Atmospheric Radiative Transfer
Perliski, Lori
Because radiative transfer cuts across many scientific disciplines with applications including remote sensing, climate, atmospheric chemistry, and photobiology, there is a need for comprehensive books on this subject that can appeal to a wide readership. While Atmospheric Radiative Transfer takes strides toward filling this niche by addressing a broad range of topics, it is dry reading and suffers from lack of detail. The book was based on a graduate-level course taught at the University of Sciences and Technologies in Lille, France, and indeed, the text reads much like an expanded outline perhaps derived from lecture notes.Part one deals with general radiative transfer, and part two covers Earth's radiation budget, the climate system, and remote sensing techniques. The radiative transfer equation and solutions for absorbing and scattering atmospheres are discussed as are the details of absorption, such as energy levels, line strengths, line intensities, equivalent widths, and weak- and strong-line limits.
Radiative transfer in the cloudy atmosphere
Mayer B.
2009-01-01
Radiative transfer in clouds is a challenging task, due to their high spatial and temporal variability which is unrivaled by any other atmospheric species. Clouds are among the main modulators of radiation along its path through the Earth’s atmosphere. The cloud feedback is the largest source of uncertainty in current climate model predictions. Cloud observation from satellites, on a global scale, with appropriate temporal and spatial sampling is therefore one of the top aims of current Earth...
Radiative transfer in atmosphere-sea ice-ocean system
Energy Technology Data Exchange (ETDEWEB)
Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)
1996-04-01
Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.
Benchmark results in vector atmospheric radiative transfer
International Nuclear Information System (INIS)
In this paper seven vector radiative transfer codes are inter-compared for the case of underlying black surface. They include three techniques based on the discrete ordinate method (DOM), two Monte-Carlo methods, the successive orders scattering method, and a modified doubling-adding technique. It was found that all codes give very similar results. Therefore, we were able to produce benchmark results for the Stokes parameters both for reflected and transmitted light in the cases of molecular, aerosol and cloudy multiply scattering media. It was assumed that the single scattering albedo is equal to one. Benchmark results have been provided by several studies before, including Coulson et al., Garcia and Siewert, Wauben and Hovenier, and Natraj et al. among others. However, the case of the elongated phase functions such as for a cloud and with a high angular resolution is presented here for the first time. Also in difference with other studies, we make inter-comparisons using several codes for the same input dataset, which enables us to quantify the corresponding errors more accurately.
Atmospheric radiative transfer simulation for atmospheric correction of remote sensing data
Institute of Scientific and Technical Information of China (English)
Yunfei Bao; Shengbo Chen
2006-01-01
The radiance leaving the earth-atmosphere system which can be sensed by a satellite borne radiometer is the sum of radiation emission from the earth surface and each atmospheric level that are transmitted to the top of the atmosphere. The radiation emission from the earth surface and the radiance of each atmospheric level can be separated from the radiance at the top the atmospheric level measured by a satellite borne radiometer. However, it is very difficult to measure the atmospheric radiance, especially the synchronous measurement with the satellite. Thus some atmospheric radiative transfer models have been developed to provide many options for modeling atmospheric radiation transport, such as LOWTRAN, MODTRAN, 6S, FASCODE, LBLRTM, SHARC, and SAMM. Meanwhile, these models can support the detailed detector system design, the optimization and evaluation of satellite mission parameters, and the data processing procedures. As an example, the newly atmospheric radiative transfer models, MODTRAN will be compared with other models after the atmospheric radiative transfer is described. And the atmospheric radiative transfer simulation procedures and their applications to atmospheric transmittance, retrieval of atmospheric elements, and surface parameters, will also be presented.
Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region
Institute of Scientific and Technical Information of China (English)
JIA Yuanyuan; LI Zhaoliang
2008-01-01
The radiative transfer is one of the significant theories that describe the processes of scattering,emission,and absorption of electromagnetic radiant intensity through scattering medium.It is the basis of the study on the quantitative remote sensing.In this paper,the radiative characteristics of soil,vegetation,and atmosphere were described respectively.The numerical solution of radiative transfer was accomplished by Successive Orders of Scattering (SOS).A radiative transfer model for simulating microwave brightness temperature over land surfaces was constructed,designed,and implemented.Analyzing the database generated from soil-vegetation-atmosphere radiative transfer model under Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) configuration showed that the atmospheric effects on microwave brightness temperature should not be neglected,particularly for higher frequency,and can be parameterized.At the same time,the relationship between the emissivities of the different channels was developed.The study results will promote the development of algorithm to retrieve geophysical parameters from microwave remotely sensed data.
Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN
International Nuclear Information System (INIS)
SCIATRAN is a comprehensive software package for the modeling of radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18–40μm) including multiple scattering processes, polarization, thermal emission and ocean–atmosphere coupling. The software is capable of modeling spectral and angular distributions of the intensity or the Stokes vector of the transmitted, scattered, reflected, and emitted radiation assuming either a plane-parallel or a spherical atmosphere. Simulations are done either in the scalar or in the vector mode (i.e. accounting for the polarization) for observations by space-, air-, ship- and balloon-borne, ground-based, and underwater instruments in various viewing geometries (nadir, off-nadir, limb, occultation, zenith-sky, off-axis). All significant radiative transfer processes are accounted for. These are, e.g. the Rayleigh scattering, scattering by aerosol and cloud particles, absorption by gaseous components, and bidirectional reflection by an underlying surface including Fresnel reflection from a flat or roughened ocean surface. The software package contains several radiative transfer solvers including finite difference and discrete-ordinate techniques, an extensive database, and a specific module for solving inverse problems. In contrast to many other radiative transfer codes, SCIATRAN incorporates an efficient approach to calculate the so-called Jacobians, i.e. derivatives of the intensity with respect to various atmospheric and surface parameters. In this paper we discuss numerical methods used in SCIATRAN to solve the scalar and vector radiative transfer equation, describe databases of atmospheric, oceanic, and surface parameters incorporated in SCIATRAN, and demonstrate how to solve some selected radiative transfer problems using the SCIATRAN package. During the last decades, a lot of studies have been published demonstrating that SCIATRAN is a valuable
ARTS, the atmospheric radiative transfer simulator, version 2
International Nuclear Information System (INIS)
The second version of the atmospheric radiative transfer simulator, ARTS, is introduced. This is a general software package for long wavelength radiative transfer simulations, with a focus on passive microwave observations. The core part provides a workspace environment, in line with script languages. New for this version is an agenda mechanism that gives a high degree of modularity. The framework is intended to be as general as possible: the polarisation state can be fully described, the model atmosphere can be one- (1D), two- (2D) or three-dimensional (3D), a full description of geoid and surface is possible, observation geometries from the ground, from satellite, and from aeroplane or balloon are handled, and surface reflection can be treated in simple or complex manners. Remote sensing applications are supported by a comprehensive and efficient treatment of sensor characteristics. Jacobians can be calculated for the most important atmospheric variables in non-scattering conditions. Finally, the most prominent feature is the rigorous treatment of scattering that has been implemented in two modules: a discrete ordinate iterative approach mainly used for 1D atmospheres, and a Monte Carlo approach which is the preferred algorithm for 3D atmospheres. ARTS is freely available, and maintained as an open-source project.
Analytical properties of the radiance in atmospheric radiative transfer theory
International Nuclear Information System (INIS)
It is demonstrated mathematically strictly that state density functions, as the radiance (specific intensity), exist to describe certain state properties of transported photons on microscopic and the state of the radiation field on macroscopic scale, which have independent physical meanings. Analytical properties as boundedness, continuity, differentiability and integrability of these functions to describe the photon transport are discussed. It is shown that the density functions may be derived based on the assumption of photons as real particles of non-zero and finite size, independently of usual electrodynamics, and certain historically postulated functional relationships between them were proved, that is, these functions can be derived mathematically strictly and consistently within the framework of the theory of the phenomenological radiative transfer if one takes the theory seriously by really assuming photons as particles. In this sense these functions may be treated as fundamental physical quantities within the scope of this theory, if one considers the possibility of the existence of photons. -- Highlights: • Proof of existence of the radiance within the scope of the theory of atmospheric radiative transfer. • Proof of relations between the photon number and photon energy density function and the radiance. • Strictly mathematical derivation of the analytical properties of these state density functions
Radiation Transfer Model for Aerosol Events in the Earth Atmosphere
Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru
Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.
Havemann, Stephan; Thelen, Jean-Claude; Taylor, Jonathan P.; Keil, Andreas
2009-03-01
The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) has been developed for the simulation of highly spectrally resolved measurements from satellite based (i.e. Infrared Atmospheric Sounding Interferometer (IASI), Atmospheric Infrared Sounder (AIRS)) and airborne (i.e. Atmospheric Research Interferometer Evaluation System (ARIES)) instruments. The use of principle components enables the calculation of a complete spectrum in less than a second. The principal compoents are derived from a diverse training set of atmospheres and surfaces and contain their spectral characteristics in a highly compressed form. For any given atmosphere/surface, the HT-FRTC calculates the weightings (also called scores) of a few hundred principal components based on selected monochromatic radiative transfer calculations, which is far cheaper than thousands of channel radiance calculations. By intercomparison with line-by-line and other fast models the HT-FRTC has been shown to be accurate. The HT-FRTC has been successfully applied to simultaneous variational retrievals of atmospheric temperature and humidity profiles, surface temperature and surface emissivity over land. This is the subject of another presentation at this conference. The HT-FRTC has now also been extended to include an exact treatment of scattering by aerosols/clouds. The radiative transfer problem is solved using a discrete ordinate method (DISORT). Modelling results at high-spectral resolution for non-clear sky atmospheres obtained with the HT-FRTC are presented.
Fractional integration and radiative transfer in a multifractal atmosphere
Energy Technology Data Exchange (ETDEWEB)
Naud, C.; Schertzer, D. [Universite Pierre et Marie Curie, Paris (France); Lovejoy, S. [McGill Univ., Montreal (Canada)
1996-04-01
Recently, Cess et al. (1995) and Ramathan et al. (1995) cited observations which exhibit an anomalous absorption of cloudy skies in comparison with the value predicted by usual models and which thus introduce large uncertainties for climatic change assessments. These observation raise questions concerning the way general circulation models have been tuned for decades, relying on classical methods, of both radiative transfer and dynamical modeling. The observations also tend to demonstrate that homogeneous models are simply not relevant in relating the highly variable properties of clouds and radiation fields. However smoothed, the intensity of cloud`s multi-scattered radiation fields reflect this extreme variability.
Institute of Scientific and Technical Information of China (English)
HE XianQiang; PAN DeLu; BAI Yan; ZHU QianKun; GONG Fang
2007-01-01
A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method,which is named PCOART.Using the Fourier analysis,the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observation zenith angle.Using the Gaussian-Quadrature method,VRTE is finally transferred into the matrix equation solved by the adding-doubling method.According to the reflective and refractive properties of the ocean-atmosphere interface,the vector radiative transfer numerical model of the ocean and atmosphere is coupled in PCOART.Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer),it is shown that PCOART is an exactly numerical model,and the processing methods of the multi-scattering and polarization are correct.Also,validated with the standard problems of the radiative transfer in water,it is shown that PCOART can be used to calculate the underwater radiative transfer problems.Therefore,PCOART is a useful tool for exactly calculating the vector radiative transfer of the coupled ocean-atmosphere system,which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.
Institute of Scientific and Technical Information of China (English)
2007-01-01
A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. Using the Fourier analysis, the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observa-tion zenith angle. Using the Gaussian-Quadrature method, VRTE is finally transferred into the matrix equation solved by the adding-doubling method. According to the reflective and refractive properties of the ocean-atmosphere interface, the vector radiative transfer numerical model of the ocean and at-mosphere is coupled in PCOART. Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer), it is shown that PCOART is an exactly numerical model, and the processing methods of the multi-scattering and polarization are correct. Also, validated with the standard problems of the radiative transfer in water, it is shown that PCOART can be used to calculate the underwater radiative transfer problems. Therefore, PCOART is a useful tool for exactly calculating the vector radiative transfer of the coupled ocean-atmosphere system, which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.
Atmospheric radiative transfer parametrization for solar energy yield calculations on buildings
Wagner, Jochen E
2015-01-01
In this paper the practical approach to evaluate the incoming solar radiation on buildings based on atmospheric composition and cloud cover is presented. The effects of absorption and scattering due to atmospheric composition is taken into account to calculate, using radiative transfer models, the net incoming solar radiation at surface level. A specific validation of the Alpine Region in Europe is presented with a special focus on the region of South Tyrol.
Radiation and Heat Transfer in the Atmosphere: A Comprehensive Approach on a Molecular Basis
Directory of Open Access Journals (Sweden)
Hermann Harde
2013-01-01
Full Text Available We investigate the interaction of infrared active molecules in the atmosphere with their own thermal background radiation as well as with radiation from an external blackbody radiator. We show that the background radiation can be well understood only in terms of the spontaneous emission of the molecules. The radiation and heat transfer processes in the atmosphere are described by rate equations which are solved numerically for typical conditions as found in the troposphere and stratosphere, showing the conversion of heat to radiation and vice versa. Consideration of the interaction processes on a molecular scale allows to develop a comprehensive theoretical concept for the description of the radiation transfer in the atmosphere. A generalized form of the radiation transfer equation is presented, which covers both limiting cases of thin and dense atmospheres and allows a continuous transition from low to high densities, controlled by a density dependent parameter. Simulations of the up- and down-welling radiation and its interaction with the most prominent greenhouse gases water vapour, carbon dioxide, methane, and ozone in the atmosphere are presented. The radiative forcing at doubled CO2 concentration is found to be 30% smaller than the IPCC-value.
A Consummate Radiative Transfer Package for Studying the Atmosphere and Oceans
Zhai, P.; Hu, Y.; Trepte, C. R.; Winker, D. M.
2015-12-01
We will present a radiative transfer package based on the successive order of scattering method. This code is capable to calculate the radiation field in turbid media, which can be either the atmosphere-land or atmosphere-ocean coupled systems. The outputs include all four Stokes parameters at arbitrary detector locations and viewing angles in the turbid medium. Both the elastic and inelastic scattering are implemented in the package. This radiative transfer tool has been used in various applications, for instance, generating an aerosol look-up table for atmospheric correction in ocean color remote sensing; retrieving water cloud size distribution using the polarized multi-angle measurements; simulating the OCO2 O2 A band radiance measurement, etc. Our radiative transfer package is a great tool to interpret and predict the measurements from the future polarimeters and multipolarization-state lidars for Earth observing missions.
International Nuclear Information System (INIS)
We apply the iteration of source function (IOSF) philosophy to the successive order of scattering method for solving the vector radiative transfer equation in the coupled atmosphere and ocean system. A major class of radiative transfer solvers only provides the radiation field at discrete viewing zenith angles. The radiation field at other angles is found by interpolation. The iteration of source matrix method integrates the product of the radiation field and source matrix at quadrature points to obtain the radiation field at arbitrary viewing angles. The resultant solution includes the radiation contributions from all scattering orders higher than one. The analytical single scattering solution is then added to find the total radiation field. The proposed scheme includes the benefits of both the IOSF interpolation and the analytical single scattering solution. Boundary conditions for a flat air–sea interface are fully considered. A test case of a coupled atmosphere and ocean system shows that this combined method improves the polarized radiation field greatly in comparison with the regular polynomial interpolation method. -- Highlights: ► The iteration of source matrix method is applied to vector radiative transfer. ► The Stokes parameters at arbitrary viewing angles are obtained. ► Special focus is on coupled atmosphere and ocean systems. ► The analytical single scattering solution is used to increase accuracy.
Heng, Kevin; Lee, Jaemin
2014-01-01
We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior) and solutions for the temperature-pressure profiles. Generally, the problem is mathematically under-determined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We further demonstrate that traditional non-isothermal treatments of each atmospheric layer lead to unphysical contributions to the ...
Hayek, W; Carlsson, M; Trampedach, R; Collet, R; Gudiksen, B V; Hansteen, V H; Leenaarts, J
2010-01-01
We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with bo...
Delgado-Correal, Camilo; Castaño, Gabriel
2012-01-01
Radiative transfer models explain and predict interaction between solar radiation and the different elements present in the atmosphere, which are responsible for energy attenuation. In Colombia there have been neither measurements nor studies of atmospheric components such as gases and aerosols that can cause turbidity and pollution. Therefore satellite images cannot be corrected radiometrically in a proper way. When a suitable atmospheric correction is carried out, loss of information is avoided, which may be useful for discriminating image land cover. In this work a computational model was used to find radiative atmospheric attenuation (300 1000nm wavelength region) on an equatorial tropical desert (La Tatacoa, Colombia) in order to conduct an adequate atmospheric correction.
Atmospheric radiative transfer generalised for use on Earth and other planets: ARTS 2.2
Mendrok, Jana; Eriksson, Patrick; Buehler, Stefan; Perrin, Agnes; Hartogh, Paul; Rezac, Ladislav; Lemke, Oliver
2015-04-01
Microwave and (sub)millimetre-wave frequencies have long been of interest for remote sensing of the Earth and space objects. They suffer less from interference by small particles (dust, clouds), hence penetrate deeper into atmospheres revealing their deeper structures hidden to shorter wavelengths, and possess characteristic line absorption features of many gaseous species, which are of interest for the understanding of atmospheric chemistry and dynamics. Models simulating radiative transfer and wave propagation (RT/WP) have been developed by many institutions. Most of them are designed for a particular, narrow region of the electromagnetic spectrum, certain instrument types or missions, and specific atmospheric conditions. In particular, they are usually set up for a specific planetary body. This high level of specialisation allows for accurate modelling results. However, it also limits the flexibility of those models and comparability between them. One of the major differences in radiative transfer modeling in the atmospheres of Earth and other planets arises from the different composition of the atmospheres. When interested in measuring total abundance or even vertical distribution of atmospheric constituents, knowledge of parameters describing spectrally dependent absorption in dependence of atmospheric state is required. When modeling radiative transfer for different planets, the line shapes are often accounted for by scaling the parameters valid for Earth's ``air'' or by building a spectroscopic catalogue specific to the planet in question and its main atmospheric composition. This strongly limits applicability of these models. Based on the ARTS model [1], a sophisticated, flexible RT model for Earth atmosphere (3D spherical geometry, diverse absorption models, scattering, polarization, Jacobians), we have developed a toolbox for microwave atmospheric radiative transfer in solar system planets. As part of this, we developed and implemented a more generalized
Jordan, Stefan; Schmidt, Holger
2003-01-01
We compare four different methods to calculate radiative transfer through a magnetized stellar atmosphere, and apply them to the case of magnetic white dwarfs. All methods are numerically stable enough to allow determination of the magnetic field structure, but distinctions between faster, simplifying, methods, and elaborate, but more CPU-time consuming, methods, can be made.
Bayesian Atmospheric Radiative Transfer (BART) Code and Application to WASP-43b
Blecic, Jasmina; Harrington, Joseph; Cubillos, Patricio; Bowman, Oliver; Rojo, Patricio; Stemm, Madison; Lust, Nathaniel B.; Challener, Ryan; Foster, Austin James; Foster, Andrew S.; Blumenthal, Sarah D.; Bruce, Dylan
2016-01-01
We present a new open-source Bayesian radiative-transfer framework, Bayesian Atmospheric Radiative Transfer (BART, https://github.com/exosports/BART), and its application to WASP-43b. BART initializes a model for the atmospheric retrieval calculation, generates thousands of theoretical model spectra using parametrized pressure and temperature profiles and line-by-line radiative-transfer calculation, and employs a statistical package to compare the models with the observations. It consists of three self-sufficient modules available to the community under the reproducible-research license, the Thermochemical Equilibrium Abundances module (TEA, https://github.com/dzesmin/TEA, Blecic et al. 2015}, the radiative-transfer module (Transit, https://github.com/exosports/transit), and the Multi-core Markov-chain Monte Carlo statistical module (MCcubed, https://github.com/pcubillos/MCcubed, Cubillos et al. 2015). We applied BART on all available WASP-43b secondary eclipse data from the space- and ground-based observations constraining the temperature-pressure profile and molecular abundances of the dayside atmosphere of WASP-43b. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
Heng, Kevin; Phillipps, Peter J
2011-01-01
Improving upon our purely dynamical work, we present three-dimensional simulations of the atmospheric circulation on Earth-like (exo)planets and hot Jupiters using the GFDL-Princeton Flexible Modeling System (FMS). As the first steps away from the purely dynamical benchmarks of Heng, Menou & Phillipps (2011), we add dual-band radiative transfer and dry convective adjustment schemes to our computational setup. Our treatment of radiative transfer assumes stellar irradiation to peak at a wavelength shorter than and distinct from that at which the exoplanet re-emits radiation ("shortwave" versus "longwave"), and also uses a two-stream approximation. Convection is mimicked by adjusting unstable lapse rates to the dry adiabat. The bottom of the atmosphere is bounded by an uniform slab with a finite thermal inertia. For our hot Jupiter models, we include an analytical formalism for calculating temperature-pressure profiles, in radiative equilibrium, which accounts for the effect of collision-induced absorption v...
Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars
Ozak, N.; Aharonson, O.; Halevy, I.
2016-06-01
Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.
Energy Technology Data Exchange (ETDEWEB)
de Almeida, V.F.
2004-01-28
A phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equation and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicularly to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiative intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiative intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.
International Nuclear Information System (INIS)
We present a single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere. It is based on the assumption that the upwelling internal radiation field is dominated by a surface with a uniform brightness temperature. It allows the calculation of the scattering source function for individual aerosol types, mixtures of aerosol types, and mixtures of gas and aerosol. The approximation can be applied in a Curtis-Godson radiative transfer code and is used for operational retrievals from Mars Climate Sounder measurements. Radiance comparisons with a multiple scattering model show good agreement in the mid- and far-infrared although the approximate model tends to underestimate the radiances in realistic conditions of the Martian atmosphere. Relative radiance differences are found to be about 2% in the lowermost atmosphere, increasing to ∼10% in the middle atmosphere of Mars. The increasing differences with altitude are mostly due to the increasing contribution to limb radiance of scattering relative to emission at the colder, higher atmospheric levels. This effect becomes smaller toward longer wavelengths at typical Martian temperatures. The relative radiance differences are expected to produce systematic errors of similar magnitude in retrieved opacity profiles.
Barlakas, Vasileios; Macke, Andreas; Wendisch, Manfred
2016-07-01
Non-spherical particles in the atmosphere absorb and scatter solar radiation. They change the polarization state of solar radiation depending on their shape, size, chemical composition and orientation. To quantify polarization effects, a new three-dimensional (3D) vector radiative transfer model, SPARTA (Solver for Polarized Atmospheric Radiative Transfer Applications) is introduced and validated against benchmark results. SPARTA employs the statistical forward Monte Carlo technique for efficient column-response pixel-based radiance calculations including polarization for 3D inhomogeneous cloudless and cloudy atmospheres. A sensitivity study has been carried out and exemplarily results are presented for two lidar-based mineral dust fields. The scattering and absorption properties of the dust particles have been computed for spheroids and irregular shaped particles. Polarized radiance fields in two-dimensional (2D) and one-dimensional (1D) inhomogeneous Saharan dust fields have been calculated at 532 nm wavelength. The domain-averaged results of the normalized reflected radiance are almost identical for the 1D and 2D modes. In the areas with large spatial gradient in optical thickness with expected significant horizontal photon transport, the radiance fields of the 2D mode differ by about ±12% for the first Stokes component (radiance, I) and ±8% for the second Stokes component (linear polarization, Q) from the fields of the 1D mode.
Ustinov, Y. A.
1978-01-01
The direct method for the solution of the spherical harmonics approximation to the equation of transfer of radiation is applied to the cases of (1) scattering of the solar radiation in the atmosphere with the Lambertian boundary and (2) thermal radiation transfer.
Khan, S A
2006-01-01
The technique of model atmosphere calculation for magnetic Ap and Bp stars with polarized radiative transfer and magnetic line blanketing is presented. A grid of model atmospheres of A and B stars are computed. These calculations are based on direct treatment of the opacities due to the bound-bound transitions that ensures an accurate and detailed description of the line absorption and anomalous Zeeman splitting. The set of model atmospheres was calculated for the field strengths between 1 and 40 kG. The high-resolution energy distribution, photometric colors and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are compared to those of non-magnetic reference models and to the previous paper of this series. The results of modelling confirmed the main outcomes of the previous study: energy redistribution from UV to the visual region and flux depression at 5200A. However, we found that effects of enhanced line blanketing when transfer for polarized radiation take...
MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere.
Premuda, Margherita; Palazzi, Elisa; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Giovanelli, Giorgio
2012-03-26
This paper describes the radiative transfer model (RTM) MOCRA (MOnte Carlo Radiance Analysis), developed in the frame of DOAS (Differential Optical Absorption Spectroscopy) to correctly interpret remote sensing measurements of trace gas amounts in the atmosphere through the calculation of the Air Mass Factor. Besides the DOAS-related quantities, the MOCRA code yields: 1- the atmospheric transmittance in the vertical and sun directions, 2- the direct and global irradiance, 3- the single- and multiple- scattered radiance for a detector with assigned position, line of sight and field of view. Sample calculations of the main radiometric quantities calculated with MOCRA are presented and compared with the output of another RTM (MODTRAN4). A further comparison is presented between the NO2 slant column densities (SCDs) measured with DOAS at Evora (Portugal) and the ones simulated with MOCRA. Both comparisons (MOCRA-MODTRAN4 and MOCRA-observations) gave more than satisfactory results, and overall make MOCRA a versatile tool for atmospheric radiative transfer simulations and interpretation of remote sensing measurements. PMID:22453470
Polarimetry of hot-Jupiter systems and radiative transfer models of planetary atmospheres
Bott, Kimberly; Bailey, Jeremy; Kedziora-Chudczer, Lucyna; Cotton, Daniel; Marshall, Jonathan
2016-01-01
Thousands of exoplanets and planet candidates have been detected. The next important step in the contexts of astrobiology, planetary classification and planet formation is to characterise them. My dissertation aims to provide further characterisation to four hot Jupiter exoplanets: the relatively well-characterised HD 189733b, WASP-18b which is nearly large enough to be a brown dwarf, and two minimally characterised non-transiting hot Jupiters: HD 179949b and tau Bootis b.For the transiting planets, this is done through two means. First, published data from previous observations of the secondary eclipse (and transit for HD 189733b) are compared to models created with the Versatile Software for the Transfer of Atmospheric Radiation (VSTAR). Second, new polarimetric observations from the HIgh Precision Polarimetric Instrument are compared to Lambert-Rayleigh polarised light phase curves. For the non-transiting planets, only the polarimetric measurements are compared to models, but toy radiative transfer models are produced for concept. As an introduction to radiative transfer models, VSTAR is applied to the planet Uranus to measure its D/H isotope ratio. A preliminary value is derived for D/H in one part of the atmosphere.Fitting a single atmospheric model to the transmitted, reflected, and emitted light, I confirm the presence of water on HD 189733b, and present a new temperature profile and cloud profile for the planet. For WASP-18b, I confirm the general shape of the temperature profile. No conclusions can be drawn from the polarimetric measurements for the non-transiting planets. I detect a possible variation with phase for transiting planet WASP-18b but cannot confirm it at this time. Alternative sources to the planet are discussed. For HD 189733b, I detect possible variability in the polarised light at the scale expected for the planet. However, the data are also statistically consistent with no variability and are not matched to the phase of the planet.
Fymat, A. L.
1976-01-01
The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.
A study of the 3D radiative transfer effect in cloudy atmospheres
Okata, M.; Teruyuki, N.; Suzuki, K.
2015-12-01
Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.
Cubillos, Patricio; Harrington, Joseph; Blecic, Jasmina; Stemm, Madison M.; Lust, Nate B.; Foster, Andrew S.; Rojo, Patricio M.; Loredo, Thomas J.
2014-11-01
Multi-wavelength secondary-eclipse and transit depths probe the thermo-chemical properties of exoplanets. In recent years, several research groups have developed retrieval codes to analyze the existing data and study the prospects of future facilities. However, the scientific community has limited access to these packages. Here we premiere the open-source Bayesian Atmospheric Radiative Transfer (BART) code. We discuss the key aspects of the radiative-transfer algorithm and the statistical package. The radiation code includes line databases for all HITRAN molecules, high-temperature H2O, TiO, and VO, and includes a preprocessor for adding additional line databases without recompiling the radiation code. Collision-induced absorption lines are available for H2-H2 and H2-He. The parameterized thermal and molecular abundance profiles can be modified arbitrarily without recompilation. The generated spectra are integrated over arbitrary bandpasses for comparison to data. BART's statistical package, Multi-core Markov-chain Monte Carlo (MC3), is a general-purpose MCMC module. MC3 implements the Differental-evolution Markov-chain Monte Carlo algorithm (ter Braak 2006, 2009). MC3 converges 20-400 times faster than the usual Metropolis-Hastings MCMC algorithm, and in addition uses the Message Passing Interface (MPI) to parallelize the MCMC chains. We apply the BART retrieval code to the HD 209458b data set to estimate the planet's temperature profile and molecular abundances. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
Energy Technology Data Exchange (ETDEWEB)
Scheirer, R.
2001-07-01
A most profound knowledge about the radiative characteristics of clouds is required for the development of realistic atmospheric circulation models and cloud remote sensing algorithms. At present, cloud fields are treated extremely simplified in both application areas. Cloud radiative flux parameterizations in atmospheric circulation models as well as the correlation between radiance and cloud properties as required for remote sensing algorithm are usually based on the assumption of plane-parallel homogeneous (PPHOM) clouds. Compared to realistically 3D cloud fields, this simplification leads to large systematic errors. In order to quantify these errors a Monte Carlo radiative transfer model has been developed and applied to 3D cloud fields. The latter origin from the non-hydrostatic 3D atmospheric model GESIMA. Absorption and scattering properties of the cloud particles have been calculated by means of Mie-theory for spherical water droplets and a ray-tracing code for non-spherical ice, rain, and snow particles. Line by line calculations have been used to obtain the absorption properties of the relevant atmospheric gases. (orig.) [German] Die Erstellung realistischer Zirkulationsmodelle der Atmosphaere erfordert unter Anderem eine moeglichst genaue Kenntnis der Strahlungseigenschaften von Wolken. Auch fuer Ableitung und Korrektur von Fernerkundungsalgorithmen sind die Einfluesse der Wolken auf die zu messenden Strahldichten von grosser Bedeutung. In den beiden genannten Anwendungen werden Wolkenfelder zur Zeit nur in stark vereinfachter Weise beruecksichtigt. Parameterisierungen der Strahlungsfluesse bei bewoelkter Atmosphaere in atmosphaerischen Zirkulationsmodellen, sowie die Ableitung der Zusammenhaenge zwischen Strahldichten und optischen Wolkeneigenschaften basieren auf der Annahme von planparallelen und horizontal homogenen Wolken (PPHOM). Diese Approximation kann gegenueber der dreidimensionalen Strahlungstransportberechnung (3D) zu erheblichen Fehlern
International Nuclear Information System (INIS)
A plane parallel vector radiative transfer model is presented to simulate the effect of rotational Raman scattering on radiance and polarization properties of sunlight reflected by the Earth atmosphere in the ultraviolet and visible part of the solar spectrum. The model employs the radiative transfer perturbation theory, which treats inelastic rotational Raman scattering as a perturbation to elastic Rayleigh scattering. The approach provides a perturbation series expansion for a simulated radiation quantity, where each term describes the effect of one additional order of Raman scattering. The model is worked out in detail to first order. Here, the adjoint formulation of radiative transfer reduces significantly the numerical effort of computational applications. Numerical simulations are presented for the ultraviolet part of the solar spectrum and the effect of Raman scattering on the Stokes parameters I,Q and U of the reflected sunlight is studied. Furthermore, the accuracy of both the single scattering approximation and the scalar radiative transfer approach is considered for the simulation of Ring structures. The use of these approximation techniques is investigated for the simulation of Ring structures in polarization sensitive GOME measurements
Py4CAtS - Python Tools for Line-by-Line Modelling of Infrared Atmospheric Radiative Transfer
Schreier, Franz; Gimeno Garcia, Sebastian
2013-01-01
Py4CAtS — Python scripts for Computational ATmospheric Spectroscopy is a Python re-implementation of the Fortran infrared radiative transfer code GARLIC, where compute-intensive code sections utilize the Numeric/Scientific Python modules for highly optimized array-processing. The individual steps of an infrared or microwave radiative transfer computation are implemented in separate scripts to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross ...
A Random Walk on WASP-12b with the Bayesian Atmospheric Radiative Transfer (BART) Code
Harrington, Joseph; Cubillos, Patricio; Blecic, Jasmina; Challener, Ryan; Rojo, Patricio; Lust, Nathaniel B.; Bowman, Oliver; Blumenthal, Sarah D.; Foster, Andrew S. D.; Foster, Austin James; Stemm, Madison; Bruce, Dylan
2016-01-01
We present the Bayesian Atmospheric Radiative Transfer (BART) code for atmospheric property retrievals from transit and eclipse spectra, and apply it to WASP-12b, a hot (~3000 K) exoplanet with a high eclipse signal-to-noise ratio. WASP-12b has been controversial. We (Madhusudhan et al. 2011, Nature) claimed it was the first planet with a high C/O abundance ratio. Line et al. (2014, ApJ) suggested a high CO2 abundance to explain the data. Stevenson et al. (2014, ApJ, atmospheric model by Madhusudhan) add additional data and reaffirm the original result, stating that C2H2 and HCN, not included in the Line et al. models, explain the data. We explore several modeling configurations and include Hubble, Spitzer, and ground-based eclipse data.BART consists of a differential-evolution Markov-Chain Monte Carlo sampler that drives a line-by-line radiative transfer code through the phase space of thermal- and abundance-profile parameters. BART is written in Python and C. Python modules generate atmospheric profiles from sets of MCMC parameters and integrate the resulting spectra over observational bandpasses, allowing high flexibility in modeling the planet without interacting with the fast, C portions that calculate the spectra. BART's shared memory and optimized opacity calculation allow it to run on a laptop, enabling classroom use. Runs can scale constant abundance profiles, profiles of thermochemical equilibrium abundances (TEA) calculated by the included TEA code, or arbitrary curves. Several thermal profile parameterizations are available. BART is an open-source, reproducible-research code. Users must release any code or data modifications if they publish results from it, and we encourage the community to use it and to participate in its development via http://github.com/ExOSPORTS/BART.This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. J. Blecic holds a NASA Earth and Space Science
WASP-12b According to the Bayesian Atmospheric Radiative Transfer (BART) Code
Harrington, Joseph; Cubillos, Patricio E.; Blecic, Jasmina; Challener, Ryan C.; Rojo, Patricio M.; Lust, Nate B.; Bowman, M. Oliver; Blumenthal, Sarah D.; Foster, Andrew SD; Foster, A. J.
2015-11-01
We present the Bayesian Atmospheric Radiative Transfer (BART) code for atmospheric property retrievals from transit and eclipse spectra, and apply it to WASP-12b, a hot (~3000 K) exoplanet with a high eclipse signal-to-noise ratio. WASP-12b has been controversial. We (Madhusudhan et al. 2011, Nature) claimed it was the first planet with a high C/O abundance ratio. Line et al. (2014, ApJ) suggested a high CO2 abundance to explain the data. Stevenson et al. (2014, ApJ, atmospheric model by Madhusudhan) add additional data and reaffirm the original result, stating that C2H2 and HCN, not included in the Line et al. models, explain the data. We explore several modeling configurations and include Hubble, Spitzer, and ground-based eclipse data.BART consists of a differential-evolution Markov-Chain Monte Carlo sampler that drives a line-by-line radiative transfer code through the phase space of thermal- and abundance-profile parameters. BART is written in Python and C. Python modules generate atmospheric profiles from sets of MCMC parameters and integrate the resulting spectra over observational bandpasses, allowing high flexibility in modeling the planet without interacting with the fast, C portions that calculate the spectra. BART's shared memory and optimized opacity calculation allow it to run on a laptop, enabling classroom use. Runs can scale constant abundance profiles, profiles of thermochemical equilibrium abundances (TEA) calculated by the included TEA code, or arbitrary curves. Several thermal profile parameterizations are available. BART is an open-source, reproducible-research code. Users must release any code or data modifications if they publish results from it, and we encourage the community to use it and to participate in its development via http://github.com/ExOSPORTS/BART.This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. J. Blecic holds a NASA Earth and Space Science
Partial redistribution in 3D non-LTE radiative transfer in solar atmosphere models
Sukhorukov, Andrii V
2016-01-01
Resonance spectral lines such as H I Ly {\\alpha}, Mg II h&k, and Ca II H&K that form in the solar chromosphere are influenced by the effects of 3D radiative transfer as well as partial redistribution (PRD). So far no one has modeled these lines including both effects simultaneously owing to the high computing demands of existing algorithms. Such modeling is however indispensable for accurate diagnostics of the chromosphere. We present a computationally tractable method to treat PRD scattering in 3D model atmospheres using a 3D non-LTE radiative transfer code. To make the method memory-friendly, we use the hybrid approximation of Leenaarts et al. (2012) for the redistribution integral. To make it fast, we use linear interpolation on equidistant frequency grids. We verify our algorithm against computations with the RH code and analyze it for stability, convergence, and usefulness of acceleration using model atoms of Mg II with the h&k lines and H I with the Ly {\\alpha} line treated in PRD. A typical...
Multiple-scaling methods for Monte Carlo simulations of radiative transfer in cloudy atmosphere
International Nuclear Information System (INIS)
Two multiple-scaling methods for Monte Carlo simulations were derived from integral radiative transfer equation for calculating radiance in cloudy atmosphere accurately and rapidly. The first one is to truncate sharp forward peaks of phase functions for each order of scattering adaptively. The truncated functions for forward peaks are approximated as quadratic functions; only one prescribed parameter is used to set maximum truncation fraction for various phase functions. The second one is to increase extinction coefficients in optically thin regions for each order scattering adaptively, which could enhance the collision chance adaptively in the regions where samples are rare. Several one-dimensional and three-dimensional cloud fields were selected to validate the methods. The numerical results demonstrate that the bias errors were below 0.2% for almost all directions except for glory direction (less than 0.4%) and the higher numerical efficiency could be achieved when quadratic functions were used. The second method could decrease radiance noise to 0.60% for cumulus and accelerate convergence in optically thin regions. In general, the main advantage of the proposed methods is that we could modify the atmospheric optical quantities adaptively for each order of scattering and sample important contribution according to the specific atmospheric conditions.
Continuous Stochastic Radiative Transfer with Rayleigh Scattering in Semi-Infinite Atmospheric Media
International Nuclear Information System (INIS)
The radiative transfer problem in a semi-infinite stochastic atmospheric medium with Rayleigh scattering is studied. The extinction function (cross section) of the medium is assumed to be a continuous random function of position, with fluctuations about the mean taken as Gaussian distributed. The joint probability distribution function of these Gaussian random variables is used to calculate the ensemble-averaged quantities, such as radiant energy and net flux, for an arbitrary correlation function. The deterministic solution of the considered problem is obtained at first. Then the solution is averaged using Gaussian joint probability distribution function. A modified Gaussian probability distribution function is also used to average the solution. Numerical results are given for the sake of comparison.
Yan, Banghua
2001-12-01
Ocean color is the radiance emanating from the ocean due to scattering by chlorophyll pigments and particles of organic and inorganic origin. Thus, it contains information about chlorophyll concentrations which can be used to estimate primary productivity. Observations of ocean color from space can be used to monitor the variability in marine primary productivity, thereby permitting a quantum leap in our understanding of oceanographic processes from regional to global scales. Satellite remote sensing of ocean color requires accurate removal of the contribution by atmospheric molecules and aerosols to the radiance measured at the top of the atmosphere (TOA). This removal process is called ``atmospheric correction''. Since about 90% of the radiance received by the satellite sensor comes from the atmosphere, accurate removal of this portion is very important. A prerequisite for accurate atmospheric correction is accurate and reliable simulation of the transport of radiation in the atmosphere-ocean system. This thesis focuses on this radiative transfer process, and investigates the impact of particles in the atmosphere (aerosols) and ocean (oceanic chlorophylls and air bubbles) on our ability to remove the atmospheric contribution from the received signal. To explore these issues, a comprehensive radiative transfer model for the coupled atmosphere-ocean system is used to simulate the radiative transfer process and provide a physically sound link between surface-based measurements of oceanic and atmospheric parameters and radiances observed by satellite-deployed ocean color sensors. This model has been upgraded to provide accurate radiances in arbitrary directions as required to analyze satellite data. The model is then applied to quantify the uncertainties associated with several commonly made assumptions invoked in atmospheric correction algorithms. Since atmospheric aerosols consist of a mixture of absorbing and non- absorbing components that may or may not be
International Nuclear Information System (INIS)
A new Monte Carlo atmospheric radiative transfer model is presented which is designed to support the interpretation of UV/vis/near-IR spectroscopic measurements of scattered Sun light in the atmosphere. The integro differential equation describing the underlying transport process and its formal solution are discussed. A stochastic approach to solve the differential equation, the Monte Carlo method, is deduced and its application to the formal solution is demonstrated. It is shown how model photon trajectories of the resulting ray tracing algorithm are used to estimate functionals of the radiation field such as radiances, actinic fluxes and light path integrals. In addition, Jacobians of the former quantities with respect to optical parameters of the atmosphere are analyzed. Model output quantities are validated against measurements, by self-consistency tests and through inter comparisons with other radiative transfer models.
Carrare, V.; Conel, J. E.
1993-01-01
An evaluation of atmospheric correction of AVIRIS data using radiative transfer codes LOWTRAN7 and MODTRAN is presented. The algorithm employed is based on a simple model of radiance L at each wavelength at the sensor that can be written approximately LAV=Lp+Tp, where subscript AV referes to AVIRIS, Lp is the path radiance and Tp is the diffuse + direct transmitted radiance of the atmosphere at AVIRIS.
International Nuclear Information System (INIS)
Satellite-observed radiance is a nonlinear functional of surface properties and atmospheric temperature and absorbing gas profiles as described by the radiative transfer equation (RTE). In the era of hyperspectral sounders with thousands of high-resolution channels, the computation of the radiative transfer model becomes more time-consuming. The radiative transfer model performance in operational numerical weather prediction systems still limits the number of channels we can use in hyperspectral sounders to only a few hundreds. To take the full advantage of such high-resolution infrared observations, a computationally efficient radiative transfer model is needed to facilitate satellite data assimilation. In recent years the programmable commodity graphics processing unit (GPU) has evolved into a highly parallel, multi-threaded, many-core processor with tremendous computational speed and very high memory bandwidth. The radiative transfer model is very suitable for the GPU implementation to take advantage of the hardware's efficiency and parallelism where radiances of many channels can be calculated in parallel in GPUs. In this paper, we develop a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI) launched in 2006 onboard the first European meteorological polar-orbiting satellites, METOP-A. Each IASI spectrum has 8461 spectral channels. The IASI radiative transfer model consists of three modules. The first module for computing the regression predictors takes less than 0.004% of CPU time, while the second module for transmittance computation and the third module for radiance computation take approximately 92.5% and 7.5%, respectively. Our GPU-based IASI radiative transfer model is developed to run on a low-cost personal supercomputer with four GPUs with total 960 compute cores, delivering near 4 TFlops theoretical peak performance. By massively parallelizing the second and third modules, we reached 364x
Energy Technology Data Exchange (ETDEWEB)
Mendrock, J.
2006-07-01
Modeling of radiative transfer (RT) is one of the essentials of atmospheric remote sensing. It has been common to use separate models for the simulation of shortwave radiation dominated by scattering of sunlight and longwave radiation characterized by emission from trace gases. These days also shortwave instruments are operated in limb mode, which demand models taking the sphericity of the Earth and atmosphere into account. On the other hand, infrared and microwave sounders are increasingly being used for the observation of ice clouds, that necessitate the modeling of scattering by cloud particles. Both trends require RT models, that are capable of taking into account scattering as well as the sphericity of the atmosphere. This suggests a unified handling of short- and longwave radiation, which furthermore allows for a consistent evaluation of multispectral data. Focusing on these aspects, the RT-model SARTre ([Approximate] Spherical Atmospheric Radiative Transfer model) has been developed. To our knowledge, SARTre is the first model, that is capable of limb modeling in the ultraviolet, visible, near to far infrared, and microwave spectral region. Here, algorithm baseline, implementation, verification and validation of SARTre are presented. SARTre has been used to study effects of cirrus clouds on infrared limb emission spectra. An exemplary retrieval of cirrus parameters from MIPAS measurements is demonstrated, and the plausibility of the results is discussed. (orig.)
Hu, Shuai; Gao, Tai-chang; Li, Hao; Liu, Lei; Liu, Xi-chuan; Zhang, Ting; Cheng, Tian-ji; Li, Wan-tong; Dai, Zhong-hua; Su, Xiaojian
2016-03-01
Refraction is an important factor influencing radiative transfer since it can modify the propagation trajectory and polarization states of lights; therefore, it is necessary to quantitively evaluate the effect of atmospheric refraction on radiative transfer process. To this end, a new atmospheric radiative transfer model including refraction process is proposed. The model accuracy is validated against benchmark results, literature results, and well-tested radiative transfer models such as discrete coordinate method and RT3/PolRadtran. The impact of atmospheric refraction on both polarized radiance and fluxes is discussed for pure Rayleigh scattering atmosphere, atmosphere with aerosol, and cloud. The results show that atmospheric refraction has a significant influence on both the radiance and polarization states of diffuse light, where the relative change of the radiance of reflected light and transmitted light due to refraction can achieve 6.3% and 7.4% for Rayleigh scattering atmosphere, 7.2% and 7.8% for atmosphere with aerosol, and 6.2% and 6.8% for cloudy atmosphere, respectively. The relative change of the degree of polarization ranges from near zero in the horizon to 9.5% near neutral points. The angular distribution pattern of the relative change of the radiance for atmosphere with aerosol and cloud is very similar to that for pure Rayleigh scattering case, where its magnitude decreases gradually with the increasing of zenith angle for reflected light; but for transmitted light, the variation characteristics is opposite. The impact of refraction is gradually enhanced with the increasing of solar zenith angles and the optical depth of aerosol and cloud. As the wavelength of incident light increases, the impact declines rapidly for Rayleigh scattering medium. The relative change of the fluxes due to refraction is most notable for Middle Latitude Winter profile (about 8.2043% and 7.3225% for the transmitted and reflected light, respectively, at 0.35 µm). With
Malik, Matej; Mendonça, João M; Grimm, Simon L; Lavie, Baptiste; Kitzmann, Daniel; Tsai, Shang-Min; Burrows, Adam; Kreidberg, Laura; Bedell, Megan; Bean, Jacob L; Stevenson, Kevin B; Heng, Kevin
2016-01-01
We present the open-source radiative transfer code named HELIOS, which is constructed for studying exoplanetary atmospheres. In its initial version, the model atmospheres of HELIOS are one-dimensional and plane-parallel, and the equation of radiative transfer is solved in the two-stream approximation with non-isotropic scattering. The opacities are computed with the opacity calculator HELIOS-K and converted to k-distribution tables by weighing the molecular abundances with analytical chemistry formulae. We validate HELIOS by comparing a model of GJ 1214b to that computed using COOLTLUSTY and from the work of Miller-Ricci & Fortney, and by performing several tests, where we find: model atmospheres with single-temperature layers struggle to converge to radiative equilibrium; k-distribution tables constructed with 1-10% in the synthetic spectra; and a diffusivity factor of 2 approximates well the exact radiative transfer solution in the limit of pure absorption. We construct "null-hypothesis" models (chemic...
Net-Exchange parameterization of infrared radiative transfers in Venus' atmosphere
Eymet, Vincent; Fournier, Richard; Dufresne, Jean-Louis; Lebonnois, Sébastien; Hourdin, Frédéric; Bullock, Mark A.
2009-01-01
Thermal radiation within Venus atmosphere is analyzed in close details. Prominent features are identified, which are then used to design a parameterization (a highly simplified and yet accurate enough model) to be used in General Circulation Models. The analysis is based on a net exchange formulation, using a set of gaseous and cloud optical data chosen among available referenced data. The accuracy of the proposed parameterization methodology is controlled against Monte Carlo simulations, ass...
Goeschl, Timo; Heyen, Daniel; Moreno-Cruz, Juan
2013-01-01
Solar radiation management (SRM) technologies are considered one of the likeliest forms of geoengineering. If developed, a future generation could deploy them to limit the damages caused by the atmospheric carbon stock inherited from the current generation, despite their negative side effects. Should the current generation develop these geoengi-neering capabilities for a future generation? And how would a decision to develop SRM impact on the current generation's abatement efforts? Natural sc...
Directory of Open Access Journals (Sweden)
F. Spada
2006-02-01
Full Text Available A new multiple-scattering Monte Carlo 3-D radiative transfer model named McSCIA (Monte Carlo for SCIAmachy is presented. The backward technique is used to efficiently simulate narrow field of view instruments. The McSCIA algorithm has been formulated as a function of the Earth's radius, and can thus perform simulations for both plane-parallel and spherical atmospheres. The latter geometry is essential for the interpretation of limb satellite measurements, as performed by SCIAMACHY on board of ESA's Envisat. The model can simulate UV-vis-NIR radiation.
First the ray-tracing algorithm is presented in detail, and then successfully validated against literature references, both in plane-parallel and in spherical geometry. A simple 1-D model is used to explain two different ways of treating absorption. One method uses the single scattering albedo while the other uses the equivalence theorem. The equivalence theorem is based on a separation of absorption and scattering. It is shown that both methods give, in a statistical way, identical results for a wide variety of scenarios. Both absorption methods are included in McSCIA, and it is shown that also for a 3-D case both formulations give identical results. McSCIA limb profiles for atmospheres with and without absorption compare well with the one of the state of the art Monte Carlo radiative transfer model MCC++.
A simplification of the photon statistics may lead to very fast calculations of absorption features in the atmosphere. However, these simplifications potentially introduce biases in the results. McSCIA does not use simplifications and is therefore a relatively slow implementation of the equivalence theorem. For the first time, however, the validity of the equivalence theorem is demonstrated in a spherical 3-D radiative transfer model.
Thermal radiation heat transfer
Howell, John R; Siegel, Robert
2016-01-01
Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE.
Wittrock, F.; Oetjen, H.; Richter, A.; Fietkau, S.; Medeke, T.; Rozanov, A.; Burrows, J. P.
2004-06-01
A new approach to derive tropospheric concentrations of some atmospheric trace gases from ground-based UV/vis measurements is described. The instrument, referred to as the MAX-DOAS, is based on the well-known UV/vis instruments, which use the sunlight scattered in the zenith sky as the light source and the method of Differential Optical Absorption Spectroscopy (DOAS) to derive column amounts of absorbers like ozone and nitrogen dioxide. Substantial enhancements have been applied to this standard setup to use different lines of sight near to the horizon as additional light sources (MAX - multi axis). Results from measurements at Ny-Ålesund (79° N, 12° E) are presented and interpreted with the full-spherical radiative transfer model SCIATRAN. In particular, measurements of the oxygen dimer O4 which has a known column and vertical distribution in the atmosphere are used to evaluate the sensitivity of the retrieval to parameters such as multiple scattering, solar azimuth, surface albedo and refraction in the atmosphere and also to validate the radiative transfer model. As a first application, measurements of NO2 emissions from a ship lying in Ny-Ålesund harbour are presented. The results of this study demonstrate the feasibility of long term UV/vis multi axis measurement that can be used to derive not only column amounts of different trace gases but also some information on the vertical location of these absorbers.
Garasev, M. A.; Derishev, E. V.; Kocharovsky, Vl. V.; Kocharovsky, V. V.
2016-06-01
We find the forms of the transfer equations for polarized cyclotron radiation in the atmospheres of compact stars, which are simple enough to allow practical implementation and still preserve all important physical effects. We take into account a frequency redistribution of radiation within the cyclotron line as well as the relativistic and quantum-electrodynamic effects. Our analysis is valid for the magnetic fields up to 1013 G and for temperatures well below 500 keV. We present and compare two forms of the radiation transfer equations. The first form, for the intensities of ordinary and extraordinary modes, is applicable for the compact stars with a moderate magnetic field strength up to 1011 G for typical neutron star and up to 109 G for magnetic white dwarfs. The second form, for the Stokes parameters, is more complex, but applicable even if a linear mode coupling takes place somewhere in the scattering-dominated atmosphere. Analysing dispersion properties of a magnetized plasma in the latter case, we describe a range of parameters where the linear mode coupling is possible and essential.
International Nuclear Information System (INIS)
Inversion algorithms and program packages recently created for processing data of the ground-based radiometer spectral measurements along with lidar multi-wavelength measurements are extremely multiparametric. Therefore, it is very important to develop an efficient program module for computations of functions modeling measurements by a sun-radiometer in the inversion procedure. In this paper, we present the analytical version of such efficient algorithm and analytical code on C++ designed for performance of algorithm testing. The code computes multiple scattering of the Sun light in the atmosphere. Data output are the radiance and linear polarization parameters angular patterns at a preselected altitude. The atmosphere model with mixed aerosol and molecular scattering is given approximately as the homogeneous atmosphere model. The algorithm testing has been carried out by comparison of computed data with accurate data obtained on the base of the discrete-ordinate code. Errors of estimates of downward radiance above the Earth surface turned out to be within 10%–15%.. The analytical solution construction concept has taken from the scalar task of solar radiation transfer in the atmosphere where an approximate analytical solution was developed. Taking into account the fact that aerosol phase functions are highly forward elongated, the multi-component method of solving vector transfer equations and small-angle approximation have been used. Generalization of the scalar approach to the polarization parameters is described. - Highlights: • We create an analytical algorithm and code to solve direct atmospheric task. • Data-out include a Stokes vector of scattered Sun light in a homogeneous atmosphere. • Solution for radiance involves several rather accurate approximations of scalar theory. • Errors of radiance estimates at the atmosphere bottom are within 10–15%
International Nuclear Information System (INIS)
A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code — GARLIC — is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus. - Highlights: • High resolution infrared-microwave radiative transfer model. • Discussion of algorithmic and computational aspects. • Jacobians by automatic/algorithmic differentiation. • Performance evaluation by intercomparisons, verification, validation
Schreier, Franz; Gimeno García, Sebastián; Hedelt, Pascal; Hess, Michael; Mendrok, Jana; Vasquez, Mayte; Xu, Jian
2014-04-01
A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code - GARLIC - is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus.
Directory of Open Access Journals (Sweden)
F. Spada
2006-01-01
Full Text Available A new multiple-scattering Monte Carlo 3-D radiative transfer model named McSCIA (Monte Carlo for SCIAmachy is presented. The backward technique is used to efficiently simulate narrow field of view instruments. The McSCIA algorithm has been formulated as a function of the Earth's radius, and can thus perform simulations for both plane-parallel and spherical atmospheres. The latter geometry is essential for the interpretation of limb satellite measurements, as performed by SCIAMACHY on board of ESA's Envisat. The model can simulate UV-vis-NIR radiation. First the ray-tracing algorithm is presented in detail, and then successfully validated against literature references, both in plane-parallel and in spherical geometry. A simple 1-D model is used to explain two different ways of treating absorption. One method uses the single scattering albedo while the other uses the equivalence theorem. The equivalence theorem is based on a separation of absorption and scattering. It is shown that both methods give, in a statistical way, identical results for a wide variety of scenarios. Both absorption methods are included in McSCIA, and it is shown that also for a 3-D case both formulations give identical results. McSCIA limb profiles for atmospheres with and without absorption compare well with the one of the state of the art Monte Carlo radiative transfer model MCC++. A simplification of the photon statistics may lead to very fast calculations of absorption features in the atmosphere. However, these simplifications potentially introduce biases in the results. McSCIA does not use simplifications and is therefore a relatively slow implementation of the equivalence theorem.
International Nuclear Information System (INIS)
This paper presents the practical theory that was used to implement the Zeeman effect using Stokes formalism in the Atmospheric Radiative Transfer Simulator (ARTS). ARTS now treats the Zeeman effect in a general manner for several gas species for all polarizations and takes into account variations in both magnetic and atmospheric fields along a full 3D geometry. We present how Zeeman splitting affects polarization in radiative transfer simulations and find that the effect may be large in Earth settings for polarized receivers in limb observing geometry. We find that not taking a spatially varying magnetic field into account can result in absolute errors in the measurement vector of at least 10 K in Earth magnetic field settings. The paper also presents qualitative tests for O2 lines against previous models (61.15 GHz line) and satellite data from Odin-SMR (487.25 GHz line), and the overall consistency between previous models, satellite data, and the new ARTS Zeeman module seems encouraging. -- Highlights: • We implement the Zeeman effect with Stokes formalism in ARTS. • We give a practical theory for the implementation. • Examples of how the Zeeman effect change RT are presented. • Qualitative Odin-SMR O2 limb sounding model indicates the Zeeman effect is necessary
General Relativistic Radiative Transfer
Knop, S; Baron, E
2006-01-01
We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron ...
International Nuclear Information System (INIS)
A Lambertian CCD-camera method is convenient to measure concentrating radiation fluxes, where a crucial factor, a calibration factor, always varies with spectra and brings errors. In this paper, a new calibration method is proposed based on spectral normalization calculation and tries to reduce spectral errors in Lambertian CCD-camera measurement. The calibration factor for AM1.5 is standardized over a transmittance range by matching gray values of photos to readings of calorimeter. A spectrum is calculated by SMARTS (simple model of the atmospheric radiative transfer of sunshine) according to the local time, latitude and longitude. A calibration factor is adjusted by calculated spectral offsets accordingly. Therefore an absolute radiation flux distribution is obtained by a gray value captured by the CCD-camera without calorimeter. Calculated results indicate that spectral irradiance between 700 and 800 nm dominates gray values on the target for solar radiation flux measurement. The offsets are increasing continuously from AM1 to AM5, which are validated by experimental results. The difference between measured and calculated calibration factors is 11%, which fits to the results of error estimate. These indicate that the improved method was feasible and reliable to measure concentrating radiation fluxes easily. - Highlights: • An improved Lambertian CCD-camera radiation measurement method is proposed. • The spectral errors are reduced by the calculated offsets based on SMARTS (simple model of the atmospheric radiative transfer of sunshine). • The absolute radiation flux distributions can be obtained without calorimeter. • The total estimated error for the simulator is ±13.17%. • The results of validation experiment demonstrate an error of 11%
A radiative transfer model to treat infrared molecular excitation in cometary atmospheres
Debout, V.; Bockelée-Morvan, D.; Zakharov, V.
2016-02-01
The exospheres of small Solar System bodies are now observed with high spatial resolution from space missions. Interpreting infrared spectra of cometary gases obtained with the VIRTIS experiment onboard the Rosetta cometary mission requires detailed modeling of infrared fluorescence emission in optically thick conditions. Efficient computing methods are required since numerous ro-vibrational lines excited by the Sun need to be considered. We propose a new model working in a 3-D environment to compute numerically the local incoming radiation. It uses a new algorithm using pre-defined directions of ray propagation and ray grids to reduce the CPU cost in time with respect to Monte Carlo methods and to treat correctly the sunlight direction. The model is applied to the ν3 bands of CO2 and H2O at 4.3 μ m and 2.7 μ m respectively, and to the CO ∨ (1 → 0) band at 4.7 μ m. The results are compared to the ones obtained by a 1-D algorithm which uses the Escape Probability (EP) method, and by a 3-D "Coupled Escape Probability" (CEP) model, for different levels of optical thickness. Our results suggest that the total band flux may vary strongly with azimuth for optically thick cases whereas the azimuth average total band flux computed is close to the one obtained with EP. Our model globally predicts less intensity reduction from opacity than the CEP model of Gersch and A'Hearn (Gersch, A.M., A'Hearn, M.F. [2014]. Astrophys. J. 787, 36-56). An application of the model to the observation of CO2, CO and H2O bands in 67/P atmosphere with VIRTIS is presented to predict the evolution of band optical thickness along the mission.
Garasev, M; Kocharovsky, Vl; Kocharovsky, V
2015-01-01
We derive the transfer equations for polarized radiation in the atmospheres of compact stars, which take into account a frequency redistribution of radiation within and near a cyclotron line core. The equations are valid in the magnetic fields up to $10^{13}$ G and can be used for numerical modeling of a cyclotron line formation in the warm magnetospheric plasmas of compact stars. We present two forms of such equations. The first form, for the intensities of ordinary and extraordinary modes, is applicable for the compact stars with a moderate magnetic field strength up to $10^{10}-10^{11}$ G. The second form, for the Stokes parameters, is more complex, but applicable even if a linear mode coupling takes place somewhere in the scattering-dominated atmosphere. Analysing dispersion properties of a magnetized plasma, we show that the linear mode coupling is possible for a wide range of parameters and originates from a partial cancellation of the plasma and vacuum contributions to the refraction indices.
Essentials of radiation heat transfer
Balaji
2014-01-01
Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...
LeCroy, Stuart R.; Whitlock, Charles H.; Suttles, John T.
1997-01-01
A finite difference radiative transfer program was developed to handle most anisotropic scattering and reflectance problems encountered in the Earth's atmospheric system. The model has been used to reproduce the radiance received by both satellite and ground based radiation measuring instruments. It accurately replicates the radiance measured by both narrow and wide field-of-view instruments with either narrow or broadband wavelength ranges located on the surface and at satellite altitudes. The output of the finite difference code is compared to the measurements by surface pyranometers and a spectroradiometer aboard a high flying aircraft. The program output is also compared to ERBE measurements aboard the ERBS and NOAA-9 satellites as well as the visible bands aboard the GOES-6 and GOES-7 satellites and AVHRR bands 1 and 2 of the NOAA-9 and NOAA-1 1 satellites. The model is within 0.2 % of the radiance received by pyranometers, within 0.6 % of the ERBE radiances, and within 3 % of the radiances measured by the visible bands of the GOES and NOAA AVHRR radiometers.
Light scattering reviews 8 radiative transfer and light scattering
Kokhanovsky, Alexander A
2013-01-01
Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.
RADIATION HYDRODYNAMICS OF HOT JUPITER ATMOSPHERES
International Nuclear Information System (INIS)
Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, formally in the regime of radiation hydrodynamics. To lowest order in v/c, relativistic Doppler shifts distort line profiles along optical paths with finite wind velocity gradients. This leads to flow-dependent deviations in the effective emission and absorption properties of the atmospheric medium. Evaluating the overall impact of these distortions on the radiative structure of a dynamic atmosphere is non-trivial. We present transmissivity and systematic equivalent width excess calculations which suggest possibly important consequences for radiation transport in hot Jupiter atmospheres. If winds are fast and bulk Doppler shifts are indeed important for the global radiative balance, accurate modeling and reliable data interpretation for hot Jupiter atmospheres may prove challenging: it would involve anisotropic and dynamic radiative transfer in a coupled radiation-hydrodynamical flow. On the bright side, it would also imply that the emergent properties of hot Jupiter atmospheres are more direct tracers of their atmospheric flows than is the case for solar system planets. Radiation hydrodynamics may also influence radiative transfer in other classes of hot exoplanetary atmospheres with fast winds.
Characterizing Exoplanet Atmospheres: From Light-curve Observations to Radiative-transfer Modeling
Cubillos, Patricio E
2016-01-01
Multi-wavelength transit and secondary-eclipse light-curve observations are some of the most powerful techniques to probe the thermo-chemical properties of exoplanets. Although the large planet-to-star brightness contrast and few available spectral bands produce data with low signal-to-noise ratios, a Bayesian approach can robustly reveal what constraints we can set, without over-interpreting the data. Here I performed an end-to-end analysis of transiting exoplanet data. I analyzed space-telescope data for three planets to characterize their atmospheres and refine their orbits, investigated correlated noise estimators, and contributed to the development of the respective data-analysis pipelines. Chapters 2 and 3 describe the Photometry for Orbits, Eclipses and Transits (POET) pipeline to model Spitzer Space Telescope light curves, applied to secondary-eclipse observations of the Jupiter-sized planets WASP-8b and TrES-1. Chapter 4 studies commonly used correlated-noise estimators for exoplanet light-curve mode...
Toward a coherent set of radiative transfer tools for the analysis of planetary atmospheres .
Grassi, D.; Ignatiev, N. I.; Zasova, L. V.; Piccioni, G.; Adriani, A.; Moriconi, M. L.; Sindoni, G.; D'Aversa, E.; Snels, M.; Altieri, F.; Migliorini, A.; Stefani, S.; Politi, R.; Dinelli, B. M.; Geminale, A.; Rinaldi, G.
The IAPS experience in the field of analysis of planetary atmospheres from visual and infrared measurements dates back to the early '90 in the frame of the IFSI participation to the Mars96 program. Since then, the forward models as well as retrieval schemes have been constantly updated and have seen a large usage in the analysis of data from Mars Express, Venus Express and Cassini missions. At the eve of a new series of missions (Juno, ExoMars, JUICE), we review the tools currently available to the Italian community, the latest developments and future perspectives. Notably, recent reanalysis of PFS-MEX and VIRTIS-VEX data \\citep{Grassi2014} leaded to a full convergence of complete Bayesian retrieval schemes and approximate forward models, achieving a degree of maturity and flexibility quite close to the state-of-the-art NEMESIS package \\citep{Irwin2007}. As a test case, the retrieval code for the JIRAM observations of hot-spots will be discussed, with extensive validation against simulated observations.
Thermal radiation heat transfer
Howell, John R; Mengüç, M Pinar
2011-01-01
Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...
International Nuclear Information System (INIS)
Inversion of tropospheric profiles from ground-based microwave measurements requires a simple and accurate model for calculating the brightness temperatures as received by the radiometer. In the first part, an analytic solution of the radiative transfer equation is derived for an exponentially decaying absorption coefficient and a linear temperature gradient. Based on the obtained analytic expressions, a discretized radiative transfer scheme is developed in the second part. The new scheme incorporates the generic behavior of the atmosphere with the effect that brightness temperatures can be modeled more accurately and with fewer grid points compared to commonly used radiative transfer schemes. The brightness temperature modeling accuracy was improved by a factor of six. The results suggest that the model could be employed for the retrieval of temperature and humidity profiles.
Atmospheric radiation flight dose rates
Tobiska, W. K.
2015-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.
Modest, Michael F
2013-01-01
The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...
Monte Carlo Radiative Transfer
Whitney, Barbara A
2011-01-01
I outline methods for calculating the solution of Monte Carlo Radiative Transfer (MCRT) in scattering, absorption and emission processes of dust and gas, including polarization. I provide a bibliography of relevant papers on methods with astrophysical applications.
Kitzmann, D; Rauer, H
2013-01-01
Owing to their wavelengths dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. Especially, the potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf the CO2 ice particles show no strong effective scattering greenhouse eff...
Atmospheric Radiation Measurement Program Plan
International Nuclear Information System (INIS)
In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal of the Department is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. DOE research has revealed that cloud radiative feedback is the single most important effect determining the magnitude of possible climate responses to human activity. However, cloud radiative forcing and feedbacks are not understood at the levels needed for reliable climate prediction. The Atmospheric Radiation Measurement (ARM) Program will contribute to the DOE goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. Understanding cloud properties and how to predict them is critical because cloud properties may very well change as climate changes. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. GCM modelers will then be able to better identify the best approaches to improved parameterizations of radiative transfer effects. This is expected to greatly improve the accuracy of long-term, GCM predictions and the efficacy of those predictions at the important regional scale, as the research community and DOE attempt to understand the effects of greenhouse gas emissions on the Earth's climate. 153 refs., 24 figs., 6 tabs
Vasquez, M.; Schreier, F.; Gimeno García, S.; Kitzmann, D.; Patzer, B.; Rauer, H.; Trautmann, T.
2013-09-01
Context. Clouds play an important role in the radiative transfer of planetary atmospheres because of the influence they have on the different molecular signatures through scattering and absorption processes. Furthermore, they are important modulators of the radiative energy budget affecting surface and atmospheric temperatures. Aims: We present a detailed study of the thermal emission of cloud-covered planets orbiting F-, G-, K-, and M-type stars. These Earth-like planets include planets with the same gravity and total irradiation as Earth, but can differ significantly in the upper atmosphere. The impact of single-layered clouds is analyzed to determine what information on the atmosphere may be lost or gained. The planetary spectra are studied at different instrument resolutions and compared to previously calculated low-resolution spectra. Methods: A line-by-line molecular absorption model coupled with a multiple scattering radiative transfer solver was used to calculate the spectra of cloud-covered planets. The atmospheric profiles used in the radiation calculations were obtained with a radiative-convective climate model combined with a parametric cloud description. Results: In the high-resolution flux spectra, clouds changed the intensities and shapes of the bands of CO2, N2O, H2O, CH4, and O3. Some of these bands turned out to be highly reduced by the presence of clouds, which causes difficulties for their detection. The most affected spectral bands resulted for the planet orbiting the F-type star. Clouds could lead to false negative interpretations for the different molecular species investigated. However, at low resolution, clouds were found to be crucial for detecting some of the molecular bands that could not be distinguished in the cloud-free atmospheres. The CO2 bands were found to be less affected by clouds. Radiation sources were visualized with weighting functions at high resolution. Conclusions: Knowledge of the atmospheric temperature profile is
International Nuclear Information System (INIS)
This paper presents a new method to compute three-dimensional heating rates in atmospheric models, in particular numerical weather prediction models and large eddy simulations. The radiative transfer in such models is usually calculated for each vertical column independent of its neighbouring columns. Earlier studies showed that the neglect of horizontal energy transport introduces significant errors at model grid spacings below 1 km. To date, there is no method to calculate 3D heating rates which is fast enough to systematically study the effect of radiation on cloud evolution. Here, we present a new algorithm which provides a fast yet accurate approximation for realistic three-dimensional heating rates. The method extends the well-known one-dimensional two-stream theory to 10 streams in three dimensions. Special emphasis is laid on scalable parallelism and speed. It is found that the new solver significantly reduces the root mean square error for atmospheric heating and surface heating rates when compared to traditionally employed one-dimensional solvers. The TenStream solver reduces the relative root mean square error of heating rates by a factor of five when compared to the independent column approximation. In the case of a strato-cumulus cloud field and the solar zenith angle being 60°, the error was reduced from 178% to 31% and for a deep-convective cumulus cloud from 138% to 28%. The model described here will open the way to answer the question, if and how much three-dimensional radiative transfer effects indeed affect cloud development and precipitation. - Highlights: • We present a fast 3D radiative transfer solver for atmospheric models. • New solver accurately approximates 3D RT effects. • Consistently reduces the error compared to 1D solvers. • Performance is several orders of magnitude better than for Monte Carlo solvers. • Parallelized solver is suitable for use in LES and high resolution NWP models
Gardini, A; Pérez, E; Quesada, J A; Funke, B
2012-01-01
The Radiative Transfer Model (RTM) and the retrieval algorithm, incorporated in the SCIATRAN 2.2 software package developed at the Institute of Remote Sensing/Institute of Enviromental Physics of Bremen University (Germany), allows to simulate, among other things, radiance/irradiance spectra in the 2400-24 000 {\\AA} range. In this work we present applications of RTM to two case studies. In the first case the RTM was used to simulate direct solar irradiance spectra, with different water vapor amounts, for the study of the water vapor content in the atmosphere above Sierra Nevada Observatory. Simulated spectra were compared with those measured with a spectrometer operating in the 8000-10 000 {\\AA} range. In the second case the RTM was used to generate telluric model spectra to subtract the atmospheric contribution and correct high-resolution stellar spectra from atmospheric water vapor and oxygen lines. The results of both studies are discussed.
Radiative equilibrium and escape of Pluto's atmosphere
Erwin, Justin; Koskinen, Tommi T.; Yelle, Roger V.
2015-11-01
Observations of Pluto’s extend atmosphere by the New Horizons spacecraft motivate an update to our modeling effort on Pluto’s atmosphere. New Horizons observations have already improved our constraints on planet radius and surface pressure, which are key to modeling the atmospheric structure. We model the radiative conductive equilibrium in the lower atmosphere combined with the UV driven escape model of the upper atmosphere. The non-LTE radiative transfer model in the lower atmosphere include heating and cooling by CH4, CO, and HCN. The escape model of the upper atmosphere is updated to include diffusion and escape of each molecular component. These results will be used to aid in the analysis and better understanding of the full atmospheric structure.
Transfer of atmospheric caesium to agricultural products
International Nuclear Information System (INIS)
A huge quantity of radioactive rubble was generated by the Great East Japan Earthquake. The Japanese government is considering incineration processing of such rubble in waste incinerators which have suitable equipment, and the government is urged to manage appropriately the radiation exposure of residents living in the vicinity of incinerators by inhalation and ingestion of food. In this study, we developed a model describing plant uptake of atmospheric caesium by direct deposition and root-absorption via soil. Analysis using our model has suggested that wet deposition contributes to transfer to a plant most, when caesium exists in the atmosphere. (author)
International symposium on radiative heat transfer: Book of abstracts
International Nuclear Information System (INIS)
The international symposium on radiative heat transfer was held on 14-18 August 1995 Turkey. The specialists discussed radiation transfer in materials processing and manufacturing, solution of radiative heat transfer equation, transient radiation problem and radiation-turbulence interactions, raditive properties of gases, atmospheric and stellar radiative transfer , radiative transfer and its applications, optical and radiative properties of soot particles, inverse radiation problems, partticles, fibres,thermophoresis and waves and modelling of comprehensive systems at the meeting. Almost 79 papers were presented in the meeting
International Nuclear Information System (INIS)
Radiance measurements of solar radiation that is backscattered by the Earth's atmosphere or surface contain information about the atmospheric composition and the state of the Earth's surface. Retrieving such information from satellite-based observations in nadir geometry employs a radiative transfer forward model. The forward model simulates the observed quantity, aiming to reproduce the observation. LINTRAN v2.0 is a linearised vector radiative transfer forward model, employing forward-adjoint theory, that is capable of modelling cloud contaminated satellite observations and their derivatives with respect to the state of the atmosphere and the Earth's surface in a numerically efficient manner. A significant gain in efficiency with respect to its predecessor (LINTRAN v1.0) is achieved through a mathematical framework that combines an approximate iterative solving method using the forward-adjoint perturbation theory with separation of the first N orders of scattering from the diffuse intensity vector field. Contributions to the observable up to order of scattering N are recursively solved in an analytical manner. Contributions from higher orders of scattering are subsequently solved in a numerical manner, assuming that the intensity field varies linearly with the vertical coordinate within an optically homogeneous model layer. This method is implemented in LINTRAN v2.0, choosing N=2, within the general framework of forward-adjoint perturbation theory. This new approach allows us to decrease the number of model layers and the degree of angular quadrature within the numerical solver by a factor of 10 and 1.4 respectively, compared to the previous model version, assuming a homogeneous atmosphere loaded with scattering Mie particles (size parameter χ≈35). In this homogeneous atmosphere, the reduced discretisation sampling in turn reduces the numerical effort associated with the numerical matrix solver by a factor of 42 relative to the previous model
Modeling of atmospheric pollutant transfers
International Nuclear Information System (INIS)
Modeling is today a common tool for the evaluation of the environmental impact of atmospheric pollution events, for the design of air monitoring networks or for the calculation of pollutant concentrations in the ambient air. It is even necessary for the a priori evaluation of the consequences of a pollution plume. A large choice of atmospheric transfer codes exist but no ideal tool is available which allows to model all kinds of situations. The present day approach consists in combining different types of modeling according to the requested results and simulations. The CEA has a solid experience in this domain and has developed independent tools for the impact and safety studies relative to industrial facilities and to the management of crisis situations. (J.S.)
International Nuclear Information System (INIS)
A polarized atmospheric radiative transfer model for the computation of radiative transfer inside three-dimensional inhomogeneous mediums is described. This code is based on Monte Carlo methods and takes into account the polarization state of the light. Specificities introduced by such consideration are presented. After validation of the model by comparisons with adding-doubling computations, examples of reflectances simulated from a synthetic inhomogeneous cirrus cloud are analyzed and compared with reflectances obtained with the classical assumption of a plane parallel homogeneous cloud (1D approximation). As polarized reflectance is known to saturate for optical thickness of about 3, one could think that they should be less sensitive to 3D effects than total reflectances. However, at high spatial resolution (80 m), values of polarized reflectances much higher than the ones predicted by the 1D theory can be reached. The study of the reflectances of a step cloud shows that these large values are the results of illumination and shadowing effects similar to those often observed on total reflectances. In addition, we show that for larger spatial resolution (10 km), the so-called plane-parallel bias leads to a non-negligible overestimation of the polarized reflectances of about 7-8%.
Aoki, S.; Nakagawa, H.; Kasaba, Y.; Giuranna, M.; Geminale, A.; Sindoni, G.; Sagawa, H.; Mendrok, J.; Kasai, Y.; Formisano, V.
2012-09-01
We observed Martian atmosphere to investigate CH4, H2O, and HDO on 30 November 2011, 4-5 January 2012, and 12 April 2012 using SUBARU/ IRCS. This observation aims to verify CH4 on Mars, constrain its source, and investigate the distribution of H2O/HDO ratio. Our observation covered possible source areas of CH4, i.e. the areas where the extend plumes of CH4 were detected by previous groundbased and MEX/PFS observations [1,2] and the potential mud volcanism areas [3,4]. This paper will show some preliminary results. Vertical profiles of these trace gases are crucial for understanding their chemistry and transportation. Limb observations by MEX/PFS are a powerful tool to retrieve vertical profiles of H2O, CO, and CH4. For this purpose, we adapted the SARTre model, a radiative transfer code which includes multiple scattering for limb geometry observations developed for the terrestrial atmosphere [5], to the Martian atmosphere. In order to validate our model, SARTre model for Martian limb, we first compared of our synthetic spectra in nadir geometry with the result from ARS [6] which has been widely used for previous studies of MEX/PFS nadir-observation. We concluded that the difference between them is small offset (below 3%) in the spectral range between 3000 and 3030 cm-1.
Chami, M; Santer, R; Dilligeard, E
2001-05-20
A radiative transfer code termed OSOA for the ocean-atmosphere system that is able to predict the total and the polarized signals has been developed. The successive-orders-of-scattering method is used. The air-water interface is modeled as a planar mirror. Four components grouped by their optical properties, pure seawater, phytoplankton, nonchlorophyllose matter, and yellow substances, are included in the water column. Models are validated through comparisons with standard models. The numerical accuracy of the method is better than 2%; high computational efficiency is maintained. The model is used to study the influence of polarization on the detection of suspended matter. Polarizing properties of hydrosols are discussed: phytoplankton cells exhibit weak polarization and small inorganic particles, which are strong backscatterers, contribute appreciably to the polarized signal. Therefore the use of the polarized signal to extract the sediment signature promises good results. Also, polarized radiance could improve characterization of aerosols when open ocean waters are treated. PMID:18357248
Atmospheric Radiation Measurement Program plan
International Nuclear Information System (INIS)
In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. The Atmospheric Radiation Measurement (ARM) Program will contribute to the Department of Energy goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. 19 refs., 4 figs., 2 tabs
大气温室效应的一维辐射传热分析%One Dimensional Radiative Heat Transfer Analysis of Atmosphere Greenhouse Effects
Institute of Scientific and Technical Information of China (English)
刘彬; 帅永; 谈和平
2011-01-01
大气中温室气体对地面长波热辐射的吸收和再发射导致了温室效应.计算了大气不同高度200～50000 cm-1(0.2～50 μm)光谱吸收系数,采用一维大气介质模型和射线踪迹-节点分析法(RTNAM)的多层模型对大气中二氧化碳及水蒸气不同浓度情况下的大气温度进行了计算.结果表明标准大气CO2浓度增加1倍,对流层的温度上升0.453°C,若水蒸气浓度降低,CO2的温室效应更加明显.%Greenhouse gases absorb the thermal radiation from earth surface and reemit part of energy back. This progress leads to the greenhouse effects. Absorption coefficients at different latitude were calculated form 200 cm-1 to 50000 cm- 1(0.2~50μm). Using a one-dimensional radiative heat transfer model for atmosphere combined with multilayered model by Ray-Tracing/Nodal-Analyzing Method (RTNAM), atmospheric temperature fields were calculated under different CO2 and/or H2O concentration conditions. The results show that temperature in troposphere rise 0.453℃ if doubling of CO2Concentration, and if the concentration of H2O is lower, greenhouse effects of CO2 become more obvious.
Palazzi, Elisa
2008-01-01
The motivation for the work presented in this thesis is to retrieve profile information for the atmospheric trace constituents nitrogen dioxide (NO2) and ozone (O3) in the lower troposphere from remote sensing measurements. The remote sensing technique used, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), is a recent technique that represents a significant advance on the well-established DOAS, especially for what it concerns the study of...
Wittrock, F.; Oetjen, H.; Richter, A.; Fietkau, S.; Medeke, T.; Rozanov, A.; Burrows, J.P.
2004-01-01
International audience A new approach to derive tropospheric concentrations of some atmospheric trace gases from ground-based UV/vis measurements is described. The instrument, referred to as the MAX-DOAS, is based on the well-known UV/vis instruments, which use the sunlight scattered in the zenith sky as the light source and the method of Differential Optical Absorption Spectroscopy (DOAS) to derive column amounts of absorbers like ozone and nitrogen dioxide. Substantial enhancements have ...
RRTM: A rapid radiative transfer model
Energy Technology Data Exchange (ETDEWEB)
Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)
1996-04-01
A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.
Radiative transfer in solar prominences
Czech Academy of Sciences Publication Activity Database
Heinzel, Petr
Cham: Springer, 2015, s. 103-130. ( Astrophysics adn Space Science Library. 415). ISBN 9783319104157 Institutional support: RVO:67985815 Keywords : NLTE * radiative-transfer theory * model Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
Radiative Transfer in 3D Numerical Simulations
Stein, R; Stein, Robert; Nordlund, Aake
2002-01-01
We simulate convection near the solar surface, where the continuum optical depth is of order unity. Hence, to determine the radiative heating and cooling in the energy conservation equation, we must solve the radiative transfer equation (instead of using the diffusion or optically thin cooling approximations). A method efficient enough to calculate the radiation for thousands of time steps is needed. We assume LTE and a non-gray opacity grouped into 4 bins according to strength. We perform a formal solution of the Feautrier equation along a vertical and four straight, slanted, rays (at four azimuthal angles which are rotated 15 deg. every time step). We present details of our method. We also give some results: comparing simulated and observed line profiles for the Sun, showing the importance of 3D transfer for the structure of the mean atmosphere and the eigenfrequencies of p-modes, illustrating Stokes profiles for micropores, and analyzing the effect of radiation on p-mode asymmetries.
Benchmark solutions in radiation transfer
International Nuclear Information System (INIS)
Some simple analytical solutions are given to the radiation transfer equation in a homogeneous, static collisionless medium. We examine the propagation in a slab, then the passage through and the contact between two plates and finally the transfer in a sphere
Engineering calculations in radiative heat transfer
Gray, W A; Hopkins, D W
1974-01-01
Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.
Validation of the community radiative transfer model
International Nuclear Information System (INIS)
To validate the Community Radiative Transfer Model (CRTM) developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), the discrete ordinate radiative transfer (DISORT) model and the line-by-line radiative transfer model (LBLRTM) are combined in order to provide a reference benchmark. Compared with the benchmark, the CRTM appears quite accurate for both clear sky and ice cloud radiance simulations with RMS errors below 0.2 K, except for clouds with small ice particles. In a computer CPU run time comparison, the CRTM is faster than DISORT by approximately two orders of magnitude. Using the operational MODIS cloud products and the European Center for Medium-range Weather Forecasting (ECMWF) atmospheric profiles as an input, the CRTM is employed to simulate the Atmospheric Infrared Sounder (AIRS) radiances. The CRTM simulations are shown to be in reasonably close agreement with the AIRS measurements (the discrepancies are within 2 K in terms of brightness temperature difference). Furthermore, the impact of uncertainties in the input cloud properties and atmospheric profiles on the CRTM simulations has been assessed. The CRTM-based brightness temperatures (BTs) at the top of the atmosphere (TOA), for both thin (τ30) clouds, are highly sensitive to uncertainties in atmospheric temperature and cloud top pressure. However, for an optically thick cloud, the CRTM-based BTs are not sensitive to the uncertainties of cloud optical thickness, effective particle size, and atmospheric humidity profiles. On the contrary, the uncertainties of the CRTM-based TOA BTs resulting from effective particle size and optical thickness are not negligible in an optically thin cloud.
Environmental radon: solid earth-atmosphere transference
International Nuclear Information System (INIS)
The radon anomalies ant its descendants related with geophysical events are studied generally for to understand the involved mechanisms in the underground geochemistry. These anomalies were observed as a radioactivity level argumentation in the systems studied provoking a radioactivity transference from land toward human environment. In this work is presented an analysis of the contribution at local radioactivity level due to volcanic eruptions that they provoke a transference appreciable but intermittent and located of Radon to atmosphere and of that one due to soil-atmosphere transference that it occurs in continuous way in continent that it varies as function of meteorologic and geologic conditions. (Author)
An Analytic Radiative-Convective Model for Planetary Atmospheres
Robinson, Tyler D; 10.1088/0004-637X/757/1/104
2012-01-01
We present an analytic 1-D radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries, (2) worlds with some attenuation of sunli...
Process of molybdenum transfer in iodine atmosphere
International Nuclear Information System (INIS)
The process of molybdenum transfer in iodine atmosphere is studied. The dependence of the rate of molybdenum extraction in the hot zone on iodine content in ampula and temperature conditions is experimentally investigated; thermodynamic analysis of dissociation process of molybdenum diiodide is performed. It is established that in iodine atmosphere Mo is transported into the hot zone in the 920-1520 K range. Maximum rate of Mo precipitation at the thread is achieved under conditions of diiodide evaporation at 970 K and temperature of glower of 1150-1350 K. Mo separates in the process of thermal dissociation of molybdenum diiodide
GLERL Radiation Transfer Through Freshwater Ice
National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...
Stochastic Radiative transfer and real cloudiness
Energy Technology Data Exchange (ETDEWEB)
Evans, F. [Univ. of Colorado, Boulder, CO (United States)
1995-09-01
Plane-parallel radiative transfer modeling of clouds in GCMs is thought to be an inadequate representation of the effects of real cloudiness. A promising new approach for studying the effects of cloud horizontal inhomogeneity is stochastic radiative transfer, which computes the radiative effects of ensembles of cloud structures described by probability distributions. This approach is appropriate because cloud information is inherently statistical, and it is the mean radiative effect of complex 3D cloud structure that is desired. 2 refs., 1 fig.
大气折射对可见光波段辐射传输特性的影响%Influence of atmospheric refraction on radiative transfer at visible light band
Institute of Scientific and Technical Information of China (English)
胡帅; 高太长; 李浩; 刘磊; 程天际; 张婷
2015-01-01
Refraction is an important factor influencing radiative transfer since it can change both the propagation path and polarization state of electromagnetic wave. In order to discuss the influence of atmospheric refraction on radiative transfer process, a Monte Carlo vector radiative transfer model, which takes atmospheric refraction into account, is introduced. By using this model, photon random movement in uniform atmospheric layer and at the interfaces between adjacent layers is simulated, Stokes vectors and degrees of polarizations of both directly transmitted and diffuse light, and irradiance at the specific layer is also calculated. The model is validated under two conditions: with taking atmospheric refraction into account, and comparing the simulation results with those in the literature;with taking refraction index distributed homogeneously in space, in which case the model is validated against DISORT and RT3. So, the results indicates that our model is accurate and reliable. The influences of atmospheric refraction on the Stokes vectors of diffuse light in different directions are discussed for pure molecular atmosphere, with only Rayleigh scattering considered. Simulations are performed respectively for different solar zenith angles, for different atmospheric profiles, for aerosols with different types and particle shapes, and for clouds with different base heights and optical depths, and correspondingly, the effect of atmospheric refraction on radiative transfer process is discussed as well. Simulation results show that Stokes vector of diffuse light is influenced by atmospheric refraction to a certain extent, especially for light with a zenith angle ranging from 70° to 110°, and with the increasing of solar zenith angle, the influence becomes stronger. When atmospheric profile changes, the effect of atmospheric refraction on polarized radiance field is also changed, for which the possible reason is that deference between atmospheric profiles leads to the
Institute of Scientific and Technical Information of China (English)
戴聪明; 魏合理; 陈秀红
2013-01-01
为检验通用大气辐射传输软件CART分子吸收和热辐射的计算精度,利用精确的逐线积分法(LBLRTM)和广泛使用的中分辨率大气传输模式(MODTRAN4.0),就CART软件计算的晴空大气分子吸收透过率和热辐射进行对比验证.模拟了水平距离、观测天顶角和观测点高度对光电工程各观测波段内平均大气透过率和积分辐射的影响特性.结果表明:CART软件分子吸收的计算精度优于MODTRAN4.0软件,大气热辐射的计算精度和MODTRAN4.0相当.%To validate the precision of atmospheric molecular absorption and thermal radiance calculated by combined atmospheric radiative transfer (CART) code, using the accurate line-by-line atmospheric transfer model (LBLRTM) and moderate resolution atmospheric transmission (MODTRAN4.0), the atmospheric molecular absorption spectral transmittance and infrared spectral radiance calculated by these codes were comparied under clear-sky conditions.Then the horizontal path lengths, observation zenith angles and observation altitudes impacting on average atmospheric transmittance and integrated infrared radiance in several spectral bands were simulated on electro-optical engineering region.The results show that the precision of atmospheric molecular absorption calculated by CART is better than MODTRAN4.0, and calculation precision of the atmospheric thermal radiation is equivalent to MODTRAN4.0.
Nikoghossian, A. G.; Kapanadze, N. G.
2016-03-01
A group theoretical approach is developed for solving astrophysical radiative transfer problems described in a previous series of papers. Addition laws for observed radiative intensities are derived for the case in which atmospheres not only absorb and scatter radiation incident on them, but radiate themselves because of energy sources contained within them. As an illustration of the application of these laws, several special radiative transfer problems which we believe are of practical interest are discussed.
The Radiation Environment of Exoplanet Atmospheres
Directory of Open Access Journals (Sweden)
Jeffrey L. Linsky
2014-10-01
Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.
Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008
Energy Technology Data Exchange (ETDEWEB)
LR Roeder
2008-12-01
The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.
Radiation environment models and the atmospheric cutoff
Konradi, Andrei; Hardy, Alva C.; Atwell, William
1987-01-01
The limitations of radiation environment models are examined by applying the model to the South Atlantic anomaly (SAA). The local magnetic-field-intensity (in gauss) and McIlwain (1961) drift-shell-parameter contours in the SAA are analyzed. It is noted that it is necessary to decouple the atmospheric absorption effects from the trapped radiation models in order to obtain accurate radiation dose predictions. Two methods for obtaining more accurate results are proposed.
Das, Rabindra Nath
2007-01-01
In this paper, the new forms obtained for Chandrasekhar's H- function in Radiative Transfer by one of the authors both for non-conservative and conservative cases for isotropic scattering in a semi-infinite plane parallel atmosphere are used to obtain exclusively new forms for the first and second derivatives of H-function . The numerics for evaluation of zero of dispersion function, for evaluation of H-function and its derivatives and its zeroth, the first and second moments are outlined. Those are used to get ready and accurate extensive tables of H-function and its derivatives, pole and moments for different albedo for scattering by iteration and Simpson's one third rule . The schemes for interpolation of H-function for any arbitrary value of the direction parameter for a given albedo are also outlined. Good agreement has been observed in checks with the available results within one unit of ninth decimal
Numerical methods in multidimensional radiative transfer
Meinköhn, Erik
2008-01-01
Offers an overview of the numerical modelling of radiation fields in multidimensional geometries. This book covers advances and problems in the mathematical treatment of the radiative transfer equation, a partial integro-differential equation of high dimension that describes the propagation of the radiation in various fields.
Space, Atmospheric, and Terrestrial Radiation Environments
Barth, Janet L.; Dyer, C. S.; Stassinopoulos, E. G.
2003-01-01
The progress on developing models of the radiation environment since the 1960s is reviewed with emphasis on models that can be applied to predicting the performance of microelectronics used in spacecraft and instruments. Space, atmospheric, and ground environments are included. It is shown that models must be adapted continually to account for increased understanding of the dynamics of the radiation environment and the changes in microelectronics technology. The IEEE Nuclear and Space Radiation Effects Conference is a vital forum to report model progress to the radiation effects research community.
Intercomparison of Shortwave Radiative Transfer Codes and Measurements
Energy Technology Data Exchange (ETDEWEB)
Halthore, Rangasayi N.; Crisp, David; Schwartz, Stephen E.; Anderson, Gail; Berk, A.; Bonnel, B.; Boucher, Olivier; Chang, Fu-Lung; Chou, Ming-Dah; Clothiaux, Eugene E.; Dubuisson, P.; Fomin, Boris; Fouquart, Y.; Freidenreich, S.; Gautier, Catherine; Kato, Seiji; Laszlo, Istvan; Li, Zhanqing; Mather, Jim H.; Plana-Fattori, Artemio; Ramaswamy, V.; Ricchiazzi, P.; Shiren, Y.; Trishchenko, A.; Wiscombe, Warren J.
2005-06-03
Computation of components of shortwave (SW) or solar irradiance in the surface-atmospheric system forms the basis of intercomparison between 16 radiative transfer models of varying spectral resolution ranging from line-by-line models to broadband and general circulation models. In order of increasing complexity the components are: direct solar irradiance at the surface, diffuse irradiance at the surface, diffuse upward flux at the surface, and diffuse upward flux at the top of the atmosphere. These components allow computation of the atmospheric absorptance. Four cases are considered from pure molecular atmospheres to atmospheres with aerosols and atmosphere with a simple uniform cloud. The molecular and aerosol cases allow comparison of aerosol forcing calculation among models. A cloud-free case with measured atmospheric and aerosol properties and measured shortwave radiation components provides an absolute basis for evaluating the models. For the aerosol-free and cloud-free dry atmospheres, models agree to within 1% (root mean square deviation as a percentage of mean) in broadband direct solar irradiance at surface; the agreement is relatively poor at 5% for a humid atmosphere. A comparison of atmospheric absorptance, computed from components of SW radiation, shows that agreement among models is understandably much worse at 3% and 10% for dry and humid atmospheres, respectively. Inclusion of aerosols generally makes the agreement among models worse than when no aerosols are present, with some exceptions. Modeled diffuse surface irradiance is higher than measurements for all models for the same model inputs. Inclusion of an optically thick low-cloud in a tropical atmosphere, a stringent test for multiple scattering calculations, produces, in general, better agreement among models for a low solar zenith angle (SZA = 30?) than for a high SZA (75?). All models show about a 30% increase in broadband absorptance for 30? SZA relative to the clear-sky case and almost no
The Local Atmosphere and the Turbulent Heat Transfer in the Eastern Himalayas
Institute of Scientific and Technical Information of China (English)
ZOU Han; LI Peng; MA Shupo; ZHOU Libo; ZHU Jinhuan
2012-01-01
To understand the local atmosphere and heat transfer and to facilitate the boundary-layer parameterization of numerical simulation and prediction,an observational campaign was conducted in the Eastern Himalayas in June 2010.The local atmospheric properties and near-surface turbulent heat transfers were analyzed.The local atmosphere in this region is warmer,more humid and less windy,with weaker solar radiation and surface radiate heating than in the Middle Himalayas.The near-surface turbulent heat transfer in the Eastern Himalayas is weaker than that in the Middle Himalayas.The total heat transfer is mainly contributed by the latent heat transfer with a Bowen ratio of 0.36,which is essentially different from that in the Middle Himalayas and the other Tibetan regions.
Radiative Transfer on Mesoscopic Spatial Scales
Gardner, Adam Ronald
Accurate predictions of light transport produced by illumination of turbid media such as biological tissues, cloudy atmospheres, terrestrial surfaces, and soft matter is essential in many applications including remote sensing, functional optical imaging, realistic image synthesis, and materials characterization. The inability to model light transport on mesoscopic scales limits the spatial resolution and information content that can be extracted from optical measurements. While effective approaches exist to model light transport in singly- and diffusely-scattering regimes, modeling light propagation over the mesoscopic spatial scales remains an important challenge. Radiative transfer on these scales must account for the complete 5-dimensional spatial and angular distributions of the radiant field. Here, we present novel stochastic and analytic methods to analyze and predict light propagation in turbid media generated by collimated illumination on mesoscopic scales. We also consider coupled transport problems, resulting from illumination and detection, to facilitate measurement design and inverse problems. Specifically, we introduce a coupled Forward-Adjoint Monte Carlo (cFAMC) method that leverages generalized optical reciprocity to enable the computation of spatially-resolved distributions of light interrogation for specific source-detector pairs. cFAMC can aid the design of optical diagnostic measurements by tailoring the light field to interrogate specific sub-volumes of interest. We use cFAMC to examine the effects of angular resolution on the resulting interrogation distributions and analyze a diagnostically-relevant compact fiber probe design for the detection of epithelial precancer. While Monte Carlo simulation is considered a gold standard method to solve the equation of radiative transfer (ERT), it is computationally expensive. Thus, methods to obtain ERT solutions at lower computational cost are valuable. We introduce a general analytical framework to
Multiple equilibria in radiative-convective atmospheres
Rennó, Nilton O.
2011-01-01
A one-dimensional, radiative-convective model is used to study the equilibria conditions of moist atmospheres. We show that when the hydrologic cycle is included in the model a subcritical bifurcation occurs, leading to 2 linearly stable solutions to the radiative-convective equilibria. In this case, when the net forcing is larger than a critical value, two equilibria are possible. Furthermore, a finite amplitude instability can lead to a runaway greenhouse regime when the solar forcing is la...
Institute of Scientific and Technical Information of China (English)
章文星; 吕达仁; 霍娟; 王勇; 孙宝来; 李立群
2011-01-01
中国科学院大气物理研究所中层大气和全球环境探测重点实验室(LAGEO)建立了以系留气艇为平台的综合探测系统.通过气艇在大气边界层上升、下降过程获得不同高度的气象参数和同时的辐射参数.以气象参数为输入,应用辐射传输模式(MODTRAN4.0)获得模式辐射输出,将其与实测辐射值作对比,验证MODTRAN4.0模式的准确性,为有关目标识别与遥感提供基础.2006年8月在中国科学院大气物理研究所香河综合观测站利用系留气艇平台进行了验证实验,并对热红外波段的模式对比结果进行分析.结果表明:所建实验系统具备进行模式验证的能力,在热红外波段,MODTRAN4.0模式输出结果与实测辐射亮度之间的相对误差的均方差在边界层大气条件下小于3％.%Atmospheric radiative transfer and its algorithms are the theoretical basis and effective tools in the field of remote sensing and inversion algorithm in the earth system, and also the key tools for the space, ground target recognition and quantitative assessment of background radiation. During recent decades, a series of radiative transfer(RT) model have been proposed to support a large variety of quantitative remote sensing as well as target,background discrimination research and applications. Owing to respective approximations and simplifications inherent in those RT models, their accuracy, uncertainty and adaptability are of critical significance to different researchers and end users. Validation of the RT model for its different wave band, in particular by using field experiments is necessary, especially for those applications with higher accuracy demands. Among the RT codes currently used, a considerable part of them are MODT-RAN and its evolution versions. In China, MODTRAN has also been applied to the study of remote sensing, atmospheric correction of satellite images, and a wide range of applications in the atmospheric sciences, hence, the
Liu, Q.; Nalli, N. R.; Tan, C.; Zhang, K.; Iturbide, F.; Wilson, M.; Zhou, L.
2015-12-01
The Community Radiative Transfer Model (CRTM) [3] operationally supports satellite radiance assimilation for weather forecasting, sensor data verification, and the retrievals of satellite products. The CRTM has been applied to UV and visible sensors, infrared and microwave sensors. The paper will demonstrate the applications of the CRTM, in particular radiative transfer in the retrieva algorithm. The NOAA Unique CrIS/ATMS Processing System (NUCAPS) operationally generates vertical profiles of atmospheric temperature (AVTP) and moisture (AVMP) from Suomi NPP Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) measurements. Current operational CrIS data have reduced spectral resolution: 1.25 cm-1 for a middle wave band and 2.5 cm-1 for a short-wave wave band [1]. The reduced spectral data largely degraded the retrieval accuracy of trace gases. CrIS full spectral data are also available now which have single spectral resolution of 0.625 cm-1 for all of the three bands: long-wave band, middle wave band, and short-wave band. The CrIS full-spectral resolution data is critical to the retrieval of trace gases such as O3, CO [2], CO2, and CH4. In this paper, we use the Community Radiative Transfer Model (CRTM) to study the impact of the CrIS spectral resolution on the retrieval accuracy of trace gases. The newly released CRTM version 2.2.1 can simulates Hamming-apodized CrIS radiance of a full-spectral resolution. We developed a small utility that can convert the CRTM simulated radiance to un-apodized radiance. The latter has better spectral information which can be helpful to the retrievals of the trace gases. The retrievals will be validated using both NWP model data as well as the data collected during AEROSE expeditions [4]. We will also discuss the sensitivity on trace gases between apodized and un-apodized radiances. References[1] Gambacorta, A., et al.(2013), IEEE Lett., 11(9), doi:10.1109/LGRS.2014.230364, 1639-1643. [2] Han, Y., et
Xin, Q; P. Gong; Li, W.
2015-01-01
Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we a...
Preliminary results of a three-dimensional radiative transfer model
Energy Technology Data Exchange (ETDEWEB)
O`Hirok, W. [Univ. of California, Santa Barbara, CA (United States)
1995-09-01
Clouds act as the primary modulator of the Earth`s radiation at the top of the atmosphere, within the atmospheric column, and at the Earth`s surface. They interact with both shortwave and longwave radiation, but it is primarily in the case of shortwave where most of the uncertainty lies because of the difficulties in treating scattered solar radiation. To understand cloud-radiative interactions, radiative transfer models portray clouds as plane-parallel homogeneous entities to ease the computational physics. Unfortunately, clouds are far from being homogeneous, and large differences between measurement and theory point to a stronger need to understand and model cloud macrophysical properties. In an attempt to better comprehend the role of cloud morphology on the 3-dimensional radiation field, a Monte Carlo model has been developed. This model can simulate broadband shortwave radiation fluxes while incorporating all of the major atmospheric constituents. The model is used to investigate the cloud absorption anomaly where cloud absorption measurements exceed theoretical estimates and to examine the efficacy of ERBE measurements and cloud field experiments. 3 figs.
High-Accuracy Spectral Lines for Radiation Transport in Stellar Atmospheres
Amit R. Sharma; Braams, Bastiaan J.; Bowman, Joel M.; Robert Warmbier; Ralf Schneider; Hauschildt, Peter H.
2008-01-01
The theory of radiative transfer is an important element for the understanding of the spectral signature and physical structure of stellar atmosphere. PHOENIX1 is a such, very general non-Local Thermodynamic Equilibrium(NLTE) stellar atmosphere computer code which can handle very large model atoms/molecules as well as line blanketing by hundreds of millions of atomic and molecular lines. The code is used to compute model atmospheres and synthetic spectra (solution of the radiative transport e...
Radiation cure of detonation transfer explosive
International Nuclear Information System (INIS)
The radiation cured detonation transfer plastic bonded explosive (PBX) provides the potential for achieving improvements in processability, storability, cure reproducibility, physical strength, and reliability of performance over the Navy's present injectable detonation transfer communications explosive. The composition and properties of the radiation cured system will be presented. Radiation cure of energetic materials is a relatively new process. It combines the advantages of an indefinitely long pot-life and storage life for the material mix with a very rapid cure. Neither of these features is available with conventional catalyzed thermal cure reactions. (Auth.)
Line radiative transfer and statistical equilibrium*
Directory of Open Access Journals (Sweden)
Kamp Inga
2015-01-01
Full Text Available Atomic and molecular line emission from protoplanetary disks contains key information of their detailed physical and chemical structures. To unravel those structures, we need to understand line radiative transfer in dusty media and the statistical equilibrium, especially of molecules. I describe here the basic principles of statistical equilibrium and illustrate them through the two-level atom. In a second part, the fundamentals of line radiative transfer are introduced along with the various broadening mechanisms. I explain general solution methods with their drawbacks and also specific difficulties encountered in solving the line radiative transfer equation in disks (e.g. velocity gradients. I am closing with a few special cases of line emission from disks: Radiative pumping, masers and resonance scattering.
Pujol i Sagaró, Toni; North, Gerald R.
2003-01-01
We model the wavelength-dependent absorption of atmospheric gases by assuming constant mass absorption coefficients in finite-width spectral bands. Such a semigray atmosphere is analytically solved by a discrete ordinate method. The general solution is analyzed for a water vapor saturated atmosphere that also contains a carbon dioxide-like absorbing gas in the infrared. A multiple stable equilibrium with a relative upper limit in the outgoing long-wave radiation is found. Differing from previ...
International Nuclear Information System (INIS)
The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth's atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy's Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described
Energy Technology Data Exchange (ETDEWEB)
Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.
1992-03-01
The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.
Radiation-induced hydrogen transfer in metals
Tyurin, Yu I.; Vlasov, V. A.; Dolgov, A. S.
2015-11-01
The paper presents processes of hydrogen (deuterium) diffusion and release from hydrogen-saturated condensed matters in atomic, molecular and ionized states under the influence of the electron beam and X-ray radiation in the pre-threshold region. The dependence is described between the hydrogen isotope release intensity and the current density and the electron beam energy affecting sample, hydrogen concentration in the material volume and time of radiation exposure to the sample. The energy distribution of the emitted positive ions of hydrogen isotopes is investigated herein. Mechanisms of radiation-induced hydrogen transfer in condensed matters are suggested.
Soil-vegetation-atmosphere transfer modeling
Energy Technology Data Exchange (ETDEWEB)
Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)
1996-12-31
In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method
Lattice Boltzmann method for one-dimensional vector radiative transfer.
Zhang, Yong; Yi, Hongliang; Tan, Heping
2016-02-01
A one-dimensional vector radiative transfer (VRT) model based on lattice Boltzmann method (LBM) that considers polarization using four Stokes parameters is developed. The angular space is discretized by the discrete-ordinates approach, and the spatial discretization is conducted by LBM. LBM has such attractive properties as simple calculation procedure, straightforward and efficient handing of boundary conditions, and capability of stable and accurate simulation. To validate the performance of LBM for vector radiative transfer, four various test problems are examined. The first case investigates the non-scattering thermal-emitting atmosphere with no external collimated solar. For the other three cases, the external collimated solar and three different scattering types are considered. Particularly, the LBM is extended to solve VRT in the atmospheric aerosol system where the scattering function contains singularities and the hemisphere space distributions for the Stokes vector are presented and discussed. The accuracy and computational efficiency of this algorithm are discussed. Numerical results show that the LBM is accurate, flexible and effective to solve one-dimensional polarized radiative transfer problems. PMID:26906779
Multigrid Method for Polarized Radiative Transfer
Czech Academy of Sciences Publication Activity Database
Štěpán, Jiří
San Francisco: Astronomical Society of the Pacific, 2006 - (Casini, R.; Lites, B.), s. 148-154. (ASP Conference Series. 358). ISBN 978-1-58381-292-1. [Solar Polarization Workshop /4./. Boulder (US), 19.09.2005-23.09.2005] Institutional research plan: CEZ:AV0Z10030501 Keywords : polarization * radiative transfer * sun Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
The atmospheric implications of radiation belt remediation
Directory of Open Access Journals (Sweden)
C. J. Rodger
2006-08-01
Full Text Available High altitude nuclear explosions (HANEs and geomagnetic storms can produce large scale injections of relativistic particles into the inner radiation belts. It is recognised that these large increases in >1 MeV trapped electron fluxes can shorten the operational lifetime of low Earth orbiting satellites, threatening a large, valuable population. Therefore, studies are being undertaken to bring about practical human control of the radiation belts, termed "Radiation Belt Remediation" (RBR. Here we consider the upper atmospheric consequences of an RBR system operating over either 1 or 10 days. The RBR-forced neutral chemistry changes, leading to NO_{x} enhancements and O_{x} depletions, are significant during the timescale of the precipitation but are generally not long-lasting. The magnitudes, time-scales, and altitudes of these changes are no more significant than those observed during large solar proton events. In contrast, RBR-operation will lead to unusually intense HF blackouts for about the first half of the operation time, producing large scale disruptions to radio communication and navigation systems. While the neutral atmosphere changes are not particularly important, HF disruptions could be an important area for policy makers to consider, particularly for the remediation of natural injections.
Composite biasing in Monte Carlo radiative transfer
Baes, Maarten; Lunttila, Tuomas; Bianchi, Simone; Camps, Peter; Juvela, Mika; Kuiper, Rolf
2016-01-01
Biasing or importance sampling is a powerful technique in Monte Carlo radiative transfer, and can be applied in different forms to increase the accuracy and efficiency of simulations. One of the drawbacks of the use of biasing is the potential introduction of large weight factors. We discuss a general strategy, composite biasing, to suppress the appearance of large weight factors. We use this composite biasing approach for two different problems faced by current state-of-the-art Monte Carlo radiative transfer codes: the generation of photon packages from multiple components, and the penetration of radiation through high optical depth barriers. In both cases, the implementation of the relevant algorithms is trivial and does not interfere with any other optimisation techniques. Through simple test models, we demonstrate the general applicability, accuracy and efficiency of the composite biasing approach. In particular, for the penetration of high optical depths, the gain in efficiency is spectacular for the spe...
International Nuclear Information System (INIS)
It is well known that the radiation budget of the atmosphere is an important component of the earth's climate system. On shorter time scales, radiative transfer affects the evolution of atmospheric circulation, principally through interaction with cloud and storm systems, and destabilizes the atmosphere continuously. This destabilization is important for subsequent development of clouds and storm systems. The clouds and storm systems feed back to the radiation budget, as clouds significantly alter both shortwave and longwave radiative transfer. It is important to understand the role that radiative transfer plays in the evolution of these circulation systems to accurately quantify the radiation budget. The results presented here are from modeling studies designed to isolate the effect of radiative transfer on the generation of circulation systems of different spatial and temporal scales. Two different numerical weather prediction models were used and will be described briefly in the next section. Following that, the radiative transfer model that was used with both circulation models will be described. Finally, results from the modeling studies will be presented, and conclusions and future research efforts will be discussed
Further considerations of cosmic ray modulation of infra-red radiation in the atmosphere
Aplin, Karen; Lockwood, Mike
2015-01-01
Understanding effects of ionisation in the lower atmosphere is a new interdisciplinary area, crossing traditionally distinct scientific boundaries. Following the paper of Erlykin et al. (Astropart. Phys. 57--58 (2014) 26--29) we develop the interpretation of observed changes in long-wave (LW) radiation (Aplin and Lockwood, Env. Res. Letts. 8, 015026 (2013)), by taking account of cosmic ray ionisation yields and atmospheric radiative transfer. To demonstrate this, we show that the thermal stru...
CRASH3: cosmological radiative transfer through metals
Graziani, L; Ciardi, B
2012-01-01
Here we introduce CRASH3, the latest release of the 3D radiative transfer code CRASH. In its current implementation CRASH3 integrates into the reference algorithm the code Cloudy to evaluate the ionisation states of metals, self-consistently with the radiative transfer through H and He. The feedback of the heavy elements on the calculation of the gas temperature is also taken into account, making of CRASH3 the first 3D code for cosmological applications which treats self-consistently the radiative transfer through an inhomogeneous distribution of metal enriched gas with an arbitrary number of point sources and/or a background radiation. The code has been tested in idealized configurations, as well as in a more realistic case of multiple sources embedded in a polluted cosmic web. Through these validation tests the new method has been proven to be numerically stable and convergent. We have studied the dependence of the results on a number of physical quantities such as the source characteristics (spectral range...
A Radiation Transfer Solver for Athena using Short Characteristics
Davis, Shane W; Jiang, Yan-Fei
2012-01-01
We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code which solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-LTE effects. The module is based on well-known and well-tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator-splitting and we describe this approach in detail. Implementa...
A fast all-sky radiative transfer model and its implications for solar energy research
Xie, Y.; Sengupta, M.
2015-12-01
Radiative transfer models simulating broadband solar radiation, e.g. Rapid Radiation Transfer Model (RRTM) and its GCM applications, have been widely used by atmospheric scientists to model solar resource for various energy applications such as operational forecasting. Due to the complexity of solving the radiative transfer equation, simulating solar radiation under cloudy conditions can be extremely time consuming though many approximations, e.g. two-stream approach and delta-M truncation scheme, have been utilized. To provide a new option to approximate solar radiation, we developed a Fast All-sky Radiation Model for Solar applications (FARMS) using simulated cloud transmittance and reflectance from 16-stream RRTM model runs. The solar irradiances at the land surface were simulated by combining parameterized cloud properties with a fast clear-sky radiative transfer model. Using solar radiation measurements from the US Department of Energy's Atmospheric Radiation Measurement (ARM) central facility in Oklahoma as a benchmark against the model simulations, we were able to demonstrate that the accuracy of FARMS was comparable to the two-stream approach. However, FARMS is much more efficient since it does not explicitly solve the radiative transfer equation for each individual cloud condition. We further explored the use of FARMS to promote solar resource assessment and forecasting research through the increased ability to accommodate higher spatial and temporal resolution calculations for the next generation of satellite and numerical weather prediction (NWP) models.
Integral form of the radiation transfer equation
International Nuclear Information System (INIS)
The integral form of the radiation transfer equation is given in a non-scattering medium for which the source and absorption terms are known explicitly. The problem is solved for an one-dimensional, inhomogeneous, non stationary, non isotropic configuration, in cartesian and spherical coordinates for arbitrary initial and boundary conditions. The same problem is solved for a boundary condition that is given on a moving surface, then the three-dimensional problem is examined in cartesian coordinates
Radiative Transfer in Accretion-Disk Winds
Fukue, Jun
2007-01-01
Radiative transfer equation in an accretion disk wind is examined analytically and numerically under the plane-parallel approximation in the subrelativistic regime of $(v/c)^1$, where $v$ is the wind vertical velocity. Emergent intensity is analytically obtained for the case of a large optical depth, where the flow speed and the source function are almost constant. The usual limb-darkening effect, which depends on the direction cosine at the zero-optical depth surface, does not appear, since ...
Introductory Tools for Radiative Transfer Models
Feldman, D.; Kuai, L.; Natraj, V.; Yung, Y.
2006-12-01
Satellite data are currently so voluminous that, despite their unprecedented quality and potential for scientific application, only a small fraction is analyzed due to two factors: researchers' computational constraints and a relatively small number of researchers actively utilizing the data. Ultimately it is hoped that the terabytes of unanalyzed data being archived can receive scientific scrutiny but this will require a popularization of the methods associated with the analysis. Since a large portion of complexity is associated with the proper implementation of the radiative transfer model, it is reasonable and appropriate to make the model as accessible as possible to general audiences. Unfortunately, the algorithmic and conceptual details that are necessary for state-of-the-art analysis also tend to frustrate the accessibility for those new to remote sensing. Several efforts have been made to have web- based radiative transfer calculations, and these are useful for limited calculations, but analysis of more than a few spectra requires the utilization of home- or server-based computing resources. We present a system that is designed to allow for easier access to radiative transfer models with implementation on a home computing platform in the hopes that this system can be utilized in and expanded upon in advanced high school and introductory college settings. This learning-by-doing process is aided through the use of several powerful tools. The first is a wikipedia-style introduction to the salient features of radiative transfer that references the seminal works in the field and refers to more complicated calculations and algorithms sparingly5. The second feature is a technical forum, commonly referred to as a tiki-wiki, that addresses technical and conceptual questions through public postings, private messages, and a ranked searching routine. Together, these tools may be able to facilitate greater interest in the field of remote sensing.
Enhancing radiative energy transfer through thermal extraction
Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu
2016-06-01
Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal
Institute of Scientific and Technical Information of China (English)
佃袁勇; 方圣辉
2013-01-01
Coupled plant leaf spectral model PROSPECT,vegetation canopy spectral model SAIL (scattering by arbitrarily inclined leaves) and atmospheric radiative transfer model 6S(second simulation of the satellite signal in the solar spectrum) were used to simulate the top of atmospheric (TOA) reflectance of vegetation under different conditions.And then the influences on the spectrum of the leaf mesophyll structure parameters,chlorophyll content,leaf dry weight,leaf water content,plant canopy of LAI,solar zenith angle,aerosol optical thickness (AOT),adjacency effect and mix-pixel effect were analyzed.The research results show that the vegetation TOA reflectance error caused by the atmosphere is by far larger than the error caused by the biochemical parameters of plant itself.At the leaf level scale,the main factors causing reflectance change are chlorophyll content and mesophyll structure parameters,the effect of water content is very small on leaf reflectance in 400 ～ 900 nm.At the canopy level,the main factors causing spectral change are LAI and leaf angle distribution.%将植物叶片光谱模型PROSPECT、植被冠层光谱模型SAIL与大气辐射传输模型6S进行耦合,模拟不同参数条件下植被星上光谱信息在400～ 900 nm谱段的变化,并分析从地表植物叶片光谱、冠层光谱到卫星入瞳处光谱的过程中,植物叶片的叶肉结构参数、叶绿素含量、干重、叶片含水量和植物冠层的叶面积指数(LAI)、太阳天顶角、气溶胶光学厚度、地表邻近效应以及混合像元等参数对植物光谱的影响.研究结果表明,由大气引起的误差要远大于由植物本身的各种生化参数引起的误差;在叶片尺度上引起反射率发生变化的主要因素是叶绿素含量和叶肉结构参数,含水量的影响非常小,可以忽略;在冠层尺度上引起光谱发生变化的因素主要有LAI和叶片倾角.
''adding'' algorithm for the Markov chain formalism for radiation transfer
International Nuclear Information System (INIS)
The Markov chain radiative transfer method of Esposito and House has been shown to be both efficient and accurate for calculation of the diffuse reflection from a homogeneous scattering planetary atmosphere. The use of a new algorithm similar to the ''adding'' formula of Hansen and Travis extends the application of this formalism to an arbitrarily deep atmosphere. The basic idea for this algorithm is to consider a preceding calculation as a single state of a new Markov chain. Successive application of this procedure makes calculation possible for any optical depth without increasing the size of the linear system used. The time required for the algorithm is comparable to that for a doubling calculation for a homogeneous atmosphere, but for a non-homogeneous atmosphere the new method is considerably faster than the standard ''adding'' routine. As with he standard ''adding'' method, the information on the internal radiation field is lost during the calculation. This method retains the advantage of the earlier Markov chain method that the time required is relatively insensitive to the number of illumination angles or observation angles for which the diffuse reflection is calculated. A technical write-up giving fuller details of the algorithm and a sample code are available from the author
SLA (Second-law analysis) of transient radiative transfer processes
International Nuclear Information System (INIS)
This paper concerns a SLA (second-law analysis) of transient radiative heat transfer in an absorbing, emitting and scattering medium. Based on Planck's definition of radiative entropy, transient radiative entropy transfer equation and local radiative entropy generation in semitransparent media with uniform refractive index are derived. Transient radiative exergy transfer equation and local radiative exergy destruction are also derived based on Candau's definition of radiative exergy. The analytical results are consistent with the Gouy-Stodola theorem of classical thermodynamics. As an application concerning transient radiative transfer, exergy destruction of diffuse pulse radiation in a semitransparent slab is studied. The transient radiative transfer equation is solved using the discontinuous finite element based discrete ordinates equation. Transient radiative exergy destruction is calculated by a post-processing procedure.
Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry
Kitzmann, D; Patzer, A B C
2016-01-01
The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical symmetry. We present a discontinuous Galerkin method to directly solve the spherically-symmetric radiative transfer equation as a two-dimensional problem. The transport equation in spherical atmospheres is more complicated than in the plane-parallel case due to the appearance of an additional derivative with respect to the polar angle. The DG-FEM formalism allows for the exact integration of arbitrarily complex scattering phase functions, independent of the angular mesh resolution. We show that the discontinuous Galerkin method is able to describe accurately the radiative transfer in extended atmospheres and to capture discontinuities or complex scattering behaviour which might be present in the solution of certain radiative transfer tasks and can, therefore, cause...
The libRadtran software package for radiative transfer calculations (version 2.0.1)
Emde, Claudia; Buras-Schnell, Robert; A. Kylling; Mayer, Bernhard; Gasteiger, Josef; Hamann, Ulrich; Kylling, J.; Richter, B; Pause, Christian; Dowling, Tim; Bugliaro, Luca
2016-01-01
libRadtran is a widely used software package for radiative transfer calculations. It allows one to compute (polarized) radiances, irradiance, and actinic fluxes in the solar and thermal spectral regions. libRadtran has been used for various applications, including remote sensing of clouds, aerosols and trace gases in the Earth's atmosphere, climate studies, e.g., for the calculation of radiative forcing due to different atmospheric components, for UV forecasting, the calculation of photolysis...
Radiative Transfer Code: Application to the calculation of PAR
Indian Academy of Sciences (India)
D Emmanuel; D Phillippe; C Malik
2000-12-01
The production of carbon in the ocean, the so-called primary production, depends on various physico- biological parameters: the biomass and nutrient amounts in oceans, the salinity and temperature of the water and the light available in the water column. We focus on the visible spectrum of the solar radiation defined as the Photosynthetically Active Radiation (PAR). We developed a model (Chami et al. 1997) to simulate the behavior of the solar beam in the atmosphere and the ocean. We first describe the theoretical basis of the code and the method we used to solve the radiative transfer equation (RTE): the successive orders of scattering (SO). The second part deals with a sensitivity study of the PAR just above and below the sea surface for various atmospheric conditions. In a cloudy sky, we computed a ratio between vector fluxes just above the sea surface and spherical fluxes just beneath the sea surface. When the optical thickness of the cloud increases this ratio remains constant and around 1.29. This parameter is convenient to convert vector flux at the sea surface as retrieved from satellite to PAR. Subsequently, we show how solar radiation as vector flux rather than PAR leads to an underestimate of the primary production up to 40% for extreme cases.
Simulation of aerosol substance transfer in the atmospheric boundary layer
Lezhenin, A. A.; Raputa, V. F.; Shlychkov, V. Ð. ń.
2014-11-01
A model for the reconstruction of the surface concentration of a heavy non-homogeneous substance transfered in the atmosphere is proposed. The model is used to simulate the snow surface contamination by benzo(a)pyren in the vicinity of Power Station-3 in the city of Barnaul. The effects of wind rotation in the atmospheric boundary layer on the field of long-term aerosol substance are assessed.
Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols
Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.
2011-11-01
Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.
Accurate radiative transfer calculations for layered media.
Selden, Adrian C
2016-07-01
Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics. PMID:27409700
Computation of scattering kernels in radiative transfer
International Nuclear Information System (INIS)
This note proposes rapidly convergent computational formulae for evaluating scattering kernels from radiative transfer theory. The approach used here does not rely on Legendre expansions, but rather uses exponentially convergent numerical integration rules. The relation between the domain of analyticity of a given phase function and the speed of convergence is studied in detail. - Highlights: • We propose the trapezoidal rule for the computation of scattering kernels. • The convergence rate is related to the analyticity of the phase function. • This provides a unified rapidly convergent computational approach
Nonlinear response matrix methods for radiative transfer
International Nuclear Information System (INIS)
A nonlinear response matrix formalism is presented for the solution of time-dependent radiative transfer problems. The essential feature of the method is that within each computational cell the temperature is calculated in response to the incoming photons from all frequency groups. Thus the updating of the temperature distribution is placed within the iterative solution of the spaceangle transport problem, instead of being placed outside of it. The method is formulated for both grey and multifrequency problems and applied in slab geometry. The method is compared to the more conventional source iteration technique. 7 refs., 1 fig., 4 tabs
Solar and thermal radiation in the Venus atmosphere
Moroz, V. I.; Ekonomov, A. P.; Moshkin, B. E.; Revercomb, H. E.; Sromovsky, L. A.; Schofield, J. T.
1985-01-01
Attention is given to the solar and thermal radiation fields of Venus. Direct measurements and the results of numerical models based on direct measurements are presented. Radiation outside the atmosphere is considered with emphasis placed on global energy budget parameters, spectral and angular dependences, spatial distribution, and temporal variations of solar and thermal radiation. Radiation fluxes inside the atmosphere below 90 km are also considered with attention given to the solar flux at the surface, solar and thermal radiation fluxes from 100 km to the surface, and radiative heating and cooling below 100 km.
Institute of Scientific and Technical Information of China (English)
DU; Wenfeng; (杜文峰); HU; Wenrui; (胡文瑞)
2003-01-01
For the flame spread over thermally thin combustibles in an atmosphere, if the atmosphere cannot emit and absorb the thermal radiation (e.g. for atmosphere of O2-N2), the conductive heat transfer from the flame to the fuel surface dominates the flame spread at lower ambient atmosphere. As the ambient pressure increases, the flame spread rate increases, and the radiant heat transfer from the flame to the fuel surface gradually becomes the dominant driving force for the flame spread. In contrast, if the atmosphere is able to emit and absorb the thermal radiation (e.g. for atmosphere of O2-CO2), at lower pressure, the heat transfer from flame to the fuel surface is enhanced by the radiation reabsorption of the atmosphere at the leading edge of the flame, and both conduction and thermal radiation play important roles in the mechanism of flame spread. With the increase in ambient pressure, the oxygen diffuses more quickly from ambient atmosphere into the flame, the chemical reaction in the flame is enhanced, and the flame spread rate increases. When the ambient pressure is greater than a critical value, the thermal radiation from the flame to the solid surface is hampered by the radiation reabsorption of ambient atmosphere with the further increase in ambient pressure. As a result, with the increase in ambient pressure, the flame spread rate decreases and the heat conduction gradually dominates the flame spread over the fuel surface.
Monte Carlo method for polarized radiative transfer in gradient-index media
International Nuclear Information System (INIS)
Light transfer in gradient-index media generally follows curved ray trajectories, which will cause light beam to converge or diverge during transfer and induce the rotation of polarization ellipse even when the medium is transparent. Furthermore, the combined process of scattering and transfer along curved ray path makes the problem more complex. In this paper, a Monte Carlo method is presented to simulate polarized radiative transfer in gradient-index media that only support planar ray trajectories. The ray equation is solved to the second order to address the effect induced by curved ray trajectories. Three types of test cases are presented to verify the performance of the method, which include transparent medium, Mie scattering medium with assumed gradient index distribution, and Rayleigh scattering with realistic atmosphere refractive index profile. It is demonstrated that the atmospheric refraction has significant effect for long distance polarized light transfer. - Highlights: • A Monte Carlo method for polarized radiative transfer in gradient index media. • Effect of curved ray paths on polarized radiative transfer is considered. • Importance of atmospheric refraction for polarized light transfer is demonstrated
Sellitto, Pasquale; Zanetel, Claudia; di Sarra, Alcide; Salerno, Giuseppe; Tapparo, Andrea; Briole, Pierre; Legras, Bernard
2016-04-01
Volcanic eruptions influence tropospheric and stratospheric composition, the Earth's radiation budget from the regional to the global scale, and then the Earth's climate. While the impact of the strong explosive eruptions reaching the stratosphere is relatively well known, the influence of the more frequent weak volcanic activity, including passive degassing, on the tropospheric aerosol properties and on the radiation budget is still largely unknown. Most of the radiative effects of moderate eruptions are associated with changes of the aerosol size distribution, composition, and shape. Emission of primary particles, mainly ash, and secondary aerosols through gas-to-particle conversion of volatile sulphur compounds contribute to affect the aerosol properties. Mount Etna's continuous degassing and episodic explosive eruptions is an important source of particles and gases for the Mediterranean atmosphere, with, e.g., ten times larger emissions of volatile sulphur compounds than the anthropogenic sulphur emissions in the Mediterranean area. The impact of Mount Etna on the atmospheric composition, the aerosol chemical, microphysical and optical properties, the clouds occurrence and properties, the radiative balance and the regional climate in the Mediterranean are not known and probably underestimated. In this contribution, the downwind impact of Mount Etna's sulphur emissions in the central Mediterranean is estimated over the period 2000-2013 using long-term series of sulphur dioxide column and Ångströms exponent observations at the the ENEA (Ente Nazionale per l'Energia e l'Ambiente) Station for Climate Observations on the small island of Lampedusa (35.5°N, 12.6°E). These observations are linked to the information on the volcanic source, in terms of 1) the local dynamics, using a long series of trajectories and plume dispersion information obtained with the FLEXPART Lagrangian mode, and 2) the emission strength, using the long-term series of daily sulphur dioxide
Indian Academy of Sciences (India)
Praveen Krishnan; K Srinivasa Ramanujam; C Balaji
2012-08-01
The first step in developing any algorithm to retrieve the atmospheric temperature and humidity parameters at various pressure levels is the simulation of the top of the atmosphere radiances that can be measured by the satellite. This study reports the results of radiative transfer simulations for the multichannel infrared sounder of the proposed Indian satellite INSAT-3D due to be launched shortly. Here, the widely used community software k Compressed Atmospheric Radiative Transfer Algorithm (kCARTA) is employed for performing the radiative transfer simulations. Though well established and benchmarked, kCARTA is a line-by-line solver and hence takes enormous computational time and effort for simulating the multispectral radiances for a given atmospheric scene. This necessitates the development of a much faster and at the same time, equally accurate RT model that can drive a real-time retrieval algorithm. In the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of INSAT-3D. Realistic atmospheric temperature and humidity profiles have been used for training the network. Spectral response functions of GOES-13, a satellite similar in construction, purpose and design and already in use are used. The fast RT model is able to simulate the radiances for 1200 profiles in 18 ms for a 15-channel GOES profile, with a correlation coefficient of over 99%. Finally, the robustness of the model is tested using additional synthetic profiles generated using empirical orthogonal functions (EOF).
Conference on Atmospheric Radiation, 7th, San Francisco, CA, July 23-27, 1990, Preprints
International Nuclear Information System (INIS)
The present conference on atmospheric radiation discusses the Cirrus experiment, cloud climatologies, the earth radiation budget, the surface radiation budget, remote sensing, radiative transfer, arctic clouds and aerosols, and clouds and radiation. Attention is given to the results of the FIRE Marine Stratocumulus Observations, cirrus cloud properties derived from satellite radiances during FIRE, the dimension of a cloud's boundary, and satellite observations of cirrus clouds. Topics addressed include the seasonal variation of the diurnal cycles of the earth's radiation budget determined from ERBE, estimation of the outgoing longwave flux from NOAA AVHRR satellite observations, a comparison of observed and modeled longwave radiances, and climate monitoring using radiative entropy from ERB observations. Also discussed are approximations to the diffuse radiative properties of cloud layers, the greenhouse potential of other trace gases relative to CO2, global surface albedos estimated from ERBE data, and the energy exchange in a tropical rain forest
Plasma effects in high frequency radiative transfer
International Nuclear Information System (INIS)
This paper is intended as a survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma. We are rapidly approaching an era when this subject will become important in the laboratory. For pedagogical reasons we have chosen to examine plasma processes by relating them to a particular reference plasma which will consist of fully ionized carbon at a temperature kT=1 KeV (1070K) and an electron density N = 3 x 1023cm-3, (which corresponds to a mass density rho = 1 gm/cm3 and an ion density N/sub i/ = 5 x 1022 cm-3). We will consider the transport in such a plasma of photons ranging from 1 eV to 1 KeV in energy. Such photons will probably be frequently used as diagnostic probes of hot dense laboratory plasmas
Xin, Q.; Gong, P.; Li, W.
2015-02-01
Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.
Simulation of solar radiative transfer in cumulus clouds
Energy Technology Data Exchange (ETDEWEB)
Zuev, V.E.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)
1996-04-01
This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.
Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method
Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.
2005-01-01
The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.
The limitations of time in atmospheric transfer models
International Nuclear Information System (INIS)
Atmospheric transfer models must be specific to the modelling situation, and the timescale of the problem is important in deriving the model. In the nuclear industry, radionuclides could be released to the atmosphere over a large range of times, depending on the source. These timescales range from seconds, in the case of a puff of radionuclides accidently emitted from a reactor, to many thousands of years in the disposal of nuclear fuel waste. The half-life of the radionuclide partially determines the timescale of its importance, but practical considerations also determine the timescales that must be considered in the transfer models. Here, we give an overview of some of the processes and timescales that need to be considered in four radionuclide release scenarios: an emergency release from a reactor (minutes to hours), routine reactor release (annual average), suspension from an area contaminated previously by a reactor release or groundwater plume (years to decades) and disposal of nuclear fuel wastes (thousands of years). In all cases, atmospheric turbulence is an important driving force. However, detailed turbulence information is not helpful in the assessment of long-term releases, and simpler parameterizations must be used. For very long times, statistical and probabilistic models incorporate averaging, uncertainty and variability, and are superior to physically based models of atmospheric motions. (author)
MODTRAN4: radiative transfer modeling for remote sensing
Anderson, Gail P.; Berk, Alexander; Acharya, Prabhat K.; Matthew, Michael W.; Bernstein, Lawrence S.; Chetwynd, James H., Jr.; Dothe, H.; Adler-Golden, Steven M.; Ratkowski, Anthony J.; Felde, Gerald W.; Gardner, James A.; Hoke, Michael L.; Richtsmeier, Steven C.; Pukall, Brian; Mello, Jason B.; Jeong, Laila S.
1999-12-01
MODTRAN4, the newly released version of the U.S. Air Force atmospheric transmission, radiance and flux model is being developed jointly by the Air Force Research Laboratory/Space Vehicles Directorate and Spectral Sciences, Inc. It is expected to provide the accuracy required for analyzing spectral data for both atmospheric and surface characterization. These two quantities are the subject of satellite and aircraft campaigns currently being developed and pursued by, for instance: NASA (Earth Observing System), NPOESS (National Polar Orbiting Environmental Satellite System), and the European Space Agency (GOME--Global Ozone Monitoring Experiment). Accuracy improvements in MODTRAN relate primarily to two major developments: (1) the multiple scattering algorithms have been made compatible with the spectroscopy by adopting a corrected-k approach to describe the statistically expected transmittance properties for each spectral bin and atmospheric layer, and (2) radiative transfer calculations can be conducted with a Beer-Lambert formulation that improves the treatment of path inhomogeneities. Other code enhancements include the incorporation of solar azimuth dependence in the DISORT- based multiple scattering model, the introduction of surface BRDF (Bi-directional Radiance Distribution Functions) models and 15 cm-1 band model for improved computational speed.
Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007
Energy Technology Data Exchange (ETDEWEB)
LR Roeder
2007-12-01
This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.
Development of a Monte-Carlo Radiative Transfer Code for the Juno/JIRAM Limb Measurements
Sindoni, G.; Adriani, A.; Mayorov, B.; Aoki, S.; Grassi, D.; Moriconi, M.; Oliva, F.
2013-09-01
The Juno/JIRAM instrument will acquire limb spectra of the Jupiter atmosphere in the infrared spectral range. The analysis of these spectra requires a radiative transfer code that takes into account the multiple scattering by particles in a spherical-shell atmosphere. Therefore, we are developing a code based on the Monte-Carlo approach to simulate the JIRAM observations. The validation of the code was performed by comparison with DISORT-based codes.
Theory of radiative transfer models applied in optical remote sensing of vegetation canopies.
Verhoef, W.
1998-01-01
In this thesis the work of the author on the modelling of radiative transfer in vegetation canopies and the terrestrial atmosphere is summarized. The activities span a period of more than fifteen years of research in this field carried out at the National Aerospace Laboratory NLR.For the interpretat
Levis, Aviad; Aides, Amit; Davis, Anthony B
2015-01-01
This paper introduces a method to preform optical tomography, using 3D radiative transfer as the forward model. We use an iterative approach predicated on the Spherical Harmonics Discrete Ordinates Method (SHDOM) to solve the optimization problem in a scalable manner. We illustrate with an application in remote sensing of a cloudy atmosphere.
Four-stream Radiative Transfer Parameterization Scheme in a Land Surface Process Model
Institute of Scientific and Technical Information of China (English)
ZHOU Wenyan; GUO Pinwen; LUO Yong; Kuo-Nan LIOU; Yu GU; Yongkang XUE
2009-01-01
Accurate estimates of albedos are required in climate modeling. Accurate and simple schemes for radiative transfer within canopy are required for these estimates, but severe limitations exist. This paper developed a four-stream solar radiative transfer model and coupled it with a land surface process model. The radiative model uses a four-stream approximation method as in the atmosphere to obtain analytic solutions of the basic equation of canopy radiative transfer. As an analytical model, the four-stream radiative transfer model can be easily applied efficiently to improve the parameterization of land surface radiation in climate models. Our four-stream solar radiative transfer model is based on a two-stream short wave radiative transfer model. It can simulate short wave solar radiative transfer within canopy according to the relevant theory in the atmosphere. Each parameter of the basic radiative transfer equation of canopy has special geometry and optical characters of leaves or canopy. The upward or downward radiative fluxes are related to the diffuse phase function, the G-function, leaf reflectivity and transmission, leaf area index, and the solar angle of the incident beam.The four-stream simulation is compared with that of the two-stream model. The four-stream model is proved successful through its consistent modeling of canopy albedo at any solar incident angle. In order to compare and find differences between the results predicted by the four-and two-stream models, a number of numerical experiments are performed through examining the effects of different leaf area indices, leaf angle distributions, optical properties of leaves, and ground surface conditions on the canopy albcdo. Parallel experiments show that the canopy albedos predicted by the two models differ significantly when the leaf angle distribution is spherical and vertical. The results also show that the difference is particularly great for different incident solar beams.One additional
Polar firn layering in radiative transfer models
Linow, Stefanie; Hoerhold, Maria
2016-04-01
For many applications in the geosciences, remote sensing is the only feasible method of obtaining data from large areas with limited accessibility. This is especially true for the cryosphere, where light conditions and cloud coverage additionally limit the use of optical sensors. Here, instruments operating at microwave frequencies become important, for instance in polar snow parameters / SWE (snow water equivalent) mapping. However, the interaction between snow and microwave radiation is a complex process and still not fully understood. RT (radiative transfer) models to simulate snow-microwave interaction are available, but they require a number of input parameters such as microstructure and density, which are partly ill-constrained. The layering of snow and firn introduces an additional degree of complexity, as all snow parameters show a strong variability with depth. Many studies on RT modeling of polar firn deal with layer variability by using statistical properties derived from previous measurements, such as the standard deviations of density and microstructure, to configure model input. Here, the variability of microstructure parameters, such as density and particle size, are usually assumed to be independent of each other. However, in the case of the firn pack of the polar ice sheets, we observe that microstructure evolution depends on environmental parameters, such as temperature and snow deposition. Accordingly, density and microstructure evolve together within the snow and firn. Based on CT (computer tomography) microstructure measurements of antarctic firn, we can show that: first, the variability of density and effective grain size are linked and can thus be implemented in the RT models as a coupled set of parameters. Second, the magnitude of layering is captured by the measured standard deviation. Based on high-resolution density measurements of an Antarctic firn core, we study the effect of firn layering at different microwave wavelengths. By means of
Diffuse Sky Radiation in a Dry Turbid Atmosphere
R. A. Gupta; B. K. Agarwal
1984-01-01
Development of a simple method for the assessment of atmospheric turbidity all over the country in all seasons has been attempted. We have been able to derive a reasonably reliable equation relating diffuse sky radiation Dr on a horizontal surface to air mass mr and Angstrom Schuepp turbidity coefficient B, in a dry atmosphere with constant albedo (A = 0.25) of the terrain.
International Nuclear Information System (INIS)
The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.
A downscaling scheme for atmospheric variables to drive soil-vegetation-atmosphere transfer models
Schomburg, A.; Venema, V.; Lindau, R.; Ament, F.; Simmer, C.
2010-09-01
For driving soil-vegetation-transfer models or hydrological models, high-resolution atmospheric forcing data is needed. For most applications the resolution of atmospheric model output is too coarse. To avoid biases due to the non-linear processes, a downscaling system should predict the unresolved variability of the atmospheric forcing. For this purpose we derived a disaggregation system consisting of three steps: (1) a bi-quadratic spline-interpolation of the low-resolution data, (2) a so-called `deterministic' part, based on statistical rules between high-resolution surface variables and the desired atmospheric near-surface variables and (3) an autoregressive noise-generation step. The disaggregation system has been developed and tested based on high-resolution model output (400m horizontal grid spacing). A novel automatic search-algorithm has been developed for deriving the deterministic downscaling rules of step 2. When applied to the atmospheric variables of the lowest layer of the atmospheric COSMO-model, the disaggregation is able to adequately reconstruct the reference fields. Applying downscaling step 1 and 2, root mean square errors are decreased. Step 3 finally leads to a close match of the subgrid variability and temporal autocorrelation with the reference fields. The scheme can be applied to the output of atmospheric models, both for stand-alone offline simulations, and a fully coupled model system.
A 3D radiative transfer framework: XI. multi-level NLTE
Hauschildt, Peter H
2014-01-01
Multi-level non-local thermodynamic equilibrium (NLTE) radiation transfer calculations have become standard throughout the stellar atmospheres community and are applied to all types of stars as well as dynamical systems such as novae and supernovae. Even today spherically symmetric 1D calculations with full physics are computationally intensive. We show that full NLTE calculations can be done with fully 3 dimensional (3D) radiative transfer. With modern computational techniques and current massive parallel computational resources, full detailed solution of the multi-level NLTE problem coupled to the solution of the radiative transfer scattering problem can be solved without sacrificing the micro physics description. We extend the use of a rate operator developed to solve the coupled NLTE problem in spherically symmetric 1D systems. In order to spread memory among processors we have implemented the NLTE/3D module with a hierarchical domain decomposition method that distributes the NLTE levels, radiative rates,...
Polymers under ionizing radiation: the study of energy transfers to radiation induced defects
International Nuclear Information System (INIS)
Radiation-induced defects created in polymers submitted to ionizing radiations, under inert atmosphere, present the same trend as a function of the dose. When the absorbed dose increases, their concentrations increase then level off. This behavior can be assigned to energy transfers from the polymer to the previously created macromolecular defects; the latter acting as energy sinks. During this thesis, we aimed to specify the influence of a given defect, namely the trans-vinylene, in the behavior of polyethylene under ionizing radiations. For this purpose, we proposed a new methodology based on the specific insertion, at various concentrations, of trans-vinylene groups in the polyethylene backbone through chemical synthesis. This enables to get rid of the variety of created defects on one hand and on the simultaneity of their creation on the other hand. Modified polyethylenes, containing solely trans-vinylene as odd groups, were irradiated under inert atmosphere, using either low LET beams (gamma, beta) or high LET beams (swift heavy ions). During irradiations, both macromolecular defects and H2 emission were quantified. According to experimental results, among all defects, the influence of the trans-vinylene on the behavior of polyethylene is predominant. (author)
Application of ray tracing in radiation heat transfer
Baumeister, Joseph F.
1993-01-01
This collection of presentation figures displays the capabilities of ray tracing for radiation propagation calculations as compared to an analytical approach. The goal is to introduce the terminology and solution process used in ray tracing, and provide insight into radiation heat transfer principles and analysis tools. A thermal analysis working environment is introduced that solves demanding radiation heat transfer problems based on ray tracing. This information may serve as a reference for designing and building ones own analysis environment.
Sunrise: Polychromatic Dust Radiative Transfer in Arbitrary Geometries
Jonsson, Patrik
2006-01-01
This paper describes Sunrise, a parallel, free Monte-Carlo code for the calculation of radiation transfer through astronomical dust. Sunrise uses an adaptive-mesh refinement grid to describe arbitrary geometries of emitting and absorbing/scattering media, with spatial dynamical range exceeding 10^4, and it can efficiently generate images of the emerging radiation at arbitrary points in space. In addition to the monochromatic radiative transfer typically used by Monte-Carlo codes, Sunrise is c...
Study on radiation transfer in human skin for cosmetics
International Nuclear Information System (INIS)
In order to design cosmetics producing the optical properties that are required for a beautiful skin, the radiation transfer in the skin has been numerically investigated by the Monte Carlo method and the effects of skin texture and cosmetics on the radiation transfer have been empirically investigated using an artificial skin. The numerical analysis showed that the total internal reflection suppresses large portion of radiation going out through the skin surface Additionally, the experimental study revealed that skin texture and cosmetics not only diffusely reflect the incoming radiation, but also lead the internally reflected radiation to the outside of the skin
Study on radiation transfer in human skin for cosmetics
Yamada, Jun; Kawamura, Ayumu; Miura, Yoshimasa; Takata, Sadaki; Ogawa, Katsuki
2005-06-01
In order to design cosmetics producing the optical properties that are required for a beautiful skin, the radiation transfer in the skin has been numerically investigated by the Monte Carlo method and the effects of skin texture and cosmetics on the radiation transfer have been empirically investigated using an artificial skin. The numerical analysis showed that the total internal reflection suppresses large portion of radiation going out through the skin surface Additionally, the experimental study revealed that skin texture and cosmetics not only diffusely reflect the incoming radiation, but also lead the internally reflected radiation to the outside of the skin.
FORLI radiative transfer and retrieval code for IASI
International Nuclear Information System (INIS)
This paper lays down the theoretical bases and the methods used in the Fast Optimal Retrievals on Layers for IASI (FORLI) software, which is developed and maintained at the “Université Libre de Bruxelles” (ULB) with the support of the “Laboratoire Atmosphères, Milieux, Observations Spatiales” (LATMOS) to process radiance spectra from the Infrared Atmospheric Sounding Interferometer (IASI) in the perspective of local to global chemistry applications. The forward radiative transfer model (RTM) and the retrieval approaches are formulated and numerical approximations are described. The aim of FORLI is near-real-time provision of global scale concentrations of trace gases from IASI, either integrated over the altitude range of the atmosphere (total columns) or vertically resolved. To this end, FORLI uses precalculated table of absorbances. At the time of writing three gas-specific versions of this algorithm have been set up: FORLI-CO, FORLI-O3 and FORLI-HNO3. The performances of each are reviewed and illustrations of results and early validations are provided, making the link to recent scientific publications. In this paper we stress the challenges raised by near-real-time processing of IASI, shortly describe the processing chain set up at ULB and draw perspectives for future developments and applications.
A Multiple Scattering Polarized Radiative Transfer Model: Application to HD 189733b
Kopparla, Pushkar; Zhang, Xi; Swain, Mark R; Wiktorowicz, Sloane J; Yung, Yuk L
2015-01-01
We present a multiple scattering vector radiative transfer model which produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet's atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partial...
A Radiative Transfer Simulation of Water Rotational Excitation in Comets
Zakharov, V.; Biver, N.; Bockelee-Morvan, D.; Crovisier, J.; Lecacheux, A.
2005-08-01
In order to interpret comet observations of the 557 GHz water line performed with the Odin satellite (e.g., Lecacheux et al. 2003, A&A, 402, 55), we have developed a numerical model for the simulation of optically thick water rotational emission in cometary coma. For the treatment of radiative transfer, we have elaborated a Monte Carlo code based on the accelerated lambda iteration algorithm presented in Hogerheijde and van der Tak (2000, A&A, 362, 697). The model assumes a spherically symmetric density distribution with constant expansion velocity. It includes the seven lowest rotational levels of ortho-water, which are the primarily populated levels in the rotationally cold gas of the coma. Collisions with water and electrons, and infrared pumping, are taken into account. The model is similar to that presented by Bensch and Bergin (2004, ApJ, 615, 531). We compared the results obtained with this new model with those obtained by the model of Bockelee-Morvan (1987, A&A, 181, 169). Bockelee-Morvan used the escape probability formalism to treat radiation trapping, which is in principle only valid for large velocity gradients. Surprisingly, the results of both models differ only by a few percent, showing that the escape probability formalism can be used with good confidence to treat rotational excitation in cometary atmospheres. This model will allow us to prepare future observations by the ESA Herschel Space Observatory. V.Zakharov acknowledges financial support from CNES.
A spectroscopic transfer standard for accurate atmospheric CO measurements
Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker
2016-04-01
Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been
Early warning of atmospheric regime transitions using transfer operators
Tantet, Alexis; Dijkstra, Henk
2015-04-01
The existence of persistent midlatitude atmospheric regimes, such as blocking events, with time scales larger than 5-10 days and indications of preferred transition paths between them motivates the development of early-warning indicators of regime transitions. Here, we use a barotropic model of the northern midlatitudes winter flow to study such meta-stable regimes. We look at estimates of transfer operators acting on densities evolving on a reduced phase space spanned by the first Empirical Orthogonal Functions of the streamfunction and develop an early-warning indicator of zonal to blocked flow transition. The study of the spectra of transfer operators estimated for different lags reveals a multi-level structure in the flow as well as the effect of memory on the reduced dynamics due to past interactions between the resolved and unresolved variables. The slowest motions in the reduced phase space are thereby found to have time scales larger than 8 days and to behave as Markovian for larger lags. These motions are associated with meta-stable regimes and their transitions and can be detected as almost-invariant sets of the transfer operator. The early-warning indicator is based on the action on an initial density of products of the transfer operators estimated for sufficiently long lags, making use of the semi-group property of these operators and shows relatively good Peirce skill score. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths as the manifestation of barotropic instability. Finally, even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty.
Submandibular salivary gland transfer prevents radiation-induced xerostomia
International Nuclear Information System (INIS)
Background: Xerostomia is a significant morbidity of radiation therapy in the management of head and neck cancers. We hypothesized that the surgical transfer of one submandibular salivary gland to submental space, outside the proposed radiation field, prior to starting radiation treatment, would prevent xerostomia. Methods: We are conducting a prospective clinical trial where the submandibular gland is transferred as part of the surgical intervention. The patients are followed clinically, with salivary flow studies and University of Washington quality of life questionnaire. Results: We report early results of 16 patients who have undergone this procedure. Seven patients have finished and 2 patients are currently undergoing radiation treatment. In 2 patients, no postoperative radiation treatment was indicated. Two patients are waiting to start radiation treatment and 2 patients refused treatment after surgery. The surgical transfer was abandoned in 1 patient. All of the transferred salivary glands were positioned outside the proposed radiation fields and were functional. The patients did not complain of any xerostomia and developed only minimal oral mucositis. There were no surgical complications. Conclusions: Surgical transfer of a submandibular salivary gland to the submental space (outside the radiation field) preserves its function and prevents the development of radiation-induced xerostomia
International Nuclear Information System (INIS)
The document covers a historical compilation on research into atmospheric radiation from 1896 to 2008. The first part is a brief history of the radiation commissions of IMO (International Meteorological Organization) and IUGG (International Union of Geodesy and Geophysics) for the period 1824 to 1948. Part 2 Covers the International Radiation Commission (IRC) of IAM (International Association of Meteorology)/IAMAS (International Association of Meteorology and Atmospheric Sciences)/IAMAP (International Association of Meteorology and Atmospheric Physics); the Re-constitution of the IUGG Radiation Commision, the Officers of the International Radiation Commission of IUUG 1948-2008, and the activities of the Radiation Commision of the IUGG 1948-2008. The appendices include the Radiation Commission Members, the summaries of presented papers from 1954 and 1957, the IRC publications, and acronyms
Energy Technology Data Exchange (ETDEWEB)
Bolle, H.J. (comp.); Moeller, F.; London, J.
2008-05-15
The document covers a historical compilation on research into atmospheric radiation from 1896 to 2008. The first part is a brief history of the radiation commissions of IMO (International Meteorological Organization) and IUGG (International Union of Geodesy and Geophysics) for the period 1824 to 1948. Part 2 Covers the International Radiation Commission (IRC) of IAM (International Association of Meteorology)/IAMAS (International Association of Meteorology and Atmospheric Sciences)/IAMAP (International Association of Meteorology and Atmospheric Physics); the Re-constitution of the IUGG Radiation Commision, the Officers of the International Radiation Commission of IUUG 1948-2008, and the activities of the Radiation Commision of the IUGG 1948-2008. The appendices include the Radiation Commission Members, the summaries of presented papers from 1954 and 1957, the IRC publications, and acronyms.
Brown carbon: a significant atmospheric absorber of solar radiation?
Directory of Open Access Journals (Sweden)
Y. Feng
2013-01-01
Full Text Available Several recent observational studies have shown organic carbon aerosols to be a significant source of absorption of solar radiation. The absorbing part of organic aerosols is referred to as brown carbon. Comparisons with observations indicate that model-simulated aerosol absorption is under-estimated in global models, one of the reasons being the neglect of brown carbon. Using a global chemical transport model coupled with a radiative transfer model, we estimate for the first time the enhanced absorption of solar radiation due to "brown" carbon (BrC in a global model. When BrC is included, the simulated wavelength dependence of aerosol absorption, as measured by the Angstrom exponent increases from 0.9 to 1.2 and thus agrees better with AERONET spectral observations at 440–870 nm. The resulting absorbing aerosol optical depth increases by 3–18% at 550 nm and up to 56% at 350 nm. The global simulations suggest that BrC contributes up to +0.25 W m^{−2} or 19% of the absorption by anthropogenic aerosols, of which 72% is attributed to black carbon, and 9% is due to sulfate and non-absorbing organic aerosols coated on black carbon. Like black carbon, the overall forcing of BrC at the top of the atmosphere (TOA is a warming effect (+0.11 W m^{−2}, while the effect at the surface is a reduction or dimming (−0.14 W m^{−2}. Because of the inclusion of BrC in our model, the direct radiative effect of organic carbonaceous aerosols changes from cooling (−0.08 W m^{−2} to warming (+0.025 W m^{−2} at the TOA, on a global mean basis. Over source regions and above clouds, the absorption of BrC is more significant and thus can play an important role in photochemistry and the hydrologic cycle.
Brown carbon: a significant atmospheric absorber of solar radiation?
Directory of Open Access Journals (Sweden)
Y. Feng
2013-09-01
Full Text Available Several recent observational studies have shown organic carbon aerosols to be a significant source of absorption of solar radiation. The absorbing part of organic aerosols is referred to as "brown" carbon (BrC. Using a global chemical transport model and a radiative transfer model, we estimate for the first time the enhanced absorption of solar radiation due to BrC in a global model. The simulated wavelength dependence of aerosol absorption, as measured by the absorption Ångström exponent (AAE, increases from 0.9 for non-absorbing organic carbon to 1.2 (1.0 for strongly (moderately absorbing BrC. The calculated AAE for the strongly absorbing BrC agrees with AERONET spectral observations at 440–870 nm over most regions but overpredicts for the biomass burning-dominated South America and southern Africa, in which the inclusion of moderately absorbing BrC has better agreement. The resulting aerosol absorption optical depth increases by 18% (3% at 550 nm and 56% (38% at 380 nm for strongly (moderately absorbing BrC. The global simulations suggest that the strongly absorbing BrC contributes up to +0.25 W m−2 or 19% of the absorption by anthropogenic aerosols, while 72% is attributed to black carbon, and 9% is due to sulfate and non-absorbing organic aerosols coated on black carbon. Like black carbon, the absorption of BrC (moderately to strongly inserts a warming effect at the top of the atmosphere (TOA (0.04 to 0.11 W m−2, while the effect at the surface is a reduction (−0.06 to −0.14 W m−2. Inclusion of the strongly absorption of BrC in our model causes the direct radiative forcing (global mean of organic carbon aerosols at the TOA to change from cooling (−0.08 W m−2 to warming (+0.025 W m−2. Over source regions and above clouds, the absorption of BrC is higher and thus can play an important role in photochemistry and the hydrologic cycle.
A Generalized Layered Radiative Transfer Model in the Vegetation Canopy
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper, a generalized layered model for radiation transfer in canopy with high vertical resolution is developed. Differing from the two-stream approximate radiation transfer model commonly used in the land surface models, the generalized model takes into account the effect of complicated canopy morphology and inhomogeneous optical properties of leaves on radiation transfer within the canopy. In the model, the total leaf area index (LAI) of the canopy is divided into many layers. At a given layer, the influences of diffuse radiation angle distributions and leaf angle distributions on radiation transfer within the canopy are considered. The derivation of equations serving the model are described in detail, and these can deal with various diffuse radiation transfers in quite broad categories of canopy with quite inhomogeneous vertical structures and uneven leaves with substantially different optical properties of adaxial and abaxial faces of the leaves. The model is used to simulate the radiation transfer for canopies with horizontal leaves to validate the generalized model. Results from the model are compared with those from the two-stream scheme, and differences between these two models are discussed.
Radiative transfer during the reflooding step of a LOCA
International Nuclear Information System (INIS)
Within the evaluation of the heat transfer downstream a quench front during the reflood phase of a Loss of Coolant Accident (LOCA) in a nuclear power plant, a numerical study has been conducted on radiative transfer through a vapor–droplet medium. The non-grey behavior of the medium is obvious since it can be optically thin or thick depending on the wavelength. A six wide bands model has been tested, providing a satisfactory accuracy for the description of the radiative properties. Once the radiative properties of the medium computed, they have been introduced in a model solving the radiative heat transfer based on the Improved Differential Approximation. The fluxes and the flux divergence have been computed on a geometry characteristic of the reactor core showing that radiative transfer plays a relevant role, quite as important as convective heat transfer. -- Highlights: ► Radiation during a Loss of Coolant Accident in a nuclear reactor is studied. ► Radiative transfer is involved in a high temperature vapor–droplet mixing. ► RTE is solved in a 3D configuration using an IDA-T4 method. ► Flux and flux divergence are computed in various situations. ► The effects of quadrature and spectral resolution are discussed
Xin, Q; P. Gong; Li, W.
2015-01-01
Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geomet...
Further considerations of cosmic ray modulation of infra-red radiation in the atmosphere
Aplin, Karen
2015-01-01
Understanding effects of ionisation in the lower atmosphere is a new interdisciplinary area, crossing traditionally distinct scientific boundaries. Following the paper of Erlykin et al. (Astropart. Phys. 57--58 (2014) 26--29) we develop the interpretation of observed changes in long-wave (LW) radiation (Aplin and Lockwood, Env. Res. Letts. 8, 015026 (2013)), by taking account of cosmic ray ionisation yields and atmospheric radiative transfer. To demonstrate this, we show that the thermal structure of the whole atmosphere needs to be considered along with the vertical profile of ionisation. Allowing for ionisation by all components of a cosmic ray shower and not just by the muons, reveals that the effect we have detected is certainly not inconsistent with laboratory observations of the LW absorption cross section. The analysis presented here, although very different from that of Erlykin et al., does come to the same conclusion that the events detected were not caused by individual cosmic ray primaries -- not b...
Diffuse Sky Radiation in a Dry Turbid Atmosphere
Directory of Open Access Journals (Sweden)
R. A. Gupta
1984-07-01
Full Text Available Development of a simple method for the assessment of atmospheric turbidity all over the country in all seasons has been attempted. We have been able to derive a reasonably reliable equation relating diffuse sky radiation Dr on a horizontal surface to air mass mr and Angstrom Schuepp turbidity coefficient B, in a dry atmosphere with constant albedo (A = 0.25 of the terrain.
Transport of Ionizing Radiation in Terrestrial-like Exoplanet Atmospheres
Smith, David S.; Scalo, John; Wheeler, J. Craig
2003-01-01
(Abridged) The propagation of ionizing radiation through model atmospheres of terrestrial-like exoplanets is studied for a large range of column densities and incident photon energies using a Monte Carlo code we have developed to treat Compton scattering and photoabsorption. Incident spectra from parent star flares, supernovae, and gamma-ray bursts are modeled and compared to energetic particles in importance. We find that terrestrial-like exoplanets with atmospheres thinner than about 100 g ...
grtrans: Polarized general relativistic radiative transfer via ray tracing
Dexter, Jason
2016-05-01
grtrans calculates ray tracing radiative transfer in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics, for comparing theoretical models of black hole accretion flows and jets with observations. The code is written in Fortran 90 and parallelizes with OpenMP; the full code and several components have Python interfaces. grtrans includes Geokerr (ascl:1011.015) and requires cfitsio (ascl:1010.001) and pyfits (ascl:1207.009).
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffrey D [Los Alamos National Laboratory; Kelly, Thompson G [Los Alamos National Laboratory; Urbatish, Todd J [Los Alamos National Laboratory
2010-11-17
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.
Transfer of polarized light in planetary atmospheres basic concepts and practical methods
Hovenier, Joop W; Domke, Helmut
2004-01-01
The principal elements of the theory of polarized light transfer in planetary atmospheres are expounded in a systematic but concise way. Basic concepts and practical methods are emphasized, both for single and multiple scattering of electromagnetic radiation by molecules and particles in the atmospheres of planets in the Solar System, including the Earth, and beyond. A large part of the book is also useful for studies of light scattering by particles in comets, the interplanetary and interstellar medium, circumstellar disks, reflection nebulae, water bodies like oceans and suspensions of particles in a gas or liquid in the laboratory. Throughout the book symmetry principles, such as the reciprocity principle and the mirror symmetry principle, are employed. In this way the theory is made more transparent and easier to understand than in most papers on the subject. In addition, significant computational reductions, resulting from symmetry principles, are presented. Hundreds of references to relevant literature ...
Atmospheric transmittance model for photosynthetically active radiation
Energy Technology Data Exchange (ETDEWEB)
Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana [Physics Department, West University of Timisoara, V Parvan 4, 300223 Timisoara (Romania); Pop, Nicolina [Department of Physical Foundations of Engineering, Politehnica University of Timisoara, V Parvan 2, 300223 Timisoara (Romania); Calinoiu, Delia [Mechanical Engineering Faculty, Politehnica University of Timisoara, Mihai Viteazu 1, 300222 Timisoara (Romania)
2013-11-13
A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.
Haus, R.; Kappel, D.; Arnold, G.
2015-11-01
A sophisticated radiative transfer model that considers absorption, emission, and multiple scattering by gaseous and particulate constituents over the broad spectral range 0.125-1000 μm is applied to calculate radiative fluxes and temperature change rates in the middle and lower atmosphere of Venus (0-100 km). Responses of these quantities to spectroscopic and atmospheric parameter variations are examined in great detail. Spectroscopic parameter studies include the definition of an optimum spectral grid for monochromatic calculations as well as comparisons for different input data with respect to spectral line databases, continuum absorption, line shape factors, and solar irradiance spectra. Atmospheric parameter studies are based on distinct variations of an initial model data set. Analyses of actual variations of the radiative energy budget using atmospheric features that have been recently retrieved from Venus Express data will be subject of a subsequent paper. The calculated cooling (heating) rates are very reliable at altitudes below 95 (85) km with maximum uncertainties of about 0.25 K/day. Heating uncertainties may reach 3-5 K/day at 100 km. Using equivalent Planck radiation as solar insolation source in place of measured spectra is not recommended. Cooling rates strongly respond to variations of atmospheric thermal structure, while heating rates are less sensitive. The influence of mesospheric minor gas variations is small, but may become more important near the cloud base and in case of episodic SO2 boosts. Responses to cloud mode 1 particle abundance changes are weak, but variations of other mode parameters (abundances, cloud top and base altitudes) may significantly alter radiative temperature change rates up to 50% in Venus' lower mesosphere and upper troposphere. A new model for the unknown UV absorber for two altitude domains is proposed. It is not directly linked to cloud particle modes and permits an investigation of radiative effects regardless of
HELIOS: A new open-source radiative transfer code
Malik, Matej; Grosheintz, Luc; Lukas Grimm, Simon; Mendonça, João; Kitzmann, Daniel; Heng, Kevin
2015-12-01
I present the new open-source code HELIOS, developed to accurately describe radiative transfer in a wide variety of irradiated atmospheres. We employ a one-dimensional multi-wavelength two-stream approach with scattering. Written in Cuda C++, HELIOS uses the GPU’s potential of massive parallelization and is able to compute the TP-profile of an atmosphere in radiative equilibrium and the subsequent emission spectrum in a few minutes on a single computer (for 60 layers and 1000 wavelength bins).The required molecular opacities are obtained with the recently published code HELIOS-K [1], which calculates the line shapes from an input line list and resamples the numerous line-by-line data into a manageable k-distribution format. Based on simple equilibrium chemistry theory [2] we combine the k-distribution functions of the molecules H2O, CO2, CO & CH4 to generate a k-table, which we then employ in HELIOS.I present our results of the following: (i) Various numerical tests, e.g. isothermal vs. non-isothermal treatment of layers. (ii) Comparison of iteratively determined TP-profiles with their analytical parametric prescriptions [3] and of the corresponding spectra. (iii) Benchmarks of TP-profiles & spectra for various elemental abundances. (iv) Benchmarks of averaged TP-profiles & spectra for the exoplanets GJ1214b, HD189733b & HD209458b. (v) Comparison with secondary eclipse data for HD189733b, XO-1b & Corot-2b.HELIOS is being developed, together with the dynamical core THOR and the chemistry solver VULCAN, in the group of Kevin Heng at the University of Bern as part of the Exoclimes Simulation Platform (ESP) [4], which is an open-source project aimed to provide community tools to model exoplanetary atmospheres.-----------------------------[1] Grimm & Heng 2015, ArXiv, 1503.03806[2] Heng, Lyons & Tsai, Arxiv, 1506.05501Heng & Lyons, ArXiv, 1507.01944[3] e.g. Heng, Mendonca & Lee, 2014, ApJS, 215, 4H[4] exoclime.net
Direct collocation meshless method for vector radiative transfer in scattering media
International Nuclear Information System (INIS)
A direct collocation meshless method based on a moving least-squares approximation is presented to solve polarized radiative transfer in scattering media. Contrasted with methods such as the finite volume and finite element methods that rely on mesh structures (e.g. elements, faces and sides), meshless methods utilize an approximation space based only on the scattered nodes, and no predefined nodal connectivity is required. Several classical cases are examined to verify the numerical performance of the method, including polarized radiative transfer in atmospheric aerosols and clouds with phase functions that are highly elongated in the forward direction. Numerical results show that the collocation meshless method is accurate, flexible and effective in solving one-dimensional polarized radiative transfer in scattering media. Finally, a two-dimensional case of polarized radiative transfer is investigated and analyzed. - Highlights: • A direct collocation meshless method (DCM) is developed to solve VRTE. • The DCM is of high accuracy and excellent stability for solving VRTE. • Polarized radiative transfer with highly angular dependence is simulated exactly
General Relativistic Radiative Transfer: Applications to Black-Hole Systems
Wu, Kinwah; Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Branduardi-Raymont, Graziella; Lee, Khee-Gan
2007-01-01
We present general relativistic radiation transfer formulations which include opacity effects due to absorption, emission and scattering explicitly. We consider a moment expansions for the transfer in the presence of scattering. The formulation is applied to calculation emissions from accretion and outflows in black-hole systems. Cases with thin accretion disks and accretion tori are considered. Effects, such as emission anisotropy, non-stationary flows and geometrical self-occultation are investigated. Polarisation transfer in curved space-time is discussed qualitatively.
Surface-Phonon Polariton Contribution to Nanoscale Radiative Heat Transfer.
Rousseau, Emmanuel; Laroche, Marine; Greffet, Jean-Jacques
2009-01-01
Heat transfer between two plates of polar materials at nanoscale distance is known to be enhanced by several orders of magnitude as compared with its far-field value. In this article, we show that nanoscale heat transfer is dominated by the coupling between surface phonon-polaritons located on each interface. Furthermore, we derive an asymptotic closed-form expression of the radiative heat transfer between two polar materials in the near-field regime. We study the temperature dependence of th...
Exchange of moisture between atmosphere and ground regarding tritium transfer
International Nuclear Information System (INIS)
Two measuring equipment have been developed in the framework of this study which fulfill important conditions to avoid microclimatic interferences during measurement by using site-specific ground samples and embedding these in the ground surface. The beta-absorption lysimeter allows the detection of a minimum deposit height of 0.001 mm in a 1 mm sample layer. The conductivity moisture probe is to measure the moisture diffusion within the first 80 mm of the upper ground with a vertical spacial resolution of 2 mm. It is possible to measure a minimum water content increase of 0.02 wt% per 2 mm ground layer using this probe. The influences of single microclimatic parameter on condensation and evaporation were investigated and a transport equation was developed. Investigations in the Negev proved the application ability of the measuring equipment. The application of the transport equation showed very good agreement with the measured values. When the ground surface starts to cool in the afternoon, there is a countercurrent moisture transport from the atmosphere and the deeper ground layers which lead to a higher water content in the upper ground layer. At about 50 mm depth there is an overlapping layer of the two moisture flows which remains almost constant over the 24 h cycle. This exchange zone of atmospheric humidity and ground water must be paid great attention with regard to HTO transfer. (orig./HP)
The distribution, atmospheric transfer, and assessment of krypton-85
International Nuclear Information System (INIS)
Techniques for sampling and measuring krypton-85 have been developed which allowed to determine its geographical distribution. From its use as a tracer, an evaluation of the air masses which cross over the subtropical fronts has been derived. Besides, the stratospheric character of air pollution by krypton-85 at the level of the antarctic soil has been shown out. Levels of krypton-85 seem to point out to an underestimation of the assessment of nuclear explosion fission energies as adopted by the United Nations Scientific committee on the effects of atomic radiation and emphasize the need to set limits as soon as possible to the amounts of krypton-85 released to the atmosphere by fuel-reprocessing plants. (author)
Radiative transfer in cylindrical threads with incident radiation. VII. Multi-thread models
Labrosse, N.; Rodger, A. S.
2016-03-01
Aims: Our aim is to improve on previous radiative transfer calculations in illuminated cylindrical threads to better understand the physical conditions in cool solar chromospheric and coronal structures commonly observed in hydrogen and helium lines. Methods: We solved the radiative transfer and statistical equilibrium equations in a two-dimensional cross-section of a cylindrical structure oriented horizontally and lying above the solar surface. The cylinder is filled with a mixture of hydrogen and helium and is illuminated at a given altitude from the solar disc. We constructed simple models made from a single thread or from an ensemble of several threads along the line of sight. This first use of two-dimensional, multi-thread fine structure modelling combining hydrogen and helium radiative transfer allowed us to compute synthetic emergent spectra from cylindrical structures and to study the effect of line-of-sight integration of an ensemble of threads under a range of physical conditions. We analysed the effects of variations in temperature distribution and in gas pressure. We considered the effect of multi-thread structures within a given field of view and the effect of peculiar velocities between the structures in a multi-thread model. We compared these new models to the single thread model and tested them with varying parameters. Results: The presence of a temperature gradient, with temperature increasing towards the edge of the cylindrical thread, reduces the relative importance of the incident radiation coming from the solar disc on the emergent intensities of most hydrogen and helium lines. We also find that when assuming randomly displaced threads in a given field of view, the integrated intensities of optically thick and thin transitions behave considerably differently. In optically thin lines, the emergent intensity increases proportionally with the number of threads, and the spatial variation of the intensity becomes increasingly homogeneous. Optically
A study of Monte Carlo radiative transfer through fractal clouds
Energy Technology Data Exchange (ETDEWEB)
Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P. [Univ. of California, Santa Barbara, CA (United States)] [and others
1996-04-01
An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.
Radiation curable compositions useful as transfer coatings
International Nuclear Information System (INIS)
The invention is on a method for applying a coating to a thin porous substrate and reducing absorption of the coating into the substrate by applying a radiation-curable composition to a carrying web; the radiation-curable coating composition having a crosslink density of 0.02 to about 1.0 determined by calculation of the gram moles of branch points per 100 grams of uncured coating, and a glass transition temperature of the radiation cured coating within the approximate range of -80 degrees to +100 degrees C. The carrying web being of a nature such that the coating composition, when cured, will not adhere to its surface
The radiation in the atmosphere during major solar particle events
Clucas, Simon N.; Dyer, Clive S.; Lei, Fan
Major solar particle events can give rise to greatly enhanced radiation throughout the entire atmosphere including at aircraft altitudes. These particle events are very hard to predict and their effect on aircraft is difficult to calculate. A comprehensive model of the energetic radiation in the atmosphere has been developed based on a response matrix of the atmosphere to energetic particle incidence. This model has previously been used to determine the spectral form of several ground level neutron events including February 1956 and September/October 1989. Significant validation of the model has been possible using CREAM data flying onboard Concorde during the September/October 1989 events. Further work has been carried out for the current solar maximum, including estimates of the solar particle spectra during the July 2000, April 2001, and October 2003 events and comparisons of predicted atmospheric measurements with limited flight data. Further CREAM data have been obtained onboard commercial airlines and high altitude business jets during quiet time periods. In addition, the atmospheric radiation model, along with solar particle spectra, have been used to calculate the neutron flux and dose rates along several commercial aircraft flight paths including London to Los Angeles. The influence of rigidity cut-off suppression by geomagnetic storms is examined and shows that the received flight dose during disturbed periods can be significantly enhanced compared with quiet periods.
Highly physical penumbra solar radiation pressure modeling with atmospheric effects
Robertson, Robert; Flury, Jakob; Bandikova, Tamara; Schilling, Manuel
2015-10-01
We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth's penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the sub-nm/s2 precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.
Science Plan for the Atmospheric Radiation Measurement Program (ARM)
International Nuclear Information System (INIS)
The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE's programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols
Satellite data sets for the atmospheric radiation measurement (ARM) program
Energy Technology Data Exchange (ETDEWEB)
Shi, L.; Bernstein, R.L. [SeaSpace Corp., San Diego, CA (United States)
1996-04-01
This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.
Monitoring of contamination of atmospheric environment by radiation
International Nuclear Information System (INIS)
Atmospheric pollution has become a worldwide problem regardless of developed industrial nations and developing countries. In particular, the pollution due to automobile exhaust gas, the carcinogenic particles in diesel exhaust and their relation to various respiratory diseases are the problems. Nitrogen oxides and sulfur oxides in exhaust gas become the cause of acid rain. Radiation began to be utilized for the measurement of the concentration of floating particles and the amount of fallout dust, the forecast of the generation and diffusion of pollutants, the elucidation of the contribution of generation sources in wide areas and so on. In this report, the circumstances that radiation became to be utilized for monitoring atmospheric environment and the present status and the perspective of the radiation utilization in the field of the preservation of atmospheric environment are described. The progress of the method of measuring floating particles in Japan is explained. The automatic measurement of floating particles by β-ray absorption method and the application of β-ray absorption method to the measurement of the amount of fallout dust, generation source particles and the exposure to floating particles of individuals for health control are described. The utilization of radiation for real time monitoring, the investigation of the generation of blown-up dust, atmospheric diffusion experiment and the elucidation of the contribution of generation sources by PIXE radioactivation analysis are reported. (K.I.)
Approximate models for broken clouds in stochastic radiative transfer theory
International Nuclear Information System (INIS)
This paper presents approximate models in stochastic radiative transfer theory. The independent column approximation and its modified version with a solar source computed in a full three-dimensional atmosphere are formulated in a stochastic framework and for arbitrary cloud statistics. The nth-order stochastic models describing the independent column approximations are equivalent to the nth-order stochastic models for the original radiance fields in which the gradient vectors are neglected. Fast approximate models are further derived on the basis of zeroth-order stochastic models and the independent column approximation. The so-called “internal mixing” models assume a combination of the optical properties of the cloud and the clear sky, while the “external mixing” models assume a combination of the radiances corresponding to completely overcast and clear skies. A consistent treatment of internal and external mixing models is provided, and a new parameterization of the closure coefficient in the effective thickness approximation is given. An efficient computation of the closure coefficient for internal mixing models, using a previously derived vector stochastic model as a reference, is also presented. Equipped with appropriate look-up tables for the closure coefficient, these models can easily be integrated into operational trace gas retrieval systems that exploit absorption features in the near-IR solar spectrum. - Highlights: • Independent column approximation in a stochastic setting. • Fast internal and external mixing models for total and diffuse radiances. • Efficient optimization of internal mixing models to match reference models
Conversion coefficients for cosmic radiation in the atmosphere
International Nuclear Information System (INIS)
The main purpose of the present calculations was the evaluation of the fluence-to-effective dose conversion coefficients for cosmic radiation in the atmosphere. During their work air crew members are exposed to elevated ionising radiation from cosmic radiation which shall be determined. Cosmic radiation in the Earth's atmosphere exhibits a complex environment consisting of neutrons, protons, photons, electrons, positrons, pions, muons and heavy ions. Their energy range extends up to hundreds of GeV. To calculate the dose components from the particle fluences in the atmosphere, the effective dose conversion coefficients of all particle types produced by the galactic cosmic rays have to be determined. In the high energy range (approximately above 10 MeV) there is only a limited number of data available in the literature. Only INFN (Instituto Nazionale di Fisica Nucleare) in Italy has published a consistent set of fluence-to-effective dose conversion coefficients for all kinds of radiation and incident energies up to 10 TeV, calculated by the FLUKA transport code. The aim of this work is to validate these earlier calculations performed by FLUKA using the high energy code MCNPX and fill in the gaps in the conversion coefficients as a function of particle energy
Theory of radiative transfer models applied in optical remote sensing of vegetation canopies.
Verhoef, W.
1998-01-01
In this thesis the work of the author on the modelling of radiative transfer in vegetation canopies and the terrestrial atmosphere is summarized. The activities span a period of more than fifteen years of research in this field carried out at the National Aerospace Laboratory NLR.For the interpretation of optical remote sensing observations of vegetation canopies from satellites or aircraft the use of simulation models can be an important tool, as these models give insight in the relations be...
De la Hoz, Ivan Arturo Morales
2014-01-01
Nowadays radiation is one of the variables to be considered in the environmental forecasting and it is meaningful in the increase of global warming, together greenhouse effect. The radiation considered by the meteorological organizations depends on the World Radiometric Reference (WRR), the World Standard Group (WSG), addressed by the World Meteorological Organization (WMO). This work is based on the cosmic microwave background, as a variable to be estimated in order to get information about the incident radiation in the Earth's atmosphere, as a valuable and meaningful contribution in the building of the radiation atlas by the (UPME) and (IDEAM). Due to the fact that the variables considered are ultraviolet and infrared radiation, ozone column, direct radiation and diffuse radiation, the last two get the global radiation, and are the only ones to be evaluated by the national meteorological organizations in the country. The study of the cosmic background radiation as a research project will provide data which ...
Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations
Ahn, Kyungjin
2015-01-01
We present a novel method to implement time-delayed propagation of radiation fields in cosmological radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative transfer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.
User's Manual: Routines for Radiative Heat Transfer and Thermometry
Risch, Timothy K.
2016-01-01
Determining the intensity and spectral distribution of radiation emanating from a heated surface has applications in many areas of science and engineering. Areas of research in which the quantification of spectral radiation is used routinely include thermal radiation heat transfer, infrared signature analysis, and radiation thermometry. In the analysis of radiation, it is helpful to be able to predict the radiative intensity and the spectral distribution of the emitted energy. Presented in this report is a set of routines written in Microsoft Visual Basic for Applications (VBA) (Microsoft Corporation, Redmond, Washington) and incorporating functions specific to Microsoft Excel (Microsoft Corporation, Redmond, Washington) that are useful for predicting the radiative behavior of heated surfaces. These routines include functions for calculating quantities of primary importance to engineers and scientists. In addition, the routines also provide the capability to use such information to determine surface temperatures from spectral intensities and for calculating the sensitivity of the surface temperature measurements to unknowns in the input parameters.
Atmospheric radiation measurement program facilities newsletter, June 2002.; TOPICAL
International Nuclear Information System (INIS)
ARM Intensive Operational Period Scheduled to Validate New NASA Satellite-Beginning in July, all three ARM sites (Southern Great Plains[SGP], North Slope of Alaska, and Tropical Western Pacific; Figure 1) will participate in the AIRS Validation IOP. This three-month intensive operational period (IOP) will validate data collected by the satellite-based Atmospheric Infrared Sounder (AIRS) recently launched into space. On May 4, the National Aeronautics and Space Administration (NASA) launched Aqua, the second spacecraft in the Earth Observing System (EOS) series. The EOS satellites monitor Earth systems including land surfaces, oceans, the atmosphere, and ice cover. The first EOS satellite, named Terra, was launched in December 1999. The second EOS satellite is named Aqua because its primary focus is understanding Earth's water cycle through observation of atmospheric moisture, clouds, temperature, ocean surface, precipitation, and soil moisture. One of the instruments aboard Aqua is the AIRS, built by the Jet Propulsion Laboratory, a NASA agency. The AIRS Validation IOP complements the ARM mission to improve understanding of the interactions of clouds and atmospheric moisture with solar radiation and their influence on weather and climate. In support of satellite validation IOP, ARM will launch dedicated radiosondes at all three ARM sites while the Aqua satellite with the AIRS instrument is orbiting overhead. These radiosonde launches will occur 45 minutes and 5 minutes before selected satellite overpasses. In addition, visiting scientists from the Jet Propulsion Laboratory will launch special radiosondes to measure ozone and humidity over the SGP site. All launches will generate ground-truth data to validate satellite data collected simultaneously. Data gathered daily by ARM meteorological and solar radiation instruments will complete the validation data sets. Data from Aqua-based instruments, including AIRS, will aid in weather forecasting, climate modeling, and
Radiation exposure of airline crew members to the atmospheric ionizing radiation environment
International Nuclear Information System (INIS)
A study of radiation exposures in the ionizing radiation environment of the atmosphere is currently in progress for the Italian civil aviation flight personnel. After a description of the considered data sources/ the philosophy of the study is presented/ and an overview is given of the data processing with regard to flight routes/ the computational techniques for radiation dose evaluation along the flight paths and for the exposure matrix building/ along with an indication of the results that the study should provide.
Some fundamental considerations of the equation of radiative transfer
International Nuclear Information System (INIS)
The radiation transfer of the vector electromagnetic field was first formulated by Chandrasekhar while deriving the polarization characteristics of a sunlit sky. There are two subtle problems underlying this treatment. The first concerns the crucial identification of a Stokes parameter with the specific intensity of radiation. While both depend on position in 3-D space, the latter has, intrinsic to it, an additional angular dependence defining the flow of the radiation field. How can this inadequacy be remedied without damaging the results obtained heretofore from Chandrasekhar's formalism. The second problem arises from the fact that the radiative transfer equation describes the transport of an incoherent radiation field through space. This, however, seems to contradict the results of the Van Cittert-Zernike-Wolf theorem which implies that an incoherent field develops coherence as it passes through free space implying, of course, that the radiative transfer equation must involve not incoherent but partially coherent fields. The vector transfer equation of the direct beam (Beer's law) is derived from first principles. The analysis of this equation provides a satisfactory resolution of these two problems. The result also shows that the Beer's law will have to be modified to a matrix law to accommodate systems that are not spherically symmetric. 13 references
Processes linking the hydrological cycle and the atmospheric radiative budget
Fueglistaler, Stephan; Dinh, Tra
2016-04-01
We study the response of the strength of the global hydrological cycle to changes in carbon dioxide (CO2) using the HiRAM General Circulation Model developed at the Geophysical Fluid Dynamics Laboratory (GFDL), with the objective to better connect the well-known energetic constraints to physical processes. We find that idealized model setups using a global slab ocean and annual mean insolation give similar scalings as coupled atmosphere-ocean models with realistic land and topography. Using the surface temperatures from the slab ocean runs, we analyse the response in the atmospheric state and hydrological cycle separately for a change in CO2 (but fixed surface temperature), and for a change in surface temperature (but fixed CO2). The former perturbation is also referred to as the "fast" response, whereas the latter is commonly used to diagnose a model's climate sensitivity. As expected from the perspective of the atmospheric radiative budget, an increase in CO2 at fixed surface temperature decreases the strength of the hydrological cycle, and an increase in surface temperature increases the strength of the hydrological cycle. However, the physical processes that connect the atmospheric radiative energy budget to the sensible and latent heat fluxes at the surface remain not well understood. The responses to the two perturbations are linearly additive, and we find that the experiment with fixed surface temperature and changes in CO2 is of great relevance to understanding the total response. This result points to the importance of local radiative heating rate changes rather than just the net atmospheric radiative loss of energy. Although larger in magnitude, the response to changes in surface temperature is dominated by the temperature dependence of the water vapor pressure, but in both cases changes in near-surface relative humidity are very important.
Transport of Ionizing Radiation in Terrestrial-like Exoplanet Atmospheres
Smith, D S; Wheeler, J C; Smith, David S.; Scalo, John
2003-01-01
(Abridged) Propagation of ionizing radiation, as from parent star flares, supernovae, or gamma-ray bursts, is studied for a suite of simple model atmospheres of terrestrial-like exoplanets covering a large range of column densities and incident photon energies. We developed a Monte Carlo code to treat the Compton scattering and photoabsorption. Atmospheres thinner than about 100 g cm^-2 transmit a significant fraction of incident gamma-rays, but even the thinnest atmospheres are essentially opaque to X-rays below about 30 keV. For thicker atmospheres, the incident ionizing radiation is efficiently blocked, but most of the incident energy is redistributed via secondary electron excitation into diffuse UV and visible aurora-like emission, increasing the atmospheric transmission by many orders of magnitude; in some cases the transmission can be up to 10%, depending on the intervening UV opacity. For Earth, between 2 x 10^-3 and 4 x 10^-2 of the incident flux reaches the ground in the 200-320 nm range, depending ...
Atmospheric transport, clouds and the Arctic longwave radiation paradox
Sedlar, Joseph
2016-04-01
Clouds interact with radiation, causing variations in the amount of electromagnetic energy reaching the Earth's surface, or escaping the climate system to space. While globally clouds lead to an overall cooling radiative effect at the surface, over the Arctic, where annual cloud fractions are high, the surface cloud radiative effect generally results in a warming. The additional energy input from absorption and re-emission of longwave radiation by the clouds to the surface can have a profound effect on the sea ice state. Anomalous atmospheric transport of heat and moisture into the Arctic, promoting cloud formation and enhancing surface longwave radiation anomalies, has been identified as an important mechanism in preconditioning Arctic sea ice for melt. Longwave radiation is emitted equally in all directions, and changes in the atmospheric infrared emission temperature and emissivity associated with advection of heat and moisture over the Arctic should correspondingly lead to an anomalous signal in longwave radiation at the top of the atmosphere (TOA). To examine the role of atmospheric heat and moisture transport into the Arctic on TOA longwave radiation, infrared satellite sounder observations from AIRS during 2003-2014 are analyzed for summer (JJAS). Thermodynamic metrics are developed to identify months characterized by a high frequency of warm and moist advection into the Arctic, and segregate the 2003-14 time period into climatological and anomalously warm, moist summer months. We find that anomalously warm, moist months result in a significant TOA longwave radiative cooling, which is opposite the forcing signal that the surface experiences during these months. At the timescale of the advective events, 3-10 days, the TOA cooling can be as large as the net surface energy budget during summer. When averaged on the monthly time scale, and over the full Arctic basin (poleward of 75°N), summer months experiencing frequent warm, moist advection events are
Modeling radiation from the atmosphere of Io with Monte Carlo methods
Gratiy, Sergey
Conflicting observations regarding the dominance of either sublimation or volcanism as the source of the atmosphere on Io and disparate reports on the extent of its spatial distribution and the absolute column abundance invite the development of detailed computational models capable of improving our understanding of Io's unique atmospheric structure and origin. To validate a global numerical model of Io's atmosphere against astronomical observations requires a 3-D spherical-shell radiative transfer (RT) code to simulate disk-resolved images and disk-integrated spectra from the ultraviolet to the infrared spectral region. In addition, comparison of simulated and astronomical observations provides important information to improve existing atmospheric models. In order to achieve this goal, a new 3-D spherical-shell forward/backward photon Monte Carlo code capable of simulating radiation from absorbing/emitting and scattering atmospheres with an underlying emitting and reflecting surface was developed. A new implementation of calculating atmospheric brightness in scattered sunlight is presented utilizing the notion of an "effective emission source" function. This allows for the accumulation of the scattered contribution along the entire path of a ray and the calculation of the atmospheric radiation when both scattered sunlight and thermal emission contribute to the observed radiation---which was not possible in previous models. A "polychromatic" algorithm was developed for application with the backward Monte Carlo method and was implemented in the code. It allows one to calculate radiative intensity at several wavelengths simultaneously, even when the scattering properties of the atmosphere are a function of wavelength. The application of the "polychromatic" method improves the computational efficiency because it reduces the number of photon bundles traced during the simulation. A 3-D gas dynamics model of Io's atmosphere, including both sublimation and volcanic
International Nuclear Information System (INIS)
The verification of a new or updated radiative transfer model (RTM) is one of the important steps in its development; this is usually achieved by comparisons with real measurements or published tables of generally accepted radiative transfer results. If such tables do not exist, verification becomes more complicated and an external review of the implementation is often unpractical due to the sheer amount and complexity of the code. The presented verification approach is to “simply” insert results of radiative transfer (RT) calculations into the radiative transfer equation (RTE). The evaluation of the RTE consists of numerically calculating partial derivatives and integrals, which is much simpler to implement than a solution of the RTE. Presented is a demonstration of this approach for a case of Rayleigh scattering in a plane parallel atmosphere, which showed only very small deviation from the radiative transfer equation. This approach has two key benefits. First, its implementation into a high level computer language can be very short (≈60 lines in MATHEMATICA) and clear compared to a full RTM; and such code is much more easy to review. Second, this approach can be easily extended to cases where no other independent RT implementation is available for validation. The proposed implementation and data are provided with this paper. -- Highlights: ► Radiative transfer results are verified by numerically inserting them into the RTE. ► This approach is demonstrated using a Rayleigh scattering test case. ► The implementation of such verification scheme is simple, short, and clear. ► The scheme and the demonstration data set is provided with the paper.
Multi-coupled single scattering method of solving vector radiative transfer equations
Institute of Scientific and Technical Information of China (English)
Sun Bin; Wang Han; Sun Xiao-Bing; Hong Jin; Zhang Yun-Jie
2012-01-01
A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is developed and made public on Internet.Recent solutions from Chandrasekhar's X-Y method is used to validate the MCSS's result,which shows high precision.The MCSS method is theoretically simple and clear,so it can be easily and credibly extended to the simulation of aerosol/cloud atmosphere's radiative properties,which provides effective support for research into polarized remote sensing.
A Simplified Scheme of the Generalized Layered Radiative Transfer Model
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted sky diffuse radiation, as well as of canopy morphology, and in turn saves computer resources. Results from the SGRTM agree perfectly with those of the GRTM. Secondly, by applying the linear superposition principle of the optics and by using the basic solutions of the GRTM for radiative transfer within the canopy under the condition of assumed zero soil reflectance, two sets of explicit analytical solutions of radiative transfer within the canopy with any soil reflectance magnitude are derived: one for incident diffuse, and the other for direct beam radiation. The explicit analytical solutions need two sets of basic solutions of canopy reflectance and transmittance under zero soil reflectance, run by the model for both diffuse and direct beam radiation. One set of basic solutions is the canopy reflectance αf (written as α1 for direct beam radiation) and transmittance βf (written as β1 for direction beam radiation) with zero soil reflectance for the downward radiation from above the canopy (i.e. sky), and the other set is the canopy reflectance (αb) and transmittanceβb for the upward radiation from below the canopy (i.e., ground). Under the condition of the same plant architecture in the vertical layers, and the same leaf adaxial and abaxial optical properties in the canopies for the uniform diffuse radiation, the explicit solutions need only one set of basic solutions, because under this condition the two basic solutions are equal, i.e., αf = αb and βf = βb. Using the explicit analytical solutions, the fractions of any kind of incident solar radiation reflected from (defined as surface albedo, or canopy reflectance),transmitted through (defined as canopy transmittance), and absorbed by (defined as canopy absorptance)the canopy and other properties
Role of radiative transfer in spectral line shapes from plasmas
International Nuclear Information System (INIS)
Radiative transfer has a part in plasma basic properties as in spectroscopic results wanted for diagnostic purposes. Here, we review the main problems encountered in radiative transfer calculations: symmetry of the medium, frequency redistribution inside the line profiles, coupling with excitation and ionization, effect of density and temperature steep gradients. We discuss the meaning of the various approximations used for solving these problems and the limits of their applications, especially in the case of hot dense plasmas. From experimental results obtained with laser-produced plasmas, we show that radiative transfer calculation may account for line broadening, profile asymmetry, line splitting, when plasma features like density and temperature inhomogeneity and hydrodynamical ion expansion are introduced
Radiative heat transfer by the Monte Carlo method
Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko
1995-01-01
This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering
Effects of hydrodynamics and thermal radiation in the atmosphere after comet impacts
Nemchinov, I. V.; Popova, M. P.; Shubadeeva, L. P.; Shuvalov, V. V.; Svetsov, V. V.
1993-01-01
Radiation phenomena in the atmosphere after impacts of cosmic bodies have special features in comparison with the surface nuclear explosions. First, initial concentration of energy after the impact is lower, and second, a wake after the passage of the meteoroid through the atmosphere has a dramatic effect on the atmospheric flow and radiation transfer. Consequently, scaling laws can not be employed for prediction of the flow in the atmosphere and the light flux on the Earth's surface. If a density of high-velocity impactor is low relative to the ground, as in a case of a comet impact on rocks, a major part of the kinetic energy is converted to internal energy of dense hot vapors. But radiation effects can be essential even for fairly low velocities of the impactor. To clarify this issue we have undertaken calculations of 100-Mt explosions at the Earth's surface caused by small comets with velocities from 10 to 70 km/sec. That is, the initial concentration of energy has been varied. The calculations have shown that for velocities of the comet greater or about 20 km/sec a portion of energy emitted from the fireball exceeds 20% of the total energy of the explosion and this quantity does not change very much with the velocity. Other aspects of this investigation are discussed.
Further considerations of cosmic ray modulation of infra-red radiation in the atmosphere
Aplin, K. L.; Lockwood, M.
2015-08-01
Understanding effects of ionisation in the lower atmosphere is a new interdisciplinary area, crossing the traditionally distinct scientific boundaries between astro-particle and atmospheric physics and also requiring understanding of both heliospheric and magnetospheric influences on cosmic rays. Following the paper of Erlykin et al. (2014) we develop further the interpretation of our observed changes in long-wave (LW) radiation, Aplin and Lockwood (2013) by taking account of both cosmic ray ionisation yields and atmospheric radiative transfer. To demonstrate this, we show that the thermal structure of the whole atmosphere needs to be considered along with the vertical profile of ionisation. Allowing for, in particular, ionisation by all components of a cosmic ray shower and not just by the muons, reveals that the effect we have detected is certainly not inconsistent with laboratory observations of the LW absorption cross section. The analysis presented here, although very different from that of Erlykin et al., does come to the same conclusion that the events detected by AL were not caused by individual cosmic ray primaries - not because it is impossible on energetic grounds, but because events of the required energy are too infrequent for the 12 h-1 rate at which they were seen by the AL experiment. The present paper numerically models the effect of three different scenario changes to the primary GCR spectrum which all reproduce the required magnitude of the effect observed by AL. However, they cannot solely explain the observed delay in the peak effect which, if confirmed, would appear to open up a whole new and interesting area in the study of water oligomers and their effects on LW radiation. We argue that a technical artefact in the AL experiment is highly unlikely and that our initial observations merit both a wide-ranging follow-up experiment and more rigorous, self-consistent, three-dimensional radiative transfer modelling.
The Dynamics of the Atmospheric Radiation Environment at Aviation Altitudes
Stassinopoulos, Epaminondas G.
2004-01-01
Single Event Effects vulnerability of on-board computers that regulate the: navigational, flight control, communication, and life support systems has become an issue in advanced modern aircraft, especially those that may be equipped with new technology devices in terabit memory banks (low voltage, nanometer feature size, gigabit integration). To address this concern, radiation spectrometers need to fly continually on a multitude of carriers over long periods of time so as to accumulate sufficient information that will broaden our understanding of the very dynamic and complex nature of the atmospheric radiation environment regarding: composition, spectral distribution, intensity, temporal variation, and spatial variation.
Xin, Q.; Gong, P.; Li, W.
2015-06-01
Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily timescales. We demonstrate that ambient CO2 concentrations influence daytime vegetation photosynthesis, which needs to be considered in biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.
A 3D radiative transfer framework: III. periodic boundary conditions
Hauschildt, Peter H.; Baron, E.
2008-01-01
We present a general method to solve radiative transfer problems including scattering in the continuum as well as in lines in 3D configurations with periodic boundary conditions. he scattering problem for line transfer is solved via means of an operator splitting (OS) technique. The formal solution is based on a full characteristics method. The approximate $\\Lambda$ operator is constructed considering nearest neighbors exactly. The code is parallelized over both wavelength and solid angle usi...
Radiative heat transfer between nanoparticles enhanced by intermediate particle
Energy Technology Data Exchange (ETDEWEB)
Wang, Yanhong; Wu, Jingzhi, E-mail: jzwu@live.nuc.edu.cn [Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, Shanxi (China)
2016-02-15
Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.
Radiative Transfer Effects during Photoheating of the Intergalactic Medium
Abel, T; Abel, Tom; Haehnelt, Martin G.
1999-01-01
The thermal history of the intergalactic medium (IGM) after reionization is to a large extent determined by photoheating. Here we demonstrate that calculations of the photoheating rate which neglect radiative transfer effects substantially underestimate the energy input during and after reionization. The neglect of radiative transfer effects results in temperatures of the IGM which are too low by a factor of two after HeII reionization. We briefly discuss implications for the absorption properties of the IGM and the distribution of baryons in shallow potential wells.
International Nuclear Information System (INIS)
A simplified model of the propagation of intense laser beams in the turbulent Earth's atmosphere along horizontal and oblique paths is improved. The model takes into account the basic mechanisms of interaction of laser radiation with the Earth's atmosphere (molecular absorption, aerosol extinction, turbulence-induced beam spread and wander). The application of this model demonstrates a general approach to determining the optimal radiation wavelengths for attaining the maximum intensity of focused laser radiation at a stationary object depending on the path length, angle of the path inclination, weather conditions, and diameter of the laser output beam. A simple physical interpretation of the dependences obtained is presented. The efficiencies of propagation of various high-power laser beams through the turbulent Earth's atmosphere are compared. Specific features of the energy transfer from various lasers to moving objects are analysed. It is shown that, when weather conditions change over a wide range, it is expedient to use radiation from a cw chemical DF laser. (special issue devoted to the 80th anniversary of academician n g basov's birth)
Atmospheric Radiation Measurement program (ARM) -- Summer 1995 review
Energy Technology Data Exchange (ETDEWEB)
MacDonald, G.; Ruderman, M.; Treiman, S.
1995-10-01
ARM is a highly focused program designed to improve the understanding of the transport of infrared and solar radiation through the atmosphere. The program pays particular attention to the interaction of radiation with the three phases of water. The goals of ARM are usually articulated in terms of improvements in climate models. The authors agree that ARM can indeed make significant contributions to the understanding of climate change. In addition the authors believe that the results of the program will have wide applicability to a broad range of problems, including more accurate short-term and seasonal weather forecasting. This report examines the issues of anomalous atmospheric absorption and makes recommendations concerning future directions for the ARM program.
Atmospheric Radiation Measurement Program facilities newsletter, July 2001.; TOPICAL
International Nuclear Information System (INIS)
Global Warming and Methane-Global warming, an increase in Earth's near-surface temperature, is believed to result from the buildup of what scientists refer to as ''greenhouse gases.'' These gases include water vapor, carbon dioxide, methane, nitrous oxide, ozone, perfluorocarbons, hydrofluoro-carbons, and sulfur hexafluoride. Greenhouse gases can absorb outgoing infrared (heat) radiation and re-emit it back to Earth, warming the surface. Thus, these gases act like the glass of a greenhouse enclosure, trapping infrared radiation inside and warming the space. One of the more important greenhouse gases is the naturally occurring hydrocarbon methane. Methane, a primary component of natural gas, is the second most important contributor to the greenhouse effect (after carbon dioxide). Natural sources of methane include wetlands, fossil sources, termites, oceans, fresh-waters, and non-wetland soils. Methane is also produced by human-related (or anthropogenic) activities such as fossil fuel production, coal mining, rice cultivation, biomass burning, water treatment facilities, waste management operations and landfills, and domesticated livestock operations (Figure 1). These anthropogenic activities account for approximately 70% of the methane emissions to the atmosphere. Methane is removed naturally from the atmosphere in three ways. These methods, commonly referred to as sinks, are oxidation by chemical reaction with tropospheric hydroxyl ion, oxidation within the stratosphere, and microbial uptake by soils. In spite of their important role in removing excess methane from the atmosphere, the sinks cannot keep up with global methane production. Methane concentrations in the atmosphere have increased by 145% since 1800. Increases in atmospheric methane roughly parallel world population growth, pointing to anthropogenic sources as the cause (Figure 2). Increases in the methane concentration reduce Earth's natural cooling efficiency by trapping more of the outgoing
study of some problems in radiative transfer
International Nuclear Information System (INIS)
The problem of particle transfer in finite plane parallel medium is reduced to a problem of semi-infinite medium by means of the embedding technique. This technique is used to calculate the energy albedo, sputtering coefficients and leakage currents for different scattering kernels in the slowing down region. in chapter (4) we construct an asymptotic solution for inhomogeneous layers on the basis of the corresponding solutions for homogeneous sub-layer. A functional relations which gives the reflection and transmission coefficients for the whole slab in terms of the corresponding one of the sub - layers are obtained. The concepts of the invariant embedding is used to calculate the albedo for each sub-layers. Numerical results are given for different slowing down kernel
Atmospheric pressure photoionization using tunable VUV synchrotron radiation
Energy Technology Data Exchange (ETDEWEB)
Giuliani, A., E-mail: alexandre.giuliani@synchrotron-soleil.fr [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Giorgetta, J.-L.; Ricaud, J.-P. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Jamme, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Rouam, V.; Wien, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Laprevote, O. [Laboratoire de Spectrometrie de Masse, ICSN-CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette (France); Laboratoire de Chimie-Toxicologie Analytique et cellulaire, IFR 71, Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France); Refregiers, M. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France)
2012-05-15
Highlights: Black-Right-Pointing-Pointer Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. Black-Right-Pointing-Pointer The set up allows photoionization up to 20 eV. Black-Right-Pointing-Pointer Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. Black-Right-Pointing-Pointer Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4-20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.
Atmospheric scattering and decay of inner radiation belt electrons
Selesnick, R. S.
2012-08-01
The dynamics of inner radiation belt electrons are governed by competing source, loss, and transport processes. However, during the recent extended solar minimum period the source was inactive and electron intensity was characterized by steady decay. This provided an opportunity to determine contributions to the decay rate of losses by precipitation into the atmosphere and of diffusive radial transport. To this end, a stochastic simulation of inner radiation belt electron transport is compared to data taken by the IDP instrument on the DEMETER satellite during 2009. For quasi-trapped, 200 keV electrons atL= 1.3, observed in the drift loss cone (DLC), results are consistent with electron precipitation losses by atmospheric scattering alone, provided account is taken of non-diffusive wide-angle scattering. Such scattering is included in the stochastic simulation using a Markov jump process. Diffusive small-angle atmospheric scattering, while causing most of the precipitation losses, is too slow relative to azimuthal drift to contribute significantly to DLC intensity. Similarly there is no contribution from scattering by VLF plasma waves. Energy loss, energy diffusion, and azimuthal drift are also included in the model. Even so, observed decay rates of stably-trapped electrons withL diffusion with coefficient DLL ˜ 3 × 10-10 s-1 to replenish electrons lost to the atmosphere at low L values.
Vector radiative transfer in a multilayer medium by natural element method.
Zhang, Yong; Kim, Yong-Jun; Yi, Hong-Liang; Tan, He-Ping
2016-04-01
The vector radiative transfer problem in a vertically multilayer scattering medium with spatial changes in the index of refraction is solved by the natural element method (NEM). The top boundary of the multilayer medium is irradiated by a collimated beam. In our model, the angular space is discretized by the discrete ordinates approach, and the spatial discretization is conducted by the Galerkin weighted residuals approach. In the solution procedure, the collimated component for the Stokes parameters is first solved by NEM, and then it is embedded into the vector radiative transfer equation for the diffuse component as a source term. To keep the consistency of the directions in all the layers, angular interpolation of the Stokes parameters at the interfaces is adopted. The NEM approach for the collimated component is first validated. Then, the classical coupled atmosphere-water system irradiated by different states of collimated beam is examined to verify the numerical performance of the method. Numerical results show that the NEM is accurate, flexible, and effective in solving polarized radiative transfer in a multilayer medium. Finally, polarized radiative transfer in a four-layer system is investigated and analyzed. PMID:27140767
Radiation processing in Japan: R and D for technology transfer
International Nuclear Information System (INIS)
Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (TRCRE, JAERI) has led the radiation processing in Japan. A number of achievements in TRCRE have been transferred to the private sector and commercialized. To promote the industrialization by using 240 patens belonging to TRCRE, an open seminar has been monthly held to elucidate the interesting results to the private companies. In one year, 70 companies gave us the technical consultation. In the radiation processing, graftpolymerization can synthesize a metal adsorbent which is a promising material for industrialization. Recovery of uranium from seawater and removal of cadmium from scallop processing were shown as examples for ongoing R and D. (author)
Debris disk radiative transfer simulation tool (DDS)
Wolf, S.; Hillenbrand, L. A.
2005-10-01
A WWW interface for the simulation of spectral energy distributions of optically thin dust configurations with an embedded radiative source is presented. The density distribution, radiative source, and dust parameters can be selected either from an internal database or defined by the user. This tool is optimized for studying circumstellar debris disks where large grains (a ≫1 μm) are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. The tool is available at http://aida28.mpia-hd.mpg.de/~swolf/dds. Catalogue identifier:ADVV Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Computers:PC with Intel(R) XEON(TM) 2.80 GHz processor Operating systems or monitors under which the program has been tested:SUSE Linux 9.1 Programming language used:Fortran 90 (for the main program; furthermore Perl, CGI and HTML) Memory required to execute with typical data:108 words No. of bits in a word:8 No. of lines in distributed program, including test data, etc.:44 636 No. of bytes in distributed program, including test data, etc.: 4 806 280 Distribution format:tar.gz Nature of the physical problem:Simulation of scattered light and thermal reemission in arbitrary optically dust distributions with spherical, homogeneous grains where the dust parameters (optical properties, sublimation temperature, grain size) and SED of the illuminating/heating radiative source can be arbitrarily defined (example application: [S. Wolf, L.A. Hillenbrand, Astrophys. J. 596 (2003) 603]). The program is optimized for studying circumstellar debris disks where large grains (i.e. with large size parameters) are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. Method of solution:Calculation of the dust temperature distribution and dust reemission and scattering spectrum in the
Rolf Philipona
2013-01-01
Here, we recall first quantitative measurements of terrestrial and atmospheric thermal infrared radiation that were made about hundred years ago, and relate them to present day radiation budget measurements and greenhouse effect investigations through the atmosphere. At the beginning of the 20th century measurements of the effective terrestrial radiation and the counter-radiation of the atmosphere were of great interest primarily to prove theoretical aspects of the Earth radiation balance...
Measurement of microwave radiation from electron beam in the atmosphere
Ohta, I. S.; Akimune, H.; Fukushima, M.; Ikeda, D.; Inome, Y.; Matthews, J. N.; Ogio, S.; Sagawa, H.; Sako, T.; Shibata, T.; Yamamoto, T.
2016-02-01
We report the use of an electron light source (ELS) located at the Telescope Array Observatory in Utah, USA, to measure the isotropic microwave radiation from air showers. To simulate extensive air showers, the ELS emits an electron beam into the atmosphere and a parabola antenna system for the satellite communication is used to measure the microwave radiation from the electron beam. Based on this measurement, an upper limit on the intensity of a 12.5 GHz microwave radiation at 0.5 m from a 1018 eV air shower was estimated to be 3.96×10-16 W m-2 Hz-1 with a 95% confidence level.
Radiative Transfer on Perturbations in Protoplanetary Disks
Jang-Condell, H; Jang-Condell, Hannah; Sasselov, Dimitar D.
2003-01-01
We present a method for calculating the radiative tranfer on a protoplanetary disk perturbed by a protoplanet. We apply this method to determine the effect on the temperature structure within the photosphere of a passive circumstellar disk in the vicinity of a small protoplanet of up to 20 Earth masses. The gravitational potential of a protoplanet induces a compression of the disk material near it, resulting in a decrement in the density at the disk's surface. Thus, an isodensity contour at the height of the photosphere takes on the shape of a well. When such a well is illuminated by stellar irradiation at grazing incidence, it results in cooling in a shadowed region and heating in an exposed region. For typical stellar and disk parameters relevant to the epoch of planet formation, we find that the temperature variation due to a protoplanet at 1 AU separation from its parent star is about 4% (5 K) for a planet of 1 Earth mass, about 14% (19 K) for planet of 10 Earth masses, and about 18% (25 K) for planet of ...
Radiative transfer simulations of magnetar flare beaming
van Putten, T; Baring, M G; Wijers, R A M J
2016-01-01
Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.
Transfer line magnets for agricultural radiation processing facility at CAT
International Nuclear Information System (INIS)
A linear accelerator based electron beam radiation processing facility for agricultural and medical products is being established at CAT, Indore. Electron beam from LINAC will be used to irradiate the different food products. For such purposes, a transfer-line consisting of focusing quadrupoles, steering, scanning and normalizing magnets were designed. Design aspects of these magnets are discussed in this paper. (author)
Radiative transfer in plane inhomogeneous media with exponentially varying albedo
International Nuclear Information System (INIS)
Accurate numerical results for the exit distributions and the global reflection and transmission coefficients relevant to radiative transfer in a stratified medium with exponentially varying albedo are obtained and compared to previous results. The semi-analytical solution of the linear transport equation is rigorously performed on the basis of a simple projectional method. (author)
One-dimensional transient radiative transfer by lattice Boltzmann method.
Zhang, Yong; Yi, Hongliang; Tan, Heping
2013-10-21
The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed. PMID:24150298
A Physically Motivated Closure Scheme for Radiative Transfer
Chan, Chi-kwan
2009-01-01
Radiative transfer and radiation hydrodynamics use the relativistic Boltzmann equation to describe the kinetics of photons. The six-dimensional time-dependent transfer equation is difficult to solve unless the problem is in equilibrium or highly symmetric. When the radiation field is smooth, it is natural to take angular moments of the transfer equation to reduce the degrees of freedom. However, low-order moment equations contain terms that depend on higher-order moments. To close the system of moment equations, approximations are made to truncate this hierarchy. Popular closures used in astrophysics include flux limited diffusion and the M_1 closure, which are rather ad hoc and do not necessarily to capture the correct physics. In this paper, we propose a new closure scheme for radiative transfer. We start from a different perspective and highlight the consistency of a fully relativistic formalism. By employing the fact that photons do not self-interact, we conclude that a physical closure should be linear i...
Sunrise: Polychromatic Dust Radiative Transfer in Arbitrary Geometries
Jonsson, P
2006-01-01
This paper describes Sunrise, a parallel, free Monte-Carlo code for the calculation of radiation transfer through astronomical dust. Sunrise uses an adaptive-mesh refinement grid to describe arbitrary geometries of emitting and absorbing/scattering media, with spatial dynamical range exceeding 10^4, and it can efficiently generate images of the emerging radiation at arbitrary points in space. In addition to the monochromatic radiative transfer typically used by Monte-Carlo codes, Sunrise is capable of propagating a range of wavelengths simultaneously. This ``polychromatic'' algorithm gives significant improvements in efficiency and accuracy when spectral features are calculated. Sunrise is used to study the effects of dust in hydrodynamic simulations of interacting galaxies, and the procedure for this is described. The code is tested against previously published results.
Modelling radiative heat transfer inside a basin type solar still
International Nuclear Information System (INIS)
Radiative heat transfer inside a basin type solar still has been investigated using two models with (model 1) and without (model 2) taking into account optical view factors. The coefficient of radiative heat exchange (hr,w-gc) between the water and cover surfaces of a practical solar still was computed using the two models. Simulation results show that model 1 yields lower values of hr,w-gc and the root mean square error than model 2. It is therefore concluded that the accuracy of modelling the performance of a basin-type solar still can be improved by incorporating view factors. - Highlights: • Radiative heat transfer in a basin type solar still has been investigated. • Two models with and without view factors were used. • The model with view factors exhibits a lower magnitude of root mean square error. • View factors affect the accuracy of modelling the performance of the solar still
Three-dimensional Radiative Transfer Modeling of the Polarization of the Sun's Continuous Spectrum
Bueno, J Trujillo
2008-01-01
Here we formulate and solve the 3D radiative transfer problem of the polarization of the solar continuous radiation. Our approach takes into account not only the anisotropy of the continuum radiation, but also the symmetry-breaking effects caused by the horizontal atmospheric inhomogeneities produced by the solar surface convection. Interestingly, our radiative transfer modeling in a well-known 3D hydrodynamical model of the solar photosphere shows remarkable agreement with the empirical data, significantly better than that obtained via the use of 1D atmospheric models. Although this result confirms that the above-mentioned 3D model was indeed a suitable choice for our Hanle-effect estimation of the substantial amount of "hidden" magnetic energy that is stored in the quiet solar photosphere, we have found however some small discrepancies whose origin may be due to uncertainties in the empirical data and/or in the thermal and density structure of the 3D model. For this reason, we have paid some attention also ...
International Nuclear Information System (INIS)
Improved parameterization of clouds for general circulation models will require both ARM observations and the use of more detailed cloud models. The authors have adopted a parallel implementation approach to improve cloud parameterizations by including identical cloud radiative processes into three models that span the important spatial and temporal scales for cloud research. These models include a one-dimensional detailed ice microphysical model, the Clark cumulus ensemble model, and the Community Climate Model (CCM2) of the National Center for Atmospheric Research (NCAR). The first parallel development effort was to implement a column version of the CCM2 radiation model in the cirrus cloud model and the cumulus ensemble model. The same column model has also been implemented in the cloud microphysics model. The second effort was the introduction of explicit ice radiative properties into the shortwave and longwave radiative transfer model. The dependence of cirrus cloud radiative heating and longwave cooling on the ice particle size has been established as causing changes in zonally averaged temperature and zonal wind
Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Pappalardo, Gelsomina; Welton, Ellsworth J.
2016-04-01
The aerosol and cloud impact on climate change is evaluated in terms of enhancement or reduction of the radiative energy, or heat, available in the atmosphere and at the Earth's surface, from the surface (SFC) to the Top Of the Atmosphere (TOA) covering a spectral range from the UV (extraterrestrial shortwave solar radiation) to the far-IR (outgoing terrestrial longwave radiation). Systematic Lidar network measurements from permanent observational sites across the globe are available from the beginning of this current millennium. From the retrieved lidar atmospheric extinction profiles, inputted in the Fu-Liou-Gu (FLG) Radiative Transfer code, it is possible to evaluate the net radiative effect and heating rate of the different aerosol species and clouds. Nevertheless, the lidar instruments may use different techniques (elastic lidar, Raman lidar, multi-wavelength lidar, etc) that translate into uncertainty of the lidar extinction retrieval. The goal of this study is to assess, applying a MonteCarlo technique and the FLG Radiative Transfer model, the sensitivity in calculating the net radiative effect and heating rate of aerosols and clouds for the different lidar techniques, using both synthetic and real lidar data. This sensitivity study is the first step to implement an automatic algorithm to retrieve the net radiative forcing effect of aerosols and clouds from the long records of aerosol measurements available in the frame of EARLINET and MPLNET lidar networks.
Directory of Open Access Journals (Sweden)
Jean-Philippe Gastellu-Etchegorry
2015-02-01
Full Text Available Satellite and airborne optical sensors are increasingly used by scientists, and policy makers, and managers for studying and managing forests, agriculture crops, and urban areas. Their data acquired with given instrumental specifications (spectral resolution, viewing direction, sensor field-of-view, etc. and for a specific experimental configuration (surface and atmosphere conditions, sun direction, etc. are commonly translated into qualitative and quantitative Earth surface parameters. However, atmosphere properties and Earth surface 3D architecture often confound their interpretation. Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for linking remotely sensed data to the surface parameters. Still, many existing models are oversimplifying the Earth-atmosphere system interactions and their parameterization of sensor specifications is often neglected or poorly considered. The Discrete Anisotropic Radiative Transfer (DART model is one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths. It has been developed since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental configuration and instrumental specification. It is freely distributed for research and teaching activities. This paper presents DART physical bases and its latest functionality for simulating imaging spectroscopy of natural and urban landscapes with atmosphere, including the perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR waveform and photon counting signals.
A global view of one-dimensional solar radiative transfer through oceanic water clouds
Di Girolamo, Larry; Liang, Lusheng; Platnick, Steven
2010-09-01
Solar radiative transfer through a cloudy atmosphere is commonly computed assuming clouds to be one-dimensional, i.e., plane-parallel. Here we provide a global perspective on how often and with what degree oceanic water clouds may be considered plane-parallel by fusing multi-view-angle and multi-spectral satellite data. We show that the view-angular distribution of the retrieved reflectance, spherical albedo and cloud optical thickness measured at 1 km resolution are indistinguishable from plane-parallel clouds 24%, 25% and 79% of the time, respectively, at the 95% confidence level of our measurement method. These plane-parallel clouds occur most frequently within regions dominated by stratiform clouds under solar zenith angles radiative transfer in environmental modeling and monitoring systems.
Naik, Vaishali; Jain, Atul K.; Patten, Kenneth O.; Wuebbles, Donald J.
2000-03-01
Recognition of deleterious effects of chlorine and bromine on ozone and climate over the last several decades has resulted in international accords to halt the production of chlorine-containing chlorofluorocarbons (CFCs) and bromine-containing halons. It is well recognized, however, that these chemicals have had important uses to society, particularly as refrigerants, as solvents, as plastic blowing agents, as fire retardants and as aerosol propellants. This has led to an extensive search for substitute chemicals with appropriate properties to be used in place of the CFCs and halons. The purpose of this study is to evaluate in a consistent manner the atmospheric lifetime and radiative forcing on climate for a number of replacement compounds. The unique aspect of this study is its attempt to resolve inconsistencies in previous evaluations of atmospheric lifetimes and radiative forcings for these compounds by adopting a uniform approach. Using the latest version of our two-dimensional chemical-radiative-transport model of the global atmosphere, we have determined the atmospheric lifetimes of 28 hydrohalocarbons (HCFCs and HFCs). Through the comparison of the model-calculated lifetimes with lifetimes derived using a simple scaling method, our study adds to earlier findings that consideration of stratospheric losses is important in determining the lifetimes of gases. Discrepancies were found in the reported lifetimes of several replacement compounds reported in the international assessment of stratospheric ozone published by the World Meteorological Organization [Granier et al., 1999] and have been resolved. We have also derived the adjusted and instantaneous radiative forcings for CFC-11 and 20 other halocarbons using our radiative transfer model. The sensitivity of radiative forcings to the vertical distribution of these gases is investigated in this study and is shown to be significant. The difference in the global radiative forcing arising from the assumption of a
Near-field radiative heat transfer in mesoporous alumina
International Nuclear Information System (INIS)
The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2∼4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. (paper)
A simple computer model for terrestrial and solar radiation transfer
International Nuclear Information System (INIS)
A simple radiative-convective atmospheric model is presented for rapidly computing the solar and terrestrial fluxes at the top of the atmosphere and at the ground. The model parameters are measurable meteorological quantities with water vapour playing a key role in the determination of the ratio of infrared flux emitted by a water surface to the absorbed solar flux; this infrared fraction is important in heat balance evaporation models. The model and its computer programme can be used to examine, for example, the response of the global mean surface temperature to changes in CO2, cloud cover and solar-constant. 22 figs., 2 tabs
International Nuclear Information System (INIS)
Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.
Radiative heat transfer between two dielectric-filled metal gratings
Dai, J.; Dyakov, S. A.; Yan, M.
2016-04-01
Nanoscale surface corrugation is known to be able to drastically enhance radiative heat transfer between two metal plates. Here we numerically calculate the radiative heat transfer between two dielectric-filled metal gratings at dissimilar temperatures based on a scattering approach. It is demonstrated that, compared to unfilled metal gratings, the heat flux for a fixed geometry can be further enhanced, by up to 650% for the geometry separated by a vacuum gap of g =1 μ m and temperature values concerned in our study. The enhancement in radiative heat transfer is found to depend on refractive index of the filling dielectric, the specific grating temperatures, and naturally the gap size between the two gratings. The enhancement can be understood through examining the transmission factor spectra, especially the spectral locations of the spoof surface plasmon polariton modes. Of more practical importance, it's shown that the radiative heat flux can exceed that between two planar SiC plates with same thickness, separation, and temperature settings over a wide temperature range. This reaffirms that one can harness rich electromagnetic modal properties in nanostructured materials for efficient thermal management at nanoscale.
Radiation exposure of airline crew members to the atmospheric ionizing radiation environment
International Nuclear Information System (INIS)
All risk assessment techniques for possible health effects from low dose rate radiation exposure should combine knowledge both of the radiation environment and of the biological response, whose effects (e.g. carcinogenesis) are usually evaluated through mathematical models and/or animal and cell experiments. Data on human exposure to low dose rate radiation exposure and its effects are not readily available, especially with regards to stochastic effects, related to carcinogenesis and therefore to cancer risks, for which the event probability increases with increasing radiation exposure. The largest source of such data might be airline flight personnel, if enrolled for studies on health effects induced by the cosmic-ray generated atmospheric ionizing radiation, whose total dose, increasing over the years, might cause delayed radiation-induced health effects, with the high-LET and highly ionizing neutron component typical of atmospheric radiation. In 1990 flight personnel has been given the status of 'occupationally exposed to radiation' by the International Commission for Radiation Protection (ICRP), with a received radiation dose that is at least twice larger than that of the general population. The studies performed until now were limited in scope and cohort size, and moreover no information whatsoever on radiation occupational exposure (e.g. dose, flight hours, route haul, etc.) was used in the analysis, so no correlation has been until now possible between atmospheric ionizing radiation and (possibly radiation-induced) observed health effects. Our study addresses the issues, by considering all Italian civilian airline flight personnel, both cockpit and cabin crew members, with about 10,000 people selected, whose records on work history and actual flights (route, aircraft type, date, etc. for each individual flight for each person where possible) are considered. Data on actual flight routes and profiles have been obtained for the whole time frame. The actual dose
Pakal: A Three-dimensional Model to Solve the Radiative Transfer Equation
De la Luz, Victor; Mendoza-Torres, J E; Selhorst, Caius L; 10.1088/0067-0049/188/2/437
2011-01-01
We present a new numerical model called "Pakal" intended to solve the radiative transfer equation in a three-dimensional (3D) geometry, using the approximation for a locally plane-parallel atmosphere. Pakal uses pre-calculated radial profiles of density and temperature (based on hydrostatic, hydrodynamic, or MHD models) to compute the emission from 3D source structures with high spatial resolution. Then, Pakal solves the radiative transfer equation in a set of (3D) ray paths, going from the source to the observer. Pakal uses a new algorithm to compute the radiative transfer equation by using an intelligent system consisting of three structures: a cellular automaton; an expert system; and a program coordinator. The code outputs can be either two-dimensional maps or one-dimensional profiles, which reproduce the observations with high accuracy, giving detailed physical information about the environment where the radiation was generated and/or transmitted. We present the model applied to a 3D solar radial geometr...
SPHRAY: A Smoothed Particle Hydrodynamics Ray Tracer for Radiative Transfer
Altay, Gabriel; Pelupessy, Inti
2008-01-01
We introduce SPHRAY, a Smoothed Particle Hydrodynamics (SPH) ray tracer designed to solve the 3D, time dependent, radiative transfer (RT) equations for arbitrary density fields. The SPH nature of SPHRAY makes the incorporation of separate hydrodynamics and gravity solvers very natural. SPHRAY relies on a Monte Carlo (MC) ray tracing scheme that does not interpolate the SPH particles onto a grid but instead integrates directly through the SPH kernels. Given initial conditions and a description of the sources of ionizing radiation, the code will calculate the non-equilibrium ionization state (HI, HII, HeI, HeII, HeIII, e) and temperature (internal energy/entropy) of each SPH particle. The sources of radiation can include point like objects, diffuse recombination radiation, and a background field from outside the computational volume. The MC ray tracing implementation allows for the quick introduction of new physics and is parallelization friendly. A quick Axis Aligned Bounding Box (AABB) test taken from compute...
Use of radiation to transfer alien chromosome segments to wheat
International Nuclear Information System (INIS)
Ionizing radiation can accomplish the transfer of genetic information from species so distantly related to wheat (Triticum aestivum L. em Thell.) that their chromosomes pair very little, if at all, with those of wheat, even in the absence of the homoeologous-pairing suppressor Ph1. In a successful transfer, the alien segment must almost always replace a homoeologous wheat segment, but radiation induces translocations largely at random; therefore automatic selection in favor of desirable translocations must be provided if the size of the project is to be kept within reasonable limits. Pollen selection will occur if seeds or plants monosomic for both an alien chromosome and one of its wheat homoeologues are irradiated. Making the plants also deficient for Ph1 may increase the number of suitable transfers. High-frequency occurrence of the desired alien character in M2 head-rows from plants grown from irradiated seed can identify favorable transfers with little cytological work. Irradiation of plants shortly before meiosis, using them to pollinate ditelosomics or double ditelosomics for the wheat arm or chromosome concerned, and cytologically examining offspring which have the alien character can not only identify the desirable transfers, but also reveal the lengths of the alien segments involved
Observation of a north-south anisotropy of atmospheric radiation at balloon altitudes
Fishman, G. J.; Watts, J. W., Jr.; Meegan, C. A.
1976-01-01
Measurements have been made of an azimuthal asymmetry of atmospheric radiation at balloon altitudes and mid-latitudes. The measured asymmetry is 6% peak to peak in the north-south direction at energies above 500 keV. A lack of east-west asymmetry indicates that the arrival direction of the atmospheric radiation is highly decoupled from that of the primary radiation. Present models of secondary atmospheric radiation production and transport do not quantitatively agree with the observations.
Observation of a north--south anisotropy of atmospheric radiation at balloon altitudes
International Nuclear Information System (INIS)
Measurements have been made of an azimuthal asymmetry of atmospheric radiation at balloon altitudes and mid-latitudes. The measured asymmetry is 6% peak to peak in the north--south direction at energies above 500 keV. A lack of east--west asymmetry indicates that the arrival direction of the atmospheric radiation is highly decoupled from that of the primary radiation. Present models of secondary atmospheric radiation production and transport do not quantitatively agree with the observations
Toward a new radiative-transfer-based model for remote sensing of terrestrial surface albedo.
Cui, Shengcheng; Zhen, Xiaobing; Wang, Zhen; Yang, Shizhi; Zhu, WenYue; Li, Xuebin; Huang, Honghua; Wei, Heli
2015-08-15
This Letter formulates a simple yet accurate radiative-transfer-based theoretical model to characterize the fraction of radiation reflected by terrestrial surfaces. Emphasis is placed on the concept of inhomogeneous distribution of the diffuse sky radiation function (DSRF) and multiple interaction effects (MIE). Neglecting DSRF and MIE produces a -1.55% mean relative bias in albedo estimates. The presented model can elucidate the impact of DSRF on the surface volume scattering and geometry-optical scattering components, respectively, especially for slant illuminations with solar zenith angles (SZA) larger than 50°. Particularly striking in the comparisons between our model and ground-based observations is the achievement of the agreement level, indicating that our model can effectively resolve the longstanding issue in accurately estimating albedo at extremely large SZAs and is promising for land-atmosphere interactions studies. PMID:26274674
Fire Intensity Data for Validation of the Radiative Transfer Equation
Energy Technology Data Exchange (ETDEWEB)
Blanchat, Thomas K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jernigan, Dann A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.
Analytical Heat Transfer Modeling of a New Radiation Calorimeter
Ndong, Elysée Obame; Aitken, Frédéric
2016-01-01
This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from -50 {\\deg}C to 150 {\\deg}C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ~1 mW. From these results the calorimeter has been successfully implemented and patented.
Radiation improves gene transfer into human ovarian carcinoma cells
International Nuclear Information System (INIS)
Purpose/Objective: Poor gene transfer is the major stumbling block to successful gene therapy today. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. During studies to quantitate radiation activated recombination, we also found that both plasmid and adenoviral vector transduction could be increased by irradiation. The studies presented here describe the effects of irradiation on gene transduction efficiency (both transient and stable transduction) in several human ovarian carcinoma lines, as a prelude to in vivo animal studies. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human ovarian carcinoma cell lines (SKOV3, CAOV3 and PA1). Either irradiated or unirradiated cells were transfected with pRSVZ plasmid (containing a LacZ expression cassette) in either the supercoiled and linearized (XmnI) forms and β-galactosidase expression followed with time. Transfection efficiency was measured by flow cytometry following FDG staining at 0, 48, and 96 hours after irradiation. FDG is converted to a fluorescent metabolite by LacZ, and thus reflects the transfection efficiency of the LacZ containing vector. Vector quantitation was also performed by southern hybridization. Stable transduction efficiency was measured 14 -35 days after irradiation. Optimization of the time of irradiation with respect to transfection was performed. Since cells demonstrated increased stable recombination for as long as 96 hours after irradiation, continuous low dose rate and multiple radiation fractions were also tested. These experiments were repeated using the Ad5CMVlacZ. Dividing cells were exposed to Ad5CMVlacZ at an MOI of 0.1,1,5,10 and 100 to determine optimum transfection concentration. Transduction efficiency was again measured at various intervals to determine the radiation dose and interval post transfection which provides the maximum increase in transfection
Atmospheric radiation measurement program facilities newsletter, September 2001.; TOPICAL
International Nuclear Information System (INIS)
Our Changing Climate-Is our climate really changing? How do we measure climate change? How can we predict what Earth's climate will be like for generations to come? One focus of the Atmospheric Radiation Measurement (ARM) Program is to improve scientific climate models enough to achieve reliable regional prediction of future climate. According to the Environmental Protection Agency (EPA), the global mean surface temperature has increased by 0.5-1.0 F since the late 19th century. The 20th century's 10 warmest years all occurred in the last 15 years of the century, with 1998 being the warmest year of record. The global mean surface temperature is measured by a network of temperature-sensing instruments distributed around the world, including ships, ocean buoys, and weather stations on land. The data from this network are retrieved and analyzed by various organizations, including the National Aeronautics and Space Administration, the National Oceanic and Atmospheric Administration, and the World Meteorological Organization. Worldwide temperature records date back to 1860. To reconstruct Earth's temperature history before 1860, scientists use limited temperature records, along with proxy indicators such as tree rings, pollen records, and analysis of air frozen in ancient ice. The solar energy received from the sun drives Earth's weather and climate. Some of this energy is reflected and filtered by the atmosphere, but most is absorbed by Earth's surface. The absorbed solar radiation warms the surface and is re-radiated as heat energy into the atmosphere. Some atmospheric gases, called greenhouse gases, trap some of the re-emitted heat, keeping the surface temperature regulated and suitable for sustaining life. Although the greenhouse effect is natural, some evidence indicates that human activities are producing increased levels of some greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Scientists believe that the combustion of fossil fuels is
Rabacus: A Python Package for Analytic Cosmological Radiative Transfer Calculations
Altay, Gabriel
2015-01-01
We describe Rabacus, a Python package for calculating the transfer of hydrogen ionizing radiation in simplified geometries relevant to astronomy and cosmology. We present example solutions for three specific cases: 1) a semi-infinite slab gas distribution in a homogeneous isotropic background, 2) a spherically symmetric gas distribution with a point source at the center, and 3) a spherically symmetric gas distribution in a homogeneous isotropic background. All problems can accommodate arbitrary spectra and density profiles as input. The solutions include a treatment of both hydrogen and helium, a self-consistent calculation of equilibrium temperatures, and the transfer of recombination radiation. The core routines are written in Fortran 90 and then wrapped in Python leading to execution speeds thousands of times faster than equivalent routines written in pure Python. In addition, all variables have associated units for ease of analysis. The software is part of the Python Package Index and the source code is a...
SPHRAY: A Smoothed Particle Hydrodynamics Ray Tracer for Radiative Transfer
Altay, Gabriel; Rupert A. C. Croft(Bruce and Astrid McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA); Pelupessy, Inti
2008-01-01
We introduce SPHRAY, a Smoothed Particle Hydrodynamics (SPH) ray tracer designed to solve the 3D, time dependent, radiative transfer (RT) equations for arbitrary density fields. The SPH nature of SPHRAY makes the incorporation of separate hydrodynamics and gravity solvers very natural. SPHRAY relies on a Monte Carlo (MC) ray tracing scheme that does not interpolate the SPH particles onto a grid but instead integrates directly through the SPH kernels. Given initial conditions and a description...
Radiative instabilities of atmospheric jets and boundary layers
International Nuclear Information System (INIS)
Complex flows occur in the atmosphere and they can be source of internal gravity waves. We focus here on the sources associated with radiative and shear (or Kelvin-Helmholtz) instabilities. Stability studies of shear layers in a stably stratified fluid concern mainly cases where shear and stratification are aligned along the same direction. In these cases, Miles (1961) and Howard (1961) found a necessary condition for stability based on the Richardson number: Ri ≥ 1/4. In this thesis, we show that this condition is not necessary when shear and stratification are not aligned: we demonstrate that a two-dimensional planar Bickley jet can be unstable for all Richardson numbers. Although the most unstable mode remains 2D, we show there exists an infinite family of 3D unstable modes exhibiting a radiative structure. A WKBJ theory is found to provide the main characteristics of these modes. We also study an inviscid and stratified boundary layer over an inclined wall with non-Boussinesq and compressible effects. We show that this flow is unstable as soon as the wall is not horizontal for all Froude numbers and that strongly stratified 3D perturbations behave exactly like compressible 2D perturbations. Applications of the results to the jet stream and the atmospheric boundary layer are proposed. (author)
Energy Technology Data Exchange (ETDEWEB)
Wilson, M.F.; Henderson-Sellers, A.; Dickinson, R.E.; Kennedy, P.J.
1987-03-01
The soils data of Wilson and Henderson-Sellers have been incorporated into the land-surface parameterization scheme of the NCAR Community Climate Model after Dickinson. A stand-alone version of this land-surface scheme, termed the Biosphere-Atmosphere Transfer Scheme (BATS), has been tested in a series of sensitivity experiments designed to assess the sensitivity of the scheme to the inclusion of variable soil characteristics. The cases investigated were for conditions designed to represent a low-latitude, evergreen forest; a low-latitude sand desert; a high-latitude coniferous forest; high-latitude tundra; and prairie grasslands, each for a specified time of year. The tundra included spring snowmelt and the grassland incorporated snow accumulation. The sensitivity experiments included varying the soil texture from a coarse texture typical of sand through a medium texture typical of loam to a fine texture typical of clay. The sensitivity of the formation to the specified total and upper soil column depth and the response to altering the parameterization of the soil albedo dependence upon soil wetness and snow-cover were also examined. The biosphere-atmosphere transfer scheme showed the greatest sensitivity to the soil texture variation, particularly to the associated variation in the hydraulic conductivity and diffusivity parameters. There was only a very small response to the change in the soil albedo dependence on wetness and, although the sensitivity to the snow-covered soil albedo via the response to roughness length/snowmasking depth was significant, the results were predictable. Soil moisture responses can also be initiated by changes in vegetation characteristics such as the stomatal resistance through changed canopy interaction which modify the radiation and water budgets of the soil surface.
The influence of frequency-dependent radiative transfer on the structures of radiative shocks
Vaytet, N; Audit, E; Chabrier, G
2013-01-01
Radiative shocks are shocks in a gas where the radiative energy and flux coming from the very hot post-shock material are non-negligible in the shock's total energy budget, and are often large enough to heat the material ahead of the shock. Many simulations of radiative shocks, both in the contexts of astrophysics and laboratory experiments, use a grey treatment of radiative transfer coupled to the hydrodynamics. However, the opacities of the gas show large variations as a function of frequency and this needs to be taken into account if one wishes to reproduce the relevant physics. We have performed radiation hydrodynamics simulations of radiative shocks in Ar using multigroup (frequency dependent) radiative transfer with the HERACLES code. The opacities were taken from the ODALISC database. We show the influence of the number of frequency groups used on the dynamics and morphologies of subcritical and supercritical radiative shocks in Ar gas, and in particular on the extent of the radiative precursor. We fin...
Radiative characteristics for atmospheric models from lidar sounding and AERONET
Sapunov, Maxim; Kuznetsov, Anatoly; Efremenko, Dmitry; Bochalov, Valentin; Melnikova, Irina; Samulenkov, Dimity; Vasilyev, Alexander; Poberovsky, Anatoly; Frantsuzova, Inna
2016-04-01
Optical models of atmospheric aerosols above of St. Petersburg are constraint on the base of the results of lidar sounding. The lidar system of the Resource Center "Observatory of environmental safety" of the St. Petersburg University Research Park is situated the city center, Vasilievsky Island. The measurements of the vertical profile of velocity and wind direction in the center of St. Petersburg for 2014 -2015 are fulfilled in addition. Height of laser sounding of aerosols is up to 25 km and wind up to 12 km. Observations are accomplished in the daytime and at night and mapped to vertical profiles of temperature, humidity, wind speed and pressure obtained from radiosounding in Voeikovo (St. Petersburg suburb). Results of wind observations are compared with those of upper-air measurements of meteorological service in Voeikovo. The distance between the points of observation is 25 km. Statistics of wind directions at different heights are identified. The comparison is based on the assumption of homogeneity of the wind field on such a scale. In most cases, good agreement between the observed vertical profiles of wind, obtained by both methods is appeared. However, there were several cases, when the results differ sharply or at high altitudes, or, on the contrary, in the surface layer. The analysis of the impact of wind, temperature, and humidity profiles in the atmosphere on the properties and dynamics of solid impurities is implemented. Comparison with AOT results from AERONET observations in St. Petersburg suburb Peterhof is done. It is shown that diurnal and seasonal variations of optical and morphological parameters of atmospheric aerosols in the pollution cap over the city to a large extent determined by the variability of meteorological parameters. The results of the comparison are presented and possible explanation of the differences is proposed. Optical models of the atmosphere in day and night time in different seasons are constructed from lidar and AERONET
An alternative method for calibration of narrow band radiometer using a radiative transfer model
Energy Technology Data Exchange (ETDEWEB)
Salvador, J; Wolfram, E; D' Elia, R [Centro de Investigaciones en Laseres y Aplicaciones, CEILAP (CITEFA-CONICET), Juan B. de La Salle 4397 (B1603ALO), Villa Martelli, Buenos Aires (Argentina); Zamorano, F; Casiccia, C [Laboratorio de Ozono y Radiacion UV, Universidad de Magallanes, Punta Arenas (Chile) (Chile); Rosales, A [Universidad Nacional de la Patagonia San Juan Bosco, UNPSJB, Facultad de Ingenieria, Trelew (Argentina) (Argentina); Quel, E, E-mail: jsalvador@citefa.gov.ar [Universidad Nacional de la Patagonia Austral, Unidad Academica Rio Gallegos Avda. Lisandro de la Torre 1070 ciudad de Rio Gallegos-Sta Cruz (Argentina) (Argentina)
2011-01-01
The continual monitoring of solar UV radiation is one of the major objectives proposed by many atmosphere research groups. The purpose of this task is to determine the status and degree of progress over time of the anthropogenic composition perturbation of the atmosphere. Such changes affect the intensity of the UV solar radiation transmitted through the atmosphere that then interacts with living organisms and all materials, causing serious consequences in terms of human health and durability of materials that interact with this radiation. One of the many challenges that need to be faced to perform these measurements correctly is the maintenance of periodic calibrations of these instruments. Otherwise, damage caused by the UV radiation received will render any one calibration useless after the passage of some time. This requirement makes the usage of these instruments unattractive, and the lack of frequent calibration may lead to the loss of large amounts of acquired data. Motivated by this need to maintain calibration or, at least, know the degree of stability of instrumental behavior, we have developed a calibration methodology that uses the potential of radiative transfer models to model solar radiation with 5% accuracy or better relative to actual conditions. Voltage values in each radiometer channel involved in the calibration process are carefully selected from clear sky data. Thus, tables are constructed with voltage values corresponding to various atmospheric conditions for a given solar zenith angle. Then we model with a radiative transfer model using the same conditions as for the measurements to assemble sets of values for each zenith angle. The ratio of each group (measured and modeled) allows us to calculate the calibration coefficient value as a function of zenith angle as well as the cosine response presented by the radiometer. The calibration results obtained by this method were compared with those obtained with a Brewer MKIII SN 80 located in the
An alternative method for calibration of narrow band radiometer using a radiative transfer model
International Nuclear Information System (INIS)
The continual monitoring of solar UV radiation is one of the major objectives proposed by many atmosphere research groups. The purpose of this task is to determine the status and degree of progress over time of the anthropogenic composition perturbation of the atmosphere. Such changes affect the intensity of the UV solar radiation transmitted through the atmosphere that then interacts with living organisms and all materials, causing serious consequences in terms of human health and durability of materials that interact with this radiation. One of the many challenges that need to be faced to perform these measurements correctly is the maintenance of periodic calibrations of these instruments. Otherwise, damage caused by the UV radiation received will render any one calibration useless after the passage of some time. This requirement makes the usage of these instruments unattractive, and the lack of frequent calibration may lead to the loss of large amounts of acquired data. Motivated by this need to maintain calibration or, at least, know the degree of stability of instrumental behavior, we have developed a calibration methodology that uses the potential of radiative transfer models to model solar radiation with 5% accuracy or better relative to actual conditions. Voltage values in each radiometer channel involved in the calibration process are carefully selected from clear sky data. Thus, tables are constructed with voltage values corresponding to various atmospheric conditions for a given solar zenith angle. Then we model with a radiative transfer model using the same conditions as for the measurements to assemble sets of values for each zenith angle. The ratio of each group (measured and modeled) allows us to calculate the calibration coefficient value as a function of zenith angle as well as the cosine response presented by the radiometer. The calibration results obtained by this method were compared with those obtained with a Brewer MKIII SN 80 located in the
Interpreting snowpack radiometry using currently existing microwave radiative transfer models
Kang, D. H.; Tan, S.; Kim, E. J.
2015-12-01
A radiative transfer model (RTM) to calculate a snow brightness temperature (Tb) is a critical element to retrieve terrestrial snow from microwave remote sensing observations. The RTM simulates the Tb based on a layered snow by solving a set of microwave radiative transfer formulas. Even with the same snow physical inputs used for the RTM, currently existing models such as Microwave Emission Model of Layered Snowpacks (MEMLS), Dense Media Radiative Transfer (DMRT-Tsang), and Helsinki University of Technology (HUT) models produce different Tb responses. To backwardly invert snow physical properties from the Tb, the differences from the RTMs are to be quantitatively explained. To this end, the paper evaluates the sources of perturbations in the RTMs, and reveals the equations where the variations are made among three models. Investigations are conducted by providing the same but gradual changes in snow physical inputs such as snow grain size, and snow density to the 3 RTMs. Simulations are done with the frequencies consistent with the Advanced Microwave Scanning Radiometer-E (AMSR-E) at 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz. For realistic simulations, the 3 RTMs are simultaneously driven by the same snow physics model with the meteorological forcing datasets and are validated from the snow core samplings from the CLPX (Cold Land Processes Field Experiment) 2002-2003, and NoSREx (Nordic Snow Radar Experiment) 2009-2010.
A theoretical approach to room acoustic simulations based on a radiative transfer model
DEFF Research Database (Denmark)
Ruiz-Navarro, Juan-Miguel; Jacobsen, Finn; Escolano, José;
2010-01-01
A theoretical approach to room acoustic simulations based on a radiative transfer model is developed by adapting the classical radiative transfer theory from optics to acoustics. The proposed acoustic radiative transfer model expands classical geometrical room acoustic modeling algorithms by inco...
Radiative heat transfer in rocket thrust chambers and nozzles
Hammad, K. J.; Naraghi, M. H. N.
1989-01-01
Numerical models based on the discrete exchange factor (DEF) and the zonal methods for radiative analysis of rocket engines containing a radiatively participating medium have been developed. These models implement a new technique for calculating the direct exchange factors to account for possible blockage by the nozzle throat. Given the gas and surface temperature distributions, engine geometry, and radiative properties, the models compute the wall radiative heat fluxes at different axial positions. The results of sample calculations for a typical rocket engine (engine 700 at NASA), which uses RP-1 (a kerosene-type propellant), are presented for a wide range of surface and gas properties. It is found that the heat transfer by radiation can reach up to 50 percent of that due to convection. The maximum radiative heat flux is at the inner side of the engine, where the gas temperature is the highest. While the results of both models are in excellent agreement, the computation time of the DEF method is found to be much smaller.
The critical ingredients of SN Ia radiative-transfer modelling
Dessart, Luc; Blondin, Stephane; Khokhlov, Alexei
2013-01-01
We explore the physics of SN Ia light curves and spectra using the 1-D non-LTE time-dependent radiative-transfer code CMFGEN. Rather than adjusting ejecta properties to match observations, we select as input one "standard" 1-D Chandrasekhar-mass delayed-detonation hydrodynamical model, and then explore the sensitivity of radiation and gas properties of the ejecta on radiative-transfer modelling assumptions. The correct computation of SN Ia radiation is not exclusively a solution to an "opacity problem", characterized by the treatment of a large number of lines. We demonstrate that the key is to identify and treat important atomic processes consistently. This is not limited to treating line blanketing in full non-LTE. We show that including forbidden line transitions of metals, and in particular Co, is increasingly important for the temperature and ionization of the gas beyond maximum light. Non-thermal ionization and excitation also play a role, affecting the color evolution and the DM15 decline rate of our m...
SPAMCART: a code for smoothed particle Monte Carlo radiative transfer
Lomax, O
2016-01-01
We present a code for generating synthetic SEDs and intensity maps from Smoothed Particle Hydrodynamics simulation snapshots. The code is based on the Lucy (1999) Monte Carlo Radiative Transfer method, i.e. it follows discrete luminosity packets, emitted from external and/or embedded sources, as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The density is not mapped onto a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Second, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.
Efficient Monte Carlo methods for continuum radiative transfer
Juvela, M
2005-01-01
We discuss the efficiency of Monte Carlo methods in solving continuum radiative transfer problems. The sampling of the radiation field and convergence of dust temperature calculations in the case of optically thick clouds are both studied. For spherically symmetric clouds we find that the computational cost of Monte Carlo simulations can be reduced, in some cases by orders of magnitude, with simple importance weighting schemes. This is particularly true for models consisting of cells of different sizes for which the run times would otherwise be determined by the size of the smallest cell. We present a new idea of extending importance weighting to scattered photons. This is found to be useful in calculations of scattered flux and could be important for three-dimensional models when observed intensity is needed only for one general direction of observations. Convergence of dust temperature calculations is studied for models with optical depths 10-10000. We examine acceleration methods where radiative interactio...
Combined-mode heat transfer in radiatively participating media
International Nuclear Information System (INIS)
This paper reports on an investigation of the computational considerations involved with the numerical solution of multi-dimensional, multi-mode heat transfer in a radiatively participating medium. Comparison of three different solution methods for solving the discretized nonlinear equations shows that none of the techniques is universally superior to the others, but that the best solution algorithm is highly dependent on the value of the radiation-conduction parameter. In addition, it was shown that the global error could be significantly reduced by placing only a few additional nodal points in high gradient regions. Furthermore, the inclusion of a linearly varying temperature dependent conductivity (wherein both conductive and radiative terms are nonlinear) was shown to have little effect on convergence
Photon conservation in scattering by large ice crystals with the SASKTRAN radiative transfer model
International Nuclear Information System (INIS)
The scattering of visible light by ice crystals and dust in radiative transfer models is challenging in part due to the large amount of scattering in the forward direction. We introduce a technique that ensures numerical conservation of photons in any radiative transfer model and that quantifies the integration error associated with highly asymmetric phase functions. When applied to a successive-orders of scatter model, the technique illustrates the high accuracy obtained in numerical integration of molecular and aerosol scattering. As well, a phase function truncation and renormalization technique is applied to scattering by ice crystals with very large size parameters, between 100 and 1000, and the scaled radiative transfer equation is solved with the spherical successive-orders model, SASKTRAN. Since computations shown this work are performed in a fully spherical model atmosphere, the computed radiances are not subject to the discontinuity at the horizon that is inherent in models using a plane-parallel assumption. The methods introduced in this work are of particular interest in modeling limb radiances in the presence of thin cirrus clouds.
Studies on gas-liquid mass transfer in atmospheric leaching of sulphidic zinc concentrates
Kaskiala, Toni
2005-01-01
In this work, the mass transfer of oxygen in the atmospheric leaching process of zinc sulphide was investigated. Four new experimental apparatus items suitable for this purpose were designed and developed. The experiments conducted with the water model were focused on volumetric mass transfer, gas and liquid flow patterns, gas dispersion and bubble size. The effects of liquid properties and temperature on bubble size were examined with the bubble swarm system. Mass transfer coefficients, kL, ...
Direct transfer of solar radiation to high temperature applications
Rahou, Maryam; Andrews, John; Rosengarten, Gary
2013-12-01
This paper reviews the different methods of directly transferring solar radiation from concentrated solar collectors to medium to high temperature thermal absorbers, at temperatures ranging from 100 to 400°. These methods are divided into four main categories associated with the radiation transfer medium: optical fibres, photonic crystal fibres, metal waveguides and light guides. The reviewed methods are novel compared to most rooftop solar concentrators that have a receiver and a thermal storage unit coupled by heat transfer fluids. Bundled optical fibres have the capability of transferring concentrated solar energy across the full wavelength spectrum with the maximum optical efficiency. In this study two different types of optical bundle, including hard polymer cladding silica (HPCS) and polymer clad silica (PCS) fibres are introduced which offer a broad spectrum transmission range from 300 to 1700 nm, low levels of losses through attenuation and the best resistance to heating. These fibres are able to transmit about 94% of the solar radiation over a distance of 10 m. The main parameters that determine the overall efficiency of the system are the concentration ratio, the acceptance angle of the fibres, and the matching of the diameter of the focus spot of the concentrator and the internal diameter of the fibre. In order to maximize the coupling efficiency of the system, higher levels of concentration are required which can be achieved through lenses or other non-imaging concentrators. However, these additional components add to the cost and complexity of the system. To avoid this problem we use tapered bundles of optical fibres that enhance the coupling efficiency by increasing the acceptance angle and consequently the coupling efficiency of the system.
The Nature of the Radiative Hydrodynamic Instabilities in Radiatively Supported Thomson Atmospheres
Shaviv, N J
2001-01-01
Atmospheres having a significant radiative support are shown to be intrinsically unstable at luminosities above a critical fraction Gamma_crit ~ 0.5-0.85 of the Eddington limit, with the exact value depending on the boundary conditions. Two different types of absolute radiation-hydrodynamic instabilities of acoustic waves are found to take place even in the electron scattering dominated limit. Both instabilities grow over dynamical time scales and both operate on non radial modes. One is stationary and arises only after the effects of the boundary conditions are taken into account, while the second is a propagating wave and is insensitive to the boundary conditions. Although a significant wind can be generated by these instabilities even below the classical Eddington luminosity limit, quasi-stable configurations can exist beyond the Eddington limit due to the generally reduced effective opacity. The study is done using a rigorous numerical linear analysis of a gray plane parallel atmosphere under the Eddingto...
Radiative transfer in hot plasmas: a new numeric approach
International Nuclear Information System (INIS)
Radiative transfer is one of the main issues in inertial confinement fusion and in astrophysics. The basic equations governing the evolution of a radiative field and its coupling with a heat equation are well known, at least in the LTE approximation (Local Thermodynamic Equilibrium). However, the numerical techniques which have been developed so far are not fully satisfactory. The aim of this work has therefore been to suggest a few new ideas concerning simplicity and accuracy in the description as well as in the resolution of the equations coupling the radiative field with matter. Chapter 1 introduces the context of this work and stresses the importance of opacities in the study of the interaction between the radiation field and matter, whereas chapter 2 gives a rather complete general survey of the main physical models used until now to describe this interaction. An alternative formalism of this coupling is presented in chapter 3 where a new distribution function, based on the departure of the radiation field from thermodynamic equilibrium, is introduced. In the new resulting transport equation, the source term is now mainly determined by a time derivative and a spatial gradient of the temperature and on the other hand by a universal spectrum. This formalism includes thermal conduction in a natural way which is not the case with standard formalisms. Finally, chapter 4 presents results of the confrontation with literature data of our formalism and the numerical techniques developed, including an application to a non homogeneous medium. (author) figs., tabs., 57 refs
Radiative energy balance of Venus based on improved models of the middle and lower atmosphere
Haus, R.; Kappel, D.; Tellmann, S.; Arnold, G.; Piccioni, G.; Drossart, P.; Häusler, B.
2016-07-01
The distribution of sources and sinks of radiative energy forces the atmospheric dynamics. The radiative transfer simulation model described by Haus et al. (2015b) is applied to calculate fluxes and temperature change rates in the middle and lower atmosphere of Venus (0-100 km) covering the energetic significant spectral range 0.125-1000 μm. The calculations rely on improved models of atmospheric parameters (temperature profiles, cloud parameters, trace gas abundances) retrieved from Venus Express (VEX) data (mainly VIRTIS-M-IR, but also VeRa and SPICAV/SOIR with respect to temperature results). The earlier observed pronounced sensitivity of the radiative energy balance of Venus to atmospheric parameter variations is confirmed, but present detailed comparative analyses of possible influence quantities ensure unprecedented insights into radiative forcing on Venus by contrast with former studies. Thermal radiation induced atmospheric cooling rates strongly depend on temperature structure and cloud composition, while heating rates are mainly sensitive to insolation conditions and UV absorber distribution. Cooling and heating rate responses to trace gas variations and cloud mode 1 abundance changes are small, but observed variations of cloud mode 2 abundances and altitude profiles reduce cooling at altitudes 65-80 km poleward of 50°S by up to 30% compared to the neglect of cloud parameter changes. Cooling rate variations with local time below 80 km are in the same order of magnitude. Radiative effects of the unknown UV absorber are modeled considering a proxy that is based on a suitable parameterization of optical properties, not on a specific chemical composition, and that is independent of the used cloud model. The UV absorber doubles equatorial heating near 68 km. Global average radiative equilibrium at the top of atmosphere (TOA) is characterized by the net flux balance of 156 W/m2, the Bond albedo of 0.76, and the effective planetary emission temperature of 228
Viúdez-Mora, A.; Costa-Surós, M.; Calbó, J.; González, J. A.
2015-01-01
behavior of the atmospheric downward longwave radiation at the surface under overcast conditions is studied. For optically thick clouds, longwave radiation depends greatly on the cloud base height (CBH), besides temperature and water vapor profiles. The CBH determines the cloud emission temperature and the air layers contributing to the longwave radiation that reaches the surface. Overcast situations observed at Girona (NE Iberian Peninsula) were studied by using a radiative transfer model. The data set includes different seasons, and a large range of CBH (0-5000 m). The atmosphere profiles were taken from the European Center for Medium-Range Weather Forecast analysis. The CBH was determined from ceilometer measurements and also estimated by using a suitable method applied to the vertical profile of relative humidity. The agreement between calculations and pyrgeometer measurements is remarkably good (1.6 ± 6.2 W m-2) if the observed CBH is used; poorer results are obtained with the estimated CBH (4.3 ± 7.0 W m-2). These results are better than those obtained from a simple parameterization based upon ground-level data (1.1 ± 11.6 W m-2), which can be corrected by adding a term that takes into account the CBH (-0.1 ± 7.3 W m-2). At this site, the cloud radiative effect (CRE) at the surface lies in the range 50-80 W m-2, has a clear seasonal behavior (higher CRE in winter), and depends upon the CBH. For the cold and the warm seasons, CRE decreases with CBH at a rate of -5 and -4 W m-2/km, respectively. Results obtained for other climates (subarctic and tropical) are also presented.
A new nonlocal thermodynamical equilibrium radiative transfer method for cool stars
Lambert, Julien; Ryde, Nils; Faure, Alexandre
2015-01-01
Context: The solution of the nonlocal thermodynamical equilibrium (non-LTE) radiative transfer equation usually relies on stationary iterative methods, which may falsely converge in some cases. Furthermore, these methods are often unable to handle large-scale systems, such as molecular spectra emerging from, for example, cool stellar atmospheres. Aims: Our objective is to develop a new method, which aims to circumvent these problems, using nonstationary numerical techniques and taking advantage of parallel computers. Methods: The technique we develop may be seen as a generalization of the coupled escape probability method. It solves the statistical equilibrium equations in all layers of a discretized model simultaneously. The numerical scheme adopted is based on the generalized minimum residual method. Result:. The code has already been applied to the special case of the water spectrum in a red supergiant stellar atmosphere. This demonstrates the fast convergence of this method, and opens the way to a wide va...
Computing Radiative Transfer in a 3D Medium
Von Allmen, Paul; Lee, Seungwon
2012-01-01
A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.
Iteration Profiles in Radiative Transfer Problems. I. From Vectorial to Scalar Coupling
Crivellari, L.; Simonneau, E.
1995-09-01
We have recently introduced a new algorithm, the implicit integral method (IIM), for solving radiative transfer problems in which the specific source functions (for each frequency and direction) depend linearly on the radiation field via a single quantity which is independent of both frequency and direction. We define this kind of relationship as scalar coupling. The fact that our method turned out to be fast, robust, and highly reliable leads us to seek its extension to include those problems where the above, necessary condition is not fulfilled. In these problems, the specific source functions depend on the radiation field through a nonfactorable redistribution operator. In our definition, these are cases of vectorial coupling. In this paper we present the successful application of the IIM, through an iterative procedure, to two specific instances of vectorial coupling. The first is the determination of the temperature distribution, self-consistent with the energy conservation constraint, within a LTE stellar atmosphere model. Here the physical processes other than radiative transfer require an iterative procedure for the global solution of the problem. Thus we take advantage of this circumstance to solve iteratively the radiative transfer part as well. The second is the case of the non-LTE two-level-atom line formation problem in which partial redistribution is taken into account in the presence of a background continuum. This problem allows a direct solution, but at the cost of using algorithms that necessarily require the storage and inversion of very high order matrices. On the contrary, we show that a solution based on the iterative application of the IIM, thanks to the outstanding features of the latter, is not only fast, but above all much more reliable in numerical terms.
Atmospheric absorption of terahertz radiation and water vapor continuum effects
International Nuclear Information System (INIS)
The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The transmission of broadband terahertz radiation from 0.300 to 1.500 THz was recorded for multiple path lengths and relative humidity levels. The absorption coefficient as a function of frequency was determined and compared with theoretical predictions and available water vapor absorption data. The prediction code is able to separately model the different parts of atmospheric absorption for a range of experimental conditions. A variety of conditions were accurately modeled using this code including both self and foreign gas broadening for low and high water vapor pressures for many different measurement techniques. The intensity and location of the observed absorption lines were also in good agreement with spectral databases. However, there was a discrepancy between the resonant line spectrum simulation and the observed absorption spectrum in the atmospheric transmission windows caused by the continuum absorption. A small discrepancy remained even after using the best available data from the literature to account for the continuum absorption. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature. -- Highlights: •Broadband absorption measurements of water vapor were performed at 300–1500 GHz. •The absorption coefficient of water vapor was modeled and compared with data. •The air-broadened continuum coefficient for water vapor was determined. •The modeled absorption coefficient is presented for 10–90% humidity at 0–3 THz
Radiation doses from Hanford site releases to the atmosphere
International Nuclear Information System (INIS)
Radiation doses to individuals were estimated for the years 1944-1992. The dose estimates were based on the radioactive-releases from the Hanford Site in south central Washington. Conceptual models and computer codes were used to reconstruct doses through the early 1970s. The published Hanford Site annual environmental data were used to complete the does history through 1992. The most significant exposure pathway was found to be the consumption of cow's milk containing iodine-131. For the atmospheric pathway, median cumulative dose estimates to the thyroid of children ranged from < 0.1 to 235 rad throughout the area studied. The geographic distribution of the dose levels was directly related to the pattern of iodine-131 deposition and was affected by the distribution of commercial milk and leafy vegetables. For the atmospheric pathway, the-highest estimated cumulative-effective-dose-equivalent (EDE) to an adult was estimated to be 1 rem at Ringold, Washington for the period 1944-1992. For the Columbia River pathway, cumulative EDE estimates ranged from <0.5 to l.5 rem cumulative dose to maximally exposed adults downriver from the Hanford Site for the years 1944-1992. The most significant river exposure pathway was consumption of resident fish containing phosphorus-32 and zinc-65
High-resolution and Monte Carlo additions to the SASKTRAN radiative transfer model
Directory of Open Access Journals (Sweden)
D. J. Zawada
2015-06-01
Full Text Available The Optical Spectrograph and InfraRed Imaging System (OSIRIS instrument on board the Odin spacecraft has been measuring limb-scattered radiance since 2001. The vertical radiance profiles measured as the instrument nods are inverted, with the aid of the SASKTRAN radiative transfer model, to obtain vertical profiles of trace atmospheric constituents. Here we describe two newly developed modes of the SASKTRAN radiative transfer model: a high-spatial-resolution mode and a Monte Carlo mode. The high-spatial-resolution mode is a successive-orders model capable of modelling the multiply scattered radiance when the atmosphere is not spherically symmetric; the Monte Carlo mode is intended for use as a highly accurate reference model. It is shown that the two models agree in a wide variety of solar conditions to within 0.2 %. As an example case for both models, Odin–OSIRIS scans were simulated with the Monte Carlo model and retrieved using the high-resolution model. A systematic bias of up to 4 % in retrieved ozone number density between scans where the instrument is scanning up or scanning down was identified. The bias is largest when the sun is near the horizon and the solar scattering angle is far from 90°. It was found that calculating the multiply scattered diffuse field at five discrete solar zenith angles is sufficient to eliminate the bias for typical Odin–OSIRIS geometries.
Hydraulic effects in a radiative atmosphere with ionization
Bhat, Pallavi
2014-01-01
In a paper of 1978, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has recently also been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability. We study the effects of partial ionization near the radiative surface on the formation of such magnetic flux concentrations. We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the ${\\rm H}^{-}$ opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force resembling a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. In 1D models, due to partial ionization, an unstable stratification forms always near the surface. We show that the extrema in the specific entropy profil...
A Solar Radiation Parameterization for Atmospheric Studies. Volume 15
Chou, Ming-Dah; Suarez, Max J. (Editor)
1999-01-01
The solar radiation parameterization (CLIRAD-SW) developed at the Goddard Climate and Radiation Branch for application to atmospheric models are described. It includes the absorption by water vapor, O3, O2, CO2, clouds, and aerosols and the scattering by clouds, aerosols, and gases. Depending upon the nature of absorption, different approaches are applied to different absorbers. In the ultraviolet and visible regions, the spectrum is divided into 8 bands, and single O3 absorption coefficient and Rayleigh scattering coefficient are used for each band. In the infrared, the spectrum is divided into 3 bands, and the k-distribution method is applied for water vapor absorption. The flux reduction due to O2 is derived from a simple function, while the flux reduction due to CO2 is derived from precomputed tables. Cloud single-scattering properties are parameterized, separately for liquid drops and ice, as functions of water amount and effective particle size. A maximum-random approximation is adopted for the overlapping of clouds at different heights. Fluxes are computed using the Delta-Eddington approximation.
Heat transfer in granular beds in radiative heat supply
Teplitskii, Yu. S.; Kovenskii, V. I.
2010-07-01
The basic regularities of stationary heat transfer throughout the space of an infiltrated granular bed in radiative heat supply in cocurrent-flow (solar collector 1) and counterflow (solar collector 2) regimes have been investigated within the framework of a two-temperature model. The boundary layer of the third kind for the skeleton of particles at exit from the bed has been formulated; this condition allows for the degree of turbulence of the heat-transfer-agent flow. A quasihomogeneity criterion making it possible to evaluate the thermal state of a two-phase system has been introduced. The approximation dependences for calculation of the active-portion length, the bed’s resistance, the solar-collector efficiency, and the average relative phase-temperature difference have been established.
Can we modify response to radiation therapy with gene transfer?
International Nuclear Information System (INIS)
Several recent studies suggest that gene transfer can be combined with irradiation to increase anti-tumor efficacy. Among genes of particular interest to be used in this combined approach are those involved in the regulation of radiation-induced lethality (apoptosis, DNA repair). Some additional aspects appear to be relatively specific to these combinations, such as the type of vector to be used (anaerobic bacteria) or the type of promoter (radio-inducible promoters). The first results obtained in mice bearing human xenograft tumors, combining gene transfer and irradiation are encouraging, but no clinical study has been performed so far. Finally it should be pointed out, in this area as well as in cancer gene therapy in general, that progress in gene vectorization is mandatory to optimize gene distribution within the tumor. (authors)
Alexandri, G.; Georgoulias, A.; Meleti, C.; Balis, D.
2013-12-01
Surface solar radiation (SSR) and its long and short term variations play a critical role in the modification of climate and by extent of the social and financial life of humans. Thus, SSR measurements are of primary importance. SSR is measured for decades from ground-based stations for specific spots around the planet. During the last decades, satellite observations allowed for the assessment of the spatial variability of SSR at a global as well as regional scale. In this study, a detailed spatiotemporal view of the SSR over Eastern Mediterranean is presented at a high spatial resolution. Eastern Mediterranean is affected by various aerosol types (continental, sea, dust and biomass burning particles) and encloses countries with significant socioeconomical changes during the last decades. For the aims of this study, SSR data from satellites (Climate Monitoring Satellite Application Facility - CM SAF) and our ground station in Thessaloniki, a coastal city of ~1 million inhabitants in northern Greece, situated in the heart of Eastern Mediterranean (Eppley Precision pyranometer and Kipp & Zonen CM-11 pyranometer) are used in conjunction with radiative transfer simulations (Santa Barbara DISORT Atmospheric Radiative Transfer - SBDART). The CM SAF dataset used here includes monthly mean SSR observations at a high spatial resolution of 0.03x0.03 degrees for the period 1983-2005. Our ground-based SSR observations span from 1983 until today. SBDART radiative transfer simulations were implemented for a number of spots in the area of study in order to calculate the SSR. High resolution (level-2) aerosol and cloud data from MODIS TERRA and AQUA satellite sensors were used as input, as well as ground-based data from the AERONET. Data from other satellites (Earth Probe TOMS, OMI, etc) and reanalysis projects (ECMWF) were used where needed. The satellite observations, the ground-based measurements and the model estimates are validated against each other. The good agreement
International Nuclear Information System (INIS)
The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program
Adaptable Radiative Transfer Innovations for Submillimeter Telescopes (ARTIST)
Padovani, Marco
2011-01-01
Submillimeter observations are a key for answering many of the big questions in modern-day astrophysics, such as how stars and planets form, how galaxies evolve, and how material cycles through stars and the interstellar medium. With the upcoming large submillimeter facilities ALMA and Herschel a new window will open to study these questions. ARTIST is a project funded in context of the European ASTRONET program with the aim of developing a next generation model suite for comprehensive multi-dimensional radiative transfer calculations of the dust and line emission, as well as their polarization, to help interpret observations with these groundbreaking facilities.
A multilevel method for conductive-radiative heat transfer
Energy Technology Data Exchange (ETDEWEB)
Banoczi, J.M.; Kelley, C.T. [North Carolina State Univ., Raleigh, NC (United States)
1996-12-31
We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.
Peregrinations through topics in light scattering and radiative transfer
Kattawar, George W.
2016-07-01
In this van de Hulst essay, I have taken the liberty to present a journey through some topics in light scattering and radiative transfer which I feel were major contributions to the field but the number of topics I would like to cover is far more numerous than I have the time or the space to present. I also wanted to share with the reader some heartwarming memories I have of my wonderful friend and truly distinguished colleague Hendrik Christoffel van de Hulst (affectionately known to his colleagues as "Henk") whom I consider to be one of the preeminent scientists of his era.
Radiative Transfer in Prestellar Cores: A Monte Carlo Approach
Stamatellos, D.; Whitworth, A. P.
2003-01-01
We use our Monte Carlo radiative transfer code to study non-embedded prestellar cores and cores that are embedded at the centre of a molecular cloud. Our study indicates that the temperature inside embedded cores is lower than in isolated non-embedded cores, and generally less than 12 K, even when the cores are surrounded by an ambient cloud of small visual extinction (Av~5). Our study shows that the best wavelength region to observe embedded cores is between 400 and 500 microns, where the co...
3D Monte Carlo radiation transfer modelling of photodynamic therapy
Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry
2015-06-01
The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.
Three-Dimensional Radiation Transfer in Young Stellar Objects
Whitney, B A; Bjorkman, J E; Dong, R; Wolff, M J; Wood, K; Honor, J
2013-01-01
We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various 3-D geometries appropriate for forming stars. The 3-D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2-D) features include gaps in disks and envelopes, "puffed-up inner rims" in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium. We include the option for simple power-law envelope geometry, which combined with fractal clumping, and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from PAHs and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We des...
A field test of a simple stochastic radiative transfer model
Energy Technology Data Exchange (ETDEWEB)
Byrne, N. [Science Applications International Corp., San Diego, CA (United States)
1995-09-01
The problem of determining the effect of clouds on the radiative energy balance of the globe is of well-recognized importance. One can in principle solve the problem for any given configuration of clouds using numerical techniques. This knowledge is not useful however, because of the amount of input data and computer resources required. Besides, we need only the average of the resulting solution over the grid scale of a general circulation model (GCM). Therefore, we are interested in estimating the average of the solutions of such fine-grained problems using only coarse grained data, a science or art called stochastic radiation transfer. Results of the described field test indicate that the stochastic description is a somewhat better fit to the data than is a fractional cloud cover model, but more data are needed. 1 ref., 3 figs.
Estimation of presampling modulation transfer function in synchrotron radiation microtomography
Mizutani, Ryuta; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio
2016-01-01
The spatial resolution achieved by recent synchrotron radiation microtomographs should be estimated from the modulation transfer function (MTF) on the micrometer scale. Step response functions of a synchrotron radiation microtomograph were determined by the slanted edge method by using high-precision surfaces of diamond crystal and ion-milled aluminum wire. Tilted reconstruction was introduced to enable any edge to be used as the slanted edge by defining the reconstruction pixel matrix in an arbitrary orientation. MTFs were estimated from the step response functions of the slanted edges. The obtained MTFs coincided with MTF values estimated from square-wave patterns milled on the aluminum surface. Although x-ray refraction influences should be taken into account to evaluate MTFs, any flat surfaces with nanometer roughness can be used to determine the spatial resolutions of microtomographs.
Numerical Radiative Transfer and the Hydrogen Reionization of the Universe
Petkova, M.
2011-03-01
One of the most interesting questions in cosmology is to understand how the Universe evolved from its nearly uniform and simple state briefly after the Big Bang to the complex state we see around us today. In particular, we would like to explain how galaxies have formed, and why they have the properties that we observe in the local Universe. Computer simulations play a highly important role in studying these questions, because they allow one to follow the dynamical equations of gravity and hydrodynamics well into the non-linear regime of the growth of cosmic structures. The current generation of simulation codes for cosmological structure formation calculates the self-gravity of dark matter and cosmic gas, and the fluid dynamics of the cosmic gas, but radiation processes are typically not taken into account, or only at the level of a spatially uniform, externally imposed background field. However, we know that the radiation field has been highly inhomogeneous during certain phases of the growth of structure, and may have in fact provided important feedback effects for galaxy formation. In particular, it is well established that the diffuse gas in the universe was nearly fully neutral after recombination at very high redshift, but today this gas is highly ionized. Sometime during the evolution, a transition to the ionized state must have occurred, a process we refer to as reionization. The UV radiation responsible for this reionization is now permeating the universe and may in part explain why small dwarf galaxies have so low luminosities. It is therefore clear that accurate and self-consistent studies of galaxy formation and of the dynamics of the reionization process should ideally be done with simulation codes that directly include a treatment of radiative transfer, and that account for all relevant source and sink terms of the radiation. We present a novel numerical implementation of radiative transfer in the cosmological smoothed particle hydrodynamics (SPH
Miyazawa, Y.; Giambelluca, T. W.; Crow, S. E.; Mudd, R. G.; Youkhana, A.; Nullet, M.; Nakahata, M.
2015-12-01
Sugarcane plantation land cover is increasing in area in Brazil, South Asia and the Pacific Islands because of the growing demand for sugar and biofuel production. While a large portion of sugarcane cultivated in Brazil is rain-fed and experiences drought influences on gas exchange, sugarcane in Hawai'i is thought to be buffered from drought effects because it is drip irrigated. Knowledge about carbon sequestration and evapotranspiration rates is fundamental both for the prediction of sugar and biofuel production and for water resource management for the large plantations. To understand gas transfer under spatially and temporally heterogeneous environments, we investigated the leaf- soil- and stand-scale gas transfer processes at two irrigated sugarcane plantation study sites in Hawai'i with contrasting rainfall. Gas and energy transfers were monitored using eddy covariance systems for a full- and later half- crop cycle. Leaf ecophysiological traits were measured for stands of different ages to evaluate the effects of stand age on gas transfer. Carbon sequestration rates (Fc) showed a strong relationship with solar radiation with small differences between sites. Latent heat flux expressed as the evapotranspiration rates (ET) also had a strong relationship with solar radiation, but showed seasonality due to variations in biological control (surface conductance) and atmospheric evaporative demand. The difference in ET and its responses to environments was less clear partly buffered by the differences in the stand age and seasons. The stable Fc-solar radiation relationship despite the variation in surface conductance was partly due to the saturation of net photosynthetic rates with intercellular CO2 concentration and the low sensitivity of net photosynthesis to variations in surface conductance in sugarcane with the C4 photosynthesis pathway. The response of gas transfer to periodic irrigation, rainfall and age-related changes in leaf ecophysiological traits will be
Realistic NLTE Radiative Transfer for Modeling Stellar Winds
Bennett, Philip D.
1999-01-01
This NASA grant supported the development of codes to solve the non-LTE multi-level spherical radiative transfer problem in the presence of velocity fields. Much of this work was done in collaboration with Graham Harper (CASA, University of Colorado). These codes were developed for application to the cool, low-velocity winds of evolved late-type stars. Particular emphasis was placed on modeling the wind of lambda Velorum (K4 lb), the brightest K supergiant in the sky, based on extensive observations of the ultraviolet spectrum with the HST/GHRS from GO program 5307. Several solution techniques were examined, including the Eddington factor Approach described in detail by Bennett & Harper (1997). An Eddington factor variant of Harper's S-MULTI code (Harper 1994) for stationary atmospheres was developed and implemented, although full convergence was not realized. The ratio of wind terminal velocity to turbulent velocity is large (approx. 0.3-0.5) in these cool star winds so this assumption of stationarity provides reasonable starting models. Final models, incorporating specified wind laws, were converged using the comoving CRD S-MULTI code. Details of the solution procedure were published by Bennett & Harper (1997). Our analysis of the wind of lambda Vel, based on wind absorption superimposed on chromospheric emission lines in the ultraviolet, can be found in Carpenter et al. (1999). In this paper, we compare observed wind absorption features to an exact CRD calculation in the comoving frame, and also to a much quicker, but approximate, method using the SEI (Sobolev with Exact Integration) code of Lamers, Cerruti-Sola, & Perinotto (1987). Carpenter et al. (1999) provide detailed comparisons of the exact CRD and approximate SEI results and discuss when SEI is adequate to use for computing wind line profiles. Unfortunately, the observational material is insufficient to unambiguously determine the wind acceleration law for lambda Vel. Relatively few unblended Fe II lines
Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang
2016-04-01
Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ~0.128 and 0.47m, and ~0.223 and 0.01m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47×10-2 and 7.13×10-3, and 2.91×10-3 and 1.96×10-3, for banana plantation and alpine meadow areas, respectively. This is the first time in Asia that long-term open field measurements have been taken with the specific aim of making comparisons between banana plantation and alpine meadow surfaces.
Cosmological Radiative Transfer Comparison Project II: The Radiation-Hydrodynamic Tests
Iliev, Ilian T; Mellema, Garrelt; Ahn, Kyungjin; Baek, Sunghye; Gnedin, Nickolay Y; Kravtsov, Andrey V; Norman, Michael; Raicevic, Milan; Reynolds, Daniel R; Sato, Daisuke; Shapiro, Paul R; Semelin, Benoit; Smidt, Joseph; Susa, Hajime; Theuns, Tom; Umemura, Masayuki
2009-01-01
The development of radiation hydrodynamical methods that are able to follow gas dynamics and radiative transfer self-consistently is key to the solution of many problems in numerical astrophysics. Such fluid flows are highly complex, rarely allowing even for approximate analytical solutions against which numerical codes can be tested. An alternative validation procedure is to compare different methods against each other on common problems, in order to assess the robustness of the results and establish a range of validity for the methods. Previously, we presented such a comparison for a set of pure radiative transfer tests (i.e. for fixed, non-evolving density fields). This is the second paper of the Cosmological Radiative Transfer (RT) Comparison Project, in which we compare 9 independent RT codes directly coupled to gasdynamics on 3 relatively simple astrophysical hydrodynamics problems: (5) the expansion of an H II region in a uniform medium; (6) an ionization front (I-front) in a 1/r^2 density profile with...
Reichert, Andreas; Sussmann, Ralf; Rettinger, Markus
2016-04-01
Inaccuracies in the description of atmospheric radiative processes are among the major shortcomings of current climate models. Especially the contribution by water vapor, the primary greenhouse gas in the Earth's atmosphere, currently still lacks sufficiently accurate quantification. The main focus of our study is on the so-called water vapor continuum absorption in the near-infrared spectral range, which is of crucial importance for atmospheric radiative processes. To date, the quantification of this contribution originates exclusively from laboratory experiments which show contradictory results and whose findings are not unambiguously transferable to atmospheric conditions. The aim of the Zugspitze radiative closure study is therefore to obtain, to our knowledge for the first time, an exact characterization of the near-infrared water vapor continuum absorption using atmospheric measurements. This enables validation and, if necessary, improvements of the radiative transfer codes used in current climate models. The closure experiment comprises near-infrared spectral radiance measurements using a solar absorption FTIR spectrometer. These measurements are then compared to synthetic radiance spectra computed by means of a high-resolution radiative transfer model. The spectral residuals, i.e. the difference between measured and calculated spectral radiances can then be used to quantify errors in the description of water vapor absorption. Due to the extensive permanent instrumentation available at the Zugspitze observatory, the atmospheric state used as an input to the model calculations can be constrained with high accuracy. Additionally, we employ a novel radiometric calibration strategy for the solar FTIR spectral radiance measurements based on a combination of the Langley method and measurements of a medium-temperature blackbody source. These prerequisites enable accurate quantification of the water vapor continuum in the near-infrared spectral region, where
Radiative transfer model for contaminated slabs : experimental validations
Andrieu, François; Schmitt, Bernard; Douté, Sylvain; Brissaud, Olivier
2015-01-01
This article presents a set of spectro-goniometric measurements of different water ice samples and the comparison with an approximated radiative transfer model. The experiments were done using the spectro-radiogoniometer described in Brissaud et al. (2004). The radiative transfer model assumes an isotropization of the flux after the second interface and is fully described in Andrieu et al. (2015). Two kind of experiments were conducted. First, the specular spot was closely investigated, at high angular resolution, at the wavelength of $1.5\\,\\mbox{\\mu m}$, where ice behaves as a very absorbing media. Second, the bidirectional reflectance was sampled at various geometries, including low phase angles on 61 wavelengths ranging from $0.8\\,\\mbox{\\mu m}$ to $2.0\\,\\mbox{\\mu m}$. In order to validate the model, we made a qualitative test to demonstrate the relative isotropization of the flux. We also conducted quantitative assessments by using a bayesian inversion method in order to estimate the parameters (e.g. sampl...
Two mapping techniques for calculating radiative heat transfer with scattering
International Nuclear Information System (INIS)
This paper reports that the problem of radiative heat transfer through a gray, emitting, absorbing, and scattering medium with uniform optical properties is reduced to one without scattering through two techniques. One uses scaling laws, and the other uses a self-consistent effective gas temperature. The scaling laws are derived via the P1 approximation to the radiative transfer equation and can be applied to multidimensional problems with nonisothermal media. The effective temperature method is presently restricted to isotropic scattering and isothermal media. Both methods are evaluated in the current study as a function of scattering albedo, wall emissivity, and optical thickness for two different geometries, and two sets of wall and gas temperatures. The effects of scattering anisotropy are also assessed for the P1 method. The numerical results show that for these cases the scaling method is reasonably accurate for optically thick media with a scattering albedo less than 0.8, and the effective temperature technique is reasonably accurate for optically thin media for all albedos
Rabacus: A Python package for analytic cosmological radiative transfer calculations
Altay, G.; Wise, J. H.
2015-04-01
We describe RABACUS, a Python package for calculating the transfer of hydrogen ionizing radiation in simplified geometries relevant to astronomy and cosmology. We present example solutions for three specific cases: (1) a semi-infinite slab gas distribution in a homogeneous isotropic background, (2) a spherically symmetric gas distribution with a point source at the center, and (3) a spherically symmetric gas distribution in a homogeneous isotropic background. All problems can accommodate arbitrary spectra and density profiles as input. The solutions include a treatment of both hydrogen and helium, a self-consistent calculation of equilibrium temperatures, and the transfer of recombination radiation. The core routines are written in Fortran 90 and then wrapped in Python leading to execution speeds thousands of times faster than equivalent routines written in pure Python. In addition, all variables have associated units for ease of analysis. The software is part of the Python Package Index and the source code is available on Bitbucket at
Atmospheric radiation measurement program facilities newsletter, April 2001.; TOPICAL
International Nuclear Information System (INIS)
Intensive Observation Period Projects Scheduled-Several IOP projects have been scheduled for the SGP CART site this spring. These projects either have already begun or will begin shortly. Radiosondes-The RS-90 Transition IOP is currently under way. The RS-90 model radiosonde is gradually replacing the older RS-80 model. Radiosondes are instrument packages attached to and launched by weather balloons. The instruments measure atmospheric pressure, temperature, and relative humidity as the balloon rises through the air. The new RS-90 model is a high-performance radiosonde with fast-response sensors capable of providing data for each variable every second. The relatively environmentally friendly package is constructed of cardboard and steel rather than Styrofoam, and it has a water-activated battery that contains no toxic substances. The RS-90 Transition IOP is taking place during April. Operators will launch both the old RS-80 and the new RS-90 radiosondes simultaneously once each day to obtain duplicate vertical profiles of the atmosphere for comparison. This procedure will also allow data users to test the output from the old and new radiosondes in models. Narrow Field of View (NFOV) Solar Spectrometer Cloud Optical Depth Retrieval Campaign-The NFOV IOP is scheduled to take place on May 7-August 31, 2001. A researcher from Pennsylvania State University will be deploying a dual-spectrometer instrument that measures the hemispheric flux and zenith NFOV radiance over a wavelength range of 300- 1000 nanometers. (One nanometer equals 1 billionth of a meter or 0.000000039 inches.) This wavelength range includes the ultraviolet, visible, and near-infrared spectra. These measurements are used to estimate cloud optical depth-a quantity related to the amount of solar radiation intercepted by a cloud-for broken cloud fields over vegetated surfaces. The IOP measurements will be compared with optical depth measurements made by SGP instruments. Precision Gas Sampling (PGS
Time Dependent Radiative Transfer for Multi-Level Atoms using Accelerated Lambda Iteration
van Adelsberg, Matthew; Perna, Rosalba
2012-01-01
We present a general formalism for computing self-consistent, numerical solutions to the time-dependent radiative transfer equation in low velocity, multi-level ions undergoing radiative interactions. Recent studies of time-dependent radiative transfer have focused on radiation hydrodynamic and magnetohydrodynamic effects without lines, or have solved time-independent equations for the radiation field simultaneously with time-dependent equations for the state of the medium. In this paper, we ...
A 3D radiative transfer framework. XI. Multi-level NLTE
Hauschildt, Peter H.; Baron, Edward
2014-06-01
Context. Multi-level non-local thermodynamic equilibrium (NLTE) radiation transfer calculations have become standard throughout the stellar atmospheres community and are applied to all types of stars as well as dynamical systems such as novae and supernovae. Nevertheless even today spherically symmetric 1D calculations with full physics are computationally intensive. We show that full physics NLTE calculations can be done with fully 3 dimensional (3D) radiative transfer. Aims: With modern computational techniques and current massive parallel computational resources, full detailed solution of the multi-level NLTE problem coupled to the solution of the radiative transfer scattering problem can be solved without sacrificing the micro physics description. Methods: We extend the use of a rate operator developed to solve the coupled NLTE problem in spherically symmetric 1D systems. In order to spread memory among processors we have implemented the NLTE/3D module with a hierarchical domain decomposition method that distributes the NLTE levels, radiative rates, and rate operator data over a group of processes so that each process only holds the data for a fraction of the voxels. Each process in a group holds all the relevant data to participate in the solution of the 3DRT problem so that the 3DRT solution is parallelized within a domain decomposition group. Results: We solve a spherically symmetric system in 3D spherical coordinates in order to directly compare our well-tested 1D code to the 3D case. We compare three levels of tests: a) a simple H+He test calculation, b) H+He+CNO+Mg, c) H+He+Fe. The last test is computationally large and shows that realistic astrophysical problems are solvable now, but they do require significant computational resources. Conclusions: With presently available computational resources it is possible to solve the full 3D multi-level problem with the same detailed micro-physics as included in 1D modeling.
Bremer, Magnus; Schmidtner, Korbinian; Rutzinger, Martin
2015-04-01
The architecture of forest canopies is a key parameter for forest ecological issues helping to model the variability of wood biomass and foliage in space and time. In order to understand the nature of subpixel effects of optical space-borne sensors with coarse spatial resolution, hypothetical 3D canopy models are widely used for the simulation of radiative transfer in forests. Thereby, radiation is traced through the atmosphere and canopy geometries until it reaches the optical sensor. For a realistic simulation scene we decompose terrestrial laser scanning point cloud data of leaf-off larch forest plots in the Austrian Alps and reconstruct detailed model ready input data for radiative transfer simulations. The point clouds are pre-classified into primitive classes using Principle Component Analysis (PCA) using scale adapted radius neighbourhoods. Elongated point structures are extracted as tree trunks. The tree trunks are used as seeds for a Dijkstra-growing procedure, in order to obtain single tree segmentation in the interlinked canopies. For the optimized reconstruction of branching architectures as vector models, point cloud skeletonisation is used in combination with an iterative Dijkstra-growing and by applying distance constraints. This allows conducting a hierarchical reconstruction preferring the tree trunk and higher order branches and avoiding over-skeletonization effects. Based on the reconstructed branching architectures, larch needles are modelled based on the hierarchical level of branches and the geometrical openness of the canopy. For radiative transfer simulations, branch architectures are used as mesh geometries representing branches as cylindrical pipes. Needles are either used as meshes or as voxel-turbids. The presented workflow allows an automatic classification and single tree segmentation in interlinked canopies. The iterative Dijkstra-growing using distance constraints generated realistic reconstruction results. As the mesh representation
Probing clouds in planets with a simple radiative transfer model: the Jupiter case
International Nuclear Information System (INIS)
Remote sensing of planets evokes using expensive on-orbit satellites and gathering complex data from space. However, the basic properties of clouds in planetary atmospheres can be successfully estimated with small telescopes even from an urban environment using currently available and affordable technology. This makes the process accessible for undergraduate students while preserving most of the physics and mathematics involved. This paper presents the methodology for carrying out a photometric study of planetary atmospheres, focused on the planet Jupiter. The method introduces the basics of radiative transfer in planetary atmospheres, some notions on inverse problem theory and the fundamentals of planetary photometry. As will be shown, the procedure allows the student to derive the spectral reflectivity and top altitude of clouds from observations at different wavelengths by applying a simple but enlightening ‘reflective layer model’. In this way, the planet's atmospheric structure is estimated by students as an inverse problem from the observed photometry. Web resources are also provided to help those unable to obtain telescopic observations of the planets. (paper)
Effects of ionizing radiation on DNA-mediated gene transfer
International Nuclear Information System (INIS)
The process of DNA-mediated gene transfer is a powerful genetic tool that involves the cellular uptake, genomic integration and expression of exogenous DNA sequences. This process can also be used to examine the effects of radiation at the molecular level. There have been a few reported describing the enhancement of the gene transfer process by a number of DNA damaging agents. The agents tested included UV light, x-rays and accelerated argon particles. One hypothesis to explain this phenomenon is that these DNA damaging agents themselves, or subsequent DNA repair processes, introduce strand breaks into the cellular DNA of recipient cells. These DNA breaks then serve as possible sites of integration for the exogenous DNA sequences. The authors are continuing these studies by determining what effect neutrons have on the transfection of DNA. The gene transfer system we plan to employ involves the transfection of the chimeric plasmid pSV2-GPT into recipient hamster cell lines. This plasmid contains the Escherichia coli ecogpt gene, which codes for the enzyme xanthine-guanine phosphoribosyltransferase (XGPRT), along with simian virus 40 (SV40) sequences which allow for expression of the bacterial gene in mammalian cells
Directory of Open Access Journals (Sweden)
E. T. Sena
2012-06-01
Full Text Available This paper addresses the Amazonian radiative budget after considering three aspects of deforestation: (i the emission of aerosols from biomass burning due to forest fires; (ii changes in surface albedo after deforestation and (iii modifications in the column water vapour amount over deforested areas. Simultaneous Clouds and the Earth's Radiant Energy System (CERES shortwave fluxes and aerosol optical depth (AOD retrievals from the Moderate Resolution Imaging SpectroRadiometer (MODIS were analysed during the peak of the biomass burning seasons (August and September from 2000 to 2009. A discrete-ordinate radiative transfer (DISORT code was used to extend instantaneous remote sensing radiative forcing assessments into 24-h averages. The mean direct radiative forcing of aerosols at the top of the atmosphere (TOA during the biomass burning season for the 10-yr studied period was −5.6 ± 1.7 W m^{−2}. Furthermore, the spatial distribution of the direct radiative forcing of aerosols over Amazon was obtained for the biomass burning season of each year. It was observed that for high AOD (larger than 1 at 550 nm the imbalance in the radiative forcing at the TOA may be as high as −20 W m^{−2} locally. The surface reflectance plays a major role in the aerosol direct radiative effect. The study of the effects of biomass burning aerosols over different surface types shows that the direct radiative forcing is systematically more negative over forest than over savannah-like covered areas. Values of −15.7 ± 2.4 W m^{−2}/τ_{550 nm} and −9.3 ± 1.7 W m^{−2}/τ_{550 nm} were calculated for the mean daily aerosol forcing efficiencies over forest and savannah-like vegetation respectively. The overall mean annual albedo-change radiative forcing due to deforestation over the state of Rondônia, Brazil, was determined as −7.3 ± 0.9 W m^{−2}. Biomass burning aerosols impact the radiative
Line-Mixing Relaxation Matrix model for spectroscopic and radiative transfer studies
Mendaza, Teresa; Martin-Torres, Javier
2016-04-01
We present a generic model to compute the Relaxation Matrix easily adaptable to any molecule and type of spectroscopic lines or bands in non-reactive molecule collisions regimes. It also provides the dipole moment of every transition and level population of the selected molecule. The model is based on the Energy-Corrected Sudden (ECS) approximation/theory introduced by DePristo (1980), and on previous Relaxation Matrix studies for the interaction between molecular ro-vibrational levels (Ben-Rueven, 1966), atoms (Rosenkranz, 1975), linear molecules (Strow and Reuter, 1994; Niro, Boulet and Hartmann, 2004), and symmetric but not linear molecules (Tran et al., 2006). The model is open source, and it is user-friendly. To the point that the user only has to select the wished molecule and vibrational band to perform the calculations. It reads the needed spectroscopic data from the HIgh-resolution TRANsmission molecular absorption (HITRAN) (Rothman et al., 2013) and ExoMol (Tennyson and Yurchenko, 2012). In this work we present an example of the calculations with our model for the case of the 2ν3 band of methane (CH4), and a comparison with a previous work (Tran et al., 2010). The data produced by our model can be used to characterise the line-mixing effects on ro-vibrational lines of the infrared emitters of any atmosphere, to calculate accurate absorption spectra, that are needed in the interpretation of atmospheric spectra, radiative transfer modelling and General Circulation Models (GCM). References [1] A.E. DePristo, Collisional influence on vibration-rotation spectral line shapes: A scaling theoretical analysis and simplification, J. Chem. Phys. 73(5), 1980. [2] A. Ben-Reuven, Impact broadening of microwave spectra, Phys. Rev. 145(1), 7-22, 1966. [3] P.W. Rosenkranz, Shape of the 5 mm Oxygen Band in the Atmosphere, IEEE Transactions on Antennas and Propagation, vol. AP-23, no. 4, pp. 498-506, 1975. [4] Strow, L.L., D.D. Tobin, and S.E. Hannon, A compilation of
Energy Technology Data Exchange (ETDEWEB)
Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes
2004-10-30
The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote
Hydraulic effects in a radiative atmosphere with ionization
Bhat, P.; Brandenburg, A.
2016-03-01
Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.
Hydrodynamic and hydromagnetic stability of black holes with radiative transfer
Indian Academy of Sciences (India)
Roger Blandford; Jonathan C Mckinney; Nadia Zakamska
2011-07-01
Subrahmanyan Chandrasekhar (Chandra) was just eight years old when the ﬁrst astrophysical jet was discovered in M87. Since then, jets have been uncovered with a wide variety of sources including accretion disks orbiting stellar and massive black holes, neutron stars, isolated pulsars, -ray bursts, protostars and planetary nebulae. This talk will be primarily concerned with collimated hydromagnetic outﬂows associated with spinning, massive black holes in active galactic nuclei. Jets exhibit physical processes central to three of the major research themes in Chandrasekhar’s research career – radiative transfer, magnetohydrodynamics and black holes. Relativistic jets can be thought of as `exhausts’ from both the hole and its orbiting accretion disk, carrying away the energy liberated by the rotating spacetime and the accreting gas that is not radiated. However, no aspect of jet formation, propagation and radiation can be regarded as understood in detail. The combination of new -ray, radio and optical observations together with impressive advances in numerical simulation make this a good time to settle some long-standing debates.
EMMA: an AMR cosmological simulation code with radiative transfer
Aubert, Dominique; Ocvirk, Pierre
2015-01-01
EMMA is a cosmological simulation code aimed at investigating the reionization epoch. It handles simultaneously collisionless and gas dynamics, as well as radiative transfer physics using a moment-based description with the M1 approximation. Field quantities are stored and computed on an adaptive 3D mesh and the spatial resolution can be dynamically modified based on physically-motivated criteria. Physical processes can be coupled at all spatial and temporal scales. We also introduce a new and optional approximation to handle radiation : the light is transported at the resolution of the non-refined grid and only once the dynamics have been fully updated, whereas thermo-chemical processes are still tracked on the refined elements. Such an approximation reduces the overheads induced by the treatment of radiation physics. A suite of standard tests are presented and passed by EMMA, providing a validation for its future use in studies of the reionization epoch. The code is parallel and is able to use graphics proc...
Atmospheric Radiation Measurement Program facilities newsletter, February 2001.; TOPICAL
International Nuclear Information System (INIS)
This newsletter consists of the following: (1) ARM Science Team Meeting Scheduled-The 11th Annual ARM Science Team meeting is scheduled for March 19-23, 2001, in Atlanta, Georgia. Members of the science team will exchange research results achieved by using ARM data. The science team is composed of working groups that investigate four topics: instantaneous radiative flux, cloud parameterizations and modeling, cloud properties, and aerosols. The annual meeting brings together the science team's 150 members to discuss issues related to ARM and its research. The members represent universities, government laboratories and research facilities, and independent research companies. (2) Communications to Extended Facilities Upgraded-New communications equipment has been installed at all of the SGP extended facilities. Shelters were installed to house the new equipment used to transfer data from instruments via the Internet to the site data system at the central facility. This upgrade has improved data availability from the extended facilities to 100% and reduced telephone costs greatly. (3) SGP Goes ''Buggy''-Steve Sekelsky, a researcher from the University of Massachusetts, is planning to bring a 95-GHz radar to the SGP central facility for deployment in March-October 2001. The radar will help to identify signals due to insects flying in the air. The ARM millimeter cloud radar, which operates at 35 GHz, is sensitive to such insect interference. Testing will also be performed by using a second 35-GHz radar with a polarized radar beam, which can differentiate signals from insects versus cloud droplets. (4) Winter Fog-Fog can add to hazards already associated with winter weather. Common types of fog formation include advection, radiation, and steam. Advection fog: An advection fog is a dense fog that forms when a warm, moist air mass moves into an area with cooler ground below. For example, fog can form in winter when warmer, water-saturated air from the south (associated with
Humidity effects on the radiative properties of a hazy atmosphere in the visible spectrum
Zdunkowski, Wilford G.; Liou, Kuo-Nan
2011-01-01
The present investigation deals with the humidity effect on the radiative properties of a strongly polluted atmosphere in the visible spectrum. For three relative humidity distributions covering the tropospheric humidity range from 30–70%, the local albedo, the absorption and transmission of the atmosphere are obtained. Corresponding global quantities are calculated also to speculate on possible climatic effects. Additionally, radiative heating rates are calculated for the entire atmosphere, ...
W. Winiwarter
2014-01-01
Radiatively active atmospheric trace constituents consist of the following groups of compounds: long-lived greenhouse gases with residence times of years, subject to international conventions; short-lived gases formed in the atmosphere from precursor compounds, remaining in the atmosphere for hours or days: notably ozone; and aerosols, that is, airborne particles interacting with short-wave radiation with both direct and indirect effects. The "direct effect" covers scattering or absorption of...
Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2
International Nuclear Information System (INIS)
This chapter updates information taken from Chapters 3 to 6 of the IPCC Working Group I Third Assessment Report. It concerns itself with trends in forcing agents and their precursors since 1750, and estimates their contribution to the radiative forcing (RF) of the climate system. Discussion of the understanding of atmospheric composition changes is limited to explaining the trends in forcing agents and their precursors. Areas where significant developments have occurred since the TAR are highlighted. The chapter draws on various assessments since the TAR, in particular the 2002 World Meteorological Organization (WMO), United Nations Environment Programme (UNEP) Scientific Assessment of Ozone Depletion (2003) and the IPCC Technology and Economic Assessment Panel (TEAP) special report on Safeguarding the Ozone Layer and the Global Climate System (2005). The chapter assesses anthropogenic greenhouse gas changes, aerosol changes and their impact on clouds, aviation-induced contrails and cirrus changes, surface albedo changes and natural solar and volcanic mechanisms. The chapter reassesses the 'radiative forcing' concept (Sections 2.2 and 2.8), presents spatial and temporal patterns of RF, and examines the radiative energy budget changes at the surface. For the long-lived greenhouse gases (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), chlorofluoro-carbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF6), hereinafter collectively referred to as the LLGHGs; Section 2.3), the chapter makes use of new global measurement capabilities and combines long-term measurements from various networks to update trends through 2005. Compared to other RF agents, these trends are considerably better quantified; because of this, the chapter does not devote as much space to them as previous assessments (although the processes involved and the related budgets are further discussed in Sections 7.3 and 7
Viúdez, Toni; Calbó, Josep; Abel González, Josep; Jiménez, M. Antonia
2010-05-01
Clouds play an important role in the terrestrial radiative budget and therefore in the climate change, given their ability to absorb solar radiation and also to absorb and emit longwave radiation toward the space and the terrestrial surface. The study of longwave radiation in presence of clouds can help us to understand better the climatic system, and recognize their importance in the current climate change. Agreement between measurements and simulations can help us to understand much better their radiative behavior. In this study we show a comparison between measurements and calculations using the unidimensional radiative transfer model SBDART (Ricchiazzi et al, 1998) under overcast sky conditions. Measurements were taken from the radiometric and meteorological station at the University of Girona, Spain (41.96 N 2.83 E 110 m a.s.l.). Downward Longwave Radiation, DLR, was measured using a pyrgeometer CG1 by Kipp & Zonen. To determine the cloud fraction, and subsequently select overcast cases, we used the algorithm APCADA (Dürr and Philipona, 2004) from one year dataset of measurements of DLR, temperature and relative humidity. DLR has a strong dependence on atmospheric vertical profiles (mainly on temperature and water vapor content). Since there are no soundings available at the same site, we used the vertical profile from a gridded analysis (provided by the European Centre for Medium-Range Weather Forecasts,ECMWF). Cloud base height (CBH) was included into calculations by using the measurements taken by a ceilometer CL31 by Vaisala. This CBH was compared with an estimation based on ECMWF profiles, setting the cloud base where the relative humidity is higher than a threshold of 95% (RH95). The effective radius of cloud droplets and liquid water path was fixed from typical values (Stephens, 1978). Three different modeling cases were analyzed, depending on the use of the CBH from the ceilometer or from applying the RH95 threshold in ECMWF profiles, and also
Data management and scientific integration within the Atmospheric Radiation Measurement Program
Gracio, Deborah K.; Hatfield, Larry D.; Yates, Kenneth R.; Voyles, Jimmy W.; Tichler, Joyce L.; Cederwall, Richard T.; Laufersweiler, Mark J.; Leach, Martin J.; Singley, Paul
1995-01-01
The Atmospheric Radiation Measurement (ARM) Program has been developed by the U.S. Department of Energy with the goal to improve the predictive capabilities of General Circulation Models (GCM's) in their treatment of clouds and radiative transfer effects. To achieve this goal, three experimental testbeds were designed for the deployment of instruments that will collect atmospheric data used to drive the GCM's. Each site, known as a Cloud and Radiation Testbed (CART), consists of a highly available, redundant data system for the collection of data from a variety of instrumentation. The first CART site was deployed in April 1992 in the Southern Great Plains (SGP), Lamont, Oklahoma, with the other two sites to follow in September 1995 in the Tropical Western Pacific and in 1997 on the North Slope of Alaska. Approximately 400 MB of data are transferred per day via the Internet from the SGP site to the ARM Experiment Center at Pacific Northwest Laboratory in Richland, Washington. The Experiment Center is central to the ARM data path and provides for the collection, processing, analysis, and delivery of ARM data. Data are received from the CART sites from a variety of instrumentation, observational systems, amd external data sources. The Experiment Center processes these data streams on a continuous basis to provide derived data products to the ARM Science Team in near real-time while providing a three-month running archive of data. A primary requirement of the ARM Program is to preserve and protect all data produced or acquired. This function is performed at Oak Ridge National Laboratory where leading edge technology is employed for the long-term storage of ARM data. The ARM Archive provides access to data for participation outside of the ARM Program. The ARM Program involves a collaborative effort by teams from various DOE National Laboratories, providing multi-disciplinary areas of expertise. This paper will discuss the collaborative methods in which the ARM teams
Directional radiometry and radiative transfer: A new paradigm
International Nuclear Information System (INIS)
Measurements with directional radiometers and calculations based on the radiative transfer equation (RTE) have been at the very heart of weather and climate modeling and terrestrial remote sensing. The quantification of the energy budget of the Earth's climate system requires exquisite measurements and computations of the incoming and outgoing electromagnetic energy, while global characterization of climate system's components relies heavily on theoretical inversions of observational data obtained with various passive and active instruments. The same basic problems involving electromagnetic energy transport and its use for diagnostic and characterization purposes are encountered in numerous other areas of science, biomedicine, and engineering. Yet both the discipline of directional radiometry and the radiative transfer theory (RTT) have traditionally been based on phenomenological concepts many of which turn out to be profound misconceptions. Contrary to the widespread belief, a collimated radiometer does not, in general, measure the flow of electromagnetic energy along its optical axis, while the specific intensity does not quantify the amount of electromagnetic energy transported in a given direction. The recently developed microphysical approach to radiative transfer and directional radiometry is explicitly based on the Maxwell equations and clarifies the physical nature of measurements with collimated radiometers and the actual content of the RTE. It reveals that the specific intensity has no fundamental physical meaning besides being a mathematical solution of the RTE, while the RTE itself is nothing more than an intermediate auxiliary equation. Only under special circumstances detailed in this review can the solution of the RTE be used to compute the time-averaged local Poynting vector as well as be measured by a collimated radiometer. These firmly established facts make the combination of the RTE and a collimated radiometer useful in a well-defined range of
International Nuclear Information System (INIS)
The products released into the atmosphere by the second Chinese nuclear explosion were detected and measured in France during the months of May, June and July 1965. The main results are presented here and discussed. They are considered in particular in the light of the meteorological conditions as a function of the most recent hypotheses concerning transfer processes. (authors)
Radiative transfer calculated from a Markov chain formalism
International Nuclear Information System (INIS)
The theory of Markov chains is used to formulate the radiative transport problem in a general way by modeling the successive interactions of a photon as a stochastic process. Under the minimal requirement that the stochastic process is a Markov chain, the determination of the diffuse reflection of transmission from a scattering atmosphere is equivalent to the solution of a system of linear equations. This treatment is mathematically equivalent to and thus has many of the advantages of, Monte Carlo methods, but can be considerably more rapid than Monte Carlo algorithms for numerical calculations in particular applications. We have verified the speed and accuracy of this formalism for the stand problem of finding the intensity of scattered light from a homogeneous plane-parallel atmosphere with an arbitrary phase function for scattering. Accurate results over a wide range of parameters were obtained with computation times comparable to those of a standard ''doubling'' routine. The generality of this formalism thus allows fast, direct solutions to problems that were previously soluble only by Monte Carlo methods. Some comparisons are made with respect to integral equation methods
Radiative transfer calculated from a Markov chain formalism
Esposito, L. W.; House, L. L.
1978-01-01
The theory of Markov chains is used to formulate the radiative transport problem in a general way by modeling the successive interactions of a photon as a stochastic process. Under the minimal requirement that the stochastic process is a Markov chain, the determination of the diffuse reflection or transmission from a scattering atmosphere is equivalent to the solution of a system of linear equations. This treatment is mathematically equivalent to, and thus has many of the advantages of, Monte Carlo methods, but can be considerably more rapid than Monte Carlo algorithms for numerical calculations in particular applications. We have verified the speed and accuracy of this formalism for the standard problem of finding the intensity of scattered light from a homogeneous plane-parallel atmosphere with an arbitrary phase function for scattering. Accurate results over a wide range of parameters were obtained with computation times comparable to those of a standard 'doubling' routine. The generality of this formalism thus allows fast, direct solutions to problems that were previously soluble only by Monte Carlo methods. Some comparisons are made with respect to integral equation methods.
Energy Technology Data Exchange (ETDEWEB)
Keene, William C. [University of Virginia; Long, Michael S. [University of Virginia
2013-05-20
This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences
Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere
Directory of Open Access Journals (Sweden)
N. Hatzianastassiou
2004-01-01
Full Text Available The mean monthly shortwave (SW radiation budget at the top of atmosphere (TOA was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2 supplemented by data from the National Centers for Environmental Prediction – National Center for Atmospheric Research (NCEP-NCAR Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE S4 scanner satellite data (1985–1989. The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR by 0.93 Wm-2 (or by 0.92%, within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values, respectively, over the 14-year period (from January 1984 to December 1997, indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S–20° N, with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also
Lino da Silva, M.
2011-02-01
Departing from the proposed Test-Case 3 for the simulation of Martian atmospheric entry radiative transfer, we present several simulations carried out using a full line-by-line spectral simulation, ranging from VUV to IR. Namely, the radiation of CO2 Infrared transitions are treated using a two-temperature (T,Tv) line-by-line model. Several calculations are presented which showcase the ability to solve the uncoupled radiative transfer problem (Heat transfer towards a spacecraft thermal protections) in a timely fashion, using a 8-core, 32GB RAM Linux Debian machine. In these calculations, different criteria are evaluated (1T vs. 2T models; different line-by-line spectral grid parameters; different spatial grids for radiative transfer) which allow determining their inpact on the overall predicted wall fluxes.
Radiative transfer in cylindrical threads with incident radiation VI. A hydrogen plus helium system
Gouttebroze, Pierre
2009-01-01
Spectral lines of helium are commonly observed on the Sun. These observations contain important informations about physical conditions and He/H abundance variations within solar outer structures. The modeling of chromospheric and coronal loop-like structures visible in hydrogen and helium lines requires the use of appropriate diagnostic tools based on NLTE radiative tranfer in cylindrical geometry. We use iterative numerical methods to solve the equations of NLTE radiative transfer and statistical equilibrium of atomic level populations. These equations are solved alternatively for the hydrogen and helium atoms, using cylindrical coordinates and prescribed solar incident radiation. Electron density is determined by the ionization equilibria of both atoms. Two-dimension effects are included. The mechanisms of formation of the principal helium lines are analyzed and the sources of emission inside the cylinder are located. The variations of spectral line intensities with temperature, pressure, and helium abundan...
Near field radiative heat transfer between two nonlocal dielectrics
Singer, F; Joulain, Karl
2015-01-01
We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...
Radiation Transfer in the Cavity and Shell of Planetary Nebulae
Gray, M D; Zijlstra, A A
2012-01-01
We develop an approximate analytical solution for the transfer of line-averaged radiation in the hydrogen recombination lines for the ionized cavity and molecular shell of a spherically symmetric planetary nebula. The scattering problem is treated as a perturbation, using a mean intensity derived from a scattering-free solution. The analytical function was fitted to Halpha and Hbeta data from the planetary nebula NGC6537. The position of the maximum in the intensity profile produced consistent values for the radius of the cavity as a fraction of the radius of the dusty nebula: 0.21 for Halpha and 0.20 for Hbeta. Recovered optical depths were broadly consistent with observed optical extinction in the nebula, but the range of fit parameters in this case is evidence for a clumpy distribution of dust.
Absorption lookup tables in the radiative transfer model ARTS
International Nuclear Information System (INIS)
We describe the lookup table approach that is used to store pre-calculated absorption data in the radiative transfer model ARTS. The table stores absorption cross sections as a function of frequency, pressure, temperature, and the water vapor volume mixing ratio, where the last dimension is only included for those gas species that require it. The table is used together with an extraction strategy, which uses polynomial interpolation, with recommended interpolation orders between five and seven. We also derived recommended default settings for grid spacings and interpolation orders, and verified that the approach gives very accurate results with these default settings. The tested instrument setups were for AMSU-B, HIRS, and Odin, three well-known satellite remote sensing instruments covering a wide range of frequencies and viewing geometries. Errors introduced by the lookup table were found to be always below a few millikelvin, in terms of the simulated brightness temperature.
Fluctuation theory for radiative transfer in random media
International Nuclear Information System (INIS)
We consider the effect of small scale random fluctuations of the constitutive coefficients on boundary measurements of solutions to radiative transfer equations. As the correlation length of the random oscillations tends to zero, the transport solution is well approximated by a deterministic, averaged, solution. In this paper, we analyze the random fluctuations to the averaged solution, which may be interpreted as a central limit correction to homogenization. With the inverse transport problem in mind, we characterize the random structure of the singular components of the transport measurement operator. In regimes of moderate scattering, such components provide stable reconstructions of the constitutive parameters in the transport equation. We show that the random fluctuations strongly depend on the decorrelation properties of the random medium.
Radiative Transfer of HCN: Interpreting observations of hyperfine anomalies
Mullins, A M; Redman, M P; Wiles, B; Guegan, N; Barrett, J; Keto, E R
2016-01-01
Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components.The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium. This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anom...
Casimir effect and radiative heat transfer between Chern Insulators
Rodriguez Lopez, Pablo; Grushin, Adolfo; Tse, Wang-Kong; Dalvit, Diego
2015-03-01
Chern Insulators are a class of two-dimensional topological materials. Their electronic properties are different from conventional materials, and lead to interesting new physics as quantum Hall effect in absence of an external magnetic field. Here we will review some of their special properties and, in particular, we will discuss the radiative heat transfer and the Casimir effect between two planar Chern Insulators sheets. Finally, we will see how to control the intensity and sign of this Casimir force and the requirements to observe a repulsive Casimir force in the lab with those materials. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 302005.
Radiative Transfer Theory Verified by Controlled Laboratory Experiments
Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur
2013-01-01
We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.
Time Dependent Radiative Transfer for Multi-Level Atoms using Accelerated Lambda Iteration
van Adelsberg, Matthew
2012-01-01
We present a general formalism for computing self-consistent, numerical solutions to the time-dependent radiative transfer equation in low velocity, multi-level ions undergoing radiative interactions. Recent studies of time-dependent radiative transfer have focused on radiation hydrodynamic and magnetohydrodynamic effects without lines, or have solved time-independent equations for the radiation field simultaneously with time-dependent equations for the state of the medium. In this paper, we provide a fully time-dependent numerical solution to the radiative transfer and atomic rate equations for a medium irradiated by an external source of photons. We use Accelerated Lambda Iteration to achieve convergence of the radiation field and atomic states. We perform calculations for a three-level atomic model that illustrates important time-dependent effects. We demonstrate that our method provides an efficient, accurate solution to the time-dependent radiative transfer problem. Finally, we characterize astrophysical...
Effect of atmospheric gases, surface albedo and cloud overlap on the absorbed solar radiation
Directory of Open Access Journals (Sweden)
Ashok Sinha
Full Text Available Recent studies have provided new evidence that models may systematically underestimate cloud solar absorption compared to observations. This study extends previous work on this "absorption anomaly'' by using observational data together with solar radiative transfer parameterisations to calculate f_{s} (the ratio of surface and top of the atmosphere net cloud forcings and its latitudinal variation for a range of cloud types. Principally, it is found that (a the zonal mean behaviour of f_{s} varies substantially with cloud type, with the highest values obtained for low clouds; (b gaseous absorption and scattering can radically alter the pattern of the variation of f_{s} with latitude, but gaseous effects cannot in general raise f_{s} to the level of around 1.5 as recently determined; (c the importance of the gaseous contribution to the atmospheric ASR is such that whilst f_{s} rises with surface albedo, the net cloud contribution to the atmospheric ASR falls; (d the assumed form of the degree of cloud overlap in the model can substantially affect the cloud contribution to the atmospheric ASR whilst leaving the parameter f_{s} largely unaffected; (e even large uncertainties in the observed optical depths alone cannot account for discrepancies apparent between modelled and newly observed cloud solar absorption. It is concluded that the main source of the anomaly may derive from the considerable uncertainties regarding impure droplet microphysics rather than, or together with, uncertainties in macroscopic quantities. Further, variable surface albedos and gaseous effects may limit the use of contemporaneous satellite and ground-based measurements to infer the cloud solar absorption from the parameter f_{s}.
The libRadtran software package for radiative transfer calculations (version 2.0.1)
Emde, Claudia; Buras-Schnell, Robert; Kylling, Arve; Mayer, Bernhard; Gasteiger, Josef; Hamann, Ulrich; Kylling, Jonas; Richter, Bettina; Pause, Christian; Dowling, Timothy; Bugliaro, Luca
2016-05-01
libRadtran is a widely used software package for radiative transfer calculations. It allows one to compute (polarized) radiances, irradiance, and actinic fluxes in the solar and thermal spectral regions. libRadtran has been used for various applications, including remote sensing of clouds, aerosols and trace gases in the Earth's atmosphere, climate studies, e.g., for the calculation of radiative forcing due to different atmospheric components, for UV forecasting, the calculation of photolysis frequencies, and for remote sensing of other planets in our solar system. The package has been described in Mayer and Kylling (2005). Since then several new features have been included, for example polarization, Raman scattering, a new molecular gas absorption parameterization, and several new parameterizations of cloud and aerosol optical properties. Furthermore, a graphical user interface is now available, which greatly simplifies the usage of the model, especially for new users. This paper gives an overview of libRadtran version 2.0.1 with a focus on new features. Applications including these new features are provided as examples of use. A complete description of libRadtran and all its input options is given in the user manual included in the libRadtran software package, which is freely available at http://www.libradtran.org.
The libRadtran software package for radiative transfer calculations (Version 2.0)
Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; Bugliaro, L.
2015-12-01
libRadtran is a widely used software package for radiative transfer calculations. It allows to compute (polarized) radiances, irradiances, and actinic fluxes in the solar and thermal spectral regions. libRadtran has been used for various applications, including remote sensing of clouds, aerosols and trace gases in the Earth's atmosphere, climate studies, e.g., for the calculation of radiative forcing due to different atmospheric components, for UV-forcasting, the calculation of photolysis frequencies, and for remote sensing of other planets in our solar system. The package has been described in Mayer and Kylling (2005).. Since then several new features have been included, for example polarization, Raman scattering, a new molecular gas absorption parameterization, and several new cloud and aerosol scattering parameterizations. Furthermore a graphical user interface is now available which greatly simplifies the usage of the model, especially for new users. This paper gives an overview of libRadtran version 2.0 with focus on new features. A complete description of libRadtran and all its input options is given in the user manual included in the libRadtran software package, which is freely available at http://www.libradtran.org.
The libRadtran software package for radiative transfer calculations (version 2.0.1)
Emde, Claudia; Buras-Schnell, Robert; Kylling, Arve; Mayer, Bernhard; Gasteiger, Josef; Hamann, Ulrich; Kylling, Jonas; Richter, Bettina; Pause, Christian; Dowling, Timothy; Bugliaro, Luca
2016-05-01
libRadtran is a widely used software package for radiative transfer calculations. It allows one to compute (polarized) radiances, irradiance, and actinic fluxes in the solar and thermal spectral regions. libRadtran has been used for various applications, including remote sensing of clouds, aerosols and trace gases in the Earth's atmosphere, climate studies, e.g., for the calculation of radiative forcing due to different atmospheric components, for UV forecasting, the calculation of photolysis frequencies, and for remote sensing of other planets in our solar system. The package has been described in Mayer and Kylling (2005). Since then several new features have been included, for example polarization, Raman scattering, a new molecular gas absorption parameterization, and several new parameterizations of cloud and aerosol optical properties. Furthermore, a graphical user interface is now available, which greatly simplifies the usage of the model, especially for new users. This paper gives an overview of libRadtran version 2.0.1 with a focus on new features. Applications including these new features are provided as examples of use. A complete description of libRadtran and all its input options is given in the user manual included in the libRadtran software package, which is freely available at www.libradtran.org" target="_blank">http://www.libradtran.org.
Relativistic radiative transfer and relativistic spherical shell flows
Fukue, Jun
2016-06-01
We examine a radiatively driven spherical flow from a central object, whose thickness is smaller than the radius of the central object, and a plane-parallel approximation can be used-a spherical shell flow. We first solve the relativistic radiative transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained comoving flux, we then solve the relativistic hydrodynamical equation, and obtain a new velocity field. We repeat these double iteration processes until both the intensity and velocity profiles converge. We found that the flow speed v(τ) is roughly approximated as β ≡ v/c = βs(1 - τ/τb), where τ is the optical depth, τb the flow total optical depth, and c the speed of light. We further found that the flow terminal speed vs is roughly expressed as β _s ≡ v_s/c = (Γ hat{F}_0-1)τ_b/dot{m} , where Γ is the central luminosity normalized by the Eddington luminosity, hat{F}_0 the comoving flux normalized by the incident flux, and of the order of unity, and dot{m} the mass-loss rate normalized by the critical mass loss.
A P1 benchmark for time dependent thermal radiative transfer
International Nuclear Information System (INIS)
We present an analytic solution for time-dependent P1 (telegrapher's equation) radiative transfer. This solution will be useful for verifying spherical harmonics based transport codes and to providing in-sight into the properties of the Pn equations. The solution is for a uniform, isotropic and non-scattering medium that has a heat capacity proportional to the material temperature cubed (T3). We first derive the time-dependent Greens function for the P1 equations in planar geometry. This result is then used to generate a P1 solution to one of the Su-Olson problems. We also use the planar Greens function to generate the Greens function for a pulsed point source in an infinite medium. With this point source we have reduced the problem of solving the P1 equations in a uniform medium to quadrature. The solution for a pulsed line source is developed, again because of its utility for verifying Pn based thermal radiation transport codes. (authors)
Radiative transfer of HCN: interpreting observations of hyperfine anomalies
Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.
2016-07-01
Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.
Processing of atmospheric organic matter by California radiation fogs
Collett, Jeffrey L., Jr.; Herckes, Pierre; Youngster, Sarah; Lee, Taehyoung
2008-03-01
Considerable effort has been put into characterizing the ionic composition of fogs and clouds over the past twenty-five years. Recently it has become evident that clouds and fogs often contain large concentrations of organic material as well. Here we report findings from a series of studies examining the organic composition of radiation fogs in central California. Organic compounds in these fogs comprise a major fraction of total solute mass, with total organic carbon sometimes reaching levels of several tens of mg/L. This organic matter is comprised of a wide variety of compounds, ranging from low molecular weight organic acids to high molecular weight compounds with molecular masses approaching several hundred to a thousand g/mole. The most abundant individual compounds are typically formic acid, acetic acid, and formaldehyde. High concentrations are also observed of some dicarboxylic acids (e.g., oxalate) and dicarbonyls (e.g., glyoxal and methylglyoxal) and of levoglucosan, an anhydrosugar characteristically emitted by biomass combustion. Many other compounds have been identified in fog water by GC/MS, including long chain n-alkanoic acids, n-alkanes, PAH, and others, although these compounds typically comprise a total of only a few percent of fog TOC. Measurements of fog scavenging of organic and elemental carbon reveal preferential scavenging of organic carbon. Tracking of individual organic compounds utilized as source type markers suggests the fogs differentially scavenge carbonaceous particles from different source types, with more active processing of wood smoke than vehicle exhaust. Observations of high deposition velocities of fog-borne organic carbon, in excess of 1 cm/s, indicate that fogs in the region represent an important mechanism for cleansing the atmosphere of pollution.
Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach
Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume
2016-03-01
Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.
International Nuclear Information System (INIS)
In the present study we are studying the effects of including carbon dioxide, ozone, methane, and the halocarbons in addition to water vapor in the radiating atmosphere. The study has focused on two principal issues: the effect on the spectral fluxes and cooling rates of carbon dioxide, ozone and the halocarbons at 1990 concentration levels and the change in fluxes and cooling rates as a consequence of the anticipated ten year change in the profiles of these species. For the latter study the water vapor profiles have been taken as invariant in time. The radiative line-by-line calculations using LBLRTM (Line-By-Line Radiative Transfer Model) have been performed for tropical (TRP), mid-latitude winter (MLW) and mid-latitude summer (MLS) model atmospheres. The halocarbons considered in the present study are CCl4, CFC-11, CFC-12 and CFC-22. In addition to considering the radiative effects of carbon dioxide at 355 ppM, the assumed current level, we have also obtained results for doubled carbon dioxide at 710 ppM. An important focus of the current research effort is the effect of the ozone depletion profile on atmospheric radiative effects
Jubb, A. M.; Gierczak, T.; Baasandorj, M.; Waterland, R. L.; Burkholder, J. B.
2013-12-01
Mixtures of methyl-perfluoroheptene-ethers (C7F13OCH3, MPHEs) are currently in use as a replacement for perfluorinated alkane (PFC) and polyether mixtures (both persistent greenhouse gases with atmospheric lifetimes >1000 years) used as heat transfer fluids. Currently, the atmospheric fate of the MPHE isomers are not well characterized, however, reaction with the OH radical is expected to be a dominant tropospheric loss process for these compounds. In order to assess the atmospheric lifetimes and environmental implications of MPHE use, rate coefficients for MPHE isomers' reaction with OH radicals are desired. In the work presented here, rate coefficients, k, for the gas-phase reaction of the OH radical with six MPHEs commonly used in commercial mixtures (isomers and stereoisomers) and their deuterated analogs (d3-MPHE) were determined at 296 K using a relative rate method with combined gas-chromatography/IR spectroscopy detection. A range of OH rate coefficient values was observed, up to a factor of 20× different, between the MPHE isomers with the (E)-stereoisomers exhibiting the greatest reactivity. The measured OH reaction rate coefficients for the d3-MPHE isomers were lower than the observed MPHE values although a large range of k values between isomers was still observed. The reduction in reactivity with deuteration signifies that the MPHE + OH reaction proceeds via both addition to the olefinic C=C bond and H-abstraction from the methyl ester group. OH addition to the C=C bond was determined to be the primary reaction channel. Atmospheric lifetimes with respect to the OH reaction for the six MPHE isomers were found to be in the range of days to months. The short lifetimes indicate that MPHE use will primarily impact tropospheric local and regional air quality. A MPHE atmospheric degradation mechanism will be presented. As part of this work, radiative efficiencies and global warming potentials (GWPs) for the MPHE isomers were estimated based on measured
Fomichev, V. I.; Jonsson, A. I.; Ward, W. E.
2016-02-01
In this paper, we provide a refined and extended assignment of past and future temperature changes relative to previous analyses and describe and evaluate the relevance of vertical coupling and non-linear and secondary radiative mechanisms for the interpretation of climatic temperature variations in the middle atmosphere. Because of their nature, the latter mechanisms are not adequately accounted for in most regression analyses of temperature trends as a function of local constituent variations. These mechanisms are examined using (1) globally averaged profiles from transient simulations with the Canadian Middle Atmosphere Model (CMAM) forced by changes in greenhouse gases and ozone depleting substances and (2) a one-dimensional radiative-equilibrium model forced using the diagnosed global mean changes in radiatively active constituents as derived from the CMAM model runs. The conditions during the periods 1975 to 1995 and 2010 to 2040 (during which the rates of change in ozone and CO2 differ) provide a suitable contrast for the role of the non-linear and non-local mechanisms being evaluated in this paper to be clearly differentiated and evaluated. Vertical coupling of radiative transfer effects and the influence of secondary absorption bands are important enough to render the results of multiple linear regression analyses between the temperature response and constituent changes misleading. These effects are evaluated in detail using the 1D radiative-equilibrium model using profiles from the CMAM runs as inputs. In order to explain the differences in the CMAM temperature trends prior to and after 2000 these other radiative effects must be considered in addition to local changes in the radiatively active species. The middle atmosphere temperature cools in response to CO2 and water vapor increases, but past and future trends are modulated by ozone changes.
Transient radiative heat transfer in an inhomogeneous participating medium with Fresnel’s surfaces
Institute of Scientific and Technical Information of China (English)
2008-01-01
This paper studies the radiative heat transfer within an inhomogeneous and isot- ropically scattering medium with reflecting Fresnel’s surfaces. Thermal radiation transfers in a curve inside a medium with an inhomogeneous distribution of a re- fractive index. The inhomogenous medium is divided into n homogenous isother- mal sub-layers and in each sub-layer the radiation transfers in a straight line. By adopting a multilayer radiative transfer model and using a ray-tracing/nodal- ana- lyzing method, a radiative transfer model is built for the inhomogenous participat- ing medium. In the multilayer model, a criterion for refraction / total reflection at the interfaces between neighboring sub-layers is introduced, avoiding the integral singularity and reflection at physically inexistent interfaces (only the total reflection is considered). Transient thermal behavior is examined when the parameters of the radiative properties such as refractive indexes, extinction coefficients, and sin- gle-scattering albedoes vary continually along the thickness direction.
Directory of Open Access Journals (Sweden)
K. Ashworth
2015-07-01
Full Text Available Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentration of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase is of particular importance in this process. The FORCAsT (FORest Canopy AtmoSphere Transfer one-dimensional model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOA from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX field campaign in summer 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs for both the modelling and measurement communities.
Ashworth, K.; Chung, S. H.; Griffin, R. J.; Chen, J.; Forkel, R.; Bryan, A. M.; Steiner, A. L.
2015-11-01
Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentrations of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase) is of particular importance in this process. The FORCAsT (FORest Canopy Atmosphere Transfer) 1-D model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs) and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOAs) from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS) during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign in the summer of 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs) for both the modelling and measurement communities.
Effect of the improvement of the HITRAN database on the radiative transfer calculation
Feng, Xuan; Zhao, Feng-Sheng; Gao, Wen-Hua
2007-11-01
The line parameters of the HITRAN 2004 have been updated, as compared with the older editions (the 2000 edition and the 1996 edition). In order to know the effect of the modifications on radiative transfer calculation with high spectral resolution, comparison in optical depth and radiance spectrum have been given between different editions. Four infrared spectral regions are selected, and they cover the three bands of atmospheric infrared sounder (AIRS) and one of geosynchronous imaging fourier transform spectrometer (GIFTS). The comparison has shown that the relative difference between HITRAN 2000 and 2004 and that between HITRAN 1996 and 2004 is decreasing. But the maximal discrepancy between the latest two editions in some spectral intervals is over 1%. It is important to estimate the error of calculation with the line parameters correctly or one has to use the new edition of HITRAN.
International Nuclear Information System (INIS)
The hybrid matrix operator, Monte Carlo (HMOMC) method previously reported [Appl. Opt.47, 1063-1071 (2008)APOPAI0003-693510.1364/AO.47.001063] is improved by neglecting higher-order terms in the coupling of the matrix operators and by introducing a dual grid scheme. The computational efficiency for solving the vector radiative transfer equation in a full 3D coupled atmosphere-surface-ocean system is substantially improved, and, thus, large-scale simulations of the radiance distribution become feasible. The improved method is applied to the computation of the polarized radiance field under realistic surface waves simulated by the power spectral density method. To the authors' best knowledge, this is the first time that the polarized radiance field under a dynamic ocean surface and the underwater image of an object above such an ocean surface have been reported.
MODTRAN6: a major upgrade of the MODTRAN radiative transfer code
Berk, Alexander; Conforti, Patrick; Kennett, Rosemary; Perkins, Timothy; Hawes, Frederick; van den Bosch, Jeannette
2014-06-01
The MODTRAN6 radiative transfer (RT) code is a major advancement over earlier versions of the MODTRAN atmospheric transmittance and radiance model. This version of the code incorporates modern software ar- chitecture including an application programming interface, enhanced physics features including a line-by-line algorithm, a supplementary physics toolkit, and new documentation. The application programming interface has been developed for ease of integration into user applications. The MODTRAN code has been restructured towards a modular, object-oriented architecture to simplify upgrades as well as facilitate integration with other developers' codes. MODTRAN now includes a line-by-line algorithm for high resolution RT calculations as well as coupling to optical scattering codes for easy implementation of custom aerosols and clouds.
Patsourakos, S.; Gouttebroze, P.; Vourlidas, A.
2007-08-01
One of the most enigmatic regions of the solar atmosphere is the transition region (TR), corresponding to plasmas with temperatures intermediate of the cool, few thousand K, chromosphere and the hot, few million K, corona. The traditional view is that the TR emission originates from a thin thermal interface in hot coronal structures, connecting their chromosphere with their corona. This paradigm fails badly for cool plasmas (~Tstructures seen in the Lyα line made by the Very High Angular Resolution Ultraviolet Telescope (VAULT). The subarcsecond (~0.3") resolution of VAULT allows us to directly view and resolve looplike structures in the quiet Sun network. We compare the observed intensities of these structures with simplified radiative transfer models of cool loops. The reasonable agreement between the models and the observations indicates that an explanation of the observed fine structure in terms of cool loops is plausible.
Short-wave solar radiation in the earths atmosphere calculation, observation, interpretation
Melnikova, Irina N
2005-01-01
Based on data from an experiment which ran for ten years, this book summarizes the results of the Atmospheric Physics Department of the St. Petersburg University and the Main Geophysical Observatory. The processed data now forms a rich dataset of spectral values of radiative characteristics under different atmospheric conditions. The analysis of this database clearly shows that the solar radiative absorption in a dusty and cloudy atmosphere is significantly higher than assumed to date. Both graduate students of atmospheric sciences as well as scientists and researchers in the field of meteorology and climatology will find a wealth of new data and information in this monograph.
SURFRAD-A National Surface Radiation Budget Network for Atmospheric Research.
Augustine, John A.; Deluisi, John J.; Long, Charles N.
2000-10-01
A surface radiation budget observing network (SURFRAD) has been established for the United States to support satellite retrieval validation, modeling, and climate, hydrology, and weather research. The primary measurements are the downwelling and upwelling components of broadband solar and thermal infrared irradiance. A hallmark of the network is the measurement and computation of ancillary parameters important to the transmission of radiation. SURFRAD commenced operation in 1995. Presently, it is made up of six stations in diverse climates, including the moist subtropical environment of the U.S. southeast, the cool and dry northern plains, and the hot and arid desert southwest. Network operation involves a rigorous regimen of frequent calibration, quality assurance, and data quality control. An efficient supporting infrastructure has been created to gather, check, and disseminate the basic data expeditiously. Quality controlled daily processed data files from each station are usually available via the Internet within a day of real time. Data from SURFRAD have been used to validate measurements from NASA's Earth Observing System series of satellites, satellite-based retrievals of surface erythematogenic radiation, the national ultraviolet index, and real-time National Environmental Satellite, Data, and Information Service (NESDIS) products. It has also been used for carbon sequestration studies, to check radiative transfer codes in various physical models, for basic research and instruction at universities, climate research, and for many other applications. Two stations now have atmospheric energy flux and soil heat flux instrumentation, making them full surface energy balance sites. It is hoped that eventually all SURFRAD stations will have this capability.
Barker, Howard W.; Kato, Serji; Wehr, T.
2012-01-01
The main point of this study was to use realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE satellite mission, was applied to CloudSat, CALIPSO, and MODIS satellite data thus producing 3D cloudy atmospheres measuring 60 km wide by 13,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances for each (1 km)2 column where then produced by a Monte Carlo photon transfer model run in both full 3D and independent column approximation mode (i.e., a 1D model).
Single-column data assimilation for the Atmospheric Radiation Measurement (ARM) Program
International Nuclear Information System (INIS)
The main purpose of the ARM program is to provide the necessary data to develop, test and validate the parameterization of clouds and of their interactions with the radiation field, and the computation of radiative transfer in climate models. For various reasons, much of the ARM observations will be imperfect, incomplete, redundant, indirect and unrepresentative. Various techniques of data assimilation have been developed to deal with these problems. The variational data assimilation and adjoint method applied to a single column model is described here. A model is used to simulate the evolution of the atmosphere during an assimilation period. As the model is run, a cost function is computed which is essentially a measure of simulation errors. The method then consists in adjusting some model parameters to minimize the cost function. Optimization of the model parameters needs to be done with a much longer series of data, to cover different meteorological situations. Once parameters are set, nudging terms are used as control variables. The Derber nudging method will require considerable tuning, especially in defining the vertical profiles of the nudging terms. Extensive tests are currently underway of both model optimization and data assimilation
Kobayashi, H.; Suzuki, R.; Nagai, S.; Nakai, T.; Kim, Y.
2012-12-01
Over the last couple of decades, the three dimensional plant canopy radiative transfer models have been developed, improved and used for the retrievals of biophysical variables of vegetative surface. Fraction of absorbed photosynthetically active radiation (FAPAR) by plant canopy, a similar variable to heating rate in the atmosphere, is one of the important biophysical variables to infer the terrestrial plant canopy photosynthesis. FAPAR can be estimated by the radiative transfer model inversion or the empirical relationships between FAPAR and vegetation indices such as normalized difference vegetation index (NDVI). To date, some global FAPAR products are publicly available. These products are estimated from the moderate resolution satellites such as MODIS and SPOT-VEGETATION. One may apply the similar FAPAR algorithms to higher spatial resolution satellites if the ecosystem structures are horizontally homogeneous, which means that the adjacent satellite pixels have a similar spectral properties. If the vegetation surface is highly heterogeneous, "domain average FAPAR", which assumes no net horizontal radiation fluxes, can be unrealistically high (more than 1). In this presentation, we analyzed the characteristics of FAPAR in a heterogeneous landscape. As a case study, we selected our study site in a sparse black spruce forest in Alaska. We conducted the field campaigns to measure forest structural and optical properties that are used in the radiative transfer simulation. We used a 3D radiative transfer, FLiES (Kobayashi, H. and H. Iwabuchi (2008), A coupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape, Remote Sensing of Environment, 112, 173-185) to create a high resolution simulated spectral reflectance and FAPAR images over the course of the growing season. From the analysis, we show (1) FAPAR with no net horizontal fluxes assumption can be higher than
DEFF Research Database (Denmark)
Bentzen, Janet Jonna; Saxild, Finn B.
field of high energy battery research involving highly reactive metals, e.g. lithium, we needed a means of transferring atmosphere sensitive materials from the protective atmosphere of a glove box, avoiding air exposure, to a sample chamber of a scanning electron microscope. Thus, we constructed a low......Moisture or air sensitive materials are often encountered within several highly important fields such as catalyst R&D, pharmaceutical R&D, and battery R&D. Essential to all materials research and development is microstructure characterization, which often implies electron microscopy. Entering the...
The importance of thermal radiation transfer in laminar diffusion flames at normal and microgravity
International Nuclear Information System (INIS)
The importance of radiation heat loss in laminar and turbulent diffusion flames at normal gravity has been relatively well recognized in recent years. There is currently lack of quantitative understanding on the importance of radiation heat loss in relatively small scale laminar diffusion flames at microgravity. The effects of radiation heat transfer and radiation absorption on the structure and soot formation characteristics of a coflow laminar ethylene/air diffusion flame at normal- and microgravity were numerically investigated. Numerical calculations were conducted using GRI-Mech 3.0 combustion chemistry without the NOx mechanism and complex thermal and transport properties, an acetylene based soot formation model, and a statistical narrow-band correlated-k non-grey gas radiation model. Radiation heat transfer and radiation absorption in the microgravity flame were found to be much more important than their counterparts at normal gravity. It is important to calculate thermal radiation transfer accurately in diffusion flame modelling under microgravity conditions.
Skill Assessment of a Spectral Ocean-Atmosphere Radiative Model
Gregg, Watson, W.; Casey, Nancy W.
2009-01-01
Ocean phytoplankton, detrital material, and water absorb and scatter light spectrally. The Ocean- Atmosphere Spectral Irradiance Model (OASIM) is intended to provide surface irradiance over the oceans with sufficient spectral resolution to support ocean ecology, biogeochemistry, and heat exchange investigations, and of sufficient duration to support inter-annual and decadal investigations. OASIM total surface irradiance (integrated 200 nm to 4 microns) was compared to in situ data and three publicly available global data products at monthly 1-degree resolution. OASIM spectrally-integrated surface irradiance had root mean square (RMS) difference= 20.1 W/sq m (about 11%), bias=1.6 W/sq m (about 0.8%), regression slope= 1.01 and correlation coefficient= 0.89, when compared to 2322 in situ observations. OASIM had the lowest bias of any of the global data products evaluated (ISCCP-FD, NCEP, and ISLSCP 11), and the best slope (nearest to unity). It had the second best RMS, and the third best correlation coefficient. OASIM total surface irradiance compared well with ISCCP-FD (RMS= 20.7 W/sq m; bias=-11.4 W/sq m, r=0.98) and ISLSCP II (RMS =25.2 W/sq m; bias= -13.8 W/sq m; r=0.97), but less well with NCEP (RMS =43.0 W/sq m ;bias=-22.6 W/sq m; x=0.91). Comparisons of OASIM photosynthetically available radiation (PAR) with PAR derived from SeaWiFS showed low bias (-1.8 mol photons /sq m/d, or about 5%), RMS (4.25 mol photons /sq m/d ' or about 12%), near unity slope (1.03) and high correlation coefficient (0.97). Coupled with previous estimates of clear sky spectral irradiance in OASIM (6.6% RMS at 1 nm resolution), these results suggest that OASIM provides reasonable estimates of surface broadband and spectral irradiance in the oceans, and can support studies on ocean ecosystems, carbon cycling, and heat exchange.
da Costa, Fatima Rubio; Petrosian, Vahe'; Carlsson, Mats
2015-01-01
Solar flares involve complex processes that are coupled together and span a wide range of temporal, spatial, and energy scales. Modeling such processes self-consistently has been a challenge in the past. Here we present such a model to simulate the coupling of high-energy particle kinetics with hydrodynamics of the atmospheric plasma. We combine the Stanford unified Fokker-Planck code that models particle acceleration, transport, and bremsstrahlung radiation with the RADYN hydrodynamic code that models the atmospheric response to collisional heating by non-thermal electrons through detailed radiative transfer calculations. We perform simulations using different injection electron spectra, including an {\\it ad hoc} power law and more realistic spectra predicted by the stochastic acceleration model due to turbulence or plasma waves. Surprisingly, stochastically accelerated electrons, even with energy flux $\\ll 10^{10}$ erg s$^{-1}$ cm$^{-2}$, cause "explosive" chromospheric evaporation and drive stronger up- an...
Aerosols in the Convective Boundary Layer: Radiation Effects on the Coupled Land-Atmosphere System
Barbaro, E.; Vila-Guerau Arellano, J.; Ouwersloot, H. G.; Schroter, J.; Donovan, D. P.; Krol, M. C.
2013-12-01
We investigate the responses of the surface energy budget and the convective boundary-layer (CBL) dynamics to the presence of aerosols using a combination of observations and numerical simulations. A detailed observational dataset containing (thermo)dynamic variables observed at CESAR (Cabauw Experimental Site for Atmospheric Research) and aerosol information from the European Integrated Project on Aerosol, Cloud, Climate, and Air Quality Interactions (IMPACT/EUCAARI) campaign is employed to design numerical experiments reproducing two prototype clear-sky days characterized by: (i) a well-mixed residual layer above a ground inversion and (ii) a continuously growing CBL. A large-eddy simulation (LES) model and a mixed-layer (MXL) model, both coupled to a broadband radiative transfer code and a land-surface model, are used to study the impacts of aerosol scattering and absorption of shortwave radiation on the land-atmosphere system. We successfully validate our model results using the measurements of (thermo)dynamic variables and aerosol properties for the two different CBL prototypes studied here. Our findings indicate that in order to reproduce the observed surface energy budget and CBL dynamics, information of the vertical structure and temporal evolution of the aerosols is necessary. Given the good agreement between the LES and the MXL model results, we use the MXL model to explore the aerosol effect on the land-atmosphere system for a wide range of optical depths and single scattering albedos. Our results show that higher loads of aerosols decrease irradiance, imposing an energy restriction at the surface. Over the studied well-watered grassland, aerosols reduce the sensible heat flux more than the latent heat flux. As a result, aerosols increase the evaporative fraction. Moreover, aerosols also delay the CBL morning onset and anticipate its afternoon collapse. If also present above the CBL during the morning transition, aerosols maintain a persistent near
THREE-DIMENSIONAL RADIATION TRANSFER IN YOUNG STELLAR OBJECTS
International Nuclear Information System (INIS)
We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various three-dimensional (3D) geometries appropriate for forming stars. The 3D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2D) features include gaps in disks and envelopes, ''puffed-up inner rims'' in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium (HSEQ). We include the option for simple power-law envelope geometry, which, combined with fractal clumping and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from polycyclic aromatic hydrocarbons (PAHs) and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We describe these features in detail, and show example calculations of each. Some of the more interesting results include the following: (1) outflow cavities may be more clumpy than infalling envelopes. (2) PAH emission in high-mass stars may be a better indicator of evolutionary stage than the broadband spectral energy distribution slope; and related to this, (3) externally illuminated clumps and high-mass stars in optically thin clouds can masquerade as young stellar objects. (4) Our HSEQ models suggest that dust settling is likely ubiquitous in T Tauri disks, in agreement with previous observations
Transfer of radioactive aerosol from unit shelter in boundary atmosphere layer
International Nuclear Information System (INIS)
The evaluation of transfer of radioactive aerosol in boundary atmosphere layer in case of normal conditions of unit Shelter and in ceases of different emergency scenarios was performed. In cases of normal condition of unit Shelter the additional radioactive contamination of surface air in close ChNPP zone is the result of simultaneous activities of two sources: unorganized removal of radioactive aerosols from 'Shelter' gaps and release of aerosol particles through ventilating duct of power block 3 and 4. A software shell was created to implement computation mathematical models to evaluate transfer of radioactive aerosol from unit 'Shelter'
SKIRT: the design of a suite of input models for Monte Carlo radiative transfer simulations
Baes, Maarten
2015-01-01
The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can...
International Nuclear Information System (INIS)
We describe a new algorithm for solving the coupled frequency-integrated transfer equation and the equations of magnetohydrodynamics in the regime that light-crossing time is only marginally shorter than dynamical timescales. The transfer equation is solved in the mixed frame, including velocity-dependent source terms accurate to O(v/c). An operator split approach is used to compute the specific intensity along discrete rays, with upwind monotonic interpolation used along each ray to update the transport terms, and implicit methods used to compute the scattering and absorption source terms. Conservative differencing is used for the transport terms, which ensures the specific intensity (as well as energy and momentum) are conserved along each ray to round-off error. The use of implicit methods for the source terms ensures the method is stable even if the source terms are very stiff. To couple the solution of the transfer equation to the MHD algorithms in the ATHENA code, we perform direct quadrature of the specific intensity over angles to compute the energy and momentum source terms. We present the results of a variety of tests of the method, such as calculating the structure of a non-LTE atmosphere, an advective diffusion test, linear wave convergence tests, and the well-known shadow test. We use new semi-analytic solutions for radiation modified shocks to demonstrate the ability of our algorithm to capture the effects of an anisotropic radiation field accurately. Since the method uses explicit differencing of the spatial operators, it shows excellent weak scaling on parallel computers
Dai, Jin; Bozhevolnyi, Sergey I; Yan, Min
2016-01-01
We demonstrate the possibility of ultrabroadband super-Planckian radiative heat transfer be- tween two metal plates patterned with tapered hyperbolic metamaterial arrays. It is shown that, by employing profile-patterned hyperbolic media, one can design photonic bands to populate a desired thermal radiation window, with a spectral density of modes much higher than what can be achieved with unstructured media. For nanometer-sized gaps between two plates, the modes occupy states both inside and outside the light cone, giving rise to ultrabroadband super-Planckian radiative heat transfer. Our study reveals that structured hyperbolic metamaterial offers unprecedented potential in achieving a controllable super-Planckian radiative heat transfer.
International Nuclear Information System (INIS)
In the independent pixel approximation (IPA), radiative transfer computations involving cloudy scenes require two separate calls to the radiative transfer model (RTM), one call for a clear sky scenario, the other for an atmosphere containing clouds. In this paper, clouds are considered as an optically homogeneous layer. We present two novel methods for RTM performance enhancement with particular application to trace gas retrievals under cloudy conditions. Both methods are based on reusing results from clear-sky RTM calculations to speed up corresponding calculations for the cloud-filled scenario. The first approach is numerically exact, and has been applied to the discrete-ordinate with matrix exponential (DOME) RTM. Results from the original clear sky computation can be saved in the memory and reused for the non-cloudy layers in the second computation. In addition, for the whole-atmosphere boundary-value approach to the determination of the intensity field, we can exploit a ’telescoping technique’ to reduce the dimensionality (and hence the computational effort for the solution) of the boundary value problem in the absence of Rayleigh scattering contributions for higher azimuthal components of the radiation field. The second approach is (for the cloudy scenario) to generate a spectral correction applied to the radiation field from a fast two-stream RTM. This correction is based on the use of principal-component analysis (PCA) applied to a given window of spectral optical property data, in order to exploit redundancy in the data and confine the number of full-stream multiple scatter computations to the first few EOFs (Empirical Orthogonal Functions) arising from the PCA. This method has been applied to the LIDORT RTM; although the method involves some approximation, it provides accuracy better than 0.2%, and a speed-up factor of approximately 2 compared with two calls of RTM. -- Highlights: • Reusing results from clear-sky computations for a model with a
Resonance line radiative transfer for hot atom coronae using Kappa distributions
International Nuclear Information System (INIS)
Hot atomic populations are an important component of the planetary exospheres. Usually, radiative transfer models describing the scattering of light by moving atoms assume that these populations have a Maxwellian velocity distribution. However, the velocity distributions of the hot populations could actually have some more extended wings. Popular velocity distributions often used in plasma physics and recently proposed to describe neutral planetary environments are Kappa velocity function distributions. In this paper, following the work of Hummer [Non-coherent scattering: I The redistribution functions with Doppler broadening. R Astron. Soc Month Not 1962;125:21] and Cranmer [Non-Maxwellian redistribution in solar coronal Lyα emission. Astrophys J 1998;508:925-39], we calculate the frequency redistribution functions of radiation scattered by moving atoms with Kappa velocity distribution. We also present a detailed study of a radiative transfer model taking into account Kappa velocity distribution functions, for integer and semi-integer values of κ. We apply this theory to a model of Jupiter hydrogen corona containing 0.1% column density of hot hydrogen to quantify the spectroscopic and imaging differences between Kappa velocity distributions and bi-Maxwellian velocity distributions. When assuming a Kappa velocity distribution with κ=2 for the hot population, intensity increases of ∼40% occur at the bright limb and ∼15% on the disk compared with the same calculations done using a Maxwellian velocity distribution. The line profile differs slightly from a Maxwellian distribution on the disk and at the bright limb, but the difference is larger above the limb. Kappa distributions used to study the Jovian atmosphere are speculative and further studies are needed to link the formation of the hot exospheric populations to the Kappa velocity distributions.
McFarlane, S. A.; Kassianov, E. I.; Barnard, J.; Flynn, C.; Ackerman, T. P.
2009-07-01
The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility (AMF) was deployed to Niamey, Niger, during 2006. Niamey, which is located in sub-Saharan Africa, is affected by both dust and biomass burning emissions. Column aerosol optical properties were derived from multifilter rotating shadowband radiometer, measurements and the vertical distribution of aerosol extinction was derived from a micropulse lidar during the two observed dry seasons (January-April and October-December). Mean aerosol optical depth (AOD) and single scattering albedo (SSA) at 500 nm during January-April were 0.53 ± 0.4 and 0.94 ± 0.05, while during October-December mean AOD and SSA were 0.33 ± 0.25 and 0.99 ± 0.01. Aerosol extinction profiles peaked near 500 m during the January-April period and near 100 m during the October-December period. Broadband shortwave surface fluxes and heating rate profiles were calculated using retrieved aerosol properties. Comparisons for noncloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the aerosol optical properties, with mean differences between calculated and observed fluxes of less than 5 W m-2 and RMS differences less than 25 W m-2. Sensitivity tests showed that the observed fluxes could be matched with variations of aerosol radiative forcing (ARF) was -21.1 ± 14.3 W m-2 and was estimated to account for 80% of the total radiative forcing at the surface. The ARF was larger during January-April (-28.5 ± 13.5 W m-2) than October-December (-11.9 ± 8.9 W m-2).
Chemistry and Radiative Transfer of Water in Cold, Dense Clouds
Keto, Eric; Caselli, Paola
2014-01-01
The Herschel Space Observatory's recent detections of water vapor in the cold, dense cloud L1544 allow a direct comparison between observations and chemical models for oxygen species in conditions just before star formation. We explain a chemical model for gas phase water, simplified for the limited number of reactions or processes that are active in extreme cold ($<$ 15 K). In this model, water is removed from the gas phase by freezing onto grains and by photodissociation. Water is formed as ice on the surface of dust grains from O and OH and released into the gas phase by photodesorption. The reactions are fast enough with respect to the slow dynamical evolution of L1544 that the gas phase water is in equilibrium for the local conditions thoughout the cloud. We explain the paradoxical radiative transfer of the H$_2$O ($1_{10}-1_{01}$) line. Despite discouragingly high optical depth caused by the large Einstein A coefficient, the subcritical excitation in the cold, rarefied H$_2$ causes the line brightnes...
Testing Quasar Unification: Radiative Transfer in Clumpy Winds
Matthews, James H; Long, Knox S; Sim, Stuart A; Higginbottom, Nick; Mangham, Sam W
2016-01-01
Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to $10^{43}$ erg s$^{-1}$. Here, we introduce a simple treatment of clumping, and find that a filling factor of $\\sim0.01$ moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Ly \\alpha\\ and CIV 1550\\AA\\ at low inclinations. At high ...
Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts
Shinn, Jong-Ho
2015-01-01
In order to examine their relation to the host galaxy, the extraplanar dust of six nearby galaxies are modeled, employing a three dimensional Monte Carlo radiative transfer code. The targets are from the highly-inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are in general well reproduced by two dust layers and one light-source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFR_UV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of extraplanar dust layer. However, it is found that the rest three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GA...
Test plan for validation of the radiative transfer equation.
Energy Technology Data Exchange (ETDEWEB)
Ricks, Allen Joseph; Grasser, Thomas W.; Kearney, Sean Patrick; Jernigan, Dann A.; Blanchat, Thomas K.
2010-09-01
As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).
Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David
2016-04-01
Black carbon (BC), and its vertical distribution, affects the climate. Global measurements of BC vertical profiles are lacking to support climate change research. To fill this gap, a campaign was conducted over three Italian basin valleys, Terni Valley (Appennines), Po Valley and Passiria Valley (Alps), to characterize the impact of BC on the radiative budget under similar orographic conditions. 120 vertical profiles were measured in winter 2010. The BC vertical profiles, together with aerosol size distribution, aerosol chemistry and meteorological parameters, have been determined using a tethered balloon-based platform equipped with: a micro-Aethalometer AE51 (Magee Scientific), a 1.107 Grimm OPC (0.25-32 μm, 31 size classes), a cascade impactor (Siuotas SKC), and a meteorological station (LSI-Lastem). The aerosol chemical composition was determined from collected PM2.5 samples. The aerosol absorption along the vertical profiles was measured and optical properties calculated using the Mie theory applied to the aerosol size distribution. The aerosol optical properties were validated with AERONET data and then used as inputs to the radiative transfer model libRadtran. Vertical profiles of the aerosol direct radiative effect, the related atmospheric absorption and the heating rate were calculated. Vertical profile measurements revealed some common behaviors over the studied basin valleys. From below the mixing height to above it, a marked concentration drop was found for both BC (from -48.4±5.3% up to -69.1±5.5%) and aerosol number concentration (from -23.9±4.3% up to -46.5±7.3%). These features reflected on the optical properties of the aerosol. Absorption and scattering coefficients decreased from below the MH to above it (babs from -47.6±2.5% up to -71.3±3.0% and bsca from -23.5±0.8% up to -61.2±3.1%, respectively). Consequently, the Single Scattering Albedo increased above the MH (from +4.9±2.2% to +7.4±1.0%). The highest aerosol absorption was
GRANADA: A Generic RAdiative traNsfer AnD non-LTE population algorithm
International Nuclear Information System (INIS)
We present in this paper the Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA). This model is able to compute non-LTE populations for vibrational, rotational, spin (i.e., NO and OH), and electronic (i.e., O2) states in a given planetary atmosphere. The model is very flexible and can be used for computing very accurate non-LTE populations or for calculating reasonably accurate but at high speed non-LTE populations in order to implement it into non-LTE remote sensing retrievals. We describe the model in detail and present an update of the non-LTE collisional processes and their rate coefficients for the most important molecules in Earth's atmosphere. In addition, we have applied the model to the most important atmospheric infrared emitters including 13 species (H2O, CO2, O3, N2O, CO, CH4, O2, NO, NO2, HNO3, OH, N2, and HCN) and 460 excited vibrational or electronic energy levels. Non-LTE populations for all these energy levels have been calculated for 48 reference atmospheres expanding from the surface up to 200 km, including seasonal (January, April, July and October), latitudinal (75°S, 45°S, 10°S, 10°N, 45°N, 75°N) and diurnal (day and night) coverages. The effects of the most recent updates of the non-LTE collisional parameters on the non-LTE populations are briefly described. This climatology is available online to the community and it can be used for estimating non-LTE effects at specific conditions and for testing and validation studies.
The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) and its applications
Thelen, Jean-Claude; Havemann, Stephan; Lewis, Warren
2015-09-01
The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) is a component of the Met Office NEON Tactical Decision Aid (TDA). Within NEON, the HT-FRTC has for a number of years been used to predict the IR apparent thermal contrasts between different surface types as observed by an airborne sensor. To achieve this, the HT-FRTC is supplied with the inherent temperatures and spectral properties of these surfaces (i.e. ground target(s) and background). A key strength of the HT-FRTC is its ability to take into account the detailed properties of the atmosphere, which in the context of NEON tend to be provided by a Numerical Weather Prediction (NWP) forecast model. While water vapour and ozone are generally the most important gases, additional trace gases are now being incorporated into the HT-FRTC. The HT-FRTC also includes an exact treatment of atmospheric scattering based on spherical harmonics. This allows the treatment of several different aerosol species and of liquid and ice clouds. Recent developments can even account for rain and falling snow. The HT-FRTC works in Principal Component (PC) space and is trained on a wide variety of atmospheric and surface conditions, which significantly reduces the computational requirements regarding memory and time. One clear-sky simulation takes approximately one millisecond. Recent developments allow the training to be completely general and sensor independent. This is significant as the user of the code can add new sensors and new surfaces/targets by simply supplying extra files which contain their (possibly classified) spectral properties. The HT-FRTC has been extended to cover the spectral range of Photopic and NVG sensors. One aim here is to give guidance on the expected, directionally resolved sky brightness, especially at night, again taking the actual or forecast atmospheric conditions into account. Recent developments include light level predictions during the period of twilight.
HELIOS-K: An Ultrafast, Open-source Opacity Calculator for Radiative Transfer
Grimm, Simon L.; Heng, Kevin
2015-08-01
We present an ultrafast opacity calculator that we name HELIOS-K. It takes a line list as an input, computes the shape of each spectral line, and provides an option for grouping an enormous number of lines into a manageable number of bins. We implement a combination of Algorithm 916 and Gauss-Hermite quadrature to compute the Voigt profile, write the code in CUDA, and optimize the computation for graphics processing units (GPUs). We restate the theory of the k-distribution method and use it to reduce ˜ {10}5-108 lines to ˜10-104 wavenumber bins, which may then be used for radiative transfer, atmospheric retrieval and general circulation models. The choice of line-wing cutoff for the Voigt profile is a significant source of error and affects the value of the computed flux by ˜ 10%. This is an outstanding physical (rather than computational) problem, due to our incomplete knowledge of pressure broadening of spectral lines in the far line wings. We emphasize that this problem remains regardless of whether one performs line-by-line calculations or uses the k-distribution method and affects all calculations of exoplanetary atmospheres requiring the use of wavelength-dependent opacities. We elucidate the correlated-k approximation and demonstrate that it applies equally to inhomogeneous atmospheres with a single atomic/molecular species or homogeneous atmospheres with multiple species. Using a NVIDIA K20 GPU, HELIOS-K is capable of computing an opacity function with ˜ {10}5 spectral lines in ˜1 s and is publicly available as part of the Exoclimes Simulation Platform (www.exoclime.org).
Mobile Atmospheric Aerosol and Radiation Characterization Observatory (MAARCO)
Federal Laboratory Consortium — FUNCTION: MAARCO is designed as a stand-alone facility for basic atmospheric research and the collection of data to assist in validating aerosol and weather models....
International Nuclear Information System (INIS)
In situations of chronic or accidental releases, the atmosphere is the main pathway of radioactive releases from nuclear facilities to the environment and, consequently, to humans. It is therefore necessary to have sufficient information on this pathway to accurately assess the radiological impact on man and his environment. Institute for Radioprotection and Nuclear Safety develops its own tools of dispersion and atmospheric transfer for its expertise, under normal operation conditions of a facility, but especially in crisis or post-accident. These tools must have a national and international recognition in particular through scientific validation against benchmark experiments performed internationally, nationally or within the IRSN. The Radioecology Laboratory of Cherbourg-Octeville provides, and will increasingly make, a significant contribution to the scientific influence of the Institute in this field. The work presented in this report has contributed to the development or improvement of experimental techniques in the fields of atmospheric dispersion of radionuclides and transfer at interfaces, in complex environments (complex topography, urban area). These experimental techniques, applied during field campaigns, have allowed to acquire new data in order to get a better understanding of radionuclide transfers in the form of gases and aerosols. (author)
Directory of Open Access Journals (Sweden)
J. R. Dim
2011-01-01
Full Text Available Atmospheric profiles (temperature, pressure, and humidity are commonly used parameters for aerosols and cloud properties retrievals. In preparation of the launch of the Global Change Observation Mission-Climate/Second-Generation GLobal Imager (GCOM-C/SGLI satellite, an evaluation study on the sensitivity of atmospheric models to variations of atmospheric conditions is conducted. In this evaluation, clear sky and above low clouds water vapour radiances of the upper troposphere obtained from satellite observations and those simulated by atmospheric models are compared. The models studied are the Nonhydrostatic ICosahedral Atmospheric Model (NICAM and the National Center for Environmental Protection/Department Of Energy (NCEP/DOE. The satellite observations are from the Terra/Moderate Resolution Imaging Spectroradiometer (Terra/MODIS satellite. The simulations performed are obtained through a forward radiative transfer calculation procedure. The resulting radiances are transformed into the upper tropospheric brightness temperature (UTBT and relative humidity (UTRH. The discrepancies between the simulated data and the observations are analyzed. These analyses show that both the NICAM and the NCEP/DOE simulated UTBT and UTRH have comparable distribution patterns. However the simulations’ differences with the observations are generally lower with the NCEP/DOE than with the NICAM. The NCEP/DOE model outputs very often overestimate the UTBT and therefore present a drier upper troposphere. The impact of the lower troposphere instability (dry convection on the upper tropospheric moisture and the consequences on the models’ results are evaluated through a thunderstorm and moisture predictor (the K-stability index. The results obtained show a positive relation between the instability and the root mean square error (RMSE: observation versus models. The study of the impact of convective clouds shows that the area covered by these clouds increases with the
Radiative transfer in cylindrical threads with incident radiation VII. Multi-thread models
Labrosse, N
2016-01-01
We solved the radiative transfer and statistical equilibrium equations in a two-dimensional cross-section of a cylindrical structure oriented horizontally and lying above the solar surface. The cylinder is filled with a mixture of hydrogen and helium and is illuminated at a given altitude from the solar disc. We constructed simple models made from a single thread or from an ensemble of several threads along the line of sight. This first use of two-dimensional, multi-thread fine structure modelling combining hydrogen and helium radiative transfer allowed us to compute synthetic emergent spectra from cylindrical structures and to study the effect of line-of-sight integration of an ensemble of threads under a range of physical conditions. We analysed the effects of variations in temperature distribution and in gas pressure. We considered the effect of multi-thread structures within a given field of view and the effect of peculiar velocities between the structures in a multi-thread model. We compared these new mo...
Davis, A. B.; Cahalan, R. F.
2001-05-01
The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards
Radiative heat transfer in turbulent combustion systems theory and applications
Modest, Michael F
2016-01-01
This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.
Energy distribution and heat transfer mechanisms in atmospheric pressure non-equilibrium plasmas
International Nuclear Information System (INIS)
Energy distribution and heat transfer mechanisms in atmospheric pressure non-equilibrium plasmas were investigated extensively through energy balance analysis, emission spectroscopy of the rotational band of CH (A2Δ→XΠ2), and gas chromatographic analysis. Two plasma sources were examined: methane-fed dielectric barrier discharge (DBD) and atmospheric pressure glow-discharge (APG). The DBD features filamentary microdischarges accompanied by surface discharge along a dielectric barrier. As a result, 60% of the input power was measured as heat transfer to the dielectric electrode, whereas 20% was to the metallic electrode. Consequently, feed gas average temperature was increased only by 20-40 K. On the other hand, rotational temperature of the corresponding emission region exceeded average gas temperature by 100 K. In APG, heat transfer to electrodes was dominated by formation of negative glow regardless of whether the electrode was covered by a dielectric. However, negative glow tended to be thinner and more intense when it formed on a metallic electrode, leading to slightly higher metallic heating. Rotational temperature in APG was close to average gas temperature since APG does not show radial localization of plasma. Energy efficiency for methane decomposition process to produce ethane, ethylene, and hydrogen was about 1% regardless of the plasma source. Energy distribution and heat transfer mechanisms depend strongly on the plasma spatial structure rather than flow fields or feed gas physical properties. (author)
Variability of atmospheric depositions of artificial radioelements and their transfer into soils
International Nuclear Information System (INIS)
In this Habilitation thesis, I present the results and prospects of the main research topics that contribute to bettering our knowledge of the behaviour of artificial radioelements in the geosphere and biosphere. In the first chapter I present a summary of the research carried out for my thesis on the Oklo reactors. In the subsequent chapters I present my research work at the IRSN. The second chapter concerns the atmospheric depositions of radioactive contaminants. I have studied the principal environmental parameters involved in the empirical modelling of the transfer of artificial radioelements from the atmosphere to the soil. Here I essentially use measurements of artificial radioelements (137Cs, plutonium, americium) in soils that reveal the variability of accidental depositions further to the Chernobyl disaster (paragraph 2.1) and chronic radioactive depositions coming from the atmospheric testing of nuclear weapons (paragraph 2.2). In the third chapter I address the problem of transfers of artificial radioelements into the soil. The interest of this lies in the fact that these transfers represent serious risks for man. Taken over the long term (in the months and years that follow the depositing of radioactive elements on the ground and plants), the transfers of radioactive pollutants into the soil are responsible for the contamination of both plants (transfer via the roots) and underground water and surface water (transfer after vertical migration). My research work into the transfers of radioactive pollutants in soils is centred on vertical migrations and root transfers, as both these processes can be studied through environmental samplings and measurements. More precisely, I have studied the migrations of radioactive pollutants and their geochemical analogues in different types of soils (paragraph 3.1) and the variability of the activities of radiostrontium and radiocesium in the compartments of permanent grassland zones (soil, grass, milk and cheese
The transfer of atmospheric-pressure ionization waves via a metal wire
International Nuclear Information System (INIS)
Our study has shown that the atmospheric-pressure He ionization waves (IWs) may be transferred from one dielectric tube (tube 1) to the other one (tube 2) via a floating metal wire. The propagation of IWs along the two tubes is not affected by the diameter of a floating metal wire, however, their propagation is strongly dependent on the length of a floating metal wire. The propagation of one IW along the tube 1 may result in the second IW propagating reversely inside the tube in vicinity of a floating metal wire, which keeps from their further propagation through the tube 1. After they merge together as one conduction channel inside the tube 1, the transferred plasma bullet starts to propagate along the tube 2. The propagation of transferred plasma bullets along the tube 2 is mainly determined by the capacitance and inductance effects, and their velocity and density can be controlled by the length of a floating metal wire
Canonical transfer and multiscale energetics for primitive and quasi-geostrophic atmospheres
Liang, X San
2016-01-01
The past years have seen the success of a novel multiscale energetic formalism in a variety of ocean and engineering fluid applications. In a self-contained way, this study introduces it to the atmospheric dynamical diagnostics, with important theoretical updates. Multiscale energy equations are derived using a new analysis apparatus, namely, multiscale window transform, with respect to both the primitive equation and quasi-geostrophic models. A reconstruction of the "atomic" energy fluxes on the multiple scale windows allows for a natural and unique separation of the in-scale transports and cross-scale transfers from the intertwined nonlinear processes. The resulting energy transfers bear a Lie bracket form, reminiscent of the Poisson bracket in Hamiltonian mechanics, we hence would call them "canonical". A canonical transfer process is a mere redistribution of energy among scale windows, without generating or destroying energy as a whole. By classification, a multiscale energetic cycle comprises of availabl...
The transfer of atmospheric-pressure ionization waves via a metal wire
Energy Technology Data Exchange (ETDEWEB)
Xia, Yang; Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn [Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wang, Wenchun [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Peng, Yifeng; Niu, Jinhai; Bi, Zhenhua; Ji, Longfei; Song, Ying; Wang, Xueyang; Qi, Zhihua [Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)
2016-01-15
Our study has shown that the atmospheric-pressure He ionization waves (IWs) may be transferred from one dielectric tube (tube 1) to the other one (tube 2) via a floating metal wire. The propagation of IWs along the two tubes is not affected by the diameter of a floating metal wire, however, their propagation is strongly dependent on the length of a floating metal wire. The propagation of one IW along the tube 1 may result in the second IW propagating reversely inside the tube in vicinity of a floating metal wire, which keeps from their further propagation through the tube 1. After they merge together as one conduction channel inside the tube 1, the transferred plasma bullet starts to propagate along the tube 2. The propagation of transferred plasma bullets along the tube 2 is mainly determined by the capacitance and inductance effects, and their velocity and density can be controlled by the length of a floating metal wire.
Atmospheric Radiation Measurement program climate research facility operations quarterly report.
Energy Technology Data Exchange (ETDEWEB)
Sisterson, D. L.; Decision and Information Sciences
2006-09-06
Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive
A toy model linking atmospheric thermal radiation and sea ice growth
Thorndike, A. S.
1992-01-01
A simplified analytical model of sea ice growth is presented where the atmosphere is in thermal radiative equilibrium with the ice. This makes the downwelling longwave radiation reaching the ice surface an internal variable rather than a specified forcing. Analytical results demonstrate how the ice state depends on properties of the ice and on the externally specified climate.
Jinya, John; Bipasha, Paul S.
2016-05-01
Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in
INSTRUMENTATION FOR MEASURING AND TRANSMISSION THE SOLAR RADIATION THROUGH EARTH’S ATMOSPHERE
Alexandru Dan Toma
2013-01-01
The Sun's energy is distributed over a broad range of the electromagnetic spectrum and Sun behaves approximately like a "blackbody" radiating at a temperature of about 5800 K with maximum output in the green-yellow part of the visible spectrum, around 500 nm. Not all solar radiation reaching the top of the atmosphere reaches Earth's surface due to a various optical phenomena in regard to solar radiation crossing the Earth’s atmosphere. In order to investigate them, there are two general categ...
Analysis of the effects of aerosol distribution in the atmosphere on surface radiative measurements
International Nuclear Information System (INIS)
The distribution of atmospheric aerosols in the atmosphere may have important effects on the radiative properties of the atmosphere and thereby on the climate. The Atmospheric and Geophysical Sciences Division of the Lawrence Livermore National Laboratory is working with the Atmospheric Radiation Measurements (ARM) program to advise the program as to the importance of aerosols to the ARM measurement plan. The ARM Program had established a set of goals which highlight the important areas of scientific needs associated with the understanding and prediction of global climate change. This report summarizes the initial studies performed to assess the importance and effects of atmospheric aerosols on the measurements of atmospheric radiation. To accomplish this, three interlinked models were employed which calculated the MIE parameters, averaged over the appropriate size distributions and computed the solar radiation at the surface. These models are discussed. A number of computations were performed using different aerosol scenarios and size distributions. These results are discussed and a summary of these initial calculations and future directions of research are outlined
Two-dimensional radiative transfer. II. The wings of Ca K and Mg k
International Nuclear Information System (INIS)
The effect of horizontal radiative transfer on the Ca K and Mg k line wing intensities in two-component models of the solar atmosphere is investigated. No significant influence on the spatially unresolved wing profiles of either line was found, even for models in which the lateral variation was extreme over distances approaching a vertical scale height. Horizonal contrast as measured by the spatially resolve Mg k profile was found to be markedly reduced by lateral transfer over scales at or below the current resolution limit. Contrast as measured in the Ca K wing was relatively unaffected and was maintained down to lateral sizes approaching a vertical scale height. The behavior of Ca K relative to Mg k is attributed to the larger amount of photon destruction by incoherent scattering in the Ca K wing, which limits the distance that photons can diffuse laterally and forces the line to be formed near LTE. We therefore conclude that the small-scale photospheric temperature structure predicted by many models can be detected in Ca K, and that efforts toward reducing seeing limitations on the resolution of solar observations should be encouraged
Testing quasar unification: radiative transfer in clumpy winds
Matthews, J. H.; Knigge, C.; Long, K. S.; Sim, S. A.; Higginbottom, N.; Mangham, S. W.
2016-05-01
Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.
Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts
Shinn, Jong-Ho; Seon, Kwang-Il
2015-12-01
In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFRUV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFRUV and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.
An Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning
Directory of Open Access Journals (Sweden)
Juan Pablo Rivera
2015-07-01
Full Text Available Physically-based radiative transfer models (RTMs help in understanding the processes occurring on the Earth’s surface and their interactions with vegetation and atmosphere. When it comes to studying vegetation properties, RTMs allows us to study light interception by plant canopies and are used in the retrieval of biophysical variables through model inversion. However, advanced RTMs can take a long computational time, which makes them unfeasible in many real applications. To overcome this problem, it has been proposed to substitute RTMs through so-called emulators. Emulators are statistical models that approximate the functioning of RTMs. Emulators are advantageous in real practice because of the computational efficiency and excellent accuracy and flexibility for extrapolation. We hereby present an “Emulator toolbox” that enables analysing multi-output machine learning regression algorithms (MO-MLRAs on their ability to approximate an RTM. The toolbox is included in the free-access ARTMO’s MATLAB suite for parameter retrieval and model inversion and currently contains both linear and non-linear MO-MLRAs, namely partial least squares regression (PLSR, kernel ridge regression (KRR and neural networks (NN. These MO-MLRAs have been evaluated on their precision and speed to approximate the soil vegetation atmosphere transfer model SCOPE (Soil Canopy Observation, Photochemistry and Energy balance. SCOPE generates, amongst others, sun-induced chlorophyll fluorescence as the output signal. KRR and NN were evaluated as capable of reconstructing fluorescence spectra with great precision. Relative errors fell below 0.5% when trained with 500 or more samples using cross-validation and principal component analysis to alleviate the underdetermination problem. Moreover, NN reconstructed fluorescence spectra about 50-times faster and KRR about 800-times faster than SCOPE. The Emulator toolbox is foreseen to open new opportunities in the use of advanced
Heat Transfer Issues in Thin-Film Thermal Radiation Detectors
Barry, Mamadou Yaya
1999-01-01
The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next-generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, ...
Radiative Transfer Modeling of Lyman Alpha Emitters. I. Statistics of Spectra and Luminosity
Zheng, Zheng; Cen, Renyue; Trac, Hy; Miralda-Escude, Jordi
2009-01-01
We combine a cosmological reionization simulation with box size of 100Mpc/h on a side and a Monte Carlo Lyman-alpha (Lya) radiative transfer code to model Lyman Alpha Emitters (LAEs) at z~5.7. The model introduces Lya radiative transfer as the single factor for transforming the intrinsic Lya emission properties into the observed ones. Spatial diffusion of Lya photons from radiative transfer results in extended Lya emission and only the central part with high surface brightness can be observed...
Investigation of spectral radiation heat transfer and NO{sub x} emission in a glass furnace
Energy Technology Data Exchange (ETDEWEB)
Golchert, B.; Zhou, C. Q.; Chang, S. L.; Petrick, M.
2000-08-02
A comprehensive radiation heat transfer model and a reduced NOx kinetics model were coupled with a computational fluid dynamics (CFD) code and then used to investigate the radiation heat transfer, pollutant formation and flow characteristics in a glass furnace. The radiation model solves the spectral radiative transport equation in the combustion space of emitting and absorbing media, i.e., CO{sub 2}, H{sub 2}O, and soot and emission/reflection from the furnace crown. The advanced numerical scheme for calculating the radiation heat transfer is extremely effective in conserving energy between radiation emission and absorption. A parametric study was conducted to investigate the impact of operating conditions on the furnace performance with emphasis on the investigation into the formation of NOx.
Use of the radiative transfer equation for active remote sensing
International Nuclear Information System (INIS)
Remote sensing requires an interaction between the electromagnetic field and the matter whose properties are to be determined. We only saw two interactions between electromagnetic radiation and matter, namely absorption and emission, usefully regrouped into four classes of interaction processes: scattering, reflection, absorption, and emission. Remote sensing with artificial radiation sources requires the selection of measuring conditions so that natural radiation be always negligible compared to the artificial radiation. The radiation transport equations for all shortwave and longwave active method do not differ from one another so they can be treated together. (Author)
Directory of Open Access Journals (Sweden)
L. Sun
2007-10-01
Full Text Available In order to study the filter effect of the background winds on the propagation of gravity waves, a three-dimensional transfer function model is developed on the basis of the complex dispersion relation of internal gravity waves in a stratified dissipative atmosphere with background winds. Our model has successfully represented the main results of the ray tracing method, e.g. the trend of the gravity waves to travel in the anti-windward direction. Furthermore, some interesting characteristics are manifest as follows: (1 The method provides the distribution characteristic of whole wave fields which propagate in the way of the distorted concentric circles at the same altitude under the control of the winds. (2 Through analyzing the frequency and wave number response curve of the transfer function, we find that the gravity waves in a wave band of about 15–30 min periods and of about 200–400 km horizontal wave lengths are most likely to propagate to the 300-km ionospheric height. Furthermore, there is an obvious frequency deviation for gravity waves propagating with winds in the frequency domain. The maximum power of the transfer function with background winds is smaller than that without background winds. (3 The atmospheric winds may act as a directional filter that will permit gravity wave packets propagating against the winds to reach the ionospheric height with minimum energy loss.
Modeling of radiation transport in coupled atmosphere-snow-ice-ocean systems
International Nuclear Information System (INIS)
A radiative transfer model for coupled atmosphere-snow-ice-ocean systems (CASIO-DISORT) is used to develop accurate and efficient tools for computing the bidirectional reflectance distribution function (BRDF) of sea ice for a wide range of situations occurring in nature. These tools include a method to generate sea ice inherent optical properties (IOPs: single-scattering albedo, extinction optical depth, and scattering asymmetry parameter) for any wavelength between 300 and 4000 nm as a function of sea ice physical parameters including real and imaginary parts of the sea ice refractive index, brine pocket concentration and effective brine pocket size, air bubble concentration and effective air bubble size, volume fraction of ice impurities and impurity absorption coefficient, and sea ice thickness. The CASIO-DISORT code was used to compute look-up tables (LUTs) of the Fourier expansion coefficients of the BRDF as a function of angles of illumination and observation, sea ice IOPs, and ocean albedo. By interpolation in the LUTs one efficiently obtains accurate BRDF values. To include snow on the ice we modified DISORT2 to accept Fourier expansion coefficients for the BDRF as input instead of the BRDF itself, thereby reducing the computation time by a factor of about 60. The BRDF computed by CASIO-DISORT or retrieved from the LUTs applies to diffuse light only. To remedy this shortcoming we added a specular Gaussian beam component to the new BRDF tool and verified that it works well for BRDFs for bare and snow-covered sea ice.
A passive and active microwave-vector radiative transfer (PAM-VRT) model
International Nuclear Information System (INIS)
A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors. - Highlights: • A novel microwave vector radiative transfer model is developed. • It can simulate passive and active microwave radiative transfer simultaneously. • It can be applied to simulate measurements for different types of viewing geometry. • The accuracy of this model has been validated against other existing models
Flow-radiation coupling for atmospheric entries using a Hybrid Statistical Narrow Band model
Soucasse, Laurent; Scoggins, James B.; Rivière, Philippe; Magin, Thierry E.; Soufiani, Anouar
2016-09-01
In this study, a Hybrid Statistical Narrow Band (HSNB) model is implemented to make fast and accurate predictions of radiative transfer effects on hypersonic entry flows. The HSNB model combines a Statistical Narrow Band (SNB) model for optically thick molecular systems, a box model for optically thin molecular systems and continua, and a Line-By-Line (LBL) description of atomic radiation. Radiative transfer calculations are coupled to a 1D stagnation-line flow model under thermal and chemical nonequilibrium. Earth entry conditions corresponding to the FIRE 2 experiment, as well as Titan entry conditions corresponding to the Huygens probe, are considered in this work. Thermal nonequilibrium is described by a two temperature model, although non-Boltzmann distributions of electronic levels provided by a Quasi-Steady State model are also considered for radiative transfer. For all the studied configurations, radiative transfer effects on the flow, the plasma chemistry and the total heat flux at the wall are analyzed in detail. The HSNB model is shown to reproduce LBL results with an accuracy better than 5% and a speed up of the computational time around two orders of magnitude. Concerning molecular radiation, the HSNB model provides a significant improvement in accuracy compared to the Smeared-Rotational-Band model, especially for Titan entries dominated by optically thick CN radiation.
Energy Technology Data Exchange (ETDEWEB)
Sassen, K.; Comstock, Jennifer M.
2001-08-01
In Part III of a series of papers describing the extended time high-cloud observations from the University of Utah Facility for Atmospheric Remote Sensing (FARS) supporting the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment, the visible and infrared radiative properties of cirrus clouds over Salt Lake City, Utah, are examined. Using {approx}860 h of combined ruby (0.694 {micro}m) lidar and midinfrared (9.5-11.5 {micro}m) radiometer data collected between 1992 and 1999 from visually identified cirrus clouds, the visible optical depths {tau} and infrared layer emittance epsilon of the varieties of midlatitude cirrus are characterized. The mean and median values for the cirrus sample are 0.75 {+-} 0.91 and 0.61 for {tau}, and 0.30 {+-} 0.22 and 0.25 for epsilon. Other scattering parameters studied are the visible extinction and infrared absorption coefficients, and their ratio, and the lidar backscatter-to-extinction ratio, which has a mean value of 0.041 sr{sup -1}. Differences among cirrus clouds generated by general synoptic (e.g., jet stream), thunderstorm anvil, and orographic mechanisms are found, reflecting basic cloud microphysical effects. The authors draw parameterizations in terms of midcloud temperature T{sub m} and physical cloud thickness {Delta}z for epsilon and {tau}: both macrophysical variables are needed to adequately address the impact of the adiabatic process on ice cloud content, which modulates radiative transfer as a function of temperature. For the total cirrus dataset, the authors find epsilon = 1 -exp [-8.5 x 10{sup -5} (T{sub m} + 80 C) {Delta}z]. These parameterizations, based on a uniquely comprehensive dataset, hold the potential for improving weather and climate model predictions, and satellite cloud property retrieval methods.
Kraeuchi, Andreas; Philipona, Rolf
2015-04-01
Very promising radiation profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a mechanism that allows to release the radiosonde at a preset altitude, and an autopilot allowing to fly the radiosonde back to the launch site and to land it savely with a parachute at a preset location. The return glider radiosonde technique as well as new measurement possibilities will be shown. First measurements show temperature, humidity and radiation profiles through the atmosphere up to 30 hPa (24 km) during different atmospheric conditions. Radiation profiles during different daytimes show possibilities with respect to temporal resolution of vertical radiation profiles trough the atmosphere.
Model parameters and validation for tritium transfer in plants from atmospheric release
International Nuclear Information System (INIS)
Model parameters and validation for tritium transfer in plants from atmospheric release are examined in different effluent modes. In most cases, tritium uptake by plants can be explained using simple models based on the flux of transpiration and/or vapor diffusion. But, concerning the organically bound tritium in plants, the production rate of it differed with different plant species and plant parts. So, the modeling of the production rate of OBT in target plants and parts still needs experimental results and theoretical consideration. For the release of atmospheric tritiated organic material, the mechanism of tritium incorporation into plant should be known. Tritium was detected in the plant leaves which were exposed to tritiated methane, not only in the water soluble form but also in the organically bound tritium form. The mechanism of this tritium accumulation in plant leaves is still uncertain. (author)
International Nuclear Information System (INIS)
We present a method to monitor the vertical column density (VCD) of atmospheric pollution gases by using the scattered solar radiation. The necessary condition of capturing the useful scattered solar radiation is achieved. The condition is only dependent on the solar elevation angle, while independent of the solar azimuth angle, which could greatly simply the capturing equipment and procedure. Under the condition, the VCD of tropospheric NO2 in Chengdu, China is retrieved from the scattered solar radiation, which is close to that from the direct solar radiation
Institute of Scientific and Technical Information of China (English)
ZUO Sao-Yi
2009-01-01
We present a method to monitor the vertical column density (VCD) of atmospheric pollution gases by using the scattered solar radiation. The necessary condition of capturing the useful scattered solar radiation is achieved. The condition is only dependent on the solar elevation angle, while independent of the solar azimuth angle, which could greatly simply the capturing equipment and procedure. Under the condition, the VCD of tropospheric NO2 in Chengdu, China is retrieved from the scattered solar radiation, which is dose to that from the direct solar radiation.
Mishchenko, Michael I.
2014-01-01
This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.
Jin, Shengye; Tamura, Masayuki
2013-10-01
Monte Carlo Ray Tracing (MCRT) method is a versatile application for simulating radiative transfer regime of the Solar - Atmosphere - Landscape system. Moreover, it can be used to compute the radiation distribution over a complex landscape configuration, as an example like a forest area. Due to its robustness to the complexity of the 3-D scene altering, MCRT method is also employed for simulating canopy radiative transfer regime as the validation source of other radiative transfer models. In MCRT modeling within vegetation, one basic step is the canopy scene set up. 3-D scanning application was used for representing canopy structure as accurately as possible, but it is time consuming. Botanical growth function can be used to model the single tree growth, but cannot be used to express the impaction among trees. L-System is also a functional controlled tree growth simulation model, but it costs large computing memory. Additionally, it only models the current tree patterns rather than tree growth during we simulate the radiative transfer regime. Therefore, it is much more constructive to use regular solid pattern like ellipsoidal, cone, cylinder etc. to indicate single canopy. Considering the allelopathy phenomenon in some open forest optical images, each tree in its own `domain' repels other trees. According to this assumption a stochastic circle packing algorithm is developed to generate the 3-D canopy scene in this study. The canopy coverage (%) and the tree amount (N) of the 3-D scene are declared at first, similar to the random open forest image. Accordingly, we randomly generate each canopy radius (rc). Then we set the circle central coordinate on XY-plane as well as to keep circles separate from each other by the circle packing algorithm. To model the individual tree, we employ the Ishikawa's tree growth regressive model to set the tree parameters including DBH (dt), tree height (H). However, the relationship between canopy height (Hc) and trunk height (Ht) is
How are Gases Transferred from the Atmosphere to Snow and Ice Surfaces?
Abbatt, J.
2005-12-01
Aside from mass transfer through the gas phase, the rate-determining step for transferring a gas from the atmosphere to ice or snow is frequently determined by the chemistry of the gas-ice surface interaction. What are the kinetics of this uptake process? How are they affected as the surface becomes coated? What is the capacity of the surface to adsorb gaseous species? How does the uptake change if the ice is growing or evaporating? Does uptake to polycrystalline snow differ from that to ice of large crystal size? How does the uptake capacity of ice change at high temperatures, as the quasi-liquid layer thickness grows? To investigate these effects, this talk will focus on some recent studies we have performed in the laboratory using nitric acid and small oxygenated organics as the adsorbing molecules, and using both ice and polycrystalline snow samples.
DEFF Research Database (Denmark)
Janssen, Hans; Blocken, Bert; Carmeliet, Jan
conditions, emphasising wind-driven rain and vapour exchange, the main moisture supply and removal mechanism, respectively. In the second part the numerical implementation is tackled, with specific attention to the monotony of the spatial discretisation, and to the mass and energy conservation of the......While the transfer equations for moisture and heat in building components are currently undergoing standardisation, atmospheric boundary conditions, conservative modelling and numerical efficiency are not addressed. In a first part, this paper adds a comprehensive description of those boundary...
A public code for general relativistic, polarised radiative transfer around spinning black holes
Dexter, Jason
2016-01-01
Ray tracing radiative transfer is a powerful method for comparing theoretical models of black hole accretion flows and jets with observations. We present a public code, grtrans, for carrying out such calculations in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics. The code is written in Fortran 90 and efficiently parallelises with OpenMP, and the full code and several components have Python interfaces. We describe several tests which are used for verifiying the code, and we compare the results for polarised thin accretion disc and semi-analytic jet problems with those from the literature as examples of its use. Along the way, we provide accurate fitting functions for polarised synchrotron emission and transfer coefficients from thermal and power law distribution functions, and compare results from numerical integration and quadrature solutions of the polarised radiative transfer equations. We also show that all transfer coefficients can play...
An early warning indicator for atmospheric blocking events using transfer operators
International Nuclear Information System (INIS)
The existence of persistent midlatitude atmospheric flow regimes with time-scales larger than 5–10 days and indications of preferred transitions between them motivates to develop early warning indicators for such regime transitions. In this paper, we use a hemispheric barotropic model together with estimates of transfer operators on a reduced phase space to develop an early warning indicator of the zonal to blocked flow transition in this model. It is shown that the spectrum of the transfer operators can be used to study the slow dynamics of the flow as well as the non-Markovian character of the reduction. The slowest motions are thereby found to have time scales of three to six weeks and to be associated with meta-stable regimes (and their transitions) which can be detected as almost-invariant sets of the transfer operator. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths. Even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty
Widlowski, J. L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M. I.; Fernandes, R.; Gastellu-Etchegorry, J. P.; Gobron, N; Kuusk, A.; T. Lavergne; LeBlanc, S.; Lewis, P. E.; Martin, E.; Mõttus, M.; North, P.R.J.
2007-01-01
[1] The Radiation Transfer Model Intercomparison ( RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a voluntary basis. The first phase of RAMI focused on documenting the spread among radiative transfer (RT) simulations over a small set of primarily 1-D canopies. The second phase expanded the scope to inc...
WIDLOWSKI Jean-Luc; Taberner, Malcolm; Pinty, Bernard; Bruniquel-Pinel, Véronique; Disney, Mathias; Fernandes, Richard; Gastellu-Etchegorry, Jean-Philippe; Gobron, Nadine; Kuusk, Andres; Lavergne, Thomas; Leblanc, Sylvain; Lewis, Philip; Martin, Eric; Mottus, Matti; Peter R. J. North
2007-01-01
The Radiation Transfer Model Intercomparison (RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a voluntary basis. The first phase of RAMI focused on documenting the spread among radiative transfer (RT) simulations over a small set of primarily 1-D canopies. The second phase expanded the scope to include ...
International Nuclear Information System (INIS)
This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics. - Highlights: • History of phenomenological radiometry and radiative transfer is described. • Fundamental weaknesses of these disciplines are discussed. • The process of their conversion into legitimate branches of physical optics is summarized
LOFT center module radiation heat transfer for L2-3 and L2-4
International Nuclear Information System (INIS)
A simplified version of the MOXY/SCORE computer program is used to evaluate the potential influence of radiation heat transfer on the peak cladding temperature and the peak guide tube temperature during the higher power loss-of-coolant tests in LOFT. The results of this study indicate that radiation heat transfer influences peak cladding temperature and peak guide tube temperature by as much as -177 K and +285 K, respectively
A public code for general relativistic, polarised radiative transfer around spinning black holes
Dexter, Jason
2016-01-01
Ray tracing radiative transfer is a powerful method for comparing theoretical models of black hole accretion flows and jets with observations. We present a public code, grtrans, for carrying out such calculations in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics. The code is written in Fortran 90 and efficiently parallelises with OpenMP, and the full code and several components have Python interfaces. We describe several te...
A versatile model for tritium transfer from atmosphere to plant and soil
International Nuclear Information System (INIS)
Full text: The need to increase the predictive power of risk assessment for large tritium releases implies a process level approach for model development. Tritium transfer from atmosphere to plant and the conversion in organically bound tritium depend strongly on plant characteristics, season, and meteorological conditions. In order to cope with this large variability and to avoid also, expensive calibration experiments, we developed a model using knowledge of plant physiology, agro-meteorology, soil sciences, hydrology, and climatology. The transfer of tritiated water to plant is modeled with resistance approach including sparse canopy. The canopy resistance is modeled using Jarvis-Calvet approach modified in order to directly use the canopy photosynthesis rate. The crop growth model WOFOST is used for photosynthesis rate both for canopy resistance and formation of organically bound tritium, also. Using this formalism, the tritium transfer parameters are directly linked to known processes and parameters from agricultural sciences. The model predictions for tritium in wheat are closed to a factor two to experimental data without any calibration. The model also is tested for rice and soybean and can be applied for various plants and environmental conditions. For sparse canopy the model uses coupled equations between soil and plants. The Aiken List was devised in 1990 to help decide which transport processes should be investigated experimentally as to derive the greatest improvement in performance of environmental tritium assessment models and was revised few years ago. The importance of each process depends on case application. We tried to improve in this study the modeling and soil canopy resistance and to have a preliminary study of the application of sparse canopy approach for the transfer of HTO in atmosphere-plant-soil continuum. Adapting Jacobs-Calvet model for stomatal conductance and combining with the WOFOST photosynthesis model and database, we are able to
Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores
International Nuclear Information System (INIS)
In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)
A novel approach for accurate radiative transfer in cosmological hydrodynamic simulations
Petkova, Margarita
2010-01-01
We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the cell interfaces of a structured or unstructured mesh are calculated with a second-order reconstruction of the intensity field. The approach employs a direct discretisation of the radiative transfer equation in Boltzmann form with adjustable angular resolution that in principle works equally well in the optically thin and optically thick regimes. In our most general formulation of the scheme, the local radiation field is decomposed into a linear sum of directional bins of equal solid-angle, tessellating the unit sphere. Each of these "cone-fields" is transported independently, with constant intensity as a function of direction within the cone. Photons propagate at the speed of light (or optionally using a reduced speed of light approximation to allow larger timesteps), yielding a fully time-dependent solution of the radiative transfer equation that can naturally...
Radiation transfer in photobiological carbon dioxide fixation and fuel production by microalgae
International Nuclear Information System (INIS)
Solar radiation is the energy source driving the metabolic activity of microorganisms able to photobiologically fixate carbon dioxide and convert solar energy into biofuels. Thus, careful radiation transfer analysis must be conducted in order to design and operate efficient photobioreactors. This review paper first introduces light harvesting mechanisms used by microorganisms as well as photosynthesis and photobiological fuel production. It then provides a thorough and critical review of both experimental and modeling efforts focusing on radiation transfer in microalgae suspension. Experimental methods to determine the radiation characteristics of microalgae are presented. Methods for solving the radiation transfer equation in photobioreactors with or without bubbles are also discussed. Sample measurements and numerical solutions are provided. Finally, novel strategies for achieving optimum light delivery and maximizing sunlight utilization in photobioreactors are discussed including genetic engineering of microorganisms with truncated chlorophyll antenna.
Measurements and theoretical calculations of diffused radiation and atmosphere lucidity
International Nuclear Information System (INIS)
Align with other environment friendly renewable energy sources solar energy is widely used in the world. Also in Latvia solar collectors are used. However, in Latvia because of its geographical and climatic conditions there are some specific features in comparison with traditional solar energy using countries. These features lead to the necessity to pay more attention to diffused irradiance. Another factor affecting the received irradiance of any surface is lucidity of atmosphere. This factor has not been studied in Latvia yet. This article deals with evaluation of diffused irradiance, and also of lucidity of atmosphere. The diffused irradiance can be measured directly or as a difference between the global irradiance and the beam one. The lucidity of atmosphere can be calculated from the measurements of both global and beam irradiance, if the height of the sun is known. Therefore, measurements of both global and beam irradiance have been carried out, and the diffused irradiance calculated as a difference between the global irradiance and the beam one. For measuring of the global irradiance the dome solarimeter has been used. For measuring of the direct irradiance tracking to sun pirheliometer has been used. The measurements were performed in Riga from October 2008 till March 2009. The measurements were executed automatically after every 5 minutes. The obtained results have been analyzed taking into account also the data on nebulosity from the State agency Latvian Environment, Geology and Meteorology Agency. Also efforts to calculate theoretically the diffused irradiance from the height of the sun and the data of the nebulosity have been done. These calculated values have been compared with the measured ones. Good accordance is obtained. (author)
A new model on bidirectional reflectance surface-atmospheric coupled radiation
Institute of Scientific and Technical Information of China (English)
QIU; Jinhuan; (邱金桓)
2001-01-01
An exact and available model on bidirectional reflectance surface-atmospheric coupled radiation is of great significance for spaceborne remote sensing application. Based on the physical process of interaction of solar radiation with the surface and the atmosphere, a new model on bidirectional reflectance surface-atmospheric coupled radiation is developed in this paper. As shown in numerical simulation, this model is evidently better than the 6S model. The standard error among 110112 sets of upward radiance data calculated by this new model is only 0.49%, which is about one fourth of the one by 6S. In the condition of the solar zenith angle qs≤75°and the viewing angle qv≤60°, the error by the new model is usually smaller than 2.5%.
Energy Technology Data Exchange (ETDEWEB)
Henderson-Sellers, A. (Macquarie Univ., North Ryde, New South Wales (Australia))
1993-02-01
Land-surface schemes developed for incorporation into global climate models include parameterizations that are not yet fully validated and depend upon the specification of a large (20-50) number of ecological and soil parameters, the values of which are not yet well known. There are two methods of investigating the sensitivity of a land-surface scheme to prescribed values: simple one-at-a-time changes or factorial experiments. Factorial experiments offer information about interactions between parameters and are thus a more powerful tool. Here the results of a suite of factorial experiments are reported. These are designed (i) to illustrate the usefulness of this methodology and (ii) to identify factors important to the performance of complex land-surface schemes. The Biosphere-Atmosphere Transfer Scheme (BATS) is used and its sensitivity is considered (a) to prescribed ecological and soil parameters and (b) to atmospheric forcing used in the off-line tests undertaken. Results indicate that the most important atmospheric forcings are mean monthly temperature and the interaction between mean monthly temperature and total monthly precipitation, although fractional cloudiness and other parameters are also important. The most important ecological parameters are vegetation roughness length, soil porosity, and a factor describing the sensitivity of the stomatal resistance of vegetation to the amount of photosynthetically active solar radiation and, to a lesser extent, soil and vegetation albedos. Two-factor interactions including vegetation roughness length are more important than many of the 23 specified single factors. The results of factorial sensitivity experiments such as these could form the basis for intercomparison of land-surface parameterization schemes and for field experiments and satellite-based observation programs aimed at improving evaluation of important parameters.
Cosmic ray modulation of infra-red radiation in the atmosphere
Aplin, K L
2012-01-01
Cosmic rays produce charged molecular clusters by ionisation as they pass through the lower atmosphere. Neutral molecular clusters such as dimers and complexes are expected to make a small contribution to the radiative balance, but atmospheric absorption by charged clusters has not hitherto been observed. In an atmospheric experiment, a filter radiometer tuned to the 9.15 um absorption band associated with infra-red absorption of charged molecular clusters was used to monitor changes immediately following events identified by a cosmic ray telescope sensitive to high energy (>400MeV) particles, principally muons. The change in longwave radiation in this absorption band due to charged molecular clusters is 7 mW^m-2. The integrated atmospheric energy change for each event is 2J, representing an amplification factor of 10^10 compared to the 2GeV energy of a typical tropospheric cosmic ray. This absorption is expected to occur continuously and globally.
Directory of Open Access Journals (Sweden)
X. Calbet
2010-10-01
Full Text Available Radiances observed from IASI are compared to calculated ones. Calculated radiances are obtained using several radiative transfer models (OSS, LBLRTM v11.3 and v11.6 on best estimates of the atmospheric state vectors. The atmospheric state vectors are derived from cryogenic frost point hygrometer and humidity dry bias corrected RS92 measurements flown on sondes launched 1 h and 5 min before IASI overpass time. The temperature and humidity profiles are finally obtained by interpolating or extrapolating these measurements to IASI overpass time. The IASI observed and calculated radiances match to within one sigma IASI instrument noise in the wavenumber, ν, range of 1500 ≤ ν ≤ 1570 and 1615 ≤ ν ≤ 1800 cm^{−1} .
Charge-Transfer CMOS Image Sensors: Device and Radiation Aspects
Ramachandra Rao, P.
2009-01-01
The aim of this thesis was twofold: investigating the effect of ionizing radiation on 4-T CMOS image sensors and the possibility of realizing a CCD like sensor in standard 0.18-μm CMOS technology (for medical applications). Both the aims are complementary; borrowing and lending many aspects of radiation and device physics amongst each other.
Atmospheric Radiation Measurement program facilities newsletter, April 2002.; TOPICAL
International Nuclear Information System (INIS)
The National Oceanic and Atmospheric Administration (NOAA) recently announced the development of El Nino conditions in the tropical Pacific Ocean near the South American coastline. Scientists detected a 4 F increase in the sea-surface temperatures during February. Conrad C. Lautenbacher, NOAA administrator and Under Secretary of Commerce for Oceans and Atmosphere, indicated that this warming is a sign that the Pacific Ocean is heading toward an El Nino condition. Although it is too early to predict how strong the El Nino will become or the conditions it will bring to the United States, Lautenbacher said that the country is likely to feel the effects as soon as midsummer (Figure 1). During the last El Nino in 1997-1998, the United States experienced strong weather impacts. Even though researchers don't understand what causes the onset of El Nino, they do recognize what to expect once development has begun. Scientists can monitor the development of El Nino through NOAA's advanced global climate monitoring system of polar-orbiting satellites and 72 ocean buoys moored across the equator in the Pacific Ocean. The resulting measurements of surface meteorological parameters and upper ocean temperatures are made available to scientists on a real-time basis, allowing for timely monitoring and predictions. This complex monitoring array enabled NOAA to predict the 1997-1998 El Nino six months in advance
Riese, Martin; Ploeger, F; Rap, A.; B. Vogel; P. Konopka; Dameris, Martin; Forster, P
2012-01-01
The upper troposphere/lower stratosphere (UTLS) region plays an important role in the climate system. Changes in the structure and chemical composition of this region result in particularly large changes in radiative forcings of the atmosphere. Quantifying the processes that control UTLS composition (e.g., stratosphere-troposphere exchange) therefore represents a crucial task. We assess the influence of uncertainties in the atmospheric mixing strength on global UTLS distributions of greenh...
Heat and momentum transfer from an atmospheric argon hydrogen plasma jet to spherical particles
International Nuclear Information System (INIS)
In this thesis the author describes the energy and momentum transfer from the plasma jet to the spray particles. This is done both experimentally and theoretically. Also the internal energy process of the recombining plasma is discussed. All elastic and inelastic collisional and radiative processes, as well as transport effects within the plasma are considered. In the next section, the so called passive spectroscopy is treated. It describes the diagnostics of electron density and temperature measurement, as well as the investigation on heat content of the particles. Spatially resolved electron density and temperature profiles are presented. Next, the active spectroscopy, i.e. the laser Doppler anemometer is dealt with. With this diagnostic, axial spray-particle velocities inside the plasma jet were determined. The author also presents heat and momentum transfer modelling of the plasma, related to the plasma particle interaction. Finally, a one dimensional model verification is made, using the experimentally determined particle velocity and plasma temperature profiles. (Auth.)
Comparison of Methods for Calculating Radiative Heat Transfer
Energy Technology Data Exchange (ETDEWEB)
Schock, Alfred; Abbate, M J
2012-01-19
Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.
Time-dependent radiative transfer for multi-level atoms using accelerated Lambda iteration
van Adelsberg, Matthew; Perna, Rosalba
2013-02-01
We present a general formalism for computing self-consistent, numerical solutions to the time-dependent radiative transfer equation in low-velocity, multi-level ions undergoing radiative interactions. Recent studies of time-dependent radiative transfer have focused on radiation hydrodynamic and magnetohydrodynamic effects without lines, or have solved time-independent equations for the radiation field simultaneously with time-dependent equations for the state of the medium. In this paper, we provide a fully time-dependent numerical solution to the radiative transfer and atomic rate equations for a medium irradiated by an external source of photons. We use accelerated Lambda iteration to achieve convergence of the radiation field and atomic states. We perform calculations for a three-level atomic model that illustrates important time-dependent effects. We demonstrate that our method provides an efficient, accurate solution to the time-dependent radiative transfer problem. Finally, we characterize astrophysical scenarios in which we expect our solutions to be important.
The photo transfer thermoluminescence in Ca S O4:Dy using laser radiation
International Nuclear Information System (INIS)
The photo transfer thermoluminescence (PTTL) in Ca SO4:Dy using laser and ultraviolet (UV) radiation is studied. The Ca S O4:Dy is extremely sensitive thermoluminescent material that has a dosimetric peak in 220 Celsius degrees and is successfully used in gamma radiation dosimetry
International Nuclear Information System (INIS)
A Multi-Spectral Reordering (MSR) scheme is introduced to improve the performances of the Spectral-Line Moment-Based (SLMB) modeling for the handling of full spectrum radiative heat transfer calculations in nonuniform media. Using this simultaneous reordering of the spectrum for several thermophysical conditions together with employing approximate formulations to evaluate path-averaged transmission functions for nonisothermal and nonhomogenous gaseous paths, a novel full spectrum gas radiation modeling method in nonuniform gaseous mixtures is constituted. The method is presented in details as well as the building of associated databases for CO2 and H2O at atmospheric pressure and for the temperature range of 300-2700 K. The new model is validated against line-by-line reference computations for a series of existing benchmarks and for a flame configuration. The MSR-SLMB modeling is shown to perform accurately and better than the standard SLMB one, while involving reasonable additional computational costs.
Measurement and simulation of the radiation environment in the lower atmosphere for dose assessment
International Nuclear Information System (INIS)
Flying personnel is occupationally exposed to rather high radiation levels due to secondary cosmic radiation. Therefore, the radiation environment induced in the lower atmosphere by galactic and solar cosmic radiation was characterized by means of particle transport calculations using GEANT4. These calculations were validated with continuous measurements of the energy spectra of secondary neutrons with Bonner sphere spectrometers at the Zugspitze mountain and near the North Pole. The response of these instruments was determined with GEANT4 and for the first time experimentally verified at high neutron energies (244 and 387 MeV). Route doses for aircrews along typical long-haul flights were determined for galactic and solar cosmic radiation using most recent data on the magnetospheric field and primary cosmic radiation.
Research on atmospheric corrosion of steel using synchrotron radiation
International Nuclear Information System (INIS)
Correlation between local structure around Cr in the protective rust layer on weathering steel and protective performance of the rust layer is presented as an example of corrosion research using synchrotron radiation which has recently been applied in various research fields as a useful tool. In addition, in situ observation of initial process of rust formation on steel is also mentioned. It was pointed out by considering the X-ray absorption fine structure spectra that the nanostructure of the protective rust layer on weathering steel primarily comprises of small Cr-goethite crystals containing surface adsorbed and/or intergranular CrOx3-2X complex anions. This CrOx3-2X explains the protective performance of the rust layer originated by dense aggregation of fine crystals with cation selectivity of the Cr-goethite. It is very advantageous to employ white X-rays for in situ observation of rusting process of a carbon steel covered with electrolyte thin films because rust structure might change very quickly. This in situ observation revealed the effect of ion species on the change in rust phase during wet/dry repeating. It can be said that application of synchrotron radiation on corrosion research is so useful to understand the nanostructure of surface oxides which closely relate to corrosion behavior of metals and alloys. (author)
A Thermal Infrared Radiation Parameterization for Atmospheric Studies
Chou, Ming-Dah; Suarez, Max J.; Liang, Xin-Zhong; Yan, Michael M.-H.; Cote, Charles (Technical Monitor)
2001-01-01
This technical memorandum documents the longwave radiation parameterization developed at the Climate and Radiation Branch, NASA Goddard Space Flight Center, for a wide variety of weather and climate applications. Based on the 1996-version of the Air Force Geophysical Laboratory HITRAN data, the parameterization includes the absorption due to major gaseous absorption (water vapor, CO2, O3) and most of the minor trace gases (N2O, CH4, CFCs), as well as clouds and aerosols. The thermal infrared spectrum is divided into nine bands. To achieve a high degree of accuracy and speed, various approaches of computing the transmission function are applied to different spectral bands and gases. The gaseous transmission function is computed either using the k-distribution method or the table look-up method. To include the effect of scattering due to clouds and aerosols, the optical thickness is scaled by the single-scattering albedo and asymmetry factor. The parameterization can accurately compute fluxes to within 1% of the high spectral-resolution line-by-line calculations. The cooling rate can be accurately computed in the region extending from the surface to the 0.01-hPa level.
Effects of radiative transfer modelling on the dynamics of a propagating electrical discharge
Energy Technology Data Exchange (ETDEWEB)
Kahhali, Nicolas; Riviere, Philippe; Perrin, Marie-Yvonne; Soufiani, Anouar [Laboratoire EM2C, CNRS UPR 288, Ecole Centrale Paris, 92295 Chatenay-Malabry Cedex (France); Gonnet, Jean-Paul, E-mail: Anouar.Soufiani@em2c.ecp.f [Schneider Electric, Power Business, LV Arc Breaking-Modeling and Expertise Site 38 EQI Eybens, 38050 Grenoble Cedex 9 (France)
2010-10-27
A radiative transfer methodology is developed for the modelling of coupled radiation, hydrodynamic and electromagnetic phenomena in unsteady air plasma flows. Absorption spectra are discretized according to the distribution functions of the absorption coefficients resulting from different types of radiative transitions, and this spectral model is combined with the differential P{sub 1} approximation which is shown to predict quite accurately radiative source terms. The study of a propagating electrical arc in a 2D channel shows that radiative transfer modelling significantly affects the shape of the plasma and its dynamics. In particular, when compared with the results from the net emission coefficient method, the arc velocity is found to increase due to radiation absorption in the arc boundaries.
International Nuclear Information System (INIS)
New experimental data are reported for water based nanofluids to enhance the heat transfer performance of a car radiator. ZnO nanoparticles have been added into base fluid in different volumetric concentrations (0.01%, 0.08%, 0.2% and 0.3%). The effect of these volumetric concentrations on the heat transfer performance for car radiator is determined experimentally. Fluid flow rate has been varied in a range of 7–11 LPM (liter per minute) (corresponding Reynolds number range was 17,500–27,600). Nanofluids showed heat transfer enhancement compared to the base fluid for all concentrations tested. The best heat transfer enhancement up to 46% was found compared to base fluid at 0.2% volumetric concentration. A further increase in volumetric concentration to 0.3% has shown a decrease in heat transfer enhancement compared to 0.2% volumetric concentration. Fluid inlet temperature was kept in a range of 45–55 °C. An increase in fluid inlet temperature from 45 °C to 55 °C showed increase in heat transfer rate up to 4%. - Highlights: • ZnO–water nanofluids were used for car radiator thermal enhancement. • Heat transfer enhancement up to 46% was achieved comparing pure water. • 0.2% vol. concentration of ZnO found to be optimum for heat transfer. • Heat transfer was found weakly dependant on the fluid inlet temperature
Response of the AMOC to reduced solar radiation – the modulating role of atmospheric-chemistry
Muthers, Stefan; Raible, Christoph C.; Thomas F Stocker
2016-01-01
The influence of reduced solar forcing (grand solar minimum or geoengineering scenarios like solar radiation management) on the Atlantic meridional overturning circulation (AMOC) is assessed in an ensemble of atmosphere-ocean-chemistry-climate model simulations. Ensemble sensitivity simulations are performed with and without interactive chemistry. Without chemistry-climate interaction the AMOC is intensified in the course of the solar radiation reduction (SRR), which is ...
HUMMEL, JOHN R.; KUHN, WILLIAM R.
2011-01-01
In the present generation of radiative-convective models, clouds are assigned specific levels or temperatures that do not change during the course of the calculations. In addition, a single water vapor distribution is used for the “mean atmosphere” instead of separate distributions for the clear sky and cloudy sky atmospheres. We present results from a one-dimensional radiative-convective model that includes interactive water vapor transport and predicts cloud altitudes and thicknesses. The ...
TOCATTA: a dynamic transfer model of 3H from the atmosphere to soil–plant systems
International Nuclear Information System (INIS)
This paper describes a dynamic compartment model (TOCATTA) that simulates tritium transfer in agricultural plants of several categories including vegetables, pasture and annual crops, exposed to time-varying HTO concentrations of water vapour in the air and possibly in irrigation and rainwater. Consideration is also given to the transfer pathways of HTO in soil. Though the transfer of tritium is quite complex, from its release into the environment to its absorption and its incorporation within the organic material of living organisms, the TOCATTA model is relatively simple, with a limited number of compartments and input parameters appropriate to its use in an operational mode. In this paper, we took the opportunity to have data obtained on an ornamental plant – an indoor palm tree – within an industrial building where tritium was released accidentally over several weeks (or months). More specifically, the model's ability to provide hindsight on the chronology of the release scenario is discussed by comparing model predictions of TFWT and OBT activity concentrations in the plant leaves with measurements performed on three different leaves characterized by different developmental stages. The data-model comparison shows some limitations, mainly because of a lack of knowledge about the initial conditions of the accident and when it actually started and about the processes involved in the transfer of tritium. Efforts are needed in both experimental and modelling areas for future evaluation of tritium behaviour in agricultural soil and plants exposed to gaseous HTO releases and/or to irrigation with contaminated water. -- Highlights: • We modelled 3H transfer from the atmosphere to soil-plant systems. • Model-data comparison provided hindsight on the chronology of a real case scenario. • Efforts are needed in experimental and modelling areas to handle discrete 3H releases
Cloud and Radiation Processes Simulated by a Coupled Atmosphere-Ocean Model
Institute of Scientific and Technical Information of China (English)
WANG Fang; DING Yihui; XU Ying
2007-01-01
Using NCC/IAP T63 coupled atmosphere-ocean general circulation model (AOGCM), two 20-yr integrations were processed, and their ability to simulate cloud and radiation was analysed in detail. The results show that the model can simulate the basic distribution of cloud cover, and however, obvious differences still exist compared with ISCCP satellite data and ERA reanalysis data. The simulated cloud cover is less in general, especially the abnormal low values in some regions of ocean. By improving the cloud cover scheme,simulated cloud cover in the eastern Pacific and Atlantic, summer hemisphere's oceans from subtropical to mid-latitude is considerably improved. But in the tropical Indian Ocean and West Pacific the cloud cover difference is still evident, mainly due to the deficiency of high cloud simulation in these regions resulting from deep cumulus convection. In terms of the analysis on radiation and cloud radiative forcing, we find that simulation on long wave radiation is better than short wave radiation. The simulation error of short wave radiation is caused mostly by the simulation difference in short wave radiative forcing, sea ice, and snow cover, and also by not involving aerosol's effect. The simulation error of long wave radiation is mainly resulting from deficiency in simulating cloud cover and underlying surface temperature. Corresponding to improvement of cloud cover, the simulated radiation (especially short wave radiation) in eastern oceans,summer hemisphere's oceans from subtropical to mid-latitude is remarkably improved. This also bring sobvious improvement to net radiation in these regions.
XTAT: A New Multilevel-Multiline Polarized Radiative Transfer Code with PRD
Bommier, V.
2014-10-01
This work is intended to the interpretation of the so-called "Second Solar Spectrum" (Stenflo 1996), which is the spectrum of the linear polarization formed by scattering and observed close to the solar internal limb. The lines are also optically thick, and the problem is to solve in a coherent manner, the statistical equilibrium of the atomic density matrix and the polarized radiative transfer in the atmosphere. Following Belluzzi & Landi Degl'Innocenti (2009), 30 % of the solar visible line linear polarization profiles display the M-type shape typical of coherent scattering effect in the far wings. A new theory including both coherent (Rayleigh) and resonant scatterings was developed by Bommier (1997a,b). Raman scattering was later added (Bommier 1999, SPW2). In this theory, which is straightly derived from the Schrödinger equation for the atomic density matrix, the radiative line broadening appears as a non-Markovian process of atom-photon interaction. The collisional broadening is included. The Rayleigh (Raman) scattering appears as an additional term in the emissivity from the fourth order of the atom-photon interaction perturbation development. The development is pursued and finally summed up, leading to a non-perturbative final result. In this formalism, the use of redistribution functions is avoided. The published formalism was limited to the two-level atom without lower level alignment. But most of the solar lines are more complex. We will present how the theory has to be complemented for multi-level atom modeling, including lower level alignment. The role of the collisions as balancing coherent and resonant scatterings is fully taken into account. Progress report will be given about the development of a new code for the numerical iterative solution of the statistical equilibrium and polarized radiative transfer equations, for multi-level atoms and their multi-line spectrum. Fine and hyperfine structures, and Hanle, Kemp (Kemp et al. 1984), Zeeman
TOCATTA: a dynamic transfer model of 14C from the atmosphere to soil-plant systems
International Nuclear Information System (INIS)
Many nuclear facilities release 14C into the environment, mostly as 14CO2, which mixes readily with stable CO2. This complete isotopic mixing (equilibrium) is often used as the basis for dose assessment models. In this paper, a dynamic compartment model (TOCATTA) has been investigated to describe 14C transfer in agricultural systems exposed to atmospheric 14C releases from nuclear facilities under normal operating or accidental conditions. The TOCATTA model belongs to the larger framework of the SYMBIOSE modelling and simulation platform that aims to assess the fate and transport of a wide range of radionuclides in various environmental systems. In this context, the conceptual and mathematical models of TOCATTA have been designed to be relatively simple, minimizing the number of compartments and input parameters required, appropriate to its use in an operational mode. This paper describes in detail 14C transfer in agricultural plants exposed to time-varying concentrations of atmospheric 14C, with a consideration also of the transfer pathways of 14C in soil. The model was tested against in situ data for 14C activity concentration measured over two years on a grass field plot located 2 km downwind of the AREVA NC La Hague nuclear reprocessing plant. The first results showed that the model roughly reproduced the observed month-to-month variability in grass 14C activity, but under-estimated (by about 33%) most of the observed peaks in the 14C activity concentration of grass. This tends to prove that it is not suitable to simulate intra-monthly variability, and a fortiori, the response of vegetation to accidental releases that may occur during the day. The need to increase the temporal resolution of the model has been identified in order to simulate the impact of intermittent 14C releases occurring either the day or night, such as those recorded by the AREVA NC plant. - Highlights: ► We model 14C transfer from the atmosphere to soil-plant systems. ► Model
Greenhouse effects of aircraft emissions as calculated by a radiative transfer model
Fortuin, J.P.F.; Dorland, R.; Wauben, W. M. F.; Kelder, H.
1995-01-01
With a radiative transfer model, assessments are made of the radiative forcing in northern mid-latitudes due to aircraft emissions up to 1990. Considered are the direct climate effects from the major combustion products carbon dioxide, nitrogen dioxide, water vapor and sulphur dioxide, as well as the indirect effect of ozone production from NO_{x} emissions. Our study indicates a local radiative forcing at the tropopause which should be negative in summe...
Clemens Suter; Petr Tomeš; Anke Weidenkaff; Aldo Steinfeld
2010-01-01
A heat transfer model that couples radiation/conduction/convection heat transfer with electrical potential distribution is developed for a thermoelectric converter (TEC) subjected to concentrated solar radiation. The 4-leg TEC module consists of two pairs of p-type La1.98Sr0.02CuO4 and n-type CaMn0.98Nb0.02O3 legs that are sandwiched between two ceramic Al2O3 hot/cold plates and connected electrically in series and thermally in parallel. The governing equations for heat transfer and electrica...
Oaida, C. M.; Xue, Y.; Painter, T. H.; Flanner, M. G.; De Sales, F.
2011-12-01
Radiative processes play an important role on both global and regional scales. This study focuses on their effects over snow-covered surfaces, both clean and dust loaded. It is well understood that dust in snow enhances solar radiation absorption, leading to a decrease in snow albedo. However, the quantitative assessment of dust's influence on radiative forcing and runoff timing in mountain snow packs has only been recently investigated. Painter et al. (2007) have shown that snow cover was shortened by 18 to 35 days due to dust radiative forcing in snow in the San Juan Mountains, Colorado, USA. This dust largely originates from the Colorado Plateau with increases of 5-7 fold in the last century and a half due to grazing and agricultural practices. For this study, we employ NCAR's WRF ARW v3.3+ model, which is coupled with a land surface model, Simplified Simple Biosphere version 3 (SSiB3). We first investigate the impact of different atmospheric radiative transfer schemes in WRF3.3+-SSiB3 on the regional climate downscaling. After conducting simulations over North America for the period March through June, we found substantial differences in the downscaling skills with different atmospheric radiative schemes. These differences indicate the uncertainty due to the atmospheric radiative transfer parameterizations. To develop a regional climate model that is capable of realistically simulating radiative forcing on snow covered areas with aerosol loading, we coupled WRF3.3+-SSiB3 with a snow-radiative transfer model, Snow, Ice, and Aerosol Radiative (SNICAR) model. SNICAR considers the effects of snow grain size and aerosol on snow albedo evolution. Snow grain size and growth is important in snow albedo feedbacks, especially when aerosols in snow are considered, because larger snow grains decrease snow albedo, and in the presence of dust, grain growth rates increase, decreasing snow reflectance even further than if the snow was pure. Our previous version of WRF3.3+-SSi
Numerical radiative transfer with state-of-the-art iterative methods made easy
Lambert, Julien; Paletou, Frédéric; Josselin, Eric; Glorian, Jean-Michel
2016-01-01
This article presents an on-line tool and its accompanying software resources for the numerical solution of basic radiation transfer out of local thermodynamic equilibrium (LTE). State-of-the-art stationary iterative methods such as Accelerated Λ-iteration and Gauss-Seidel schemes, using a short characteristics-based formal solver are used. We also comment on typical numerical experiments associated to the basic non-LTE radiation problem. These resources are intended for the largest use and benefit, in support to more classical radiation transfer lectures usually given at the Master level.
Some speed-up strategies for solving inverse radiative transfer problems
Favennec, Y.; Le Hardy, D.; Dubot, F.; Rousseau, B.; Rousse, D. R.
2016-01-01
Inversion based on the radiative transfer equation (RTE) is generally highly CPU time consuming because the forward model itself is complicated to solve when the space dimension is greater than one, and because the inversion is based on a large number of forward model runs until convergence is reached. The goal of this paper is to set up some speed-up strategies specific of inversion when radiative transfer problems are dealt with. More specifically, the accurate identification of the volumetric radiative properties i.e. both the absorption and scattering coefficients is the objective of this study.
Stepan, Jiri
2007-01-01
Context. A derivation of a generalized sqrt(epsilon)-law for nonthermal collisional rates of excitation by charged perturbers is presented. Aims. Aim of this paper is to find a more general analytical expression for a surface value of the source function which can be used as an addtional tool for verification of the non-LTE radiative transfer codes. Methods. Under the impact approximation hypothesis, static, one-dimensional, plane-parallel atmosphere, constant magnetic field of arbitrary strength and direction, two-level atom model with unpolarized lower level and stimulated emission neglected, we introduce the unphysical terms into the equations of statistical equilibrium and solve the appropriate non-LTE integral equations. Results. We derive a new analytical condition for the surface values of the source function components expressed in the basis of irreducible spherical tensors.
A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media
International Nuclear Information System (INIS)
A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort
Transient radiative heat transfer in an inhomogeneous participating medium with Fresnel's surfaces
Institute of Scientific and Technical Information of China (English)
YI HongLiang; TAN HePing
2008-01-01
This paper studies the radiative heat transfer within an inhomogeneous and isot-ropically scattering medium with reflecting Fresnel's surfaces. Thermal radiation transfers in a curve inside a medium with an inhomogeneous distribution of a re-fractive index. The inhomogenous medium is divided into n homogenous isother-mal sub-layers and in each sub-layer the radiation transfers in a straight line. By adopting a multilayer radiative transfer model and using a ray-tracing/nodal-ana-lyzing method, a radiative transfer model is built for the inhomogenous participat-ing medium. In the muItilayer model, a criterion for refraction / total reflection at the interfaces between neighboring sub-layers is introduced, avoiding the integral singularity and reflection at physically inexistent interfaces (only the total reflection is considered). Transient thermal behavior is examined when the parameters of the radiative properties such as refractive indexes, extinction coefficients, and sin-gle-scattering albedoes vary continually along the thickness direction.
A versatile model for tritium transfer from atmosphere to plant and soil
International Nuclear Information System (INIS)
The need to increase the predictive power of risk assessment for large tritium releases implies a process level approach for model development. Tritium transfer for atmosphere to plant and the conversion in organically bound tritium depend strongly on plant characteristics, season, and meteorological conditions.In order to cope with this large variability and to avoid also, expensive calibration experiments, we developed a model using knowledge of plant physiology, agro-meteorology, soil sciences, hydrology, and climatology. The transfer of tritiated water to plant is modelled with resistance approach including sparse canopy. The canopy resistance is modelled using Jarvis-Calvet approach modified in order to directly use the canopy photosynthesis rate.The crop growth model WOFOST is used for photosynthesis rate both for canopy resistance and formation of organically bound tritium, also. Using this formalism, the tritium transfer parameters are directly linked to known processes and parameters from agricultural sciences. The model predictions for tritium in wheat are closed to a factor two to experimental data without any calibration. The model also is tested for rice and soya bean and can be applied for various plants and environmental conditions. For sparse canopy the model uses coupled equations between soil and plants. (author)
A versatile model for tritium transfer from atmosphere to plant and soil
Energy Technology Data Exchange (ETDEWEB)
Melintescu, A.; Galeriu, D. [National Institute of R and D for Physics and Nuclear Engineering, Horia Hulubei, Evironmental and Life Physics Department, Bucharest-Magurele (Romania)
2004-07-01
The need to increase the predictive power of risk assessment for large tritium releases implies a process level approach for model development. Tritium transfer for atmosphere to plant and the conversion in organically bound tritium depend strongly on plant characteristics, season, and meteorological conditions.In order to cope with this large variability and to avoid also, expensive calibration experiments, we developed a model using knowledge of plant physiology, agro-meteorology, soil sciences, hydrology, and climatology. The transfer of tritiated water to plant is modelled with resistance approach including sparse canopy. The canopy resistance is modelled using Jarvis-Calvet approach modified in order to directly use the canopy photosynthesis rate.The crop growth model WOFOST is used for photosynthesis rate both for canopy resistance and formation of organically bound tritium, also. Using this formalism, the tritium transfer parameters are directly linked to known processes and parameters from agricultural sciences. The model predictions for tritium in wheat are closed to a factor two to experimental data without any calibration. The model also is tested for rice and soya bean and can be applied for various plants and environmental conditions. For sparse canopy the model uses coupled equations between soil and plants. (author)
An early warning indicator for atmospheric blocking events using transfer operators
Tantet, Alexis; Dijkstra, Henk A
2015-01-01
The existence of persistent midlatitude atmospheric flow regimes with time-scales larger than 5-10 days and indications of preferred transitions between them motivates to develop early warning indicators for such regime transitions. In this paper, we use a hemispheric barotropic model together with estimates of transfer operators on a reduced phase space to develop an early warning indicator of the zonal to blocked flow transition in this model. It is shown that, the spectrum of the transfer operators can be used to study the slow dynamics of the flow as well as the non-Markovian character of the reduction. The slowest motions are thereby found to have time scales of three to six weeks and to be associated with meta-stable regimes (and their transitions) which can be detected as almost-invariant sets of the transfer operator. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths. Even though the model is highly simplified,...
A fast radiative transfer method for the simulation of visible satellite imagery
Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard
2016-05-01
A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.
Ernest, Richard D.
2007-01-01
The Community Radiative Transfer Model (CRTM) has been used to determine which polar-orbiter satellite channels are best suited to remotely sense in a cloud-free environment the lower-tropospheric temperature and moisture gradients that determine the location and intensity of the African Easterly Jet over West Africa. This study evaluates the capability of five microwave sensors and three infrared sensors, including both conical- and cross-track scanning instruments. Atmospheric profiles ...
Radiation heat transfer in SOFC materials and components
Damm, David L.; Fedorov, Andrei G.
Radiative transport within the electrode and electrolyte layers, as well as surface-to-surface radiation within the fuel and oxygen flow channels, has the potential to dramatically influence temperature fields and overall operating conditions of solid oxide fuel cells (SOFCs). On a larger scale, radiation from the stack to the environment, including heat losses through insulation, must be accounted for in the plant design, and is of critical importance for effective thermal management of the high temperature stack. In this report, we discuss the current state-of-the-art and the challenges that remain in understanding, predicting, and quantifying the effects of radiation in SOFC materials and systems. These phenomena are of great interest and importance not only from a fundamental perspective but also from a systems design point of view. Last, but not the least in importance, the determination of radiative properties of the materials involved - either through experimental methods or predictive models - must be an ongoing effort as new materials are continuously being developed.
Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting
International Nuclear Information System (INIS)
This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately
Energy Technology Data Exchange (ETDEWEB)
JW Voyles
2008-01-30
The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.
Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting
Energy Technology Data Exchange (ETDEWEB)
1994-03-01
This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.