweden)

    O. Boucher


    Full Text Available The global sulphur cycle has been simulated using a general circulation model with a focus on the source and oxidation of atmospheric dimethylsulphide (DMS. The sensitivity of atmospheric DMS to the oceanic DMS climatology, the parameterisation of the sea-air transfer and to the oxidant fields have been studied. The importance of additional oxidation pathways (by O3 in the gas- and aqueous-phases and by BrO in the gas phase not incorporated in global models has also been evaluated. While three different climatologies of the oceanic DMS concentration produce rather similar global DMS fluxes to the atmosphere at 24-27 Tg S yr -1, there are large differences in the spatial and seasonal distribution. The relative contributions of OH and NO3 radicals to DMS oxidation depends critically on which oxidant fields are prescribed in the model. Oxidation by O3 appears to be significant at high latitudes in both hemispheres. Oxidation by BrO could be significant even for BrO concentrations at sub-pptv levels in the marine boundary layer. The impact of such refinements on the DMS chemistry onto the indirect radiative forcing by anthropogenic sulphate aerosols is also discussed.

  19. Radiative transfer in the 9.6 μm HIRS ozone channel using collocated SBUV-determined ozone abundances (United States)

    Joiner, J.; Lee, H.-T.; Strow, L. L.; Bhartia, P. K.; Hannon, S.; Miller, A. J.; Rokke, L.


    We have carried out a detailed analysis of radiative transfer and observational errors for the high-resolution infrared radiation sounder 2 (HIRS2)channel 9 centered in the 9.6 μm ozone absorption band. Several previous studies have shown significant differences between the total column ozone derived from HIRS2 and the ultraviolet (UV) radiometers. Here we use collocated ozone profiles derived from the solar backscatter ultraviolet (SBUV) spectrometer to isolate errors in HIRS2 channel 9. Radiative transfer in the 9.6 μm band is complicated because it is affected by atmospheric ozone, temperature, humidity, and the surface skin temperature and emissivity. We examine the accuracy of three fast radiative transfer algorithms. We validate current models for weak water vapor continuum absorption at 9.6 μm. In addition, we develop a method to correct for errors in older continuum models, in ozone transmittances, and in the channel 9 spectral response function. We also identify errors resulting from the spectral dependence of the surface emissivity and propose a correction method. Using UV-derived reflectivity, we have detected instances where IR cloud-detection and cloud-clearing algorithms have apparently failed. Our results show that if appropriate corrections and quality control are applied, it is possible to compute HIRS2 channel 9 brightness temperatures with an root-mean-square (RMS) accuracy of better than ˜0.6 K and a bias less than 0.1 K in clear skies and RMS of better than ˜0.9 K and a bias less than 0.1 K in partially cloudy skies. We plan to use the methods described here to improve IR ozone retrieval algorithms.

  20. Gravity wave propagation in the realistic atmosphere based on a three-dimensional transfer function model

    Directory of Open Access Journals (Sweden)

    L. Sun


    Full Text Available In order to study the filter effect of the background winds on the propagation of gravity waves, a three-dimensional transfer function model is developed on the basis of the complex dispersion relation of internal gravity waves in a stratified dissipative atmosphere with background winds. Our model has successfully represented the main results of the ray tracing method, e.g. the trend of the gravity waves to travel in the anti-windward direction. Furthermore, some interesting characteristics are manifest as follows: (1 The method provides the distribution characteristic of whole wave fields which propagate in the way of the distorted concentric circles at the same altitude under the control of the winds. (2 Through analyzing the frequency and wave number response curve of the transfer function, we find that the gravity waves in a wave band of about 15–30 min periods and of about 200–400 km horizontal wave lengths are most likely to propagate to the 300-km ionospheric height. Furthermore, there is an obvious frequency deviation for gravity waves propagating with winds in the frequency domain. The maximum power of the transfer function with background winds is smaller than that without background winds. (3 The atmospheric winds may act as a directional filter that will permit gravity wave packets propagating against the winds to reach the ionospheric height with minimum energy loss.

  1. Near-field radiative heat transfer in graphene plasmonic nanodisk dimers (United States)

    Ramirez, Francisco V.; Shen, Sheng; McGaughey, Alan J. H.


    Near-field thermal radiation mediated by surface plasmons in parallel graphene nanodisk dimers is studied using a semianalytical model under the electrostatic approximation. The radiative heat transfer between two disks as a function of the distance between them in coaxial and coplanar configurations is first considered. Three regimes are identified and their extents determined using nondimensional analysis. When the edge-to-edge separation is smaller than the disk diameter, near-field coupling and surface plasmon hybridization lead to an enhancement of the radiative heat transfer by up to four orders of magnitude compared to the Planck blackbody limit. A mismatch in the disk diameters affects the plasmonic mode hybridization and can either diminish or enhance the near-field radiation. Destructive interference between eigenmodes that emerge when the relative orientation between disks is varied can induce a twofold reduction in the radiative heat transfer. In all configurations, the radiative heat transfer properties can be controlled by tuning the disk size/orientation, the substrate optical properties, and graphene's doping concentration and electron mobility.

  2. Free Thyroid Transfer: A Novel Procedure to Prevent Radiation-induced Hypothyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Jeffrey [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada); Almarzouki, Hani [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada); Department of Otolaryngology-Head and Neck Surgery, King Abdulaziz University, Jeddah (Saudi Arabia); Barber, Brittany, E-mail: [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada); Scrimger, Rufus [Division of Radiation Oncology, Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Romney, Jacques [Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta (Canada); O' Connell, Daniel [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada); Urken, Mark [Institute for Head and Neck and Thyroid Cancers, Icahn School of Medicine, Mount Sinai Hospital, New York, New York (United States); Seikaly, Hadi [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada)


    Purpose: The incidence of hypothyroidism after radiation therapy for head and neck cancer (HNC) has been found to be ≤53%. Medical treatment of hypothyroidism can be costly and difficult to titrate. The aim of the present study was to assess the feasibility of free thyroid transfer as a strategy for the prevention of radiation-induced damage to the thyroid gland during radiation therapy for HNC. Methods and Materials: A prospective feasibility study was performed involving 10 patients with a new diagnosis of advanced HNC undergoing ablative surgery, radial forearm free-tissue transfer reconstruction, and postoperative adjuvant radiation therapy. During the neck dissection, hemithyroid dissection was completed with preservation of the thyroid arterial and venous supply for implantation into the donor forearm site. All patients underwent a diagnostic thyroid technetium scan 6 weeks and 12 months postoperatively to examine the functional integrity of the transferred thyroid tissue. Results: Free thyroid transfer was executed in 9 of the 10 recruited patients with advanced HNC. The postoperative technetium scans demonstrated strong uptake of technetium at the forearm donor site at 6 weeks and 12 months for all 9 of the transplanted patients. Conclusions: The thyroid gland can be transferred as a microvascular free transfer with maintenance of function. This technique could represent a novel strategy for maintenance of thyroid function after head and neck irradiation.

  3. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation. (United States)

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi


    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Study of natural energy system and downward atmospheric radiation. Part 1. Outline on measurement and result on downward atmospheric radiation; Shizen energy system to tenku hosharyo no kansoku kenkyu. 1. Kisho kansoku gaiyo to tenku hosharyo no kansoku kekka

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, K. [Kogakuin University, Tokyo (Japan); Masuoka, Y. [Yokogawa Architects and Engineers, Inc., Tokyo (Japan)


    For the study of a natural energy system taking advantage of radiation cooling, a simplified method for estimating downward atmospheric radiation quantities was examined, using observation records supplied from Hachioji City, Aerological Observatory in Tsukuba City, and four other locations. Downward atmospheric radiation quantities are closely related to partial vapor pressure in the atmosphere. Because partial vapor pressure changes according to the season, it was classified into two, for summer and for winter, and was referred to downward atmospheric radiation quantities for the establishment of their correlationships. Downward atmospheric radiation quantities were predicted on the basis of meteorological factors such as partial vapor pressure and free air temperature. Accuracy was examined of the simplified estimation equation for downward atmospheric radiation that had been proposed. A multiple regression analysis was carried out for calculating constants for the estimation equation, using partial vapor pressure, Stefan-Boltzmann constant, and free air dry-bulb absolute temperature, all closely correlated with atmospheric downward radiation quantities. Accuracy improved by time-based classification. At night, use of SAT (equivalent free air temperature) produced more accurate estimation. Though dependent upon local characteristics of the observation spot, the estimation equation works effectively. 10 refs., 10 figs., 3 tabs.

  5. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N.Y. [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N.A. [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I.V.; Bushnev, S.V.; Kondranin, T.V. [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Dolgoprudny (Russian Federation)


    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  6. Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, M.; Lauritzen, B.; Madsen, H.


    A Kalman filter method using off-site radiation monitoring data is proposed as a tool for on-line estimation of the source term for short-range atmospheric dispersion of radioactive materials. The method is based on the Gaussian plume model, in which the plume parameters including the source term...... exhibit a ‘random walk’ process. The embedded parameters of the Kalman filter are determined through maximum-likelihood estimation making the filter essentially free of external parameters. The method is tested using both real and simulated radiation monitoring data. For simulated data, the method...

  7. Impact of melting heat transfer and nonlinear radiative heat flux mechanisms for the generalized Burgers fluids

    Directory of Open Access Journals (Sweden)

    Waqar Azeem Khan

    Full Text Available The present paper deals with the analysis of melting heat and mass transfer characteristics in the stagnation point flow of an incompressible generalized Burgers fluid over a stretching sheet in the presence of non-linear radiative heat flux. A uniform magnetic field is applied normal to the flow direction. The governing equations in dimensional form are reduced to a system of dimensionless expressions by implementation of suitable similarity transformations. The resulting dimensionless problem governing the generalized Burgers is solved analytically by using the homotopy analysis method (HAM. The effects of different flow parameters like the ratio parameter, magnetic parameter, Prandtl number, melting parameter, radiation parameter, temperature ratio parameter and Schmidt number on the velocity, heat and mass transfer characteristics are computed and presented graphically. Moreover, useful discussions in detail are carried out with the help of plotted graphs and tables. Keywords: Generalized Burgers fluid, Non-linear radiative flow, Magnetic field, Melting heat transfer

  8. Heat transfer including radiation and slag particles evolution in MHD channel-I

    Energy Technology Data Exchange (ETDEWEB)

    Im, K H; Ahluwalia, R K


    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  9. The effects of atmospheric chemistry on radiation budget in the Community Earth Systems Model (United States)

    Choi, Y.; Czader, B.; Diao, L.; Rodriguez, J.; Jeong, G.


    The Community Earth Systems Model (CESM)-Whole Atmosphere Community Climate Model (WACCM) simulations were performed to study the impact of atmospheric chemistry on the radiation budget over the surface within a weather prediction time scale. The secondary goal is to get a simplified and optimized chemistry module for the short time period. Three different chemistry modules were utilized to represent tropospheric and stratospheric chemistry, which differ in how their reactions and species are represented: (1) simplified tropospheric and stratospheric chemistry (approximately 30 species), (2) simplified tropospheric chemistry and comprehensive stratospheric chemistry from the Model of Ozone and Related Chemical Tracers, version 3 (MOZART-3, approximately 60 species), and (3) comprehensive tropospheric and stratospheric chemistry (MOZART-4, approximately 120 species). Our results indicate the different details in chemistry treatment from these model components affect the surface temperature and impact the radiation budget.

  10. Measurement and analysis for optical radiation of glow discharge plasma at atmospheric pressure (United States)

    Ren, Qinglei; Lin, Qi


    The optical radiation measurement and analysis to the glow discharge plasma at atmospheric pressure have been done in the paper. The low temperature plasma due to atmospheric pressure glow discharge (APGD) in air has been produced on the planar surface of designed electrode plate. The optical radiation spectra of the plasma produced in two kinds of electrode plats with different power values loaded have been measured and sampled with the minitype grating spectrograph system. The acquired spectra data are processed averagely and analyzed. The results of analysis indicate that the optical characteristic of the APGD plasma is related to the loaded power and layout of the electrode plate. This shows that it is feasible to describe the characteristic parameters of APGD plasma qualitatively and control the strength of the APGD plasma quantitatively by the obtained relationship, which provides a convenient approach for utilizing APGD plasma effectively and also establishes some foundation to investigate APGD plasma further.

  11. The correlated-k method for radiation calculations in nonhomogeneous atmospheres (United States)

    Goody, Richard; West, Robert; Chen, Luke; Crisp, David


    The accuracy of the correlated-k method, which is a technique for radiation calculations with spectrally averaged data in nonhomogeneous atmospheres, is investigated. Comparisons are made for scattering and absorbing atmospheres containing CO2, H2O, and O3, and it is concluded that: (1) the errors in correlated-k are generally of order of magnitude 1 percent, (2) much larger errors occur only when a radiative quantity is very much smaller than its average value, (3) errors do not depend systematically on the gas molecule, the distributions of gases and aerosols, or on the aerosol optical properties, and (4) errors do not systematically increase with the order of differencing. It is shown that the multiplication property for transmission by overlapping bands can be incorporated into correlated-k, that temperature effects can be interpolated on a coarse grid, and that 10 quadrature points are often sufficient to average over complex spectral intervals containing thousands of lines.

  12. Middle atmosphere NO/x/ production due to ion propulsion induced radiation belt proton precipitation (United States)

    Aikin, A. C.; Jackman, C. H.


    The suggestion that keV Ar(+) resulting from ion propulsion operations during solar power satellite construction could cause energetic proton precipitation from the inner radiation belt is examined to determine if such precipitation could cause significant increases in middle atmosphere nitric oxide concentrations thereby adversely affecting stratospheric ozone. It is found that the initial production rate of NO (mole/cu cm-sec) at 50 km is 130 times that due to nitrous oxide reacting with excited oxygen. However, since the time required to empty the inner belt of protons is about 1 sec and short compared to the replenishment time due to neutron decay, precipitation of inner radiation belt protons will have no adverse atmospheric environmental effect.

  13. Radiation hydrodynamics simulations of massive star formation using Monte Carlo radiation transfer


    Harries, Tim J.; Haworth, Tom J.; Acreman, David


    We present a radiation hydrodynamics simulation of the formation of a massive star using a Monte Carlo treatment for the radiation field. We find that strong, high speed bipolar cavities are driven by the radiation from the protostar, and that accretion occurs stochastically from a circumstellar disc. We have computed spectral energy distributions and images at each timestep, which may in future be used to compare our models with photometric, spectroscopic, and interferometric observations of...

  14. Imaging before transfer to designated pediatric trauma centers exposes children to excess radiation. (United States)

    Puckett, Yana; Bonacorsi, Louis; Caley, Matthew; Farmakis, Shannon; Fitzpatrick, Colleen; Chatoorgoon, Kaveer; Greenspon, Yosef; Vane, Dennis W


    Pediatric trauma patients transferred to pediatric trauma centers (PTCs) often have imaging at the originating hospital (OH). The increased use of computed tomography (CT) raises concerns about malignancy risk from ionizing radiation leading many PTCs to adopt radiation dose reduction strategies. We hypothesized that pediatric trauma patients are exposed to excess radiation from imaging before transfer. A retrospective review of 1,383 scans was performed on all trauma patients with CT imaging before transfer to our Level I PTC from 2010 to 2014. Demographics, type of imaging, necessity for repeat imaging, appropriateness of imaging, and radiation dose delivered were recorded. Comparative radiation dosing was calculated using the dose-length product (DLP [expressed in mGy-cm]). All CT scans except for CT of the abdomen and pelvis and CT of the head were excluded for complete DLP data issues. Scans were considered clinically appropriate if they met Advanced Trauma Life Support (ATLS) recommendations (ATLS+) and not indicated if they did not meet ATLS criteria (ATLS-). Some scans were repeated because of technical issues. Median ΔDLP represents the difference in dose patients received at OH versus at PTC. A total of 673 patients were analyzed. Average age was 11 years, and 65.4% were male. Mean DLP at PTC was 54% lower for all analyzed scans compared with OH (p pediatric radiation reduction strategies. Pediatric trauma imaging performed at transferring institutions often does not adhere to ATLS recommendations and exceeds required ionizing radiation dosages. This study further confirms ATLS recommendations supporting prompt patient transfer without delay for imaging. Therapeutic study, level IV.

  15. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115

    Directory of Open Access Journals (Sweden)

    A. Totterdill


    Full Text Available Fluorinated compounds such as NF3 and C2F5Cl (CFC-115 are characterised by very large global warming potentials (GWPs, which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry–climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21 years and (492 ± 22 years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

  16. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115) (United States)

    Totterdill, Anna; Kovács, Tamás; Feng, Wuhu; Dhomse, Sandip; Smith, Christopher J.; Gómez-Martín, Juan Carlos; Chipperfield, Martyn P.; Forster, Piers M.; Plane, John M. C.


    Fluorinated compounds such as NF3 and C2F5Cl (CFC-115) are characterised by very large global warming potentials (GWPs), which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry-climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21) years and (492 ± 22) years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

  17. Radiative Heat Transfer modelling in a Heavy-Duty Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)


    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  18. Atmospheric propagation of high power laser radiation at different weather conditions


    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen


    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long fr...

  19. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Svendby, T.M.; Myhre, C.L.; Stebel, K.; Edvardsen, K; Orsolini, Y.; Dahlback, A.


    This is an annual report describing the activities and main results of the monitoring programme: Monitoring of the atmospheric ozone layer and natural ultraviolet radiation for 2011. 2011 was a year with generally low ozone values above Norway. A clear decrease in the ozone layer above Norway during the period 1979-1997 stopped after 1998 and the ozone layer above Norway seems now to have stabilized.(Author)

  20. Radio galaxies radiation transfer, dynamics, stability and evolution of a synchrotron plasmon

    CERN Document Server

    Pacholczyk, A G


    Radio Galaxies: Radiation Transfer, Dynamics, Stability and Evolution of a Synchrotron Plasmon deals with the physics of a region in space containing magnetic field and thermal and relativistic particles (a plasmon). The synchrotron emission and absorption of this region are discussed, along with the properties of its spectrum; its linear and circular polarization; transfer of radiation through such a region; its dynamics and expansion; and interaction with external medium.Comprised of eight chapters, this volume explores the stability, turbulence, and acceleration of particles in a synchrotro

  1. Mathematical modeling of heat transfer between the plant seedling and the environment during a radiation frost


    Finnikov K.A.; A.V. Minakov; A.A. Dekterev; A.A. Gavrilov; A.M. Korzun; V.K. Voinikov; Kolesnichenko, A. V.


    The power of the internal heat source sufficient to maintain a positive temperature of plants during one of the possible form of cold stress - radiation frost was determined with the help of numerical simulation.The simulation of unsteady heat transfer in the soil-plant-air system in the conditions of radiation frost showed that the the ground part of plants is cooling most rapidly, and this process is partially slowed down by the natural-convection heat transfer with warmer air. If the frost...

  2. Radiative transfer with POLARIS: I. Analysis of magnetic fields through synthetic dust continuum polarization measurements


    Reissl, Stefan; Wolf, Sebastian; Brauer, Robert


    Aims: We present POLARIS (POLArized RadIation Simulator), a newly developed three-dimensional Monte-Carlo radiative transfer code. POLARIS was designed to calculate dust temperature, polarization maps, and spectral energy distributions. It is optimized to handle data that results from sophisticated magneto-hydrodynamic simulations. The main purpose of the code is to prepare and analyze multi-wavelength continuum polarization measurements in the context of magnetic field studies in the interst...

  3. Parametric Study of Mixed Convective RadiativeHeat Transfer in an Inclined Annulus


    Raed G. Saihood; Manal H. Al-Hafidh


    The steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coo...

  4. Multigroup Approximation of Radiation Transfer in SF6 Arc Plasmas

    Directory of Open Access Journals (Sweden)

    Milada Bartlova


    Full Text Available The first order of the method of spherical harmonics (P1-approximation has been used to evaluate the radiation properties of arc plasmas of various mixtures of SF6 and PTFE ((C2F4n, polytetrafluoroethylene in the temperature range (1000 ÷ 35 000 K and pressures from 0.5 to 5 MPa. Calculations have been performed for isothermal cylindrical plasma of various radii (0.01 ÷ 10 cm. The frequency dependence of the absorption coefficients has been handled using the Planck and Rosseland averaging methods for several frequency intervals. Results obtained using various means calculated for different choices of frequency intervals are discussed.

  5. Retrieval of Green's function in the radiative transfer regime. (United States)

    Weaver, Richard L


    The field-field correlation function of an imperfectly diffuse acoustic field is shown to equal the (time derivative of) Green's function times the specific intensity of the noise at the position of the pseudo-source directed toward the pseudo-receiver. The identity is established in a high frequency limit in which stations are separated by distances large compared to a wavelength and in which equal-time correlations vary smoothly in space. The specific intensity is governed by a radiative transport equation. This observation permits interpretation of correlation amplitudes and promises to facilitate the retrieval of attenuation, site amplification factors, and scattering strengths from noise correlations.

  6. Longwave atmospheric radiation as a possible indicator of the aviation impact

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, N.A. [Central Aerological Observatory of the Russian Federal Service for Hydrometeorology and Environmental Monitoring, Moscow (Russian Federation)


    Aircraft emissions changing composition of the atmospheric air should be sensed by radiation parameters, such as downward (in first turn) and upward long-wave fluxes. It might be supposed that the accurate measurements of long-wave (LW) radiation fluxes in regions of crowded aircraft routes time outside these regions, could detect the influence. Main transformation of the long-wave radiation (LWR) proceeds in the troposphere which absorbs and irradiates the LWR. The only mass method of the LWR measurements in the free atmosphere became the radiometer probe. In the former USSR it was successfully developed in 1961, and since 1963 the special radiometer sounding network started to make regular observations over the USSR territory. Rather small spatial variations of the downward LWR flux was observed indicating rather high homogeneity of the atmosphere composition. Analysis of the seasonal variations of the downward LWR has revealed that over some stations it has the opposite course of changes from summer to winter and it is mainly observed at rather high levels. (R.P.) 10 refs.

  7. Remarks on the Radiative Transfer Approach to Scattering of Electromagnetic Waves in Layered Random Media (United States)



  8. Entropy analysis of flow and heat transfer caused by a moving plate with thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Adnan Saeed; Ali, Asif [Quaid-i-Azam University, Islamabad (Pakistan)


    This study examines the effects of thermal radiation on entropy generation in flow and heat transfer caused by a moving plate. The equations that govern the flow and heat transfer phenomenon are solved numerically. Velocity and temperature profiles are obtained for the parameters involved in the problem. The expressions for the entropy generation number and the Bejan number are obtained based on the profiles. Graphs for velocity, temperature, the entropy generation number, and the Bejan number are plotted and discussed qualitatively.

  9. Studying effects of non-equilibrium radiative transfer via HPC

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report presents slides on Ph.D. Research Goals; Local Thermodynamic Equilibrium (LTE) Implications; Calculating an Opacity; Opacity: Pictographic Representation; Opacity: Pictographic Representation; Opacity: Pictographic Representation; Collisional Radiative Modeling; Radiative and Collisional Excitation; Photo and Electron Impact Ionization; Autoionization; The Rate Matrix; Example: Total Photoionization rate; The Rate Coefficients; inlinlte version 1.1; inlinlte: Verification; New capabilities: Rate Matrix – Flexibility; Memory Option Comparison; Improvements over previous DCA solver; Inter- and intra-node load balancing; Load Balance – Full Picture; Load Balance – Full Picture; Load Balance – Internode; Load Balance – Scaling; Description; Performance; xRAGE Simulation; Post-process @ 2hr; Post-process @ 4hr; Post-process @ 8hr; Takeaways; Performance for 1 realization; Motivation for QOI; Multigroup Er; Transport and NLTE large effects (1mm, 1keV); Transport large effect, NLTE lesser (1mm, 750eV); Blastwave Diagnostici – Description & Performance; Temperature Comparison; NLTE has effect on dynamics at wall; NLTE has lesser effect in the foam; Global Takeaways; The end.

  10. Chemical and physical conversion in cold atmosphere and the effect of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M.; Aalto, P.; Korhonen, P.; Laaksonen, A.; Vesala, T. [Helsinki Univ. (Finland). Dept. of Physics


    The project is focusing on the formation and growth mechanisms of atmospheric aerosol and cloud droplets. Both aerosol particles and cloud droplets affect strongly on the atmospheric radiation fluxes by scattering and absorption. The droplet formation results from physical and chemical processes occurring simultaneously. The studies concerning the tropospheric cloud droplet formation, laboratory experiments with a cloud chamber and stratospheric cloud formation are summarized. The recent studies summarized in this presentation indicate that both aerosol particles and cloud droplets have a significant role in climatic change and ozone depletion problems. The anthropogenic emissions of gaseous and particulate pollutants change the properties of atmospheric aerosols and cloud droplets. The research in this field will be continued and more quantitative understanding based both experimental and theoretical studies is required

  11. Modeling the film condensate fluid dynamics and heat transfer within the bubble membrane radiator

    Energy Technology Data Exchange (ETDEWEB)

    Pauley, K.A. [Pacific Northwest Lab., Richland, WA (United States); Thornborrow, J.O. [National Aeronautics and Space Administration, Houston, TX (United States). Lyndon B. Johnson Space Center


    An analytical model of the fluid dynamics and heat transfer characteristics of the condensate within the rotating Bubble Membrane Radiator is developed. The steady-state, three-dimensional heat transfer and flow equations were reduced to a set of third-order ordinary differential equations by employing similarity transformation techniques. These equations are then solved for the radial, axial, and angular flow distributions in the film condensate. Pressure, temperature, heat transfer, film thickness and mass flow rate distributions are also calculated. The analytical model is the basis of the SCRABBLE code which is used both as a zero-g design tool and a ground-test bed analyzer.

  12. Radiative Impacts of Cloud Heterogeneity and Overlap in an Atmospheric General Circulation Model (United States)

    Oreopoulos, L.; Lee, D.; Sud, Y. C.; Suarez, M. J.


    The radiative impacts of introducing horizontal heterogeneity of layer cloud condensate, and vertical overlap of condensate and cloud fraction are examined with the aid of a new radiation package operating in the GEOS-5 Atmospheric General Circulation Model. The impacts are examined in terms of diagnostic top-of-the-atmosphere shortwave (SW) and longwave (LW) cloud radiative effect (CRE) calculations for a range of assumptions and parameter specifications about the overlap. The investigation is conducted for two distinct cloud schemes, the one that comes with the standard GEOS-5 distribution, and another which has been recently used experimentally for its enhanced GEOS-5 distribution, and another which has been recently used experimentally for its enhanced cloud microphysical capabilities; both are coupled to a cloud generator allowing arbitrary cloud overlap specification. We find that cloud overlap radiative impacts are significantly stronger for the operational cloud scheme for which a change of cloud fraction overlap from maximum-random to generalized results to global changes of SW and LW CRE of approximately 4 Watts per square meter, and zonal changes of up to approximately 10 Watts per square meter. This is because of fewer occurrences compared to the other scheme of large layer cloud fractions and of multi-layer situations with large numbers of atmospheric being simultaneously cloudy, conditions that make overlap details more important. The impact on CRE of the details of condensate distribution overlap is much weaker. Once generalized overlap is adopted, both cloud schemes are only modestly sensitive to the exact values of the overlap parameters. We also find that if one of the CRE components is overestimated and the other underestimated, both cannot be driven towards observed values by adjustments to cloud condensate heterogeneity and overlap alone.

  13. Dependence of the Martian radiation environment on atmospheric depth: Modeling and measurement (United States)

    Guo, Jingnan; Slaba, Tony C.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Badavi, Francis F.; Böhm, Eckart; Böttcher, Stephan; Brinza, David E.; Ehresmann, Bent; Hassler, Donald M.; Matthiä, Daniel; Rafkin, Scot


    The energetic particle environment on the Martian surface is influenced by solar and heliospheric modulation and changes in the local atmospheric pressure (or column depth). The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory rover Curiosity on the surface of Mars has been measuring this effect for over four Earth years (about two Martian years). The anticorrelation between the recorded surface Galactic Cosmic Ray-induced dose rates and pressure changes has been investigated by Rafkin et al. (2014) and the long-term solar modulation has also been empirically analyzed and modeled by Guo et al. (2015). This paper employs the newly updated HZETRN2015 code to model the Martian atmospheric shielding effect on the accumulated dose rates and the change of this effect under different solar modulation and atmospheric conditions. The modeled results are compared with the most up-to-date (from 14 August 2012 to 29 June 2016) observations of the RAD instrument on the surface of Mars. Both model and measurements agree reasonably well and show the atmospheric shielding effect under weak solar modulation conditions and the decline of this effect as solar modulation becomes stronger. This result is important for better risk estimations of future human explorations to Mars under different heliospheric and Martian atmospheric conditions.

  14. Dependence of Martian radiation environment on atmospheric depth: modeling and measurement (United States)

    Guo, Jingnan; Slaba, Tony; Zeitlin, Cary; Wimmer-Schweingruber, Robert; Boehm, Eckart; Brinza, David; Ehresmann, Bent; Hassler, Donald; Matthiae, Daniel; Rafkin, Scot; Badavi, Francis


    The energetic particle environment on the Martian surface is influenced by solar and heliospheric modulation and changes in the local atmospheric pressure (or column depth). The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory (MSL) rover Curiosity on the surface of Mars has been measuring this effect for over four Earth years (about two Martian years). The anti-correlation between the recorded surface Galactic Cosmic Ray (GCR) induced dose rates and pressure changes has been investigated by Rafkin et al. (2014) and the long-term solar modulation have also been empirically analyzed and modeled by Guo et al. (2015). This paper employs the newly updated HZETRN2015 code to model the Martian atmospheric shielding effect on the accumulated dose rates and the change of this effect under different solar modulation and atmospheric conditions. The modeled results are compared with the most up-to-date (from 14 August 2012 until 29 June 2016) observations of the RAD instrument on the surface of Mars. Both model and measurements agree reasonably well and show the atmospheric shielding effect under weak solar modulation conditions and the decline of this effect as solar modulation becomes stronger. This result is important for better risk estimations of future human explorations to Mars under different heliospheric and Martian atmospheric conditions.

  15. On computations for thermal radiation in MHD channel flow with heat and mass transfer. (United States)

    Hayat, T; Awais, M; Alsaedi, A; Safdar, Ambreen


    This study examines the simultaneous effects of heat and mass transfer on the three-dimensional boundary layer flow of viscous fluid between two infinite parallel plates. Magnetohydrodynamic (MHD) and thermal radiation effects are present. The governing problems are first modeled and then solved by homotopy analysis method (HAM). Influence of several embedded parameters on the velocity, concentration and temperature fields are described.

  16. A new radiative transfer scattering phase function discretisation approach with inherent energy conservation

    CSIR Research Space (South Africa)

    Roos, TH


    Full Text Available In the popular Discrete Ordinates Method (DOM) formulation of the Equation of Radiative Transfer (ERT), the 4 pi solid angle range of directions is divided into a finite number of discrete directions or ordinates. This requires that the continuous...

  17. Modeling Loss-of-Flow Accidents and Their Impact on Radiation Heat Transfer

    Directory of Open Access Journals (Sweden)

    Jivan Khatry


    Full Text Available Long-term high payload missions necessitate the need for nuclear space propulsion. The National Aeronautics and Space Administration (NASA investigated several reactor designs from 1959 to 1973 in order to develop the Nuclear Engine for Rocket Vehicle Application (NERVA. Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. In this work, a system model based on RELAP5 is developed to simulate loss-of-flow accidents on the Pewee I test reactor. This paper investigates the radiation heat transfer between the fuel elements and the structures around it. In addition, the impact on the core fuel element temperature and average core pressure was also investigated. The following expected results were achieved: (i greater than normal fuel element temperatures, (ii fuel element temperatures exceeding the uranium carbide melting point, and (iii average core pressure less than normal. Results show that the radiation heat transfer rate between fuel elements and cold surfaces increases with decreasing flow rate through the reactor system. However, radiation heat transfer decreases when there is a complete LOFA. When there is a complete LOFA, the peripheral coolant channels of the fuel elements handle most of the radiation heat transfer. A safety system needs to be designed to counteract the decay heat resulting from a post-LOFA reactor scram.

  18. Green's function solution to radiative heat transfer between longitudinal gray fins (United States)

    Frankel, J. I.; Silvestri, J. J.


    A demonstration is presented of the applicability and versatility of a pure integral formulation for radiative-conductive heat-transfer problems. Preliminary results have been obtained which indicate that this formulation allows an accurate, fast, and stable computation procedure to be implemented. Attention is given to the accessory problem defining Green's function.

  19. Infinite space Green’s function of the time-dependent radiative transfer equation (United States)

    Liemert, André; Kienle, Alwin


    This study contains the derivation of an infinite space Green’s function of the time-dependent radiative transfer equation in an anisotropically scattering medium based on analytical approaches. The final solutions are analytical regarding the time variable and given by a superposition of real and complex exponential functions. The obtained expressions were successfully validated with Monte Carlo simulations. PMID:22435101

  20. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo in Natural Waters (United States)

    Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...

  1. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo of Natural Waters (United States)

    Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...

  2. Infinite space Green's function of the time-dependent radiative transfer equation. (United States)

    Liemert, André; Kienle, Alwin


    This study contains the derivation of an infinite space Green's function of the time-dependent radiative transfer equation in an anisotropically scattering medium based on analytical approaches. The final solutions are analytical regarding the time variable and given by a superposition of real and complex exponential functions. The obtained expressions were successfully validated with Monte Carlo simulations.

  3. Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation (United States)

    Chen, Shijun; Sun, Fuyu; Bai, Qingsong; Chen, Dawei; Chen, Qiang; Hou, Dong


    We demonstrated a timing fluctuation suppression in outdoor laser-based atmospheric radio-frequency transfer over a 110 m one-way free-space link using an electronic phase compensation technique. Timing fluctuations and Allan Deviation are both measured to characterize the instability of transferred frequency incurred during the transfer process. With transferring a 1 GHz microwave signal over a timing fluctuation suppressed transmission link, the total root-mean-square (rms) timing fluctuation was measured to be 920 femtoseconds in 5000 s, with fractional frequency instability on the order of 1 × 10-12 at 1 s, and order of 2 × 10-16 at 1000 s. This atmospheric frequency transfer scheme with the timing fluctuation suppression technique can be used to fast build an atomic clock-based frequency free-space transmission link since its stability is superior to a commercial Cs and Rb clock.

  4. Arctic Radiation Measurement in Column: Atmosphere-Surface (ARMCAS) MODIS Airborne Simulator (MAS) Level-1B Data Products (United States)

    National Aeronautics and Space Administration — The objective of the Arctic Radiation Measurement in Column: Atmosphere-Surface (ARMCAS) experiment was to detect and differentiate between clouds, ice, and snow...

  5. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses (United States)

    Palaszewski, Bryan


    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10- Megawatt electric (MWe) OTV power level and a 200 metricton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  6. Effect of gamma radiation on PA 6,12 in argon atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Menchaca C, C. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos (Mexico); Martinez B, G. [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Km. 12 Carretera Toluca-Atlacomulco, San Cayetano 50200, Estado de Mexico (Mexico); Alvarez C, A. [Departamento de Ingenieria Quimica y Bioquimica, Intituto Tecnologico de Zacatepec, Av. Tecnologico 27, Zacatepec 62780, Morelos (Mexico); Lara, V. H. [Departamento de Quimica, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Apdo. Postal 55-534, Mexico 09340, D. F. (Mexico); Lopez V, H.; Carrasco A, H. [Departamento de Fisica de Radiaciones, ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)], e-mail:


    Radiation effects on crystalline fibers of PA 6,12 (nylon 6,12) gamma irradiated with {sup 6}0Co under argon atmosphere at 15 kGy, 50 kGy, 100 kGy, 200 kGy and 300 kGy were studied, covering chemical structure, morphology and surface pattern. Characterization techniques show the effect of the different doses of gamma radiation. As the doses increase, amazing behavior had been found. From thermal analysis (TGA and DTA) it is evident the decrease in melting point and in the decomposition temperatures, but the heat of fusion has a different answer to the gamma irradiation, increasing or at least remaining in the same value. These results can be related to those obtained by X-rays, which shows a an unseen behavior, with no significant differences between the spectra with the crystal size being the same for each radiation doses. Finally, , the surface pattern given by AFM and SEM confirms the physical damaged caused by the radiation doses applied. All of these changes can be attributed to the chain scission mechanism provoked by the interaction radiation-matter, which is the main cause of the oligomer formation and crystal reorganization. (Author)

  7. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Malik, Rabia, E-mail: [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Department of Mathematics and Statistics, International Islamic University Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan)


    In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

  8. Effects of radiation on convection heat transfer of Cu-water nanofluid past a moving wedge

    Directory of Open Access Journals (Sweden)

    Salama Faiza A.


    Full Text Available Heat transfer characteristics of a two-dimensional steady hydrodynamic flow of water-based copper(Cu nanofluid over a moving wedge, taking into account the effects of thermal radiation, have been investigated numerically. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing fundamental equations are first transformed into a system of ordinary differential equations and solved numerically by using the fourth-order Runge-kutta method with shooting technique. A comparison with previously published work has been carried out and the results are found to be in good agreement. The existence of unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. The results indicate that there is strong dependence of the thermal gradient at the surface of the wedge on both velocity ratio parameter and thermal radiation.

  9. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

    Directory of Open Access Journals (Sweden)

    Masood Khan


    Full Text Available In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

  10. Comparison of Two Models for Radiative Heat Transfer in High Temperature Thermal Plasmas

    Directory of Open Access Journals (Sweden)

    Matthieu Melot


    Full Text Available Numerical simulation of the arc-flow interaction in high-voltage circuit breakers requires a radiation model capable of handling high-temperature participating thermal plasmas. The modeling of the radiative transfer plays a critical role in the overall accuracy of such CFD simulations. As a result of the increase of computational power, CPU intensive methods based on the radiative transfer equation, leading to more accurate results, are now becoming attractive alternatives to current approximate models. In this paper, the predictive capabilities of the finite volume method (RTE-FVM and the P1 model are investigated. A systematic comparison between these two models and analytical solutions are presented for a variety of relevant test cases. Two implementations of each approach are compared, and a critical evaluation is presented.

  11. Ultrabroadband super-Planckian radiative heat transfer with artificial continuum cavity states in patterned hyperbolic metamaterials (United States)

    Dai, Jin; Ding, Fei; Bozhevolnyi, Sergey I.; Yan, Min


    Localized cavity resonances due to nanostructures at material surfaces can greatly enhance radiative heat transfer (RHT) between two closely placed bodies owing to stretching of cavity states in momentum space beyond the light line. Based on such understanding, we numerically demonstrate the possibility of ultrabroadband super-Planckian RHT between two plates patterned with trapezoidal-shaped hyperbolic metamaterial (HMM) arrays. The phenomenon is rooted not only in HMM's high effective index for creating subwavelength resonators but also its extremely anisotropic isofrequency contour. The two properties enable one to create photonic bands with a high spectral density to populate a desired thermal radiation window. At submicron gap sizes between such two plates, the artificial continuum states extend outside the light cone, tremendously increasing overall RHT. Our study reveals that structured HMM offers unprecedented potential in achieving a controllable super-Planckian radiative heat transfer for thermal management at nanoscale.

  12. Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF

    Directory of Open Access Journals (Sweden)

    Y. Gu


    Full Text Available A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to −50 to + 50 W m−2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to −40 g m−2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between −12~12 W m−2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the

  13. Determination of Radiative Heat Transfer Coefficient at High Temperatures Using a Combined Experimental-Computational Technique (United States)

    Kočí, Václav; Kočí, Jan; Korecký, Tomáš; Maděra, Jiří; Černý, Robert Č.


    The radiative heat transfer coefficient at high temperatures is determined using a combination of experimental measurement and computational modeling. In the experimental part, cement mortar specimen is heated in a laboratory furnace to 600°C and the temperature field inside is recorded using built-in K-type thermocouples connected to a data logger. The measured temperatures are then used as input parameters in the three dimensional computational modeling whose objective is to find the best correlation between the measured and calculated data via four free parameters, namely the thermal conductivity of the specimen, effective thermal conductivity of thermal insulation, and heat transfer coefficients at normal and high temperatures. The optimization procedure which is performed using the genetic algorithms provides the value of the high-temperature radiative heat transfer coefficient of 3.64 W/(m2K).

  14. Three-dimensional simulation of the Ring effect in observations of scattered sun light using Monte Carlo radiative transfer models

    Directory of Open Access Journals (Sweden)

    T. Deutschmann


    Full Text Available We present a new technique for the quantitative simulation of the "Ring effect" for scattered light observations from various platforms and under different atmospheric situations. The method is based on radiative transfer calculations at only one wavelength λ0 in the wavelength range under consideration, and is thus computationally fast. The strength of the Ring effect is calculated from statistical properties of the photon paths for a given situation, which makes Monte Carlo radiative transfer models in particular appropriate. We quantify the Ring effect by the so called rotational Raman scattering probability, the probability that an observed photon has undergone a rotational Raman scattering event. The Raman scattering probability is independent from the spectral resolution of the instrument and can easily be converted into various definitions used to characterise the strength of the Ring effect. We compare the results of our method to the results of previous studies and in general good quantitative agreement is found. In addition to the simulation of the Ring effect, we developed a detailed retrieval strategy for the analysis of the Ring effect based on DOAS retrievals, which allows the precise determination of the strength of the Ring effect for a specific wavelength while using the spectral information within a larger spectral interval around the selected wavelength. Using our technique, we simulated synthetic satellite observation of an atmospheric scenario with a finite cloud illuminated from different sun positions. The strength of the Ring effect depends systematically on the measurement geometry, and is strongest if the satellite points to the side of the cloud which lies in the shadow of the sun.

  15. Analysis of the radiative thermal transfer in planar multi-layer systems with various emissivity and transmissivity properties


    Spanulescu, Sever


    The paper analyzes the radiative thermal transfer in a liquid helium cryostat with liquid nitrogen shielding. A infinite plane walls model is used for demonstrating a method for lowering the radiative heat transfer and the numerical results for two such systems are presented. Some advantages concerning the opportunity of using semi-transparent walls are analytically and numerically demonstrated.

  16. Community Radiative Transfer Model for Inter-Satellites Calibration and Verification (United States)

    Liu, Q.; Nalli, N. R.; Ignatov, A.; Garrett, K.; Chen, Y.; Weng, F.; Boukabara, S. A.; van Delst, P. F.; Groff, D. N.; Collard, A.; Joseph, E.; Morris, V. R.; Minnett, P. J.


    Developed at the Joint Center for Satellite Data Assimilation, the Community Radiative Transfer Model (CRTM) [1], operationally supports satellite radiance assimilation for weather forecasting. The CRTM also supports JPSS/NPP and GOES-R missions [2] for instrument calibration, validation, monitoring long-term trending, and satellite retrieved products [3]. The CRTM is used daily at the NOAA NCEP to quantify the biases and standard deviations between radiance simulations and satellite radiance measurements in a time series and angular dependency. The purposes of monitoring the data assimilation system are to ensure the proper performance of the assimilation system and to diagnose problems with the system for future improvements. The CRTM is a very useful tool for cross-sensor verifications. Using the double difference method, it can remove the biases caused by slight differences in spectral response and geometric angles between measurements of the two instruments. The CRTM is particularly useful to reduce the difference between instruments for climate studies [4]. In this study, we will carry out the assessment of the Suomi National Polar-orbiting Partnership (SNPP) [5] Cross-track Infrared Sounder (CrIS) data [6], Advanced Technology Microwave Sounder (ATMS) data, and data for Visible Infrared Imaging Radiometer Suite (VIIRS) [7][8] thermal emissive bands. We use dedicated radiosondes and surface data acquired from NOAA Aerosols and Ocean Science Expeditions (AEROSE) [9]. The high quality radiosondes were launched when Suomi NPP flew over NOAA Ship Ronald H. Brown situated in the tropical Atlantic Ocean. The atmospheric data include profiles of temperature, water vapor, and ozone, as well as total aerosol optical depths. The surface data includes air temperature and humidity at 2 meters, skin temperature (Marine Atmospheric Emitted Radiance Interferometer, M-AERI [10]), surface temperature, and surface wind vector. [1] Liu, Q., and F. Weng, 2006: JAS [2] Liu, Q

  17. Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Di Biagio, C. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); University of Siena, Department of Earth Science, Siena (Italy); Di Sarra, A. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); Eriksen, P. [Danish Climate Centre, DMI, Danish Meteorological Institute, Copenhagen (Denmark); Ascanius, S.E. [DMI, Danish Meteorological Institute, Qaanaaq (Greenland); Muscari, G. [INGV, Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Holben, B. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)


    This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth ({tau}) obtained at Thule Air Base (Greenland) in 2007-2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A ({Delta}SW{sub A}), wv ({Delta}SW{sub wv}), and aerosols ({Delta}SW{sub {tau}}) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as -100 Wm{sup -2} (-18%). The seasonal change of A produces an increase of SW by up to +25 Wm{sup -2} (+4.5%). The annual mean radiative effect is estimated to be -(21-22) Wm{sup -2} for wv, and +(2-3) Wm{sup -2} for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in {Delta}SW{sub wv} by 0.93 Wm{sup -2} (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by -0.027, with a corresponding decrease in {Delta}SW{sub A} by 0.41 Wm{sup -2} (-14.9%). Atmospheric aerosols produce a reduction of SW as low as -32 Wm{sup -2} (-6.7%). The instantaneous aerosol radiative forcing (RF{sub {tau}}) reaches values of -28 Wm{sup -2} and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FE{sub {tau}}) for solar zenith angles between 55 and 70 is estimated to be (-120.6 {+-} 4.3) for 0.1 < A < 0.2, and (-41.2 {+-} 1.6) Wm{sup -2} for 0.5 < A < 0.6. (orig.)

  18. SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations (United States)

    Baes, M.; Camps, P.


    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.

  19. Overview of the atmospheric ionizing radiation environment monitoring by Bulgarian build instruments (United States)

    Dachev, Tsvetan; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen; Spurny, Frantisek; Ploc, Ondrej; Uchihori, Yukio; Flueckiger, Erwin; Kudela, Karel; Benton, Eric


    Humans are exposed to ionizing radiation all the time, and it is known that it can induce a variety of harmful biological effects. Consequently, it is necessary to quantitatively assess the level of exposure to this radiation as the basis for estimating risks for their health. Spacecraft and aircraft crews are exposed to elevated levels of cosmic radiation of galactic and solar origin and to secondary radiation produced in the atmosphere, the vehicle structure and its contents. The aircraft crew monitoring is required by the following recommendations of the International Commission on Radiological Protection (ICRP) (ICRP 1990), the European Union (EU) introduced a revised Basic Safety Standards Directive (EC 1997) which, inter alia, included the exposure to cosmic radiation. This approach has been also adopted in other official documents (NCRP 2002). In this overview we present the results of ground based, mountain peaks, aircraft, balloon and rocket radiation environment monitoring by means of a Si-diode energy deposition spectrometer Liulin type developed first in Bulgarian Academy of Sciences (BAS) for the purposes of the space radiation monitoring at MIR and International Space Station (ISS). These spectrometers-dosemeters are further developed, calibrated and used by scientific groups in different countries. Calibration procedures of them are performed at different accelerators including runs in the CERN high-energy reference field, simulating the radiation field at 10 km altitude in the atmosphere and with heavy ions in Chiba, Japan HIMAC accelerator were performed also. The long term aircraft data base were accumulated using specially developed battery operated instrument in 2001-2009 years onboard of A310-300 aircrafts of Czech Air Lines, during 24 about 2 months runs with more than 2000 flights and 13500 flight hours on routes over the Atlantic Ocean mainly. The obtained experimental data are compared with computational models like CARI and EPCARD. The

  20. Interactive Radiative Transfer Modeling Tools to Map Volcanic Emissions with Thermal Infrared Remote Sensing (United States)

    Realmuto, V. J.


    The estimation of plume composition from thermal infrared (TIR) radiance measurements is based in radiative transfer (RT) modeling. To model the observed spectra we must consider the temperature, emissivity, and elevation of the surface beneath the plume, plume altitude and thickness, and the local atmospheric temperature and humidity. Our knowledge of these parameters is never perfect, and interactive RT modeling allows us to evaluate the impact of these uncertainties on our estimates of plume composition. Interactive RT modeling has three main components: retrieval procedures for plume components, an engine for RT calculations, and a graphic user interface (GUI) to input radiance data, modify model parameters, launch retrievals, and visualize the resulting estimates of plume composition. The Jet Propulsion Laboratory (JPL), in collaboration with Spectral Sciences, Inc. (SSI), is developing a new class of tools for interactive RT modeling. We will implement RT modeling on graphics processors (GPU) to achieve a 100-fold increase in processing speed, relative to conventional CPU-based processing, and thus enable fully-interactive estimation and visualization of plume composition. The heritage for our new tools is based on the Plume Tracker toolkit, developed at JPL, and MODTRAN RT model, developed by SSI. Plume Tracker integrates retrieval procedures, interactive visualization tools, and an interface to a modified version of MODTRAN under a single GUI. Our new tools will incorporate refinements from a recent adaptation of MODTRAN to optimize modeling the radiative properties of chemical clouds. This presentation will include a review of the foundations of plume mapping in the TIR and examples of the application of Plume Tracker to ASTER, MODIS, and AIRS data. We will present an overview of our tool development effort and discuss the application of these tools to data from new and future instruments, such as the airborne Hyperspectral Thermal Emission Spectrometer

  1. Atmospheric Radiation Measurement Madden-Julian Oscillation Investigation Experiment Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Long, Chuck [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.


    Every 30–90 days during the Northern Hemisphere winter, the equatorial tropical atmosphere experiences pulses of extraordinarily strong deep convection and rainfall. This phenomenon is referred to as the Madden–Julian Oscillation, or MJO, named after the scientists who identified this cycle. The MJO significantly affects weather and rainfall patterns around the world (Zhang 2013). To improve predictions of the MJO—especially about how it forms and evolves throughout its lifecycle—an international group of scientists collected an unprecedented set of observations from the Indian Ocean and western Pacific region from October 2011 through March 2012 through several coordinated efforts. The coordinated field campaigns captured six distinct MJO cycles in the Indian Ocean. The rich set of observations capturing several MJO events from these efforts will be used for many years to study the physics of the MJO. Here we highlight early research results using data from the Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation Investigation Experiment (AMIE), sponsored by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility.

  2. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise as part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.

  3. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations (United States)

    Sun, Wenjun; Jiang, Song; Xu, Kun; Li, Shu


    This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP) scheme in all

  4. Extension of radiative transfer code MOMO, matrix-operator model to the thermal infrared - Clear air validation by comparison to RTTOV and application to CALIPSO-IIR (United States)

    Doppler, Lionel; Carbajal-Henken, Cintia; Pelon, Jacques; Ravetta, François; Fischer, Jürgen


    1-D radiative transfer code Matrix-Operator Model (MOMO), has been extended from [0.2-3.65 μm] the band to the whole [0.2-100 μm] spectrum. MOMO can now be used for the computation of a full range of radiation budgets (shortwave and longwave). This extension to the longwave part of the electromagnetic radiation required to consider radiative transfer processes that are features of the thermal infrared: the spectroscopy of the water vapor self- and foreign-continuum of absorption at 12 μm and the emission of radiation by gases, aerosol, clouds and surface. MOMO's spectroscopy module, Coefficient of Gas Absorption (CGASA), has been developed for computation of gas extinction coefficients, considering continua and spectral line absorptions. The spectral dependences of gas emission/absorption coefficients and of Planck's function are treated using a k-distribution. The emission of radiation is implemented in the adding-doubling process of the matrix operator method using Schwarzschild's approach in the radiative transfer equation (a pure absorbing/emitting medium, namely without scattering). Within the layer, the Planck-function is assumed to have an exponential dependence on the optical-depth. In this paper, validation tests are presented for clear air case studies: comparisons to the analytical solution of a monochromatic Schwarzschild's case without scattering show an error of less than 0.07% for a realistic atmosphere with an optical depth and a blackbody temperature that decrease linearly with altitude. Comparisons to radiative transfer code RTTOV are presented for simulations of top of atmosphere brightness temperature for channels of the space-borne instrument MODIS. Results show an agreement varying from 0.1 K to less than 1 K depending on the channel. Finally MOMO results are compared to CALIPSO Infrared Imager Radiometer (IIR) measurements for clear air cases. A good agreement was found between computed and observed radiance: biases are smaller than 0.5 K

  5. Test of a simplified radiative transfer model: passive microwave brightness temperatures simulated at L, C and X-band (United States)

    Juglea, S.; Kerr, Y. H.; Mialon, A.; Saleh, K.; Wigneron, J.-P.; Leroux, D.; Lopez-Baeza, E.


    ESA's Soil Moisture and Ocean Salinity (SMOS) mission, successfully launched in November, 2009, acquires brightness temperatures relying on an L-band (1.4 GHz) interferometric radiometer. Within the context of the preparation for this mission over land, the Valencia Anchor Station (VAS) experimental site, in Spain, was selected to be one of the main test sites in Europe for the SMOS Calibration/Validation (Cal/Val) activities. It is a semiarid environment with low annual precipitation (around 400mm) and is characterized by an extensive network of measurements in the atmosphere and in the soil. The objective of this research is to propose a parametrization of a radiative transfer model in order to simulate the passive microwave brightness temperature at SMOS scale (an average of 50km²) at three different bands: L-band (1.4 GHz), C-band (6.7 GHz) and X-band (10.9 GHz). In this framework, a coupled SVAT (Soil-Vegetation-Atmosphere-Transfer) - radiative transfer model was considered for modelling the soil moisture and the resulting microwave emission. The hydrological processes are simulated using a SVAT model named ISBA (Interactions between Soil Biosphere Atmosphere), while the microwave emission is simulated using the L-MEB (L-band Microwave Emission of the Biosphere) model. L-MEB is adapted regarding the surface features of VAS area and is computed using the new parametrisation in order to simulate brightness temperature at L, C and X-band. The results obtained were compared with remote sensing data from SMOS and AMSR-E (Advanced Microwave Scanning Radiometer of the Earth Observing System (EOS)). A very high correlation coefficient (more than 0.90) is obtained when comparing with AMSR-E data at C and X-band. This method allows simulating the brightness temperature at different frequencies for a wide area and is of first interests as passive sensors (SMOS, AMSR-E) have a large footprint (several tens of km) so to better understand the signal is interesting to focus

  6. Radiative impacts of ozone and other radiatively active components

    Energy Technology Data Exchange (ETDEWEB)

    Stordal, F.; Larsen, T.A.; Myhre, G.; Zetterberg, L.


    Radiative transfer calculations have been performed with two models of infrared radiation (broad band and line-by-line) and one model for ultraviolet and visible radiation (discrete ordinate method). The calculations are aimed at quantifying the radiative effects of radiatively active gases, in particular ozone. Seasonal variations and trends in the radiative forcing due to presence of ozone in the atmosphere is studied, based on observed ozone profiles from ozone soundings at selected Nordic locations. 15 refs., 28 figs., 8 tabs.

  7. Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Li-Hua Yu


    Full Text Available In recent years, water (R718 as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C. In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.

  8. Transfer of atmospheric matter through the euphotic layer in the northwestern Mediterranean: seasonal pattern and driving forces (United States)

    Migon, Christophe; Sandroni, Valérie; Marty, Jean-Claude; Gasser, Beat; Miquel, Juan-Carlos

    The transfer of atmospheric particulate matter through the surface marine layer was studied by comparing atmospheric and marine fluxes. Time series were obtained from the coupling of a coastal atmospheric sampling station (Cap Ferrat, French Riviera) and a marine sampling site (DYFAMED site, central Ligurian Sea). Liquid phase traps were used for measuring total atmospheric fluxes and sediment traps deployed at 200 m depth for measuring marine fluxes. Fluxes of mass, aluminium, and soluble anthropogenic metals (Cd, Pb and Zn) were obtained from both these reservoirs. Physical and biological time series data acquired at the DYFAMED site also were used to describe a three-step seasonal transfer scenario: In summer and autumn, during the period of water stratification, marine fluxes are low and do not account for the transfer of lithogenic material, as revealed by low Al to mass flux ratios and high proportions of organic carbon at 200 m depth. Atmospheric material accumulates along the thermocline, while a series of physico-chemical processes lead to the formation of small (⩽150 μm) non-biogenic organic aggregates. In winter, the sinking of dense water that occurs in the Ligurian Sea is responsible for a rapid downward transfer of the lithogenic matter accumulated in the surface layer. The fact that soluble trace metals (e.g., cadmium) accumulated in the surface layer are only partially found in sediment traps may indicate that sorption processes play a minor role in the formation of organic aggregates, compared with coagulation processes. In spring, nutrients brought to surface waters by the winter vertical mixing allow phytoplanktonic blooms, and the transfer of atmospheric matter is then governed by the temporal variations of biological activity. The seasonal variability of the vertical transfer leads to the concept of seasonal variability of elemental residence times in the euphotic layer.

  9. Latest Results on Jupiter's Atmosphere and Radiation Belts from the Juno Microwave Radiometer (United States)

    Janssen, M.


    The Juno Microwave Radiometer (MWR) was designed to investigate Jupiter's atmosphere and radiation belts as one of a suite of instruments that form the core of the Juno mission. The traces of absolute nadir brightness temperature for the first six perijove pass has been used to infer a striking variation in the distribution of NH3, which traces a previously unexpected deep circulation. The accumulation of data from all perijove passes obtained to date demonstrate the longitudinal, temporal, and depth dependencies of observed structures. Partial 3D maps show the structure and depths of specific features on Jupiter, notably the polar regions and the Great Red Spot.

  10. User interface development and metadata considerations for the Atmospheric Radiation Measurement (ARM) archive (United States)

    Singley, P. T.; Bell, J. D.; Daugherty, P. F.; Hubbs, C. A.; Tuggle, J. G.


    This paper will discuss user interface development and the structure and use of metadata for the Atmospheric Radiation Measurement (ARM) Archive. The ARM Archive, located at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is the data repository for the U.S. Department of Energy's (DOE's) ARM Project. After a short description of the ARM Project and the ARM Archive's role, we will consider the philosophy and goals, constraints, and prototype implementation of the user interface for the archive. We will also describe the metadata that are stored at the archive and support the user interface.

  11. EMMA: an adaptive mesh refinement cosmological simulation code with radiative transfer (United States)

    Aubert, Dominique; Deparis, Nicolas; Ocvirk, Pierre


    EMMA is a cosmological simulation code aimed at investigating the reionization epoch. It handles simultaneously collisionless and gas dynamics, as well as radiative transfer physics using a moment-based description with the M1 approximation. Field quantities are stored and computed on an adaptive three-dimensional mesh and the spatial resolution can be dynamically modified based on physically motivated criteria. Physical processes can be coupled at all spatial and temporal scales. We also introduce a new and optional approximation to handle radiation: the light is transported at the resolution of the non-refined grid and only once the dynamics has been fully updated, whereas thermo-chemical processes are still tracked on the refined elements. Such an approximation reduces the overheads induced by the treatment of radiation physics. A suite of standard tests are presented and passed by EMMA, providing a validation for its future use in studies of the reionization epoch. The code is parallel and is able to use graphics processing units (GPUs) to accelerate hydrodynamics and radiative transfer calculations. Depending on the optimizations and the compilers used to generate the CPU reference, global GPU acceleration factors between ×3.9 and ×16.9 can be obtained. Vectorization and transfer operations currently prevent better GPU performance and we expect that future optimizations and hardware evolution will lead to greater accelerations.

  12. Radiative ion-ion neutralization: a new gas-phase atmospheric pressure ion transduction mechanism. (United States)

    Davis, Eric J; Siems, William F; Hill, Herbert H


    All atmospheric pressure ion detectors, including photo ionization detectors, flame ionization detectors, electron capture detectors, and ion mobility spectrometers, utilize Faraday plate designs in which ionic charge is collected and amplified. The sensitivity of these Faraday plate ion detectors are limited by thermal (Johnson) noise in the associated electronics. Thus approximately 10(6) ions per second are required for a minimal detection. This is not the case for ion detection under vacuum conditions where secondary electron multipliers (SEMs) can be used. SEMs produce a cascade of approximately 10(6) electrons per ion impinging on the conversion dynode. Similarly, photomultiplier tubes (PMTs) can generate approximately 10(6) electrons per photon. Unlike SEMs, however, PMTs are evacuated and sealed so that they are commonly used under atmospheric pressure conditions. This paper describes an atmospheric pressure ion detector based on coupling a PMT with light emitted from ion-ion neutralization reactions. The normal Faraday plate collector electrode was replaced with an electrode "needle" used to concentrate the anions as they were drawn to the tip of the needle by a strong focusing electric field. Light was emitted near the surface of the electrode when analyte ions were neutralized with cations produced from the anode. Although radiative-ion-ion recombination has been previously reported, this is the first time ions from separate ionization sources have been combined to produce light. The light from this radiative-ion-ion-neutralization (RIIN) was detected using a photon multiplier such that an ion mobility spectrum was obtained by monitoring the light emitted from mobility separated ions. An IMS spectrum of nitroglycerin (NG) was obtained utilizing RIIN for tranducing the mobility separated ions into an analytical signal. The implications of this novel ion transduction method are the potential for counting ions at atmospheric pressure and for obtaining ion

  13. Convergence of vector spherical wave expansion method applied to near-field radiative transfer. (United States)

    Sasihithlu, Karthik; Narayanaswamy, Arvind


    Near-field radiative transfer between two objects can be computed using Rytov's theory of fluctuational electrodynamics in which the strength of electromagnetic sources is related to temperature through the fluctuation-dissipation theorem, and the resultant energy transfer is described using the dyadic Green's function of the vector Helmholtz equation. When the two objects are spheres, the dyadic Green's function can be expanded in a series of vector spherical waves. Based on comparison with the convergence criterion for the case of radiative transfer between two parallel surfaces, we derive a relation for the number of vector spherical waves required for convergence in the case of radiative transfer between two spheres. We show that when electromagnetic surface waves are active at a frequency the number of vector spherical waves required for convergence is proportional to Rmax/d when d/Rmax → 0, where Rmax is the radius of the larger sphere, and d is the smallest gap between the two spheres. This criterion for convergence applies equally well to other near-field electromagnetic scattering problems.

  14. Heat Transfer and Geometrical Analysis of Thermoelectric Converters Driven by Concentrated Solar Radiation (United States)

    Suter, Clemens; Tomeš, Petr; Weidenkaff, Anke; Steinfeld, Aldo


    A heat transfer model that couples radiation/conduction/convection heat transfer with electrical potential distribution is developed for a thermoelectric converter (TEC) subjected to concentrated solar radiation. The 4-leg TEC module consists of two pairs of p-type La1.98Sr0.02CuO4 and n-type CaMn0.98Nb0.02O3 legs that are sandwiched between two ceramic Al2O3 hot/cold plates and connected electrically in series and thermally in parallel. The governing equations for heat transfer and electrical potential are formulated, discretized and solved numerically by applying the finite volume (FV) method. The model is validated in terms of experimentally measured temperatures and voltages/power using a set of TEC demonstrator modules, subjected to a peak radiative flux intensity of 300 suns. The heat transfer model is then applied to examine the effect of the geometrical parameters (e.g. length/width of legs) on the solar-to-electricity energy conversion efficiency.

  15. Characterization of the atmospheric effects on the transmission of thermal radiation (United States)

    Hanafy, Mohamed E.

    Atmospheric scattering plays a crucial rule in degrading the performance of electro-optical imaging systems operating in the visible and infra-red spectral bands, and hence limits the quality of the acquired images, either through reduction of contrast or increase of image blur. The exact nature of light scattering by atmospheric media is highly complex and depends on the types, orientations, sizes and distributions of particles constituting these media, as well as wavelengths, polarization states and directions of the propagating radiation. Here we follow the common approach for solving imaging and propagation problems by treating the propagating light through atmospheric media as composed of two main components: a direct (unscattered), and a scattered component. In this work we developed a detailed model of the effects of absorption and scattering by haze and fog atmospheric aerosols on the optical radiation propagating from the object plane to an imaging system, based on the classical theory of EM scattering. This detailed model is then used to compute the average point spread function (PSF) of an imaging system which properly accounts for the effects of the diffraction, scattering, and the appropriate optical power level of both the direct and the scattered radiation arriving at the pupil of the imaging system. Also, the calculated PSF, properly weighted for the energy contributions of the direct and scattered components is used, in combination with a radiometric model, to estimate the average number of the direct and scattered photons detected at the sensor plane, which are then used to calculate the image spectrum signal-to-noise ratio (SNR) in the visible near infra-red (NIR) and mid infra-red (MIR) spectral wavelength bands. Reconstruction of images degraded by atmospheric scattering and measurement noise is then performed, up to the limit imposed by the noise effective cutoff spatial frequency of the image spectrum SNR. Key results of this research are as

  16. Mathematical modeling of heat transfer between the plant seedling and the environment during a radiation frost

    Directory of Open Access Journals (Sweden)

    Finnikov K.A.


    Full Text Available The power of the internal heat source sufficient to maintain a positive temperature of plants during one of the possible form of cold stress - radiation frost was determined with the help of numerical simulation.The simulation of unsteady heat transfer in the soil-plant-air system in the conditions of radiation frost showed that the the ground part of plants is cooling most rapidly, and this process is partially slowed down by the natural-convection heat transfer with warmer air. If the frost is not continuous, the radiative cooling is the main danger for plant. The necessary power of heat-production inside plant that allows it to avoid hypothermia depends both on natural conditions and the size of the plant. For plants with a typical diameter of the stem about 2 mm this heat-production should be from 50 to 100 W / kg. Within 2 hours a total amount of heat about 0.5 MJ / kg in the plant should be allocated. Larger plants will have a smaller surface to mass ratio, and the maintaining of it's temperature will require a lower cost of nutrients per unit, accordingly. Modeling of the influence of plant surface trichomes presence on the process of its cooling showed that the role of trichomes in the protection of plants from hypothermia during radiation frost usually is negative due to the fact that the presence of trichomes increases the radiative heat transfer from the plant and the impediment in air movement near the plant reduces heat flux entering the plant from a warmer air. But in cases where the intensity of heat generation within the plant is sufficient for the maintenance of the plant temperature higher than the air temperature, the presence of trichomes impairs heat transfer from plant to air, and therefore contributes to a better heating of plants.

  17. Radiative Convective Transfer Calculations for Effective Stellar Fluxes of Habitable and Life Supporting Zones (United States)

    Ludwig, Wolfgang; Eggl, Siegfried; Neubauer, David; Leitner, Johannes; Firneis, Maria; Hitzenberger, Regina


    Recent fields of interest in exoplanetary research include studies of potentially habitable planets orbiting stars outside of our Solar System. Habitable Zones (HZs) are currently defined by calculating the inner and the outer limits of the mean distance between exoplanets and their central stars based on effective solar fluxes that allow for maintaining liquid water on the planet's surface. Kasting et al. (1993), Selsis et al. (2007), and recently Kopparapu et al. (2013) provided stellar flux limits for such scenarios. We compute effective solar fluxes for Earth-like planets using Earth-like and other atmospheric scenarios including atmospheres with high level and low level clouds. Furthermore we provide habitability limits for solvents other than water, i.e. limits for the so called Life Supporting Zone, introduced by Leitner et al. (2010). The Life Supporting Zone (LSZ) encompasses many habitable zones based on a variety of liquid solvents. Solvents like ammonia and sulfuric acid have been identified for instance by Leitner et al (2012) as possibly life supporting. Assuming planets on circular orbits, the extent of the individual HZ is then calculated via the following equation, d(i,o) = [L/Lsun*1/S(i,o)]**0.5 au, where L is the star's luminosity, and d(i,o) and S(i,o) are the distances to the central star for the inner and the outer edge and effective insolation for inner and the outer edge of the HZ, respectively. After generating S(i,o) values for a selection of solvents, we provide the means to determine LSZ boundaries for main sequence stars. Effective flux calculations are done using a one dimensional radiative convective model (Neubauer et al. 2011) based on a modified version of the open source radiative transfer software Streamer (Key and Schweiger, 1998). Modifications include convective adjustments, additional gases for absorption and the use of an offline cloud model, which allow us to observe the influence of clouds on effective stellar fluxes

  18. Repeated CT scans in trauma transfers: An analysis of indications, radiation dose exposure, and costs. (United States)

    Hinzpeter, Ricarda; Sprengel, Kai; Wanner, Guido A; Mildenberger, Peter; Alkadhi, Hatem


    To identify the number of CT scans repeated in acute trauma patients receiving imaging before being referred to a trauma center, to define indications, and to assess radiation doses and costs of repeated CT. This retrospective study included all adult trauma patients transferred from other hospitals to a Level-I trauma center during 2014. Indications for repeated CT scans were categorized into: inadequate CT image data transfer, poor image quality, repetition of head CT after head injury together with completion to whole-body CT (WBCT), and follow-up of injury known from previous CT. Radiation doses from repeated CT were determined; costs were calculated using a nation-wide fee schedule. Within one year, 85/298 (28.5%) trauma patients were transferred from another hospital because of severe head injury (n=45,53%) and major body trauma (n=23;27%) not manageable in the referring hospital, repatriation from a foreign country (n=14;16.5%), and no ICU-capacity (n=3;3.5%). Of these 85 patients, 74 (87%) had repeated CT in our center because of inadequate CT data transfer (n=29;39%), repetition of head CT with completion to WBCT (n=24;32.5%), and follow-up of known injury (n=21;28.5%). None occurred because of poor image quality. Cumulative dose length product (DLP) and annual costs of potential preventable, repeated CT (inadequate data transfer) was 631mSv (81'304mGy*cm) and 35'233€, respectively. A considerable number of transferred trauma patients undergo potentially preventable, repeated CT, adding radiation dose to patients and costs to the health care system. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Wall heat transfer in gas-fired furnaces: Effect of radiation modelling

    Directory of Open Access Journals (Sweden)

    Vondál J.


    Full Text Available The purpose of this work is to study heat transfer to cooled walls in a MW-scale laboratory furnace with a dominating thermal radiation component. Experiment is performed in a specially designed combustion chamber with segmental water-cooled walls and profile of absorbed heat flux is measured along the flame. Non-premixed natural gas flame is stabilized by a guide-vane swirler. The unsteady governing equations of turbulent flow are solved by a finite-volume code with a two-equation k-ε realizable turbulence model, a combination of first-order and second-order upwind schemes and implicit time integration. The coupling of pressure with velocity is treated by SIMPLE (semi-implicit method for pressure-linked equations algorithm. Radiative heat transfer as the main heat transfer method is modelled with special care by discrete ordinates method and gas absorption coefficient is calculated by two alternatives of WSGGM (weighted sum of grey gases model. The predicted total heat transfer rate is found to depend strongly on method chosen for the computation of mean beam length. The results of numerical simulations show that overall heat transfer in a process furnace can be successfully predicted, while heat flux profile along the flame is more difficult to predict accurately. Good engineering accuracy is nevertheless achievable with reasonable computational resources. The trend of deviations is reported, which is useful for the interpretation of practical predictions of process furnaces (fired heaters.

  20. 2-D and 3-D Radiation Transfer Models of High-Mass Star Formation


    Whitney, Barbara A.; Robitaille, Thomas P.; Indebetouw, Remy; Wood, Kenneth; Bjorkman, J. E.; Denzmore, Pia


    2-D and 3-D radiation transfer models of forming stars generally produce bluer 1-10 micron colors than 1-D models of the same evolutionary state and envelope mass. Therefore, 1-D models of the shortwave radiation will generally estimate a lower envelope mass and later evolutionary state than multidimensional models. 1-D models are probably reasonable for very young sources, or longwave analysis (wavelengths > 100 microns). In our 3-D models of high-mass stars in clumpy molecular clouds, we fi...

  1. Radiative transfer with finite elements. Pt. 1. Basic method and tests

    Energy Technology Data Exchange (ETDEWEB)

    Richling, S. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik; Meinkoehn, E. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik]|[Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik; Kryzhevoi, N. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik]|[Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR); Kanschat, G. [Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik]|[Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR)


    A finite element method for solving the monochromatic radiation transfer equation including scattering in three dimensions is presented. The algorithm employs unstructured grids which are adaptively refined. Adaptivity as well as ordinate parallelization reduce memory requirements and execution time and make it possible to calculate the radiation field across several length scales for objects with strong opacity gradients. An a posteriori error estimate for one particular quantity is obtained by solving the dual problem. The application to a sample of test problems reveals the properties of the implementation. (orig.)

  2. Sensitivity of a radiative transfer model to the uncertainty in the aerosol optical depth used as input (United States)

    Román, Roberto; Bilbao, Julia; de Miguel, Argimiro; Pérez-Burgos, Ana


    The radiative transfer models can be used to obtain solar radiative quantities in the Earth surface as the erythemal ultraviolet (UVER) irradiance, which is the spectral irradiance weighted with the erythemal (sunburn) action spectrum, and the total shortwave irradiance (SW; 305-2,8000 nm). Aerosol and atmospheric properties are necessary as inputs in the model in order to calculate the UVER and SW irradiances under cloudless conditions, however the uncertainty in these inputs causes another uncertainty in the simulations. The objective of this work is to quantify the uncertainty in UVER and SW simulations generated by the aerosol optical depth (AOD) uncertainty. The data from different satellite retrievals were downloaded at nine Spanish places located in the Iberian Peninsula: Total ozone column from different databases, spectral surface albedo and water vapour column from MODIS instrument, AOD at 443 nm and Angström Exponent (between 443 nm and 670 nm) from MISR instrument onboard Terra satellite, single scattering albedo from OMI instrument onboard Aura satellite. The obtained AOD at 443 nm data from MISR were compared with AERONET measurements in six Spanish sites finding an uncertainty in the AOD from MISR of 0.074. In this work the radiative transfer model UVSPEC/Libradtran (1.7 version) was used to obtain the SW and UVER irradiance under cloudless conditions for each month and for different solar zenith angles (SZA) in the nine mentioned locations. The inputs used for these simulations were monthly climatology tables obtained with the available data in each location. Once obtained the UVER and SW simulations, they were repeated twice but changing the AOD monthly values by the same AOD plus/minus its uncertainty. The maximum difference between the irradiance run with AOD and the irradiance run with AOD plus/minus its uncertainty was calculated for each month, SZA, and location. This difference was considered as the uncertainty on the model caused by the AOD

  3. Numerical Computation of Net Radiative Heat Transfer within a Non Absorbing Furnace Enclosure

    Directory of Open Access Journals (Sweden)

    Shuaibu Ndache MOHAMMED


    Full Text Available The numerical evaluation of the net radiative heat transfer rate in a single zone, non absorbing furnace enclosure is reported. In this analysis, simplified mathematical furnace model namely, the long furnace model is used to determine furnace performance. The formulation assumes some known temperature values. Thus, heat transfer equations were set up and solved numerically. A FORTRAN computer program was developed and debugged. Results obtained from this study compare favourably well with the results from the traditional graphical method. Also, the computer program developed can handle variations in furnace operating conditions, temperatures, thermal properties and dimensions.

  4. Evaluation of spectroscopic databases through radiative transfer simulations compared to observations. Application to the validation of GEISA 2015 with IASI and TCCON (United States)

    Armante, Raymond; Scott, Noelle; Crevoisier, Cyril; Capelle, Virginie; Crepeau, Laurent; Jacquinet, Nicole; Chédin, Alain


    The quality of spectroscopic parameters that serve as input to forward radiative transfer models are essential to fully exploit remote sensing of Earth atmosphere. However, the process of updating spectroscopic databases in order to provide the users with a database that insures an optimal characterization of spectral properties of molecular absorption for radiative transfer modeling is challenging. The evaluation of the databases content and the underlying choices made by the managing team is thus a crucial step. Here, we introduce an original and powerful approach for evaluating spectroscopic parameters: the Spectroscopic Parameters And Radiative Transfer Evaluation (SPARTE) chain. The SPARTE chain relies on the comparison between forward radiative transfer simulations made by the 4A radiative transfer model and observations of spectra made from various observations collocated over several thousands of well-characterized atmospheric situations. Averaging the resulting 'calculated-observed spectral' residuals minimizes the random errors coming from both the radiometric noise of the instruments and the imperfect description of the atmospheric state. The SPARTE chain can be used to evaluate any spectroscopic databases, from the visible to the microwave, using any type of remote sensing observations (ground-based, airborne or space-borne). We show that the comparison of the shape of the residuals enables: (i) identifying incorrect line parameters (line position, intensity, width, pressure shift, etc.), even for molecules for which interferences between the lines have to be taken into account; (ii) proposing revised values, in cooperation with contributing teams; and (iii) validating the final updated parameters. In particular, we show that the simultaneous availability of two databases such as GEISA and HITRAN helps identifying remaining issues in each database. The SPARTE chain has been here applied to the validation of the update of GEISA-2015 in 2 spectral regions

  5. Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters (United States)

    Taylor, M.; Kosmopoulos, P. G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C. T.


    This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) ;off-grid; random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min.

  6. Explosion of red-supergiant stars: Influence of the atmospheric structure on shock breakout and early-time supernova radiation (United States)

    Dessart, Luc; John Hillier, D.; Audit, Edouard


    Early-time observations of Type II supernovae (SNe) 2013cu and 2013fs have revealed an interaction of ejecta with material near the star surface. Unlike Type IIn SN 2010jl, which interacts with a dense wind for 1 yr, the interaction ebbs after 2-3 d, suggesting a dense and compact circumstellar envelope. Here, we use multi-group radiation hydrodynamics and non-local-thermodynamic-equilibrium radiative transfer to explore the properties of red-supergiant (RSG) star explosions embedded in a variety of dense envelopes. We consider the cases of an extended static atmosphere or a steady-state wind, adopting a range of mass loss rates. The shock breakout signal, luminosity and color evolution up to 10 d, and ejecta dynamics are strongly influenced by the properties of this nearby environment. This compromises the use of early-time observations to constrain R⋆. For dense circumstellar envelopes, the time-integrated luminosity over the first 10-15 d can be boosted by a factor of a few. The presence of narrow lines for 2-3 d in 2013fs and 2013cu require a cocoon of material of 0.01 M⊙ out to 5-10 R⋆. Spectral lines evolve from electron scattering to Doppler broadened with a growing blueshift of their emission peaks. Recent studies propose a super-wind phase with a mass loss rate from 0.001 up to 1 M⊙ yr-1 in the last months or years of the life of a RSG, although there is no observational constraint that this external material is a steady-state outflow. Alternatively, observations may be explained by the explosion of a RSG star inside its complex atmosphere. Indeed, spatially resolved observations reveal that RSG stars have extended atmospheres, with the presence of downflows and upflows out to several R⋆, even in a standard RSG such as Betelgeuse. Mass loading in the region intermediate between star and wind can accommodate the 0.01 M⊙ needed to explain the observations of 2013fs. Signatures of interaction in early-time spectra of RSG star explosions may

  7. Effects of cloud condensate vertical alignment on radiative transfer calculations in deep convective regions (United States)

    Wang, Xiaocong


    Effects of cloud condensate vertical alignment on radiative transfer process were investigated using cloud resolving model explicit simulations, which provide a surrogate for subgrid cloud geometry. Diagnostic results showed that the decorrelation length Lcw varies in the vertical dimension, with larger Lcw occurring in convective clouds and smaller Lcw in cirrus clouds. A new parameterization of Lcw is proposed that takes into account such varying features and gives rise to improvements in simulations of cloud radiative forcing (CRF) and radiative heating, i.e., the peak of bias is respectively reduced by 8 W m- 2 for SWCF and 2 W m- 2 for LWCF in comparison with Lcw = 1 km. The role of Lcw in modulating CRFs is twofold. On the one hand, larger Lcw tends to increase the standard deviation of optical depth στ, as dense and tenuous parts of the clouds would be increasingly aligned in the vertical dimension, thereby broadening the probability distribution. On the other hand, larger στ causes a decrease in the solar albedo and thermal emissivity, as implied in their convex functions on τ. As a result, increasing (decreasing) Lcwleads to decreased (increased) CRFs, as revealed by comparisons among Lcw = 0, Lcw = 1 km andLcw = ∞. It also affects the vertical structure of radiative flux and thus influences the radiative heating. A better representation of στ in the vertical dimension yields an improved simulation of radiative heating. Although the importance of vertical alignment of cloud condensate is found to be less than that of cloud cover in regards to their impacts on CRFs, it still has enough of an effect on modulating the cloud radiative transfer process.

  8. Windowless transition between atmospheric pressure and high vacuum via differential pumping for synchrotron radiation applications.

    Energy Technology Data Exchange (ETDEWEB)

    Gog, T.; Casa, D. M.; Kuzmenko, I.; Krakora, R. J.; Bolin, T. B.; X-Ray Science Division


    A differential pump assembly is introduced which can provide a windowless transition between the full atmospheric pressure of an in-air sample environment and the high-vacuum region of a synchrotron radiation beamline, while providing a clear aperture of approximately 1 mm to pass through the X-ray beam from a modern third-generation synchrotron radiation source. This novel pump assembly is meant to be used as a substitute for an exit vacuum window on synchrotron beamlines, where the existence of such a window would negatively impact the coherent nature of the X-ray beam or would introduce parasitic scattering, distorting weak scattering signals from samples under study. It is found that the length of beam pipe necessary to reduce atmospheric pressure to below 10 mbar is only about 130 mm, making the expected photon transmission for hard X-rays through this pipe competitive with that of a regular Be beamline window. This result is due to turbulent flow dominating the first pumping stage, providing a mechanism of strong gas conductance limitation, which is further enhanced by introducing artificial surface roughness in the pipe. Successive reduction of pressure through the transitional flow regime into the high-vacuum region is accomplished over a length of several meters, using beam pipes of increasing diameter. While the pump assembly has not been tested with X-rays, possible applications are discussed in the context of coherent and small-angle scattering.

  9. Evaluation of radiation heat transfer in porous medial: Application for a pebble bed modular reactor cooled by CO2 gas

    Directory of Open Access Journals (Sweden)

    Sidi-Ali Kamel


    Full Text Available This work analyses the contribution of radiation heat transfer in the cooling of a pebble bed modular reactor. The mathematical model, developed for a porous medium, is based on a set of equations applied to an annular geometry. Previous major works dealing with the subject have considered the forced convection mode and often did not take into account the radiation heat transfer. In this work, only free convection and radiation heat transfer are considered. This can occur during the removal of residual heat after shutdown or during an emergency situation. In order to derive the governing equations of radiation heat transfer, a steady-state in an isotropic and emissive porous medium (CO2 is considered. The obtained system of equations is written in a dimensionless form and then solved. In order to evaluate the effect of radiation heat transfer on the total heat removed, an analytical method for solving the system of equations is used. The results allow quantifying both radiation and free convection heat transfer. For the studied situation, they show that, in a pebble bed modular reactor, more than 70% of heat is removed by radiation heat transfer when CO2 is used as the coolant gas.

  10. Changes in domestic heating fuel use in Greece: effects on atmospheric chemistry and radiation

    Directory of Open Access Journals (Sweden)

    E. Athanasopoulou


    Full Text Available For the past 8 years, Greece has been experiencing a major financial crisis which, among other side effects, has led to a shift in the fuel used for residential heating from fossil fuel towards biofuels, primarily wood. This study simulates the fate of the residential wood burning aerosol plume (RWB smog and the implications on atmospheric chemistry and radiation, with the support of detailed aerosol characterization from measurements during the winter of 2013–2014 in Athens. The applied model system (TNO-MACC_II emissions and COSMO-ART model and configuration used reproduces the measured frequent nighttime aerosol spikes (hourly PM10  >  75 µg m−3 and their chemical profile (carbonaceous components and ratios. Updated temporal and chemical RWB emission profiles, derived from measurements, were used, while the level of the model performance was tested for different heating demand (HD conditions, resulting in better agreement with measurements for Tmin < 9 °C. Half of the aerosol mass over the Athens basin is organic in the submicron range, of which 80 % corresponds to RWB (average values during the smog period. Although organic particles are important light scatterers, the direct radiative cooling of the aerosol plume during wintertime is found low (monthly average forcing of –0.4 W m−2 at the surface, followed by a minor feedback to the concentration levels of aerosol species. The low radiative cooling of a period with such intense air pollution conditions is attributed to the timing of the smog plume appearance, both directly (longwave radiation increases during nighttime and indirectly (the mild effect of the residual plume on solar radiation during the next day, due to removal and dispersion processes.

  11. DC superimposed AC high voltage: A new strategy for transferring stable He atmospheric pressure cold plasma bullets through long dielectric tubes (United States)

    Siadati, S. N.; Sohbatzadeh, F.; Valinataj Omran, Azadeh


    This study developed a stable transfer of He atmospheric pressure cold plasma bullets in a large dielectric tube with a length of 70 cm and an inner diameter of 0.4-1.6 cm. DC superimposed AC voltage was used for this purpose. The DC component of the applied voltage generated corona ionization through the tube, which helped in the ignition and transfer of the plasma as a pre-ionization background. The bullets followed the frequency of the AC component; therefore, very high applied energy was not required to ignite this large-scale plasma. To our knowledge, this is the first time such a complex waveform has been reported for the transfer of a plasma bullet. The characteristics of the transferring plasma bullet, such as the power, charge, propagation speed, resistance, AC electrical field (EF) of the plasma, and electrostatic field on the tube surface, were measured. The influence of the tube diameter on these characteristics was investigated. The results showed that the power applied, charge, and power deposited on the target increased as the tube diameter increased. Less plasma resistance and radiation were observed using larger diameters. The root mean square (RMS) values of the axial AC EF of the bullet along the jet axis were higher for the larger diameters, but no special relation between the propagation speed, radial AC EF, and static surface field and tube diameter was observed.

  12. Time evolution of photon propagation in scattering and absorbing media: the Dynamic Radiative Transfer System

    CERN Document Server

    Georgakopoulos, A; Georgiou, E


    A new dynamic system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on firsthand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), calculates accurately the time evolution of photon propagation in media of complex structure and shape. DRTS employs a dynamical system formality using a global sparse matrix which characterizes the physical, optical and geometrical properties of the material volume of interest. The new system state vector is generated by the above time-independent matrix, using simple matrix vector multiplication addition for each subsequent time step. DRTS simulation results are presented for 3D light propagation in different optical media, demonstrating greatly reduced computational cost and resource requirements compared to other methods. Flexibility of the method allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and ...

  13. The mass transfer rate in X1916-053 - It is driven by gravitational radiation? (United States)

    Swank, J. H.; Taam, R. E.; White, N. E.


    A 50-minute period for a binary system harboring an X-ray burster would allow several alternatives for the mass-giving secondary, including an H-shell burning-plus-He degenerate core composite model. The burst properties of X1916-053 are presently used to argue against the He degenerate as well as the He main sequence solutions and to estimate whether, for any of the other solutions, the mass transfer rate could be consistent with that expected from gravitational radiation (GR). Within an uncertainty of a factor of 2, the transfer rate for the composite model solution is consistent with gravitational radiation, but enhancement by other mechanisms should be investigated.

  14. Hybrid numerical method for solution of the radiative transfer equation in one, two, or three dimensions. (United States)

    Reinersman, Phillip N; Carder, Kendall L


    A hybrid method is presented by which Monte Carlo (MC) techniques are combined with an iterative relaxation algorithm to solve the radiative transfer equation in arbitrary one-, two-, or three-dimensional optical environments. The optical environments are first divided into contiguous subregions, or elements. MC techniques are employed to determine the optical response function of each type of element. The elements are combined, and relaxation techniques are used to determine simultaneously the radiance field on the boundary and throughout the interior of the modeled environment. One-dimensional results compare well with a standard radiative transfer model. The light field beneath and adjacent to a long barge is modeled in two dimensions and displayed. Ramifications for underwater video imaging are discussed. The hybrid model is currently capable of providing estimates of the underwater light field needed to expedite inspection of ship hulls and port facilities.

  15. Radiative Transfer Modelling Activities in Support of NASA GMAO Data Assimilation (United States)

    Moradi, I.; McCarty, W.; Kouvaris, L. C.; Susskind, J.; Blaisdell, J. M.


    Radiative transfer (RT) models play a very critical role in assimilating satellite radiances into NWP models. The RT models are used as forward operator to simulate satellite radiances from atmopspheric control variables such as pressure, temperature, water vapor, and ozone. However because line-by-line RT models are computationally very expensive, fast RT models have been developed and advanced especially in past two decades to overcome these limitations. Community Radiative Transfer Model (CRTM) developed by Joint Center for Satellite Data Assimilation is widely used in the U.S. as the forward operator for the assimilation of microwave and infrared satellite radiances. This abstract summarizes the GMAO activities in the support of CRTM including generating training coefficients for new instruments as well as developments for assimilating satellite radiances from shortwave infrared channels.

  16. Hyper fast radiative transfer for the physical retrieval of surface parameters from SEVIRI observations (United States)

    Liuzzi, G.; Masiello, G.; Serio, C.; Blasi, M. G.; Venafra, S.


    This paper describes the theoretical aspects of a fast scheme for the physical retrieval of surface temperature and emissivity from SEVIRI data, their implementation and some sample results obtained. The scheme is based on a Kalman Filter approach, which effectively exploits the temporal continuity in the observations of the geostationary Meteosat Second Generation (MSG) platform, on which SEVIRI (Spinning Enhanced Visible and InfraRed Imager) operates. Such scheme embodies in its core a physical retrieval algorithm, which employs an hyper fast radiative transfer code highly customized for this retrieval task. Radiative transfer and its customizations are described in detail. Fastness, accuracy and stability of the code are fully documented for a variety of surface features, showing a peculiar application to the massive Greek forest fires in August 2007.

  17. An inverse radiation problem of estimating heat-transfer coefficient in participating media

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.M.; Lee, W.J. [Sogang University, Seoul (Republic of Korea). Dept. of Chemical Engineering


    In the radiant cooler, where the hot gas from the pulverized coal gasifier or combustor is cooled to generate steam, the wall heat-transfer coefficient varies due to ash deposition. The authors investigated an inverse radiation problem of estimating the heat-transfer coefficient from temperature measurement in the radiant cooler. The inverse radiation problem is solved through the minimization of a performance function, which is expressed by the sum of square residuals between calculated and observed temperature, utilizing the conjugate gradient method. The gradient of the performance function is evaluated by means of the improved adjoint variable method, which resolves the difficulty associated with the singularity of the adjoint equation through its inherent regularization property. The effects of the number of measurement points and measurement noise on the accuracy of estimation are also investigated.

  18. Our contaminated atmosphere: The danger of climate change, phases 1 and 2. [effect of atmospheric particulate matter on surface temperature and earth's radiation budget (United States)

    Cimorelli, A. J.; House, F. B.


    The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.

  19. Heat Transfer in Human Skin Exposed to Radiation from Forest Fire Taking Into Account Moisture Evaporation

    Directory of Open Access Journals (Sweden)

    Poptsov Nikolay


    Full Text Available Thermal radiation is one of the damaging factors of forest fire. As a result of exposure to radiant heat flow, thermal damage of the human skin is possible. A layer of skin is considered with effective thermophysical characteristics. Thin layer of sweat excretion situated on top of the skin. A mathematical model of heat transfer in the system of “skin-excretion” is developed taking into account evaporation of moisture. Typical simulation results are presented.

  20. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer (United States)

    Davis, Anthony B.


    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  1. The Infrared Properties of Super Star Clusters: Predictions from Three-Dimensional Radiative Transfer Models


    Whelan, David G.; Johnson, Kelsey E.; Whitney, Barbara A.; Indebetouw, Remy; Wood, Kenneth


    With high-resolution infrared data becoming available that can probe the formation of high-mass stellar clusters for the first time, models that make testable predictions of these objects are necessary. We utilize a three-dimensional radiative transfer code, including a hierarchically clumped medium, to study the earliest stages of super star cluster evolution. We explore a range of parameter space in geometric sequences that mimic the evolution of an embedded super star cluster. The inclusio...

  2. Azimuthally dependent radiative transfer in a non-homogeneous cylindrical medium

    CERN Document Server

    Hsu, S C; Ou, N R


    This work applies the discrete-ordinate method (DOM) to study azimuthally dependent radiative transfer in a two-dimensional cylindrical medium with spatially varying properties. Product angular quadratures are selected to generate discrete-ordinate approximations. The validity of the present DOM scheme is examined by comparing the present results with the results available in the literature. The effects of the optical thickness and the spatially varying extinction coefficient, scattering albedo and coefficients of the phase function are investigated.

  3. Non-contact pumping of light emitters via non-radiative energy transfer (United States)

    Klimov, Victor I.; Achermann, Marc


    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  4. Validation of radiative transfer computation with Monte Carlo method for ultra-relativistic background flow (United States)

    Ishii, Ayako; Ohnishi, Naofumi; Nagakura, Hiroki; Ito, Hirotaka; Yamada, Shoichi


    We developed a three-dimensional radiative transfer code for an ultra-relativistic background flow-field by using the Monte Carlo (MC) method in the context of gamma-ray burst (GRB) emission. For obtaining reliable simulation results in the coupled computation of MC radiation transport with relativistic hydrodynamics which can reproduce GRB emission, we validated radiative transfer computation in the ultra-relativistic regime and assessed the appropriate simulation conditions. The radiative transfer code was validated through two test calculations: (1) computing in different inertial frames and (2) computing in flow-fields with discontinuous and smeared shock fronts. The simulation results of the angular distribution and spectrum were compared among three different inertial frames and in good agreement with each other. If the time duration for updating the flow-field was sufficiently small to resolve a mean free path of a photon into ten steps, the results were thoroughly converged. The spectrum computed in the flow-field with a discontinuous shock front obeyed a power-law in frequency whose index was positive in the range from 1 to 10 MeV. The number of photons in the high-energy side decreased with the smeared shock front because the photons were less scattered immediately behind the shock wave due to the small electron number density. The large optical depth near the shock front was needed for obtaining high-energy photons through bulk Compton scattering. Even one-dimensional structure of the shock wave could affect the results of radiation transport computation. Although we examined the effect of the shock structure on the emitted spectrum with a large number of cells, it is hard to employ so many computational cells per dimension in multi-dimensional simulations. Therefore, a further investigation with a smaller number of cells is required for obtaining realistic high-energy photons with multi-dimensional computations.

  5. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C.F.


    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  6. Retrieval of Boundary Layer 3D Cloud Properties Using Scanning Cloud Radar and 3D Radiative Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, Roger [Univ. of Washington, Seattle, WA (United States)


    Retrievals of cloud optical and microphysical properties for boundary layer clouds, including those widely used by ASR investigators, frequently assume that clouds are sufficiently horizontally homogeneous that scattering and absorption (at all wavelengths) can be treated using one dimensional (1D) radiative transfer, and that differences in the field-of-view of different sensors are unimportant. Unfortunately, most boundary layer clouds are far from horizontally homogeneous, and numerous theoretical and observational studies show that the assumption of horizontal homogeneity leads to significant errors. The introduction of scanning cloud and precipitation radars at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program sites presents opportunities to move beyond the horizontally homogeneous assumption. The primary objective of this project was to develop a 3D retrieval for warm-phase (liquid only) boundary layer cloud microphysical properties, and to assess errors in current 1D (non-scanning) approaches. Specific research activities also involved examination of the diurnal cycle of hydrometeors as viewed by ARM cloud radar, and continued assessment of precipitation impacts on retrievals of cloud liquid water path using passive microwaves.

  7. Contraction of radiator length in heavy vehicles using cerium oxide nanofluid by enhancing heat transfer performance

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil


    Full Text Available In this present investigation, heat transfer performance of CeO2-ethylene glycol as coolants in heat pipes are analyzed. Various concentrations of 0.5, 0.75, 1.0, 1.25, 1.5, and 2.0 vol.% with different volumetric flow 1.0, 2.0, 3.0, 3.5, and 4.0 lpm at a temperature of 40°C, are investigated experimentally and the results are numerically analyzed by means of cross tube heat exchanger and horizontal flow with twist plate insert. The results are scrutinized to evaluate the best concentration which will reduce the size of the existing radiator length. The results demonstrated that, for 0.75 vol.% combination of CeO2-ethylene glycol resulted in increase of heat transfer coefficient compared to the combination of water-ethylene glycol. Increase in volumetric flow rate of the coolant increase the heat transfer coefficient results in the contraction of radiator length. Replacing the original coolant with the proposed combination, it is estimated that the size of the radiator, inventory of the fluid, and pumping power is reduced, thus, making this nanofluid an energy efficient fluid for the engine cooling system.

  8. Casimir friction and near-field radiative heat transfer in graphene structures

    Energy Technology Data Exchange (ETDEWEB)

    Volokitin, A.I. [Forschungszentrum Juelich (Germany). Peter Gruenberg Inst.; Samara State Technical Univ. (Russian Federation). Physical Dept.


    The dependence of the Casimir friction force between a graphene sheet and a (amorphous) SiO{sub 2} substrate on the drift velocity of the electrons in the graphene sheet is studied. It is shown that the Casimir friction is strongly enhanced for the drift velocity above the threshold velocity when the friction is determined by the resonant excitation of the surface phonon-polaritons in the SiO{sub 2} substrate and the electron-hole pairs in graphene. The theory agrees well with the experimental data for the current-voltage dependence for unsuspended graphene on the SiO{sub 2} substrate. The theories of the Casimir friction and the near-field radiative energy transfer are used to study the heat generation and dissipation in graphene due to the interaction with phonon-polaritons in the (amorphous) SiO{sub 2} substrate and acoustic phonons in graphene. For suspended graphene, the energy transfer coefficient at nanoscale gap is ∝ three orders of magnitude larger than the radiative heat transfer coefficient of the blackbody radiation limit.

  9. Changes in domestic heating fuel use in Greece: effects on atmospheric chemistry and radiation (United States)

    Athanasopoulou, Eleni; Speyer, Orestis; Brunner, Dominik; Vogel, Heike; Vogel, Bernhard; Mihalopoulos, Nikolaos; Gerasopoulos, Evangelos


    For the past 8 years, Greece has been experiencing a major financial crisis which, among other side effects, has led to a shift in the fuel used for residential heating from fossil fuel towards biofuels, primarily wood. This study simulates the fate of the residential wood burning aerosol plume (RWB smog) and the implications on atmospheric chemistry and radiation, with the support of detailed aerosol characterization from measurements during the winter of 2013-2014 in Athens. The applied model system (TNO-MACC_II emissions and COSMO-ART model) and configuration used reproduces the measured frequent nighttime aerosol spikes (hourly PM10 > 75 µg m-3) and their chemical profile (carbonaceous components and ratios). Updated temporal and chemical RWB emission profiles, derived from measurements, were used, while the level of the model performance was tested for different heating demand (HD) conditions, resulting in better agreement with measurements for Tmin air pollution conditions is attributed to the timing of the smog plume appearance, both directly (longwave radiation increases during nighttime) and indirectly (the mild effect of the residual plume on solar radiation during the next day, due to removal and dispersion processes).

  10. MHD flow and nonlinear radiative heat transfer of Sisko nanofluid over a nonlinear stretching sheet

    Directory of Open Access Journals (Sweden)

    B.C. Prasannakumara


    Full Text Available The problem of heat and mass transfer of Siskonanofluid flow over a nonlinear stretching sheet under the influence of nonlinear thermal radiation and chemical reaction is considered. suitable set of similarity transformations are implemented to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. An efficient Runge–Kutta–Fehlberg fourth–fifth order method along with shooting technique is employed to solve the reduced equations. The influence of several emerging physical parameters on velocity, temperature and concentration profiles for both linear and nonlinear stretching sheet in the presence of linear and nonlinear thermal radiation has been studied and analyzed through plotted graphs and tables in detail. It is found that the Nusselt and Sherwood number are high in case of nonlinear stretching sheet than linear. Further, it is observed that the nonlinear thermal radiation has more influence on temperature profiles than linear.

  11. Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)


    Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)

  12. Efficient Emulation of Radiative Transfer Codes Using Gaussian Processes and Application to Land Surface Parameter Inferences

    Directory of Open Access Journals (Sweden)

    José Luis Gómez-Dans


    Full Text Available There is an increasing need to consistently combine observations from different sensors to monitor the state of the land surface. In order to achieve this, robust methods based on the inversion of radiative transfer (RT models can be used to interpret the satellite observations. This typically results in an inverse problem, but a major drawback of these methods is the computational complexity. We introduce the concept of Gaussian Process (GP emulators: surrogate functions that accurately approximate RT models using a small set of input (e.g., leaf area index, leaf chlorophyll, etc. and output (e.g., top-of-canopy reflectances or at sensor radiances pairs. The emulators quantify the uncertainty of their approximation, and provide a fast and easy route to estimating the Jacobian of the original model, enabling the use of e.g., efficient gradient descent methods. We demonstrate the emulation of widely used RT models (PROSAIL and SEMIDISCRETE and the coupling of vegetation and atmospheric (6S RT models targetting particular sensor bands. A comparison with the full original model outputs shows that the emulators are a viable option to replace the original model, with negligible bias and discrepancies which are much smaller than the typical uncertainty in the observations. We also extend the theory of GP to cope with models with multivariate outputs (e.g., over the full solar reflective domain, and apply this to the emulation of PROSAIL, coupled 6S and PROSAIL and to the emulation of individual spectral components of 6S. In all cases, emulators successfully predict the full model output as well as accurately predict the gradient of the model calculated by finite differences, and produce speed ups between 10,000 and 50,000 times that of the original model. Finally, we use emulators to invert leaf area index ( L A I , leaf chlorophyll content ( C a b and equivalent leaf water thickness ( C w from a time series of observations from Sentinel-2/MSI

  13. Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study (United States)

    Ali, M. E.; Sandeep, N.

    The knowledge of heat transfer in MHD nanofluid flows over different geometries is very important for heat exchangers design, transpiration, fiber coating, etc. Recent days, heat transfer of non-Newtonian nanofluids plays a major role in manufacturing processes due to its shear thinning and thickening properties. Naturally, magnetite (Fe3O4) nanoparticles move randomly within the base fluid. By applying the transverse magnetic field, the motion of those nanoparticles becomes uniform. This phenomenon is very useful in heat transfer processes. With this initiation, a mathematical model is developed to investigate the heat transfer behaviour of electrically conducting MHD flow of a Casson nanofluid over a cone, wedge and a plate. We consider a Cattaneo-Christov heat flux model with variable source/sink and nonlinear radiation effects. We also considered water as the base fluid suspended with magnetite nanoparticles. R-K-Felhberg-integration scheme is employed to resolve the altered governing nonlinear equations. Impacts of governing parameters on common profiles (temperature and velocity) are conversed (in three cases). By viewing the same parameters, the friction factor coefficient and heat transfer rate are discussed with the assistance of tables. It is found that the boundary layers (thermal and flow) over three geometries (cone, wedge and a plate) are not uniform. It is also found that the thermal relaxation parameter effectively enhances the heat local Nusselt number and the heat transfer performance is high in the flow over a wedge when compared with the flows over a cone and plate.

  14. Strongly coupled near-field radiative and conductive heat transfer between planar bodies (United States)

    Messina, Riccardo; Jin, Weiliang; Rodriguez, Alejandro W.


    We study the interplay of conductive and radiative heat transfer (RHT) in planar geometries and predict that temperature gradients induced by radiation can play a significant role on the behavior of RHT with respect to gap sizes, depending largely on geometric and material parameters and not so crucially on operating temperatures. Our findings exploit rigorous calculations based on a closed-form expression for the heat flux between two plates separated by vacuum gaps d and subject to arbitrary temperature profiles, along with an approximate but accurate analytical treatment of coupled conduction-radiation in this geometry. We find that these effects can be prominent in typical materials (e.g., silica and sapphire) at separations of tens of nanometers, and can play an even larger role in metal oxides, which exhibit moderate conductivities and enhanced radiative properties. Broadly speaking, these predictions suggest that the impact of RHT on thermal conduction, and vice versa, could manifest itself as a limit on the possible magnitude of RHT at the nanoscale, which asymptotes to a constant (the conductive transfer rate when the gap is closed) instead of diverging at short separations.

  15. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. (United States)

    Xu, Shuai; Wang, Jufang; Ding, Nan; Hu, Wentao; Zhang, Xurui; Wang, Bing; Hua, Junrui; Wei, Wenjun; Zhu, Qiyun


    Bystander effects can be induced through cellular communication between irradiated cells and non-irradiated cells. The signals that mediate this cellular communication, such as cytokines, reactive oxygen species, nitric oxide and even microRNAs, can be transferred between cells via gap junctions or extracellular medium. We have previously reported that miR-21, a well described DDR (DNA damage response) microRNA, is involved in radiation-induced bystander effects through a medium-mediated way. However, the mechanisms of the microRNA transfer have not been elucidated in details. In the present study, it was found that exosomes isolated from irradiated conditioned medium could induce bystander effects. Furthermore, we demonstrated plenty of evidences that miR-21, which is up-regulated as a result of mimic transfection or irradiation, can be transferred from donor or irradiated cells into extracellular medium and subsequently get access to the recipient or bystander cells through exosomes to induce bystander effects. Inhibiting the miR-21 expression in advance can offset the bystander effects to some extent. From all of these results, it can be concluded that the exosome-mediated microRNA transfer plays an important role in the radiation-induced bystander effects. These findings provide new insights into the functions of microRNAs and the cellular communication between the directly irradiated cells and the non-irradiated cells.

  16. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals. (United States)

    Sun, Qi-C; Mundoor, Haridas; Ribot, Josep C; Singh, Vivek; Smalyukh, Ivan I; Nagpal, Prashant


    Upconversion of infrared radiation into visible light has been investigated for applications in photovoltaics and biological imaging. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb(3+)), and slow rate of energy transfer (to Er(3+) states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increase the rate of resonant energy transfer from Yb(3+) to Er(3+) ions by 6 fold. While we do observe strong metal mediated quenching (14-fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared and hence enhances the nanocrystal UPL. This strong Coulombic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  17. Radiative energy transfer from MoS2 excitons to surface plasmons (United States)

    Kang, Yimin; Li, Bowen; Fang, Zheyu


    In this work, we demonstrated the energy transfer process from few-layer MoS2 to gold dimer arrays via ultrafast pump-probe spectroscopy. With the overlap between the MoS2 exciton and the designed plasmon dipolar modes in the frequency domain, the exciton energy can be radiatively transferred to plasmonic structures, excited the localized surface plasmon resonance, and then enhanced the oscillation of coherent acoustic phonons. Power-dependent differential reflection signals and an analytical model based on the rate equation of exciton density were carried out to quantitatively study the energy transfer process. Our finding explores the energy flow between MoS2 excitons and surface plasmons, and can be contributed to the design of exciton-plasmon structures utilizing ultrathin materials.

  18. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Soumyadipta, E-mail:; Yang, Yue; Wang, Liping, E-mail: [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States)


    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  19. Impact of Atmospheric Attenuations Time Resolutions in Solar Radiation Derived from Satellite Imagery (United States)

    Cony, Marco; Liria, Juan; Weisenberg, Ralf; Serrano, Enrique


    Accurate knowledge of solar irradiance components at the earth surface is of highly interest in many scientific and technology branches concerning meteorology, climate, agriculture and solar energy applications. In the specific case of solar energy systems the solar resource analysis with accuracy is a first step in every project since it is a required data for design, power output estimations, systems simulations and risk assessments. Solar radiation measurement availability is increasing both in spatial density and in historical archiving. However, it is still quite limited and most of the situations cannot make use of a long term ground database of high quality since solar irradiance is not generally measured where users need data. Satellite-derived solar radiation estimations are a powerful and valuable tool for solar resource assessment studies that have achieved a relatively high maturity due to years of developments and improvements. However, several sources of uncertainty are still present in satellite-derived methods. In particular, the strong influence of atmospheric attenuation information as input to the method is one of the main topics of improvement. Since solar radiation attenuation by atmospheric aerosols, and water vapor in a second place, is, after clouds, the second most important factor determining solar radiation, and particularly direct normal irradiance, the accurate knowledge of aerosol optical depth and water vapor content is relevant in the final output of satellite-derived methods. This present work, two different datasets we are used for extract atmospheric attenuation information. On the one hand the monthly mean values of the Linke turbidity factor from Meteotest database, which are twelve unique values of the Linke turbidity worldwide with a spatial resolution of 1/12º. On the other hand, daily values of AOD (Aerosol Optical Depth) at 550 nm, Angstrom alpha exponent and water vapor column were taken from a gridded database that

  20. Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study

    Directory of Open Access Journals (Sweden)

    M.E. Ali

    Full Text Available The knowledge of heat transfer in MHD nanofluid flows over different geometries is very important for heat exchangers design, transpiration, fiber coating, etc. Recent days, heat transfer of non-Newtonian nanofluids plays a major role in manufacturing processes due to its shear thinning and thickening properties. Naturally, magnetite (Fe3O4 nanoparticles move randomly within the base fluid. By applying the transverse magnetic field, the motion of those nanoparticles becomes uniform. This phenomenon is very useful in heat transfer processes. With this initiation, a mathematical model is developed to investigate the heat transfer behaviour of electrically conducting MHD flow of a Casson nanofluid over a cone, wedge and a plate. We consider a Cattaneo-Christov heat flux model with variable source/sink and nonlinear radiation effects. We also considered water as the base fluid suspended with magnetite nanoparticles. R-K-Felhberg-integration scheme is employed to resolve the altered governing nonlinear equations. Impacts of governing parameters on common profiles (temperature and velocity are conversed (in three cases. By viewing the same parameters, the friction factor coefficient and heat transfer rate are discussed with the assistance of tables. It is found that the boundary layers (thermal and flow over three geometries (cone, wedge and a plate are not uniform. It is also found that the thermal relaxation parameter effectively enhances the heat local Nusselt number and the heat transfer performance is high in the flow over a wedge when compared with the flows over a cone and plate. Keywords: MHD, Cattaneo-Christov heat flux, Space and temperature dependent source/sink, Nonlinear thermal radiation, Casson nanofluid

  1. TRUST. I. A 3D externally illuminated slab benchmark for dust radiative transfer (United States)

    Gordon, K. D.; Baes, M.; Bianchi, S.; Camps, P.; Juvela, M.; Kuiper, R.; Lunttila, T.; Misselt, K. A.; Natale, G.; Robitaille, T.; Steinacker, J.


    Context. The radiative transport of photons through arbitrary three-dimensional (3D) structures of dust is a challenging problem due to the anisotropic scattering of dust grains and strong coupling between different spatial regions. The radiative transfer problem in 3D is solved using Monte Carlo or Ray Tracing techniques as no full analytic solution exists for the true 3D structures. Aims: We provide the first 3D dust radiative transfer benchmark composed of a slab of dust with uniform density externally illuminated by a star. This simple 3D benchmark is explicitly formulated to provide tests of the different components of the radiative transfer problem including dust absorption, scattering, and emission. Methods: The details of the external star, the slab itself, and the dust properties are provided. This benchmark includes models with a range of dust optical depths fully probing cases that are optically thin at all wavelengths to optically thick at most wavelengths. The dust properties adopted are characteristic of the diffuse Milky Way interstellar medium. This benchmark includes solutions for the full dust emission including single photon (stochastic) heating as well as two simplifying approximations: One where all grains are considered in equilibrium with the radiation field and one where the emission is from a single effective grain with size-distribution-averaged properties. A total of six Monte Carlo codes and one Ray Tracing code provide solutions to this benchmark. Results: The solution to this benchmark is given as global spectral energy distributions (SEDs) and images at select diagnostic wavelengths from the ultraviolet through the infrared. Comparison of the results revealed that the global SEDs are consistent on average to a few percent for all but the scattered stellar flux at very high optical depths. The image results are consistent within 10%, again except for the stellar scattered flux at very high optical depths. The lack of agreement between

  2. Evaluating radiative transfer schemes treatment of vegetation canopy architecture in land surface models (United States)

    Braghiere, Renato; Quaife, Tristan; Black, Emily


    Incoming shortwave radiation is the primary source of energy driving the majority of the Earth's climate system. The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most of biogeophysical processes, including leaf temperature changes and photosynthesis, and it is currently calculated by most of land surface schemes (LSS) of climate and/or numerical weather prediction models. The most commonly used radiative transfer scheme in LSS is the two-stream approximation, however it does not explicitly account for vegetation architectural effects on shortwave radiation partitioning. Detailed three-dimensional (3D) canopy radiative transfer schemes have been developed, but they are too computationally expensive to address large-scale related studies over long time periods. Using a straightforward one-dimensional (1D) parameterisation proposed by Pinty et al. (2006), we modified a two-stream radiative transfer scheme by including a simple function of Sun zenith angle, so-called "structure factor", which does not require an explicit description and understanding of the complex phenomena arising from the presence of vegetation heterogeneous architecture, and it guarantees accurate simulations of the radiative balance consistently with 3D representations. In order to evaluate the ability of the proposed parameterisation in accurately represent the radiative balance of more complex 3D schemes, a comparison between the modified two-stream approximation with the "structure factor" parameterisation and state-of-art 3D radiative transfer schemes was conducted, following a set of virtual scenarios described in the RAMI4PILPS experiment. These experiments have been evaluating the radiative balance of several models under perfectly controlled conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical

  3. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean (United States)

    Byrne, D.; Münnich, M.; Frenger, I.; Gruber, N.


    Although it is well established that the large-scale wind drives much of the world's ocean circulation, the contribution of the wind energy input at mesoscales (10–200 km) remains poorly known. Here we use regional simulations with a coupled high-resolution atmosphere–ocean model of the South Atlantic, to show that mesoscale ocean features and, in particular, eddies can be energized by their thermodynamic interactions with the atmosphere. Owing to their sea-surface temperature anomalies affecting the wind field above them, the oceanic eddies in the presence of a large-scale wind gradient provide a mesoscale conduit for the transfer of energy into the ocean. Our simulations show that this pathway is responsible for up to 10% of the kinetic energy of the oceanic mesoscale eddy field in the South Atlantic. The conditions for this pathway to inject energy directly into the mesoscale prevail over much of the Southern Ocean north of the Polar Front. PMID:27292447

  4. Top of Atmosphere Radiation MVIRI/SEVIRI Data Record within the Climate Monitoring SAF (United States)

    Urbain, Manon; Clerbaux, Nicolas; Ipe, Alessandro; Tornow, Florian; Hollmann, Rainer; Baudrez, Edward; Velazquez Blazquez, Almudena; Moreels, Johan; Trentmann, Jörg


    The CM SAF Top of Atmosphere (TOA) Radiation MVIRI/SEVIRI Data Record provides a homogeneous satellite-based climatology of the TOA Reflected Solar (TRS) and Emitted Thermal (TET) radiation in all-sky conditions. The continuous monitoring of these two components of the Earth Radiation Budget is of prime importance to study climate variability and change. The Meteosat Visible and InfraRed Imager (MVIRI - from 1983 until 2004) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI - from 2004 onward) on board the Meteosat First and Second Generation satellites are combined to generate a long Thematic Climate Data Record (TCDR). Combining MVIRI and SEVIRI allows an unprecedented temporal (30 minutes / 15 minutes) and spatial (2.5 km / 3 km) resolution compared to the Clouds and the Earth's Radiant Energy System (CERES) products. This is a step forward as it helps to increase the knowledge of the diurnal cycle and the small-scale spatial variations of radiation. The MVIRI/SEVIRI Data Record covers a 32 years time period from 1 February 1983 to 30 April 2015. The TOA radiation products are provided as daily mean, monthly mean and monthly averages of the hourly integrated values (diurnal cycle). To ensure consistency with other CM SAF products, the data is provided on a regular grid at a spatial resolution of 0.05 degrees (i.e. about 5.5 km) and covers the region between +/- 70° longitude and +/- 70° latitude. Validation of the MVIRI/SEVIRI Data Record has been performed by intercomparison with several references such as the CERES products (EBAF, SYN1deg-Day and SYN1deg-M3Hour), the HIRS OLR Climate Data Record (Daily and Monthly), the reconstructed ERBS WFOV-CERES (or DEEP-C) dataset and the ISCCP FD products. CERES is considered as the best reference from March 2000 onward. The quality of the early part of the Data Record is verified against the other references. In general, the stability of all the TOA radiation products is estimated to be better than 4 W.m-2

  5. Influence of modified atmosphere packaging on radiation tolerance in the phytosanitary pest melon fly (Diptera: Tephritidae). (United States)

    Follett, Peter A; Wall, Marisa; Bailey, Woodward


    Modified atmosphere packaging (MAP) produces a low-oxygen (O2) environment that can increase produce shelf life by decreasing product respiration and growth of pathogens. However, low O2 is known to increase insect tolerance to irradiation, and the use of MAP with products treated by irradiation before export to control quarantine pests may inadvertently compromise treatment efficacy. Melon fly, Bactrocera cucurbitae Coquillet (Diptera: Tephritidae), is an important economic and quarantine pest of tropical fruits and vegetables, and one of the most radiation-tolerant tephritid fruit flies known. The effect of low O2 generated by MAP on the radiation tolerance of B. cucurbitae was examined. Third-instar larval B. cucurbitae were inoculated into ripe papayas and treated by 1) MAP + irradiation, 2) irradiation alone, 3) MAP alone, or (4) no MAP and no irradiation, and held for adult emergence. Three types of commercially available MAP products were tested that produced O2 concentrations between 1 and 15%, and a sublethal radiation dose (50 Gy) was used to allow comparisons between treatments. Ziploc storage bags (1-4% O2) increased survivorship to adult from 14 to 25%, whereas Xtend PP61 bags (3-8% O2) and Xtend PP53 bags (11-15% O2) did not enhance survivorship to the adult stage in B. cucurbitae irradiated at 50 Gy. Radiation doses approved by the United States Department of Agriculture and the International Plant Protection Commission for B. cucurbitae and Ceratitis capitata (Wiedemann) (Mediterranean fruit fly) are 150 and 100 Gy, respectively. In large-scale tests, 9,000 B. cucurbitae and 3,800 C. capitata larvae infesting papayas in Ziploc bags were irradiated at 150 and 100 Gy, respectively, with no survivors to the adult stage. MAP can increase insect survivorship during irradiation treatment at certain doses and O2 concentrations, but should not compromise the efficacy of the 150-Gy generic radiation treatment for tephritid fruit flies or the 100-Gy radiation

  6. Atmospheric Transference of the Toxic Burden of Atmosphere-Surface Exchangeable Pollutants to the Great Lakes Region (United States)

    Kumar, A.; Perlinger, J. A.; Giang, A.; Zhang, H.; Selin, N. E.; Wu, S.


    Toxic pollutants that share certain chemical properties undergo repeated emission and deposition between Earth's surfaces and the atmosphere. Following their emission through anthropogenic activities, they are transported locally, regionally or globally through the atmosphere, are deposited, and impact local ecosystems, in some cases as a result of bioaccumulation in food webs. We call them atmosphere-surface exchangeable pollutants or "ASEPs", wherein this group is comprised of thousands of chemicals. We are studying potential future contamination in the Great Lakes region by modeling scenarios of the future for three compounds/compound classes, mercury, polychlorinated biphenyl compounds, and polycyclic aromatic hydrocarbons. In this presentation we focus on mercury and future scenarios of contamination of the Great Lake region. The atmospheric transport of mercury under specific scenarios will be discussed. The global 3-D chemical transport model GEOS-Chem has been applied to estimate future atmospheric concentrations and deposition rates of mercury in the Great Lakes region for selected future scenarios of emissions and climate. We find that, assuming no changes in climate, annual mean net deposition flux of mercury to the Great Lakes Region may increase by approximately 50% over 2005 levels by 2050, without global or regional policies addressing mercury, air pollution, and climate. In contrast, we project that the combination of global and North American action on mercury could lead to a 21% reduction in deposition from 2005 levels by 2050. US action alone results in a projected 18% reduction over 2005 levels by 2050. We also find that, assuming no changes in anthropogenic emissions, climate change and biomass burning emissions would, respectively, cause annual mean net deposition flux of mercury to the Great Lakes Region to increase by approximately 5% and decrease by approximately 2% over 2000 levels by 2050.

  7. Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer (United States)

    Pikichyan, H. V.


    In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.

  8. Numerical prediction of radiative heat transfer in reciprocating superadiabatic combustion in porous media. (United States)

    Du, Liming; Xie, Maozhao


    A numerical study of Reciprocating Superadiabatic Combustion of Premixed gases in porous media (hereafter, referred to as RSCP) is performed. In this system the transient combustion of methane-air mixture is stabilized in a porous media combustor by periodically switching flow directions. The mass, momentum, energy and species conservation equations are solved using a two-dimensional control volume method. Local thermal non-equilibrium between the gas and the solid phases is considered by solving separate energy equations for the two phases and coupling them through a convective heat transfer coefficient. The porous media is assumed to emit, absorb and isotropically scatter radiation. The influences of the dominating operating parameters, such as filtration velocity, equivalence ratio and half cycle on the temperature profile, heat release rate, radiant flux, radiant efficiency and combustion efficiency are discussed. The results show that coupling calculating of flow field, combustion reaction and volume radiation of the optically thick media is successively achieved and heat radiation plays an important role in the overall performance of the burner. The temperature profile inside the RSCP combustor has a typical trapezoidal shape and the profile of radiation flux is similar to sinusoidal shape. Compared with the conventional premixed combustion in porous medium, combustion behavior in RSCP combustor is superior, such as better thermal structure and higher radiation efficiency and combustion efficiency. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  9. Radiances simulated in the presence of clouds by use of a fast radiative transfer model and a multiple-scattering scheme. (United States)

    Amorati, Roberta; Rizzi, Rolando


    A fast-forward radiative transfer (RTF) model is presented that includes cloud-radiation interaction for any number of cloud layers. Layer cloud fraction and transmittance are treated separately and combined with that of gaseous transmittances. RTF is tested against a reference procedure that uses line-by-line gaseous transmittances and solves the radiative transfer equation by use of the adding-doubling method to handle multiple-scattering conditions properly. The comparison is carried out for channels 8, 12, and 14 of the High Resolution Infrared Radiation Sounder (HIRS/2) and for the geostationary satellite METEOSAT thermal infrared and water vapor channels. Fairly large differences in simulated radiances by the two schemes are found in clear conditions for upper- and mid-tropospheric channels; the cause of the differences is discussed. For cloudy situations an improved layer source function is shown to be required when rapid changes in atmospheric transmission are experienced within the model layers. The roles of scattering processes are discussed; results with and without scattering, both obtained by use of a reference code, are compared. Overall, the presented results show that the fast model is capable of reproducing the cloudy results of the much more complex and time-consuming reference scheme.

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Sisterson, DL


    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  11. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW


    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  12. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW


    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  13. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW


    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  14. Paleozoic Atmospheric CO2: Importance of Solar Radiation and Plant Evolution. (United States)

    Berner, R A


    Changes in solar radiation, as it affects the rate of weathering of silicates on the continents, and other changes involving weathering and the degassing of carbon dioxide (CO(2)) have been included in a long-term carbon-cycle model. These additions to the model show that the major controls on CO(2) concentrations during the Paleozoic era were solar and biological, and not tectonic, in origin. The model predictions agree with independent estimates of a large mid-Paleozoic (400 to 320 million years ago) drop in CO(2) concentrations, which led to large-scale glaciation. This agreement indicates that variations in the atmospheric greenhouse effect were important in global climate change during the distant geologic past.

  15. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, Jimmy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Individual datastreams from instrumentation at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research observatories (sites) are collected and routed to the ARM Data Center (ADC). The Data Management Facility (DMF), a component of the ADC, executes datastream processing in near-real time. Processed data are then delivered approximately daily to the ARM Data Archive, also a component of the ADC, where they are made freely available to the research community. For each instrument, ARM calculates the ratio of the actual number of processed data records received daily at the ARM Data Archive to the expected number of data records. DOE requires national user facilities to report time-based operating data.

  16. Direct Collapse to Supermassive Black Hole Seeds with Radiative Transfer: Isolated Halos (United States)

    Luo, Yang; Ardaneh, Kazem; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.


    Direct collapse within dark matter (DM) halos is a promising path to form supermassive black hole (SMBH) seeds at high redshifts. The outer part of this collapse remains optically thin. However, the innermost region of the collapse is expected to become optically thick and requires to follow the radiation field in order to understand its evolution. So far, the adiabatic approximation has been used exclusively for this purpose. We apply radiative transfer in the flux-limited diffusion (FLD) approximation to solve the evolution of coupled gas and radiation, for isolated halos. We find that (1) the photosphere forms at 10-6 pc and rapidly expands outward. (2) A central core forms, with a mass of 1 M⊙, supported by gas pressure gradients and rotation. (3) Growing gas and radiation pressure gradients dissolve it. (4) This process is associated with a strong anisotropic outflow; another core forms nearby and grows rapidly. (5) Typical radiation luminosity emerging from the photosphere is 5 × 1037 - 5 × 1038 erg s-1, of order the Eddington luminosity. (6) Two variability timescales are associated with this process: a long one, which is related to the accretion flow within the central 10-4 - 10-3 pc, and 0.1 yr, related to radiation diffusion. (7) Adiabatic models evolution differs profoundly from that of the FLD models, by forming a geometrically-thick disk. Overall, an adiabatic equation of state is not a good approximation to the advanced stage of direct collapse, because the radiation is capable of escaping due to anisotropy in the optical depth and associated gradients.

  17. Improvement in Clouds and the Earth's Radiant Energy System/Surface and Atmosphere Radiation Budget Dust Aerosol Properties, Effects on Surface Validation of Clouds and Radiative Swath

    Energy Technology Data Exchange (ETDEWEB)

    Rutan, D.; Rose, F.; Charlock, T.P.


    Within the Clouds and the Earth's Radiant Energy System (CERES) science team (Wielicki et al. 1996), the Surface and Atmospheric Radiation Budget (SARB) group is tasked with calculating vertical profiles of heating rates, globally, and continuously, beneath CERES footprint observations of Top of Atmosphere (TOA) fluxes. This is accomplished using a fast radiative transfer code originally developed by Qiang Fu and Kuo-Nan Liou (Fu and Liou 1993) and subsequently highly modified by the SARB team. Details on the code and its inputs can be found in Kato et al. (2005) and Rose and Charlock (2002). Among the many required inputs is characterization of the vertical column profile of aerosols beneath each footprint. To do this SARB combines aerosol optical depth information from the moderate-resolution imaging spectroradiometer (MODIS) instrument along with aerosol constituents specified by the Model for Atmosphere and Chemical Transport (MATCH) of Collins et al. (2001), and aerosol properties (e.g. single scatter albedo and asymmetry parameter) from Tegen and Lacis (1996) and OPAC (Hess et al. 1998). The publicly available files that include these flux profiles, called the Clouds and Radiative Swath (CRS) data product, available from the Langley Atmospheric Sciences Data Center ( As various versions of the code are completed, publishable results are named ''Editions.'' After CRS Edition 2A was finalized it was found that dust aerosols were too absorptive. Dust aerosols have subsequently been modified using a new set of properties developed by Andy Lacis and results have been released in CRS Edition 2B. This paper discusses the effects of changing desert dust aerosol properties, which can be significant for the radiation budget in mid ocean, a few thousand kilometers from the source regions. Resulting changes are validated via comparison of surface observed fluxes from the Saudi Solar Village surface site (Myers et al

  18. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India

    Energy Technology Data Exchange (ETDEWEB)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Kotalo, Rama Gopal, E-mail: [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Rajuru Ramakrishna, Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Srinivasa Ramanujan Institute of Technology, B.K. Samudram Mandal, Anantapur 515 701, Andhra Pradesh (India); Surendranair, Suresh Babu [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695 022, Kerala (India)


    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500 nm are found to be 0.47 ± 0.09, 0.34 ± 0.08, 0.29 ± 0.06 and 0.30 ± 0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α{sub 380–1020}) value is observed maximum in March (1.25 ± 0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33 ± 0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00–08:00 (IST) and evening 19:00–21:00 (IST) hours and one minima noticed during afternoon (13:00–16:00). The highest monthly mean BC concentration is observed in the month of January (3.4 ± 1.2 μg m{sup −3}) and the lowest in July (1.1 ± 0.2 μg m{sup −3}). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be + 36.8 ± 1.7 W m{sup −2}, + 26.9 ± 0.2 W m{sup −2}, + 18.0 ± 0.6 W m{sup −2} and + 18.5 ± 3.1 W m{sup −2} during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80 W m{sup −2}) which contributes more increase in atmospheric heating by ~ 1 K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. - Highlights: • The mean values of AOD{sub 500} are found to be high during summer whereas low in monsoon. • The highest values of BC are observed in January and the lowest in the month of July. • The annual mean

  19. Protection against radiation-induced hematopoietic damage in bone marrow by hepatocyte growth factor gene transfer. (United States)

    Li, Qingfang; Sun, Huiyan; Xiao, Fengjun; Wang, Xiaojie; Yang, Yuefeng; Liu, Yingxia; Zhang, Qunwei; Wu, Chutse; Wang, Hua; Wang, Li-Sheng


    To investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor (HGF) gene could prevent radiation-induced hematopoietic damage. Thirty C57BL/6 mice were randomized into three groups, in which phosphate buffer saline (PBS), mock adenovirus vector (Ad-null) or adenovirus vector containing HGF (Ad-HGF) were injected into the tail vein of each group, respectively. After 48 hours, the mice received a single irradiation dose of 6.5 Gy (60)Co gamma rays. Blood samples were extracted via the tail vein at day 0, 4, 7, 10, 14, 21, 24 and 30 after irradiation, for red blood cell (RBC) and white blood cell (WBC) and cluster of differentiation4 (CD4)/cluster of differentiation8 (CD8) ratio assessment. At weekly intervals following irradiation, serum erythropoietin (EPO), Interleukin-6 (IL-6) and Interferon-gamma (IFN-γ) levels were measured using enzyme-linked immunosorbent assay (ELISA). On post-irradiation day 30, the mice were autopsied and erythroid burst-forming units (BFU-E) were evaluated. Adenovirus-mediated HGF gene transfer could increase human HGF level in serum and have a significant elevation in RBC and WBC count. Ad-HGF increased EPO and IL-6 levels and prompted BFU-E formation. Ad-HGF decreased radiation- induced micronucleus frequency in the mouse bone marrow (BM). Most evidence of radiation-induced hematopoietic damage was observed morphologically in bone marrow specimen four weeks after irradiation. Ad-HGF protected against radiation-induced BM failure and increased survival. Finally, Ad-HGF increased the thymic index and enhanced immune function in the irradiated C57BL/6 mice. This is the first report to date that demonstrates the potential of HGF gene transfer to prevent radiation-induced hematopoietic damage.

  20. Atmospheric dispersion of argon-41 from anuclear research reactor: measurement and modeling of plume geometry and gamma radiation field

    DEFF Research Database (Denmark)

    Lauritzen, Bent; Astrup, Poul; Drews, Martin


    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine release of argon-41 from the BR1 research reactor in Mol, Belgium. Simultaneous measurements of plume geometry and radiation fields for argon-41 decay were performed as well as measurements of the argon......-41 source term and the meteorological parametres. Good overall agreement is found between measurement data and model results using the mesoscale atmospheric dispersion and dose rate model RIMPUFF....

  1. Radiative Susceptibility of Cloudy Atmospheres to Droplet Number Perturbations: 2. Global analysis from MODIS (United States)

    Oreopoulos, Lazaros; Platnick, Steven


    Global distributions of albedo susceptibility for areas covered by liquid clouds are presented for 4 months in 2005. The susceptibility estimates are based on expanded definitions presented in a companion paper and include relative cloud droplet number concentration (CDNC) changes, perturbations in cloud droplet asymmetry parameter and single-scattering albedo, atmospheric/surface effects, and incorporation of the full solar spectrum. The cloud properties (optical thickness and effective radius) used as input in the susceptibility calculations come from MODIS Terra and Aqua Collection 5 gridded data. Geographical distributions of susceptibility corresponding to absolute ( absolute cloud susceptibility ) and relative ( relative cloud susceptibility ) CDNC changes are markedly different indicating that the detailed nature of the cloud microphysical perturbation is important for determining the radiative forcing associated with the first indirect aerosol effect. However, both types of susceptibility exhibit common characteristics such as significant reductions when perturbations in single-scattering properties are omitted, significant increases when atmospheric absorption and surface albedo effects are ignored, and the tendency to decrease with latitude, to be higher over ocean than over land, and to be statistically similar between the morning and afternoon MODIS overpasses. The satellite-based susceptibility analysis helps elucidate the role of present-day cloud and land surface properties in indirect aerosol forcing responses. Our realistic yet moderate CDNC perturbations yield forcings on the order of 1-2 W/sq m for cloud optical property distributions and land surface spectral albedos observed by MODIS. Since susceptibilities can potentially be computed from model fields, these results have practical application in assessing the reasonableness of model-generated estimates of the aerosol indirect radiative forcing.

  2. E-cadherin mediates ultraviolet radiation- and calcium-induced melanin transfer in human skin cells. (United States)

    Singh, Suman K; Baker, Richard; Sikkink, Stephen K; Nizard, Carine; Schnebert, Sylvianne; Kurfurst, Robin; Tobin, Desmond J


    Skin pigmentation is directed by epidermal melanin units, characterized by long-lived and dendritic epidermal melanocytes (MC) that interact with viable keratinocytes (KC) to contribute melanin to the epidermis. Previously, we reported that MC:KC contact is required for melanosome transfer that can be enhanced by filopodi, and by UVR/UVA irradiation, which can upregulate melanosome transfer via Myosin X-mediated control of MC filopodia. Both MC and KC express Ca 2+ -dependent E-cadherins. These homophilic adhesion contacts induce transient increases in intra-KC Ca 2+ , while ultraviolet radiation (UVR) raises intra-MC Ca 2+ via calcium-selective ORAI1 ion channels; both are associated with regulating melanogenesis. However, how Ca 2+ triggers melanin transfer remains unclear. Here we evaluated the role of E-cadherin in UVR-mediated melanin transfer in human skin cells. MC and KC in human epidermis variably express filopodia-associated E-cadherin, Cdc42, VASP and β-catenin, all of which were upregulated by UVR in human MC in vitro. Knockdown of E-cadherin revealed that this cadherin is essential for UVR-induced MC filopodia formation and melanin transfer. Moreover, Ca 2+ induced a dose-dependent increase in filopodia formation and melanin transfer, as well as increased β-catenin, Cdc42, Myosin X and E-cadherin expression in these skin cells. Together, these data suggest that filopodial proteins and E-cadherin, which are upregulated by intracellular (UVR-stimulated) and extracellular Ca 2+ availability, are required for filopodia formation and melanin transfer. This may open new avenues to explore how Ca 2+ signalling influences human pigmentation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

    Directory of Open Access Journals (Sweden)

    S. DeSouza-Machado


    Full Text Available One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR satellite sounders use cloud-cleared radiances (CCRs as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2–4 degrees of freedom (DOFs of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA. The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds. From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS and NWP

  4. Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A. [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Shit, G.C., E-mail: [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Institute of Mathematical Sciences, Chennai 600113 (India)


    This paper presents a comprehensive theoretical study on heat transfer characteristics together with fully developed electromagnetohydrodynamic flow of blood through a capillary, having electrokinetic effects by considering the constant heat flux at the wall. The effect of thermal radiation and velocity slip condition have been taken into account. A rigorous mathematical model for describing Joule heating in electro-osmotic flow of blood including the Poisson–Boltzmann equation, the momentum equation and the energy equation is developed. The alterations in the thermal transport phenomenon, induced by the variation of imposed electromagnetic effects, are thoroughly explained through an elegant mathematical formalism. Results presented here pertain to the case where the height of the capillary is much greater than the thickness of electrical double layer comprising the stern and diffuse layers. The essential features of the electromagnetohydrodynamic flow of blood and associated heat transfer characteristics through capillary are clearly highlighted by the variations in the non-dimensional parameters for velocity profile, temperature profile and the Nusselt number. The study reveals that the temperature of blood can be controlled by regulating Joule heating parameter. - Highlights: • Electromagnetohydrodynamic flow of blood in capillary is studied. • Potential electric field is applied for driving elecroosmotic flow of blood. • Effect of thermal radiation, Joule heating and velocity slip is investigated. • Thermal radiation bears the significant change in the temperature field.

  5. Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface

    Directory of Open Access Journals (Sweden)

    N. Sandeep


    Full Text Available We analyzed the unsteady magnetohydrodynamic radiative flow and heat transfer characteristics of a dusty nanofluid over an exponentially permeable stretching surface in presence of volume fraction of dust and nano particles. We considered two types of nanofluids namely Cu-water and CuO-water embedded with conducting dust particles. The governing equations are transformed into nonlinear ordinary differential equations by using similarity transformation and solved numerically using Runge–Kutta based shooting technique. The effects of non-dimensional governing parameters namely magneticfield parameter, mass concentration of dust particles, fluid particle interaction parameter, volume fraction of dust particles, volume fraction of nano particles, unsteadiness parameter, exponential parameter, radiation parameter and suction/injection parameter on velocity profiles for fluid phase, dust phase and temperature profiles are discussed and presented through graphs. Also, friction factor and Nusselt numbers are discussed and presented for two dusty nanofluids separately. Comparisons of the present study were made with existing studies under some special assumptions. The present results have an excellent agreement with existing studies. Results indicated that the enhancement in fluid particle interaction increases the heat transfer rate and depreciates the wall friction. Also, radiation parameter has the tendency to increase the temperature profiles of the dusty nanofluid.

  6. Investigation of Radiation and Chemical Resistance of Flexible HLW Transfer Hose

    Energy Technology Data Exchange (ETDEWEB)

    E. Skidmore; Billings, K.; Hubbard, M.


    A chemical transfer hose constructed of an EPDM (ethylene-propylene diene monomer) outer covering with a modified cross-linked polyethylene (XLPE) lining was evaluated for use in high level radioactive waste transfer applications. Laboratory analysis involved characterization of the hose liner after irradiation to doses of 50 to 300 Mrad and subsequent exposure to 25% NaOH solution at 93 C for 30 days, simulating 6 months intermittent service. The XLPE liner mechanical and structural properties were characterized at varying dose levels. Burst testing of irradiated hose assemblies was also performed. Literature review and test results suggest that radiation effects below doses of 100 kGy are minimal, with acceptable property changes to 500 kGy. Higher doses may be feasible. At a bounding dose of 2.5 MGy, the burst pressure is reduced to the working pressure (1.38 MPa) at room temperature. Radiation exposure slightly reduces liner tensile strength, with more significant decrease in liner elongation. Subsequent exposure to caustic solutions at elevated temperature slightly increases elongation, suggesting an immersion/hydrolytic effect or possible thermal annealing of radiation damage. This paper summarizes the laboratory results and recommendations for field deployment.

  7. Proceedings of the sixth Atmospheric Radiation Measurement (ARM) Science Team meeting

    Energy Technology Data Exchange (ETDEWEB)



    This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal research community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.

  8. Heat transfer enhancement of automobile radiator using H2O–CuO nanofluid

    Directory of Open Access Journals (Sweden)

    M. Sabeel Khan


    Full Text Available In this article, we study heat transfer enhancement of water based nanofluids with application to automotive radiators. In