WorldWideScience

Sample records for atmospheric radiative transfer

  1. Atmospheric Radiative Transfer

    Science.gov (United States)

    Perliski, Lori

    Because radiative transfer cuts across many scientific disciplines with applications including remote sensing, climate, atmospheric chemistry, and photobiology, there is a need for comprehensive books on this subject that can appeal to a wide readership. While Atmospheric Radiative Transfer takes strides toward filling this niche by addressing a broad range of topics, it is dry reading and suffers from lack of detail. The book was based on a graduate-level course taught at the University of Sciences and Technologies in Lille, France, and indeed, the text reads much like an expanded outline perhaps derived from lecture notes.Part one deals with general radiative transfer, and part two covers Earth's radiation budget, the climate system, and remote sensing techniques. The radiative transfer equation and solutions for absorbing and scattering atmospheres are discussed as are the details of absorption, such as energy levels, line strengths, line intensities, equivalent widths, and weak- and strong-line limits.

  2. Tests of Exoplanet Atmospheric Radiative Transfer Codes

    Science.gov (United States)

    Harrington, Joseph; Challener, Ryan; DeLarme, Emerson; Cubillos, Patricio; Blecic, Jasmina; Foster, Austin; Garland, Justin

    2016-10-01

    Atmospheric radiative transfer codes are used both to predict planetary spectra and in retrieval algorithms to interpret data. Observational plans, theoretical models, and scientific results thus depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. In the process of writing our own code, we became aware of several others with artifacts of unknown origin and even outright errors in their spectra. We present a series of tests to verify atmospheric radiative-transfer codes. These include: simple, single-line line lists that, when combined with delta-function abundance profiles, should produce a broadened line that can be verified easily; isothermal atmospheres that should produce analytically-verifiable blackbody spectra at the input temperatures; and model atmospheres with a range of complexities that can be compared to the output of other codes. We apply the tests to our own code, Bayesian Atmospheric Radiative Transfer (BART) and to several other codes. The test suite is open-source software. We propose this test suite as a standard for verifying current and future radiative transfer codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  3. Radiative transfer in atmosphere-sea ice-ocean system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  4. Benchmark results in vector atmospheric radiative transfer

    International Nuclear Information System (INIS)

    In this paper seven vector radiative transfer codes are inter-compared for the case of underlying black surface. They include three techniques based on the discrete ordinate method (DOM), two Monte-Carlo methods, the successive orders scattering method, and a modified doubling-adding technique. It was found that all codes give very similar results. Therefore, we were able to produce benchmark results for the Stokes parameters both for reflected and transmitted light in the cases of molecular, aerosol and cloudy multiply scattering media. It was assumed that the single scattering albedo is equal to one. Benchmark results have been provided by several studies before, including Coulson et al., Garcia and Siewert, Wauben and Hovenier, and Natraj et al. among others. However, the case of the elongated phase functions such as for a cloud and with a high angular resolution is presented here for the first time. Also in difference with other studies, we make inter-comparisons using several codes for the same input dataset, which enables us to quantify the corresponding errors more accurately.

  5. Atmospheric radiative transfer simulation for atmospheric correction of remote sensing data

    Institute of Scientific and Technical Information of China (English)

    Yunfei Bao; Shengbo Chen

    2006-01-01

    The radiance leaving the earth-atmosphere system which can be sensed by a satellite borne radiometer is the sum of radiation emission from the earth surface and each atmospheric level that are transmitted to the top of the atmosphere. The radiation emission from the earth surface and the radiance of each atmospheric level can be separated from the radiance at the top the atmospheric level measured by a satellite borne radiometer. However, it is very difficult to measure the atmospheric radiance, especially the synchronous measurement with the satellite. Thus some atmospheric radiative transfer models have been developed to provide many options for modeling atmospheric radiation transport, such as LOWTRAN, MODTRAN, 6S, FASCODE, LBLRTM, SHARC, and SAMM. Meanwhile, these models can support the detailed detector system design, the optimization and evaluation of satellite mission parameters, and the data processing procedures. As an example, the newly atmospheric radiative transfer models, MODTRAN will be compared with other models after the atmospheric radiative transfer is described. And the atmospheric radiative transfer simulation procedures and their applications to atmospheric transmittance, retrieval of atmospheric elements, and surface parameters, will also be presented.

  6. Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region

    Institute of Scientific and Technical Information of China (English)

    JIA Yuanyuan; LI Zhaoliang

    2008-01-01

    The radiative transfer is one of the significant theories that describe the processes of scattering,emission,and absorption of electromagnetic radiant intensity through scattering medium.It is the basis of the study on the quantitative remote sensing.In this paper,the radiative characteristics of soil,vegetation,and atmosphere were described respectively.The numerical solution of radiative transfer was accomplished by Successive Orders of Scattering (SOS).A radiative transfer model for simulating microwave brightness temperature over land surfaces was constructed,designed,and implemented.Analyzing the database generated from soil-vegetation-atmosphere radiative transfer model under Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) configuration showed that the atmospheric effects on microwave brightness temperature should not be neglected,particularly for higher frequency,and can be parameterized.At the same time,the relationship between the emissivities of the different channels was developed.The study results will promote the development of algorithm to retrieve geophysical parameters from microwave remotely sensed data.

  7. Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN

    International Nuclear Information System (INIS)

    SCIATRAN is a comprehensive software package for the modeling of radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18–40μm) including multiple scattering processes, polarization, thermal emission and ocean–atmosphere coupling. The software is capable of modeling spectral and angular distributions of the intensity or the Stokes vector of the transmitted, scattered, reflected, and emitted radiation assuming either a plane-parallel or a spherical atmosphere. Simulations are done either in the scalar or in the vector mode (i.e. accounting for the polarization) for observations by space-, air-, ship- and balloon-borne, ground-based, and underwater instruments in various viewing geometries (nadir, off-nadir, limb, occultation, zenith-sky, off-axis). All significant radiative transfer processes are accounted for. These are, e.g. the Rayleigh scattering, scattering by aerosol and cloud particles, absorption by gaseous components, and bidirectional reflection by an underlying surface including Fresnel reflection from a flat or roughened ocean surface. The software package contains several radiative transfer solvers including finite difference and discrete-ordinate techniques, an extensive database, and a specific module for solving inverse problems. In contrast to many other radiative transfer codes, SCIATRAN incorporates an efficient approach to calculate the so-called Jacobians, i.e. derivatives of the intensity with respect to various atmospheric and surface parameters. In this paper we discuss numerical methods used in SCIATRAN to solve the scalar and vector radiative transfer equation, describe databases of atmospheric, oceanic, and surface parameters incorporated in SCIATRAN, and demonstrate how to solve some selected radiative transfer problems using the SCIATRAN package. During the last decades, a lot of studies have been published demonstrating that SCIATRAN is a valuable

  8. ARTS, the atmospheric radiative transfer simulator, version 2

    International Nuclear Information System (INIS)

    The second version of the atmospheric radiative transfer simulator, ARTS, is introduced. This is a general software package for long wavelength radiative transfer simulations, with a focus on passive microwave observations. The core part provides a workspace environment, in line with script languages. New for this version is an agenda mechanism that gives a high degree of modularity. The framework is intended to be as general as possible: the polarisation state can be fully described, the model atmosphere can be one- (1D), two- (2D) or three-dimensional (3D), a full description of geoid and surface is possible, observation geometries from the ground, from satellite, and from aeroplane or balloon are handled, and surface reflection can be treated in simple or complex manners. Remote sensing applications are supported by a comprehensive and efficient treatment of sensor characteristics. Jacobians can be calculated for the most important atmospheric variables in non-scattering conditions. Finally, the most prominent feature is the rigorous treatment of scattering that has been implemented in two modules: a discrete ordinate iterative approach mainly used for 1D atmospheres, and a Monte Carlo approach which is the preferred algorithm for 3D atmospheres. ARTS is freely available, and maintained as an open-source project.

  9. Analytical properties of the radiance in atmospheric radiative transfer theory

    International Nuclear Information System (INIS)

    It is demonstrated mathematically strictly that state density functions, as the radiance (specific intensity), exist to describe certain state properties of transported photons on microscopic and the state of the radiation field on macroscopic scale, which have independent physical meanings. Analytical properties as boundedness, continuity, differentiability and integrability of these functions to describe the photon transport are discussed. It is shown that the density functions may be derived based on the assumption of photons as real particles of non-zero and finite size, independently of usual electrodynamics, and certain historically postulated functional relationships between them were proved, that is, these functions can be derived mathematically strictly and consistently within the framework of the theory of the phenomenological radiative transfer if one takes the theory seriously by really assuming photons as particles. In this sense these functions may be treated as fundamental physical quantities within the scope of this theory, if one considers the possibility of the existence of photons. -- Highlights: • Proof of existence of the radiance within the scope of the theory of atmospheric radiative transfer. • Proof of relations between the photon number and photon energy density function and the radiance. • Strictly mathematical derivation of the analytical properties of these state density functions

  10. History of one family of atmospheric radiative transfer codes

    Science.gov (United States)

    Anderson, Gail P.; Wang, Jinxue; Hoke, Michael L.; Kneizys, F. X.; Chetwynd, James H., Jr.; Rothman, Laurence S.; Kimball, L. M.; McClatchey, Robert A.; Shettle, Eric P.; Clough, Shepard (.; Gallery, William O.; Abreu, Leonard W.; Selby, John E. A.

    1994-12-01

    Beginning in the early 1970's, the then Air Force Cambridge Research Laboratory initiated a program to develop computer-based atmospheric radiative transfer algorithms. The first attempts were translations of graphical procedures described in a 1970 report on The Optical Properties of the Atmosphere, based on empirical transmission functions and effective absorption coefficients derived primarily from controlled laboratory transmittance measurements. The fact that spectrally-averaged atmospheric transmittance (T) does not obey the Beer-Lambert Law (T equals exp(-(sigma) (DOT)(eta) ), where (sigma) is a species absorption cross section, independent of (eta) , the species column amount along the path) at any but the finest spectral resolution was already well known. Band models to describe this gross behavior were developed in the 1950's and 60's. Thus began LOWTRAN, the Low Resolution Transmittance Code, first released in 1972. This limited initial effort has how progressed to a set of codes and related algorithms (including line-of-sight spectral geometry, direct and scattered radiance and irradiance, non-local thermodynamic equilibrium, etc.) that contain thousands of coding lines, hundreds of subroutines, and improved accuracy, efficiency, and, ultimately, accessibility. This review will include LOWTRAN, HITRAN (atlas of high-resolution molecular spectroscopic data), FASCODE (Fast Atmospheric Signature Code), and MODTRAN (Moderate Resolution Transmittance Code), their permutations, validations, and applications, particularly as related to passive remote sensing and energy deposition.

  11. Radiation Transfer Model for Aerosol Events in the Earth Atmosphere

    Science.gov (United States)

    Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru

    Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.

  12. Fractional integration and radiative transfer in a multifractal atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Naud, C.; Schertzer, D. [Universite Pierre et Marie Curie, Paris (France); Lovejoy, S. [McGill Univ., Montreal (Canada)

    1996-04-01

    Recently, Cess et al. (1995) and Ramathan et al. (1995) cited observations which exhibit an anomalous absorption of cloudy skies in comparison with the value predicted by usual models and which thus introduce large uncertainties for climatic change assessments. These observation raise questions concerning the way general circulation models have been tuned for decades, relying on classical methods, of both radiative transfer and dynamical modeling. The observations also tend to demonstrate that homogeneous models are simply not relevant in relating the highly variable properties of clouds and radiation fields. However smoothed, the intensity of cloud`s multi-scattered radiation fields reflect this extreme variability.

  13. Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method

    Institute of Scientific and Technical Information of China (English)

    HE XianQiang; PAN DeLu; BAI Yan; ZHU QianKun; GONG Fang

    2007-01-01

    A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method,which is named PCOART.Using the Fourier analysis,the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observation zenith angle.Using the Gaussian-Quadrature method,VRTE is finally transferred into the matrix equation solved by the adding-doubling method.According to the reflective and refractive properties of the ocean-atmosphere interface,the vector radiative transfer numerical model of the ocean and atmosphere is coupled in PCOART.Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer),it is shown that PCOART is an exactly numerical model,and the processing methods of the multi-scattering and polarization are correct.Also,validated with the standard problems of the radiative transfer in water,it is shown that PCOART can be used to calculate the underwater radiative transfer problems.Therefore,PCOART is a useful tool for exactly calculating the vector radiative transfer of the coupled ocean-atmosphere system,which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.

  14. Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. Using the Fourier analysis, the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observa-tion zenith angle. Using the Gaussian-Quadrature method, VRTE is finally transferred into the matrix equation solved by the adding-doubling method. According to the reflective and refractive properties of the ocean-atmosphere interface, the vector radiative transfer numerical model of the ocean and at-mosphere is coupled in PCOART. Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer), it is shown that PCOART is an exactly numerical model, and the processing methods of the multi-scattering and polarization are correct. Also, validated with the standard problems of the radiative transfer in water, it is shown that PCOART can be used to calculate the underwater radiative transfer problems. Therefore, PCOART is a useful tool for exactly calculating the vector radiative transfer of the coupled ocean-atmosphere system, which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.

  15. Atmospheric radiative transfer parametrization for solar energy yield calculations on buildings

    CERN Document Server

    Wagner, Jochen E

    2015-01-01

    In this paper the practical approach to evaluate the incoming solar radiation on buildings based on atmospheric composition and cloud cover is presented. The effects of absorption and scattering due to atmospheric composition is taken into account to calculate, using radiative transfer models, the net incoming solar radiation at surface level. A specific validation of the Alpine Region in Europe is presented with a special focus on the region of South Tyrol.

  16. Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique

    Science.gov (United States)

    Hollstein, André; Fischer, Jürgen

    2012-05-01

    Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.

  17. Radiation and Heat Transfer in the Atmosphere: A Comprehensive Approach on a Molecular Basis

    Directory of Open Access Journals (Sweden)

    Hermann Harde

    2013-01-01

    Full Text Available We investigate the interaction of infrared active molecules in the atmosphere with their own thermal background radiation as well as with radiation from an external blackbody radiator. We show that the background radiation can be well understood only in terms of the spontaneous emission of the molecules. The radiation and heat transfer processes in the atmosphere are described by rate equations which are solved numerically for typical conditions as found in the troposphere and stratosphere, showing the conversion of heat to radiation and vice versa. Consideration of the interaction processes on a molecular scale allows to develop a comprehensive theoretical concept for the description of the radiation transfer in the atmosphere. A generalized form of the radiation transfer equation is presented, which covers both limiting cases of thin and dense atmospheres and allows a continuous transition from low to high densities, controlled by a density dependent parameter. Simulations of the up- and down-welling radiation and its interaction with the most prominent greenhouse gases water vapour, carbon dioxide, methane, and ozone in the atmosphere are presented. The radiative forcing at doubled CO2 concentration is found to be 30% smaller than the IPCC-value.

  18. A Consummate Radiative Transfer Package for Studying the Atmosphere and Oceans

    Science.gov (United States)

    Zhai, P.; Hu, Y.; Trepte, C. R.; Winker, D. M.

    2015-12-01

    We will present a radiative transfer package based on the successive order of scattering method. This code is capable to calculate the radiation field in turbid media, which can be either the atmosphere-land or atmosphere-ocean coupled systems. The outputs include all four Stokes parameters at arbitrary detector locations and viewing angles in the turbid medium. Both the elastic and inelastic scattering are implemented in the package. This radiative transfer tool has been used in various applications, for instance, generating an aerosol look-up table for atmospheric correction in ocean color remote sensing; retrieving water cloud size distribution using the polarized multi-angle measurements; simulating the OCO2 O2 A band radiance measurement, etc. Our radiative transfer package is a great tool to interpret and predict the measurements from the future polarimeters and multipolarization-state lidars for Earth observing missions.

  19. Analytical Models of Exoplanetary Atmospheres. II. Radiative Transfer via the Two-Stream Approximation

    CERN Document Server

    Heng, Kevin; Lee, Jaemin

    2014-01-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior) and solutions for the temperature-pressure profiles. Generally, the problem is mathematically under-determined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We further demonstrate that traditional non-isothermal treatments of each atmospheric layer lead to unphysical contributions to the ...

  20. Computational study of atmospheric transfer radiation on an equatorial tropical desert (La Tatacoa, Colombia)

    CERN Document Server

    Delgado-Correal, Camilo; Castaño, Gabriel

    2012-01-01

    Radiative transfer models explain and predict interaction between solar radiation and the different elements present in the atmosphere, which are responsible for energy attenuation. In Colombia there have been neither measurements nor studies of atmospheric components such as gases and aerosols that can cause turbidity and pollution. Therefore satellite images cannot be corrected radiometrically in a proper way. When a suitable atmospheric correction is carried out, loss of information is avoided, which may be useful for discriminating image land cover. In this work a computational model was used to find radiative atmospheric attenuation (300 1000nm wavelength region) on an equatorial tropical desert (La Tatacoa, Colombia) in order to conduct an adequate atmospheric correction.

  1. Atmospheric radiative transfer generalised for use on Earth and other planets: ARTS 2.2

    Science.gov (United States)

    Mendrok, Jana; Eriksson, Patrick; Buehler, Stefan; Perrin, Agnes; Hartogh, Paul; Rezac, Ladislav; Lemke, Oliver

    2015-04-01

    Microwave and (sub)millimetre-wave frequencies have long been of interest for remote sensing of the Earth and space objects. They suffer less from interference by small particles (dust, clouds), hence penetrate deeper into atmospheres revealing their deeper structures hidden to shorter wavelengths, and possess characteristic line absorption features of many gaseous species, which are of interest for the understanding of atmospheric chemistry and dynamics. Models simulating radiative transfer and wave propagation (RT/WP) have been developed by many institutions. Most of them are designed for a particular, narrow region of the electromagnetic spectrum, certain instrument types or missions, and specific atmospheric conditions. In particular, they are usually set up for a specific planetary body. This high level of specialisation allows for accurate modelling results. However, it also limits the flexibility of those models and comparability between them. One of the major differences in radiative transfer modeling in the atmospheres of Earth and other planets arises from the different composition of the atmospheres. When interested in measuring total abundance or even vertical distribution of atmospheric constituents, knowledge of parameters describing spectrally dependent absorption in dependence of atmospheric state is required. When modeling radiative transfer for different planets, the line shapes are often accounted for by scaling the parameters valid for Earth's ``air'' or by building a spectroscopic catalogue specific to the planet in question and its main atmospheric composition. This strongly limits applicability of these models. Based on the ARTS model [1], a sophisticated, flexible RT model for Earth atmosphere (3D spherical geometry, diverse absorption models, scattering, polarization, Jacobians), we have developed a toolbox for microwave atmospheric radiative transfer in solar system planets. As part of this, we developed and implemented a more generalized

  2. Atmospheric circulation of tidally locked exoplanets II: dual-band radiative transfer and convective adjustment

    CERN Document Server

    Heng, Kevin; Phillipps, Peter J

    2011-01-01

    Improving upon our purely dynamical work, we present three-dimensional simulations of the atmospheric circulation on Earth-like (exo)planets and hot Jupiters using the GFDL-Princeton Flexible Modeling System (FMS). As the first steps away from the purely dynamical benchmarks of Heng, Menou & Phillipps (2011), we add dual-band radiative transfer and dry convective adjustment schemes to our computational setup. Our treatment of radiative transfer assumes stellar irradiation to peak at a wavelength shorter than and distinct from that at which the exoplanet re-emits radiation ("shortwave" versus "longwave"), and also uses a two-stream approximation. Convection is mimicked by adjusting unstable lapse rates to the dry adiabat. The bottom of the atmosphere is bounded by an uniform slab with a finite thermal inertia. For our hot Jupiter models, we include an analytical formalism for calculating temperature-pressure profiles, in radiative equilibrium, which accounts for the effect of collision-induced absorption v...

  3. Bayesian Atmospheric Radiative Transfer (BART) Code and Application to WASP-43b

    Science.gov (United States)

    Blecic, Jasmina; Harrington, Joseph; Cubillos, Patricio; Bowman, Oliver; Rojo, Patricio; Stemm, Madison; Lust, Nathaniel B.; Challener, Ryan; Foster, Austin James; Foster, Andrew S.; Blumenthal, Sarah D.; Bruce, Dylan

    2016-01-01

    We present a new open-source Bayesian radiative-transfer framework, Bayesian Atmospheric Radiative Transfer (BART, https://github.com/exosports/BART), and its application to WASP-43b. BART initializes a model for the atmospheric retrieval calculation, generates thousands of theoretical model spectra using parametrized pressure and temperature profiles and line-by-line radiative-transfer calculation, and employs a statistical package to compare the models with the observations. It consists of three self-sufficient modules available to the community under the reproducible-research license, the Thermochemical Equilibrium Abundances module (TEA, https://github.com/dzesmin/TEA, Blecic et al. 2015}, the radiative-transfer module (Transit, https://github.com/exosports/transit), and the Multi-core Markov-chain Monte Carlo statistical module (MCcubed, https://github.com/pcubillos/MCcubed, Cubillos et al. 2015). We applied BART on all available WASP-43b secondary eclipse data from the space- and ground-based observations constraining the temperature-pressure profile and molecular abundances of the dayside atmosphere of WASP-43b. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.

  4. Clear-sky atmospheric radiative transfer : a model intercomparison for shortwave irradiances

    NARCIS (Netherlands)

    Wang, P.; Knap, W.H.; Kuipers Munneke, P.; Stammes, P.

    2008-01-01

    This study consists of an intercomparison of clear-sky shortwave irradiances calculated by the Doubling Adding model of KNMI (DAK) and the Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS). The DAK and SMARTS models are run with identical input (state profiles, water vapour, oz

  5. Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars

    Science.gov (United States)

    Ozak, N.; Aharonson, O.; Halevy, I.

    2016-06-01

    Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.

  6. An Iterative Phase-Space Explicit Discontinuous Galerkin Method for Stellar Radiative Transfer in Extended Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, V.F.

    2004-01-28

    A phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equation and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicularly to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiative intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiative intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.

  7. A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere

    International Nuclear Information System (INIS)

    We present a single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere. It is based on the assumption that the upwelling internal radiation field is dominated by a surface with a uniform brightness temperature. It allows the calculation of the scattering source function for individual aerosol types, mixtures of aerosol types, and mixtures of gas and aerosol. The approximation can be applied in a Curtis-Godson radiative transfer code and is used for operational retrievals from Mars Climate Sounder measurements. Radiance comparisons with a multiple scattering model show good agreement in the mid- and far-infrared although the approximate model tends to underestimate the radiances in realistic conditions of the Martian atmosphere. Relative radiance differences are found to be about 2% in the lowermost atmosphere, increasing to ∼10% in the middle atmosphere of Mars. The increasing differences with altitude are mostly due to the increasing contribution to limb radiance of scattering relative to emission at the colder, higher atmospheric levels. This effect becomes smaller toward longer wavelengths at typical Martian temperatures. The relative radiance differences are expected to produce systematic errors of similar magnitude in retrieved opacity profiles.

  8. Clear-sky Atmospheric Radiative Transfer: A Model Intercomparison for Shortwave Irradiances

    Science.gov (United States)

    Wang, P.; Knap, W. H.; Munneke, P. Kuipers; Stammes, P.

    2009-03-01

    This study consists of an intercomparison of clear-sky shortwave irradiances calculated by the Doubling Adding model of KNMI (DAK) and the Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS). The DAK and SMARTS models are run with identical input (state profiles, water vapour, ozone, aerosols, etc.) and the differences between the models are examined in terms of broadband shortwave irradiances as a function of solar zenith angle. The DAK and SMARTS models agree very well. For a pure Rayleigh atmosphere the differences in the irradiances are less than 5 W/m2. For cases with aerosols the differences of the irradiances are within 10 W/m2.

  9. SPARTA - Solver for Polarized Atmospheric Radiative Transfer Applications: Introduction and application to Saharan dust fields

    Science.gov (United States)

    Barlakas, Vasileios; Macke, Andreas; Wendisch, Manfred

    2016-07-01

    Non-spherical particles in the atmosphere absorb and scatter solar radiation. They change the polarization state of solar radiation depending on their shape, size, chemical composition and orientation. To quantify polarization effects, a new three-dimensional (3D) vector radiative transfer model, SPARTA (Solver for Polarized Atmospheric Radiative Transfer Applications) is introduced and validated against benchmark results. SPARTA employs the statistical forward Monte Carlo technique for efficient column-response pixel-based radiance calculations including polarization for 3D inhomogeneous cloudless and cloudy atmospheres. A sensitivity study has been carried out and exemplarily results are presented for two lidar-based mineral dust fields. The scattering and absorption properties of the dust particles have been computed for spheroids and irregular shaped particles. Polarized radiance fields in two-dimensional (2D) and one-dimensional (1D) inhomogeneous Saharan dust fields have been calculated at 532 nm wavelength. The domain-averaged results of the normalized reflected radiance are almost identical for the 1D and 2D modes. In the areas with large spatial gradient in optical thickness with expected significant horizontal photon transport, the radiance fields of the 2D mode differ by about ±12% for the first Stokes component (radiance, I) and ±8% for the second Stokes component (linear polarization, Q) from the fields of the 1D mode.

  10. Direct method for solving transfer equation by expansion in spherical harmonics: Scattering in atmosphere with Lambertian lower boundary and thermal radiation transfer

    Science.gov (United States)

    Ustinov, Y. A.

    1978-01-01

    The direct method for the solution of the spherical harmonics approximation to the equation of transfer of radiation is applied to the cases of (1) scattering of the solar radiation in the atmosphere with the Lambertian boundary and (2) thermal radiation transfer.

  11. The Meso-Structured Magnetic Atmosphere -- A Stochastic Polarized Radiative Transfer Approach

    CERN Document Server

    Carroll, T A

    2007-01-01

    We present a general radiative transfer model appropriate to diagnose the small scale and mostly unresolved magnetic field of the solar photosphere. Present modeling techniques still rely to a large extend on a-priori assumptions about the geometry of the underlying magnetic field. In an effort to obtain a more flexible and unbiased approach we pursue a rigorous statistical description of the underlying atmosphere. Based on a Markov random field model the atmospheric structures are characterized in terms of probability densities and spatial correlations. This approach allows us to derive a stochastic transport equation for polarized light valid in a regime with an arbitrary fluctuating magnetic field on finite scales. One of the key ingredients of the derived stochastic transfer equation is the correlation length which provides an additional degree of freedom to the transport equation and can therefore be used as a diagnostic parameter to estimate the characteristic length scale of the underlying magnetic fie...

  12. MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere.

    Science.gov (United States)

    Premuda, Margherita; Palazzi, Elisa; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Giovanelli, Giorgio

    2012-03-26

    This paper describes the radiative transfer model (RTM) MOCRA (MOnte Carlo Radiance Analysis), developed in the frame of DOAS (Differential Optical Absorption Spectroscopy) to correctly interpret remote sensing measurements of trace gas amounts in the atmosphere through the calculation of the Air Mass Factor. Besides the DOAS-related quantities, the MOCRA code yields: 1- the atmospheric transmittance in the vertical and sun directions, 2- the direct and global irradiance, 3- the single- and multiple- scattered radiance for a detector with assigned position, line of sight and field of view. Sample calculations of the main radiometric quantities calculated with MOCRA are presented and compared with the output of another RTM (MODTRAN4). A further comparison is presented between the NO2 slant column densities (SCDs) measured with DOAS at Evora (Portugal) and the ones simulated with MOCRA. Both comparisons (MOCRA-MODTRAN4 and MOCRA-observations) gave more than satisfactory results, and overall make MOCRA a versatile tool for atmospheric radiative transfer simulations and interpretation of remote sensing measurements. PMID:22453470

  13. Radiative Transfer Model in the Atmosphere and Experimental Solar Data of Yaounde Location

    Science.gov (United States)

    Dountio, E. G.; Njomo, D.; Fouda, E.; Simo, A.

    2006-11-01

    The Sun is the primary source of energy supplying the Earth. This energy absorbed by the various components of the atmosphere, the oceans, the vegetation and Earth’s surface, is at the origin of the forces that control the climatic changes, the general circulation of the atmosphere, the temperature of the atmosphere and that of the oceans and the ionization of atmospheric gases, etc. The solar energy received on Earth’s surface is also directly used in technological applications such as solar heaters, solar dryers and other solar distillers, and the photovoltaic generators, etc. The calculation of the thermal performances of these apparatuses can be well made only if the spectral and even angular distribution of the solar irradiation arriving on the ground surface is well known. Moreover, the well known characteristics of the solar radiation arriving on the ground could inform us about the atmospheric phenomena that influenced its transfer, and consequently provide a better correction of the sensors response while receiving a signal from outer space in its direction, or the correction to be made on the response of a sensor while receiving data from a terrestrial sender. Only a few measurement stations of solar radiation are currently running and are not well managed, particularly in developing countries where the maintenance of a park of pyranometers on the ground is difficult and expensive. Moreover, where these measurements exist, they are rarely carried out for various wavelengths and/or angles. Such data are on the other hand accessible by numerical calculation, by solving the radiative transfer equation (ETR) in the atmosphere. One of the major factors attenuating the solar radiation received on the ground is scattering by clouds. The non- homogeneous nature of the clouds justifies the difficulty shown by the researchers to insert realistic profiles of clouds in radiative transfer models in a parallel stratified atmosphere [1, 2]. Several recent studies

  14. Polarimetry of hot-Jupiter systems and radiative transfer models of planetary atmospheres

    Science.gov (United States)

    Bott, Kimberly; Bailey, Jeremy; Kedziora-Chudczer, Lucyna; Cotton, Daniel; Marshall, Jonathan

    2016-01-01

    Thousands of exoplanets and planet candidates have been detected. The next important step in the contexts of astrobiology, planetary classification and planet formation is to characterise them. My dissertation aims to provide further characterisation to four hot Jupiter exoplanets: the relatively well-characterised HD 189733b, WASP-18b which is nearly large enough to be a brown dwarf, and two minimally characterised non-transiting hot Jupiters: HD 179949b and tau Bootis b.For the transiting planets, this is done through two means. First, published data from previous observations of the secondary eclipse (and transit for HD 189733b) are compared to models created with the Versatile Software for the Transfer of Atmospheric Radiation (VSTAR). Second, new polarimetric observations from the HIgh Precision Polarimetric Instrument are compared to Lambert-Rayleigh polarised light phase curves. For the non-transiting planets, only the polarimetric measurements are compared to models, but toy radiative transfer models are produced for concept. As an introduction to radiative transfer models, VSTAR is applied to the planet Uranus to measure its D/H isotope ratio. A preliminary value is derived for D/H in one part of the atmosphere.Fitting a single atmospheric model to the transmitted, reflected, and emitted light, I confirm the presence of water on HD 189733b, and present a new temperature profile and cloud profile for the planet. For WASP-18b, I confirm the general shape of the temperature profile. No conclusions can be drawn from the polarimetric measurements for the non-transiting planets. I detect a possible variation with phase for transiting planet WASP-18b but cannot confirm it at this time. Alternative sources to the planet are discussed. For HD 189733b, I detect possible variability in the polarised light at the scale expected for the planet. However, the data are also statistically consistent with no variability and are not matched to the phase of the planet.

  15. A study of the 3D radiative transfer effect in cloudy atmospheres

    Science.gov (United States)

    Okata, M.; Teruyuki, N.; Suzuki, K.

    2015-12-01

    Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.

  16. Bayesian Atmospheric Radiative Transfer (BART): Model, Statistics Driver, and Application to HD 209458b

    Science.gov (United States)

    Cubillos, Patricio; Harrington, Joseph; Blecic, Jasmina; Stemm, Madison M.; Lust, Nate B.; Foster, Andrew S.; Rojo, Patricio M.; Loredo, Thomas J.

    2014-11-01

    Multi-wavelength secondary-eclipse and transit depths probe the thermo-chemical properties of exoplanets. In recent years, several research groups have developed retrieval codes to analyze the existing data and study the prospects of future facilities. However, the scientific community has limited access to these packages. Here we premiere the open-source Bayesian Atmospheric Radiative Transfer (BART) code. We discuss the key aspects of the radiative-transfer algorithm and the statistical package. The radiation code includes line databases for all HITRAN molecules, high-temperature H2O, TiO, and VO, and includes a preprocessor for adding additional line databases without recompiling the radiation code. Collision-induced absorption lines are available for H2-H2 and H2-He. The parameterized thermal and molecular abundance profiles can be modified arbitrarily without recompilation. The generated spectra are integrated over arbitrary bandpasses for comparison to data. BART's statistical package, Multi-core Markov-chain Monte Carlo (MC3), is a general-purpose MCMC module. MC3 implements the Differental-evolution Markov-chain Monte Carlo algorithm (ter Braak 2006, 2009). MC3 converges 20-400 times faster than the usual Metropolis-Hastings MCMC algorithm, and in addition uses the Message Passing Interface (MPI) to parallelize the MCMC chains. We apply the BART retrieval code to the HD 209458b data set to estimate the planet's temperature profile and molecular abundances. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.

  17. Solar radiation transfer in the inhomogeneous atmosphere; Solarer Strahlungstransport in der inhomogenen Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Scheirer, R.

    2001-07-01

    A most profound knowledge about the radiative characteristics of clouds is required for the development of realistic atmospheric circulation models and cloud remote sensing algorithms. At present, cloud fields are treated extremely simplified in both application areas. Cloud radiative flux parameterizations in atmospheric circulation models as well as the correlation between radiance and cloud properties as required for remote sensing algorithm are usually based on the assumption of plane-parallel homogeneous (PPHOM) clouds. Compared to realistically 3D cloud fields, this simplification leads to large systematic errors. In order to quantify these errors a Monte Carlo radiative transfer model has been developed and applied to 3D cloud fields. The latter origin from the non-hydrostatic 3D atmospheric model GESIMA. Absorption and scattering properties of the cloud particles have been calculated by means of Mie-theory for spherical water droplets and a ray-tracing code for non-spherical ice, rain, and snow particles. Line by line calculations have been used to obtain the absorption properties of the relevant atmospheric gases. (orig.) [German] Die Erstellung realistischer Zirkulationsmodelle der Atmosphaere erfordert unter Anderem eine moeglichst genaue Kenntnis der Strahlungseigenschaften von Wolken. Auch fuer Ableitung und Korrektur von Fernerkundungsalgorithmen sind die Einfluesse der Wolken auf die zu messenden Strahldichten von grosser Bedeutung. In den beiden genannten Anwendungen werden Wolkenfelder zur Zeit nur in stark vereinfachter Weise beruecksichtigt. Parameterisierungen der Strahlungsfluesse bei bewoelkter Atmosphaere in atmosphaerischen Zirkulationsmodellen, sowie die Ableitung der Zusammenhaenge zwischen Strahldichten und optischen Wolkeneigenschaften basieren auf der Annahme von planparallelen und horizontal homogenen Wolken (PPHOM). Diese Approximation kann gegenueber der dreidimensionalen Strahlungstransportberechnung (3D) zu erheblichen Fehlern

  18. Py4CAtS - Python Tools for Line-by-Line Modelling of Infrared Atmospheric Radiative Transfer

    OpenAIRE

    Schreier, Franz; Gimeno Garcia, Sebastian

    2013-01-01

    Py4CAtS — Python scripts for Computational ATmospheric Spectroscopy is a Python re-implementation of the Fortran infrared radiative transfer code GARLIC, where compute-intensive code sections utilize the Numeric/Scientific Python modules for highly optimized array-processing. The individual steps of an infrared or microwave radiative transfer computation are implemented in separate scripts to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross ...

  19. WASP-12b According to the Bayesian Atmospheric Radiative Transfer (BART) Code

    Science.gov (United States)

    Harrington, Joseph; Cubillos, Patricio E.; Blecic, Jasmina; Challener, Ryan C.; Rojo, Patricio M.; Lust, Nate B.; Bowman, M. Oliver; Blumenthal, Sarah D.; Foster, Andrew SD; Foster, A. J.

    2015-11-01

    We present the Bayesian Atmospheric Radiative Transfer (BART) code for atmospheric property retrievals from transit and eclipse spectra, and apply it to WASP-12b, a hot (~3000 K) exoplanet with a high eclipse signal-to-noise ratio. WASP-12b has been controversial. We (Madhusudhan et al. 2011, Nature) claimed it was the first planet with a high C/O abundance ratio. Line et al. (2014, ApJ) suggested a high CO2 abundance to explain the data. Stevenson et al. (2014, ApJ, atmospheric model by Madhusudhan) add additional data and reaffirm the original result, stating that C2H2 and HCN, not included in the Line et al. models, explain the data. We explore several modeling configurations and include Hubble, Spitzer, and ground-based eclipse data.BART consists of a differential-evolution Markov-Chain Monte Carlo sampler that drives a line-by-line radiative transfer code through the phase space of thermal- and abundance-profile parameters. BART is written in Python and C. Python modules generate atmospheric profiles from sets of MCMC parameters and integrate the resulting spectra over observational bandpasses, allowing high flexibility in modeling the planet without interacting with the fast, C portions that calculate the spectra. BART's shared memory and optimized opacity calculation allow it to run on a laptop, enabling classroom use. Runs can scale constant abundance profiles, profiles of thermochemical equilibrium abundances (TEA) calculated by the included TEA code, or arbitrary curves. Several thermal profile parameterizations are available. BART is an open-source, reproducible-research code. Users must release any code or data modifications if they publish results from it, and we encourage the community to use it and to participate in its development via http://github.com/ExOSPORTS/BART.This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. J. Blecic holds a NASA Earth and Space Science

  20. A Random Walk on WASP-12b with the Bayesian Atmospheric Radiative Transfer (BART) Code

    Science.gov (United States)

    Harrington, Joseph; Cubillos, Patricio; Blecic, Jasmina; Challener, Ryan; Rojo, Patricio; Lust, Nathaniel B.; Bowman, Oliver; Blumenthal, Sarah D.; Foster, Andrew S. D.; Foster, Austin James; Stemm, Madison; Bruce, Dylan

    2016-01-01

    We present the Bayesian Atmospheric Radiative Transfer (BART) code for atmospheric property retrievals from transit and eclipse spectra, and apply it to WASP-12b, a hot (~3000 K) exoplanet with a high eclipse signal-to-noise ratio. WASP-12b has been controversial. We (Madhusudhan et al. 2011, Nature) claimed it was the first planet with a high C/O abundance ratio. Line et al. (2014, ApJ) suggested a high CO2 abundance to explain the data. Stevenson et al. (2014, ApJ, atmospheric model by Madhusudhan) add additional data and reaffirm the original result, stating that C2H2 and HCN, not included in the Line et al. models, explain the data. We explore several modeling configurations and include Hubble, Spitzer, and ground-based eclipse data.BART consists of a differential-evolution Markov-Chain Monte Carlo sampler that drives a line-by-line radiative transfer code through the phase space of thermal- and abundance-profile parameters. BART is written in Python and C. Python modules generate atmospheric profiles from sets of MCMC parameters and integrate the resulting spectra over observational bandpasses, allowing high flexibility in modeling the planet without interacting with the fast, C portions that calculate the spectra. BART's shared memory and optimized opacity calculation allow it to run on a laptop, enabling classroom use. Runs can scale constant abundance profiles, profiles of thermochemical equilibrium abundances (TEA) calculated by the included TEA code, or arbitrary curves. Several thermal profile parameterizations are available. BART is an open-source, reproducible-research code. Users must release any code or data modifications if they publish results from it, and we encourage the community to use it and to participate in its development via http://github.com/ExOSPORTS/BART.This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. J. Blecic holds a NASA Earth and Space Science

  1. Partial redistribution in 3D non-LTE radiative transfer in solar atmosphere models

    CERN Document Server

    Sukhorukov, Andrii V

    2016-01-01

    Resonance spectral lines such as H I Ly {\\alpha}, Mg II h&k, and Ca II H&K that form in the solar chromosphere are influenced by the effects of 3D radiative transfer as well as partial redistribution (PRD). So far no one has modeled these lines including both effects simultaneously owing to the high computing demands of existing algorithms. Such modeling is however indispensable for accurate diagnostics of the chromosphere. We present a computationally tractable method to treat PRD scattering in 3D model atmospheres using a 3D non-LTE radiative transfer code. To make the method memory-friendly, we use the hybrid approximation of Leenaarts et al. (2012) for the redistribution integral. To make it fast, we use linear interpolation on equidistant frequency grids. We verify our algorithm against computations with the RH code and analyze it for stability, convergence, and usefulness of acceleration using model atoms of Mg II with the h&k lines and H I with the Ly {\\alpha} line treated in PRD. A typical...

  2. The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of Jacobians and 3D features

    International Nuclear Information System (INIS)

    A new Monte Carlo atmospheric radiative transfer model is presented which is designed to support the interpretation of UV/vis/near-IR spectroscopic measurements of scattered Sun light in the atmosphere. The integro differential equation describing the underlying transport process and its formal solution are discussed. A stochastic approach to solve the differential equation, the Monte Carlo method, is deduced and its application to the formal solution is demonstrated. It is shown how model photon trajectories of the resulting ray tracing algorithm are used to estimate functionals of the radiation field such as radiances, actinic fluxes and light path integrals. In addition, Jacobians of the former quantities with respect to optical parameters of the atmosphere are analyzed. Model output quantities are validated against measurements, by self-consistency tests and through inter comparisons with other radiative transfer models.

  3. Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI)

    International Nuclear Information System (INIS)

    Satellite-observed radiance is a nonlinear functional of surface properties and atmospheric temperature and absorbing gas profiles as described by the radiative transfer equation (RTE). In the era of hyperspectral sounders with thousands of high-resolution channels, the computation of the radiative transfer model becomes more time-consuming. The radiative transfer model performance in operational numerical weather prediction systems still limits the number of channels we can use in hyperspectral sounders to only a few hundreds. To take the full advantage of such high-resolution infrared observations, a computationally efficient radiative transfer model is needed to facilitate satellite data assimilation. In recent years the programmable commodity graphics processing unit (GPU) has evolved into a highly parallel, multi-threaded, many-core processor with tremendous computational speed and very high memory bandwidth. The radiative transfer model is very suitable for the GPU implementation to take advantage of the hardware's efficiency and parallelism where radiances of many channels can be calculated in parallel in GPUs. In this paper, we develop a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI) launched in 2006 onboard the first European meteorological polar-orbiting satellites, METOP-A. Each IASI spectrum has 8461 spectral channels. The IASI radiative transfer model consists of three modules. The first module for computing the regression predictors takes less than 0.004% of CPU time, while the second module for transmittance computation and the third module for radiance computation take approximately 92.5% and 7.5%, respectively. Our GPU-based IASI radiative transfer model is developed to run on a low-cost personal supercomputer with four GPUs with total 960 compute cores, delivering near 4 TFlops theoretical peak performance. By massively parallelizing the second and third modules, we reached 364x

  4. The SARTre model for radiative transfer in spherical atmospheres and its application to the derivation of cirrus cloud properties

    Energy Technology Data Exchange (ETDEWEB)

    Mendrock, J.

    2006-07-01

    Modeling of radiative transfer (RT) is one of the essentials of atmospheric remote sensing. It has been common to use separate models for the simulation of shortwave radiation dominated by scattering of sunlight and longwave radiation characterized by emission from trace gases. These days also shortwave instruments are operated in limb mode, which demand models taking the sphericity of the Earth and atmosphere into account. On the other hand, infrared and microwave sounders are increasingly being used for the observation of ice clouds, that necessitate the modeling of scattering by cloud particles. Both trends require RT models, that are capable of taking into account scattering as well as the sphericity of the atmosphere. This suggests a unified handling of short- and longwave radiation, which furthermore allows for a consistent evaluation of multispectral data. Focusing on these aspects, the RT-model SARTre ([Approximate] Spherical Atmospheric Radiative Transfer model) has been developed. To our knowledge, SARTre is the first model, that is capable of limb modeling in the ultraviolet, visible, near to far infrared, and microwave spectral region. Here, algorithm baseline, implementation, verification and validation of SARTre are presented. SARTre has been used to study effects of cirrus clouds on infrared limb emission spectra. An exemplary retrieval of cirrus parameters from MIPAS measurements is demonstrated, and the plausibility of the results is discussed. (orig.)

  5. HELIOS: An Open-Source, GPU-Accelerated Radiative Transfer Code For Self-Consistent Exoplanetary Atmospheres

    CERN Document Server

    Malik, Matej; Mendonça, João M; Grimm, Simon L; Lavie, Baptiste; Kitzmann, Daniel; Tsai, Shang-Min; Burrows, Adam; Kreidberg, Laura; Bedell, Megan; Bean, Jacob L; Stevenson, Kevin B; Heng, Kevin

    2016-01-01

    We present the open-source radiative transfer code named HELIOS, which is constructed for studying exoplanetary atmospheres. In its initial version, the model atmospheres of HELIOS are one-dimensional and plane-parallel, and the equation of radiative transfer is solved in the two-stream approximation with non-isotropic scattering. The opacities are computed with the opacity calculator HELIOS-K and converted to k-distribution tables by weighing the molecular abundances with analytical chemistry formulae. We validate HELIOS by comparing a model of GJ 1214b to that computed using COOLTLUSTY and from the work of Miller-Ricci & Fortney, and by performing several tests, where we find: model atmospheres with single-temperature layers struggle to converge to radiative equilibrium; k-distribution tables constructed with 1-10% in the synthetic spectra; and a diffusivity factor of 2 approximates well the exact radiative transfer solution in the limit of pure absorption. We construct "null-hypothesis" models (chemic...

  6. Net-Exchange parameterization of infrared radiative transfers in Venus' atmosphere

    OpenAIRE

    Eymet, Vincent; Fournier, Richard; Dufresne, Jean-Louis; Lebonnois, Sébastien; Hourdin, Frédéric; Bullock, Mark A.

    2009-01-01

    Thermal radiation within Venus atmosphere is analyzed in close details. Prominent features are identified, which are then used to design a parameterization (a highly simplified and yet accurate enough model) to be used in General Circulation Models. The analysis is based on a net exchange formulation, using a set of gaseous and cloud optical data chosen among available referenced data. The accuracy of the proposed parameterization methodology is controlled against Monte Carlo simulations, ass...

  7. The Intergenerational Transfer of Solar Radiation Management Capabilities and Atmospheric Carbon Stocks

    OpenAIRE

    Goeschl, Timo; Heyen, Daniel; Moreno-Cruz, Juan

    2013-01-01

    Solar radiation management (SRM) technologies are considered one of the likeliest forms of geoengineering. If developed, a future generation could deploy them to limit the damages caused by the atmospheric carbon stock inherited from the current generation, despite their negative side effects. Should the current generation develop these geoengi-neering capabilities for a future generation? And how would a decision to develop SRM impact on the current generation's abatement efforts? Natural sc...

  8. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Siegel, Robert

    2016-01-01

    Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE.

  9. McSCIA: application of the Equivalence Theorem in a Monte Carlo radiative transfer model for spherical shell atmospheres

    Directory of Open Access Journals (Sweden)

    F. Spada

    2006-02-01

    Full Text Available A new multiple-scattering Monte Carlo 3-D radiative transfer model named McSCIA (Monte Carlo for SCIAmachy is presented. The backward technique is used to efficiently simulate narrow field of view instruments. The McSCIA algorithm has been formulated as a function of the Earth's radius, and can thus perform simulations for both plane-parallel and spherical atmospheres. The latter geometry is essential for the interpretation of limb satellite measurements, as performed by SCIAMACHY on board of ESA's Envisat. The model can simulate UV-vis-NIR radiation.

    First the ray-tracing algorithm is presented in detail, and then successfully validated against literature references, both in plane-parallel and in spherical geometry. A simple 1-D model is used to explain two different ways of treating absorption. One method uses the single scattering albedo while the other uses the equivalence theorem. The equivalence theorem is based on a separation of absorption and scattering. It is shown that both methods give, in a statistical way, identical results for a wide variety of scenarios. Both absorption methods are included in McSCIA, and it is shown that also for a 3-D case both formulations give identical results. McSCIA limb profiles for atmospheres with and without absorption compare well with the one of the state of the art Monte Carlo radiative transfer model MCC++.

    A simplification of the photon statistics may lead to very fast calculations of absorption features in the atmosphere. However, these simplifications potentially introduce biases in the results. McSCIA does not use simplifications and is therefore a relatively slow implementation of the equivalence theorem. For the first time, however, the validity of the equivalence theorem is demonstrated in a spherical 3-D radiative transfer model.

  10. Py4CAtS - Python tools for line-by-line modelling of infrared atmospheric radiative transfer

    Science.gov (United States)

    Schreier, Franz; García, Sebastián Gimeno

    2013-05-01

    Py4CAtS — Python scripts for Computational ATmospheric Spectroscopy is a Python re-implementation of the Fortran infrared radiative transfer code GARLIC, where compute-intensive code sections utilize the Numeric/Scientific Python modules for highly optimized array-processing. The individual steps of an infrared or microwave radiative transfer computation are implemented in separate scripts to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross sections for given pressure(s) and temperature(s), to combine cross sections to absorption coefficients and optical depths, and to integrate along the line-of-sight to transmission and radiance/intensity. The basic design of the package, numerical and computational aspects relevant for optimization, and a sketch of the typical workflow are presented.

  11. Status of Radiative Transfer Model (RTM) development for the Northrop Grumman Venus Atmospheric Maneuverable Platform (VAMP) Technology Development Program

    Science.gov (United States)

    Wong, Eric

    2014-11-01

    In support of the Northrop Grumman/L-Garde Venus Atmospheric Maneuverable Platform (VAMP) development, we are developing a multi-purpose radiative transfer model (RTM) for the applications of the Venus atmosphere. For the solar array sizing, spectral solar radiance calculations are needed and a Correlated-k method of spectral integration will be used. This method is relatively fast computationally and typical error of the method is within a few percent, sufficiently accurate for solar array sizing analyses. For sensor characterization or sensor performance study, details of an absorption line, e.g. the near-IR “atmospheric window” absorption lines, must be used and an equivalent line-by-line calculation will be performed. At the completion of the model a large data base of radiance profiles of different atmospheric conditions will be created. The database can also be used to support thermal radiation analysis for other sub-systems. In this poster, we present our current state of the RTM development and model validation development. Additionally, we will present some preliminary comparison of top-of-atmosphere solar radiance with Venus Express VIRTIS measurements.

  12. Development of radiative transfer code for JUICE/SWI mission toward the atmosphere of icy moons of Jupiter

    Science.gov (United States)

    Yamada, Takayoshi; Kasai, Yasuko; Yoshida, Naohiro

    2016-07-01

    The Submillimeter Wave Instrument (SWI) is one of the scientific instruments on the JUpiter Icy moon Explorer (JUICE). We plan to observe atmospheric compositions including water vapor and its isotopomers in Galilean moons (Io, Europa, Ganymede, and Callisto). The frequency windows of SWI are 530 to 625 GHz and 1080 to 1275 GHz with 100 kHz spectral resolution. We are developing a radiative transfer code in Japan with line-by-line method for Ganymede atmosphere in THz region (0 - 3 THz). Molecular line parameters (line intensity and partition function) were taken from JPL (Jet Propulsion Laboratory) catalogue. The pencil beam was assumed to calculate a spectrum of H _{2}O and CO in rotational transitions at the THz region. We performed comparisons between our model and ARTS (Atmospheric Radiative Transfer Simulator). The difference were less than 10% and 5% for H _{2}O and CO, respectively, under the condition of the local thermodynamic equilibrium (LTE). Comparison with several models with non-LTE assumption will be presented.

  13. MAX-DOAS measurements of atmospheric trace gases in Ny-Ålesund - Radiative transfer studies and their application

    Science.gov (United States)

    Wittrock, F.; Oetjen, H.; Richter, A.; Fietkau, S.; Medeke, T.; Rozanov, A.; Burrows, J. P.

    2004-06-01

    A new approach to derive tropospheric concentrations of some atmospheric trace gases from ground-based UV/vis measurements is described. The instrument, referred to as the MAX-DOAS, is based on the well-known UV/vis instruments, which use the sunlight scattered in the zenith sky as the light source and the method of Differential Optical Absorption Spectroscopy (DOAS) to derive column amounts of absorbers like ozone and nitrogen dioxide. Substantial enhancements have been applied to this standard setup to use different lines of sight near to the horizon as additional light sources (MAX - multi axis). Results from measurements at Ny-Ålesund (79° N, 12° E) are presented and interpreted with the full-spherical radiative transfer model SCIATRAN. In particular, measurements of the oxygen dimer O4 which has a known column and vertical distribution in the atmosphere are used to evaluate the sensitivity of the retrieval to parameters such as multiple scattering, solar azimuth, surface albedo and refraction in the atmosphere and also to validate the radiative transfer model. As a first application, measurements of NO2 emissions from a ship lying in Ny-Ålesund harbour are presented. The results of this study demonstrate the feasibility of long term UV/vis multi axis measurement that can be used to derive not only column amounts of different trace gases but also some information on the vertical location of these absorbers.

  14. 3-D non-LTE radiative transfer effects in Fe I lines: III. Line formation in magneto-hydrodynamic atmospheres

    CERN Document Server

    Holzreuter, René

    2015-01-01

    Non-local thermodynamic equilibrium (NLTE) effects in diagnostically important solar Fe I lines are important due to the strong sensitivity of Fe I to ionizing UV radiation, which may lead to a considerable under-population of the Fe I levels in the solar atmosphere and, therefore, to a sizeable weakening of Fe I lines. Such NLTE effects may be intensified or weakened by horizontal radiative transfer (RT) in a three-dimensionally (3-D) structured atmosphere. We analyze the influence of horizontal RT on commonly used Fe I lines in a snapshot of a 3-D radiation magneto-hydrodynamic (MHD) simulation of a plage region. NLTE- and horizontal RT effects occur with considerable strength (up to 50% in line depth or equivalent width) in the analyzed snapshot. As they may have either sign and both signs occur with approximately the same frequency and strength, the net effects are small when considering spatially averaged quantities. The situation in the plage atmosphere turns out to be rather complex. Horizontal transfe...

  15. GARLIC - A general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation

    Science.gov (United States)

    Schreier, Franz; Gimeno García, Sebastián; Hedelt, Pascal; Hess, Michael; Mendrok, Jana; Vasquez, Mayte; Xu, Jian

    2014-04-01

    A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code - GARLIC - is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus.

  16. General Relativistic Radiative Transfer

    CERN Document Server

    Knop, S; Baron, E

    2006-01-01

    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron ...

  17. Essentials of radiation heat transfer

    CERN Document Server

    Balaji

    2014-01-01

    Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...

  18. Extension of the AURIC Radiative Transfer Model for Mars Atmospheric Research

    Science.gov (United States)

    Evans, J. S.; Lumpe, J. D.; Correira, J.; Stewart, A. I.; Schneider, N. M.; Deighan, J.

    2013-12-01

    We present recent updates to the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) model that allow it to be used as a forward model for Mars atmospheric research. AURIC is a state of the art far ultraviolet (FUV) to near-infrared (NIR) atmospheric radiance model that has been used extensively for analysis and modeling of terrestrial upper atmospheric remote sensing data. We present recent updates to the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) model that allow it to be used as a forward model for Mars atmospheric research. AURIC is a state of the art far ultraviolet (FUV) to near-infrared (NIR) atmospheric radiance model that has been used extensively for analysis and modeling of terrestrial upper atmospheric remote sensing data. The airglow modeling capabilities of AURIC make it a powerful tool that can be used to characterize optical backgrounds, simulate data from both rocket and satellite-borne optical instrumentation, and serve as a forward model driver for geophysical retrieval algorithms. Upgrades made to allow modeling of the Martian atmosphere include 1-D Mars photochemistry and molecular transport and the addition of the following molecular band systems: CO Cameron; CO Fourth Positive Group; CO2+ Fox-Duffendack-Barker; CO2+ UV Doublet; CO Hopfield-Birge (B-X); and CO+ First Negative Group. Furthermore, a prototype AURIC-Titan model has also been developed, allowing comparison of AURIC spectral radiances with Cassini-Huygens/UVIS data [Stevens et al., 2011; Stevens et al., in preparation]. Extension of AURIC to the atmospheres of Pluto and it's largest moon, Charon, is also ongoing in support of NASA's New Horizons mission [Stevens, Evans, and Gladstone, 2012; 2013].

  19. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  20. Impact of increased stratospheric water vapor concentrations on atmospheric radiative transfer

    OpenAIRE

    2005-01-01

    Estimates are given of radiative forcings from various anthropogenic sources of stratospheric water vapor. These sources are direct emissions of water vapor from airplanes and the production of stratospheric H$_2$O by oxidation of anthropogenic methane.

  1. Finite Difference Radiative Transfer Model Calculations Compared to Measurements at the Top and Bottom of the Atmosphere

    Science.gov (United States)

    LeCroy, Stuart R.; Whitlock, Charles H.; Suttles, John T.

    1997-01-01

    A finite difference radiative transfer program was developed to handle most anisotropic scattering and reflectance problems encountered in the Earth's atmospheric system. The model has been used to reproduce the radiance received by both satellite and ground based radiation measuring instruments. It accurately replicates the radiance measured by both narrow and wide field-of-view instruments with either narrow or broadband wavelength ranges located on the surface and at satellite altitudes. The output of the finite difference code is compared to the measurements by surface pyranometers and a spectroradiometer aboard a high flying aircraft. The program output is also compared to ERBE measurements aboard the ERBS and NOAA-9 satellites as well as the visible bands aboard the GOES-6 and GOES-7 satellites and AVHRR bands 1 and 2 of the NOAA-9 and NOAA-1 1 satellites. The model is within 0.2 % of the radiance received by pyranometers, within 0.6 % of the ERBE radiances, and within 3 % of the radiances measured by the visible bands of the GOES and NOAA AVHRR radiometers.

  2. RADIATION HYDRODYNAMICS OF HOT JUPITER ATMOSPHERES

    International Nuclear Information System (INIS)

    Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, formally in the regime of radiation hydrodynamics. To lowest order in v/c, relativistic Doppler shifts distort line profiles along optical paths with finite wind velocity gradients. This leads to flow-dependent deviations in the effective emission and absorption properties of the atmospheric medium. Evaluating the overall impact of these distortions on the radiative structure of a dynamic atmosphere is non-trivial. We present transmissivity and systematic equivalent width excess calculations which suggest possibly important consequences for radiation transport in hot Jupiter atmospheres. If winds are fast and bulk Doppler shifts are indeed important for the global radiative balance, accurate modeling and reliable data interpretation for hot Jupiter atmospheres may prove challenging: it would involve anisotropic and dynamic radiative transfer in a coupled radiation-hydrodynamical flow. On the bright side, it would also imply that the emergent properties of hot Jupiter atmospheres are more direct tracers of their atmospheric flows than is the case for solar system planets. Radiation hydrodynamics may also influence radiative transfer in other classes of hot exoplanetary atmospheres with fast winds.

  3. Characterizing Exoplanet Atmospheres: From Light-curve Observations to Radiative-transfer Modeling

    CERN Document Server

    Cubillos, Patricio E

    2016-01-01

    Multi-wavelength transit and secondary-eclipse light-curve observations are some of the most powerful techniques to probe the thermo-chemical properties of exoplanets. Although the large planet-to-star brightness contrast and few available spectral bands produce data with low signal-to-noise ratios, a Bayesian approach can robustly reveal what constraints we can set, without over-interpreting the data. Here I performed an end-to-end analysis of transiting exoplanet data. I analyzed space-telescope data for three planets to characterize their atmospheres and refine their orbits, investigated correlated noise estimators, and contributed to the development of the respective data-analysis pipelines. Chapters 2 and 3 describe the Photometry for Orbits, Eclipses and Transits (POET) pipeline to model Spitzer Space Telescope light curves, applied to secondary-eclipse observations of the Jupiter-sized planets WASP-8b and TrES-1. Chapter 4 studies commonly used correlated-noise estimators for exoplanet light-curve mode...

  4. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Mengüç, M Pinar

    2011-01-01

    Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...

  5. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  6. Radiative heat transfer

    CERN Document Server

    Modest, Michael F

    2013-01-01

    The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...

  7. Radiation-Hydrodynamics of Hot Jupiter Atmospheres

    CERN Document Server

    Menou, Kristen

    2009-01-01

    Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, formally in the regime of radiation-hydrodynamics. To lowest order in v/c, relativistic Doppler shifts distort line profiles along optical paths with finite wind velocity gradients. This leads to flow-dependent deviations in the effective emission and absorption properties of the atmospheric medium. Evaluating the overall impact of these distortions on the radiative structure of a dynamic atmosphere is non-trivial. We present transmissivity and systematic equivalent width excess calculations which suggest possibly important consequences for radiation transport in hot Jupiter atmospheres. If winds are fast and bulk Doppler shifts are indeed important for the global radiative balance, accurate modeling and reliable data interpretation for hot Jupiter atmospheres may p...

  8. Monte Carlo Radiative Transfer

    CERN Document Server

    Whitney, Barbara A

    2011-01-01

    I outline methods for calculating the solution of Monte Carlo Radiative Transfer (MCRT) in scattering, absorption and emission processes of dust and gas, including polarization. I provide a bibliography of relevant papers on methods with astrophysical applications.

  9. Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: Numerical radiative transfer studies

    CERN Document Server

    Kitzmann, D; Rauer, H

    2013-01-01

    Owing to their wavelengths dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. Especially, the potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf the CO2 ice particles show no strong effective scattering greenhouse eff...

  10. Atmospheric Radiation Measurement Program Plan

    International Nuclear Information System (INIS)

    In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal of the Department is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. DOE research has revealed that cloud radiative feedback is the single most important effect determining the magnitude of possible climate responses to human activity. However, cloud radiative forcing and feedbacks are not understood at the levels needed for reliable climate prediction. The Atmospheric Radiation Measurement (ARM) Program will contribute to the DOE goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. Understanding cloud properties and how to predict them is critical because cloud properties may very well change as climate changes. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. GCM modelers will then be able to better identify the best approaches to improved parameterizations of radiative transfer effects. This is expected to greatly improve the accuracy of long-term, GCM predictions and the efficacy of those predictions at the important regional scale, as the research community and DOE attempt to understand the effects of greenhouse gas emissions on the Earth's climate. 153 refs., 24 figs., 6 tabs

  11. Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars. II. Thermal emission spectra influenced by clouds

    Science.gov (United States)

    Vasquez, M.; Schreier, F.; Gimeno García, S.; Kitzmann, D.; Patzer, B.; Rauer, H.; Trautmann, T.

    2013-09-01

    Context. Clouds play an important role in the radiative transfer of planetary atmospheres because of the influence they have on the different molecular signatures through scattering and absorption processes. Furthermore, they are important modulators of the radiative energy budget affecting surface and atmospheric temperatures. Aims: We present a detailed study of the thermal emission of cloud-covered planets orbiting F-, G-, K-, and M-type stars. These Earth-like planets include planets with the same gravity and total irradiation as Earth, but can differ significantly in the upper atmosphere. The impact of single-layered clouds is analyzed to determine what information on the atmosphere may be lost or gained. The planetary spectra are studied at different instrument resolutions and compared to previously calculated low-resolution spectra. Methods: A line-by-line molecular absorption model coupled with a multiple scattering radiative transfer solver was used to calculate the spectra of cloud-covered planets. The atmospheric profiles used in the radiation calculations were obtained with a radiative-convective climate model combined with a parametric cloud description. Results: In the high-resolution flux spectra, clouds changed the intensities and shapes of the bands of CO2, N2O, H2O, CH4, and O3. Some of these bands turned out to be highly reduced by the presence of clouds, which causes difficulties for their detection. The most affected spectral bands resulted for the planet orbiting the F-type star. Clouds could lead to false negative interpretations for the different molecular species investigated. However, at low resolution, clouds were found to be crucial for detecting some of the molecular bands that could not be distinguished in the cloud-free atmospheres. The CO2 bands were found to be less affected by clouds. Radiation sources were visualized with weighting functions at high resolution. Conclusions: Knowledge of the atmospheric temperature profile is

  12. Using radiative transfer models to study the atmospheric water vapor content and to eliminate telluric lines from high-resolution optical spectra

    CERN Document Server

    Gardini, A; Pérez, E; Quesada, J A; Funke, B

    2012-01-01

    The Radiative Transfer Model (RTM) and the retrieval algorithm, incorporated in the SCIATRAN 2.2 software package developed at the Institute of Remote Sensing/Institute of Enviromental Physics of Bremen University (Germany), allows to simulate, among other things, radiance/irradiance spectra in the 2400-24 000 {\\AA} range. In this work we present applications of RTM to two case studies. In the first case the RTM was used to simulate direct solar irradiance spectra, with different water vapor amounts, for the study of the water vapor content in the atmosphere above Sierra Nevada Observatory. Simulated spectra were compared with those measured with a spectrometer operating in the 8000-10 000 {\\AA} range. In the second case the RTM was used to generate telluric model spectra to subtract the atmospheric contribution and correct high-resolution stellar spectra from atmospheric water vapor and oxygen lines. The results of both studies are discussed.

  13. International symposium on radiative heat transfer: Book of abstracts

    International Nuclear Information System (INIS)

    The international symposium on radiative heat transfer was held on 14-18 August 1995 Turkey. The specialists discussed radiation transfer in materials processing and manufacturing, solution of radiative heat transfer equation, transient radiation problem and radiation-turbulence interactions, raditive properties of gases, atmospheric and stellar radiative transfer , radiative transfer and its applications, optical and radiative properties of soot particles, inverse radiation problems, partticles, fibres,thermophoresis and waves and modelling of comprehensive systems at the meeting. Almost 79 papers were presented in the meeting

  14. Groups in the radiative transfer theory

    Science.gov (United States)

    Nikoghossian, Arthur

    2016-11-01

    The paper presents a group-theoretical description of radiation transfer in inhomogeneous and multi-component atmospheres with the plane-parallel geometry. It summarizes and generalizes the results obtained recently by the author for some standard transfer problems of astrophysical interest with allowance of the angle and frequency distributions of the radiation field. We introduce the concept of composition groups for media with different optical and physical properties. Group representations are derived for two possible cases of illumination of a composite finite atmosphere. An algorithm for determining the reflectance and transmittance of inhomogeneous and multi-component atmospheres is described. The group theory is applied also to determining the field of radiation inside an inhomogeneous atmosphere. The concept of a group of optical depth translations is introduced. The developed theory is illustrated with the problem of radiation diffusion with partial frequency distribution assuming that the inhomogeneity is due to depth-variation of the scattering coefficient. It is shown that once reflectance and transmittance of a medium are determined, the internal field of radiation in the source-free atmosphere is found without solving any new equations. The transfer problems for a semi-infinite atmosphere and an atmosphere with internal sources of energy are discussed. The developed theory allows to derive summation laws for the mean number of scattering events underwent by the photons in the course of diffusion in the atmosphere.

  15. Transfer of atmospheric caesium to agricultural products

    International Nuclear Information System (INIS)

    A huge quantity of radioactive rubble was generated by the Great East Japan Earthquake. The Japanese government is considering incineration processing of such rubble in waste incinerators which have suitable equipment, and the government is urged to manage appropriately the radiation exposure of residents living in the vicinity of incinerators by inhalation and ingestion of food. In this study, we developed a model describing plant uptake of atmospheric caesium by direct deposition and root-absorption via soil. Analysis using our model has suggested that wet deposition contributes to transfer to a plant most, when caesium exists in the atmosphere. (author)

  16. Study of trace gases in the Martian atmosphere: Groundbased observation using SUBARU/IRCS and development of radiative transfer model for MEX/PFS limb observation

    Science.gov (United States)

    Aoki, S.; Nakagawa, H.; Kasaba, Y.; Giuranna, M.; Geminale, A.; Sindoni, G.; Sagawa, H.; Mendrok, J.; Kasai, Y.; Formisano, V.

    2012-09-01

    We observed Martian atmosphere to investigate CH4, H2O, and HDO on 30 November 2011, 4-5 January 2012, and 12 April 2012 using SUBARU/ IRCS. This observation aims to verify CH4 on Mars, constrain its source, and investigate the distribution of H2O/HDO ratio. Our observation covered possible source areas of CH4, i.e. the areas where the extend plumes of CH4 were detected by previous groundbased and MEX/PFS observations [1,2] and the potential mud volcanism areas [3,4]. This paper will show some preliminary results. Vertical profiles of these trace gases are crucial for understanding their chemistry and transportation. Limb observations by MEX/PFS are a powerful tool to retrieve vertical profiles of H2O, CO, and CH4. For this purpose, we adapted the SARTre model, a radiative transfer code which includes multiple scattering for limb geometry observations developed for the terrestrial atmosphere [5], to the Martian atmosphere. In order to validate our model, SARTre model for Martian limb, we first compared of our synthetic spectra in nadir geometry with the result from ARS [6] which has been widely used for previous studies of MEX/PFS nadir-observation. We concluded that the difference between them is small offset (below 3%) in the spectral range between 3000 and 3030 cm-1.

  17. Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing.

    Science.gov (United States)

    Chami, M; Santer, R; Dilligeard, E

    2001-05-20

    A radiative transfer code termed OSOA for the ocean-atmosphere system that is able to predict the total and the polarized signals has been developed. The successive-orders-of-scattering method is used. The air-water interface is modeled as a planar mirror. Four components grouped by their optical properties, pure seawater, phytoplankton, nonchlorophyllose matter, and yellow substances, are included in the water column. Models are validated through comparisons with standard models. The numerical accuracy of the method is better than 2%; high computational efficiency is maintained. The model is used to study the influence of polarization on the detection of suspended matter. Polarizing properties of hydrosols are discussed: phytoplankton cells exhibit weak polarization and small inorganic particles, which are strong backscatterers, contribute appreciably to the polarized signal. Therefore the use of the polarized signal to extract the sediment signature promises good results. Also, polarized radiance could improve characterization of aerosols when open ocean waters are treated. PMID:18357248

  18. Atmospheric Radiation Measurement Program plan

    International Nuclear Information System (INIS)

    In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. The Atmospheric Radiation Measurement (ARM) Program will contribute to the Department of Energy goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. 19 refs., 4 figs., 2 tabs

  19. Evaluation of the efficiency and accuracy of new methods for atmospheric opacity and radiative transfer calculations in planetary general circulation model simulations

    Science.gov (United States)

    Zube, Nicholas Gerard; Zhang, Xi; Natraj, Vijay

    2016-10-01

    General circulation models often incorporate simple approximations of heating between vertically inhomogeneous layers rather than more accurate but computationally expensive radiative transfer (RT) methods. With the goal of developing a GCM package that can model both solar system bodies and exoplanets, it is vital to examine up-to-date RT models to optimize speed and accuracy for heat transfer calculations. Here, we examine a variety of interchangeable radiative transfer models in conjunction with MITGCM (Hill and Marshall, 1995). First, for atmospheric opacity calculations, we test gray approximation, line-by-line, and correlated-k methods. In combination with these, we also test RT routines using 2-stream DISORT (discrete ordinates RT), N-stream DISORT (Stamnes et al., 1988), and optimized 2-stream (Spurr and Natraj, 2011). Initial tests are run using Jupiter as an example case. The results can be compared in nine possible configurations for running a complete RT routine within a GCM. Each individual combination of opacity and RT methods is contrasted with the "ground truth" calculation provided by the line-by-line opacity and N-stream DISORT, in terms of computation speed and accuracy of the approximation methods. We also examine the effects on accuracy when performing these calculations at different time step frequencies within MITGCM. Ultimately, we will catalog and present the ideal RT routines that can replace commonly used approximations within a GCM for a significant increase in calculation accuracy, and speed comparable to the dynamical time steps of MITGCM. Future work will involve examining whether calculations in the spatial domain can also be reduced by smearing grid points into larger areas, and what effects this will have on overall accuracy.

  20. Spectral reflectance and atmospheric energetics in cirrus-like clouds. Part II: Applications of a Fourier-Riccati approach to radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, S.C.; King, M.D. [NASA/Goddard Space Flight Center, Greenbelt, MD (United States); Gabriel, P.M.; Stephens, G.L. [Colorado State Univ., Fort Collins, CO (United States)

    1996-12-01

    One of the major sources of uncertainty in climate studies is the detection of cirrus clouds and characterization of their radiative properties. Combinations of water vapor absorption channels (e.g., 1.38 {mu}m), ice-water absorption channels (e.g., 1.64 {mu}m), and atmospheric window channels (e.g., 11 {mu}m) in the imager, together with a lidar profiler on future EOS platforms, will contribute to enhancing present understanding of cirrus clouds. The aforementioned spectral channels are used in this study to explore the effects exerted by uncertainties in cloud microphysical properties (e.g., particle size distribution) and cloud morphology on the apparent radiative properties, such as spectral reflectance and heating and cooling rate profiles. As in Part I of the previous study, which establishes the foundations of the Fourier-Riccati method of radiative transfer in inhomogeneous media, cloud extinction and scattering functions are characterized by simple spatial variations with measured and hypothesized microphysics to facilitate the understanding of their radiative properties. Results of this study suggest that (i) while microphysical variations in the scattering and extinction functions of clouds affect the magnitudes of their spectral reflectances, cloud morphology significantly alters the shape of their angular distribution; (ii) spectral reflectances viewed near nadir are least affected by cloud variability; and (iii) cloud morphology can lead to spectral heating and cooling rate profiles that differ substantially from their plane-parallel averaged equivalents. Since there are no horizontal thermal gradients in plane-parallel clouds, it may be difficult to correct for this deficiency. 32 refs., 11 figs., 1 tab.

  1. 大气温室效应的一维辐射传热分析%One Dimensional Radiative Heat Transfer Analysis of Atmosphere Greenhouse Effects

    Institute of Scientific and Technical Information of China (English)

    刘彬; 帅永; 谈和平

    2011-01-01

    大气中温室气体对地面长波热辐射的吸收和再发射导致了温室效应.计算了大气不同高度200~50000 cm-1(0.2~50 μm)光谱吸收系数,采用一维大气介质模型和射线踪迹-节点分析法(RTNAM)的多层模型对大气中二氧化碳及水蒸气不同浓度情况下的大气温度进行了计算.结果表明标准大气CO2浓度增加1倍,对流层的温度上升0.453°C,若水蒸气浓度降低,CO2的温室效应更加明显.%Greenhouse gases absorb the thermal radiation from earth surface and reemit part of energy back. This progress leads to the greenhouse effects. Absorption coefficients at different latitude were calculated form 200 cm-1 to 50000 cm- 1(0.2~50μm). Using a one-dimensional radiative heat transfer model for atmosphere combined with multilayered model by Ray-Tracing/Nodal-Analyzing Method (RTNAM), atmospheric temperature fields were calculated under different CO2 and/or H2O concentration conditions. The results show that temperature in troposphere rise 0.453℃ if doubling of CO2Concentration, and if the concentration of H2O is lower, greenhouse effects of CO2 become more obvious.

  2. Retrieval of trace gases vertical profile in the lower atmosphere combining. Differential Optical Absorption Spectroscopy with radiative transfer models

    OpenAIRE

    Palazzi, Elisa

    2008-01-01

    The motivation for the work presented in this thesis is to retrieve profile information for the atmospheric trace constituents nitrogen dioxide (NO2) and ozone (O3) in the lower troposphere from remote sensing measurements. The remote sensing technique used, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), is a recent technique that represents a significant advance on the well-established DOAS, especially for what it concerns the study of...

  3. MAX-DOAS measurements of atmospheric trace gases in Ny-Ålesund - Radiative transfer studies and their application

    OpenAIRE

    Wittrock, F.; Oetjen, H.; Richter, A.; Fietkau, S.; Medeke, T.; Rozanov, A.; Burrows, J.P.

    2004-01-01

    International audience A new approach to derive tropospheric concentrations of some atmospheric trace gases from ground-based UV/vis measurements is described. The instrument, referred to as the MAX-DOAS, is based on the well-known UV/vis instruments, which use the sunlight scattered in the zenith sky as the light source and the method of Differential Optical Absorption Spectroscopy (DOAS) to derive column amounts of absorbers like ozone and nitrogen dioxide. Substantial enhancements have ...

  4. RRTM: A rapid radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  5. Radiative Transfer in 3D Numerical Simulations

    CERN Document Server

    Stein, R; Stein, Robert; Nordlund, Aake

    2002-01-01

    We simulate convection near the solar surface, where the continuum optical depth is of order unity. Hence, to determine the radiative heating and cooling in the energy conservation equation, we must solve the radiative transfer equation (instead of using the diffusion or optically thin cooling approximations). A method efficient enough to calculate the radiation for thousands of time steps is needed. We assume LTE and a non-gray opacity grouped into 4 bins according to strength. We perform a formal solution of the Feautrier equation along a vertical and four straight, slanted, rays (at four azimuthal angles which are rotated 15 deg. every time step). We present details of our method. We also give some results: comparing simulated and observed line profiles for the Sun, showing the importance of 3D transfer for the structure of the mean atmosphere and the eigenfrequencies of p-modes, illustrating Stokes profiles for micropores, and analyzing the effect of radiation on p-mode asymmetries.

  6. Engineering calculations in radiative heat transfer

    CERN Document Server

    Gray, W A; Hopkins, D W

    1974-01-01

    Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.

  7. Radiative transfer on discrete spaces

    CERN Document Server

    Preisendorfer, Rudolph W; Stark, M; Ulam, S

    1965-01-01

    Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran

  8. Validation of the community radiative transfer model

    International Nuclear Information System (INIS)

    To validate the Community Radiative Transfer Model (CRTM) developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), the discrete ordinate radiative transfer (DISORT) model and the line-by-line radiative transfer model (LBLRTM) are combined in order to provide a reference benchmark. Compared with the benchmark, the CRTM appears quite accurate for both clear sky and ice cloud radiance simulations with RMS errors below 0.2 K, except for clouds with small ice particles. In a computer CPU run time comparison, the CRTM is faster than DISORT by approximately two orders of magnitude. Using the operational MODIS cloud products and the European Center for Medium-range Weather Forecasting (ECMWF) atmospheric profiles as an input, the CRTM is employed to simulate the Atmospheric Infrared Sounder (AIRS) radiances. The CRTM simulations are shown to be in reasonably close agreement with the AIRS measurements (the discrepancies are within 2 K in terms of brightness temperature difference). Furthermore, the impact of uncertainties in the input cloud properties and atmospheric profiles on the CRTM simulations has been assessed. The CRTM-based brightness temperatures (BTs) at the top of the atmosphere (TOA), for both thin (τ30) clouds, are highly sensitive to uncertainties in atmospheric temperature and cloud top pressure. However, for an optically thick cloud, the CRTM-based BTs are not sensitive to the uncertainties of cloud optical thickness, effective particle size, and atmospheric humidity profiles. On the contrary, the uncertainties of the CRTM-based TOA BTs resulting from effective particle size and optical thickness are not negligible in an optically thin cloud.

  9. An Analytic Radiative-Convective Model for Planetary Atmospheres

    CERN Document Server

    Robinson, Tyler D; 10.1088/0004-637X/757/1/104

    2012-01-01

    We present an analytic 1-D radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries, (2) worlds with some attenuation of sunli...

  10. Environmental radon: solid earth-atmosphere transference

    International Nuclear Information System (INIS)

    The radon anomalies ant its descendants related with geophysical events are studied generally for to understand the involved mechanisms in the underground geochemistry. These anomalies were observed as a radioactivity level argumentation in the systems studied provoking a radioactivity transference from land toward human environment. In this work is presented an analysis of the contribution at local radioactivity level due to volcanic eruptions that they provoke a transference appreciable but intermittent and located of Radon to atmosphere and of that one due to soil-atmosphere transference that it occurs in continuous way in continent that it varies as function of meteorologic and geologic conditions. (Author)

  11. A Rapid Radiative Transfer Model for Reflection of Solar Radiation.

    Science.gov (United States)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-07-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  12. GLERL Radiation Transfer Through Freshwater Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...

  13. 1-D Radiative-Convective Model for Terrestrial Exoplanet Atmospheres

    Science.gov (United States)

    Leung, Cecilia W. S.; Robinson, Tyler D.

    2016-10-01

    We present a one dimensional radiative-convective model to study the thermal structure of terrestrial exoplanetary atmospheres. The radiative transfer and equilibrium chemistry in our model is based on similar methodologies in models used for studying Extrasolar Giant Planets (Fortney et al. 2005b.) We validated our model in the optically thin and thick limits, and compared our pressure-temperature profiles against the analytical solutions of Robinson & Catling (2012). For extrasolar terrestrial planets with pure hydrogen atmospheres, we evaluated the effects of H2-H2 collision induced absorption and identified the purely roto-translational band in our modeled spectra. We also examined how enhanced atmospheric metallicities affect the temperature structure, chemistry, and spectra of terrestrial exoplanets. For a terrestrial extrasolar planet whose atmospheric compostion is 100 times solar orbiting a sun-like star at 2 AU, our model resulted in a reducing atmosphere with H2O, CH4, and NH3 as the dominant greenhouse gases.

  14. On the radiative equilibrium of irradiated planetary atmospheres

    CERN Document Server

    Guillot, Tristan

    2010-01-01

    The evolution of stars and planets is mostly controlled by the properties of their atmosphere. This is particularly true in the case of exoplanets close to their stars, for which one has to account both for an (often intense) irradiation flux, and from an intrinsic flux responsible for the progressive loss of the inner planetary heat. The goals of the present work are to help understanding the coupling between radiative transfer and advection in exoplanetary atmospheres and to provide constraints on the temperatures of the deep atmospheres. This is crucial in assessing whether modifying assumed opacity sources and/or heat transport may explain the inflated sizes of a significant number of giant exoplanets found so far. I use a simple analytical approach inspired by Eddington's approximation for stellar atmospheres to derive a relation between temperature and optical depth valid for plane-parallel static grey atmospheres which are both transporting an intrinsic heat flux and receiving an outer radiation flux. ...

  15. Stochastic Radiative transfer and real cloudiness

    Energy Technology Data Exchange (ETDEWEB)

    Evans, F. [Univ. of Colorado, Boulder, CO (United States)

    1995-09-01

    Plane-parallel radiative transfer modeling of clouds in GCMs is thought to be an inadequate representation of the effects of real cloudiness. A promising new approach for studying the effects of cloud horizontal inhomogeneity is stochastic radiative transfer, which computes the radiative effects of ensembles of cloud structures described by probability distributions. This approach is appropriate because cloud information is inherently statistical, and it is the mean radiative effect of complex 3D cloud structure that is desired. 2 refs., 1 fig.

  16. Addition Laws for Intensities of Radiation Emerging from Scattering Atmospheres Containing Energy Sources

    Science.gov (United States)

    Nikoghossian, A. G.; Kapanadze, N. G.

    2016-03-01

    A group theoretical approach is developed for solving astrophysical radiative transfer problems described in a previous series of papers. Addition laws for observed radiative intensities are derived for the case in which atmospheres not only absorb and scatter radiation incident on them, but radiate themselves because of energy sources contained within them. As an illustration of the application of these laws, several special radiative transfer problems which we believe are of practical interest are discussed.

  17. The Radiation Environment of Exoplanet Atmospheres

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Linsky

    2014-10-01

    Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.

  18. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  19. 大气折射对可见光波段辐射传输特性的影响%Influence of atmospheric refraction on radiative transfer at visible light band

    Institute of Scientific and Technical Information of China (English)

    胡帅; 高太长; 李浩; 刘磊; 程天际; 张婷

    2015-01-01

    Refraction is an important factor influencing radiative transfer since it can change both the propagation path and polarization state of electromagnetic wave. In order to discuss the influence of atmospheric refraction on radiative transfer process, a Monte Carlo vector radiative transfer model, which takes atmospheric refraction into account, is introduced. By using this model, photon random movement in uniform atmospheric layer and at the interfaces between adjacent layers is simulated, Stokes vectors and degrees of polarizations of both directly transmitted and diffuse light, and irradiance at the specific layer is also calculated. The model is validated under two conditions: with taking atmospheric refraction into account, and comparing the simulation results with those in the literature;with taking refraction index distributed homogeneously in space, in which case the model is validated against DISORT and RT3. So, the results indicates that our model is accurate and reliable. The influences of atmospheric refraction on the Stokes vectors of diffuse light in different directions are discussed for pure molecular atmosphere, with only Rayleigh scattering considered. Simulations are performed respectively for different solar zenith angles, for different atmospheric profiles, for aerosols with different types and particle shapes, and for clouds with different base heights and optical depths, and correspondingly, the effect of atmospheric refraction on radiative transfer process is discussed as well. Simulation results show that Stokes vector of diffuse light is influenced by atmospheric refraction to a certain extent, especially for light with a zenith angle ranging from 70° to 110°, and with the increasing of solar zenith angle, the influence becomes stronger. When atmospheric profile changes, the effect of atmospheric refraction on polarized radiance field is also changed, for which the possible reason is that deference between atmospheric profiles leads to the

  20. Radiative transfer and molecular data for astrochemistry

    NARCIS (Netherlands)

    Tak, Floris van der

    2011-01-01

    The estimation of molecular abundances in interstellar clouds from spectroscopic observations requires radiative transfer calculations, which depend on basic molecular input data. This paper reviews recent developments in the fields of molecular data and radiative transfer. The first part is an over

  1. 通用大气辐射传输软件(CART)分子吸收和热辐射计算精度验证%Validation of the precision of atmospheric molecular absorption and thermal radiance calculated by combined atmospheric radiative transfer(CART) code

    Institute of Scientific and Technical Information of China (English)

    戴聪明; 魏合理; 陈秀红

    2013-01-01

    为检验通用大气辐射传输软件CART分子吸收和热辐射的计算精度,利用精确的逐线积分法(LBLRTM)和广泛使用的中分辨率大气传输模式(MODTRAN4.0),就CART软件计算的晴空大气分子吸收透过率和热辐射进行对比验证.模拟了水平距离、观测天顶角和观测点高度对光电工程各观测波段内平均大气透过率和积分辐射的影响特性.结果表明:CART软件分子吸收的计算精度优于MODTRAN4.0软件,大气热辐射的计算精度和MODTRAN4.0相当.%To validate the precision of atmospheric molecular absorption and thermal radiance calculated by combined atmospheric radiative transfer (CART) code, using the accurate line-by-line atmospheric transfer model (LBLRTM) and moderate resolution atmospheric transmission (MODTRAN4.0), the atmospheric molecular absorption spectral transmittance and infrared spectral radiance calculated by these codes were comparied under clear-sky conditions.Then the horizontal path lengths, observation zenith angles and observation altitudes impacting on average atmospheric transmittance and integrated infrared radiance in several spectral bands were simulated on electro-optical engineering region.The results show that the precision of atmospheric molecular absorption calculated by CART is better than MODTRAN4.0, and calculation precision of the atmospheric thermal radiation is equivalent to MODTRAN4.0.

  2. Radiative Transfer in Special Relativity: Covariance

    CERN Document Server

    Duque, Mauricio; Duque, Carlos

    2007-01-01

    The purpose is to introduce in a clear and direct way the students of undergraduate courses in physics and/or astronomy to the subject of radiative transfer. A pedagogical revision is made in order to obtain the radiative transfer equation, its restrictions and the different types of interactions present between the radiation and the matter. Because in the classical literature about radiative transfer the covariance is not fully developed, we show in an explicit manner detail calculations and then we discuss the relativistic effects.

  3. One-way radiative transfer

    Science.gov (United States)

    González-Rodríguez, Pedro; Ilan, Boaz; Kim, Arnold D.

    2016-06-01

    We introduce the one-way radiative transfer equation (RTE) for modeling the transmission of a light beam incident normally on a slab composed of a uniform forward-peaked scattering medium. Unlike the RTE, which is formulated as a boundary value problem, the one-way RTE is formulated as an initial value problem. Consequently, the one-way RTE is much easier to solve. We discuss the relation of the one-way RTE to the Fokker-Planck, small-angle, and Fermi pencil beam approximations. Then, we validate the one-way RTE through systematic comparisons with RTE simulations for both the Henyey-Greenstein and screened Rutherford scattering phase functions over a broad range of albedo, anisotropy factor, optical thickness, and refractive index values. We find that the one-way RTE gives very good approximations for a broad range of optical property values for thin to moderately thick media that have moderately to sharply forward-peaked scattering. Specifically, we show that the error made by the one-way RTE decreases monotonically as the anisotropic factor increases and as the albedo increases. On the other hand, the error increases monotonically as the optical thickness increases and the refractive index mismatch at the boundary increases.

  4. Numerical methods in multidimensional radiative transfer

    CERN Document Server

    Meinköhn, Erik

    2008-01-01

    Offers an overview of the numerical modelling of radiation fields in multidimensional geometries. This book covers advances and problems in the mathematical treatment of the radiative transfer equation, a partial integro-differential equation of high dimension that describes the propagation of the radiation in various fields.

  5. Numerical evaluation of Chandrasekhar's H-function, its first and second differential coefficients, its pole and moments from the new form for plane parallel scattering atmosphere in radiative transfer

    CERN Document Server

    Das, Rabindra Nath

    2007-01-01

    In this paper, the new forms obtained for Chandrasekhar's H- function in Radiative Transfer by one of the authors both for non-conservative and conservative cases for isotropic scattering in a semi-infinite plane parallel atmosphere are used to obtain exclusively new forms for the first and second derivatives of H-function . The numerics for evaluation of zero of dispersion function, for evaluation of H-function and its derivatives and its zeroth, the first and second moments are outlined. Those are used to get ready and accurate extensive tables of H-function and its derivatives, pole and moments for different albedo for scattering by iteration and Simpson's one third rule . The schemes for interpolation of H-function for any arbitrary value of the direction parameter for a given albedo are also outlined. Good agreement has been observed in checks with the available results within one unit of ninth decimal

  6. Radiative heat transfer in porous uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)

    1992-12-01

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  7. Intercomparison of Shortwave Radiative Transfer Codes and Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Halthore, Rangasayi N.; Crisp, David; Schwartz, Stephen E.; Anderson, Gail; Berk, A.; Bonnel, B.; Boucher, Olivier; Chang, Fu-Lung; Chou, Ming-Dah; Clothiaux, Eugene E.; Dubuisson, P.; Fomin, Boris; Fouquart, Y.; Freidenreich, S.; Gautier, Catherine; Kato, Seiji; Laszlo, Istvan; Li, Zhanqing; Mather, Jim H.; Plana-Fattori, Artemio; Ramaswamy, V.; Ricchiazzi, P.; Shiren, Y.; Trishchenko, A.; Wiscombe, Warren J.

    2005-06-03

    Computation of components of shortwave (SW) or solar irradiance in the surface-atmospheric system forms the basis of intercomparison between 16 radiative transfer models of varying spectral resolution ranging from line-by-line models to broadband and general circulation models. In order of increasing complexity the components are: direct solar irradiance at the surface, diffuse irradiance at the surface, diffuse upward flux at the surface, and diffuse upward flux at the top of the atmosphere. These components allow computation of the atmospheric absorptance. Four cases are considered from pure molecular atmospheres to atmospheres with aerosols and atmosphere with a simple uniform cloud. The molecular and aerosol cases allow comparison of aerosol forcing calculation among models. A cloud-free case with measured atmospheric and aerosol properties and measured shortwave radiation components provides an absolute basis for evaluating the models. For the aerosol-free and cloud-free dry atmospheres, models agree to within 1% (root mean square deviation as a percentage of mean) in broadband direct solar irradiance at surface; the agreement is relatively poor at 5% for a humid atmosphere. A comparison of atmospheric absorptance, computed from components of SW radiation, shows that agreement among models is understandably much worse at 3% and 10% for dry and humid atmospheres, respectively. Inclusion of aerosols generally makes the agreement among models worse than when no aerosols are present, with some exceptions. Modeled diffuse surface irradiance is higher than measurements for all models for the same model inputs. Inclusion of an optically thick low-cloud in a tropical atmosphere, a stringent test for multiple scattering calculations, produces, in general, better agreement among models for a low solar zenith angle (SZA = 30?) than for a high SZA (75?). All models show about a 30% increase in broadband absorptance for 30? SZA relative to the clear-sky case and almost no

  8. Atmospheres and radiating surfaces of neutron stars

    CERN Document Server

    Potekhin, A Y

    2014-01-01

    The beginning of the 21st century was marked by a breakthrough in the studies of thermal radiation of neutron stars. Observations with modern space telescopes have provided a wealth of valuable information. Being correctly interpreted, this information can elucidate physics of superdense matter in the interiors of these stars. The theory of formation of thermal spectra of neutron stars is based on the physics of plasmas and radiative processes in stellar photospheres. It provides the framework for interpretation of observational data and for extracting neutron-star parameters from these data. This paper presents a review of the current state of the theory of surface layers of neutron stars and radiative processes in these layers, with the main focus on the neutron stars that possess strong magnetic fields. In addition to the conventional deep (semi-infinite) atmospheres, radiative condensed surfaces of neutron stars and "thin" (finite) atmospheres are also considered.

  9. Multiple equilibria in radiative-convective atmospheres

    OpenAIRE

    Rennó, Nilton O.

    2011-01-01

    A one-dimensional, radiative-convective model is used to study the equilibria conditions of moist atmospheres. We show that when the hydrologic cycle is included in the model a subcritical bifurcation occurs, leading to 2 linearly stable solutions to the radiative-convective equilibria. In this case, when the net forcing is larger than a critical value, two equilibria are possible. Furthermore, a finite amplitude instability can lead to a runaway greenhouse regime when the solar forcing is la...

  10. The Inclusion of Raman Scattering Effects in the Combined Ocean-Atmosphere Radiative Transfer Model MOMO to Estimate the Influence of Raman Scattering in Case 1 Waters on Satellite Ocean Remote Sensing Applications

    Science.gov (United States)

    von Bismarck, J.; Fischer, J.

    2011-12-01

    Raman scattering of the solar lightfield, due to energy absorption by vibrational modes of water molecules, may contribute significantly to the signals observed by remote sensing satellites over water. The inelastic fraction of the water-leaving radiance for clear water reaches values of 30% in the red part of the visible spectrum, and still reaches values of several percent in moderately turbid waters. Furthermore, inelastic scattering due to chlorophyll and yellow substance fluorescence adds to this fraction. For these reasons the inclusion of inelastic scattering sources into radiative-transfer models, used in ocean remote sensing applications or atmosphere remote sensing over the ocean, can be important. MOMO is a computer code based on the matrix-operator method designed to calculate the lightfield in the stratified atmosphere-ocean system. It has been developed at the Institute for Space Sciences of the Freie Universität Berlin and provides the full polarization state (in the newest version) and an air-sea interface accounting for radiative effects of the wind roughened water surface. The inclusion of Raman scattering effects is done by a processing module, that starts a primary MOMO program run with a high spectral resolution, to calculate the radiative energy available for inelastic scattering at each model layer boundary. The processing module then calculates the first order Raman source-terms for every observation wavelength at every layer boundary, accounting for the non-isotropicity (including the azimuthal dependence) of the Raman phase-function, the spectral redistribution, and the spectral dependence of the Raman scattering coefficient. These elementary source-terms then serve as input for the second program run, which then calculates the source-terms of all model layers, using the doubling-adding method, and the resulting radiance field. Higher orders of the Raman contribution can be computed with additional program runs. Apart from the Raman

  11. Origin of Hawking Radiation: Firewall or Atmosphere?

    CERN Document Server

    Kim, Wontae

    2016-01-01

    The Unruh vacuum not admitting any outgoing flux at the horizon implies that the origin of the outgoing Hawking radiation would be the atmosphere of a near-horizon quantum region without resort to the firewall; however, the existence of the firewall of superplanckian excitations at the horizon might be supported by the infinite Tolman temperature of the infinitely blueshifted Hawking temperature at the horizon. Using an exactly soluble model, we show that the firewall necessarily emerges out of the Unruh vacuum such that the Tolman temperature in the Unruh vacuum is divergent in essence due to the infinitely blueshifted negative ingoing flux crossing the horizon rather than the outgoing flux. It is also shown that the outgoing Hawking radiation in the Unruh vacuum indeed originates from the atmosphere, not just at the horizon, which is of no relevance to the infinite blueshift. Consequently, we find that the firewall induced from the infinite Tolman temperature and the Hawking radiation coming from the atmosp...

  12. Preliminary results of a three-dimensional radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    O`Hirok, W. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    Clouds act as the primary modulator of the Earth`s radiation at the top of the atmosphere, within the atmospheric column, and at the Earth`s surface. They interact with both shortwave and longwave radiation, but it is primarily in the case of shortwave where most of the uncertainty lies because of the difficulties in treating scattered solar radiation. To understand cloud-radiative interactions, radiative transfer models portray clouds as plane-parallel homogeneous entities to ease the computational physics. Unfortunately, clouds are far from being homogeneous, and large differences between measurement and theory point to a stronger need to understand and model cloud macrophysical properties. In an attempt to better comprehend the role of cloud morphology on the 3-dimensional radiation field, a Monte Carlo model has been developed. This model can simulate broadband shortwave radiation fluxes while incorporating all of the major atmospheric constituents. The model is used to investigate the cloud absorption anomaly where cloud absorption measurements exceed theoretical estimates and to examine the efficacy of ERBE measurements and cloud field experiments. 3 figs.

  13. The Local Atmosphere and the Turbulent Heat Transfer in the Eastern Himalayas

    Institute of Scientific and Technical Information of China (English)

    ZOU Han; LI Peng; MA Shupo; ZHOU Libo; ZHU Jinhuan

    2012-01-01

    To understand the local atmosphere and heat transfer and to facilitate the boundary-layer parameterization of numerical simulation and prediction,an observational campaign was conducted in the Eastern Himalayas in June 2010.The local atmospheric properties and near-surface turbulent heat transfers were analyzed.The local atmosphere in this region is warmer,more humid and less windy,with weaker solar radiation and surface radiate heating than in the Middle Himalayas.The near-surface turbulent heat transfer in the Eastern Himalayas is weaker than that in the Middle Himalayas.The total heat transfer is mainly contributed by the latent heat transfer with a Bowen ratio of 0.36,which is essentially different from that in the Middle Himalayas and the other Tibetan regions.

  14. Community Radiative Transfer Model Applications - A Study of the Retrieval of Trace Gases in the Atmosphere from Cross-track Infrared Sounder (CrIS) Data of a Full-spectral Resolution

    Science.gov (United States)

    Liu, Q.; Nalli, N. R.; Tan, C.; Zhang, K.; Iturbide, F.; Wilson, M.; Zhou, L.

    2015-12-01

    The Community Radiative Transfer Model (CRTM) [3] operationally supports satellite radiance assimilation for weather forecasting, sensor data verification, and the retrievals of satellite products. The CRTM has been applied to UV and visible sensors, infrared and microwave sensors. The paper will demonstrate the applications of the CRTM, in particular radiative transfer in the retrieva algorithm. The NOAA Unique CrIS/ATMS Processing System (NUCAPS) operationally generates vertical profiles of atmospheric temperature (AVTP) and moisture (AVMP) from Suomi NPP Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) measurements. Current operational CrIS data have reduced spectral resolution: 1.25 cm-1 for a middle wave band and 2.5 cm-1 for a short-wave wave band [1]. The reduced spectral data largely degraded the retrieval accuracy of trace gases. CrIS full spectral data are also available now which have single spectral resolution of 0.625 cm-1 for all of the three bands: long-wave band, middle wave band, and short-wave band. The CrIS full-spectral resolution data is critical to the retrieval of trace gases such as O3, CO [2], CO2, and CH4. In this paper, we use the Community Radiative Transfer Model (CRTM) to study the impact of the CrIS spectral resolution on the retrieval accuracy of trace gases. The newly released CRTM version 2.2.1 can simulates Hamming-apodized CrIS radiance of a full-spectral resolution. We developed a small utility that can convert the CRTM simulated radiance to un-apodized radiance. The latter has better spectral information which can be helpful to the retrievals of the trace gases. The retrievals will be validated using both NWP model data as well as the data collected during AEROSE expeditions [4]. We will also discuss the sensitivity on trace gases between apodized and un-apodized radiances. References[1] Gambacorta, A., et al.(2013), IEEE Lett., 11(9), doi:10.1109/LGRS.2014.230364, 1639-1643. [2] Han, Y., et

  15. 基于系留气艇平台的红外辐射传输算法实验验证%Validation of Atmospheric Radiative Transfer Model with Field Experiments Using Tethered-balloon-borne Facilities

    Institute of Scientific and Technical Information of China (English)

    章文星; 吕达仁; 霍娟; 王勇; 孙宝来; 李立群

    2011-01-01

    中国科学院大气物理研究所中层大气和全球环境探测重点实验室(LAGEO)建立了以系留气艇为平台的综合探测系统.通过气艇在大气边界层上升、下降过程获得不同高度的气象参数和同时的辐射参数.以气象参数为输入,应用辐射传输模式(MODTRAN4.0)获得模式辐射输出,将其与实测辐射值作对比,验证MODTRAN4.0模式的准确性,为有关目标识别与遥感提供基础.2006年8月在中国科学院大气物理研究所香河综合观测站利用系留气艇平台进行了验证实验,并对热红外波段的模式对比结果进行分析.结果表明:所建实验系统具备进行模式验证的能力,在热红外波段,MODTRAN4.0模式输出结果与实测辐射亮度之间的相对误差的均方差在边界层大气条件下小于3%.%Atmospheric radiative transfer and its algorithms are the theoretical basis and effective tools in the field of remote sensing and inversion algorithm in the earth system, and also the key tools for the space, ground target recognition and quantitative assessment of background radiation. During recent decades, a series of radiative transfer(RT) model have been proposed to support a large variety of quantitative remote sensing as well as target,background discrimination research and applications. Owing to respective approximations and simplifications inherent in those RT models, their accuracy, uncertainty and adaptability are of critical significance to different researchers and end users. Validation of the RT model for its different wave band, in particular by using field experiments is necessary, especially for those applications with higher accuracy demands. Among the RT codes currently used, a considerable part of them are MODT-RAN and its evolution versions. In China, MODTRAN has also been applied to the study of remote sensing, atmospheric correction of satellite images, and a wide range of applications in the atmospheric sciences, hence, the

  16. High-Accuracy Spectral Lines for Radiation Transport in Stellar Atmospheres

    OpenAIRE

    Amit R. Sharma; Braams, Bastiaan J.; Bowman, Joel M.; Robert Warmbier; Ralf Schneider; Hauschildt, Peter H.

    2008-01-01

    The theory of radiative transfer is an important element for the understanding of the spectral signature and physical structure of stellar atmosphere. PHOENIX1 is a such, very general non-Local Thermodynamic Equilibrium(NLTE) stellar atmosphere computer code which can handle very large model atoms/molecules as well as line blanketing by hundreds of millions of atomic and molecular lines. The code is used to compute model atmospheres and synthetic spectra (solution of the radiative transport e...

  17. Line radiative transfer and statistical equilibrium*

    Directory of Open Access Journals (Sweden)

    Kamp Inga

    2015-01-01

    Full Text Available Atomic and molecular line emission from protoplanetary disks contains key information of their detailed physical and chemical structures. To unravel those structures, we need to understand line radiative transfer in dusty media and the statistical equilibrium, especially of molecules. I describe here the basic principles of statistical equilibrium and illustrate them through the two-level atom. In a second part, the fundamentals of line radiative transfer are introduced along with the various broadening mechanisms. I explain general solution methods with their drawbacks and also specific difficulties encountered in solving the line radiative transfer equation in disks (e.g. velocity gradients. I am closing with a few special cases of line emission from disks: Radiative pumping, masers and resonance scattering.

  18. Satellite observation of atmospheric nuclear gamma radiation

    Science.gov (United States)

    Letaw, John R.; Share, G. H.; Kinzer, R. L.; Silberberg, R.; Chupp, E. L.

    1989-01-01

    Satellite observations of the spectrum of gamma radiation from the earth's atmosphere in the energy interval from 300 keV to 8.5 MeV were obtained with a gamma-ray spectrometer during 1980-1983. A total of 20 atmospheric line features are superimposed on a continuum background which is modeled using a power law with an index of -1.16. The line energies and intensities are consistent with production by secondary neutrons interacting with atmospheric N-14 and O-16. The intensity and spectrum of photons at energies below the 511-keV line, in excess of a power law continuum, are explained by Compton scattering of the annihilation line photons in traversing an average of 21 g/sq cm of atmosphere.

  19. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  20. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    International Nuclear Information System (INIS)

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth's atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy's Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described

  1. Analytical investigation of the atmospheric radiation limits in semigray atmospheres in radiative equilibrium

    OpenAIRE

    Pujol i Sagaró, Toni; North, Gerald R.

    2003-01-01

    We model the wavelength-dependent absorption of atmospheric gases by assuming constant mass absorption coefficients in finite-width spectral bands. Such a semigray atmosphere is analytically solved by a discrete ordinate method. The general solution is analyzed for a water vapor saturated atmosphere that also contains a carbon dioxide-like absorbing gas in the infrared. A multiple stable equilibrium with a relative upper limit in the outgoing long-wave radiation is found. Differing from previ...

  2. Smart detectors for Monte Carlo radiative transfer

    CERN Document Server

    Baes, Maarten

    2008-01-01

    Many optimization techniques have been invented to reduce the noise that is inherent in Monte Carlo radiative transfer simulations. As the typical detectors used in Monte Carlo simulations do not take into account all the information contained in the impacting photon packages, there is still room to optimize this detection process and the corresponding estimate of the surface brightness distributions. We want to investigate how all the information contained in the distribution of impacting photon packages can be optimally used to decrease the noise in the surface brightness distributions and hence to increase the efficiency of Monte Carlo radiative transfer simulations. We demonstrate that the estimate of the surface brightness distribution in a Monte Carlo radiative transfer simulation is similar to the estimate of the density distribution in an SPH simulation. Based on this similarity, a recipe is constructed for smart detectors that take full advantage of the exact location of the impact of the photon pack...

  3. Radiative transfer effects in primordial hydrogen recombination

    CERN Document Server

    Ali-Haïmoud, Yacine; Hirata, Christopher M

    2010-01-01

    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of Cosmic Microwave Background anisotropies. Lyman transitions, in particular the Lyman-alpha line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, the impact of some previously ignored radiative transfer effects is calculated. First, the effect of Thomson scattering in the vicinity of the Lyman-alpha line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-alpha line blueward of the hydrogen ...

  4. The atmospheric implications of radiation belt remediation

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2006-08-01

    Full Text Available High altitude nuclear explosions (HANEs and geomagnetic storms can produce large scale injections of relativistic particles into the inner radiation belts. It is recognised that these large increases in >1 MeV trapped electron fluxes can shorten the operational lifetime of low Earth orbiting satellites, threatening a large, valuable population. Therefore, studies are being undertaken to bring about practical human control of the radiation belts, termed "Radiation Belt Remediation" (RBR. Here we consider the upper atmospheric consequences of an RBR system operating over either 1 or 10 days. The RBR-forced neutral chemistry changes, leading to NOx enhancements and Ox depletions, are significant during the timescale of the precipitation but are generally not long-lasting. The magnitudes, time-scales, and altitudes of these changes are no more significant than those observed during large solar proton events. In contrast, RBR-operation will lead to unusually intense HF blackouts for about the first half of the operation time, producing large scale disruptions to radio communication and navigation systems. While the neutral atmosphere changes are not particularly important, HF disruptions could be an important area for policy makers to consider, particularly for the remediation of natural injections.

  5. Lattice Boltzmann method for one-dimensional vector radiative transfer.

    Science.gov (United States)

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2016-02-01

    A one-dimensional vector radiative transfer (VRT) model based on lattice Boltzmann method (LBM) that considers polarization using four Stokes parameters is developed. The angular space is discretized by the discrete-ordinates approach, and the spatial discretization is conducted by LBM. LBM has such attractive properties as simple calculation procedure, straightforward and efficient handing of boundary conditions, and capability of stable and accurate simulation. To validate the performance of LBM for vector radiative transfer, four various test problems are examined. The first case investigates the non-scattering thermal-emitting atmosphere with no external collimated solar. For the other three cases, the external collimated solar and three different scattering types are considered. Particularly, the LBM is extended to solve VRT in the atmospheric aerosol system where the scattering function contains singularities and the hemisphere space distributions for the Stokes vector are presented and discussed. The accuracy and computational efficiency of this algorithm are discussed. Numerical results show that the LBM is accurate, flexible and effective to solve one-dimensional polarized radiative transfer problems. PMID:26906779

  6. Composite biasing in Monte Carlo radiative transfer

    CERN Document Server

    Baes, Maarten; Lunttila, Tuomas; Bianchi, Simone; Camps, Peter; Juvela, Mika; Kuiper, Rolf

    2016-01-01

    Biasing or importance sampling is a powerful technique in Monte Carlo radiative transfer, and can be applied in different forms to increase the accuracy and efficiency of simulations. One of the drawbacks of the use of biasing is the potential introduction of large weight factors. We discuss a general strategy, composite biasing, to suppress the appearance of large weight factors. We use this composite biasing approach for two different problems faced by current state-of-the-art Monte Carlo radiative transfer codes: the generation of photon packages from multiple components, and the penetration of radiation through high optical depth barriers. In both cases, the implementation of the relevant algorithms is trivial and does not interfere with any other optimisation techniques. Through simple test models, we demonstrate the general applicability, accuracy and efficiency of the composite biasing approach. In particular, for the penetration of high optical depths, the gain in efficiency is spectacular for the spe...

  7. The role of atmospheric radiation in the generation and maintenance of circulations of different scales

    International Nuclear Information System (INIS)

    It is well known that the radiation budget of the atmosphere is an important component of the earth's climate system. On shorter time scales, radiative transfer affects the evolution of atmospheric circulation, principally through interaction with cloud and storm systems, and destabilizes the atmosphere continuously. This destabilization is important for subsequent development of clouds and storm systems. The clouds and storm systems feed back to the radiation budget, as clouds significantly alter both shortwave and longwave radiative transfer. It is important to understand the role that radiative transfer plays in the evolution of these circulation systems to accurately quantify the radiation budget. The results presented here are from modeling studies designed to isolate the effect of radiative transfer on the generation of circulation systems of different spatial and temporal scales. Two different numerical weather prediction models were used and will be described briefly in the next section. Following that, the radiative transfer model that was used with both circulation models will be described. Finally, results from the modeling studies will be presented, and conclusions and future research efforts will be discussed

  8. Further considerations of cosmic ray modulation of infra-red radiation in the atmosphere

    OpenAIRE

    Aplin, Karen; Lockwood, Mike

    2015-01-01

    Understanding effects of ionisation in the lower atmosphere is a new interdisciplinary area, crossing traditionally distinct scientific boundaries. Following the paper of Erlykin et al. (Astropart. Phys. 57--58 (2014) 26--29) we develop the interpretation of observed changes in long-wave (LW) radiation (Aplin and Lockwood, Env. Res. Letts. 8, 015026 (2013)), by taking account of cosmic ray ionisation yields and atmospheric radiative transfer. To demonstrate this, we show that the thermal stru...

  9. CRASH3: cosmological radiative transfer through metals

    CERN Document Server

    Graziani, L; Ciardi, B

    2012-01-01

    Here we introduce CRASH3, the latest release of the 3D radiative transfer code CRASH. In its current implementation CRASH3 integrates into the reference algorithm the code Cloudy to evaluate the ionisation states of metals, self-consistently with the radiative transfer through H and He. The feedback of the heavy elements on the calculation of the gas temperature is also taken into account, making of CRASH3 the first 3D code for cosmological applications which treats self-consistently the radiative transfer through an inhomogeneous distribution of metal enriched gas with an arbitrary number of point sources and/or a background radiation. The code has been tested in idealized configurations, as well as in a more realistic case of multiple sources embedded in a polluted cosmic web. Through these validation tests the new method has been proven to be numerically stable and convergent. We have studied the dependence of the results on a number of physical quantities such as the source characteristics (spectral range...

  10. A Radiation Transfer Solver for Athena using Short Characteristics

    CERN Document Server

    Davis, Shane W; Jiang, Yan-Fei

    2012-01-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code which solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-LTE effects. The module is based on well-known and well-tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator-splitting and we describe this approach in detail. Implementa...

  11. A fast all-sky radiative transfer model and its implications for solar energy research

    Science.gov (United States)

    Xie, Y.; Sengupta, M.

    2015-12-01

    Radiative transfer models simulating broadband solar radiation, e.g. Rapid Radiation Transfer Model (RRTM) and its GCM applications, have been widely used by atmospheric scientists to model solar resource for various energy applications such as operational forecasting. Due to the complexity of solving the radiative transfer equation, simulating solar radiation under cloudy conditions can be extremely time consuming though many approximations, e.g. two-stream approach and delta-M truncation scheme, have been utilized. To provide a new option to approximate solar radiation, we developed a Fast All-sky Radiation Model for Solar applications (FARMS) using simulated cloud transmittance and reflectance from 16-stream RRTM model runs. The solar irradiances at the land surface were simulated by combining parameterized cloud properties with a fast clear-sky radiative transfer model. Using solar radiation measurements from the US Department of Energy's Atmospheric Radiation Measurement (ARM) central facility in Oklahoma as a benchmark against the model simulations, we were able to demonstrate that the accuracy of FARMS was comparable to the two-stream approach. However, FARMS is much more efficient since it does not explicitly solve the radiative transfer equation for each individual cloud condition. We further explored the use of FARMS to promote solar resource assessment and forecasting research through the increased ability to accommodate higher spatial and temporal resolution calculations for the next generation of satellite and numerical weather prediction (NWP) models.

  12. Enhancing radiative energy transfer through thermal extraction

    Science.gov (United States)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu

    2016-06-01

    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal

  13. Suomi NPP VIIRS Striping Analysis using Radiative Transfer Model Calculations

    Science.gov (United States)

    Wang, Z.; Cao, C.

    2015-12-01

    Modern satellite radiometers such as VIIRS have many detectors with slightly different relative spectral response (RSR). These differences can introduce artifacts such as striping in the imagery. In recent studies we have analyzed the striping pattern related to the detector level RSR difference in VIIRS Thermal Emissive Bands (TEB) M15 and M16, which includes line-by-line radiative transfer model (LBLRTM) detector level response study and onboard detector stability evaluation using the solar diffuser. Now we extend these analysis to the Reflective Solar Bands (RSB) using MODTRAN atmospheric radiative transfer model (RTM) for detector level radiance simulation. Previous studies analyzed the striping pattern in the images of VIIRS ocean color and reflectance in RSB, further studies about the root cause for striping are still needed. In this study, we will use the MODTRAN model at spectral resolution of 1 cm^-1 under different atmospheric conditions for VIIRS RSB, for example band M1 centered at 410nm which is used for Ocean Color product retrieval. The impact of detector level RSR difference, atmospheric dependency, and solar geometry on the striping in VIIRS SDR imagery will be investigated. The cumulative histogram method used successfully for the TEB striping analysis will be used to quantify the striping. These analysis help S-NPP and J1 to better understand the root cause for VIIRS image artifacts and reduce the uncertainties in geophysical retrievals to meet the user needs.

  14. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)

    1996-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  15. SLA (Second-law analysis) of transient radiative transfer processes

    International Nuclear Information System (INIS)

    This paper concerns a SLA (second-law analysis) of transient radiative heat transfer in an absorbing, emitting and scattering medium. Based on Planck's definition of radiative entropy, transient radiative entropy transfer equation and local radiative entropy generation in semitransparent media with uniform refractive index are derived. Transient radiative exergy transfer equation and local radiative exergy destruction are also derived based on Candau's definition of radiative exergy. The analytical results are consistent with the Gouy-Stodola theorem of classical thermodynamics. As an application concerning transient radiative transfer, exergy destruction of diffuse pulse radiation in a semitransparent slab is studied. The transient radiative transfer equation is solved using the discontinuous finite element based discrete ordinates equation. Transient radiative exergy destruction is calculated by a post-processing procedure.

  16. Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry

    CERN Document Server

    Kitzmann, D; Patzer, A B C

    2016-01-01

    The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical symmetry. We present a discontinuous Galerkin method to directly solve the spherically-symmetric radiative transfer equation as a two-dimensional problem. The transport equation in spherical atmospheres is more complicated than in the plane-parallel case due to the appearance of an additional derivative with respect to the polar angle. The DG-FEM formalism allows for the exact integration of arbitrarily complex scattering phase functions, independent of the angular mesh resolution. We show that the discontinuous Galerkin method is able to describe accurately the radiative transfer in extended atmospheres and to capture discontinuities or complex scattering behaviour which might be present in the solution of certain radiative transfer tasks and can, therefore, cause...

  17. Radiative transfer solution for rugged and heterogeneous scene observations.

    Science.gov (United States)

    Miesch, C; Briottet, X; Kerr, Y H; Cabot, F

    2000-12-20

    A physical algorithm is developed to solve the radiative transfer problem in the solar reflective spectral domain. This new code, Advanced Modeling of the Atmospheric Radiative Transfer for Inhomogeneous Surfaces (AMARTIS), takes into account the relief, the spatial heterogeneity, and the bidirectional reflectances of ground surfaces. The resolution method consists of first identifying the irradiance and radiance components at ground and sensor levels and then modeling these components separately, the rationale being to find the optimal trade off between accuracy and computation times. The validity of the various assumptions introduced in the AMARTIS model are checked through comparisons with a reference Monte Carlo radiative transfer code for various ground scenes: flat ground with two surface types, a linear sand dune landscape, and an extreme mountainous configuration. The results show a divergence of less than 2% between the AMARTIS code and the Monte Carlo reference code for the total signals received at satellite level. In particular, it is demonstrated that the environmental and topographic effects are properly assessed by the AMARTIS model even for situations in which the effects become dominant. PMID:18354698

  18. Radiative Transfer Code: Application to the calculation of PAR

    Indian Academy of Sciences (India)

    D Emmanuel; D Phillippe; C Malik

    2000-12-01

    The production of carbon in the ocean, the so-called primary production, depends on various physico- biological parameters: the biomass and nutrient amounts in oceans, the salinity and temperature of the water and the light available in the water column. We focus on the visible spectrum of the solar radiation defined as the Photosynthetically Active Radiation (PAR). We developed a model (Chami et al. 1997) to simulate the behavior of the solar beam in the atmosphere and the ocean. We first describe the theoretical basis of the code and the method we used to solve the radiative transfer equation (RTE): the successive orders of scattering (SO). The second part deals with a sensitivity study of the PAR just above and below the sea surface for various atmospheric conditions. In a cloudy sky, we computed a ratio between vector fluxes just above the sea surface and spherical fluxes just beneath the sea surface. When the optical thickness of the cloud increases this ratio remains constant and around 1.29. This parameter is convenient to convert vector flux at the sea surface as retrieved from satellite to PAR. Subsequently, we show how solar radiation as vector flux rather than PAR leads to an underestimate of the primary production up to 40% for extreme cases.

  19. 基于叶片-冠层-大气耦合的植物星上光谱特性模拟分析%Simulation analysis of vegetation TOA reflectance based on coupled leaf-canopy-atmosphere radiative transfer model

    Institute of Scientific and Technical Information of China (English)

    佃袁勇; 方圣辉

    2013-01-01

    Coupled plant leaf spectral model PROSPECT,vegetation canopy spectral model SAIL (scattering by arbitrarily inclined leaves) and atmospheric radiative transfer model 6S(second simulation of the satellite signal in the solar spectrum) were used to simulate the top of atmospheric (TOA) reflectance of vegetation under different conditions.And then the influences on the spectrum of the leaf mesophyll structure parameters,chlorophyll content,leaf dry weight,leaf water content,plant canopy of LAI,solar zenith angle,aerosol optical thickness (AOT),adjacency effect and mix-pixel effect were analyzed.The research results show that the vegetation TOA reflectance error caused by the atmosphere is by far larger than the error caused by the biochemical parameters of plant itself.At the leaf level scale,the main factors causing reflectance change are chlorophyll content and mesophyll structure parameters,the effect of water content is very small on leaf reflectance in 400 ~ 900 nm.At the canopy level,the main factors causing spectral change are LAI and leaf angle distribution.%将植物叶片光谱模型PROSPECT、植被冠层光谱模型SAIL与大气辐射传输模型6S进行耦合,模拟不同参数条件下植被星上光谱信息在400~ 900 nm谱段的变化,并分析从地表植物叶片光谱、冠层光谱到卫星入瞳处光谱的过程中,植物叶片的叶肉结构参数、叶绿素含量、干重、叶片含水量和植物冠层的叶面积指数(LAI)、太阳天顶角、气溶胶光学厚度、地表邻近效应以及混合像元等参数对植物光谱的影响.研究结果表明,由大气引起的误差要远大于由植物本身的各种生化参数引起的误差;在叶片尺度上引起反射率发生变化的主要因素是叶绿素含量和叶肉结构参数,含水量的影响非常小,可以忽略;在冠层尺度上引起光谱发生变化的因素主要有LAI和叶片倾角.

  20. Accurate radiative transfer calculations for layered media.

    Science.gov (United States)

    Selden, Adrian C

    2016-07-01

    Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics. PMID:27409700

  1. SRTC++: a New Monte Carlo Radiative Transfer Model for Titan

    Science.gov (United States)

    Barnes, Jason W.; MacKenzie, Shannon; Young, Eliot F.

    2016-10-01

    Titan's vertically extended and highly scattering atmosphere poses a challenge to interpreting near-infrared observations of its surface. Not only does Titan's extended atmosphere often require accommodation of its spherical geometry, it is also difficult to separate surface albedos from scattering or absorption within low-altitude atmospheric layers. One way to disentangle the surface and atmosphere is to combine observations in which terrain on Titan is imaged from a range of viewing geometries. To address this type of problem, we have developed a new algorithm, Spherical Radiative Transfer in C++ or SRTC++.This code is written from scratch in fast C++ and designed from the ground up to run efficiently in parallel. We see SRTC++ as complementary to existing plane-parallel codes, not in competition with them as the first problems that we seek to address will be spatial in nature. For example, we will be able to investigate spatial resolution limits in the various spectral windows, discrimination of vertical atmospheric layers, the adjacency effect, and indirect illumination past Titan's terminator.

  2. Inversion of the radiative transfer equation for polarized light

    CERN Document Server

    Iniesta, Jose Carlos del Toro

    2016-01-01

    Since the early 1970s, inversion techniques have become the most useful tool for inferring the magnetic, dynamic, and thermodynamic properties of the solar atmosphere. The intrinsic model dependence makes it necessary to formulate specific means that include the physics in a properly quantitative way. The core of this physics lies in the radiative transfer equation (RTE), where the properties of the atmosphere are assumed to be known while the unknowns are the four Stokes profiles. The solution of the (differential) RTE is known as the direct or forward problem. From an observational point of view, the problem is rather the opposite: the data are made up of the observed Stokes profiles and the unknowns are the solar physical quantities. Inverting the RTE is therefore mandatory. Indeed, the formal solution of this equation can be considered an integral equation. The solution of such an integral equation is called the inverse problem. Inversion techniques are automated codes aimed at solving the inverse problem...

  3. Solar and thermal radiation in the Venus atmosphere

    Science.gov (United States)

    Moroz, V. I.; Ekonomov, A. P.; Moshkin, B. E.; Revercomb, H. E.; Sromovsky, L. A.; Schofield, J. T.

    1985-01-01

    Attention is given to the solar and thermal radiation fields of Venus. Direct measurements and the results of numerical models based on direct measurements are presented. Radiation outside the atmosphere is considered with emphasis placed on global energy budget parameters, spectral and angular dependences, spatial distribution, and temporal variations of solar and thermal radiation. Radiation fluxes inside the atmosphere below 90 km are also considered with attention given to the solar flux at the surface, solar and thermal radiation fluxes from 100 km to the surface, and radiative heating and cooling below 100 km.

  4. Nonlinear response matrix methods for radiative transfer

    International Nuclear Information System (INIS)

    A nonlinear response matrix formalism is presented for the solution of time-dependent radiative transfer problems. The essential feature of the method is that within each computational cell the temperature is calculated in response to the incoming photons from all frequency groups. Thus the updating of the temperature distribution is placed within the iterative solution of the spaceangle transport problem, instead of being placed outside of it. The method is formulated for both grey and multifrequency problems and applied in slab geometry. The method is compared to the more conventional source iteration technique. 7 refs., 1 fig., 4 tabs

  5. Greenhouse effect from the point of view of radiative transfer

    CERN Document Server

    Barcza, Szabolcs

    2016-01-01

    Radiative power balance of a planet in the solar system is delineated. The terrestrial powers are transformed to average global flux in an effective atmospheric column (EAC) approximation, its components are delineated. The estimated and measured secular changes of the average global flux are compared to the fluxes derived from the Stefan-Boltzmann law using the observed global annual temperatures in the decades between 1880 and 2010. The conclusion of this procedure is that the radiative contribution of the greenhouse gas ${\\rm CO}_2$ is some $21\\pm 7$~\\% to the observed global warming from the end of the XIXth century excluding the feedback mechanisms playing determining role in the climate system. Stationary radiative flux transfer is treated in an air column as a function of the column density of the absorbent. Upper and lower limit of radiative forcing is given by assuming true absorption and coherent scatter of the monochromatic radiation. An integral formula is given for the outgoing long wave radiatio...

  6. Low Temperature and Modified Atmosphere: Hurdles for Antibiotic Resistance Transfer?

    Science.gov (United States)

    Van Meervenne, Eva; Van Coillie, Els; Van Weyenberg, Stephanie; Boon, Nico; Herman, Lieve; Devlieghere, Frank

    2015-12-01

    Food is an important dissemination route for antibiotic-resistant bacteria. Factors used during food production and preservation may contribute to the transfer of antibiotic resistance genes, but research on this subject is scarce. In this study, the effect of temperature (7 to 37°C) and modified atmosphere packaging (air, 50% CO2-50% N2, and 100% N2) on antibiotic resistance transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes was evaluated. Filter mating was performed on nonselective agar plates with high-density inocula. A more realistic setup was created by performing modified atmosphere experiments on cooked ham using high-density and low-density inocula. Plasmid transfer was observed between 10 and 37°C, with plasmid transfer also observed at 7°C during a prolonged incubation period. When high-density inocula were used, transconjugants were detected, both on agar plates and cooked ham, under the three atmospheres (air, 50% CO2-50% N2, and 100% N2) at 7°C. This yielded a median transfer ratio (number of transconjugants/number of recipients) with an order of magnitude of 10(-4) to 10(-6). With low-density inocula, transfer was only detected under the 100% N2 atmosphere after 10-day incubation at 7°C, yielding a transfer ratio of 10(-5). Under this condition, the highest bacterial density was obtained. The results indicate that low temperature and modified atmosphere packaging, two important hurdles in the food industry, do not necessarily prevent plasmid transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes.

  7. Radiative transfer effects during primordial helium recombination

    CERN Document Server

    Chluba, Jens; Switzer, Eric R

    2011-01-01

    In this paper we refine the calculation of primordial helium recombination, accounting for several additional effects that were neglected or treated more approximately in previous studies. These include consideration of (i) time-dependent radiative transfer interaction between the 2^1 P_1 - 1^1 S_0 and 2^3 P_1 - 1^1 S_0 resonances; (ii) time-dependent radiative transfer for the partially overlapping n^1 P_1 - 1^1 S_0, n^1 D_2 - 1^1 S_0 and n^3 P_1 - 1^1 S_0 series with 3 \\leq n \\leq 10; (iii) electron scattering within a kernel approach. We also briefly discuss the effect of electron scattering and HI quadrupole lines on the recombination of hydrogen. Although the physics of all the considered processes is interesting and subtle, for the standard cosmology the overall correction to the ionization history during helium recombination with respect to the previous treatment remains smaller than |DeltaNe/Ne| \\sim 0.05%. For models with a large helium fraction Y_p \\sim 0.4, the difference can reach |\\DeltaNe/Ne| \\s...

  8. Effect of ambient pressure and radiation reabsorption of atmosphere on the flame spreading over thermally thin combustibles in microgravity

    Institute of Scientific and Technical Information of China (English)

    杜文峰; 胡文瑞

    2003-01-01

    For the flame spread over thermally thin combustibles in an atmosphere, if the atmosphere cannot emit and absorb the thermal radiation (e.g. for atmosphere of O2-N2), the conductive heat transfer from the flame to the fuel surface dominates the flame spread at lower ambient atmosphere. As the ambient pressure increases, the flame spread rate increases, and the radiant heat transfer from the flame to the fuel surface gradually becomes the dominant driving force for the flame spread. In contrast, if the atmosphere is able to emit and absorb the thermal radiation (e.g. for atmosphere of O2-CO2), at lower pressure, the heat transfer from flame to the fuel surface is enhanced by the radiation reabsorption of the atmosphere at the leading edge of the flame, and both conduction and thermal radiation play important roles in the mechanism of flame spread. With the increase in ambient pressure, the oxygen diffuses more quickly from ambient atmosphere into the flame, the chemical reaction in the flame is enhanced, and the flame spread rate increases. When the ambient pressure is greater than a critical value, the thermal radiation from the flame to the solid surface is hampered by the radiation reabsorption of ambient atmosphere with the further increase in ambient pressure. As a result, with the increase in ambient pressure, the flame spread rate decreases and the heat conduction gradually dominates the flame spread over the fuel surface.

  9. An artificial neural network based fast radiative transfer model for simulating infrared sounder radiances

    Indian Academy of Sciences (India)

    Praveen Krishnan; K Srinivasa Ramanujam; C Balaji

    2012-08-01

    The first step in developing any algorithm to retrieve the atmospheric temperature and humidity parameters at various pressure levels is the simulation of the top of the atmosphere radiances that can be measured by the satellite. This study reports the results of radiative transfer simulations for the multichannel infrared sounder of the proposed Indian satellite INSAT-3D due to be launched shortly. Here, the widely used community software k Compressed Atmospheric Radiative Transfer Algorithm (kCARTA) is employed for performing the radiative transfer simulations. Though well established and benchmarked, kCARTA is a line-by-line solver and hence takes enormous computational time and effort for simulating the multispectral radiances for a given atmospheric scene. This necessitates the development of a much faster and at the same time, equally accurate RT model that can drive a real-time retrieval algorithm. In the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of INSAT-3D. Realistic atmospheric temperature and humidity profiles have been used for training the network. Spectral response functions of GOES-13, a satellite similar in construction, purpose and design and already in use are used. The fast RT model is able to simulate the radiances for 1200 profiles in 18 ms for a 15-channel GOES profile, with a correlation coefficient of over 99%. Finally, the robustness of the model is tested using additional synthetic profiles generated using empirical orthogonal functions (EOF).

  10. The impact of Mount Etna's sulphur emissions to the atmospheric composition, aerosol properties and radiative transfer in the central Mediterranean: 14 years of statistic analysis using observations and Lagrangian modelling

    Science.gov (United States)

    Sellitto, Pasquale; Zanetel, Claudia; di Sarra, Alcide; Salerno, Giuseppe; Tapparo, Andrea; Briole, Pierre; Legras, Bernard

    2016-04-01

    Volcanic eruptions influence tropospheric and stratospheric composition, the Earth's radiation budget from the regional to the global scale, and then the Earth's climate. While the impact of the strong explosive eruptions reaching the stratosphere is relatively well known, the influence of the more frequent weak volcanic activity, including passive degassing, on the tropospheric aerosol properties and on the radiation budget is still largely unknown. Most of the radiative effects of moderate eruptions are associated with changes of the aerosol size distribution, composition, and shape. Emission of primary particles, mainly ash, and secondary aerosols through gas-to-particle conversion of volatile sulphur compounds contribute to affect the aerosol properties. Mount Etna's continuous degassing and episodic explosive eruptions is an important source of particles and gases for the Mediterranean atmosphere, with, e.g., ten times larger emissions of volatile sulphur compounds than the anthropogenic sulphur emissions in the Mediterranean area. The impact of Mount Etna on the atmospheric composition, the aerosol chemical, microphysical and optical properties, the clouds occurrence and properties, the radiative balance and the regional climate in the Mediterranean are not known and probably underestimated. In this contribution, the downwind impact of Mount Etna's sulphur emissions in the central Mediterranean is estimated over the period 2000-2013 using long-term series of sulphur dioxide column and Ångströms exponent observations at the the ENEA (Ente Nazionale per l'Energia e l'Ambiente) Station for Climate Observations on the small island of Lampedusa (35.5°N, 12.6°E). These observations are linked to the information on the volcanic source, in terms of 1) the local dynamics, using a long series of trajectories and plume dispersion information obtained with the FLEXPART Lagrangian mode, and 2) the emission strength, using the long-term series of daily sulphur dioxide

  11. Simulation of solar radiative transfer in cumulus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.

  12. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes

    Science.gov (United States)

    Xin, Q.; Gong, P.; Li, W.

    2015-02-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  13. Plasma effects in high frequency radiative transfer

    International Nuclear Information System (INIS)

    This paper is intended as a survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma. We are rapidly approaching an era when this subject will become important in the laboratory. For pedagogical reasons we have chosen to examine plasma processes by relating them to a particular reference plasma which will consist of fully ionized carbon at a temperature kT=1 KeV (1070K) and an electron density N = 3 x 1023cm-3, (which corresponds to a mass density rho = 1 gm/cm3 and an ion density N/sub i/ = 5 x 1022 cm-3). We will consider the transport in such a plasma of photons ranging from 1 eV to 1 KeV in energy. Such photons will probably be frequently used as diagnostic probes of hot dense laboratory plasmas

  14. Radiative Transfer in spheres I. Analytical Solutions

    CERN Document Server

    Aboughantous, C

    2001-01-01

    A nonsingular analytical solution for the transfer equation in a pure absorber is obtained in central symmetry and in a monochromatic radiation field. The native regular singularity of the equation is removed by applying a linear transformation to the frame of reference. Two different ap-proaches are used to carry out the solution. In the first approach the angular derivative is interpreted in an original way that made it possible to discard this derivative from the equation for all black body media without upsetting the conservation of energy. In this approach the analytic solution is expressible in terms of exponential integrals without approximations but for practical considerations the solution is presented in the form of Gauss-Legendre quadrature for quantitative evaluation of the solutions. In the second approach the angular derivative is approximated by a new set of discrete ordinates that guarantees the closer of the set of equations and the conservation of energy. The solutions from the two approache...

  15. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  16. MODTRAN4: radiative transfer modeling for remote sensing

    Science.gov (United States)

    Anderson, Gail P.; Berk, Alexander; Acharya, Prabhat K.; Matthew, Michael W.; Bernstein, Lawrence S.; Chetwynd, James H., Jr.; Dothe, H.; Adler-Golden, Steven M.; Ratkowski, Anthony J.; Felde, Gerald W.; Gardner, James A.; Hoke, Michael L.; Richtsmeier, Steven C.; Pukall, Brian; Mello, Jason B.; Jeong, Laila S.

    1999-12-01

    MODTRAN4, the newly released version of the U.S. Air Force atmospheric transmission, radiance and flux model is being developed jointly by the Air Force Research Laboratory/Space Vehicles Directorate and Spectral Sciences, Inc. It is expected to provide the accuracy required for analyzing spectral data for both atmospheric and surface characterization. These two quantities are the subject of satellite and aircraft campaigns currently being developed and pursued by, for instance: NASA (Earth Observing System), NPOESS (National Polar Orbiting Environmental Satellite System), and the European Space Agency (GOME--Global Ozone Monitoring Experiment). Accuracy improvements in MODTRAN relate primarily to two major developments: (1) the multiple scattering algorithms have been made compatible with the spectroscopy by adopting a corrected-k approach to describe the statistically expected transmittance properties for each spectral bin and atmospheric layer, and (2) radiative transfer calculations can be conducted with a Beer-Lambert formulation that improves the treatment of path inhomogeneities. Other code enhancements include the incorporation of solar azimuth dependence in the DISORT- based multiple scattering model, the introduction of surface BRDF (Bi-directional Radiance Distribution Functions) models and 15 cm-1 band model for improved computational speed.

  17. Theory of radiative transfer models applied in optical remote sensing of vegetation canopies.

    NARCIS (Netherlands)

    Verhoef, W.

    1998-01-01

    In this thesis the work of the author on the modelling of radiative transfer in vegetation canopies and the terrestrial atmosphere is summarized. The activities span a period of more than fifteen years of research in this field carried out at the National Aerospace Laboratory NLR.For the interpretat

  18. Diffuse Sky Radiation in a Dry Turbid Atmosphere

    OpenAIRE

    R. A. Gupta; B. K. Agarwal

    1984-01-01

    Development of a simple method for the assessment of atmospheric turbidity all over the country in all seasons has been attempted. We have been able to derive a reasonably reliable equation relating diffuse sky radiation Dr on a horizontal surface to air mass mr and Angstrom Schuepp turbidity coefficient B, in a dry atmosphere with constant albedo (A = 0.25) of the terrain.

  19. Four-stream Radiative Transfer Parameterization Scheme in a Land Surface Process Model

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wenyan; GUO Pinwen; LUO Yong; Kuo-Nan LIOU; Yu GU; Yongkang XUE

    2009-01-01

    Accurate estimates of albedos are required in climate modeling. Accurate and simple schemes for radiative transfer within canopy are required for these estimates, but severe limitations exist. This paper developed a four-stream solar radiative transfer model and coupled it with a land surface process model. The radiative model uses a four-stream approximation method as in the atmosphere to obtain analytic solutions of the basic equation of canopy radiative transfer. As an analytical model, the four-stream radiative transfer model can be easily applied efficiently to improve the parameterization of land surface radiation in climate models. Our four-stream solar radiative transfer model is based on a two-stream short wave radiative transfer model. It can simulate short wave solar radiative transfer within canopy according to the relevant theory in the atmosphere. Each parameter of the basic radiative transfer equation of canopy has special geometry and optical characters of leaves or canopy. The upward or downward radiative fluxes are related to the diffuse phase function, the G-function, leaf reflectivity and transmission, leaf area index, and the solar angle of the incident beam.The four-stream simulation is compared with that of the two-stream model. The four-stream model is proved successful through its consistent modeling of canopy albedo at any solar incident angle. In order to compare and find differences between the results predicted by the four-and two-stream models, a number of numerical experiments are performed through examining the effects of different leaf area indices, leaf angle distributions, optical properties of leaves, and ground surface conditions on the canopy albcdo. Parallel experiments show that the canopy albedos predicted by the two models differ significantly when the leaf angle distribution is spherical and vertical. The results also show that the difference is particularly great for different incident solar beams.One additional

  20. Polar firn layering in radiative transfer models

    Science.gov (United States)

    Linow, Stefanie; Hoerhold, Maria

    2016-04-01

    For many applications in the geosciences, remote sensing is the only feasible method of obtaining data from large areas with limited accessibility. This is especially true for the cryosphere, where light conditions and cloud coverage additionally limit the use of optical sensors. Here, instruments operating at microwave frequencies become important, for instance in polar snow parameters / SWE (snow water equivalent) mapping. However, the interaction between snow and microwave radiation is a complex process and still not fully understood. RT (radiative transfer) models to simulate snow-microwave interaction are available, but they require a number of input parameters such as microstructure and density, which are partly ill-constrained. The layering of snow and firn introduces an additional degree of complexity, as all snow parameters show a strong variability with depth. Many studies on RT modeling of polar firn deal with layer variability by using statistical properties derived from previous measurements, such as the standard deviations of density and microstructure, to configure model input. Here, the variability of microstructure parameters, such as density and particle size, are usually assumed to be independent of each other. However, in the case of the firn pack of the polar ice sheets, we observe that microstructure evolution depends on environmental parameters, such as temperature and snow deposition. Accordingly, density and microstructure evolve together within the snow and firn. Based on CT (computer tomography) microstructure measurements of antarctic firn, we can show that: first, the variability of density and effective grain size are linked and can thus be implemented in the RT models as a coupled set of parameters. Second, the magnitude of layering is captured by the measured standard deviation. Based on high-resolution density measurements of an Antarctic firn core, we study the effect of firn layering at different microwave wavelengths. By means of

  1. Radiative transfer during the reflooding step of a LOCA

    Science.gov (United States)

    Gérardin, J.; Seiler, N.; Ruyer, P.; Boulet, P.

    2013-10-01

    Within the evaluation of the heat transfer downstream a quench front during the reflood phase of a Loss of Coolant Accident (LOCA) in a nuclear power plant, a numerical study has been conducted on radiative transfer through a vapor-droplet medium. The non-grey behavior of the medium is obvious since it can be optically thin or thick depending on the wavelength. A six wide bands model has been tested, providing a satisfactory accuracy for the description of the radiative properties. Once the radiative properties of the medium computed, they have been introduced in a model solving the radiative heat transfer based on the Improved Differential Approximation. The fluxes and the flux divergence have been computed on a geometry characteristic of the reactor core showing that radiative transfer plays a relevant role, quite as important as convective heat transfer.

  2. Polymers under ionizing radiation: the study of energy transfers to radiation induced defects

    International Nuclear Information System (INIS)

    Radiation-induced defects created in polymers submitted to ionizing radiations, under inert atmosphere, present the same trend as a function of the dose. When the absorbed dose increases, their concentrations increase then level off. This behavior can be assigned to energy transfers from the polymer to the previously created macromolecular defects; the latter acting as energy sinks. During this thesis, we aimed to specify the influence of a given defect, namely the trans-vinylene, in the behavior of polyethylene under ionizing radiations. For this purpose, we proposed a new methodology based on the specific insertion, at various concentrations, of trans-vinylene groups in the polyethylene backbone through chemical synthesis. This enables to get rid of the variety of created defects on one hand and on the simultaneity of their creation on the other hand. Modified polyethylenes, containing solely trans-vinylene as odd groups, were irradiated under inert atmosphere, using either low LET beams (gamma, beta) or high LET beams (swift heavy ions). During irradiations, both macromolecular defects and H2 emission were quantified. According to experimental results, among all defects, the influence of the trans-vinylene on the behavior of polyethylene is predominant. (author)

  3. Sunrise: Polychromatic Dust Radiative Transfer in Arbitrary Geometries

    OpenAIRE

    Jonsson, Patrik

    2006-01-01

    This paper describes Sunrise, a parallel, free Monte-Carlo code for the calculation of radiation transfer through astronomical dust. Sunrise uses an adaptive-mesh refinement grid to describe arbitrary geometries of emitting and absorbing/scattering media, with spatial dynamical range exceeding 10^4, and it can efficiently generate images of the emerging radiation at arbitrary points in space. In addition to the monochromatic radiative transfer typically used by Monte-Carlo codes, Sunrise is c...

  4. A 3D radiative transfer framework: XI. multi-level NLTE

    CERN Document Server

    Hauschildt, Peter H

    2014-01-01

    Multi-level non-local thermodynamic equilibrium (NLTE) radiation transfer calculations have become standard throughout the stellar atmospheres community and are applied to all types of stars as well as dynamical systems such as novae and supernovae. Even today spherically symmetric 1D calculations with full physics are computationally intensive. We show that full NLTE calculations can be done with fully 3 dimensional (3D) radiative transfer. With modern computational techniques and current massive parallel computational resources, full detailed solution of the multi-level NLTE problem coupled to the solution of the radiative transfer scattering problem can be solved without sacrificing the micro physics description. We extend the use of a rate operator developed to solve the coupled NLTE problem in spherically symmetric 1D systems. In order to spread memory among processors we have implemented the NLTE/3D module with a hierarchical domain decomposition method that distributes the NLTE levels, radiative rates,...

  5. Radiative heat transfer in the extreme near field.

    Science.gov (United States)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  6. Study on radiation transfer in human skin for cosmetics

    Science.gov (United States)

    Yamada, Jun; Kawamura, Ayumu; Miura, Yoshimasa; Takata, Sadaki; Ogawa, Katsuki

    2005-06-01

    In order to design cosmetics producing the optical properties that are required for a beautiful skin, the radiation transfer in the skin has been numerically investigated by the Monte Carlo method and the effects of skin texture and cosmetics on the radiation transfer have been empirically investigated using an artificial skin. The numerical analysis showed that the total internal reflection suppresses large portion of radiation going out through the skin surface Additionally, the experimental study revealed that skin texture and cosmetics not only diffusely reflect the incoming radiation, but also lead the internally reflected radiation to the outside of the skin.

  7. Study on radiation transfer in human skin for cosmetics

    International Nuclear Information System (INIS)

    In order to design cosmetics producing the optical properties that are required for a beautiful skin, the radiation transfer in the skin has been numerically investigated by the Monte Carlo method and the effects of skin texture and cosmetics on the radiation transfer have been empirically investigated using an artificial skin. The numerical analysis showed that the total internal reflection suppresses large portion of radiation going out through the skin surface Additionally, the experimental study revealed that skin texture and cosmetics not only diffusely reflect the incoming radiation, but also lead the internally reflected radiation to the outside of the skin

  8. Solar Atmospheric Magnetic Energy Coupling: Radiative Redistribution Efficiency

    Science.gov (United States)

    Orange, N. Brice; Gendre, Bruce; Morris, David C.; Chesny, David

    2016-07-01

    Essential to many outstanding solar and stellar physics problems is elucidating the dynamic magnetic to radiative energy coupling of their atmospheres. Using three years of Solar Dynamics Observatory's Atmospheric Imaging Assembly and Heliosemic Magnetic Imager data of gross atmospheric feature classes, an investigation of magnetic and radiative energy redistribution is detailed. Self-consistent radiative to temperature distributions, that include magnetic weighting, of each feature class is revealed via utilizing the upper limit of thermodynamic atmospheric conditions provided by Active Region Cores (ARCs). Distinctly interesting is that our radiative energy distributions, though indicative to a linearly coupling with temperature, highlight the manifestation of diffuse ``unorganized" emission at upper transition region -- lower coronal regimes. Results we emphasize as correlating remarkably with emerging evidence for similar dependencies of magnetic energy redistribution efficiency with temperature, i.e., linearly with an embedded diffuse emitting region. We present evidence that our magnetic and radiative energy coupling descriptions are consistent with established universal scaling laws for large solar atmospheric temperature gradients and descriptions to the unresolved emission, as well as their insight to a potential origin of large variability in their previous reports. Finally, our work casts new light on the utility of narrowband observations as ad hoc tools for detailing solar atmospheric thermodynamic profiles, thus, presenting significant provisions to the field of solar and stellar physics, i.e., nature of coronae heating.

  9. International radiation commissions 1896 to 2008. Research into atmospheric radiation from IMO to IAMAS

    Energy Technology Data Exchange (ETDEWEB)

    Bolle, H.J. (comp.); Moeller, F.; London, J.

    2008-05-15

    The document covers a historical compilation on research into atmospheric radiation from 1896 to 2008. The first part is a brief history of the radiation commissions of IMO (International Meteorological Organization) and IUGG (International Union of Geodesy and Geophysics) for the period 1824 to 1948. Part 2 Covers the International Radiation Commission (IRC) of IAM (International Association of Meteorology)/IAMAS (International Association of Meteorology and Atmospheric Sciences)/IAMAP (International Association of Meteorology and Atmospheric Physics); the Re-constitution of the IUGG Radiation Commision, the Officers of the International Radiation Commission of IUUG 1948-2008, and the activities of the Radiation Commision of the IUGG 1948-2008. The appendices include the Radiation Commission Members, the summaries of presented papers from 1954 and 1957, the IRC publications, and acronyms.

  10. International radiation commissions 1896 to 2008. Research into atmospheric radiation from IMO to IAMAS

    International Nuclear Information System (INIS)

    The document covers a historical compilation on research into atmospheric radiation from 1896 to 2008. The first part is a brief history of the radiation commissions of IMO (International Meteorological Organization) and IUGG (International Union of Geodesy and Geophysics) for the period 1824 to 1948. Part 2 Covers the International Radiation Commission (IRC) of IAM (International Association of Meteorology)/IAMAS (International Association of Meteorology and Atmospheric Sciences)/IAMAP (International Association of Meteorology and Atmospheric Physics); the Re-constitution of the IUGG Radiation Commision, the Officers of the International Radiation Commission of IUUG 1948-2008, and the activities of the Radiation Commision of the IUGG 1948-2008. The appendices include the Radiation Commission Members, the summaries of presented papers from 1954 and 1957, the IRC publications, and acronyms

  11. Submandibular salivary gland transfer prevents radiation-induced xerostomia

    International Nuclear Information System (INIS)

    Background: Xerostomia is a significant morbidity of radiation therapy in the management of head and neck cancers. We hypothesized that the surgical transfer of one submandibular salivary gland to submental space, outside the proposed radiation field, prior to starting radiation treatment, would prevent xerostomia. Methods: We are conducting a prospective clinical trial where the submandibular gland is transferred as part of the surgical intervention. The patients are followed clinically, with salivary flow studies and University of Washington quality of life questionnaire. Results: We report early results of 16 patients who have undergone this procedure. Seven patients have finished and 2 patients are currently undergoing radiation treatment. In 2 patients, no postoperative radiation treatment was indicated. Two patients are waiting to start radiation treatment and 2 patients refused treatment after surgery. The surgical transfer was abandoned in 1 patient. All of the transferred salivary glands were positioned outside the proposed radiation fields and were functional. The patients did not complain of any xerostomia and developed only minimal oral mucositis. There were no surgical complications. Conclusions: Surgical transfer of a submandibular salivary gland to the submental space (outside the radiation field) preserves its function and prevents the development of radiation-induced xerostomia

  12. Brown carbon: a significant atmospheric absorber of solar radiation?

    Directory of Open Access Journals (Sweden)

    Y. Feng

    2013-09-01

    Full Text Available Several recent observational studies have shown organic carbon aerosols to be a significant source of absorption of solar radiation. The absorbing part of organic aerosols is referred to as "brown" carbon (BrC. Using a global chemical transport model and a radiative transfer model, we estimate for the first time the enhanced absorption of solar radiation due to BrC in a global model. The simulated wavelength dependence of aerosol absorption, as measured by the absorption Ångström exponent (AAE, increases from 0.9 for non-absorbing organic carbon to 1.2 (1.0 for strongly (moderately absorbing BrC. The calculated AAE for the strongly absorbing BrC agrees with AERONET spectral observations at 440–870 nm over most regions but overpredicts for the biomass burning-dominated South America and southern Africa, in which the inclusion of moderately absorbing BrC has better agreement. The resulting aerosol absorption optical depth increases by 18% (3% at 550 nm and 56% (38% at 380 nm for strongly (moderately absorbing BrC. The global simulations suggest that the strongly absorbing BrC contributes up to +0.25 W m−2 or 19% of the absorption by anthropogenic aerosols, while 72% is attributed to black carbon, and 9% is due to sulfate and non-absorbing organic aerosols coated on black carbon. Like black carbon, the absorption of BrC (moderately to strongly inserts a warming effect at the top of the atmosphere (TOA (0.04 to 0.11 W m−2, while the effect at the surface is a reduction (−0.06 to −0.14 W m−2. Inclusion of the strongly absorption of BrC in our model causes the direct radiative forcing (global mean of organic carbon aerosols at the TOA to change from cooling (−0.08 W m−2 to warming (+0.025 W m−2. Over source regions and above clouds, the absorption of BrC is higher and thus can play an important role in photochemistry and the hydrologic cycle.

  13. A Multiple Scattering Polarized Radiative Transfer Model: Application to HD 189733b

    CERN Document Server

    Kopparla, Pushkar; Zhang, Xi; Swain, Mark R; Wiktorowicz, Sloane J; Yung, Yuk L

    2015-01-01

    We present a multiple scattering vector radiative transfer model which produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet's atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partial...

  14. Investigation of radiative heat transfer in fixed bed biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    T. Klason; X.S. Bai; M. Bahador; T.K. Nilsson; B. Sunden [Lund Institute of Technology, Lund (Sweden). Division of Fluid Mechanics

    2008-08-15

    This paper presents an investigation of the radiative heat transfer process in two fixed bed furnaces firing biomass fuels and the performance of several widely used models for calculation of radiative heat transfer in the free-room of fixed bed furnaces. The effective mean grey gas absorption coefficients are calculated using an optimised version of the exponential wide band model (EWBM) based on an optical mean beam length. Fly-ash and char particles are taken into account using Mie scattering. In the investigated updraft small-scale fixed bed furnace radiative transfer carries heat from the bed to the free-room, whereas in the cross-current bed large-scale industry furnace, radiative transfer brings heat from the hot zones in the free-room to the drying zone of the bed. Not all the investigated models can predict these heat transfer trends, and the sensitivity of results to model parameters is fairly different in the two furnaces. In the small-scale furnace, the gas absorption coefficient predicted by using different optical lengths has great impact on the predicted temperature field. In the large-scale furnaces, the predicted temperature field is less sensitive to the optical length. In both furnaces, with the same radiative properties, the low-computational-cost P1 model predicts a temperature field in the free-room similar to that by the more time consuming SLW model. In general, the radiative heat transfer rates to the fuel bed are not very sensitive to the radiative properties, but they are sensitive to the different radiative heat transfer models. For a realistic prediction of the radiative heat transfer rate to the fuel bed or to the walls, more computationally demanding models such as the FGG or SLW models should be used. 37 refs., 7 figs., 2 tabs.

  15. A Generalized Layered Radiative Transfer Model in the Vegetation Canopy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, a generalized layered model for radiation transfer in canopy with high vertical resolution is developed. Differing from the two-stream approximate radiation transfer model commonly used in the land surface models, the generalized model takes into account the effect of complicated canopy morphology and inhomogeneous optical properties of leaves on radiation transfer within the canopy. In the model, the total leaf area index (LAI) of the canopy is divided into many layers. At a given layer, the influences of diffuse radiation angle distributions and leaf angle distributions on radiation transfer within the canopy are considered. The derivation of equations serving the model are described in detail, and these can deal with various diffuse radiation transfers in quite broad categories of canopy with quite inhomogeneous vertical structures and uneven leaves with substantially different optical properties of adaxial and abaxial faces of the leaves. The model is used to simulate the radiation transfer for canopies with horizontal leaves to validate the generalized model. Results from the model are compared with those from the two-stream scheme, and differences between these two models are discussed.

  16. Solar Radiation Estimated Through Mesoscale Atmospheric Modeling over Northeast Brazil

    Science.gov (United States)

    de Menezes Neto, Otacilio Leandro; Costa, Alexandre Araújo; Ramalho, Fernando Pinto; de Maria, Paulo Henrique Santiago

    2009-03-01

    The use of renewable energy sources, like solar, wind and biomass is rapidly increasing in recent years, with solar radiation as a particularly abundant energy source over Northeast Brazil. A proper quantitative knowledge of the incoming solar radiation is of great importance for energy planning in Brazil, serving as basis for developing future projects of photovoltaic power plants and solar energy exploitation. This work presents a methodology for mapping the incoming solar radiation at ground level for Northeast Brazil, using a mesoscale atmospheric model (Regional Atmospheric Modeling System—RAMS), calibrated and validated using data from the network of automatic surface stations from the State Foundation for Meteorology and Water Resources from Ceará (Fundação Cearense de Meteorologia e Recursos Hídricos- FUNCEME). The results showed that the model exhibits systematic errors, overestimating surface radiation, but that, after the proper statistical corrections, using a relationship between the model-predicted cloud fraction, the ground-level observed solar radiation and the incoming solar radiation estimated at the top of the atmosphere, a correlation of 0.92 with a confidence interval of 13.5 W/m2 is found for monthly data. Using this methodology, we found an estimate for annual average incoming solar radiation over Ceará of 215 W/m2 (maximum in October: 260 W/m2).

  17. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    Science.gov (United States)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall

  18. Radiative Transfer Model for Translucent Slab Ice on Mars

    Science.gov (United States)

    Andrieu, F.; Schmidt, F.; Douté, S.; Schmitt, B.; Brissaud, O.

    2016-09-01

    We developed a radiative transfer model that simulates in VIS/NIR the bidirectional reflectance of a contaminated slab layer of ice overlaying a granular medium, under geometrical optics conditions to study martian ices.

  19. Diffuse Sky Radiation in a Dry Turbid Atmosphere

    Directory of Open Access Journals (Sweden)

    R. A. Gupta

    1984-07-01

    Full Text Available Development of a simple method for the assessment of atmospheric turbidity all over the country in all seasons has been attempted. We have been able to derive a reasonably reliable equation relating diffuse sky radiation Dr on a horizontal surface to air mass mr and Angstrom Schuepp turbidity coefficient B, in a dry atmosphere with constant albedo (A = 0.25 of the terrain.

  20. Further considerations of cosmic ray modulation of infra-red radiation in the atmosphere

    CERN Document Server

    Aplin, Karen

    2015-01-01

    Understanding effects of ionisation in the lower atmosphere is a new interdisciplinary area, crossing traditionally distinct scientific boundaries. Following the paper of Erlykin et al. (Astropart. Phys. 57--58 (2014) 26--29) we develop the interpretation of observed changes in long-wave (LW) radiation (Aplin and Lockwood, Env. Res. Letts. 8, 015026 (2013)), by taking account of cosmic ray ionisation yields and atmospheric radiative transfer. To demonstrate this, we show that the thermal structure of the whole atmosphere needs to be considered along with the vertical profile of ionisation. Allowing for ionisation by all components of a cosmic ray shower and not just by the muons, reveals that the effect we have detected is certainly not inconsistent with laboratory observations of the LW absorption cross section. The analysis presented here, although very different from that of Erlykin et al., does come to the same conclusion that the events detected were not caused by individual cosmic ray primaries -- not b...

  1. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Densmore, Jeffrey D [Los Alamos National Laboratory; Kelly, Thompson G [Los Alamos National Laboratory; Urbatish, Todd J [Los Alamos National Laboratory

    2010-11-17

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.

  2. grtrans: Polarized general relativistic radiative transfer via ray tracing

    Science.gov (United States)

    Dexter, Jason

    2016-05-01

    grtrans calculates ray tracing radiative transfer in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics, for comparing theoretical models of black hole accretion flows and jets with observations. The code is written in Fortran 90 and parallelizes with OpenMP; the full code and several components have Python interfaces. grtrans includes Geokerr (ascl:1011.015) and requires cfitsio (ascl:1010.001) and pyfits (ascl:1207.009).

  3. Atmospheric transmittance model for photosynthetically active radiation

    Energy Technology Data Exchange (ETDEWEB)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana [Physics Department, West University of Timisoara, V Parvan 4, 300223 Timisoara (Romania); Pop, Nicolina [Department of Physical Foundations of Engineering, Politehnica University of Timisoara, V Parvan 2, 300223 Timisoara (Romania); Calinoiu, Delia [Mechanical Engineering Faculty, Politehnica University of Timisoara, Mihai Viteazu 1, 300222 Timisoara (Romania)

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  4. Radiative transfer in cylindrical threads with incident radiation. VII. Multi-thread models

    Science.gov (United States)

    Labrosse, N.; Rodger, A. S.

    2016-03-01

    Aims: Our aim is to improve on previous radiative transfer calculations in illuminated cylindrical threads to better understand the physical conditions in cool solar chromospheric and coronal structures commonly observed in hydrogen and helium lines. Methods: We solved the radiative transfer and statistical equilibrium equations in a two-dimensional cross-section of a cylindrical structure oriented horizontally and lying above the solar surface. The cylinder is filled with a mixture of hydrogen and helium and is illuminated at a given altitude from the solar disc. We constructed simple models made from a single thread or from an ensemble of several threads along the line of sight. This first use of two-dimensional, multi-thread fine structure modelling combining hydrogen and helium radiative transfer allowed us to compute synthetic emergent spectra from cylindrical structures and to study the effect of line-of-sight integration of an ensemble of threads under a range of physical conditions. We analysed the effects of variations in temperature distribution and in gas pressure. We considered the effect of multi-thread structures within a given field of view and the effect of peculiar velocities between the structures in a multi-thread model. We compared these new models to the single thread model and tested them with varying parameters. Results: The presence of a temperature gradient, with temperature increasing towards the edge of the cylindrical thread, reduces the relative importance of the incident radiation coming from the solar disc on the emergent intensities of most hydrogen and helium lines. We also find that when assuming randomly displaced threads in a given field of view, the integrated intensities of optically thick and thin transitions behave considerably differently. In optically thin lines, the emergent intensity increases proportionally with the number of threads, and the spatial variation of the intensity becomes increasingly homogeneous. Optically

  5. A study of Monte Carlo radiative transfer through fractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P. [Univ. of California, Santa Barbara, CA (United States)] [and others

    1996-04-01

    An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.

  6. Radiation curable compositions useful as transfer coatings

    International Nuclear Information System (INIS)

    The invention is on a method for applying a coating to a thin porous substrate and reducing absorption of the coating into the substrate by applying a radiation-curable composition to a carrying web; the radiation-curable coating composition having a crosslink density of 0.02 to about 1.0 determined by calculation of the gram moles of branch points per 100 grams of uncured coating, and a glass transition temperature of the radiation cured coating within the approximate range of -80 degrees to +100 degrees C. The carrying web being of a nature such that the coating composition, when cured, will not adhere to its surface

  7. General Relativistic Radiative Transfer: Applications to Black-Hole Systems

    Science.gov (United States)

    Wu, Kinwah; Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Branduardi-Raymont, Graziella; Lee, Khee-Gan

    2007-01-01

    We present general relativistic radiation transfer formulations which include opacity effects due to absorption, emission and scattering explicitly. We consider a moment expansions for the transfer in the presence of scattering. The formulation is applied to calculation emissions from accretion and outflows in black-hole systems. Cases with thin accretion disks and accretion tori are considered. Effects, such as emission anisotropy, non-stationary flows and geometrical self-occultation are investigated. Polarisation transfer in curved space-time is discussed qualitatively.

  8. Surface-Phonon Polariton Contribution to Nanoscale Radiative Heat Transfer.

    OpenAIRE

    Rousseau, Emmanuel; Laroche, Marine; Greffet, Jean-Jacques

    2009-01-01

    Heat transfer between two plates of polar materials at nanoscale distance is known to be enhanced by several orders of magnitude as compared with its far-field value. In this article, we show that nanoscale heat transfer is dominated by the coupling between surface phonon-polaritons located on each interface. Furthermore, we derive an asymptotic closed-form expression of the radiative heat transfer between two polar materials in the near-field regime. We study the temperature dependence of th...

  9. Alternative application for the radiation background in the development of the atlas database of atmospheric radiation

    CERN Document Server

    De la Hoz, Ivan Arturo Morales

    2014-01-01

    Nowadays radiation is one of the variables to be considered in the environmental forecasting and it is meaningful in the increase of global warming, together greenhouse effect. The radiation considered by the meteorological organizations depends on the World Radiometric Reference (WRR), the World Standard Group (WSG), addressed by the World Meteorological Organization (WMO). This work is based on the cosmic microwave background, as a variable to be estimated in order to get information about the incident radiation in the Earth's atmosphere, as a valuable and meaningful contribution in the building of the radiation atlas by the (UPME) and (IDEAM). Due to the fact that the variables considered are ultraviolet and infrared radiation, ozone column, direct radiation and diffuse radiation, the last two get the global radiation, and are the only ones to be evaluated by the national meteorological organizations in the country. The study of the cosmic background radiation as a research project will provide data which ...

  10. Science Plan for the Atmospheric Radiation Measurement Program (ARM)

    International Nuclear Information System (INIS)

    The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE's programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols

  11. Satellite data sets for the atmospheric radiation measurement (ARM) program

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Bernstein, R.L. [SeaSpace Corp., San Diego, CA (United States)

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  12. Science Plan for the Atmospheric Radiation Measurement Program (ARM)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

  13. The radiation in the atmosphere during major solar particle events

    Science.gov (United States)

    Clucas, Simon N.; Dyer, Clive S.; Lei, Fan

    Major solar particle events can give rise to greatly enhanced radiation throughout the entire atmosphere including at aircraft altitudes. These particle events are very hard to predict and their effect on aircraft is difficult to calculate. A comprehensive model of the energetic radiation in the atmosphere has been developed based on a response matrix of the atmosphere to energetic particle incidence. This model has previously been used to determine the spectral form of several ground level neutron events including February 1956 and September/October 1989. Significant validation of the model has been possible using CREAM data flying onboard Concorde during the September/October 1989 events. Further work has been carried out for the current solar maximum, including estimates of the solar particle spectra during the July 2000, April 2001, and October 2003 events and comparisons of predicted atmospheric measurements with limited flight data. Further CREAM data have been obtained onboard commercial airlines and high altitude business jets during quiet time periods. In addition, the atmospheric radiation model, along with solar particle spectra, have been used to calculate the neutron flux and dose rates along several commercial aircraft flight paths including London to Los Angeles. The influence of rigidity cut-off suppression by geomagnetic storms is examined and shows that the received flight dose during disturbed periods can be significantly enhanced compared with quiet periods.

  14. Highly physical penumbra solar radiation pressure modeling with atmospheric effects

    Science.gov (United States)

    Robertson, Robert; Flury, Jakob; Bandikova, Tamara; Schilling, Manuel

    2015-10-01

    We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth's penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the sub-nm/s2 precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.

  15. A spectroscopic transfer standard for accurate atmospheric CO measurements

    Science.gov (United States)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  16. Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations

    CERN Document Server

    Ahn, Kyungjin

    2015-01-01

    We present a novel method to implement time-delayed propagation of radiation fields in cosmological radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative transfer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.

  17. Early warning of atmospheric regime transitions using transfer operators

    Science.gov (United States)

    Tantet, Alexis; Dijkstra, Henk

    2015-04-01

    The existence of persistent midlatitude atmospheric regimes, such as blocking events, with time scales larger than 5-10 days and indications of preferred transition paths between them motivates the development of early-warning indicators of regime transitions. Here, we use a barotropic model of the northern midlatitudes winter flow to study such meta-stable regimes. We look at estimates of transfer operators acting on densities evolving on a reduced phase space spanned by the first Empirical Orthogonal Functions of the streamfunction and develop an early-warning indicator of zonal to blocked flow transition. The study of the spectra of transfer operators estimated for different lags reveals a multi-level structure in the flow as well as the effect of memory on the reduced dynamics due to past interactions between the resolved and unresolved variables. The slowest motions in the reduced phase space are thereby found to have time scales larger than 8 days and to behave as Markovian for larger lags. These motions are associated with meta-stable regimes and their transitions and can be detected as almost-invariant sets of the transfer operator. The early-warning indicator is based on the action on an initial density of products of the transfer operators estimated for sufficiently long lags, making use of the semi-group property of these operators and shows relatively good Peirce skill score. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths as the manifestation of barotropic instability. Finally, even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty.

  18. User's Manual: Routines for Radiative Heat Transfer and Thermometry

    Science.gov (United States)

    Risch, Timothy K.

    2016-01-01

    Determining the intensity and spectral distribution of radiation emanating from a heated surface has applications in many areas of science and engineering. Areas of research in which the quantification of spectral radiation is used routinely include thermal radiation heat transfer, infrared signature analysis, and radiation thermometry. In the analysis of radiation, it is helpful to be able to predict the radiative intensity and the spectral distribution of the emitted energy. Presented in this report is a set of routines written in Microsoft Visual Basic for Applications (VBA) (Microsoft Corporation, Redmond, Washington) and incorporating functions specific to Microsoft Excel (Microsoft Corporation, Redmond, Washington) that are useful for predicting the radiative behavior of heated surfaces. These routines include functions for calculating quantities of primary importance to engineers and scientists. In addition, the routines also provide the capability to use such information to determine surface temperatures from spectral intensities and for calculating the sensitivity of the surface temperature measurements to unknowns in the input parameters.

  19. Transfer of polarized light in planetary atmospheres basic concepts and practical methods

    CERN Document Server

    Hovenier, Joop W; Domke, Helmut

    2004-01-01

    The principal elements of the theory of polarized light transfer in planetary atmospheres are expounded in a systematic but concise way. Basic concepts and practical methods are emphasized, both for single and multiple scattering of electromagnetic radiation by molecules and particles in the atmospheres of planets in the Solar System, including the Earth, and beyond. A large part of the book is also useful for studies of light scattering by particles in comets, the interplanetary and interstellar medium, circumstellar disks, reflection nebulae, water bodies like oceans and suspensions of particles in a gas or liquid in the laboratory. Throughout the book symmetry principles, such as the reciprocity principle and the mirror symmetry principle, are employed. In this way the theory is made more transparent and easier to understand than in most papers on the subject. In addition, significant computational reductions, resulting from symmetry principles, are presented. Hundreds of references to relevant literature ...

  20. Atmospheric transport, clouds and the Arctic longwave radiation paradox

    Science.gov (United States)

    Sedlar, Joseph

    2016-04-01

    Clouds interact with radiation, causing variations in the amount of electromagnetic energy reaching the Earth's surface, or escaping the climate system to space. While globally clouds lead to an overall cooling radiative effect at the surface, over the Arctic, where annual cloud fractions are high, the surface cloud radiative effect generally results in a warming. The additional energy input from absorption and re-emission of longwave radiation by the clouds to the surface can have a profound effect on the sea ice state. Anomalous atmospheric transport of heat and moisture into the Arctic, promoting cloud formation and enhancing surface longwave radiation anomalies, has been identified as an important mechanism in preconditioning Arctic sea ice for melt. Longwave radiation is emitted equally in all directions, and changes in the atmospheric infrared emission temperature and emissivity associated with advection of heat and moisture over the Arctic should correspondingly lead to an anomalous signal in longwave radiation at the top of the atmosphere (TOA). To examine the role of atmospheric heat and moisture transport into the Arctic on TOA longwave radiation, infrared satellite sounder observations from AIRS during 2003-2014 are analyzed for summer (JJAS). Thermodynamic metrics are developed to identify months characterized by a high frequency of warm and moist advection into the Arctic, and segregate the 2003-14 time period into climatological and anomalously warm, moist summer months. We find that anomalously warm, moist months result in a significant TOA longwave radiative cooling, which is opposite the forcing signal that the surface experiences during these months. At the timescale of the advective events, 3-10 days, the TOA cooling can be as large as the net surface energy budget during summer. When averaged on the monthly time scale, and over the full Arctic basin (poleward of 75°N), summer months experiencing frequent warm, moist advection events are

  1. Atmospheric radiation measurement program facilities newsletter, June 2002.; TOPICAL

    International Nuclear Information System (INIS)

    ARM Intensive Operational Period Scheduled to Validate New NASA Satellite-Beginning in July, all three ARM sites (Southern Great Plains[SGP], North Slope of Alaska, and Tropical Western Pacific; Figure 1) will participate in the AIRS Validation IOP. This three-month intensive operational period (IOP) will validate data collected by the satellite-based Atmospheric Infrared Sounder (AIRS) recently launched into space. On May 4, the National Aeronautics and Space Administration (NASA) launched Aqua, the second spacecraft in the Earth Observing System (EOS) series. The EOS satellites monitor Earth systems including land surfaces, oceans, the atmosphere, and ice cover. The first EOS satellite, named Terra, was launched in December 1999. The second EOS satellite is named Aqua because its primary focus is understanding Earth's water cycle through observation of atmospheric moisture, clouds, temperature, ocean surface, precipitation, and soil moisture. One of the instruments aboard Aqua is the AIRS, built by the Jet Propulsion Laboratory, a NASA agency. The AIRS Validation IOP complements the ARM mission to improve understanding of the interactions of clouds and atmospheric moisture with solar radiation and their influence on weather and climate. In support of satellite validation IOP, ARM will launch dedicated radiosondes at all three ARM sites while the Aqua satellite with the AIRS instrument is orbiting overhead. These radiosonde launches will occur 45 minutes and 5 minutes before selected satellite overpasses. In addition, visiting scientists from the Jet Propulsion Laboratory will launch special radiosondes to measure ozone and humidity over the SGP site. All launches will generate ground-truth data to validate satellite data collected simultaneously. Data gathered daily by ARM meteorological and solar radiation instruments will complete the validation data sets. Data from Aqua-based instruments, including AIRS, will aid in weather forecasting, climate modeling, and

  2. Processes linking the hydrological cycle and the atmospheric radiative budget

    Science.gov (United States)

    Fueglistaler, Stephan; Dinh, Tra

    2016-04-01

    We study the response of the strength of the global hydrological cycle to changes in carbon dioxide (CO2) using the HiRAM General Circulation Model developed at the Geophysical Fluid Dynamics Laboratory (GFDL), with the objective to better connect the well-known energetic constraints to physical processes. We find that idealized model setups using a global slab ocean and annual mean insolation give similar scalings as coupled atmosphere-ocean models with realistic land and topography. Using the surface temperatures from the slab ocean runs, we analyse the response in the atmospheric state and hydrological cycle separately for a change in CO2 (but fixed surface temperature), and for a change in surface temperature (but fixed CO2). The former perturbation is also referred to as the "fast" response, whereas the latter is commonly used to diagnose a model's climate sensitivity. As expected from the perspective of the atmospheric radiative budget, an increase in CO2 at fixed surface temperature decreases the strength of the hydrological cycle, and an increase in surface temperature increases the strength of the hydrological cycle. However, the physical processes that connect the atmospheric radiative energy budget to the sensible and latent heat fluxes at the surface remain not well understood. The responses to the two perturbations are linearly additive, and we find that the experiment with fixed surface temperature and changes in CO2 is of great relevance to understanding the total response. This result points to the importance of local radiative heating rate changes rather than just the net atmospheric radiative loss of energy. Although larger in magnitude, the response to changes in surface temperature is dominated by the temperature dependence of the water vapor pressure, but in both cases changes in near-surface relative humidity are very important.

  3. Detection of atmospheric Cherenkov radiation using solar heliostat mirrors

    Science.gov (United States)

    Ong, R. A.; Bhattacharya, D.; Covault, C. E.; Dixon, D. D.; Gregorich, D. T.; Hanna, D. S.; Oser, S.; Québert, J.; Smith, D. A.; Tümer, O. T.; Zych, A. D.

    1996-10-01

    There is considerable interest world-wide in developing large area atmospheric Cherenkov detectors for ground-based gamma-ray astronomy. This interest stems, in large part, from the fact that the gamma-ray energy region between 20 and 250 GeV is unexplored by any experiment. Atmospheric Cherenkov detectors offer a possible way to explore this region, but large photon collection areas are needed to achieve low energy thresholds. We are developing an experiment using the heliostat mirrors of a solar power plant as the primary collecting element. As part of this development, we built a detector using four heliostat mirrors, a secondary Fresnel lens, and a fast photon detection system. In November 1994, we used this detector to record atmospheric Cherenkov radiation produced by cosmic ray particles showering in the atmosphere. The detected rate of cosmic ray events was consistent with an energy threshold near 1 TeV. The data presented here represent the first detection of atmospheric Cherenkov radiation using solar heliostats viewed from a central tower.

  4. A Simplified Scheme of the Generalized Layered Radiative Transfer Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted sky diffuse radiation, as well as of canopy morphology, and in turn saves computer resources. Results from the SGRTM agree perfectly with those of the GRTM. Secondly, by applying the linear superposition principle of the optics and by using the basic solutions of the GRTM for radiative transfer within the canopy under the condition of assumed zero soil reflectance, two sets of explicit analytical solutions of radiative transfer within the canopy with any soil reflectance magnitude are derived: one for incident diffuse, and the other for direct beam radiation. The explicit analytical solutions need two sets of basic solutions of canopy reflectance and transmittance under zero soil reflectance, run by the model for both diffuse and direct beam radiation. One set of basic solutions is the canopy reflectance αf (written as α1 for direct beam radiation) and transmittance βf (written as β1 for direction beam radiation) with zero soil reflectance for the downward radiation from above the canopy (i.e. sky), and the other set is the canopy reflectance (αb) and transmittanceβb for the upward radiation from below the canopy (i.e., ground). Under the condition of the same plant architecture in the vertical layers, and the same leaf adaxial and abaxial optical properties in the canopies for the uniform diffuse radiation, the explicit solutions need only one set of basic solutions, because under this condition the two basic solutions are equal, i.e., αf = αb and βf = βb. Using the explicit analytical solutions, the fractions of any kind of incident solar radiation reflected from (defined as surface albedo, or canopy reflectance),transmitted through (defined as canopy transmittance), and absorbed by (defined as canopy absorptance)the canopy and other properties

  5. Detection of atmospheric Cherenkov radiation using solar heliostat mirrors

    CERN Document Server

    Ong, R A

    1996-01-01

    The gamma-ray energy region between 20 and 250 GeV is largely unexplored. Ground-based atmospheric Cherenkov detectors offer a possible way to explore this region, but large Cherenkov photon collection areas are needed to achieve low energy thresholds. This paper discusses the development of a Cherenkov detector using the heliostat mirrors of a solar power plant as the primary collector. As part of this development, we built a prototype detector consisting of four heliostat mirrors and used it to record atmospheric Cherenkov radiation produced in extensive air showers created by cosmic ray particles.

  6. Modeling radiation from the atmosphere of Io with Monte Carlo methods

    Science.gov (United States)

    Gratiy, Sergey

    Conflicting observations regarding the dominance of either sublimation or volcanism as the source of the atmosphere on Io and disparate reports on the extent of its spatial distribution and the absolute column abundance invite the development of detailed computational models capable of improving our understanding of Io's unique atmospheric structure and origin. To validate a global numerical model of Io's atmosphere against astronomical observations requires a 3-D spherical-shell radiative transfer (RT) code to simulate disk-resolved images and disk-integrated spectra from the ultraviolet to the infrared spectral region. In addition, comparison of simulated and astronomical observations provides important information to improve existing atmospheric models. In order to achieve this goal, a new 3-D spherical-shell forward/backward photon Monte Carlo code capable of simulating radiation from absorbing/emitting and scattering atmospheres with an underlying emitting and reflecting surface was developed. A new implementation of calculating atmospheric brightness in scattered sunlight is presented utilizing the notion of an "effective emission source" function. This allows for the accumulation of the scattered contribution along the entire path of a ray and the calculation of the atmospheric radiation when both scattered sunlight and thermal emission contribute to the observed radiation---which was not possible in previous models. A "polychromatic" algorithm was developed for application with the backward Monte Carlo method and was implemented in the code. It allows one to calculate radiative intensity at several wavelengths simultaneously, even when the scattering properties of the atmosphere are a function of wavelength. The application of the "polychromatic" method improves the computational efficiency because it reduces the number of photon bundles traced during the simulation. A 3-D gas dynamics model of Io's atmosphere, including both sublimation and volcanic

  7. Fundamental remote sensing science research program: The Scene Radiation and Atmospheric Effects Characterization Project

    Science.gov (United States)

    Deering, D. W.

    1985-01-01

    The Scene Radiation and Atmospheric Effects Characterization (SRAEC) Project was established within the NASA Fundamental Remote Sensing Science Research Program to improve our understanding of the fundamental relationships of energy interactions between the sensor and the surface target, including the effect of the atmosphere. The current studies are generalized into the following five subject areas: optical scene modeling, Earth-space radiative transfer, electromagnetic properties of surface materials, microwave scene modeling, and scatterometry studies. This report has been prepared to provide a brief overview of the SRAEC Project history and objectives and to report on the scientific findings and project accomplishments made by the nineteen principal investigators since the project's initiation just over three years ago. This annual summary report derives from the most recent annual principal investigators meeting held January 29 to 31, 1985.

  8. The distribution, atmospheric transfer, and assessment of krypton-85

    International Nuclear Information System (INIS)

    Techniques for sampling and measuring krypton-85 have been developed which allowed to determine its geographical distribution. From its use as a tracer, an evaluation of the air masses which cross over the subtropical fronts has been derived. Besides, the stratospheric character of air pollution by krypton-85 at the level of the antarctic soil has been shown out. Levels of krypton-85 seem to point out to an underestimation of the assessment of nuclear explosion fission energies as adopted by the United Nations Scientific committee on the effects of atomic radiation and emphasize the need to set limits as soon as possible to the amounts of krypton-85 released to the atmosphere by fuel-reprocessing plants. (author)

  9. Radiative heat transfer by the Monte Carlo method

    CERN Document Server

    Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko

    1995-01-01

    This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering

  10. Multi-coupled single scattering method of solving vector radiative transfer equations

    Institute of Scientific and Technical Information of China (English)

    Sun Bin; Wang Han; Sun Xiao-Bing; Hong Jin; Zhang Yun-Jie

    2012-01-01

    A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is developed and made public on Internet.Recent solutions from Chandrasekhar's X-Y method is used to validate the MCSS's result,which shows high precision.The MCSS method is theoretically simple and clear,so it can be easily and credibly extended to the simulation of aerosol/cloud atmosphere's radiative properties,which provides effective support for research into polarized remote sensing.

  11. Effects of hydrodynamics and thermal radiation in the atmosphere after comet impacts

    Science.gov (United States)

    Nemchinov, I. V.; Popova, M. P.; Shubadeeva, L. P.; Shuvalov, V. V.; Svetsov, V. V.

    1993-01-01

    Radiation phenomena in the atmosphere after impacts of cosmic bodies have special features in comparison with the surface nuclear explosions. First, initial concentration of energy after the impact is lower, and second, a wake after the passage of the meteoroid through the atmosphere has a dramatic effect on the atmospheric flow and radiation transfer. Consequently, scaling laws can not be employed for prediction of the flow in the atmosphere and the light flux on the Earth's surface. If a density of high-velocity impactor is low relative to the ground, as in a case of a comet impact on rocks, a major part of the kinetic energy is converted to internal energy of dense hot vapors. But radiation effects can be essential even for fairly low velocities of the impactor. To clarify this issue we have undertaken calculations of 100-Mt explosions at the Earth's surface caused by small comets with velocities from 10 to 70 km/sec. That is, the initial concentration of energy has been varied. The calculations have shown that for velocities of the comet greater or about 20 km/sec a portion of energy emitted from the fireball exceeds 20% of the total energy of the explosion and this quantity does not change very much with the velocity. Other aspects of this investigation are discussed.

  12. Further considerations of cosmic ray modulation of infra-red radiation in the atmosphere

    Science.gov (United States)

    Aplin, K. L.; Lockwood, M.

    2015-08-01

    Understanding effects of ionisation in the lower atmosphere is a new interdisciplinary area, crossing the traditionally distinct scientific boundaries between astro-particle and atmospheric physics and also requiring understanding of both heliospheric and magnetospheric influences on cosmic rays. Following the paper of Erlykin et al. (2014) we develop further the interpretation of our observed changes in long-wave (LW) radiation, Aplin and Lockwood (2013) by taking account of both cosmic ray ionisation yields and atmospheric radiative transfer. To demonstrate this, we show that the thermal structure of the whole atmosphere needs to be considered along with the vertical profile of ionisation. Allowing for, in particular, ionisation by all components of a cosmic ray shower and not just by the muons, reveals that the effect we have detected is certainly not inconsistent with laboratory observations of the LW absorption cross section. The analysis presented here, although very different from that of Erlykin et al., does come to the same conclusion that the events detected by AL were not caused by individual cosmic ray primaries - not because it is impossible on energetic grounds, but because events of the required energy are too infrequent for the 12 h-1 rate at which they were seen by the AL experiment. The present paper numerically models the effect of three different scenario changes to the primary GCR spectrum which all reproduce the required magnitude of the effect observed by AL. However, they cannot solely explain the observed delay in the peak effect which, if confirmed, would appear to open up a whole new and interesting area in the study of water oligomers and their effects on LW radiation. We argue that a technical artefact in the AL experiment is highly unlikely and that our initial observations merit both a wide-ranging follow-up experiment and more rigorous, self-consistent, three-dimensional radiative transfer modelling.

  13. Atmospheric Radiation Measurement program (ARM) -- Summer 1995 review

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, G.; Ruderman, M.; Treiman, S.

    1995-10-01

    ARM is a highly focused program designed to improve the understanding of the transport of infrared and solar radiation through the atmosphere. The program pays particular attention to the interaction of radiation with the three phases of water. The goals of ARM are usually articulated in terms of improvements in climate models. The authors agree that ARM can indeed make significant contributions to the understanding of climate change. In addition the authors believe that the results of the program will have wide applicability to a broad range of problems, including more accurate short-term and seasonal weather forecasting. This report examines the issues of anomalous atmospheric absorption and makes recommendations concerning future directions for the ARM program.

  14. Modeling photosynthesis of discontinuous plant canopies by linking the Geometric Optical Radiative Transfer model with biochemical processes

    Science.gov (United States)

    Xin, Q.; Gong, P.; Li, W.

    2015-06-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily timescales. We demonstrate that ambient CO2 concentrations influence daytime vegetation photosynthesis, which needs to be considered in biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  15. Computation of Radiation Heat Transfer in Aeroengine Combustors

    Science.gov (United States)

    Patankar, S. V.

    1996-01-01

    In this report the highlights of the research completed for the NASA are summarized. This research has been completed in the form of two Ph.D. theses by Chai (1994) and Parthasarathy (1996). Readers are referred to these theses for a complete details of the work and lists of references. In the following sections, first objectives of this research are introduced, then the finite-volume method for radiation heat transfer is described, and finally computations of radiative heat transfer in non-gray participating media is presented.

  16. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanhong; Wu, Jingzhi, E-mail: jzwu@live.nuc.edu.cn [Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, Shanxi (China)

    2016-02-15

    Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  17. A 3D radiative transfer framework: III. periodic boundary conditions

    OpenAIRE

    Hauschildt, Peter H.; Baron, E.

    2008-01-01

    We present a general method to solve radiative transfer problems including scattering in the continuum as well as in lines in 3D configurations with periodic boundary conditions. he scattering problem for line transfer is solved via means of an operator splitting (OS) technique. The formal solution is based on a full characteristics method. The approximate $\\Lambda$ operator is constructed considering nearest neighbors exactly. The code is parallelized over both wavelength and solid angle usi...

  18. Atmospheric Radiation Measurement Program facilities newsletter, July 2001.; TOPICAL

    International Nuclear Information System (INIS)

    Global Warming and Methane-Global warming, an increase in Earth's near-surface temperature, is believed to result from the buildup of what scientists refer to as ''greenhouse gases.'' These gases include water vapor, carbon dioxide, methane, nitrous oxide, ozone, perfluorocarbons, hydrofluoro-carbons, and sulfur hexafluoride. Greenhouse gases can absorb outgoing infrared (heat) radiation and re-emit it back to Earth, warming the surface. Thus, these gases act like the glass of a greenhouse enclosure, trapping infrared radiation inside and warming the space. One of the more important greenhouse gases is the naturally occurring hydrocarbon methane. Methane, a primary component of natural gas, is the second most important contributor to the greenhouse effect (after carbon dioxide). Natural sources of methane include wetlands, fossil sources, termites, oceans, fresh-waters, and non-wetland soils. Methane is also produced by human-related (or anthropogenic) activities such as fossil fuel production, coal mining, rice cultivation, biomass burning, water treatment facilities, waste management operations and landfills, and domesticated livestock operations (Figure 1). These anthropogenic activities account for approximately 70% of the methane emissions to the atmosphere. Methane is removed naturally from the atmosphere in three ways. These methods, commonly referred to as sinks, are oxidation by chemical reaction with tropospheric hydroxyl ion, oxidation within the stratosphere, and microbial uptake by soils. In spite of their important role in removing excess methane from the atmosphere, the sinks cannot keep up with global methane production. Methane concentrations in the atmosphere have increased by 145% since 1800. Increases in atmospheric methane roughly parallel world population growth, pointing to anthropogenic sources as the cause (Figure 2). Increases in the methane concentration reduce Earth's natural cooling efficiency by trapping more of the outgoing

  19. Effect of particle clustering on radiative transfer in turbulent flows

    CERN Document Server

    Liberman, M; Rogachevskii, I; Haugen, N E L

    2016-01-01

    The effect of particle clustering on the radiation penetration length in particle laden turbulent flows is studied using a mean-field approach. Particle clustering in temperature stratified turbulence implies the formation of small-scale clusters with a high concentration of particles, exceeding the mean concentration by a few orders of magnitude. We show that the radiative penetration length increases by several orders of magnitude due to the particle clustering in a turbulent flow. Such strong radiative clearing effect plays a key role in a number of atmospheric and astrophysical phenomena, and can be of fundamental importance for understanding the origin of dust explosions.

  20. Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data

    Science.gov (United States)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.

    2013-01-01

    NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.

  1. study of some problems in radiative transfer

    International Nuclear Information System (INIS)

    The problem of particle transfer in finite plane parallel medium is reduced to a problem of semi-infinite medium by means of the embedding technique. This technique is used to calculate the energy albedo, sputtering coefficients and leakage currents for different scattering kernels in the slowing down region. in chapter (4) we construct an asymptotic solution for inhomogeneous layers on the basis of the corresponding solutions for homogeneous sub-layer. A functional relations which gives the reflection and transmission coefficients for the whole slab in terms of the corresponding one of the sub - layers are obtained. The concepts of the invariant embedding is used to calculate the albedo for each sub-layers. Numerical results are given for different slowing down kernel

  2. Atmospheric thermal radiation from historical measurements to investigations of the Earth's greenhouse effect

    OpenAIRE

    Rolf Philipona

    2013-01-01

    Here, we recall first quantitative measurements of terrestrial and atmospheric thermal infrared radiation that were made about hundred years ago, and relate them to present day radiation budget measurements and greenhouse effect investigations through the atmosphere. At the beginning of the 20th century measurements of the effective terrestrial radiation and the counter-radiation of the atmosphere were of great interest primarily to prove theoretical aspects of the Earth radiation balance...

  3. Vector radiative transfer in a multilayer medium by natural element method.

    Science.gov (United States)

    Zhang, Yong; Kim, Yong-Jun; Yi, Hong-Liang; Tan, He-Ping

    2016-04-01

    The vector radiative transfer problem in a vertically multilayer scattering medium with spatial changes in the index of refraction is solved by the natural element method (NEM). The top boundary of the multilayer medium is irradiated by a collimated beam. In our model, the angular space is discretized by the discrete ordinates approach, and the spatial discretization is conducted by the Galerkin weighted residuals approach. In the solution procedure, the collimated component for the Stokes parameters is first solved by NEM, and then it is embedded into the vector radiative transfer equation for the diffuse component as a source term. To keep the consistency of the directions in all the layers, angular interpolation of the Stokes parameters at the interfaces is adopted. The NEM approach for the collimated component is first validated. Then, the classical coupled atmosphere-water system irradiated by different states of collimated beam is examined to verify the numerical performance of the method. Numerical results show that the NEM is accurate, flexible, and effective in solving polarized radiative transfer in a multilayer medium. Finally, polarized radiative transfer in a four-layer system is investigated and analyzed. PMID:27140767

  4. Radiation processing in Japan: R and D for technology transfer

    International Nuclear Information System (INIS)

    Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (TRCRE, JAERI) has led the radiation processing in Japan. A number of achievements in TRCRE have been transferred to the private sector and commercialized. To promote the industrialization by using 240 patens belonging to TRCRE, an open seminar has been monthly held to elucidate the interesting results to the private companies. In one year, 70 companies gave us the technical consultation. In the radiation processing, graftpolymerization can synthesize a metal adsorbent which is a promising material for industrialization. Recovery of uranium from seawater and removal of cadmium from scallop processing were shown as examples for ongoing R and D. (author)

  5. Radiative transfer modeling of surface chemical deposits

    Science.gov (United States)

    Reichardt, Thomas A.; Kulp, Thomas J.

    2016-05-01

    Remote detection of a surface-bound chemical relies on the recognition of a pattern, or "signature," that is distinct from the background. Such signatures are a function of a chemical's fundamental optical properties, but also depend upon its specific morphology. Importantly, the same chemical can exhibit vastly different signatures depending on the size of particles composing the deposit. We present a parameterized model to account for such morphological effects on surface-deposited chemical signatures. This model leverages computational tools developed within the planetary and atmospheric science communities, beginning with T-matrix and ray-tracing approaches for evaluating the scattering and extinction properties of individual particles based on their size and shape, and the complex refractive index of the material itself. These individual-particle properties then serve as input to the Ambartsumian invariant imbedding solution for the reflectance of a particulate surface composed of these particles. The inputs to the model include parameters associated with a functionalized form of the particle size distribution (PSD) as well as parameters associated with the particle packing density and surface roughness. The model is numerically inverted via Sandia's Dakota package, optimizing agreement between modeled and measured reflectance spectra, which we demonstrate on data acquired on five size-selected silica powders over the 4-16 μm wavelength range. Agreements between modeled and measured reflectance spectra are assessed, while the optimized PSDs resulting from the spectral fitting are then compared to PSD data acquired from independent particle size measurements.

  6. A MULTIPLE SCATTERING POLARIZED RADIATIVE TRANSFER MODEL: APPLICATION TO HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Kopparla, Pushkar; Yung, Yuk L. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Natraj, Vijay; Swain, Mark R. [Jet Propulsion Laboratory (NASA-JPL), Pasadena, CA (United States); Zhang, Xi [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States); Wiktorowicz, Sloane J., E-mail: pkk@gps.caltech.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States)

    2016-01-20

    We present a multiple scattering vector radiative transfer model that produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet’s atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partially covered by clouds or hazes, exhibit larger contrasts in polarized light when compared to clear atmospheres. This effect can potentially be used to identify patchy clouds in exoplanets. Given a set of full phase polarimetric measurements, this model can constrain the geometric albedo, properties of scattering particles in the atmosphere, and the longitude of the ascending node of the orbit. The model is used to interpret new polarimetric observations of HD 189733b in a companion paper.

  7. Radiative transfer simulations of magnetar flare beaming

    Science.gov (United States)

    van Putten, T.; Watts, A. L.; Baring, M. G.; Wijers, R. A. M. J.

    2016-09-01

    Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.

  8. Radiative transfer simulations of magnetar flare beaming

    CERN Document Server

    van Putten, T; Baring, M G; Wijers, R A M J

    2016-01-01

    Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.

  9. Radiative Transfer on Perturbations in Protoplanetary Disks

    CERN Document Server

    Jang-Condell, H; Jang-Condell, Hannah; Sasselov, Dimitar D.

    2003-01-01

    We present a method for calculating the radiative tranfer on a protoplanetary disk perturbed by a protoplanet. We apply this method to determine the effect on the temperature structure within the photosphere of a passive circumstellar disk in the vicinity of a small protoplanet of up to 20 Earth masses. The gravitational potential of a protoplanet induces a compression of the disk material near it, resulting in a decrement in the density at the disk's surface. Thus, an isodensity contour at the height of the photosphere takes on the shape of a well. When such a well is illuminated by stellar irradiation at grazing incidence, it results in cooling in a shadowed region and heating in an exposed region. For typical stellar and disk parameters relevant to the epoch of planet formation, we find that the temperature variation due to a protoplanet at 1 AU separation from its parent star is about 4% (5 K) for a planet of 1 Earth mass, about 14% (19 K) for planet of 10 Earth masses, and about 18% (25 K) for planet of ...

  10. Transfer line magnets for agricultural radiation processing facility at CAT

    International Nuclear Information System (INIS)

    A linear accelerator based electron beam radiation processing facility for agricultural and medical products is being established at CAT, Indore. Electron beam from LINAC will be used to irradiate the different food products. For such purposes, a transfer-line consisting of focusing quadrupoles, steering, scanning and normalizing magnets were designed. Design aspects of these magnets are discussed in this paper. (author)

  11. Radiative transfer in plane inhomogeneous media with exponentially varying albedo

    International Nuclear Information System (INIS)

    Accurate numerical results for the exit distributions and the global reflection and transmission coefficients relevant to radiative transfer in a stratified medium with exponentially varying albedo are obtained and compared to previous results. The semi-analytical solution of the linear transport equation is rigorously performed on the basis of a simple projectional method. (author)

  12. One-dimensional transient radiative transfer by lattice Boltzmann method.

    Science.gov (United States)

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2013-10-21

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed. PMID:24150298

  13. A Physically Motivated Closure Scheme for Radiative Transfer

    CERN Document Server

    Chan, Chi-kwan

    2009-01-01

    Radiative transfer and radiation hydrodynamics use the relativistic Boltzmann equation to describe the kinetics of photons. The six-dimensional time-dependent transfer equation is difficult to solve unless the problem is in equilibrium or highly symmetric. When the radiation field is smooth, it is natural to take angular moments of the transfer equation to reduce the degrees of freedom. However, low-order moment equations contain terms that depend on higher-order moments. To close the system of moment equations, approximations are made to truncate this hierarchy. Popular closures used in astrophysics include flux limited diffusion and the M_1 closure, which are rather ad hoc and do not necessarily to capture the correct physics. In this paper, we propose a new closure scheme for radiative transfer. We start from a different perspective and highlight the consistency of a fully relativistic formalism. By employing the fact that photons do not self-interact, we conclude that a physical closure should be linear i...

  14. A 3D radiative transfer framework: X. Arbitrary Velocity Fields in the Co-moving Frame

    CERN Document Server

    Baron, E; Chen, Bin; Knop, Sebastian

    2012-01-01

    3-D astrophysical atmospheres will have random velocity fields. We seek to combine the methods we have developed for solving the 1-D problem with arbitrary flows to those that we have developed for solving the fully 3-D relativistic radiative transfer problem in the case of monotonic flows. The methods developed in the case of 3-D atmospheres with monotonic flows, solving the fully relativistic problem along curves defined by an affine parameter, are very flexible and can be extended to the case of arbitrary velocity fields in 3-D. Simultaneously, the techniques we developed for treating the 1-D problem with arbitrary velocity fields are easily adapted to the 3-D problem. The algorithm we present allows the solution of 3-D radiative transfer problems that include arbitrary wavelength couplings. We use a quasi-analytic formal solution of the radiative transfer equation that significantly improves the overall computation speed. We show that the approximate lambda operator developed in previous work gives good c...

  15. Atmospheric heat transfer to the Arctic under main synoptic processes

    Science.gov (United States)

    Yurova, Alla; Gnatiuk, Natalia; Bobylev, Leonid; Zhu, Yali

    2016-04-01

    Arctic - mid-latitude teleconnections are operating in both ways and behind them are potentially some causes of the enhanced Arctic warming (e.g., through heat transfer from lower to higher latitudes) and the feedbacks from the Arctic climate to the mid-latitude weather patterns. In order to explain the variability of the surface air temperature in the Arctic, we aim to analyse the typical synoptic situations that, we hypothesize, are characterized by a specific patterns of heat exchange between the Arctic and mid-latitudes. According to classification of synoptic processes in the Arctic developed at the Arctic and Antarctic Research Institute (AARI) in St. Petersburg major typical groups of synoptic situations in the Arctic are few (six). They correspond to position and intensity of low- and high-pressure centres. Therefore, the whole data sample for the winter period for the entire period of instrumental observations (archive exists back to 1939) can be split into six groups that sub-sample each of six groups/types of synoptic situations. Then heat transfer to the Arctic can be estimated as the divergence of the horizontal (advective) heat flux (the product of wind speed and temperature gradient) within each vertical atmospheric layer, which is calculated based on the ERA Interim Reanalysis data for the winter season (1979-now). Mapping heat divergence fields will reveal the main mid-latitude sources of heat transported to the Arctic, average for the whole data sample and for each of the six main groups of synoptic situations. This work was supported by RFBR grants 16-55-53031

  16. Sunrise: Polychromatic Dust Radiative Transfer in Arbitrary Geometries

    CERN Document Server

    Jonsson, P

    2006-01-01

    This paper describes Sunrise, a parallel, free Monte-Carlo code for the calculation of radiation transfer through astronomical dust. Sunrise uses an adaptive-mesh refinement grid to describe arbitrary geometries of emitting and absorbing/scattering media, with spatial dynamical range exceeding 10^4, and it can efficiently generate images of the emerging radiation at arbitrary points in space. In addition to the monochromatic radiative transfer typically used by Monte-Carlo codes, Sunrise is capable of propagating a range of wavelengths simultaneously. This ``polychromatic'' algorithm gives significant improvements in efficiency and accuracy when spectral features are calculated. Sunrise is used to study the effects of dust in hydrodynamic simulations of interacting galaxies, and the procedure for this is described. The code is tested against previously published results.

  17. Modelling radiative heat transfer inside a basin type solar still

    International Nuclear Information System (INIS)

    Radiative heat transfer inside a basin type solar still has been investigated using two models with (model 1) and without (model 2) taking into account optical view factors. The coefficient of radiative heat exchange (hr,w-gc) between the water and cover surfaces of a practical solar still was computed using the two models. Simulation results show that model 1 yields lower values of hr,w-gc and the root mean square error than model 2. It is therefore concluded that the accuracy of modelling the performance of a basin-type solar still can be improved by incorporating view factors. - Highlights: • Radiative heat transfer in a basin type solar still has been investigated. • Two models with and without view factors were used. • The model with view factors exhibits a lower magnitude of root mean square error. • View factors affect the accuracy of modelling the performance of the solar still

  18. Consistent sets of atmospheric lifetimes and radiative forcings on climate for CFC replacements: HCFCs and HFCs

    Science.gov (United States)

    Naik, Vaishali; Jain, Atul K.; Patten, Kenneth O.; Wuebbles, Donald J.

    2000-03-01

    Recognition of deleterious effects of chlorine and bromine on ozone and climate over the last several decades has resulted in international accords to halt the production of chlorine-containing chlorofluorocarbons (CFCs) and bromine-containing halons. It is well recognized, however, that these chemicals have had important uses to society, particularly as refrigerants, as solvents, as plastic blowing agents, as fire retardants and as aerosol propellants. This has led to an extensive search for substitute chemicals with appropriate properties to be used in place of the CFCs and halons. The purpose of this study is to evaluate in a consistent manner the atmospheric lifetime and radiative forcing on climate for a number of replacement compounds. The unique aspect of this study is its attempt to resolve inconsistencies in previous evaluations of atmospheric lifetimes and radiative forcings for these compounds by adopting a uniform approach. Using the latest version of our two-dimensional chemical-radiative-transport model of the global atmosphere, we have determined the atmospheric lifetimes of 28 hydrohalocarbons (HCFCs and HFCs). Through the comparison of the model-calculated lifetimes with lifetimes derived using a simple scaling method, our study adds to earlier findings that consideration of stratospheric losses is important in determining the lifetimes of gases. Discrepancies were found in the reported lifetimes of several replacement compounds reported in the international assessment of stratospheric ozone published by the World Meteorological Organization [Granier et al., 1999] and have been resolved. We have also derived the adjusted and instantaneous radiative forcings for CFC-11 and 20 other halocarbons using our radiative transfer model. The sensitivity of radiative forcings to the vertical distribution of these gases is investigated in this study and is shown to be significant. The difference in the global radiative forcing arising from the assumption of a

  19. On the derivation of vector radiative transfer equation for polarized radiative transport in graded index media

    International Nuclear Information System (INIS)

    Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.

  20. Sensitivity Analysis on Fu-Liou-Gu Radiative Transfer Model for different lidar aerosol and cloud profiles

    Science.gov (United States)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Pappalardo, Gelsomina; Welton, Ellsworth J.

    2016-04-01

    The aerosol and cloud impact on climate change is evaluated in terms of enhancement or reduction of the radiative energy, or heat, available in the atmosphere and at the Earth's surface, from the surface (SFC) to the Top Of the Atmosphere (TOA) covering a spectral range from the UV (extraterrestrial shortwave solar radiation) to the far-IR (outgoing terrestrial longwave radiation). Systematic Lidar network measurements from permanent observational sites across the globe are available from the beginning of this current millennium. From the retrieved lidar atmospheric extinction profiles, inputted in the Fu-Liou-Gu (FLG) Radiative Transfer code, it is possible to evaluate the net radiative effect and heating rate of the different aerosol species and clouds. Nevertheless, the lidar instruments may use different techniques (elastic lidar, Raman lidar, multi-wavelength lidar, etc) that translate into uncertainty of the lidar extinction retrieval. The goal of this study is to assess, applying a MonteCarlo technique and the FLG Radiative Transfer model, the sensitivity in calculating the net radiative effect and heating rate of aerosols and clouds for the different lidar techniques, using both synthetic and real lidar data. This sensitivity study is the first step to implement an automatic algorithm to retrieve the net radiative forcing effect of aerosols and clouds from the long records of aerosol measurements available in the frame of EARLINET and MPLNET lidar networks.

  1. Shortwave radiative heating rate profiles in hazy and clear atmosphere: a sensitivity study

    Science.gov (United States)

    Doppler, Lionel; Fischer, Jürgen; Ravetta, François; Pelon, Jacques; Preusker, René

    2010-05-01

    Aerosols have an impact on shortwave heating rate profiles (additional heating or cooling). In this survey, we quantify the impact of several key-parameters on the heating rate profiles of the atmosphere with and without aerosols. These key-parameters are: (1) the atmospheric model (tropical, midlatitude summer or winter, US Standard), (2) the integrated water vapor amount (IWV ), (3) the ground surface (flat and rough ocean, isotropic surface albedo for land), (4) the aerosol composition (dusts, soots or maritimes mixtures with respect to the OPAC-database classification), (5) the aerosol optical depth and (6) vertical postion, and (7) the single-scattering albedo (?o) of the aerosol mixture. This study enables us to evaluate which parameters are most important to take into account in a radiative energy budget of the atmosphere and will be useful for a future study: the retrieval of heating rates profiles from satellite data (CALIPSO, MODIS, MERIS) over the Mediterranean Sea. All the heating rates are computed by using the vector irradiances computed at each pressure level in the spectral interval 0.2 - 3.6μm (shortwave) by the 1D radiative transfer model for atmosphere and ocean: MOMO (Matrix-Operator MOdel) of the Institute for Space Science, FU Berlin 1

  2. Discrete Anisotropic Radiative Transfer (DART 5 for Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of Natural and Urban Landscapes

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Gastellu-Etchegorry

    2015-02-01

    Full Text Available Satellite and airborne optical sensors are increasingly used by scientists, and policy makers, and managers for studying and managing forests, agriculture crops, and urban areas. Their data acquired with given instrumental specifications (spectral resolution, viewing direction, sensor field-of-view, etc. and for a specific experimental configuration (surface and atmosphere conditions, sun direction, etc. are commonly translated into qualitative and quantitative Earth surface parameters. However, atmosphere properties and Earth surface 3D architecture often confound their interpretation. Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for linking remotely sensed data to the surface parameters. Still, many existing models are oversimplifying the Earth-atmosphere system interactions and their parameterization of sensor specifications is often neglected or poorly considered. The Discrete Anisotropic Radiative Transfer (DART model is one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths. It has been developed since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental configuration and instrumental specification. It is freely distributed for research and teaching activities. This paper presents DART physical bases and its latest functionality for simulating imaging spectroscopy of natural and urban landscapes with atmosphere, including the perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR waveform and photon counting signals.

  3. Pakal: A Three-dimensional Model to Solve the Radiative Transfer Equation

    CERN Document Server

    De la Luz, Victor; Mendoza-Torres, J E; Selhorst, Caius L; 10.1088/0067-0049/188/2/437

    2011-01-01

    We present a new numerical model called "Pakal" intended to solve the radiative transfer equation in a three-dimensional (3D) geometry, using the approximation for a locally plane-parallel atmosphere. Pakal uses pre-calculated radial profiles of density and temperature (based on hydrostatic, hydrodynamic, or MHD models) to compute the emission from 3D source structures with high spatial resolution. Then, Pakal solves the radiative transfer equation in a set of (3D) ray paths, going from the source to the observer. Pakal uses a new algorithm to compute the radiative transfer equation by using an intelligent system consisting of three structures: a cellular automaton; an expert system; and a program coordinator. The code outputs can be either two-dimensional maps or one-dimensional profiles, which reproduce the observations with high accuracy, giving detailed physical information about the environment where the radiation was generated and/or transmitted. We present the model applied to a 3D solar radial geometr...

  4. Use of radiation to transfer alien chromosome segments to wheat

    International Nuclear Information System (INIS)

    Ionizing radiation can accomplish the transfer of genetic information from species so distantly related to wheat (Triticum aestivum L. em Thell.) that their chromosomes pair very little, if at all, with those of wheat, even in the absence of the homoeologous-pairing suppressor Ph1. In a successful transfer, the alien segment must almost always replace a homoeologous wheat segment, but radiation induces translocations largely at random; therefore automatic selection in favor of desirable translocations must be provided if the size of the project is to be kept within reasonable limits. Pollen selection will occur if seeds or plants monosomic for both an alien chromosome and one of its wheat homoeologues are irradiated. Making the plants also deficient for Ph1 may increase the number of suitable transfers. High-frequency occurrence of the desired alien character in M2 head-rows from plants grown from irradiated seed can identify favorable transfers with little cytological work. Irradiation of plants shortly before meiosis, using them to pollinate ditelosomics or double ditelosomics for the wheat arm or chromosome concerned, and cytologically examining offspring which have the alien character can not only identify the desirable transfers, but also reveal the lengths of the alien segments involved

  5. Advanced Computational Methods for Thermal Radiative Heat Transfer.

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  6. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-02-01

    Full Text Available Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  7. Advanced Computational Methods for Thermal Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  8. Retaining space and time coherence in radiative transfer models.

    Science.gov (United States)

    Rosato, J

    2015-05-01

    A recent model for radiative transfer that accounts for spatial coherence is extended in such a way as to retain temporal coherence. The method employs Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy techniques. Both spatial and temporal coherence are shown to affect the formation of atomic line spectra. Calculations of Lyman α radiation transport in optically thick divertor plasma conditions are reported as an illustration of the model. A possible extension of the formalism to dense media involving correlations between atoms is discussed in an appendix. A link to partial frequency redistribution modeling is also discussed.

  9. Fire Intensity Data for Validation of the Radiative Transfer Equation

    Energy Technology Data Exchange (ETDEWEB)

    Blanchat, Thomas K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jernigan, Dann A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.

  10. Analytical Heat Transfer Modeling of a New Radiation Calorimeter

    CERN Document Server

    Ndong, Elysée Obame; Aitken, Frédéric

    2016-01-01

    This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from -50 {\\deg}C to 150 {\\deg}C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ~1 mW. From these results the calorimeter has been successfully implemented and patented.

  11. Atmospheric Correction Method for H J-1 CCD Imagery over Waters Based on Radiative Transfer Model%基于辐射传输模型的环境一号卫星CCD相机的水体大气校正方法研究

    Institute of Scientific and Technical Information of China (English)

    许华; 顾行发; 李正强; 李莉; 陈兴峰

    2011-01-01

    Atmospheric correction is a bottleneck in quantitative application of Chinese satellites HJ-1 data to remote sensing of water color. According to the characteristics of CCD sensors, the present paper made use of air-water coupled radiative transfer model to work out the look-up table (LUT) of atmospheric corrected parameters, and thereafter developed pixel-by-pixel atmospheric correction method over waters accomplishing the water-leaving remote sensing reflectance with accessorial meteorological input The paper validates the HJ-1 CCD retrievals with MODIS and in-situ results. It was found that the accuracy in blue and green bands is good. However, the accuracy in red or NIR bands is much worse than blue or green ones. It was also demonstrated that the aerosol model is a sensitive factor to the atmospheric correction accuracy.%水体大气校正问题是开展我国环境一号卫星水色遥感定量化应用的关键.针对环境卫星CCD相机的特点,以水气耦合的辐射传输模型构建大气校正参数查找表,研究以地面气象数据辅助的逐像元水体大气校正方法,实现水体离水反射率和遥感反射比的反演.以现场测量数据和MODIS数据为参考进行水体大气校正效果验证,研究发现CCD相机的反演结果在蓝、绿波段的精度较高而红、近红的反演结果系统偏大.研究结果还表明气溶胶模型是影响水体大气校正精度的重要因素.

  12. Toward a new radiative-transfer-based model for remote sensing of terrestrial surface albedo.

    Science.gov (United States)

    Cui, Shengcheng; Zhen, Xiaobing; Wang, Zhen; Yang, Shizhi; Zhu, WenYue; Li, Xuebin; Huang, Honghua; Wei, Heli

    2015-08-15

    This Letter formulates a simple yet accurate radiative-transfer-based theoretical model to characterize the fraction of radiation reflected by terrestrial surfaces. Emphasis is placed on the concept of inhomogeneous distribution of the diffuse sky radiation function (DSRF) and multiple interaction effects (MIE). Neglecting DSRF and MIE produces a -1.55% mean relative bias in albedo estimates. The presented model can elucidate the impact of DSRF on the surface volume scattering and geometry-optical scattering components, respectively, especially for slant illuminations with solar zenith angles (SZA) larger than 50°. Particularly striking in the comparisons between our model and ground-based observations is the achievement of the agreement level, indicating that our model can effectively resolve the longstanding issue in accurately estimating albedo at extremely large SZAs and is promising for land-atmosphere interactions studies. PMID:26274674

  13. The influence of frequency-dependent radiative transfer on the structures of radiative shocks

    CERN Document Server

    Vaytet, N; Audit, E; Chabrier, G

    2013-01-01

    Radiative shocks are shocks in a gas where the radiative energy and flux coming from the very hot post-shock material are non-negligible in the shock's total energy budget, and are often large enough to heat the material ahead of the shock. Many simulations of radiative shocks, both in the contexts of astrophysics and laboratory experiments, use a grey treatment of radiative transfer coupled to the hydrodynamics. However, the opacities of the gas show large variations as a function of frequency and this needs to be taken into account if one wishes to reproduce the relevant physics. We have performed radiation hydrodynamics simulations of radiative shocks in Ar using multigroup (frequency dependent) radiative transfer with the HERACLES code. The opacities were taken from the ODALISC database. We show the influence of the number of frequency groups used on the dynamics and morphologies of subcritical and supercritical radiative shocks in Ar gas, and in particular on the extent of the radiative precursor. We fin...

  14. Atmospheric radiation measurement program facilities newsletter, September 2001.; TOPICAL

    International Nuclear Information System (INIS)

    Our Changing Climate-Is our climate really changing? How do we measure climate change? How can we predict what Earth's climate will be like for generations to come? One focus of the Atmospheric Radiation Measurement (ARM) Program is to improve scientific climate models enough to achieve reliable regional prediction of future climate. According to the Environmental Protection Agency (EPA), the global mean surface temperature has increased by 0.5-1.0 F since the late 19th century. The 20th century's 10 warmest years all occurred in the last 15 years of the century, with 1998 being the warmest year of record. The global mean surface temperature is measured by a network of temperature-sensing instruments distributed around the world, including ships, ocean buoys, and weather stations on land. The data from this network are retrieved and analyzed by various organizations, including the National Aeronautics and Space Administration, the National Oceanic and Atmospheric Administration, and the World Meteorological Organization. Worldwide temperature records date back to 1860. To reconstruct Earth's temperature history before 1860, scientists use limited temperature records, along with proxy indicators such as tree rings, pollen records, and analysis of air frozen in ancient ice. The solar energy received from the sun drives Earth's weather and climate. Some of this energy is reflected and filtered by the atmosphere, but most is absorbed by Earth's surface. The absorbed solar radiation warms the surface and is re-radiated as heat energy into the atmosphere. Some atmospheric gases, called greenhouse gases, trap some of the re-emitted heat, keeping the surface temperature regulated and suitable for sustaining life. Although the greenhouse effect is natural, some evidence indicates that human activities are producing increased levels of some greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Scientists believe that the combustion of fossil fuels is

  15. Radiative charge transfer in collisions of C with He+

    CERN Document Server

    Babb, James F

    2016-01-01

    Radiative charge exchange collisions between a carbon atom C(${}^3$P) and a helium ion He+, both in their ground state, are investigated theoretically. Detailed quantum chemistry calculations are carried out to obtain potential energy curves and transition dipole matrix elements for doublet and quartet molecular states of the HeC+ cation. Radiative charge transfer cross sections and rate coefficients are calculated and are found at thermal and lower energies to be large compared to those for direct charge transfer. The present results might be applicable to modelling the complex interplay of [C II] (or C+), C, and CO at the boundaries of photon dominated regions (PDRs) and in xray dominated regions (XDRs), where the abundance of He+ affects the abundance of CO.

  16. Rabacus: A Python Package for Analytic Cosmological Radiative Transfer Calculations

    CERN Document Server

    Altay, Gabriel

    2015-01-01

    We describe Rabacus, a Python package for calculating the transfer of hydrogen ionizing radiation in simplified geometries relevant to astronomy and cosmology. We present example solutions for three specific cases: 1) a semi-infinite slab gas distribution in a homogeneous isotropic background, 2) a spherically symmetric gas distribution with a point source at the center, and 3) a spherically symmetric gas distribution in a homogeneous isotropic background. All problems can accommodate arbitrary spectra and density profiles as input. The solutions include a treatment of both hydrogen and helium, a self-consistent calculation of equilibrium temperatures, and the transfer of recombination radiation. The core routines are written in Fortran 90 and then wrapped in Python leading to execution speeds thousands of times faster than equivalent routines written in pure Python. In addition, all variables have associated units for ease of analysis. The software is part of the Python Package Index and the source code is a...

  17. Radiative instabilities of atmospheric jets and boundary layers

    International Nuclear Information System (INIS)

    Complex flows occur in the atmosphere and they can be source of internal gravity waves. We focus here on the sources associated with radiative and shear (or Kelvin-Helmholtz) instabilities. Stability studies of shear layers in a stably stratified fluid concern mainly cases where shear and stratification are aligned along the same direction. In these cases, Miles (1961) and Howard (1961) found a necessary condition for stability based on the Richardson number: Ri ≥ 1/4. In this thesis, we show that this condition is not necessary when shear and stratification are not aligned: we demonstrate that a two-dimensional planar Bickley jet can be unstable for all Richardson numbers. Although the most unstable mode remains 2D, we show there exists an infinite family of 3D unstable modes exhibiting a radiative structure. A WKBJ theory is found to provide the main characteristics of these modes. We also study an inviscid and stratified boundary layer over an inclined wall with non-Boussinesq and compressible effects. We show that this flow is unstable as soon as the wall is not horizontal for all Froude numbers and that strongly stratified 3D perturbations behave exactly like compressible 2D perturbations. Applications of the results to the jet stream and the atmospheric boundary layer are proposed. (author)

  18. Optical property dimensionality reduction techniques for accelerated radiative transfer performance: Application to remote sensing total ozone retrievals

    Science.gov (United States)

    Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego; Trautmann, Thomas

    2014-01-01

    In this paper, we introduce several dimensionality reduction techniques for optical parameters. We consider the principal component analysis, the local linear embedding methods (locality pursuit embedding, locality preserving projection, locally embedded analysis), and discrete orthogonal transforms (cosine, Legendre, wavelet). The principle component analysis has already been shown to be an effective and accurate method of enhancing radiative transfer performance for simulations in an absorbing and a scattering atmosphere. By linearizing the corresponding radiative transfer model, we analyze the applicability of the proposed methods to a practical problem of total ozone column retrieval from UV-backscatter measurements.

  19. Electron density and temperature measurement by continuum radiation emitted from weakly ionized atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sanghoo; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Youn Moon, Se [High-enthalpy Plasma Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 561-756 (Korea, Republic of); Park, Jaeyoung [5771 La Jolla Corona Drive, La Jolla, CA 92037 (United States)

    2014-02-24

    The electron-atom neutral bremsstrahlung continuum radiation emitted from weakly ionized plasmas is investigated for electron density and temperature diagnostics. The continuum spectrum in 450–1000 nm emitted from the argon atmospheric pressure plasma is found to be in excellent agreement with the neutral bremsstrahlung formula with the electron-atom momentum transfer cross-section given by Popović. In 280–450 nm, however, a large discrepancy between the measured and the neutral bremsstrahlung emissivities is observed. We find that without accounting for the radiative H{sub 2} dissociation continuum, the temperature, and density measurements would be largely wrong, so that it should be taken into account for accurate measurement.

  20. Radiative characteristics for atmospheric models from lidar sounding and AERONET

    Science.gov (United States)

    Sapunov, Maxim; Kuznetsov, Anatoly; Efremenko, Dmitry; Bochalov, Valentin; Melnikova, Irina; Samulenkov, Dimity; Vasilyev, Alexander; Poberovsky, Anatoly; Frantsuzova, Inna

    2016-04-01

    Optical models of atmospheric aerosols above of St. Petersburg are constraint on the base of the results of lidar sounding. The lidar system of the Resource Center "Observatory of environmental safety" of the St. Petersburg University Research Park is situated the city center, Vasilievsky Island. The measurements of the vertical profile of velocity and wind direction in the center of St. Petersburg for 2014 -2015 are fulfilled in addition. Height of laser sounding of aerosols is up to 25 km and wind up to 12 km. Observations are accomplished in the daytime and at night and mapped to vertical profiles of temperature, humidity, wind speed and pressure obtained from radiosounding in Voeikovo (St. Petersburg suburb). Results of wind observations are compared with those of upper-air measurements of meteorological service in Voeikovo. The distance between the points of observation is 25 km. Statistics of wind directions at different heights are identified. The comparison is based on the assumption of homogeneity of the wind field on such a scale. In most cases, good agreement between the observed vertical profiles of wind, obtained by both methods is appeared. However, there were several cases, when the results differ sharply or at high altitudes, or, on the contrary, in the surface layer. The analysis of the impact of wind, temperature, and humidity profiles in the atmosphere on the properties and dynamics of solid impurities is implemented. Comparison with AOT results from AERONET observations in St. Petersburg suburb Peterhof is done. It is shown that diurnal and seasonal variations of optical and morphological parameters of atmospheric aerosols in the pollution cap over the city to a large extent determined by the variability of meteorological parameters. The results of the comparison are presented and possible explanation of the differences is proposed. Optical models of the atmosphere in day and night time in different seasons are constructed from lidar and AERONET

  1. SPHRAY: A Smoothed Particle Hydrodynamics Ray Tracer for Radiative Transfer

    OpenAIRE

    Altay, Gabriel; Rupert A. C. Croft(Bruce and Astrid McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA); Pelupessy, Inti

    2008-01-01

    We introduce SPHRAY, a Smoothed Particle Hydrodynamics (SPH) ray tracer designed to solve the 3D, time dependent, radiative transfer (RT) equations for arbitrary density fields. The SPH nature of SPHRAY makes the incorporation of separate hydrodynamics and gravity solvers very natural. SPHRAY relies on a Monte Carlo (MC) ray tracing scheme that does not interpolate the SPH particles onto a grid but instead integrates directly through the SPH kernels. Given initial conditions and a description...

  2. Interpreting snowpack radiometry using currently existing microwave radiative transfer models

    Science.gov (United States)

    Kang, D. H.; Tan, S.; Kim, E. J.

    2015-12-01

    A radiative transfer model (RTM) to calculate a snow brightness temperature (Tb) is a critical element to retrieve terrestrial snow from microwave remote sensing observations. The RTM simulates the Tb based on a layered snow by solving a set of microwave radiative transfer formulas. Even with the same snow physical inputs used for the RTM, currently existing models such as Microwave Emission Model of Layered Snowpacks (MEMLS), Dense Media Radiative Transfer (DMRT-Tsang), and Helsinki University of Technology (HUT) models produce different Tb responses. To backwardly invert snow physical properties from the Tb, the differences from the RTMs are to be quantitatively explained. To this end, the paper evaluates the sources of perturbations in the RTMs, and reveals the equations where the variations are made among three models. Investigations are conducted by providing the same but gradual changes in snow physical inputs such as snow grain size, and snow density to the 3 RTMs. Simulations are done with the frequencies consistent with the Advanced Microwave Scanning Radiometer-E (AMSR-E) at 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz. For realistic simulations, the 3 RTMs are simultaneously driven by the same snow physics model with the meteorological forcing datasets and are validated from the snow core samplings from the CLPX (Cold Land Processes Field Experiment) 2002-2003, and NoSREx (Nordic Snow Radar Experiment) 2009-2010.

  3. An alternative method for calibration of narrow band radiometer using a radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, J; Wolfram, E; D' Elia, R [Centro de Investigaciones en Laseres y Aplicaciones, CEILAP (CITEFA-CONICET), Juan B. de La Salle 4397 (B1603ALO), Villa Martelli, Buenos Aires (Argentina); Zamorano, F; Casiccia, C [Laboratorio de Ozono y Radiacion UV, Universidad de Magallanes, Punta Arenas (Chile) (Chile); Rosales, A [Universidad Nacional de la Patagonia San Juan Bosco, UNPSJB, Facultad de Ingenieria, Trelew (Argentina) (Argentina); Quel, E, E-mail: jsalvador@citefa.gov.ar [Universidad Nacional de la Patagonia Austral, Unidad Academica Rio Gallegos Avda. Lisandro de la Torre 1070 ciudad de Rio Gallegos-Sta Cruz (Argentina) (Argentina)

    2011-01-01

    The continual monitoring of solar UV radiation is one of the major objectives proposed by many atmosphere research groups. The purpose of this task is to determine the status and degree of progress over time of the anthropogenic composition perturbation of the atmosphere. Such changes affect the intensity of the UV solar radiation transmitted through the atmosphere that then interacts with living organisms and all materials, causing serious consequences in terms of human health and durability of materials that interact with this radiation. One of the many challenges that need to be faced to perform these measurements correctly is the maintenance of periodic calibrations of these instruments. Otherwise, damage caused by the UV radiation received will render any one calibration useless after the passage of some time. This requirement makes the usage of these instruments unattractive, and the lack of frequent calibration may lead to the loss of large amounts of acquired data. Motivated by this need to maintain calibration or, at least, know the degree of stability of instrumental behavior, we have developed a calibration methodology that uses the potential of radiative transfer models to model solar radiation with 5% accuracy or better relative to actual conditions. Voltage values in each radiometer channel involved in the calibration process are carefully selected from clear sky data. Thus, tables are constructed with voltage values corresponding to various atmospheric conditions for a given solar zenith angle. Then we model with a radiative transfer model using the same conditions as for the measurements to assemble sets of values for each zenith angle. The ratio of each group (measured and modeled) allows us to calculate the calibration coefficient value as a function of zenith angle as well as the cosine response presented by the radiometer. The calibration results obtained by this method were compared with those obtained with a Brewer MKIII SN 80 located in the

  4. An alternative method for calibration of narrow band radiometer using a radiative transfer model

    International Nuclear Information System (INIS)

    The continual monitoring of solar UV radiation is one of the major objectives proposed by many atmosphere research groups. The purpose of this task is to determine the status and degree of progress over time of the anthropogenic composition perturbation of the atmosphere. Such changes affect the intensity of the UV solar radiation transmitted through the atmosphere that then interacts with living organisms and all materials, causing serious consequences in terms of human health and durability of materials that interact with this radiation. One of the many challenges that need to be faced to perform these measurements correctly is the maintenance of periodic calibrations of these instruments. Otherwise, damage caused by the UV radiation received will render any one calibration useless after the passage of some time. This requirement makes the usage of these instruments unattractive, and the lack of frequent calibration may lead to the loss of large amounts of acquired data. Motivated by this need to maintain calibration or, at least, know the degree of stability of instrumental behavior, we have developed a calibration methodology that uses the potential of radiative transfer models to model solar radiation with 5% accuracy or better relative to actual conditions. Voltage values in each radiometer channel involved in the calibration process are carefully selected from clear sky data. Thus, tables are constructed with voltage values corresponding to various atmospheric conditions for a given solar zenith angle. Then we model with a radiative transfer model using the same conditions as for the measurements to assemble sets of values for each zenith angle. The ratio of each group (measured and modeled) allows us to calculate the calibration coefficient value as a function of zenith angle as well as the cosine response presented by the radiometer. The calibration results obtained by this method were compared with those obtained with a Brewer MKIII SN 80 located in the

  5. Radiative heat transfer in rocket thrust chambers and nozzles

    Science.gov (United States)

    Hammad, K. J.; Naraghi, M. H. N.

    1989-01-01

    Numerical models based on the discrete exchange factor (DEF) and the zonal methods for radiative analysis of rocket engines containing a radiatively participating medium have been developed. These models implement a new technique for calculating the direct exchange factors to account for possible blockage by the nozzle throat. Given the gas and surface temperature distributions, engine geometry, and radiative properties, the models compute the wall radiative heat fluxes at different axial positions. The results of sample calculations for a typical rocket engine (engine 700 at NASA), which uses RP-1 (a kerosene-type propellant), are presented for a wide range of surface and gas properties. It is found that the heat transfer by radiation can reach up to 50 percent of that due to convection. The maximum radiative heat flux is at the inner side of the engine, where the gas temperature is the highest. While the results of both models are in excellent agreement, the computation time of the DEF method is found to be much smaller.

  6. The critical ingredients of SN Ia radiative-transfer modelling

    CERN Document Server

    Dessart, Luc; Blondin, Stephane; Khokhlov, Alexei

    2013-01-01

    We explore the physics of SN Ia light curves and spectra using the 1-D non-LTE time-dependent radiative-transfer code CMFGEN. Rather than adjusting ejecta properties to match observations, we select as input one "standard" 1-D Chandrasekhar-mass delayed-detonation hydrodynamical model, and then explore the sensitivity of radiation and gas properties of the ejecta on radiative-transfer modelling assumptions. The correct computation of SN Ia radiation is not exclusively a solution to an "opacity problem", characterized by the treatment of a large number of lines. We demonstrate that the key is to identify and treat important atomic processes consistently. This is not limited to treating line blanketing in full non-LTE. We show that including forbidden line transitions of metals, and in particular Co, is increasingly important for the temperature and ionization of the gas beyond maximum light. Non-thermal ionization and excitation also play a role, affecting the color evolution and the DM15 decline rate of our m...

  7. SPAMCART: a code for smoothed particle Monte Carlo radiative transfer

    Science.gov (United States)

    Lomax, O.; Whitworth, A. P.

    2016-10-01

    We present a code for generating synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. The code is based on the Lucy Monte Carlo radiative transfer method, i.e. it follows discrete luminosity packets as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Secondly, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.

  8. SPAMCART: a code for smoothed particle Monte Carlo radiative transfer

    CERN Document Server

    Lomax, O

    2016-01-01

    We present a code for generating synthetic SEDs and intensity maps from Smoothed Particle Hydrodynamics simulation snapshots. The code is based on the Lucy (1999) Monte Carlo Radiative Transfer method, i.e. it follows discrete luminosity packets, emitted from external and/or embedded sources, as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The density is not mapped onto a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Second, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.

  9. Overview of atmospheric ionizing radiation (AIR) Research: SST-present

    Science.gov (United States)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    The Supersonic Transport (SST) program proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits 1990 with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum June 1997 and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  10. An analysis of the dependence of clear-sky top-of-atmosphere outgoing longwave radiation on atmospheric temperature and water vapor

    Science.gov (United States)

    Dessler, A. E.; Yang, P.; Lee, J.; Solbrig, J.; Zhang, Z.; Minschwaner, K.

    2008-09-01

    We have analyzed observations of clear-sky top-of-atmosphere outgoing longwave radiation (OLR) measured by the Clouds and the Earth's Radiant Energy System (CERES). These measurements were obtained during March 2005 at night and over the ocean and cover latitudes from 70°N to 70°S. First, we compare the OLR measurements to OLR calculated from two radiative transfer models. The models use as input simultaneous and collocated measurements of atmospheric temperature and atmospheric water vapor made by the Atmospheric Infrared Sounder (AIRS). We find excellent agreement between the models' predictions of OLR and observations, well within the uncertainty of the measurements. We also analyze the sensitivity of OLR to changing surface temperature Ts, atmospheric temperature Ta, and atmospheric water vapor q. We find that OLR is most sensitive to unit changes in Ta when that change occurs in the lower troposphere. For q, the altitude distribution of sensitivity varies between the midlatitudes, subtropics, and the convective region. We also partition the observed variations in OLR into contributions from changing Ts, Ta, and q. In the midlatitudes, changes in Ts and Ta contribute approximately equally, and are partially offset by changes in q. In the subtropics, changes in Ta dominate, with a smaller contribution from changes in Ts and a relatively small offsetting contribution from q. In the tropical convective region, a rapid increase in q in the midtroposphere leads to a dramatic reduction in OLR with increasing Ts, which has been termed the "super greenhouse effect".

  11. Contributions of the ARM Program to Radiative Transfer Modeling for Climate and Weather Applications

    Science.gov (United States)

    Mlawer, Eli J.; Iacono, Michael J.; Pincus, Robert; Barker, Howard W.; Oreopoulos, Lazaros; Mitchell, David L.

    2016-01-01

    Accurate climate and weather simulations must account for all relevant physical processes and their complex interactions. Each of these atmospheric, ocean, and land processes must be considered on an appropriate spatial and temporal scale, which leads these simulations to require a substantial computational burden. One especially critical physical process is the flow of solar and thermal radiant energy through the atmosphere, which controls planetary heating and cooling and drives the large-scale dynamics that moves energy from the tropics toward the poles. Radiation calculations are therefore essential for climate and weather simulations, but are themselves quite complex even without considering the effects of variable and inhomogeneous clouds. Clear-sky radiative transfer calculations have to account for thousands of absorption lines due to water vapor, carbon dioxide, and other gases, which are irregularly distributed across the spectrum and have shapes dependent on pressure and temperature. The line-by-line (LBL) codes that treat these details have a far greater computational cost than can be afforded by global models. Therefore, the crucial requirement for accurate radiation calculations in climate and weather prediction models must be satisfied by fast solar and thermal radiation parameterizations with a high level of accuracy that has been demonstrated through extensive comparisons with LBL codes. See attachment for continuation.

  12. Radiative transfer in hot plasmas: a new numeric approach

    International Nuclear Information System (INIS)

    Radiative transfer is one of the main issues in inertial confinement fusion and in astrophysics. The basic equations governing the evolution of a radiative field and its coupling with a heat equation are well known, at least in the LTE approximation (Local Thermodynamic Equilibrium). However, the numerical techniques which have been developed so far are not fully satisfactory. The aim of this work has therefore been to suggest a few new ideas concerning simplicity and accuracy in the description as well as in the resolution of the equations coupling the radiative field with matter. Chapter 1 introduces the context of this work and stresses the importance of opacities in the study of the interaction between the radiation field and matter, whereas chapter 2 gives a rather complete general survey of the main physical models used until now to describe this interaction. An alternative formalism of this coupling is presented in chapter 3 where a new distribution function, based on the departure of the radiation field from thermodynamic equilibrium, is introduced. In the new resulting transport equation, the source term is now mainly determined by a time derivative and a spatial gradient of the temperature and on the other hand by a universal spectrum. This formalism includes thermal conduction in a natural way which is not the case with standard formalisms. Finally, chapter 4 presents results of the confrontation with literature data of our formalism and the numerical techniques developed, including an application to a non homogeneous medium. (author) figs., tabs., 57 refs

  13. Radiative energy balance of Venus based on improved models of the middle and lower atmosphere

    Science.gov (United States)

    Haus, R.; Kappel, D.; Tellmann, S.; Arnold, G.; Piccioni, G.; Drossart, P.; Häusler, B.

    2016-07-01

    The distribution of sources and sinks of radiative energy forces the atmospheric dynamics. The radiative transfer simulation model described by Haus et al. (2015b) is applied to calculate fluxes and temperature change rates in the middle and lower atmosphere of Venus (0-100 km) covering the energetic significant spectral range 0.125-1000 μm. The calculations rely on improved models of atmospheric parameters (temperature profiles, cloud parameters, trace gas abundances) retrieved from Venus Express (VEX) data (mainly VIRTIS-M-IR, but also VeRa and SPICAV/SOIR with respect to temperature results). The earlier observed pronounced sensitivity of the radiative energy balance of Venus to atmospheric parameter variations is confirmed, but present detailed comparative analyses of possible influence quantities ensure unprecedented insights into radiative forcing on Venus by contrast with former studies. Thermal radiation induced atmospheric cooling rates strongly depend on temperature structure and cloud composition, while heating rates are mainly sensitive to insolation conditions and UV absorber distribution. Cooling and heating rate responses to trace gas variations and cloud mode 1 abundance changes are small, but observed variations of cloud mode 2 abundances and altitude profiles reduce cooling at altitudes 65-80 km poleward of 50°S by up to 30% compared to the neglect of cloud parameter changes. Cooling rate variations with local time below 80 km are in the same order of magnitude. Radiative effects of the unknown UV absorber are modeled considering a proxy that is based on a suitable parameterization of optical properties, not on a specific chemical composition, and that is independent of the used cloud model. The UV absorber doubles equatorial heating near 68 km. Global average radiative equilibrium at the top of atmosphere (TOA) is characterized by the net flux balance of 156 W/m2, the Bond albedo of 0.76, and the effective planetary emission temperature of 228

  14. Application of entransy dissipation extremum principle in radiative heat transfer optimization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The concepts of entransy flux and entransy dissipation in radiative heat transfer were introduced based on the analogy with heat conduction and heat convection processes. Entransy will be partially dissipated during the radiative heat transfer processes due to the irreversibility. The extremum principle of entransy dissipation was developed for optimizing radiative heat transfer processes. This principle states that for a fixed boundary temperature the radiative heat transfer is optimized when the entransy dissipation is maximized, while for a fixed boundary heat flux the radiative heat transfer process is optimized when the entransy dissipation is minimized. Finally, examples for the application of the entransy dissipation extre- mum principle are presented.

  15. An interface for simulating radiative transfer in and around volcanic plumes with the Monte Carlo radiative transfer model McArtim

    Science.gov (United States)

    Kern, Christoph

    2016-03-23

    This report describes two software tools that, when used as front ends for the three-dimensional backward Monte Carlo atmospheric-radiative-transfer model (RTM) McArtim, facilitate the generation of lookup tables of volcanic-plume optical-transmittance characteristics in the ultraviolet/visible-spectral region. In particular, the differential optical depth and derivatives thereof (that is, weighting functions), with regard to a change in SO2 column density or aerosol optical thickness, can be simulated for a specific measurement geometry and a representative range of plume conditions. These tables are required for the retrieval of SO2 column density in volcanic plumes, using the simulated radiative-transfer/differential optical-absorption spectroscopic (SRT-DOAS) approach outlined by Kern and others (2012). This report, together with the software tools published online, is intended to make this sophisticated SRT-DOAS technique available to volcanologists and gas geochemists in an operational environment, without the need for an indepth treatment of the underlying principles or the low-level interface of the RTM McArtim.

  16. Clouds Radiative Transfer Study at Microwave Region-RTM

    Science.gov (United States)

    Heredia, S. D.; Masuelli, S.; Caranti, G. M.; Jones, L.

    2011-12-01

    The objective of the recently launched SAC-D/Aquarius satellite mission is to globally and indirectly measure certain geophysical parameters such as: sea surface salinity (Sal), column water vapor (CWV), column liquid water (CLW), rain rate (RR), wind speed (WS), wind direction (WD), ice concentration (SIC) and others. On board the satellite there are several instruments designed for specific purposes like the passive microwave sensor MWR (Fig. 1) whose specifications are shown in Table 1. The aim of the latter is to determine the following parameters: CWV, CLW, RR, WS, WD and SIC. The MWR sensor measures brightness temperatures at two frequencies: 23.8 and 36.5GHz. In the case of 36.5GHz, it measures both polarizations (vertical and horizontal) while for 23.8GHz it only measures the horizontal component. Since this sensor measures brightness temperatures and not geophysical variables, it is necessary to establish a relationship that links both. These relationships are determined by radiative transfer models (RTM). In remote sensing there are two types of models, namely: Forward and Inverse Model. The radiative transfer model in the forward direction obtains brightness temperatures for a given configuration within the pixel (geophysical variables). The most important applications of these models are: * Simulator Development: spectral bands selection to meet the high-level requirements within the expected error. * Intercalibration: in the calculation of corrections due to differences in incidence angles and frequencies between sensors involved in this process. * Inverse Radiative Transfer Models to obtain geophysical variables from brightness temperatures. In this paper, we developed a module that simulates the interaction of radiation with cloud droplets and raindrops. These modules were incorporated into a radiative transfer model from CFRSL (Central Florida Remote Sensing Lab) to calculate the brightness temperatures that would measure a passive microwave sensor

  17. Computing Radiative Transfer in a 3D Medium

    Science.gov (United States)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  18. Radiation doses from Hanford site releases to the atmosphere

    International Nuclear Information System (INIS)

    Radiation doses to individuals were estimated for the years 1944-1992. The dose estimates were based on the radioactive-releases from the Hanford Site in south central Washington. Conceptual models and computer codes were used to reconstruct doses through the early 1970s. The published Hanford Site annual environmental data were used to complete the does history through 1992. The most significant exposure pathway was found to be the consumption of cow's milk containing iodine-131. For the atmospheric pathway, median cumulative dose estimates to the thyroid of children ranged from < 0.1 to 235 rad throughout the area studied. The geographic distribution of the dose levels was directly related to the pattern of iodine-131 deposition and was affected by the distribution of commercial milk and leafy vegetables. For the atmospheric pathway, the-highest estimated cumulative-effective-dose-equivalent (EDE) to an adult was estimated to be 1 rem at Ringold, Washington for the period 1944-1992. For the Columbia River pathway, cumulative EDE estimates ranged from <0.5 to l.5 rem cumulative dose to maximally exposed adults downriver from the Hanford Site for the years 1944-1992. The most significant river exposure pathway was consumption of resident fish containing phosphorus-32 and zinc-65

  19. Development of Radiative Transfer Model Including Polarization Effect in Near Infrared Region for Retrieving CO2 Amounts From Space

    Science.gov (United States)

    Ota, Y.; Yokota, T.

    2006-12-01

    Satellite-based measurement of atmospheric CO2 is an attractive method that takes advantage of dense coverage of measurement locations globally for the purpose of precise estimation of carbon sinks and sources. Greenhouse gases Observing SATellite (GOSAT), which is developed in Japan and is planned to be launched in 2008, aims to measure the column density of atmospheric CO2 using a satellite-based Fourier transform spectrometer (FTS). By nadir-looking measurements, the FTS detects reflected solar radiation in the CO2 absorption bands at 2.0 μm and 1.6 μm, and also of the O2 A-band at 0.76 μm. For retrieving CO2 concentration precisely from those data, it is important to remove and to decrease the systematic errors attributable to clouds, aerosols, ground surface albedo, and also instrumental characteristics including polarization effects. However, a vectorized radiative transfer model, which simulates the polarized radiation fields in the atmosphere and ground surface system, is required to evaluate the effects of these error factors correctly on CO2 retrievals. From this point of view, we developed a radiative transfer model in which the transfer algorithm is based on the matrix-operator method with adding technique for multilayer multiple scattering media. The influence of the error factors including the neglect of polarization effect in the forward model on CO2 retrieval will be also presented on the basis of error evaluation of optimal estimation approach.

  20. Iteration Profiles in Radiative Transfer Problems. I. From Vectorial to Scalar Coupling

    Science.gov (United States)

    Crivellari, L.; Simonneau, E.

    1995-09-01

    We have recently introduced a new algorithm, the implicit integral method (IIM), for solving radiative transfer problems in which the specific source functions (for each frequency and direction) depend linearly on the radiation field via a single quantity which is independent of both frequency and direction. We define this kind of relationship as scalar coupling. The fact that our method turned out to be fast, robust, and highly reliable leads us to seek its extension to include those problems where the above, necessary condition is not fulfilled. In these problems, the specific source functions depend on the radiation field through a nonfactorable redistribution operator. In our definition, these are cases of vectorial coupling. In this paper we present the successful application of the IIM, through an iterative procedure, to two specific instances of vectorial coupling. The first is the determination of the temperature distribution, self-consistent with the energy conservation constraint, within a LTE stellar atmosphere model. Here the physical processes other than radiative transfer require an iterative procedure for the global solution of the problem. Thus we take advantage of this circumstance to solve iteratively the radiative transfer part as well. The second is the case of the non-LTE two-level-atom line formation problem in which partial redistribution is taken into account in the presence of a background continuum. This problem allows a direct solution, but at the cost of using algorithms that necessarily require the storage and inversion of very high order matrices. On the contrary, we show that a solution based on the iterative application of the IIM, thanks to the outstanding features of the latter, is not only fast, but above all much more reliable in numerical terms.

  1. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation

    DEFF Research Database (Denmark)

    Janssen, Hans; Blocken, Bert; Carmeliet, Jan

    2007-01-01

    While the transfer equations for moisture and heat in building components are currently undergoing standardisation, atmospheric boundary conditions, conservative modelling and numerical efficiency are not addressed. In a first part, this paper adds a comprehensive description of those boundary co...

  2. Hydraulic effects in a radiative atmosphere with ionization

    CERN Document Server

    Bhat, Pallavi

    2014-01-01

    In a paper of 1978, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has recently also been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability. We study the effects of partial ionization near the radiative surface on the formation of such magnetic flux concentrations. We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the ${\\rm H}^{-}$ opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force resembling a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. In 1D models, due to partial ionization, an unstable stratification forms always near the surface. We show that the extrema in the specific entropy profil...

  3. A Solar Radiation Parameterization for Atmospheric Studies. Volume 15

    Science.gov (United States)

    Chou, Ming-Dah; Suarez, Max J. (Editor)

    1999-01-01

    The solar radiation parameterization (CLIRAD-SW) developed at the Goddard Climate and Radiation Branch for application to atmospheric models are described. It includes the absorption by water vapor, O3, O2, CO2, clouds, and aerosols and the scattering by clouds, aerosols, and gases. Depending upon the nature of absorption, different approaches are applied to different absorbers. In the ultraviolet and visible regions, the spectrum is divided into 8 bands, and single O3 absorption coefficient and Rayleigh scattering coefficient are used for each band. In the infrared, the spectrum is divided into 3 bands, and the k-distribution method is applied for water vapor absorption. The flux reduction due to O2 is derived from a simple function, while the flux reduction due to CO2 is derived from precomputed tables. Cloud single-scattering properties are parameterized, separately for liquid drops and ice, as functions of water amount and effective particle size. A maximum-random approximation is adopted for the overlapping of clouds at different heights. Fluxes are computed using the Delta-Eddington approximation.

  4. High resolution surface solar radiation patterns over Eastern Mediterranean: Satellite, ground-based, reanalysis data and radiative transfer simulations

    Science.gov (United States)

    Alexandri, G.; Georgoulias, A.; Meleti, C.; Balis, D.

    2013-12-01

    Surface solar radiation (SSR) and its long and short term variations play a critical role in the modification of climate and by extent of the social and financial life of humans. Thus, SSR measurements are of primary importance. SSR is measured for decades from ground-based stations for specific spots around the planet. During the last decades, satellite observations allowed for the assessment of the spatial variability of SSR at a global as well as regional scale. In this study, a detailed spatiotemporal view of the SSR over Eastern Mediterranean is presented at a high spatial resolution. Eastern Mediterranean is affected by various aerosol types (continental, sea, dust and biomass burning particles) and encloses countries with significant socioeconomical changes during the last decades. For the aims of this study, SSR data from satellites (Climate Monitoring Satellite Application Facility - CM SAF) and our ground station in Thessaloniki, a coastal city of ~1 million inhabitants in northern Greece, situated in the heart of Eastern Mediterranean (Eppley Precision pyranometer and Kipp & Zonen CM-11 pyranometer) are used in conjunction with radiative transfer simulations (Santa Barbara DISORT Atmospheric Radiative Transfer - SBDART). The CM SAF dataset used here includes monthly mean SSR observations at a high spatial resolution of 0.03x0.03 degrees for the period 1983-2005. Our ground-based SSR observations span from 1983 until today. SBDART radiative transfer simulations were implemented for a number of spots in the area of study in order to calculate the SSR. High resolution (level-2) aerosol and cloud data from MODIS TERRA and AQUA satellite sensors were used as input, as well as ground-based data from the AERONET. Data from other satellites (Earth Probe TOMS, OMI, etc) and reanalysis projects (ECMWF) were used where needed. The satellite observations, the ground-based measurements and the model estimates are validated against each other. The good agreement

  5. Sensitivity of the biosphere-atmosphere transfer scheme (BATS) to the inclusion of variable soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.F.; Henderson-Sellers, A.; Dickinson, R.E.; Kennedy, P.J.

    1987-03-01

    The soils data of Wilson and Henderson-Sellers have been incorporated into the land-surface parameterization scheme of the NCAR Community Climate Model after Dickinson. A stand-alone version of this land-surface scheme, termed the Biosphere-Atmosphere Transfer Scheme (BATS), has been tested in a series of sensitivity experiments designed to assess the sensitivity of the scheme to the inclusion of variable soil characteristics. The cases investigated were for conditions designed to represent a low-latitude, evergreen forest; a low-latitude sand desert; a high-latitude coniferous forest; high-latitude tundra; and prairie grasslands, each for a specified time of year. The tundra included spring snowmelt and the grassland incorporated snow accumulation. The sensitivity experiments included varying the soil texture from a coarse texture typical of sand through a medium texture typical of loam to a fine texture typical of clay. The sensitivity of the formation to the specified total and upper soil column depth and the response to altering the parameterization of the soil albedo dependence upon soil wetness and snow-cover were also examined. The biosphere-atmosphere transfer scheme showed the greatest sensitivity to the soil texture variation, particularly to the associated variation in the hydraulic conductivity and diffusivity parameters. There was only a very small response to the change in the soil albedo dependence on wetness and, although the sensitivity to the snow-covered soil albedo via the response to roughness length/snowmasking depth was significant, the results were predictable. Soil moisture responses can also be initiated by changes in vegetation characteristics such as the stomatal resistance through changed canopy interaction which modify the radiation and water budgets of the soil surface.

  6. Fast and Accurate Radiative Transfer Calculations Using Principal Component Analysis for (Exo-)Planetary Retrieval Models

    Science.gov (United States)

    Kopparla, P.; Natraj, V.; Shia, R. L.; Spurr, R. J. D.; Crisp, D.; Yung, Y. L.

    2015-12-01

    Radiative transfer (RT) computations form the engine of atmospheric retrieval codes. However, full treatment of RT processes is computationally expensive, prompting usage of two-stream approximations in current exoplanetary atmospheric retrieval codes [Line et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT computations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those few optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Kopparla et al. [2015, in preparation] extended the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Here, we apply the PCA method to a some typical (exo-)planetary retrieval problems. Comparisons between the new model, called Universal Principal Component Analysis Radiative Transfer (UPCART) model, two-stream models and line-by-line RT models are performed, for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the top of the atmosphere for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and stellar and viewing geometries. We demonstrate that very accurate radiance and flux estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases, as compared to a numerically exact line-by-line RT model. The accuracy is enhanced when the results are convolved to typical instrument resolutions. The operational speed and accuracy of UPCART can be further improved by optimizing binning schemes and parallelizing the codes, work

  7. A field test of a simple stochastic radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, N. [Science Applications International Corp., San Diego, CA (United States)

    1995-09-01

    The problem of determining the effect of clouds on the radiative energy balance of the globe is of well-recognized importance. One can in principle solve the problem for any given configuration of clouds using numerical techniques. This knowledge is not useful however, because of the amount of input data and computer resources required. Besides, we need only the average of the resulting solution over the grid scale of a general circulation model (GCM). Therefore, we are interested in estimating the average of the solutions of such fine-grained problems using only coarse grained data, a science or art called stochastic radiation transfer. Results of the described field test indicate that the stochastic description is a somewhat better fit to the data than is a fractional cloud cover model, but more data are needed. 1 ref., 3 figs.

  8. Estimation of presampling modulation transfer function in synchrotron radiation microtomography

    CERN Document Server

    Mizutani, Ryuta; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    The spatial resolution achieved by recent synchrotron radiation microtomographs should be estimated from the modulation transfer function (MTF) on the micrometer scale. Step response functions of a synchrotron radiation microtomograph were determined by the slanted edge method by using high-precision surfaces of diamond crystal and ion-milled aluminum wire. Tilted reconstruction was introduced to enable any edge to be used as the slanted edge by defining the reconstruction pixel matrix in an arbitrary orientation. MTFs were estimated from the step response functions of the slanted edges. The obtained MTFs coincided with MTF values estimated from square-wave patterns milled on the aluminum surface. Although x-ray refraction influences should be taken into account to evaluate MTFs, any flat surfaces with nanometer roughness can be used to determine the spatial resolutions of microtomographs.

  9. Three-Dimensional Radiation Transfer in Young Stellar Objects

    CERN Document Server

    Whitney, B A; Bjorkman, J E; Dong, R; Wolff, M J; Wood, K; Honor, J

    2013-01-01

    We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various 3-D geometries appropriate for forming stars. The 3-D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2-D) features include gaps in disks and envelopes, "puffed-up inner rims" in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium. We include the option for simple power-law envelope geometry, which combined with fractal clumping, and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from PAHs and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We des...

  10. Radiative Transfer with Finite Elements II. Ly-alpha Line Transfer in Moving Media

    CERN Document Server

    Meinkoehn, E

    2002-01-01

    A finite element method for solving the resonance line transfer problem in moving media is presented. The algorithm works in three spatial dimensions on unstructured grids which are adaptively refined by means of an a posteriori error indicator. Frequency discretization is implemented via a first-order Euler scheme. We discuss the resulting matrix structure for coherent isotropic scattering and complete redistribution. The solution is performed using an iterative procedure, where monochromatic radiative transfer problems are successively solved. The present implementation is applicable for arbitrary model configurations with an optical depth up to 10^(3-4). Results of Ly-alpha line transfer calculations for a spherically symmetric model, a disk-like configuration, and a halo containing three source regions are discussed. We find the characteristic double-peaked Ly-alpha line profile for all models with an optical depth > 1. In general, the blue peak of the profile is enhanced for models with infall motion and...

  11. A multilevel method for conductive-radiative heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Banoczi, J.M.; Kelley, C.T. [North Carolina State Univ., Raleigh, NC (United States)

    1996-12-31

    We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.

  12. Adaptable Radiative Transfer Innovations for Submillimeter Telescopes (ARTIST)

    CERN Document Server

    Padovani, Marco

    2011-01-01

    Submillimeter observations are a key for answering many of the big questions in modern-day astrophysics, such as how stars and planets form, how galaxies evolve, and how material cycles through stars and the interstellar medium. With the upcoming large submillimeter facilities ALMA and Herschel a new window will open to study these questions. ARTIST is a project funded in context of the European ASTRONET program with the aim of developing a next generation model suite for comprehensive multi-dimensional radiative transfer calculations of the dust and line emission, as well as their polarization, to help interpret observations with these groundbreaking facilities.

  13. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    Science.gov (United States)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  14. Peregrinations through topics in light scattering and radiative transfer

    Science.gov (United States)

    Kattawar, George W.

    2016-07-01

    In this van de Hulst essay, I have taken the liberty to present a journey through some topics in light scattering and radiative transfer which I feel were major contributions to the field but the number of topics I would like to cover is far more numerous than I have the time or the space to present. I also wanted to share with the reader some heartwarming memories I have of my wonderful friend and truly distinguished colleague Hendrik Christoffel van de Hulst (affectionately known to his colleagues as "Henk") whom I consider to be one of the preeminent scientists of his era.

  15. Odyssey: Ray tracing and radiative transfer in Kerr spacetime

    Science.gov (United States)

    Pu, Hung-Yi; Yun, Kiyun; Younsi, Ziri; Yoon, Suk-Jin

    2016-01-01

    Odyssey is a GPU-based General Relativistic Radiative Transfer (GRRT) code for computing images and/or spectra in Kerr metric describing the spacetime around a rotating black hole. Odyssey is implemented in CUDA C/C++. For flexibility, the namespace structure in C++ is used for different tasks; the two default tasks presented in the source code are the redshift of a Keplerian disk and the image of a Keplerian rotating shell at 340GHz. Odyssey_Edu, an educational software package for visualizing the ray trajectories in the Kerr spacetime that uses Odyssey, is also available.

  16. Numerical Radiative Transfer and the Hydrogen Reionization of the Universe

    Science.gov (United States)

    Petkova, M.

    2011-03-01

    One of the most interesting questions in cosmology is to understand how the Universe evolved from its nearly uniform and simple state briefly after the Big Bang to the complex state we see around us today. In particular, we would like to explain how galaxies have formed, and why they have the properties that we observe in the local Universe. Computer simulations play a highly important role in studying these questions, because they allow one to follow the dynamical equations of gravity and hydrodynamics well into the non-linear regime of the growth of cosmic structures. The current generation of simulation codes for cosmological structure formation calculates the self-gravity of dark matter and cosmic gas, and the fluid dynamics of the cosmic gas, but radiation processes are typically not taken into account, or only at the level of a spatially uniform, externally imposed background field. However, we know that the radiation field has been highly inhomogeneous during certain phases of the growth of structure, and may have in fact provided important feedback effects for galaxy formation. In particular, it is well established that the diffuse gas in the universe was nearly fully neutral after recombination at very high redshift, but today this gas is highly ionized. Sometime during the evolution, a transition to the ionized state must have occurred, a process we refer to as reionization. The UV radiation responsible for this reionization is now permeating the universe and may in part explain why small dwarf galaxies have so low luminosities. It is therefore clear that accurate and self-consistent studies of galaxy formation and of the dynamics of the reionization process should ideally be done with simulation codes that directly include a treatment of radiative transfer, and that account for all relevant source and sink terms of the radiation. We present a novel numerical implementation of radiative transfer in the cosmological smoothed particle hydrodynamics (SPH

  17. Low cost transportable device for transference of atmosphere sensitive materials from glove box to SEM

    DEFF Research Database (Denmark)

    Bentzen, Janet Jonna; Saxild, Finn B.

    the field of high energy battery research involving highly reactive metals, e.g. lithium, we needed a means of transferring atmosphere sensitive materials from the protective atmosphere of a glove box, avoiding air exposure, to a sample chamber of a scanning electron microscope. Thus, we constructed a low...

  18. Cosmological Radiative Transfer Comparison Project II: The Radiation-Hydrodynamic Tests

    CERN Document Server

    Iliev, Ilian T; Mellema, Garrelt; Ahn, Kyungjin; Baek, Sunghye; Gnedin, Nickolay Y; Kravtsov, Andrey V; Norman, Michael; Raicevic, Milan; Reynolds, Daniel R; Sato, Daisuke; Shapiro, Paul R; Semelin, Benoit; Smidt, Joseph; Susa, Hajime; Theuns, Tom; Umemura, Masayuki

    2009-01-01

    The development of radiation hydrodynamical methods that are able to follow gas dynamics and radiative transfer self-consistently is key to the solution of many problems in numerical astrophysics. Such fluid flows are highly complex, rarely allowing even for approximate analytical solutions against which numerical codes can be tested. An alternative validation procedure is to compare different methods against each other on common problems, in order to assess the robustness of the results and establish a range of validity for the methods. Previously, we presented such a comparison for a set of pure radiative transfer tests (i.e. for fixed, non-evolving density fields). This is the second paper of the Cosmological Radiative Transfer (RT) Comparison Project, in which we compare 9 independent RT codes directly coupled to gasdynamics on 3 relatively simple astrophysical hydrodynamics problems: (5) the expansion of an H II region in a uniform medium; (6) an ionization front (I-front) in a 1/r^2 density profile with...

  19. Radiative transfer model for contaminated slabs : experimental validations

    CERN Document Server

    Andrieu, François; Schmitt, Bernard; Douté, Sylvain; Brissaud, Olivier

    2015-01-01

    This article presents a set of spectro-goniometric measurements of different water ice samples and the comparison with an approximated radiative transfer model. The experiments were done using the spectro-radiogoniometer described in Brissaud et al. (2004). The radiative transfer model assumes an isotropization of the flux after the second interface and is fully described in Andrieu et al. (2015). Two kind of experiments were conducted. First, the specular spot was closely investigated, at high angular resolution, at the wavelength of $1.5\\,\\mbox{\\mu m}$, where ice behaves as a very absorbing media. Second, the bidirectional reflectance was sampled at various geometries, including low phase angles on 61 wavelengths ranging from $0.8\\,\\mbox{\\mu m}$ to $2.0\\,\\mbox{\\mu m}$. In order to validate the model, we made a qualitative test to demonstrate the relative isotropization of the flux. We also conducted quantitative assessments by using a bayesian inversion method in order to estimate the parameters (e.g. sampl...

  20. Biogeochemical ocean-atmosphere transfers in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Bange, H.W.; Gibb, S.W.; Goyet, C.; Hatton, A.D.; Upstill-Goddard, R.C.

    fluxes is through the production of N sub (2) and N sub (2) O facilitated by an acute, mid-water deficiency of dissolved oxygen (O sub (2) );emissions of these gases to the atmosphere from the Arabian Sea are globally significant. For the other...

  1. The impact of deforestation in the Amazonian atmospheric radiative balance: a remote sensing assessment

    Directory of Open Access Journals (Sweden)

    E. T. Sena

    2012-06-01

    Full Text Available This paper addresses the Amazonian radiative budget after considering three aspects of deforestation: (i the emission of aerosols from biomass burning due to forest fires; (ii changes in surface albedo after deforestation and (iii modifications in the column water vapour amount over deforested areas. Simultaneous Clouds and the Earth's Radiant Energy System (CERES shortwave fluxes and aerosol optical depth (AOD retrievals from the Moderate Resolution Imaging SpectroRadiometer (MODIS were analysed during the peak of the biomass burning seasons (August and September from 2000 to 2009. A discrete-ordinate radiative transfer (DISORT code was used to extend instantaneous remote sensing radiative forcing assessments into 24-h averages. The mean direct radiative forcing of aerosols at the top of the atmosphere (TOA during the biomass burning season for the 10-yr studied period was −5.6 ± 1.7 W m−2. Furthermore, the spatial distribution of the direct radiative forcing of aerosols over Amazon was obtained for the biomass burning season of each year. It was observed that for high AOD (larger than 1 at 550 nm the imbalance in the radiative forcing at the TOA may be as high as −20 W m−2 locally. The surface reflectance plays a major role in the aerosol direct radiative effect. The study of the effects of biomass burning aerosols over different surface types shows that the direct radiative forcing is systematically more negative over forest than over savannah-like covered areas. Values of −15.7 ± 2.4 W m−2550 nm and −9.3 ± 1.7 W m−2550 nm were calculated for the mean daily aerosol forcing efficiencies over forest and savannah-like vegetation respectively. The overall mean annual albedo-change radiative forcing due to deforestation over the state of Rondônia, Brazil, was determined as −7.3 ± 0.9 W m−2. Biomass burning aerosols impact the radiative

  2. Studies on gas-liquid mass transfer in atmospheric leaching of sulphidic zinc concentrates

    OpenAIRE

    Kaskiala, Toni

    2005-01-01

    In this work, the mass transfer of oxygen in the atmospheric leaching process of zinc sulphide was investigated. Four new experimental apparatus items suitable for this purpose were designed and developed. The experiments conducted with the water model were focused on volumetric mass transfer, gas and liquid flow patterns, gas dispersion and bubble size. The effects of liquid properties and temperature on bubble size were examined with the bubble swarm system. Mass transfer coefficients, kL, ...

  3. Uncertainities in carbon dioxide radiative forcing in atmospheric general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Cess, R.D.; Zhang, M.H. (State Univ. of New York, Stony Brook, NY (United States)); Potter, G.L.; Gates, W.L.; Taylor, K.E. (Lawrence Livermore National Laboratory, CA (United States)); Colman, R.A.; Fraser, J.R.; McAvaney, B.J. (Bureau of Meterorology Research Centre, Victoria (Australia)); Dazlich, D.A.; Randall, D.A. (Colorado State Univ., Fort Collins, CO (United States)); Del Genio, A.D.; Lacis, A.A. (Goddard Institute for Space Studies, New York, NY (United States)); Esch, M.; Roeckner, E. (Max Planck Institute for Meteorology, Hamburg (Germany)); Galin, V. (Russian Academy of Sciences, Moscow (Russian Federation)); Hack, J.J.; Kiehl, J.T. (National Center for Atmospheric Research, Boulder, CO (United States)); Ingram, W.J. (Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)); Le Treut, H.; Lli, Z.X. (Laboratoire de Meteorologie Dynamique, Paris (France)); Liang, X.Z.; Wang, W.C. (State Univ. of New York, Albany, NY (United States)); Mahfouf,

    1993-11-19

    Global warming, caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.

  4. The Zugspitze radiative closure experiment: quantification of the near-infrared water vapor continuum from atmospheric measurements

    Science.gov (United States)

    Reichert, Andreas; Sussmann, Ralf; Rettinger, Markus

    2016-04-01

    Inaccuracies in the description of atmospheric radiative processes are among the major shortcomings of current climate models. Especially the contribution by water vapor, the primary greenhouse gas in the Earth's atmosphere, currently still lacks sufficiently accurate quantification. The main focus of our study is on the so-called water vapor continuum absorption in the near-infrared spectral range, which is of crucial importance for atmospheric radiative processes. To date, the quantification of this contribution originates exclusively from laboratory experiments which show contradictory results and whose findings are not unambiguously transferable to atmospheric conditions. The aim of the Zugspitze radiative closure study is therefore to obtain, to our knowledge for the first time, an exact characterization of the near-infrared water vapor continuum absorption using atmospheric measurements. This enables validation and, if necessary, improvements of the radiative transfer codes used in current climate models. The closure experiment comprises near-infrared spectral radiance measurements using a solar absorption FTIR spectrometer. These measurements are then compared to synthetic radiance spectra computed by means of a high-resolution radiative transfer model. The spectral residuals, i.e. the difference between measured and calculated spectral radiances can then be used to quantify errors in the description of water vapor absorption. Due to the extensive permanent instrumentation available at the Zugspitze observatory, the atmospheric state used as an input to the model calculations can be constrained with high accuracy. Additionally, we employ a novel radiometric calibration strategy for the solar FTIR spectral radiance measurements based on a combination of the Langley method and measurements of a medium-temperature blackbody source. These prerequisites enable accurate quantification of the water vapor continuum in the near-infrared spectral region, where

  5. Reconstruction of forest geometries from terrestrial laser scanning point clouds for canopy radiative transfer modelling

    Science.gov (United States)

    Bremer, Magnus; Schmidtner, Korbinian; Rutzinger, Martin

    2015-04-01

    The architecture of forest canopies is a key parameter for forest ecological issues helping to model the variability of wood biomass and foliage in space and time. In order to understand the nature of subpixel effects of optical space-borne sensors with coarse spatial resolution, hypothetical 3D canopy models are widely used for the simulation of radiative transfer in forests. Thereby, radiation is traced through the atmosphere and canopy geometries until it reaches the optical sensor. For a realistic simulation scene we decompose terrestrial laser scanning point cloud data of leaf-off larch forest plots in the Austrian Alps and reconstruct detailed model ready input data for radiative transfer simulations. The point clouds are pre-classified into primitive classes using Principle Component Analysis (PCA) using scale adapted radius neighbourhoods. Elongated point structures are extracted as tree trunks. The tree trunks are used as seeds for a Dijkstra-growing procedure, in order to obtain single tree segmentation in the interlinked canopies. For the optimized reconstruction of branching architectures as vector models, point cloud skeletonisation is used in combination with an iterative Dijkstra-growing and by applying distance constraints. This allows conducting a hierarchical reconstruction preferring the tree trunk and higher order branches and avoiding over-skeletonization effects. Based on the reconstructed branching architectures, larch needles are modelled based on the hierarchical level of branches and the geometrical openness of the canopy. For radiative transfer simulations, branch architectures are used as mesh geometries representing branches as cylindrical pipes. Needles are either used as meshes or as voxel-turbids. The presented workflow allows an automatic classification and single tree segmentation in interlinked canopies. The iterative Dijkstra-growing using distance constraints generated realistic reconstruction results. As the mesh representation

  6. Hydraulic effects in a radiative atmosphere with ionization

    Science.gov (United States)

    Bhat, P.; Brandenburg, A.

    2016-03-01

    Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.

  7. Atmospheric Radiation Measurement Program facilities newsletter, February 2001.; TOPICAL

    International Nuclear Information System (INIS)

    This newsletter consists of the following: (1) ARM Science Team Meeting Scheduled-The 11th Annual ARM Science Team meeting is scheduled for March 19-23, 2001, in Atlanta, Georgia. Members of the science team will exchange research results achieved by using ARM data. The science team is composed of working groups that investigate four topics: instantaneous radiative flux, cloud parameterizations and modeling, cloud properties, and aerosols. The annual meeting brings together the science team's 150 members to discuss issues related to ARM and its research. The members represent universities, government laboratories and research facilities, and independent research companies. (2) Communications to Extended Facilities Upgraded-New communications equipment has been installed at all of the SGP extended facilities. Shelters were installed to house the new equipment used to transfer data from instruments via the Internet to the site data system at the central facility. This upgrade has improved data availability from the extended facilities to 100% and reduced telephone costs greatly. (3) SGP Goes ''Buggy''-Steve Sekelsky, a researcher from the University of Massachusetts, is planning to bring a 95-GHz radar to the SGP central facility for deployment in March-October 2001. The radar will help to identify signals due to insects flying in the air. The ARM millimeter cloud radar, which operates at 35 GHz, is sensitive to such insect interference. Testing will also be performed by using a second 35-GHz radar with a polarized radar beam, which can differentiate signals from insects versus cloud droplets. (4) Winter Fog-Fog can add to hazards already associated with winter weather. Common types of fog formation include advection, radiation, and steam. Advection fog: An advection fog is a dense fog that forms when a warm, moist air mass moves into an area with cooler ground below. For example, fog can form in winter when warmer, water-saturated air from the south (associated with

  8. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  9. Effects of ionizing radiation on DNA-mediated gene transfer

    International Nuclear Information System (INIS)

    The process of DNA-mediated gene transfer is a powerful genetic tool that involves the cellular uptake, genomic integration and expression of exogenous DNA sequences. This process can also be used to examine the effects of radiation at the molecular level. There have been a few reported describing the enhancement of the gene transfer process by a number of DNA damaging agents. The agents tested included UV light, x-rays and accelerated argon particles. One hypothesis to explain this phenomenon is that these DNA damaging agents themselves, or subsequent DNA repair processes, introduce strand breaks into the cellular DNA of recipient cells. These DNA breaks then serve as possible sites of integration for the exogenous DNA sequences. The authors are continuing these studies by determining what effect neutrons have on the transfection of DNA. The gene transfer system we plan to employ involves the transfection of the chimeric plasmid pSV2-GPT into recipient hamster cell lines. This plasmid contains the Escherichia coli ecogpt gene, which codes for the enzyme xanthine-guanine phosphoribosyltransferase (XGPRT), along with simian virus 40 (SV40) sequences which allow for expression of the bacterial gene in mammalian cells

  10. Hydrodynamic and hydromagnetic stability of black holes with radiative transfer

    Indian Academy of Sciences (India)

    Roger Blandford; Jonathan C Mckinney; Nadia Zakamska

    2011-07-01

    Subrahmanyan Chandrasekhar (Chandra) was just eight years old when the first astrophysical jet was discovered in M87. Since then, jets have been uncovered with a wide variety of sources including accretion disks orbiting stellar and massive black holes, neutron stars, isolated pulsars, -ray bursts, protostars and planetary nebulae. This talk will be primarily concerned with collimated hydromagnetic outflows associated with spinning, massive black holes in active galactic nuclei. Jets exhibit physical processes central to three of the major research themes in Chandrasekhar’s research career – radiative transfer, magnetohydrodynamics and black holes. Relativistic jets can be thought of as `exhausts’ from both the hole and its orbiting accretion disk, carrying away the energy liberated by the rotating spacetime and the accreting gas that is not radiated. However, no aspect of jet formation, propagation and radiation can be regarded as understood in detail. The combination of new -ray, radio and optical observations together with impressive advances in numerical simulation make this a good time to settle some long-standing debates.

  11. EMMA: an AMR cosmological simulation code with radiative transfer

    CERN Document Server

    Aubert, Dominique; Ocvirk, Pierre

    2015-01-01

    EMMA is a cosmological simulation code aimed at investigating the reionization epoch. It handles simultaneously collisionless and gas dynamics, as well as radiative transfer physics using a moment-based description with the M1 approximation. Field quantities are stored and computed on an adaptive 3D mesh and the spatial resolution can be dynamically modified based on physically-motivated criteria. Physical processes can be coupled at all spatial and temporal scales. We also introduce a new and optional approximation to handle radiation : the light is transported at the resolution of the non-refined grid and only once the dynamics have been fully updated, whereas thermo-chemical processes are still tracked on the refined elements. Such an approximation reduces the overheads induced by the treatment of radiation physics. A suite of standard tests are presented and passed by EMMA, providing a validation for its future use in studies of the reionization epoch. The code is parallel and is able to use graphics proc...

  12. Multi-Scale Distributed Sensitivity Analysis of Radiative Transfer Model

    Science.gov (United States)

    Neelam, M.; Mohanty, B.

    2015-12-01

    Amidst nature's great variability and complexity and Soil Moisture Active Passive (SMAP) mission aims to provide high resolution soil moisture products for earth sciences applications. One of the biggest challenges still faced by the remote sensing community are the uncertainties, heterogeneities and scaling exhibited by soil, land cover, topography, precipitation etc. At each spatial scale, there are different levels of uncertainties and heterogeneities. Also, each land surface variable derived from various satellite mission comes with their own error margins. As such, soil moisture retrieval accuracy is affected as radiative model sensitivity changes with space, time, and scale. In this paper, we explore the distributed sensitivity analysis of radiative model under different hydro-climates and spatial scales, 1.5 km, 3 km, 9km and 39km. This analysis is conducted in three different regions Iowa, U.S.A (SMEX02), Arizona, USA (SMEX04) and Winnipeg, Canada (SMAPVEX12). Distributed variables such as soil moisture, soil texture, vegetation and temperature are assumed to be uncertain and are conditionally simulated to obtain uncertain maps, whereas roughness data which is spatially limited are assumed a probability distribution. The relative contribution of the uncertain model inputs to the aggregated model output is also studied, using various aggregation techniques. We use global sensitivity analysis (GSA) to conduct this analysis across spatio-temporal scales. Keywords: Soil moisture, radiative transfer, remote sensing, sensitivity, SMEX02, SMAPVEX12.

  13. Probing clouds in planets with a simple radiative transfer model: the Jupiter case

    International Nuclear Information System (INIS)

    Remote sensing of planets evokes using expensive on-orbit satellites and gathering complex data from space. However, the basic properties of clouds in planetary atmospheres can be successfully estimated with small telescopes even from an urban environment using currently available and affordable technology. This makes the process accessible for undergraduate students while preserving most of the physics and mathematics involved. This paper presents the methodology for carrying out a photometric study of planetary atmospheres, focused on the planet Jupiter. The method introduces the basics of radiative transfer in planetary atmospheres, some notions on inverse problem theory and the fundamentals of planetary photometry. As will be shown, the procedure allows the student to derive the spectral reflectivity and top altitude of clouds from observations at different wavelengths by applying a simple but enlightening ‘reflective layer model’. In this way, the planet's atmospheric structure is estimated by students as an inverse problem from the observed photometry. Web resources are also provided to help those unable to obtain telescopic observations of the planets. (paper)

  14. Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2

    International Nuclear Information System (INIS)

    This chapter updates information taken from Chapters 3 to 6 of the IPCC Working Group I Third Assessment Report. It concerns itself with trends in forcing agents and their precursors since 1750, and estimates their contribution to the radiative forcing (RF) of the climate system. Discussion of the understanding of atmospheric composition changes is limited to explaining the trends in forcing agents and their precursors. Areas where significant developments have occurred since the TAR are highlighted. The chapter draws on various assessments since the TAR, in particular the 2002 World Meteorological Organization (WMO), United Nations Environment Programme (UNEP) Scientific Assessment of Ozone Depletion (2003) and the IPCC Technology and Economic Assessment Panel (TEAP) special report on Safeguarding the Ozone Layer and the Global Climate System (2005). The chapter assesses anthropogenic greenhouse gas changes, aerosol changes and their impact on clouds, aviation-induced contrails and cirrus changes, surface albedo changes and natural solar and volcanic mechanisms. The chapter reassesses the 'radiative forcing' concept (Sections 2.2 and 2.8), presents spatial and temporal patterns of RF, and examines the radiative energy budget changes at the surface. For the long-lived greenhouse gases (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), chlorofluoro-carbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF6), hereinafter collectively referred to as the LLGHGs; Section 2.3), the chapter makes use of new global measurement capabilities and combines long-term measurements from various networks to update trends through 2005. Compared to other RF agents, these trends are considerably better quantified; because of this, the chapter does not devote as much space to them as previous assessments (although the processes involved and the related budgets are further discussed in Sections 7.3 and 7

  15. Line-Mixing Relaxation Matrix model for spectroscopic and radiative transfer studies

    Science.gov (United States)

    Mendaza, Teresa; Martin-Torres, Javier

    2016-04-01

    We present a generic model to compute the Relaxation Matrix easily adaptable to any molecule and type of spectroscopic lines or bands in non-reactive molecule collisions regimes. It also provides the dipole moment of every transition and level population of the selected molecule. The model is based on the Energy-Corrected Sudden (ECS) approximation/theory introduced by DePristo (1980), and on previous Relaxation Matrix studies for the interaction between molecular ro-vibrational levels (Ben-Rueven, 1966), atoms (Rosenkranz, 1975), linear molecules (Strow and Reuter, 1994; Niro, Boulet and Hartmann, 2004), and symmetric but not linear molecules (Tran et al., 2006). The model is open source, and it is user-friendly. To the point that the user only has to select the wished molecule and vibrational band to perform the calculations. It reads the needed spectroscopic data from the HIgh-resolution TRANsmission molecular absorption (HITRAN) (Rothman et al., 2013) and ExoMol (Tennyson and Yurchenko, 2012). In this work we present an example of the calculations with our model for the case of the 2ν3 band of methane (CH4), and a comparison with a previous work (Tran et al., 2010). The data produced by our model can be used to characterise the line-mixing effects on ro-vibrational lines of the infrared emitters of any atmosphere, to calculate accurate absorption spectra, that are needed in the interpretation of atmospheric spectra, radiative transfer modelling and General Circulation Models (GCM). References [1] A.E. DePristo, Collisional influence on vibration-rotation spectral line shapes: A scaling theoretical analysis and simplification, J. Chem. Phys. 73(5), 1980. [2] A. Ben-Reuven, Impact broadening of microwave spectra, Phys. Rev. 145(1), 7-22, 1966. [3] P.W. Rosenkranz, Shape of the 5 mm Oxygen Band in the Atmosphere, IEEE Transactions on Antennas and Propagation, vol. AP-23, no. 4, pp. 498-506, 1975. [4] Strow, L.L., D.D. Tobin, and S.E. Hannon, A compilation of

  16. Volume 1 Chapter 2: Emissions and concentrations of radiatively active atmospheric trace constituents

    OpenAIRE

    W. Winiwarter

    2014-01-01

    Radiatively active atmospheric trace constituents consist of the following groups of compounds: long-lived greenhouse gases with residence times of years, subject to international conventions; short-lived gases formed in the atmosphere from precursor compounds, remaining in the atmosphere for hours or days: notably ozone; and aerosols, that is, airborne particles interacting with short-wave radiation with both direct and indirect effects. The "direct effect" covers scattering or absorption of...

  17. Humidity effects on the radiative properties of a hazy atmosphere in the visible spectrum

    OpenAIRE

    Zdunkowski, Wilford G.; Liou, Kuo-Nan

    2011-01-01

    The present investigation deals with the humidity effect on the radiative properties of a strongly polluted atmosphere in the visible spectrum. For three relative humidity distributions covering the tropospheric humidity range from 30–70%, the local albedo, the absorption and transmission of the atmosphere are obtained. Corresponding global quantities are calculated also to speculate on possible climatic effects. Additionally, radiative heating rates are calculated for the entire atmosphere, ...

  18. Pymiedap: a versatile radiative transfer code with polarization for terrestrial (exo)planets.

    Science.gov (United States)

    Rossi, Loïc; Stam, Daphne; Hogenboom, Michael

    2016-04-01

    Polarimetry promises to be an important method to detect exoplanets: the light of a star is usually unpolarized te{kemp1987} while scattering by gas and clouds in an atmosphere can generate high levels of polarization. Furthermore, the polarization of scattered light contains information about the properties of the atmosphere and surface of a planet, allowing a possible characterization te{stam2008}, a method already validated in the solar system with Venus te{hansen1974,rossi2015}. We present here Pymiedap (Python Mie Doubling-Adding Program): a set of Python objects interfaced with Fortran radiative transfer codes that allows to define a planetary atmosphere and compute the flux and polarization of the light that is scattered. Several different properties of the planet can be set interactively by the user through the Python interface such as gravity, distance to the star, surface properties, atmospheric layers, gaseous and aerosol composition. The radiative transfer calculations are then computed following the doubling-adding method te{deHaan1987}. We present some results of the code and show its possible use for different planetary atmospheres for both resolved and disk-integrated measurements. We investigate the effect of gas, clouds and aerosols composition and surface properties for horizontally homogeneous and inhomogenous planets, in the case of Earth-like planets. We also study the effect of gaseous absorption on the flux and polarization as a marker for gaseous abundance and cloud top altitude. [1]{kemp1987} Kemp et al. The optical polarization of the sun measured at a sensitivity of parts in ten million. Nature, 1987, 326, 270-273 [2]{stam2008} Stam, D. M. Spectropolarimetric signatures of Earth-like extrasolar planets. A&A, 2008, 482, 989-1007 [3]{hansen1974} Hansen, J. E. & Hovenier, J. W. Interpretation of the polarization of Venus. Journal of Atmospheric Sciences, 1974, 31, 1137-1160 [4]{rossi2015} Rossi et al. Preliminary study of Venus cloud layers

  19. Radiative transfer in cylindrical threads with incident radiation VI. A hydrogen plus helium system

    CERN Document Server

    Gouttebroze, Pierre

    2009-01-01

    Spectral lines of helium are commonly observed on the Sun. These observations contain important informations about physical conditions and He/H abundance variations within solar outer structures. The modeling of chromospheric and coronal loop-like structures visible in hydrogen and helium lines requires the use of appropriate diagnostic tools based on NLTE radiative tranfer in cylindrical geometry. We use iterative numerical methods to solve the equations of NLTE radiative transfer and statistical equilibrium of atomic level populations. These equations are solved alternatively for the hydrogen and helium atoms, using cylindrical coordinates and prescribed solar incident radiation. Electron density is determined by the ionization equilibria of both atoms. Two-dimension effects are included. The mechanisms of formation of the principal helium lines are analyzed and the sources of emission inside the cylinder are located. The variations of spectral line intensities with temperature, pressure, and helium abundan...

  20. Adding method of delta-four-stream spherical harmonic expansion approximation for infrared radiative transfer parameterization

    Science.gov (United States)

    Wu, Kun; Zhang, Feng; Min, Jinzhong; Yu, Qiu-Run; Wang, Xin-Yue; Ma, Leiming

    2016-09-01

    The adding method, which could calculate the infrared radiative transfer (IRT) in inhomogeneous atmosphere with multiple layers, has been applied to δ -four-stream discrete ordinate method (DOM). This scheme is referred as δ -4DDA. However, there is a lack of application for adding method of δ -four-stream spherical harmonic expansion approximation (SHM) to solve infrared radiative transfer through multiple layers. In this paper, the adding method for δ -four-stream SHM (δ -4SDA) will be obtained and the accuracy of it will be evaluated as well. The result of δ -4SDA in an idealized medium with homogeneous optical property is significantly more accurate than that of the adding method for δ -two-stream DOM (δ -2DDA). The relative errors of δ -2DDA can be over 15% in thin optical depths for downward emissivity, while errors of δ -4SDA are bounded by 2%. However, the result of δ -4SDA is slightly less accurate than that of δ -4DDA. In a radiation model with realistic atmospheric profile considering gaseous transmission, the accuracy for heating rate of δ -4SDA is significantly superior than that of δ -2DDA, especially for the cloudy sky. The accuracy for heating rate of δ -4SDA is slightly less accurate than that of δ -4DDA under water cloud conditions, while it is superior than that of δ -4DDA in ice cloud cases. Beside, the computational efficiency of δ -4SDA is higher than that of δ -4DDA.

  1. Data management and scientific integration within the Atmospheric Radiation Measurement Program

    Science.gov (United States)

    Gracio, Deborah K.; Hatfield, Larry D.; Yates, Kenneth R.; Voyles, Jimmy W.; Tichler, Joyce L.; Cederwall, Richard T.; Laufersweiler, Mark J.; Leach, Martin J.; Singley, Paul

    1995-01-01

    The Atmospheric Radiation Measurement (ARM) Program has been developed by the U.S. Department of Energy with the goal to improve the predictive capabilities of General Circulation Models (GCM's) in their treatment of clouds and radiative transfer effects. To achieve this goal, three experimental testbeds were designed for the deployment of instruments that will collect atmospheric data used to drive the GCM's. Each site, known as a Cloud and Radiation Testbed (CART), consists of a highly available, redundant data system for the collection of data from a variety of instrumentation. The first CART site was deployed in April 1992 in the Southern Great Plains (SGP), Lamont, Oklahoma, with the other two sites to follow in September 1995 in the Tropical Western Pacific and in 1997 on the North Slope of Alaska. Approximately 400 MB of data are transferred per day via the Internet from the SGP site to the ARM Experiment Center at Pacific Northwest Laboratory in Richland, Washington. The Experiment Center is central to the ARM data path and provides for the collection, processing, analysis, and delivery of ARM data. Data are received from the CART sites from a variety of instrumentation, observational systems, amd external data sources. The Experiment Center processes these data streams on a continuous basis to provide derived data products to the ARM Science Team in near real-time while providing a three-month running archive of data. A primary requirement of the ARM Program is to preserve and protect all data produced or acquired. This function is performed at Oak Ridge National Laboratory where leading edge technology is employed for the long-term storage of ARM data. The ARM Archive provides access to data for participation outside of the ARM Program. The ARM Program involves a collaborative effort by teams from various DOE National Laboratories, providing multi-disciplinary areas of expertise. This paper will discuss the collaborative methods in which the ARM teams

  2. Gas transfer between the atmosphere and irrigated sugarcane plantation sites under different rainfall in Hawai'i

    Science.gov (United States)

    Miyazawa, Y.; Giambelluca, T. W.; Crow, S. E.; Mudd, R. G.; Youkhana, A.; Nullet, M.; Nakahata, M.

    2015-12-01

    Sugarcane plantation land cover is increasing in area in Brazil, South Asia and the Pacific Islands because of the growing demand for sugar and biofuel production. While a large portion of sugarcane cultivated in Brazil is rain-fed and experiences drought influences on gas exchange, sugarcane in Hawai'i is thought to be buffered from drought effects because it is drip irrigated. Knowledge about carbon sequestration and evapotranspiration rates is fundamental both for the prediction of sugar and biofuel production and for water resource management for the large plantations. To understand gas transfer under spatially and temporally heterogeneous environments, we investigated the leaf- soil- and stand-scale gas transfer processes at two irrigated sugarcane plantation study sites in Hawai'i with contrasting rainfall. Gas and energy transfers were monitored using eddy covariance systems for a full- and later half- crop cycle. Leaf ecophysiological traits were measured for stands of different ages to evaluate the effects of stand age on gas transfer. Carbon sequestration rates (Fc) showed a strong relationship with solar radiation with small differences between sites. Latent heat flux expressed as the evapotranspiration rates (ET) also had a strong relationship with solar radiation, but showed seasonality due to variations in biological control (surface conductance) and atmospheric evaporative demand. The difference in ET and its responses to environments was less clear partly buffered by the differences in the stand age and seasons. The stable Fc-solar radiation relationship despite the variation in surface conductance was partly due to the saturation of net photosynthetic rates with intercellular CO2 concentration and the low sensitivity of net photosynthesis to variations in surface conductance in sugarcane with the C4 photosynthesis pathway. The response of gas transfer to periodic irrigation, rainfall and age-related changes in leaf ecophysiological traits will be

  3. Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    Directory of Open Access Journals (Sweden)

    N. Hatzianastassiou

    2004-01-01

    Full Text Available The mean monthly shortwave (SW radiation budget at the top of atmosphere (TOA was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2 supplemented by data from the National Centers for Environmental Prediction – National Center for Atmospheric Research (NCEP-NCAR Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE S4 scanner satellite data (1985–1989. The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR by 0.93 Wm-2 (or by 0.92%, within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values, respectively, over the 14-year period (from January 1984 to December 1997, indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S–20° N, with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also

  4. IRIS: A Generic Three-Dimensional Radiative Transfer Code

    CERN Document Server

    Ibgui, L; Lanz, T; Stehlé, C

    2012-01-01

    We present IRIS, a new generic three-dimensional (3D) spectral radiative transfer code that generates synthetic spectra, or images. It can be used as a diagnostic tool for comparison with astrophysical observations or laboratory astrophysics experiments. We have developed a 3D short-characteristic solver that works with a 3D nonuniform Cartesian grid. We have implemented a piecewise cubic, locally monotonic, interpolation technique that dramatically reduces the numerical diffusion effect. The code takes into account the velocity gradient effect resulting in gradual Doppler shifts of photon frequencies and subsequent alterations of spectral line profiles. It can also handle periodic boundary conditions. This first version of the code assumes Local Thermodynamic Equilibrium (LTE) and no scattering. The opacities and source functions are specified by the user. In the near future, the capabilities of IRIS will be extended to allow for non-LTE and scattering modeling. IRIS has been validated through a number of te...

  5. Radiative Transfer of HCN: Interpreting observations of hyperfine anomalies

    CERN Document Server

    Mullins, A M; Redman, M P; Wiles, B; Guegan, N; Barrett, J; Keto, E R

    2016-01-01

    Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components.The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium. This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anom...

  6. Fluctuation theory for radiative transfer in random media

    International Nuclear Information System (INIS)

    We consider the effect of small scale random fluctuations of the constitutive coefficients on boundary measurements of solutions to radiative transfer equations. As the correlation length of the random oscillations tends to zero, the transport solution is well approximated by a deterministic, averaged, solution. In this paper, we analyze the random fluctuations to the averaged solution, which may be interpreted as a central limit correction to homogenization. With the inverse transport problem in mind, we characterize the random structure of the singular components of the transport measurement operator. In regimes of moderate scattering, such components provide stable reconstructions of the constitutive parameters in the transport equation. We show that the random fluctuations strongly depend on the decorrelation properties of the random medium.

  7. Casimir effect and radiative heat transfer between Chern Insulators

    Science.gov (United States)

    Rodriguez Lopez, Pablo; Grushin, Adolfo; Tse, Wang-Kong; Dalvit, Diego

    2015-03-01

    Chern Insulators are a class of two-dimensional topological materials. Their electronic properties are different from conventional materials, and lead to interesting new physics as quantum Hall effect in absence of an external magnetic field. Here we will review some of their special properties and, in particular, we will discuss the radiative heat transfer and the Casimir effect between two planar Chern Insulators sheets. Finally, we will see how to control the intensity and sign of this Casimir force and the requirements to observe a repulsive Casimir force in the lab with those materials. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 302005.

  8. Near field radiative heat transfer between two nonlocal dielectrics

    CERN Document Server

    Singer, F; Joulain, Karl

    2015-01-01

    We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...

  9. Radiative Transfer Theory Verified by Controlled Laboratory Experiments

    Science.gov (United States)

    Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur

    2013-01-01

    We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.

  10. Radiation Transfer in the Cavity and Shell of Planetary Nebulae

    CERN Document Server

    Gray, M D; Zijlstra, A A

    2012-01-01

    We develop an approximate analytical solution for the transfer of line-averaged radiation in the hydrogen recombination lines for the ionized cavity and molecular shell of a spherically symmetric planetary nebula. The scattering problem is treated as a perturbation, using a mean intensity derived from a scattering-free solution. The analytical function was fitted to Halpha and Hbeta data from the planetary nebula NGC6537. The position of the maximum in the intensity profile produced consistent values for the radius of the cavity as a fraction of the radius of the dusty nebula: 0.21 for Halpha and 0.20 for Hbeta. Recovered optical depths were broadly consistent with observed optical extinction in the nebula, but the range of fit parameters in this case is evidence for a clumpy distribution of dust.

  11. Absorption lookup tables in the radiative transfer model ARTS

    International Nuclear Information System (INIS)

    We describe the lookup table approach that is used to store pre-calculated absorption data in the radiative transfer model ARTS. The table stores absorption cross sections as a function of frequency, pressure, temperature, and the water vapor volume mixing ratio, where the last dimension is only included for those gas species that require it. The table is used together with an extraction strategy, which uses polynomial interpolation, with recommended interpolation orders between five and seven. We also derived recommended default settings for grid spacings and interpolation orders, and verified that the approach gives very accurate results with these default settings. The tested instrument setups were for AMSU-B, HIRS, and Odin, three well-known satellite remote sensing instruments covering a wide range of frequencies and viewing geometries. Errors introduced by the lookup table were found to be always below a few millikelvin, in terms of the simulated brightness temperature.

  12. Radiative transfer on decretion discs of Be binaries

    CERN Document Server

    Panoglou, Despina; Carciofi, Alex C; Okazaki, Atsuo T; Rivinius, Thomas

    2016-01-01

    In this work we explore the effect of binarity in the decretion disc of Be stars, in order to explain their variability. To this aim, we performed smoothed particle hydrodynamics (SPH) simulations on Be binary systems, following the matter ejected isotropically from the equator of the Be star towards the base of an isothermal decretion disc. We let the system evolve for time long enough to be considered at steady state, and focus on the effect of viscosity for coplanar prograde binary orbits. The disc structure is found to be locked to the orbital phase, exhibiting also a dependence on the azimuthal angle. Additionally, we present the first results from detailed non-local thermodynamic equilibrium (non-LTE) radiative transfer calculations of the disc structure computed with the SPH code. This is achieved by the use of the three-dimensional (3D) Monte Carlo code HDUST, which can produce predictions with respect to a series of observables.

  13. Radiative Transfer in Relativistic Accretion-Disk Winds

    CERN Document Server

    Fukue, Jun

    2007-01-01

    Radiative transfer in a relativistic accretion disk wind is examined under the plane-parallel approximation in the fully special relativistic treatment. For an equilibrium flow, where the flow speed and the source function are constant, the emergent intensity is analytically obtained. In such an equilibrium flow the usual limb-darkening effect does not appear, since the source function is constant. Due to the Doppler and aberration effects associated with the relativistic motion of winds, however, the emergent intensity is strongly enhanced toward the flow direction. This is the {\\it relativistic peaking effect}. We thus carefully treat and estimate the appearance of relativistic winds and jets, when we observe them in an arbitrary direction.

  14. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

    Science.gov (United States)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang

    2016-04-01

    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ~0.128 and 0.47m, and ~0.223 and 0.01m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47×10-2 and 7.13×10-3, and 2.91×10-3 and 1.96×10-3, for banana plantation and alpine meadow areas, respectively. This is the first time in Asia that long-term open field measurements have been taken with the specific aim of making comparisons between banana plantation and alpine meadow surfaces.

  15. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    Energy Technology Data Exchange (ETDEWEB)

    Keene, William C. [University of Virginia; Long, Michael S. [University of Virginia

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences

  16. Effect of atmospheric gases, surface albedo and cloud overlap on the absorbed solar radiation

    Directory of Open Access Journals (Sweden)

    Ashok Sinha

    Full Text Available Recent studies have provided new evidence that models may systematically underestimate cloud solar absorption compared to observations. This study extends previous work on this "absorption anomaly'' by using observational data together with solar radiative transfer parameterisations to calculate fs (the ratio of surface and top of the atmosphere net cloud forcings and its latitudinal variation for a range of cloud types. Principally, it is found that (a the zonal mean behaviour of fs varies substantially with cloud type, with the highest values obtained for low clouds; (b gaseous absorption and scattering can radically alter the pattern of the variation of fs with latitude, but gaseous effects cannot in general raise fs to the level of around 1.5 as recently determined; (c the importance of the gaseous contribution to the atmospheric ASR is such that whilst fs rises with surface albedo, the net cloud contribution to the atmospheric ASR falls; (d the assumed form of the degree of cloud overlap in the model can substantially affect the cloud contribution to the atmospheric ASR whilst leaving the parameter fs largely unaffected; (e even large uncertainties in the observed optical depths alone cannot account for discrepancies apparent between modelled and newly observed cloud solar absorption. It is concluded that the main source of the anomaly may derive from the considerable uncertainties regarding impure droplet microphysics rather than, or together with, uncertainties in macroscopic quantities. Further, variable surface albedos and gaseous effects may limit the use of contemporaneous satellite and ground-based measurements to infer the cloud solar absorption from the parameter fs.

  17. Radiative transfer of HCN: interpreting observations of hyperfine anomalies

    Science.gov (United States)

    Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.

    2016-07-01

    Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.

  18. Relativistic radiative transfer and relativistic spherical shell flows

    Science.gov (United States)

    Fukue, Jun

    2016-06-01

    We examine a radiatively driven spherical flow from a central object, whose thickness is smaller than the radius of the central object, and a plane-parallel approximation can be used-a spherical shell flow. We first solve the relativistic radiative transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained comoving flux, we then solve the relativistic hydrodynamical equation, and obtain a new velocity field. We repeat these double iteration processes until both the intensity and velocity profiles converge. We found that the flow speed v(τ) is roughly approximated as β ≡ v/c = βs(1 - τ/τb), where τ is the optical depth, τb the flow total optical depth, and c the speed of light. We further found that the flow terminal speed vs is roughly expressed as β _s ≡ v_s/c = (Γ hat{F}_0-1)τ_b/dot{m} , where Γ is the central luminosity normalized by the Eddington luminosity, hat{F}_0 the comoving flux normalized by the incident flux, and of the order of unity, and dot{m} the mass-loss rate normalized by the critical mass loss.

  19. The libRadtran software package for radiative transfer calculations (version 2.0.1)

    Science.gov (United States)

    Emde, Claudia; Buras-Schnell, Robert; Kylling, Arve; Mayer, Bernhard; Gasteiger, Josef; Hamann, Ulrich; Kylling, Jonas; Richter, Bettina; Pause, Christian; Dowling, Timothy; Bugliaro, Luca

    2016-05-01

    libRadtran is a widely used software package for radiative transfer calculations. It allows one to compute (polarized) radiances, irradiance, and actinic fluxes in the solar and thermal spectral regions. libRadtran has been used for various applications, including remote sensing of clouds, aerosols and trace gases in the Earth's atmosphere, climate studies, e.g., for the calculation of radiative forcing due to different atmospheric components, for UV forecasting, the calculation of photolysis frequencies, and for remote sensing of other planets in our solar system. The package has been described in Mayer and Kylling (2005). Since then several new features have been included, for example polarization, Raman scattering, a new molecular gas absorption parameterization, and several new parameterizations of cloud and aerosol optical properties. Furthermore, a graphical user interface is now available, which greatly simplifies the usage of the model, especially for new users. This paper gives an overview of libRadtran version 2.0.1 with a focus on new features. Applications including these new features are provided as examples of use. A complete description of libRadtran and all its input options is given in the user manual included in the libRadtran software package, which is freely available at http://www.libradtran.org.

  20. The libRadtran software package for radiative transfer calculations (Version 2.0)

    Science.gov (United States)

    Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; Bugliaro, L.

    2015-12-01

    libRadtran is a widely used software package for radiative transfer calculations. It allows to compute (polarized) radiances, irradiances, and actinic fluxes in the solar and thermal spectral regions. libRadtran has been used for various applications, including remote sensing of clouds, aerosols and trace gases in the Earth's atmosphere, climate studies, e.g., for the calculation of radiative forcing due to different atmospheric components, for UV-forcasting, the calculation of photolysis frequencies, and for remote sensing of other planets in our solar system. The package has been described in Mayer and Kylling (2005).. Since then several new features have been included, for example polarization, Raman scattering, a new molecular gas absorption parameterization, and several new cloud and aerosol scattering parameterizations. Furthermore a graphical user interface is now available which greatly simplifies the usage of the model, especially for new users. This paper gives an overview of libRadtran version 2.0 with focus on new features. A complete description of libRadtran and all its input options is given in the user manual included in the libRadtran software package, which is freely available at http://www.libradtran.org.

  1. Radiative analysis of global mean temperature trends in the middle atmosphere: Effects of non-locality and secondary absorption bands

    Science.gov (United States)

    Fomichev, V. I.; Jonsson, A. I.; Ward, W. E.

    2016-02-01

    In this paper, we provide a refined and extended assignment of past and future temperature changes relative to previous analyses and describe and evaluate the relevance of vertical coupling and non-linear and secondary radiative mechanisms for the interpretation of climatic temperature variations in the middle atmosphere. Because of their nature, the latter mechanisms are not adequately accounted for in most regression analyses of temperature trends as a function of local constituent variations. These mechanisms are examined using (1) globally averaged profiles from transient simulations with the Canadian Middle Atmosphere Model (CMAM) forced by changes in greenhouse gases and ozone depleting substances and (2) a one-dimensional radiative-equilibrium model forced using the diagnosed global mean changes in radiatively active constituents as derived from the CMAM model runs. The conditions during the periods 1975 to 1995 and 2010 to 2040 (during which the rates of change in ozone and CO2 differ) provide a suitable contrast for the role of the non-linear and non-local mechanisms being evaluated in this paper to be clearly differentiated and evaluated. Vertical coupling of radiative transfer effects and the influence of secondary absorption bands are important enough to render the results of multiple linear regression analyses between the temperature response and constituent changes misleading. These effects are evaluated in detail using the 1D radiative-equilibrium model using profiles from the CMAM runs as inputs. In order to explain the differences in the CMAM temperature trends prior to and after 2000 these other radiative effects must be considered in addition to local changes in the radiatively active species. The middle atmosphere temperature cools in response to CO2 and water vapor increases, but past and future trends are modulated by ozone changes.

  2. Accelerated line-by-line calculations for the radiative transfer of trace gases related to climate studies

    International Nuclear Information System (INIS)

    In the present study we are studying the effects of including carbon dioxide, ozone, methane, and the halocarbons in addition to water vapor in the radiating atmosphere. The study has focused on two principal issues: the effect on the spectral fluxes and cooling rates of carbon dioxide, ozone and the halocarbons at 1990 concentration levels and the change in fluxes and cooling rates as a consequence of the anticipated ten year change in the profiles of these species. For the latter study the water vapor profiles have been taken as invariant in time. The radiative line-by-line calculations using LBLRTM (Line-By-Line Radiative Transfer Model) have been performed for tropical (TRP), mid-latitude winter (MLW) and mid-latitude summer (MLS) model atmospheres. The halocarbons considered in the present study are CCl4, CFC-11, CFC-12 and CFC-22. In addition to considering the radiative effects of carbon dioxide at 355 ppM, the assumed current level, we have also obtained results for doubled carbon dioxide at 710 ppM. An important focus of the current research effort is the effect of the ozone depletion profile on atmospheric radiative effects

  3. Transient radiative heat transfer in an inhomogeneous participating medium with Fresnel’s surfaces

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper studies the radiative heat transfer within an inhomogeneous and isot- ropically scattering medium with reflecting Fresnel’s surfaces. Thermal radiation transfers in a curve inside a medium with an inhomogeneous distribution of a re- fractive index. The inhomogenous medium is divided into n homogenous isother- mal sub-layers and in each sub-layer the radiation transfers in a straight line. By adopting a multilayer radiative transfer model and using a ray-tracing/nodal- ana- lyzing method, a radiative transfer model is built for the inhomogenous participat- ing medium. In the multilayer model, a criterion for refraction / total reflection at the interfaces between neighboring sub-layers is introduced, avoiding the integral singularity and reflection at physically inexistent interfaces (only the total reflection is considered). Transient thermal behavior is examined when the parameters of the radiative properties such as refractive indexes, extinction coefficients, and sin- gle-scattering albedoes vary continually along the thickness direction.

  4. Uncertainties in radiative transfer computations: consequences on the ocean color products

    Science.gov (United States)

    Dilligeard, Eric; Zagolski, Francis; Fischer, Juergen; Santer, Richard P.

    2003-05-01

    Operational MERIS (MEdium Resolution Imaging Spectrometer) level-2 processing uses auxiliary data generated by two radiative transfer tools. These two codes simulate upwelling radiances within a coupled 'Atmosphere-Ocean' system, using different approaches based on the matrix-operator method (MOMO) and the successive orders (SO) technique. Intervalidation of these two radiative transfer codes was performed in order to implement them in the MERIS level-2 processing. MOMO and SO simulations were then conducted on a set of representative test cases. Results stressed both for all test cases good agreements were observed. The scattering processes are retrieved within a few tenths of a percent. Nevertheless, some substantial discrepancies occurred if the polarization is not taken into account mainly in the Rayleigh scattering computations. A preliminary study indicates that the impact of the code inaccuracy in the water leaving radiances retrieval (a level-2 MERIS product) is large, up to 50% in relative difference. Applying the OC2 algorithm, the effect on the retrieval chlorophyll concentration is less than 10%.

  5. Analytical model for radiative transfer including the effects of a rough material interface.

    Science.gov (United States)

    Giddings, Thomas E; Kellems, Anthony R

    2016-08-20

    The reflected and transmitted radiance due to a source located above a water surface is computed based on models for radiative transfer in continuous optical media separated by a discontinuous air-water interface with random surface roughness. The air-water interface is described as the superposition of random, unresolved roughness on a deterministic realization of a stochastic wave surface at resolved scales. Under the geometric optics assumption, the bidirectional reflection and transmission functions for the air-water interface are approximated by applying regular perturbation methods to Snell's law and including the effects of a random surface roughness component. Formal analytical solutions to the radiative transfer problem under the small-angle scattering approximation account for the effects of scattering and absorption as light propagates through the atmosphere and water and also capture the diffusive effects due to the interaction of light with the rough material interface that separates the two optical media. Results of the analytical models are validated against Monte Carlo simulations, and the approximation to the bidirectional reflection function is also compared to another well-known analytical model. PMID:27556978

  6. Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach

    Science.gov (United States)

    Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume

    2016-03-01

    Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.

  7. Radiative transfer with finite elements. II. Lyalpha line transfer in moving media

    Science.gov (United States)

    Meinköhn, E.; Richling, S.

    2002-09-01

    A finite element method for solving the resonance line transfer problem in moving media is presented. The algorithm works in three spatial dimensions on unstructured grids which are adaptively refined by means of an a posteriori error indicator. Frequency discretization is implemented via a first-order Euler scheme. We discuss the resulting matrix structure for coherent isotropic scattering and complete redistribution. The solution is performed using an iterative procedure, where monochromatic radiative transfer problems are successively solved. The present implementation is applicable for arbitrary model configurations with an optical depth up to 103-4. Results of Lyalpha line transfer calculations for a spherically symmetric model, a disk-like configuration, and a halo containing three source regions are discussed. We find the characteristic double-peaked Lyalpha line profile for all models with an optical depth ga 1. In general, the blue peak of the profile is enhanced for models with infall motion and the red peak for models with outflow motion. Both velocity fields produce a triangular shape in the two-dimensional Lyalpha spectra, whereas rotation creates a shear pattern. Frequency-resolved Lyalpha images may help to find the number and position of multiple Lyalpha sources located in a single halo. A qualitative comparison with observations of extended Lyalpha halos associated with high redshift galaxies shows that even models with lower hydrogen column densities than required from profile fitting yield results which reproduce many features in the observed line profiles and two-dimensional spectra.

  8. Influence of atmospheric turbulence on the uplink propagation in an optical time transfer

    Science.gov (United States)

    Fridelance, Patricia

    1997-08-01

    The time transfer by laser link experiment T2L2 aims for a precision of 60 ps, which could be degraded by the atmospheric turbulence because of the strong variations of the photon number received by the satellite detector, from a measurement to another. The light intensity fluctuations in the satellite plane are estimated for the planned situation for which the beam radius at the atmosphere exit is significantly larger than the coherence length. Such speckle-type fluctuations are experimentally studied.

  9. Short-wave solar radiation in the earths atmosphere calculation, observation, interpretation

    CERN Document Server

    Melnikova, Irina N

    2005-01-01

    Based on data from an experiment which ran for ten years, this book summarizes the results of the Atmospheric Physics Department of the St. Petersburg University and the Main Geophysical Observatory. The processed data now forms a rich dataset of spectral values of radiative characteristics under different atmospheric conditions. The analysis of this database clearly shows that the solar radiative absorption in a dusty and cloudy atmosphere is significantly higher than assumed to date. Both graduate students of atmospheric sciences as well as scientists and researchers in the field of meteorology and climatology will find a wealth of new data and information in this monograph.

  10. Effect of the improvement of the HITRAN database on the radiative transfer calculation

    Science.gov (United States)

    Feng, Xuan; Zhao, Feng-Sheng; Gao, Wen-Hua

    2007-11-01

    The line parameters of the HITRAN 2004 have been updated, as compared with the older editions (the 2000 edition and the 1996 edition). In order to know the effect of the modifications on radiative transfer calculation with high spectral resolution, comparison in optical depth and radiance spectrum have been given between different editions. Four infrared spectral regions are selected, and they cover the three bands of atmospheric infrared sounder (AIRS) and one of geosynchronous imaging fourier transform spectrometer (GIFTS). The comparison has shown that the relative difference between HITRAN 2000 and 2004 and that between HITRAN 1996 and 2004 is decreasing. But the maximal discrepancy between the latest two editions in some spectral intervals is over 1%. It is important to estimate the error of calculation with the line parameters correctly or one has to use the new edition of HITRAN.

  11. Aircraft observations of the vertical structure of stratiform precipitation relevant to microwave radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A.T.C. (NASA Goddard Space Flight Center, Greenbelt, MD (United States)); Barnes, A.; Glass, M. (Phillips Lab., Hanscom AFB, MA (United States)); Kakar, R. (NASA Headquarters, Washington, DC (United States)); Wilheit, T.T. (Texas A M Univ., College Station (United States))

    1993-06-01

    The retrieval of rainfall intensity over the oceans from passive microwave observations is based on a radiative transfer model. direct rainfall observations of oceanic rainfall are virtually nonexistent making validation of the retrievals extremely difficult. Observations of the model assumptions provide an alternative approach for improving and developing confidence in the rainfall retrievals. In the winter of 1983, the NASA CV-990 aircraft was equipped with a payload suitable for examining several of the model assumptions. The payload included microwave and infrared radiometers, mirror hygrometers, temperature probes, and PMS probes. On two occasions the aircraft ascended on a spiral track through stratiform precipitation providing an opportunity to study the atmospheric parameters. The assumptions concerning liquid hydrometeors, water vapor, lapse rate, and nonprecipitating clouds were studied. Model assumptions seem to be supported by these observations. 23 refs., 7 figs.

  12. Single-column data assimilation for the Atmospheric Radiation Measurement (ARM) Program

    International Nuclear Information System (INIS)

    The main purpose of the ARM program is to provide the necessary data to develop, test and validate the parameterization of clouds and of their interactions with the radiation field, and the computation of radiative transfer in climate models. For various reasons, much of the ARM observations will be imperfect, incomplete, redundant, indirect and unrepresentative. Various techniques of data assimilation have been developed to deal with these problems. The variational data assimilation and adjoint method applied to a single column model is described here. A model is used to simulate the evolution of the atmosphere during an assimilation period. As the model is run, a cost function is computed which is essentially a measure of simulation errors. The method then consists in adjusting some model parameters to minimize the cost function. Optimization of the model parameters needs to be done with a much longer series of data, to cover different meteorological situations. Once parameters are set, nudging terms are used as control variables. The Derber nudging method will require considerable tuning, especially in defining the vertical profiles of the nudging terms. Extensive tests are currently underway of both model optimization and data assimilation

  13. Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger

    Science.gov (United States)

    McFarlane, S. A.; Kassianov, E. I.; Barnard, J.; Flynn, C.; Ackerman, T. P.

    2009-07-01

    The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility (AMF) was deployed to Niamey, Niger, during 2006. Niamey, which is located in sub-Saharan Africa, is affected by both dust and biomass burning emissions. Column aerosol optical properties were derived from multifilter rotating shadowband radiometer, measurements and the vertical distribution of aerosol extinction was derived from a micropulse lidar during the two observed dry seasons (January-April and October-December). Mean aerosol optical depth (AOD) and single scattering albedo (SSA) at 500 nm during January-April were 0.53 ± 0.4 and 0.94 ± 0.05, while during October-December mean AOD and SSA were 0.33 ± 0.25 and 0.99 ± 0.01. Aerosol extinction profiles peaked near 500 m during the January-April period and near 100 m during the October-December period. Broadband shortwave surface fluxes and heating rate profiles were calculated using retrieved aerosol properties. Comparisons for noncloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the aerosol optical properties, with mean differences between calculated and observed fluxes of less than 5 W m-2 and RMS differences less than 25 W m-2. Sensitivity tests showed that the observed fluxes could be matched with variations of aerosol radiative forcing (ARF) was -21.1 ± 14.3 W m-2 and was estimated to account for 80% of the total radiative forcing at the surface. The ARF was larger during January-April (-28.5 ± 13.5 W m-2) than October-December (-11.9 ± 8.9 W m-2).

  14. Classification and radiative-transfer modeling of meteorite spectra

    Science.gov (United States)

    Pentikäinen, H.; Penttilä, A.; Peltoniemi, J.; Muinonen, K.

    2014-07-01

    The interpretation of asteroid spectra is closely tied to surface structure and composition. Asteroid surfaces are usually assumed to be covered with a regolith, which is a mixture of mineral grains ranging from micrometers to centimeters in size. The inverse problem of deducing the characteristics of the grains from the scattering of light (e.g., using photometric and polarimetric observations) is difficult. Meteorite spectroscopy can be a valuable alternative source of information considering that unweathered meteoritic ''falls'' are almost pristine samples of their parent bodies. Reflectance spectra of 18 different meteorite samples were measured with the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO) covering a wavelength range of 450--2250 nm [1,2]. The measurements expand the database of reflectance spectra obtained by Paton et al. [3] and Gaffey [4]. Principal Component Analysis (PCA) performed on the spectra indicates a separation of the undifferentiated ordinary chondrites and the differentiated achondrites. The principal components also suggest a discrimination between the spectra of ordinary chondrites with petrologic grades 5 and 6. The distinction is not present when the data are supplemented with the spectra from the two other data sets obtained with differing measuring techniques. To further investigate the different classifications, the PCA is implemented with selected spectral features contrary to the previous analyses, which encompassed the complete spectra. Single-scattering albedos for meteoritic fundamental scatterers were derived with a Monte Carlo radiative-transfer model [1]. In the derivation, realistic scattering phase functions were utilized. The functions were obtained by fitting triple Henyey-Greenstein functions to the measured scattering phase functions of olivine powder for two different size distributions [5,6]. The simulated reflectances for different scattering phase functions were matched to the measured meteorite

  15. THREE-DIMENSIONAL RADIATION TRANSFER IN YOUNG STELLAR OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, B. A.; Honor, J. [University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Robitaille, T. P. [Max-Planck-Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Bjorkman, J. E. [Ritter Observatory, MS 113, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606-3390 (United States); Dong, R. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Wolff, M. J. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Wood, K., E-mail: bwhitney@astro.wisc.edu [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9AD (United Kingdom)

    2013-08-15

    We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various three-dimensional (3D) geometries appropriate for forming stars. The 3D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2D) features include gaps in disks and envelopes, ''puffed-up inner rims'' in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium (HSEQ). We include the option for simple power-law envelope geometry, which, combined with fractal clumping and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from polycyclic aromatic hydrocarbons (PAHs) and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We describe these features in detail, and show example calculations of each. Some of the more interesting results include the following: (1) outflow cavities may be more clumpy than infalling envelopes. (2) PAH emission in high-mass stars may be a better indicator of evolutionary stage than the broadband spectral energy distribution slope; and related to this, (3) externally illuminated clumps and high-mass stars in optically thin clouds can masquerade as young stellar objects. (4) Our HSEQ models suggest that dust settling is likely ubiquitous in T Tauri disks, in agreement with previous observations.

  16. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. II. Inclusion of Radiative Transfer with RADYN

    CERN Document Server

    da Costa, Fatima Rubio; Petrosian, Vahe'; Carlsson, Mats

    2015-01-01

    Solar flares involve complex processes that are coupled together and span a wide range of temporal, spatial, and energy scales. Modeling such processes self-consistently has been a challenge in the past. Here we present such a model to simulate the coupling of high-energy particle kinetics with hydrodynamics of the atmospheric plasma. We combine the Stanford unified Fokker-Planck code that models particle acceleration, transport, and bremsstrahlung radiation with the RADYN hydrodynamic code that models the atmospheric response to collisional heating by non-thermal electrons through detailed radiative transfer calculations. We perform simulations using different injection electron spectra, including an {\\it ad hoc} power law and more realistic spectra predicted by the stochastic acceleration model due to turbulence or plasma waves. Surprisingly, stochastically accelerated electrons, even with energy flux $\\ll 10^{10}$ erg s$^{-1}$ cm$^{-2}$, cause "explosive" chromospheric evaporation and drive stronger up- an...

  17. Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications.

    Science.gov (United States)

    Simovski, Constantin; Maslovski, Stanislav; Nefedov, Igor; Tretyakov, Sergei

    2013-06-17

    Using our recently developed method we analyze the radiative heat transfer in micron-thick multilayer stacks of metamaterials with hyperbolic dispersion. The metamaterials are especially designed for prospective thermophotovoltaic systems. We show that the huge transfer of near-infrared thermal radiation across micron layers of metamaterials is achievable and can be optimized. We suggest an approach to the optimal design of such metamaterials taking into account high temperatures of the emitting medium and the heating of the photovoltaic medium by the low-frequency part of the radiation spectrum. We show that both huge values and frequency selectivity are achievable for the radiative heat transfer in hyperbolic multilayer stacks.

  18. Ultrabroadband Super-Planckian Radiative Heat Transfer with Profile-Patterned Hyperbolic Metamaterial

    CERN Document Server

    Dai, Jin; Bozhevolnyi, Sergey I; Yan, Min

    2016-01-01

    We demonstrate the possibility of ultrabroadband super-Planckian radiative heat transfer be- tween two metal plates patterned with tapered hyperbolic metamaterial arrays. It is shown that, by employing profile-patterned hyperbolic media, one can design photonic bands to populate a desired thermal radiation window, with a spectral density of modes much higher than what can be achieved with unstructured media. For nanometer-sized gaps between two plates, the modes occupy states both inside and outside the light cone, giving rise to ultrabroadband super-Planckian radiative heat transfer. Our study reveals that structured hyperbolic metamaterial offers unprecedented potential in achieving a controllable super-Planckian radiative heat transfer.

  19. SKIRT: the design of a suite of input models for Monte Carlo radiative transfer simulations

    CERN Document Server

    Baes, Maarten

    2015-01-01

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can...

  20. A METHOD FOR DETERMINING TURBULENT TRANSFER IN THE ATMOSPHERIC SURFACE LAYER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Derivation of bulk transport coefficients helps solving land surface processes. A similarity-based method for determining the turbulent transfer (including the flux exchange, the vertical distribution of wind and potential temperature) in the atmospheric surface layer is presented. Comparisons with iterative schemes (Businger, 1971) are given to demonstrate the advantages of the calculation methods.

  1. AN ALGORITHM FOR RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT TRANSFER EQUATION

    International Nuclear Information System (INIS)

    We describe a new algorithm for solving the coupled frequency-integrated transfer equation and the equations of magnetohydrodynamics in the regime that light-crossing time is only marginally shorter than dynamical timescales. The transfer equation is solved in the mixed frame, including velocity-dependent source terms accurate to O(v/c). An operator split approach is used to compute the specific intensity along discrete rays, with upwind monotonic interpolation used along each ray to update the transport terms, and implicit methods used to compute the scattering and absorption source terms. Conservative differencing is used for the transport terms, which ensures the specific intensity (as well as energy and momentum) are conserved along each ray to round-off error. The use of implicit methods for the source terms ensures the method is stable even if the source terms are very stiff. To couple the solution of the transfer equation to the MHD algorithms in the ATHENA code, we perform direct quadrature of the specific intensity over angles to compute the energy and momentum source terms. We present the results of a variety of tests of the method, such as calculating the structure of a non-LTE atmosphere, an advective diffusion test, linear wave convergence tests, and the well-known shadow test. We use new semi-analytic solutions for radiation modified shocks to demonstrate the ability of our algorithm to capture the effects of an anisotropic radiation field accurately. Since the method uses explicit differencing of the spatial operators, it shows excellent weak scaling on parallel computers

  2. Vertical profiles of BC direct radiative effect over Italy: high vertical resolution data and atmospheric feedbacks

    Science.gov (United States)

    Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David

    2016-04-01

    Black carbon (BC), and its vertical distribution, affects the climate. Global measurements of BC vertical profiles are lacking to support climate change research. To fill this gap, a campaign was conducted over three Italian basin valleys, Terni Valley (Appennines), Po Valley and Passiria Valley (Alps), to characterize the impact of BC on the radiative budget under similar orographic conditions. 120 vertical profiles were measured in winter 2010. The BC vertical profiles, together with aerosol size distribution, aerosol chemistry and meteorological parameters, have been determined using a tethered balloon-based platform equipped with: a micro-Aethalometer AE51 (Magee Scientific), a 1.107 Grimm OPC (0.25-32 μm, 31 size classes), a cascade impactor (Siuotas SKC), and a meteorological station (LSI-Lastem). The aerosol chemical composition was determined from collected PM2.5 samples. The aerosol absorption along the vertical profiles was measured and optical properties calculated using the Mie theory applied to the aerosol size distribution. The aerosol optical properties were validated with AERONET data and then used as inputs to the radiative transfer model libRadtran. Vertical profiles of the aerosol direct radiative effect, the related atmospheric absorption and the heating rate were calculated. Vertical profile measurements revealed some common behaviors over the studied basin valleys. From below the mixing height to above it, a marked concentration drop was found for both BC (from -48.4±5.3% up to -69.1±5.5%) and aerosol number concentration (from -23.9±4.3% up to -46.5±7.3%). These features reflected on the optical properties of the aerosol. Absorption and scattering coefficients decreased from below the MH to above it (babs from -47.6±2.5% up to -71.3±3.0% and bsca from -23.5±0.8% up to -61.2±3.1%, respectively). Consequently, the Single Scattering Albedo increased above the MH (from +4.9±2.2% to +7.4±1.0%). The highest aerosol absorption was

  3. Testing Quasar Unification: Radiative Transfer in Clumpy Winds

    CERN Document Server

    Matthews, James H; Long, Knox S; Sim, Stuart A; Higginbottom, Nick; Mangham, Sam W

    2016-01-01

    Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to $10^{43}$ erg s$^{-1}$. Here, we introduce a simple treatment of clumping, and find that a filling factor of $\\sim0.01$ moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Ly \\alpha\\ and CIV 1550\\AA\\ at low inclinations. At high ...

  4. Chemistry and Radiative Transfer of Water in Cold, Dense Clouds

    CERN Document Server

    Keto, Eric; Caselli, Paola

    2014-01-01

    The Herschel Space Observatory's recent detections of water vapor in the cold, dense cloud L1544 allow a direct comparison between observations and chemical models for oxygen species in conditions just before star formation. We explain a chemical model for gas phase water, simplified for the limited number of reactions or processes that are active in extreme cold ($<$ 15 K). In this model, water is removed from the gas phase by freezing onto grains and by photodissociation. Water is formed as ice on the surface of dust grains from O and OH and released into the gas phase by photodesorption. The reactions are fast enough with respect to the slow dynamical evolution of L1544 that the gas phase water is in equilibrium for the local conditions thoughout the cloud. We explain the paradoxical radiative transfer of the H$_2$O ($1_{10}-1_{01}$) line. Despite discouragingly high optical depth caused by the large Einstein A coefficient, the subcritical excitation in the cold, rarefied H$_2$ causes the line brightnes...

  5. Verification of snowpack radiation transfer models using actinometry

    Science.gov (United States)

    Phillips, Gavin J.; Simpson, William R.

    2005-04-01

    Actinometric measurements of photolysis rate coefficients within artificial snow have been used to test calculations of these coefficients by two radiative transfer models. The models used were based upon the delta-Eddington method or the discrete ordinate method, as implemented in the tropospheric ultraviolet and visible snow model, and were constrained by irradiance measurements and light attenuation profiles within the artificial snow. Actinometric measurements of the photolysis rate coefficient were made by observing the unimolecular conversion of 2-nitrobenzaldehyde (NBA) to its photoproduct under ultraviolet irradiation. A control experiment using liquid solutions of NBA determined that the quantum yield for conversion was ϕ = 0.41 ± 0.04 (±2σ). Measured photolysis rate coefficients in the artificial snow are enhanced in the near-surface layer, as predicted in the model calculations. The two models yielded essentially identical results for the depth-integrated photolysis rate coefficient of NBA, and their results quantitatively agreed with the actinometric measurements within the experimental precision of the measurement (±10%, ±2σ). The study shows that these models accurately determine snowpack actinic fluxes. To calculate in-snow photolysis rates for a molecule of interest, one must also have knowledge of the absorption spectrum and quantum yield for the specific photoprocess in addition to the actinic flux. Having demonstrated that the actinic flux is well determined by these models, we find that the major remaining uncertainty in prediction of snowpack photochemical rates is the measurement of these molecular photophysical properties.

  6. Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts

    CERN Document Server

    Shinn, Jong-Ho

    2015-01-01

    In order to examine their relation to the host galaxy, the extraplanar dust of six nearby galaxies are modeled, employing a three dimensional Monte Carlo radiative transfer code. The targets are from the highly-inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are in general well reproduced by two dust layers and one light-source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFR_UV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of extraplanar dust layer. However, it is found that the rest three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GA...

  7. Radiative transfer modelling of parsec-scale dusty warped discs

    CERN Document Server

    Jud, H; Mould, J; Burtscher, L; Tristram, K R W

    2016-01-01

    Warped discs have been found on (sub-)parsec scale in some nearby Seyfert nuclei, identified by their maser emission. Using dust radiative transfer simulations we explore their observational signatures in the infrared in order to find out whether they can partly replace the molecular torus. Strong variations of the brightness distributions are found, depending on the orientation of the warp with respect to the line of sight. Whereas images at short wavelengths typically show a disc-like and a point source component, the warp itself only becomes visible at far-infrared wavelengths. A similar variety is visible in the shapes of the spectral energy distributions. Especially for close to edge-on views, the models show silicate feature strengths ranging from deep absorption to strong emission for variations of the lines of sight towards the warp. To test the applicability of our model, we use the case of the Circinus galaxy, where infrared interferometry has revealed a highly elongated emission component matching ...

  8. Test plan for validation of the radiative transfer equation.

    Energy Technology Data Exchange (ETDEWEB)

    Ricks, Allen Joseph; Grasser, Thomas W.; Kearney, Sean Patrick; Jernigan, Dann A.; Blanchat, Thomas K.

    2010-09-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).

  9. Radiative heat transfer in turbulent combustion systems theory and applications

    CERN Document Server

    Modest, Michael F

    2016-01-01

    This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.

  10. The Intercomparison of 3D Radiation Codes (I3RC): Showcasing Mathematical and Computational Physics in a Critical Atmospheric Application

    Science.gov (United States)

    Davis, A. B.; Cahalan, R. F.

    2001-05-01

    The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards

  11. Mobile Atmospheric Aerosol and Radiation Characterization Observatory (MAARCO)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: MAARCO is designed as a stand-alone facility for basic atmospheric research and the collection of data to assist in validating aerosol and weather models....

  12. Atmospheric Chemistry of Six Methyl-perfluoroheptene-ethers Used as Heat Transfer Fluid Replacement Compounds: Measured OH Radical Reaction Rate Coefficients, Atmospheric Lifetimes, and Global Warming Potentials

    Science.gov (United States)

    Jubb, A. M.; Gierczak, T.; Baasandorj, M.; Waterland, R. L.; Burkholder, J. B.

    2013-12-01

    Mixtures of methyl-perfluoroheptene-ethers (C7F13OCH3, MPHEs) are currently in use as a replacement for perfluorinated alkane (PFC) and polyether mixtures (both persistent greenhouse gases with atmospheric lifetimes >1000 years) used as heat transfer fluids. Currently, the atmospheric fate of the MPHE isomers are not well characterized, however, reaction with the OH radical is expected to be a dominant tropospheric loss process for these compounds. In order to assess the atmospheric lifetimes and environmental implications of MPHE use, rate coefficients for MPHE isomers' reaction with OH radicals are desired. In the work presented here, rate coefficients, k, for the gas-phase reaction of the OH radical with six MPHEs commonly used in commercial mixtures (isomers and stereoisomers) and their deuterated analogs (d3-MPHE) were determined at 296 K using a relative rate method with combined gas-chromatography/IR spectroscopy detection. A range of OH rate coefficient values was observed, up to a factor of 20× different, between the MPHE isomers with the (E)-stereoisomers exhibiting the greatest reactivity. The measured OH reaction rate coefficients for the d3-MPHE isomers were lower than the observed MPHE values although a large range of k values between isomers was still observed. The reduction in reactivity with deuteration signifies that the MPHE + OH reaction proceeds via both addition to the olefinic C=C bond and H-abstraction from the methyl ester group. OH addition to the C=C bond was determined to be the primary reaction channel. Atmospheric lifetimes with respect to the OH reaction for the six MPHE isomers were found to be in the range of days to months. The short lifetimes indicate that MPHE use will primarily impact tropospheric local and regional air quality. A MPHE atmospheric degradation mechanism will be presented. As part of this work, radiative efficiencies and global warming potentials (GWPs) for the MPHE isomers were estimated based on measured

  13. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    Science.gov (United States)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  14. A toy model linking atmospheric thermal radiation and sea ice growth

    Science.gov (United States)

    Thorndike, A. S.

    1992-01-01

    A simplified analytical model of sea ice growth is presented where the atmosphere is in thermal radiative equilibrium with the ice. This makes the downwelling longwave radiation reaching the ice surface an internal variable rather than a specified forcing. Analytical results demonstrate how the ice state depends on properties of the ice and on the externally specified climate.

  15. GRANADA: A Generic RAdiative traNsfer AnD non-LTE population algorithm

    International Nuclear Information System (INIS)

    We present in this paper the Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA). This model is able to compute non-LTE populations for vibrational, rotational, spin (i.e., NO and OH), and electronic (i.e., O2) states in a given planetary atmosphere. The model is very flexible and can be used for computing very accurate non-LTE populations or for calculating reasonably accurate but at high speed non-LTE populations in order to implement it into non-LTE remote sensing retrievals. We describe the model in detail and present an update of the non-LTE collisional processes and their rate coefficients for the most important molecules in Earth's atmosphere. In addition, we have applied the model to the most important atmospheric infrared emitters including 13 species (H2O, CO2, O3, N2O, CO, CH4, O2, NO, NO2, HNO3, OH, N2, and HCN) and 460 excited vibrational or electronic energy levels. Non-LTE populations for all these energy levels have been calculated for 48 reference atmospheres expanding from the surface up to 200 km, including seasonal (January, April, July and October), latitudinal (75°S, 45°S, 10°S, 10°N, 45°N, 75°N) and diurnal (day and night) coverages. The effects of the most recent updates of the non-LTE collisional parameters on the non-LTE populations are briefly described. This climatology is available online to the community and it can be used for estimating non-LTE effects at specific conditions and for testing and validation studies.

  16. Comparison between Satellite Water Vapour Observations and Atmospheric Models’ Predictions of the Upper Tropospheric Thermal Radiation

    Directory of Open Access Journals (Sweden)

    J. R. Dim

    2011-01-01

    Full Text Available Atmospheric profiles (temperature, pressure, and humidity are commonly used parameters for aerosols and cloud properties retrievals. In preparation of the launch of the Global Change Observation Mission-Climate/Second-Generation GLobal Imager (GCOM-C/SGLI satellite, an evaluation study on the sensitivity of atmospheric models to variations of atmospheric conditions is conducted. In this evaluation, clear sky and above low clouds water vapour radiances of the upper troposphere obtained from satellite observations and those simulated by atmospheric models are compared. The models studied are the Nonhydrostatic ICosahedral Atmospheric Model (NICAM and the National Center for Environmental Protection/Department Of Energy (NCEP/DOE. The satellite observations are from the Terra/Moderate Resolution Imaging Spectroradiometer (Terra/MODIS satellite. The simulations performed are obtained through a forward radiative transfer calculation procedure. The resulting radiances are transformed into the upper tropospheric brightness temperature (UTBT and relative humidity (UTRH. The discrepancies between the simulated data and the observations are analyzed. These analyses show that both the NICAM and the NCEP/DOE simulated UTBT and UTRH have comparable distribution patterns. However the simulations’ differences with the observations are generally lower with the NCEP/DOE than with the NICAM. The NCEP/DOE model outputs very often overestimate the UTBT and therefore present a drier upper troposphere. The impact of the lower troposphere instability (dry convection on the upper tropospheric moisture and the consequences on the models’ results are evaluated through a thunderstorm and moisture predictor (the K-stability index. The results obtained show a positive relation between the instability and the root mean square error (RMSE: observation versus models. The study of the impact of convective clouds shows that the area covered by these clouds increases with the

  17. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    Science.gov (United States)

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  18. Simulated Radiative Transfer DOAS - A new method for improving volcanic SO2 emissions retrievals from ground-based UV-spectroscopic measurements of scattered solar radiation

    Science.gov (United States)

    Kern, C.; Deutschmann, T.; Vogel, L.; Bobrowski, N.; Hoermann, C.; Werner, C. A.; Sutton, A. J.; Elias, T.

    2011-12-01

    Passive Differential Optical Absorption Spectroscopy (DOAS) has become a standard tool for measuring SO2 at volcanoes. More recently, ultra-violet (UV) cameras have also been applied to obtain 2D images of SO2-bearing plumes. Both techniques can be used to derive SO2 emission rates by measuring SO2 column densities, integrating these along the plume cross-section, and multiplying by the wind speed. Recent measurements and model studies have revealed that the dominating source of uncertainty in these techniques often originates from an inaccurate assessment of radiative transfer through the volcanic plume. The typical assumption that all detected radiation is scattered behind the volcanic plume and takes a straight path from there to the instrument is often incorrect. We recently showed that the straight path assumption can lead to column density errors of 50% or more in cases where plumes with high SO2 and aerosol concentrations are measured from several kilometers distance, or where the background atmosphere contains a large amount of scattering aerosols. Both under- and overestimation are possible depending on the atmospheric conditions and geometry during spectral acquisition. Simulated Radiative Transfer (SRT) DOAS is a new evaluation scheme that combines radiative transfer modeling with spectral analysis of passive DOAS measurements in the UV region to derive more accurate SO2 column densities than conventional DOAS retrievals, which in turn leads to considerably more accurate emission rates. A three-dimensional backward Monte Carlo radiative transfer model is used to simulate realistic light paths in and around the volcanic plume containing variable amounts of SO2 and aerosols. An inversion algorithm is then applied to derive the true SO2 column density. For fast processing of large datasets, a linearized algorithm based on lookup tables was developed and tested on a number of example datasets. In some cases, the information content of the spectral data is

  19. Stochastic simulation of interaction between solar radio radiation and rarefied gas of the earth's upper atmosphere.

    Science.gov (United States)

    Marov, M. Ya.; Shematovich, V. I.; Zmievskaya, G. I.

    A numerical model is considered for the interaction between the shortwave solar radiation and the earth's upper atmosphere, which results in photoexcitation, photoionization and photodissociation processes violating thermodynamical equilibrium in a medium. The field of radiation is assumed to be equivalent to a set of photons with energies corresponding to the considered spectrum of radiation. An analogy of collisional processes in a partially ionized rarefied gas is used that leads to photochemical reactions.

  20. FORest Canopy Atmosphere Transfer (FORCAsT) 1.0: a 1-D model of biosphere-atmosphere chemical exchange

    Science.gov (United States)

    Ashworth, K.; Chung, S. H.; Griffin, R. J.; Chen, J.; Forkel, R.; Bryan, A. M.; Steiner, A. L.

    2015-11-01

    Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentrations of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase) is of particular importance in this process. The FORCAsT (FORest Canopy Atmosphere Transfer) 1-D model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs) and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOAs) from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS) during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign in the summer of 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs) for both the modelling and measurement communities.

  1. INSTRUMENTATION FOR MEASURING AND TRANSMISSION THE SOLAR RADIATION THROUGH EARTH’S ATMOSPHERE

    OpenAIRE

    Alexandru Dan Toma

    2013-01-01

    The Sun's energy is distributed over a broad range of the electromagnetic spectrum and Sun behaves approximately like a "blackbody" radiating at a temperature of about 5800 K with maximum output in the green-yellow part of the visible spectrum, around 500 nm. Not all solar radiation reaching the top of the atmosphere reaches Earth's surface due to a various optical phenomena in regard to solar radiation crossing the Earth’s atmosphere. In order to investigate them, there are two general categ...

  2. Retrieval of cloud microphysical parameters from INSAT-3D: a feasibility study using radiative transfer simulations

    Science.gov (United States)

    Jinya, John; Bipasha, Paul S.

    2016-05-01

    Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in

  3. Analysis of the effects of aerosol distribution in the atmosphere on surface radiative measurements

    International Nuclear Information System (INIS)

    The distribution of atmospheric aerosols in the atmosphere may have important effects on the radiative properties of the atmosphere and thereby on the climate. The Atmospheric and Geophysical Sciences Division of the Lawrence Livermore National Laboratory is working with the Atmospheric Radiation Measurements (ARM) program to advise the program as to the importance of aerosols to the ARM measurement plan. The ARM Program had established a set of goals which highlight the important areas of scientific needs associated with the understanding and prediction of global climate change. This report summarizes the initial studies performed to assess the importance and effects of atmospheric aerosols on the measurements of atmospheric radiation. To accomplish this, three interlinked models were employed which calculated the MIE parameters, averaged over the appropriate size distributions and computed the solar radiation at the surface. These models are discussed. A number of computations were performed using different aerosol scenarios and size distributions. These results are discussed and a summary of these initial calculations and future directions of research are outlined

  4. PORTA: A Three-dimensional Multilevel Radiative Transfer Code for Modeling the Intensity and Polarization of Spectral Lines with Massively Parallel Computers

    CERN Document Server

    Stepan, Jiri

    2013-01-01

    The interpretation of the intensity and polarization of the spectral line radiation produced in the atmosphere of the Sun and of other stars requires solving a radiative transfer problem that can be very complex, especially when the main interest lies in modeling the spectral line polarization produced by scattering processes and the Hanle and Zeeman effects. One of the difficulties is due to the fact that the plasma of a stellar atmosphere can be highly inhomogeneous and dynamic, which implies the need to solve the non-equilibrium problem of the generation and transfer of polarized radiation in realistic three-dimensional (3D) stellar atmospheric models. Here we present PORTA, an efficient multilevel radiative transfer code we have developed for doing simulations of the spectral line polarization caused by scattering processes and the Hanle and Zeeman effects in 3D models of stellar atmospheres. The numerical method of solution is based on the non-linear multigrid iterative method and on a novel short-charac...

  5. Testing quasar unification: radiative transfer in clumpy winds

    Science.gov (United States)

    Matthews, J. H.; Knigge, C.; Long, K. S.; Sim, S. A.; Higginbottom, N.; Mangham, S. W.

    2016-05-01

    Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.

  6. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    OpenAIRE

    Barry, Mamadou Yaya

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next-generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, ...

  7. Investigation of spectral radiation heat transfer and NO{sub x} emission in a glass furnace

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, B.; Zhou, C. Q.; Chang, S. L.; Petrick, M.

    2000-08-02

    A comprehensive radiation heat transfer model and a reduced NOx kinetics model were coupled with a computational fluid dynamics (CFD) code and then used to investigate the radiation heat transfer, pollutant formation and flow characteristics in a glass furnace. The radiation model solves the spectral radiative transport equation in the combustion space of emitting and absorbing media, i.e., CO{sub 2}, H{sub 2}O, and soot and emission/reflection from the furnace crown. The advanced numerical scheme for calculating the radiation heat transfer is extremely effective in conserving energy between radiation emission and absorption. A parametric study was conducted to investigate the impact of operating conditions on the furnace performance with emphasis on the investigation into the formation of NOx.

  8. Radiative Transfer Modeling of Lyman Alpha Emitters. I. Statistics of Spectra and Luminosity

    OpenAIRE

    Zheng, Zheng; Cen, Renyue; Trac, Hy; Miralda-Escude, Jordi

    2009-01-01

    We combine a cosmological reionization simulation with box size of 100Mpc/h on a side and a Monte Carlo Lyman-alpha (Lya) radiative transfer code to model Lyman Alpha Emitters (LAEs) at z~5.7. The model introduces Lya radiative transfer as the single factor for transforming the intrinsic Lya emission properties into the observed ones. Spatial diffusion of Lya photons from radiative transfer results in extended Lya emission and only the central part with high surface brightness can be observed...

  9. An Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rivera

    2015-07-01

    Full Text Available Physically-based radiative transfer models (RTMs help in understanding the processes occurring on the Earth’s surface and their interactions with vegetation and atmosphere. When it comes to studying vegetation properties, RTMs allows us to study light interception by plant canopies and are used in the retrieval of biophysical variables through model inversion. However, advanced RTMs can take a long computational time, which makes them unfeasible in many real applications. To overcome this problem, it has been proposed to substitute RTMs through so-called emulators. Emulators are statistical models that approximate the functioning of RTMs. Emulators are advantageous in real practice because of the computational efficiency and excellent accuracy and flexibility for extrapolation. We hereby present an “Emulator toolbox” that enables analysing multi-output machine learning regression algorithms (MO-MLRAs on their ability to approximate an RTM. The toolbox is included in the free-access ARTMO’s MATLAB suite for parameter retrieval and model inversion and currently contains both linear and non-linear MO-MLRAs, namely partial least squares regression (PLSR, kernel ridge regression (KRR and neural networks (NN. These MO-MLRAs have been evaluated on their precision and speed to approximate the soil vegetation atmosphere transfer model SCOPE (Soil Canopy Observation, Photochemistry and Energy balance. SCOPE generates, amongst others, sun-induced chlorophyll fluorescence as the output signal. KRR and NN were evaluated as capable of reconstructing fluorescence spectra with great precision. Relative errors fell below 0.5% when trained with 500 or more samples using cross-validation and principal component analysis to alleviate the underdetermination problem. Moreover, NN reconstructed fluorescence spectra about 50-times faster and KRR about 800-times faster than SCOPE. The Emulator toolbox is foreseen to open new opportunities in the use of advanced

  10. Flow-radiation coupling for atmospheric entries using a Hybrid Statistical Narrow Band model

    Science.gov (United States)

    Soucasse, Laurent; Scoggins, James B.; Rivière, Philippe; Magin, Thierry E.; Soufiani, Anouar

    2016-09-01

    In this study, a Hybrid Statistical Narrow Band (HSNB) model is implemented to make fast and accurate predictions of radiative transfer effects on hypersonic entry flows. The HSNB model combines a Statistical Narrow Band (SNB) model for optically thick molecular systems, a box model for optically thin molecular systems and continua, and a Line-By-Line (LBL) description of atomic radiation. Radiative transfer calculations are coupled to a 1D stagnation-line flow model under thermal and chemical nonequilibrium. Earth entry conditions corresponding to the FIRE 2 experiment, as well as Titan entry conditions corresponding to the Huygens probe, are considered in this work. Thermal nonequilibrium is described by a two temperature model, although non-Boltzmann distributions of electronic levels provided by a Quasi-Steady State model are also considered for radiative transfer. For all the studied configurations, radiative transfer effects on the flow, the plasma chemistry and the total heat flux at the wall are analyzed in detail. The HSNB model is shown to reproduce LBL results with an accuracy better than 5% and a speed up of the computational time around two orders of magnitude. Concerning molecular radiation, the HSNB model provides a significant improvement in accuracy compared to the Smeared-Rotational-Band model, especially for Titan entries dominated by optically thick CN radiation.

  11. Radiative Transfer and Radiative driving of Outflows in AGN and Starbursts

    CERN Document Server

    Novak, G S; Ciotti, L

    2012-01-01

    To facilitate the study of black hole fueling, star formation, and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behavior in all of the relevant limits (dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to UV/optical; optically thick to IR) and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are v...

  12. Community Radiative Transfer Model for Aerosol Radiance Assimilation in Global and Regional Models

    Science.gov (United States)

    Liu, Q.; van Delst, P. F.; Groff, D.; Collard, A.; Boukabara, S. A.; Weng, F.; Derber, J.

    2013-12-01

    Community Radiative Transfer Model (CRTM), developed at the Joint Center for Satellite Data Assimilation, has being operationally supporting satellite radiance assimilation for weather forecasting in NOAA and NASA. The CRTM is also supporting the MODIS, GOES-R and JPSS/NPP missions for instrument calibration, validation, monitoring long-term trending, and satellite products using a retrieval approach. The CRTM development is contributed to by multiple U.S. government agencies, universities as well as private companies. This paper will present the latest CRTM version 2.1, which is applicable for passive microwave, infrared and visible sensors. It supports all NOAA satellite instruments, NASA MODIS, and many foreign meteorological satellites. In this study, we will describe the CRTM functionalities and capabilities in the new release of version 2.1. The following are the highlights of the CRTM version: 1. Dual Transmittance models, ODAS and ODPS, 2. Sensor Specific Transmittance models: Fast Transmittance Model for Stratospheric Sounding Unit to take account for CO2 cell pressure variation, Fast Transmittance Model for SSMIS Upper Atmospheric Sounding (UAS) Channels including Zeeman-splitting. 3. Non-local Thermodynamic Equilibrium (NLTE) Radiative Transfer 4. Surface Emissivity/Reflectivity Models 5. Aerosol, Cloud, and Molecular Scattering Models Pre-computed look-up tables for extinction, scattering coefficients and phase functions 6. Dual Radiative Transfer Solver, Adding Double-Adding method [1][2], Adding Matrix Operator method, and SOI method. The CRTM is flexible for users' applications, for example one can simulate aircraft measurements, turn scattering off for fast calculations, use an aerosol optical depth (AOD) module for aerosol optical depth calculation, use an emissivity interface to input your own emissivity data base, and use a channel selection function for specified channel radiance calculations. In this presentation, we focus on aerosol product

  13. Modeling of radiation transport in coupled atmosphere-snow-ice-ocean systems

    International Nuclear Information System (INIS)

    A radiative transfer model for coupled atmosphere-snow-ice-ocean systems (CASIO-DISORT) is used to develop accurate and efficient tools for computing the bidirectional reflectance distribution function (BRDF) of sea ice for a wide range of situations occurring in nature. These tools include a method to generate sea ice inherent optical properties (IOPs: single-scattering albedo, extinction optical depth, and scattering asymmetry parameter) for any wavelength between 300 and 4000 nm as a function of sea ice physical parameters including real and imaginary parts of the sea ice refractive index, brine pocket concentration and effective brine pocket size, air bubble concentration and effective air bubble size, volume fraction of ice impurities and impurity absorption coefficient, and sea ice thickness. The CASIO-DISORT code was used to compute look-up tables (LUTs) of the Fourier expansion coefficients of the BRDF as a function of angles of illumination and observation, sea ice IOPs, and ocean albedo. By interpolation in the LUTs one efficiently obtains accurate BRDF values. To include snow on the ice we modified DISORT2 to accept Fourier expansion coefficients for the BDRF as input instead of the BRDF itself, thereby reducing the computation time by a factor of about 60. The BRDF computed by CASIO-DISORT or retrieved from the LUTs applies to diffuse light only. To remedy this shortcoming we added a specular Gaussian beam component to the new BRDF tool and verified that it works well for BRDFs for bare and snow-covered sea ice.

  14. Condition of Retrieving Vertical Column Density of Atmospheric Pollution Gases by Using Scattered Solar Radiation

    Institute of Scientific and Technical Information of China (English)

    ZUO Sao-Yi

    2009-01-01

    We present a method to monitor the vertical column density (VCD) of atmospheric pollution gases by using the scattered solar radiation. The necessary condition of capturing the useful scattered solar radiation is achieved. The condition is only dependent on the solar elevation angle, while independent of the solar azimuth angle, which could greatly simply the capturing equipment and procedure. Under the condition, the VCD of tropospheric NO2 in Chengdu, China is retrieved from the scattered solar radiation, which is dose to that from the direct solar radiation.

  15. Impact of atmospheric uncertainties and viscous interaction effects on the performance of aeroassisted orbital transfer vehicles

    Science.gov (United States)

    Talay, T. A.; White, N. H.; Naftel, J. C.

    1984-01-01

    Simulations of aerobraking trajectories of aeroassisted orbital transfer vehicles (AOTV's) returning from geosynchronous orbit were analyzed to examine the effects of high-altitude viscous interactions and off-nominal atmospheres on AOTV return weight, heating, and loads performance. Viscous interaction effects encountered at high altitudes had little detrimental effect on the return weight capabilities for AOTV's representing a range of lift/drag ratios. Most of the AOTV return weight increase over an all-propulsive OTV occurred for a low lift/drag ratio. Smaller increases in return weight were observed for higher lift/drag ratios, at the expense of significantly higher heating and aerodynamic loads. Off-nominal atmospheres based on Shuttle-derived data and multipliers on a U.S. Standard Atmosphere were considered. AOTV's intended for entry under standard atmospheric conditions either deorbited during the pass through the off-nominal atmospheres or missed the target phasing orbit by wide margins. The AOTV's could successfully negotiate these atmospheres when new bank-angle histories were implemented with little loss and sometimes with a gain in return weight.

  16. Directional Radiometry and Radiative Transfer: the Convoluted Path From Centuries-old Phenomenology to Physical Optics

    Science.gov (United States)

    Mishchenko, Michael I.

    2014-01-01

    This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.

  17. 3D Continuum Radiative Transfer. An adaptive grid construction algorithm based on the Monte Carlo method

    Science.gov (United States)

    Niccolini, G.; Alcolea, J.

    Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).

  18. A public code for general relativistic, polarised radiative transfer around spinning black holes

    CERN Document Server

    Dexter, Jason

    2016-01-01

    Ray tracing radiative transfer is a powerful method for comparing theoretical models of black hole accretion flows and jets with observations. We present a public code, grtrans, for carrying out such calculations in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics. The code is written in Fortran 90 and efficiently parallelises with OpenMP, and the full code and several components have Python interfaces. We describe several tests which are used for verifiying the code, and we compare the results for polarised thin accretion disc and semi-analytic jet problems with those from the literature as examples of its use. Along the way, we provide accurate fitting functions for polarised synchrotron emission and transfer coefficients from thermal and power law distribution functions, and compare results from numerical integration and quadrature solutions of the polarised radiative transfer equations. We also show that all transfer coefficients can play...

  19. Radiation transfer in photobiological carbon dioxide fixation and fuel production by microalgae

    International Nuclear Information System (INIS)

    Solar radiation is the energy source driving the metabolic activity of microorganisms able to photobiologically fixate carbon dioxide and convert solar energy into biofuels. Thus, careful radiation transfer analysis must be conducted in order to design and operate efficient photobioreactors. This review paper first introduces light harvesting mechanisms used by microorganisms as well as photosynthesis and photobiological fuel production. It then provides a thorough and critical review of both experimental and modeling efforts focusing on radiation transfer in microalgae suspension. Experimental methods to determine the radiation characteristics of microalgae are presented. Methods for solving the radiation transfer equation in photobioreactors with or without bubbles are also discussed. Sample measurements and numerical solutions are provided. Finally, novel strategies for achieving optimum light delivery and maximizing sunlight utilization in photobioreactors are discussed including genetic engineering of microorganisms with truncated chlorophyll antenna.

  20. Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores

    International Nuclear Information System (INIS)

    In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)

  1. A new model on bidirectional reflectance surface-atmospheric coupled radiation

    Institute of Scientific and Technical Information of China (English)

    QIU; Jinhuan; (邱金桓)

    2001-01-01

    An exact and available model on bidirectional reflectance surface-atmospheric coupled radiation is of great significance for spaceborne remote sensing application. Based on the physical process of interaction of solar radiation with the surface and the atmosphere, a new model on bidirectional reflectance surface-atmospheric coupled radiation is developed in this paper. As shown in numerical simulation, this model is evidently better than the 6S model. The standard error among 110112 sets of upward radiance data calculated by this new model is only 0.49%, which is about one fourth of the one by 6S. In the condition of the solar zenith angle qs≤75°and the viewing angle qv≤60°, the error by the new model is usually smaller than 2.5%.

  2. Directional radiometry and radiative transfer: The convoluted path from centuries-old phenomenology to physical optics

    International Nuclear Information System (INIS)

    This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics. - Highlights: • History of phenomenological radiometry and radiative transfer is described. • Fundamental weaknesses of these disciplines are discussed. • The process of their conversion into legitimate branches of physical optics is summarized

  3. Radiative transfer in participating media with collimated short-pulse Gaussian irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Okutucu, Tuba; Yener, Yaman [Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA 02115 (United States)

    2006-05-07

    Radiative transfer in a one-dimensional absorbing and isotropically scattering plane-parallel grey medium with a collimated short-pulse Gaussian irradiation on one of its boundaries is studied. The medium is non-emitting and the boundaries are non-reflecting and non-refracting. The Galerkin method is extended for the solution of the transient radiative transfer problem. The transient transmittance and reflectance of the medium are evaluated for various optical thicknesses, scattering albedos and pulse durations.

  4. A public code for general relativistic, polarised radiative transfer around spinning black holes

    OpenAIRE

    Dexter, Jason

    2016-01-01

    Ray tracing radiative transfer is a powerful method for comparing theoretical models of black hole accretion flows and jets with observations. We present a public code, grtrans, for carrying out such calculations in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics. The code is written in Fortran 90 and efficiently parallelises with OpenMP, and the full code and several components have Python interfaces. We describe several te...

  5. Variability of atmospheric depositions of artificial radioelements and their transfer into soils

    International Nuclear Information System (INIS)

    In this Habilitation thesis, I present the results and prospects of the main research topics that contribute to bettering our knowledge of the behaviour of artificial radioelements in the geosphere and biosphere. In the first chapter I present a summary of the research carried out for my thesis on the Oklo reactors. In the subsequent chapters I present my research work at the IRSN. The second chapter concerns the atmospheric depositions of radioactive contaminants. I have studied the principal environmental parameters involved in the empirical modelling of the transfer of artificial radioelements from the atmosphere to the soil. Here I essentially use measurements of artificial radioelements (137Cs, plutonium, americium) in soils that reveal the variability of accidental depositions further to the Chernobyl disaster (paragraph 2.1) and chronic radioactive depositions coming from the atmospheric testing of nuclear weapons (paragraph 2.2). In the third chapter I address the problem of transfers of artificial radioelements into the soil. The interest of this lies in the fact that these transfers represent serious risks for man. Taken over the long term (in the months and years that follow the depositing of radioactive elements on the ground and plants), the transfers of radioactive pollutants into the soil are responsible for the contamination of both plants (transfer via the roots) and underground water and surface water (transfer after vertical migration). My research work into the transfers of radioactive pollutants in soils is centred on vertical migrations and root transfers, as both these processes can be studied through environmental samplings and measurements. More precisely, I have studied the migrations of radioactive pollutants and their geochemical analogues in different types of soils (paragraph 3.1) and the variability of the activities of radiostrontium and radiocesium in the compartments of permanent grassland zones (soil, grass, milk and cheese

  6. The transfer of atmospheric-pressure ionization waves via a metal wire

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yang; Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn [Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wang, Wenchun [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Peng, Yifeng; Niu, Jinhai; Bi, Zhenhua; Ji, Longfei; Song, Ying; Wang, Xueyang; Qi, Zhihua [Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2016-01-15

    Our study has shown that the atmospheric-pressure He ionization waves (IWs) may be transferred from one dielectric tube (tube 1) to the other one (tube 2) via a floating metal wire. The propagation of IWs along the two tubes is not affected by the diameter of a floating metal wire, however, their propagation is strongly dependent on the length of a floating metal wire. The propagation of one IW along the tube 1 may result in the second IW propagating reversely inside the tube in vicinity of a floating metal wire, which keeps from their further propagation through the tube 1. After they merge together as one conduction channel inside the tube 1, the transferred plasma bullet starts to propagate along the tube 2. The propagation of transferred plasma bullets along the tube 2 is mainly determined by the capacitance and inductance effects, and their velocity and density can be controlled by the length of a floating metal wire.

  7. The transfer of atmospheric-pressure ionization waves via a metal wire

    International Nuclear Information System (INIS)

    Our study has shown that the atmospheric-pressure He ionization waves (IWs) may be transferred from one dielectric tube (tube 1) to the other one (tube 2) via a floating metal wire. The propagation of IWs along the two tubes is not affected by the diameter of a floating metal wire, however, their propagation is strongly dependent on the length of a floating metal wire. The propagation of one IW along the tube 1 may result in the second IW propagating reversely inside the tube in vicinity of a floating metal wire, which keeps from their further propagation through the tube 1. After they merge together as one conduction channel inside the tube 1, the transferred plasma bullet starts to propagate along the tube 2. The propagation of transferred plasma bullets along the tube 2 is mainly determined by the capacitance and inductance effects, and their velocity and density can be controlled by the length of a floating metal wire

  8. Canonical transfer and multiscale energetics for primitive and quasi-geostrophic atmospheres

    CERN Document Server

    Liang, X San

    2016-01-01

    The past years have seen the success of a novel multiscale energetic formalism in a variety of ocean and engineering fluid applications. In a self-contained way, this study introduces it to the atmospheric dynamical diagnostics, with important theoretical updates. Multiscale energy equations are derived using a new analysis apparatus, namely, multiscale window transform, with respect to both the primitive equation and quasi-geostrophic models. A reconstruction of the "atomic" energy fluxes on the multiple scale windows allows for a natural and unique separation of the in-scale transports and cross-scale transfers from the intertwined nonlinear processes. The resulting energy transfers bear a Lie bracket form, reminiscent of the Poisson bracket in Hamiltonian mechanics, we hence would call them "canonical". A canonical transfer process is a mere redistribution of energy among scale windows, without generating or destroying energy as a whole. By classification, a multiscale energetic cycle comprises of availabl...

  9. Cosmic ray modulation of infra-red radiation in the atmosphere

    CERN Document Server

    Aplin, K L

    2012-01-01

    Cosmic rays produce charged molecular clusters by ionisation as they pass through the lower atmosphere. Neutral molecular clusters such as dimers and complexes are expected to make a small contribution to the radiative balance, but atmospheric absorption by charged clusters has not hitherto been observed. In an atmospheric experiment, a filter radiometer tuned to the 9.15 um absorption band associated with infra-red absorption of charged molecular clusters was used to monitor changes immediately following events identified by a cosmic ray telescope sensitive to high energy (>400MeV) particles, principally muons. The change in longwave radiation in this absorption band due to charged molecular clusters is 7 mW^m-2. The integrated atmospheric energy change for each event is 2J, representing an amplification factor of 10^10 compared to the 2GeV energy of a typical tropospheric cosmic ray. This absorption is expected to occur continuously and globally.

  10. Charge-Transfer CMOS Image Sensors: Device and Radiation Aspects

    OpenAIRE

    Ramachandra Rao, P.

    2009-01-01

    The aim of this thesis was twofold: investigating the effect of ionizing radiation on 4-T CMOS image sensors and the possibility of realizing a CCD like sensor in standard 0.18-μm CMOS technology (for medical applications). Both the aims are complementary; borrowing and lending many aspects of radiation and device physics amongst each other.

  11. Atmospheric Radiation Measurement program facilities newsletter, April 2002.; TOPICAL

    International Nuclear Information System (INIS)

    The National Oceanic and Atmospheric Administration (NOAA) recently announced the development of El Nino conditions in the tropical Pacific Ocean near the South American coastline. Scientists detected a 4 F increase in the sea-surface temperatures during February. Conrad C. Lautenbacher, NOAA administrator and Under Secretary of Commerce for Oceans and Atmosphere, indicated that this warming is a sign that the Pacific Ocean is heading toward an El Nino condition. Although it is too early to predict how strong the El Nino will become or the conditions it will bring to the United States, Lautenbacher said that the country is likely to feel the effects as soon as midsummer (Figure 1). During the last El Nino in 1997-1998, the United States experienced strong weather impacts. Even though researchers don't understand what causes the onset of El Nino, they do recognize what to expect once development has begun. Scientists can monitor the development of El Nino through NOAA's advanced global climate monitoring system of polar-orbiting satellites and 72 ocean buoys moored across the equator in the Pacific Ocean. The resulting measurements of surface meteorological parameters and upper ocean temperatures are made available to scientists on a real-time basis, allowing for timely monitoring and predictions. This complex monitoring array enabled NOAA to predict the 1997-1998 El Nino six months in advance

  12. Non-LTE diagnositics of infrared radiation of Titan's atmosphere

    Science.gov (United States)

    Feofilov, Artem; Rezac, Ladislav; Kutepov, Alexander; Vinatier, Sandrine; Rey, Michael; Nikitin, Andrew; Tyuterev, Vladimir

    2016-06-01

    Yelle (1991) and Garcia-Comas et al, (2011) demonstrated the importance of accounting for the local thermodynamic equilibrium (LTE) breakdown in the middle and upper atmosphere of Titan for the interpretation of infrared radiances measured at these heights. In this work, we make further advance in this field by: • updating the non-LTE model of CH4 emissions in Titan's atmosphere and including a new extended database of CH4 spectroscopic parameters • studying the non-LTE CH4 vibrational level populations and the impact of non-LTE on limb infrared emissions of various CH4 ro-vibrational bands including those at 7.6 and 3.3 µm • implementing our non-LTE model into the LTE-based retrieval algorithm applied by Vinatier et al., (2015) for processing the Cassini/CIRS spectra. We demonstrate that accounting for non-LTE leads to an increase in temperatures retrieved from CIRS 7.6 µm limb emissions spectra (˜10 K at 600 km altitude) and estimate how this affects the trace gas density retrieval. Finally, we discuss the effects of including a large number of weak one-quantum and combinational bands on the calculated daytime limb 3.3 µm emissions and the impact they may have on the CH4 density retrievals from the Cassini VIMS 3.3 µm limb emission observations.

  13. Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects

    OpenAIRE

    Riese, Martin; Ploeger, F; Rap, A.; B. Vogel; P. Konopka; Dameris, Martin; Forster, P

    2012-01-01

    The upper troposphere/lower stratosphere (UTLS) region plays an important role in the climate system. Changes in the structure and chemical composition of this region result in particularly large changes in radiative forcings of the atmosphere. Quantifying the processes that control UTLS composition (e.g., stratosphere-troposphere exchange) therefore represents a crucial task. We assess the influence of uncertainties in the atmospheric mixing strength on global UTLS distributions of greenh...

  14. Measurement and simulation of the radiation environment in the lower atmosphere for dose assessment

    International Nuclear Information System (INIS)

    Flying personnel is occupationally exposed to rather high radiation levels due to secondary cosmic radiation. Therefore, the radiation environment induced in the lower atmosphere by galactic and solar cosmic radiation was characterized by means of particle transport calculations using GEANT4. These calculations were validated with continuous measurements of the energy spectra of secondary neutrons with Bonner sphere spectrometers at the Zugspitze mountain and near the North Pole. The response of these instruments was determined with GEANT4 and for the first time experimentally verified at high neutron energies (244 and 387 MeV). Route doses for aircrews along typical long-haul flights were determined for galactic and solar cosmic radiation using most recent data on the magnetospheric field and primary cosmic radiation.

  15. Cloud and Radiation Processes Simulated by a Coupled Atmosphere-Ocean Model

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; DING Yihui; XU Ying

    2007-01-01

    Using NCC/IAP T63 coupled atmosphere-ocean general circulation model (AOGCM), two 20-yr integrations were processed, and their ability to simulate cloud and radiation was analysed in detail. The results show that the model can simulate the basic distribution of cloud cover, and however, obvious differences still exist compared with ISCCP satellite data and ERA reanalysis data. The simulated cloud cover is less in general, especially the abnormal low values in some regions of ocean. By improving the cloud cover scheme,simulated cloud cover in the eastern Pacific and Atlantic, summer hemisphere's oceans from subtropical to mid-latitude is considerably improved. But in the tropical Indian Ocean and West Pacific the cloud cover difference is still evident, mainly due to the deficiency of high cloud simulation in these regions resulting from deep cumulus convection. In terms of the analysis on radiation and cloud radiative forcing, we find that simulation on long wave radiation is better than short wave radiation. The simulation error of short wave radiation is caused mostly by the simulation difference in short wave radiative forcing, sea ice, and snow cover, and also by not involving aerosol's effect. The simulation error of long wave radiation is mainly resulting from deficiency in simulating cloud cover and underlying surface temperature. Corresponding to improvement of cloud cover, the simulated radiation (especially short wave radiation) in eastern oceans,summer hemisphere's oceans from subtropical to mid-latitude is remarkably improved. This also bring sobvious improvement to net radiation in these regions.

  16. Matching radiative transfer models and radiosonde data from the EPS/MetOp Sodankylä campaign to IASI measurements

    Directory of Open Access Journals (Sweden)

    X. Calbet

    2010-10-01

    Full Text Available Radiances observed from IASI are compared to calculated ones. Calculated radiances are obtained using several radiative transfer models (OSS, LBLRTM v11.3 and v11.6 on best estimates of the atmospheric state vectors. The atmospheric state vectors are derived from cryogenic frost point hygrometer and humidity dry bias corrected RS92 measurements flown on sondes launched 1 h and 5 min before IASI overpass time. The temperature and humidity profiles are finally obtained by interpolating or extrapolating these measurements to IASI overpass time. The IASI observed and calculated radiances match to within one sigma IASI instrument noise in the wavenumber, ν, range of 1500 ≤ ν ≤ 1570 and 1615 ≤ ν ≤ 1800 cm−1 .

  17. Matching radiative transfer models and radiosonde data from the EPS/Metop Sodankylä campaign to IASI measurements

    Directory of Open Access Journals (Sweden)

    X. Calbet

    2011-06-01

    Full Text Available Radiances observed from IASI are compared to calculated ones. Calculated radiances are obtained using several radiative transfer models (OSS, LBLRTM v11.3 and v11.6 on best estimates of the atmospheric state vectors. The atmospheric state vectors are derived from cryogenic frost point hygrometer and humidity dry bias corrected RS92 measurements flown on sondes launched 1 h and 5 min before IASI overpass time. The temperature and humidity best estimate profiles are obtained by interpolating or extrapolating these measurements to IASI overpass time. The IASI observed and calculated radiances match to within one sigma IASI instrument noise in the spectral region where water vapour is a strong absorber (wavenumber, ν, in the range of 1500 ≤ ν ≤ 1570 and 1615 ≤ ν ≤ 1800 cm−1.

  18. A Thermal Infrared Radiation Parameterization for Atmospheric Studies

    Science.gov (United States)

    Chou, Ming-Dah; Suarez, Max J.; Liang, Xin-Zhong; Yan, Michael M.-H.; Cote, Charles (Technical Monitor)

    2001-01-01

    This technical memorandum documents the longwave radiation parameterization developed at the Climate and Radiation Branch, NASA Goddard Space Flight Center, for a wide variety of weather and climate applications. Based on the 1996-version of the Air Force Geophysical Laboratory HITRAN data, the parameterization includes the absorption due to major gaseous absorption (water vapor, CO2, O3) and most of the minor trace gases (N2O, CH4, CFCs), as well as clouds and aerosols. The thermal infrared spectrum is divided into nine bands. To achieve a high degree of accuracy and speed, various approaches of computing the transmission function are applied to different spectral bands and gases. The gaseous transmission function is computed either using the k-distribution method or the table look-up method. To include the effect of scattering due to clouds and aerosols, the optical thickness is scaled by the single-scattering albedo and asymmetry factor. The parameterization can accurately compute fluxes to within 1% of the high spectral-resolution line-by-line calculations. The cooling rate can be accurately computed in the region extending from the surface to the 0.01-hPa level.

  19. Research on atmospheric corrosion of steel using synchrotron radiation

    International Nuclear Information System (INIS)

    Correlation between local structure around Cr in the protective rust layer on weathering steel and protective performance of the rust layer is presented as an example of corrosion research using synchrotron radiation which has recently been applied in various research fields as a useful tool. In addition, in situ observation of initial process of rust formation on steel is also mentioned. It was pointed out by considering the X-ray absorption fine structure spectra that the nanostructure of the protective rust layer on weathering steel primarily comprises of small Cr-goethite crystals containing surface adsorbed and/or intergranular CrOx3-2X complex anions. This CrOx3-2X explains the protective performance of the rust layer originated by dense aggregation of fine crystals with cation selectivity of the Cr-goethite. It is very advantageous to employ white X-rays for in situ observation of rusting process of a carbon steel covered with electrolyte thin films because rust structure might change very quickly. This in situ observation revealed the effect of ion species on the change in rust phase during wet/dry repeating. It can be said that application of synchrotron radiation on corrosion research is so useful to understand the nanostructure of surface oxides which closely relate to corrosion behavior of metals and alloys. (author)

  20. An atmospheric radiative-convective model with interactive water vapor transport and cloud development

    OpenAIRE

    HUMMEL, JOHN R.; KUHN, WILLIAM R.

    2011-01-01

    In the present generation of radiative-convective models, clouds are assigned specific levels or temperatures that do not change during the course of the calculations. In addition, a single water vapor distribution is used for the “mean atmosphere” instead of separate distributions for the clear sky and cloudy sky atmospheres. We present results from a one-dimensional radiative-convective model that includes interactive water vapor transport and predicts cloud altitudes and thicknesses. The ...

  1. Response of the AMOC to reduced solar radiation – the modulating role of atmospheric-chemistry

    OpenAIRE

    Muthers, Stefan; Raible, Christoph C.; Thomas F Stocker

    2016-01-01

    The influence of reduced solar forcing (grand solar minimum or geoengineering scenarios like solar radiation management) on the Atlantic meridional overturning circulation (AMOC) is assessed in an ensemble of atmosphere-ocean-chemistry-climate model simulations. Ensemble sensitivity simulations are performed with and without interactive chemistry. Without chemistry-climate interaction the AMOC is intensified in the course of the solar radiation reduction (SRR), which is ...

  2. A multi-spectral reordering technique for the full spectrum SLMB modeling of radiative heat transfer in nonuniform gaseous mixtures

    International Nuclear Information System (INIS)

    A Multi-Spectral Reordering (MSR) scheme is introduced to improve the performances of the Spectral-Line Moment-Based (SLMB) modeling for the handling of full spectrum radiative heat transfer calculations in nonuniform media. Using this simultaneous reordering of the spectrum for several thermophysical conditions together with employing approximate formulations to evaluate path-averaged transmission functions for nonisothermal and nonhomogenous gaseous paths, a novel full spectrum gas radiation modeling method in nonuniform gaseous mixtures is constituted. The method is presented in details as well as the building of associated databases for CO2 and H2O at atmospheric pressure and for the temperature range of 300-2700 K. The new model is validated against line-by-line reference computations for a series of existing benchmarks and for a flame configuration. The MSR-SLMB modeling is shown to perform accurately and better than the standard SLMB one, while involving reasonable additional computational costs.

  3. Greenhouse effects of aircraft emissions as calculated by a radiative transfer model

    OpenAIRE

    Fortuin, J.P.F.; Dorland, R.; Wauben, W. M. F.; Kelder, H.

    1995-01-01

    With a radiative transfer model, assessments are made of the radiative forcing in northern mid-latitudes due to aircraft emissions up to 1990. Considered are the direct climate effects from the major combustion products carbon dioxide, nitrogen dioxide, water vapor and sulphur dioxide, as well as the indirect effect of ozone production from NOx emissions. Our study indicates a local radiative forcing at the tropopause which should be negative in summe...

  4. Comparison of Methods for Calculating Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Abbate, M J

    2012-01-19

    Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.

  5. XTAT: A New Multilevel-Multiline Polarized Radiative Transfer Code with PRD

    Science.gov (United States)

    Bommier, V.

    2014-10-01

    This work is intended to the interpretation of the so-called "Second Solar Spectrum" (Stenflo 1996), which is the spectrum of the linear polarization formed by scattering and observed close to the solar internal limb. The lines are also optically thick, and the problem is to solve in a coherent manner, the statistical equilibrium of the atomic density matrix and the polarized radiative transfer in the atmosphere. Following Belluzzi & Landi Degl'Innocenti (2009), 30 % of the solar visible line linear polarization profiles display the M-type shape typical of coherent scattering effect in the far wings. A new theory including both coherent (Rayleigh) and resonant scatterings was developed by Bommier (1997a,b). Raman scattering was later added (Bommier 1999, SPW2). In this theory, which is straightly derived from the Schrödinger equation for the atomic density matrix, the radiative line broadening appears as a non-Markovian process of atom-photon interaction. The collisional broadening is included. The Rayleigh (Raman) scattering appears as an additional term in the emissivity from the fourth order of the atom-photon interaction perturbation development. The development is pursued and finally summed up, leading to a non-perturbative final result. In this formalism, the use of redistribution functions is avoided. The published formalism was limited to the two-level atom without lower level alignment. But most of the solar lines are more complex. We will present how the theory has to be complemented for multi-level atom modeling, including lower level alignment. The role of the collisions as balancing coherent and resonant scatterings is fully taken into account. Progress report will be given about the development of a new code for the numerical iterative solution of the statistical equilibrium and polarized radiative transfer equations, for multi-level atoms and their multi-line spectrum. Fine and hyperfine structures, and Hanle, Kemp (Kemp et al. 1984), Zeeman

  6. Heat Transfer and Geometrical Analysis of Thermoelectric Converters Driven by Concentrated Solar Radiation

    OpenAIRE

    Clemens Suter; Petr Tomeš; Anke Weidenkaff; Aldo Steinfeld

    2010-01-01

    A heat transfer model that couples radiation/conduction/convection heat transfer with electrical potential distribution is developed for a thermoelectric converter (TEC) subjected to concentrated solar radiation. The 4-leg TEC module consists of two pairs of p-type La1.98Sr0.02CuO4 and n-type CaMn0.98Nb0.02O3 legs that are sandwiched between two ceramic Al2O3 hot/cold plates and connected electrically in series and thermally in parallel. The governing equations for heat transfer and electrica...

  7. Numerical radiative transfer with state-of-the-art iterative methods made easy

    Science.gov (United States)

    Lambert, Julien; Paletou, Frédéric; Josselin, Eric; Glorian, Jean-Michel

    2016-01-01

    This article presents an on-line tool and its accompanying software resources for the numerical solution of basic radiation transfer out of local thermodynamic equilibrium (LTE). State-of-the-art stationary iterative methods such as Accelerated Λ-iteration and Gauss-Seidel schemes, using a short characteristics-based formal solver are used. We also comment on typical numerical experiments associated to the basic non-LTE radiation problem. These resources are intended for the largest use and benefit, in support to more classical radiation transfer lectures usually given at the Master level.

  8. Gas Temperature and Radiative Heat Transfer in Oxy-fuel Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas;

    This work presents measurements of the gas temperature, including fluctuations, and its influence on the radiative heat transfer in oxy-fuel flames. The measurements were carried out in the Chalmers 100 kW oxy-fuel test unit. The in-furnace gas temperature was measured by a suction pyrometer...... on the radiative heat transfer shows no effect of turbulence-radiation interaction. However, by comparing with temperature fluctuations in other flames it can be seen that the fluctuations measured here are relatively small. Further research is needed to clarify to which extent the applied methods can account...

  9. Improving radiative transfer processes in snow-covered areas prone to dust loading using a regional climate model

    Science.gov (United States)

    Oaida, C. M.; Xue, Y.; Painter, T. H.; Flanner, M. G.; De Sales, F.

    2011-12-01

    Radiative processes play an important role on both global and regional scales. This study focuses on their effects over snow-covered surfaces, both clean and dust loaded. It is well understood that dust in snow enhances solar radiation absorption, leading to a decrease in snow albedo. However, the quantitative assessment of dust's influence on radiative forcing and runoff timing in mountain snow packs has only been recently investigated. Painter et al. (2007) have shown that snow cover was shortened by 18 to 35 days due to dust radiative forcing in snow in the San Juan Mountains, Colorado, USA. This dust largely originates from the Colorado Plateau with increases of 5-7 fold in the last century and a half due to grazing and agricultural practices. For this study, we employ NCAR's WRF ARW v3.3+ model, which is coupled with a land surface model, Simplified Simple Biosphere version 3 (SSiB3). We first investigate the impact of different atmospheric radiative transfer schemes in WRF3.3+-SSiB3 on the regional climate downscaling. After conducting simulations over North America for the period March through June, we found substantial differences in the downscaling skills with different atmospheric radiative schemes. These differences indicate the uncertainty due to the atmospheric radiative transfer parameterizations. To develop a regional climate model that is capable of realistically simulating radiative forcing on snow covered areas with aerosol loading, we coupled WRF3.3+-SSiB3 with a snow-radiative transfer model, Snow, Ice, and Aerosol Radiative (SNICAR) model. SNICAR considers the effects of snow grain size and aerosol on snow albedo evolution. Snow grain size and growth is important in snow albedo feedbacks, especially when aerosols in snow are considered, because larger snow grains decrease snow albedo, and in the presence of dust, grain growth rates increase, decreasing snow reflectance even further than if the snow was pure. Our previous version of WRF3.3+-SSi

  10. Transient radiative heat transfer in an inhomogeneous participating medium with Fresnel's surfaces

    Institute of Scientific and Technical Information of China (English)

    YI HongLiang; TAN HePing

    2008-01-01

    This paper studies the radiative heat transfer within an inhomogeneous and isot-ropically scattering medium with reflecting Fresnel's surfaces. Thermal radiation transfers in a curve inside a medium with an inhomogeneous distribution of a re-fractive index. The inhomogenous medium is divided into n homogenous isother-mal sub-layers and in each sub-layer the radiation transfers in a straight line. By adopting a multilayer radiative transfer model and using a ray-tracing/nodal-ana-lyzing method, a radiative transfer model is built for the inhomogenous participat-ing medium. In the muItilayer model, a criterion for refraction / total reflection at the interfaces between neighboring sub-layers is introduced, avoiding the integral singularity and reflection at physically inexistent interfaces (only the total reflection is considered). Transient thermal behavior is examined when the parameters of the radiative properties such as refractive indexes, extinction coefficients, and sin-gle-scattering albedoes vary continually along the thickness direction.

  11. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    Directory of Open Access Journals (Sweden)

    Hanuszkiewicz-Drapała Małgorzata

    2016-03-01

    Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  12. Least Squares Second Order Radiative Transfer Equation and Meshless Method Solution

    CERN Document Server

    Zhao, J M; Liu, L H

    2011-01-01

    To overcome the singularity problem of the SORTE [Numer. Heat Transfer B 51 (2007) 391-409] in dealing with inhomogeneous media where some position is with very small/zero extinction coefficient, a new second order formula of radiative transfer equation which owns the characteristics of least squares approach (termed here the Least squares Second Order Radiative Transfer Equation, LSORTE) is proposed. A diffusion (second order) term is naturally introduced in the LSORTE, which provides much better numerical property than the classic first order radiative transfer equation (RTE). The discretization of the LSORTE by weighted residual approach with standard Galerkin scheme leads to a formulation exactly the same as the least squares scheme discretization of the RTE. A problem of the second order form of RTE in dealing with inhomogeneous medium with discontinuity in distribution of extinction coefficient is observed and an amendment scheme is proposed. The collocation meshless methods based on the moving least sq...

  13. Gravity wave propagation in the realistic atmosphere based on a three-dimensional transfer function model

    Directory of Open Access Journals (Sweden)

    L. Sun

    2007-10-01

    Full Text Available In order to study the filter effect of the background winds on the propagation of gravity waves, a three-dimensional transfer function model is developed on the basis of the complex dispersion relation of internal gravity waves in a stratified dissipative atmosphere with background winds. Our model has successfully represented the main results of the ray tracing method, e.g. the trend of the gravity waves to travel in the anti-windward direction. Furthermore, some interesting characteristics are manifest as follows: (1 The method provides the distribution characteristic of whole wave fields which propagate in the way of the distorted concentric circles at the same altitude under the control of the winds. (2 Through analyzing the frequency and wave number response curve of the transfer function, we find that the gravity waves in a wave band of about 15–30 min periods and of about 200–400 km horizontal wave lengths are most likely to propagate to the 300-km ionospheric height. Furthermore, there is an obvious frequency deviation for gravity waves propagating with winds in the frequency domain. The maximum power of the transfer function with background winds is smaller than that without background winds. (3 The atmospheric winds may act as a directional filter that will permit gravity wave packets propagating against the winds to reach the ionospheric height with minimum energy loss.

  14. Advances in Atmospheric Radiation Measurements and Modeling Needed to Improve Air Safety

    Science.gov (United States)

    Tobiska, W. Kent; Atwell, William; Beck, Peter; Benton, Eric; Copeland, Kyle; Dyer, Clive; Gersey, Brad; Getley, Ian; Hands, Alex; Holland, Michael; Hong, Sunhak; Hwang, Junga; Jones, Bryn; Malone, Kathleen; Meier, Matthias M.; Mertens, Chris; Phillips, Tony; Ryden, Keith; Schwadron, Nathan; Wender, Stephen A.; Wilkins, Richard; Xapsos, Michael A.

    2015-04-01

    Air safety is tied to the phenomenon of ionizing radiation from space weather, primarily from galactic cosmic rays but also from solar energetic particles. A global framework for addressing radiation issues in this environment has been constructed, but more must be done at international and national levels. Health consequences from atmospheric radiation exposure are likely to exist. In addition, severe solar radiation events may cause economic consequences in the international aviation community due to exposure limits being reached by some crew members. Impacts from a radiation environment upon avionics from high-energy particles and low-energy, thermalized neutrons are now recognized as an area of active interest. A broad community recognizes that there are a number of mitigation paths that can be taken relative to the human tissue and avionics exposure risks. These include developing active monitoring and measurement programs as well as improving scientific modeling capabilities that can eventually be turned into operations. A number of roadblocks to risk mitigation still exist, such as effective pilot training programs as well as monitoring, measuring, and regulatory measures. An active international effort toward observing the weather of atmospheric radiation must occur to make progress in mitigating radiation exposure risks. Stakeholders in this process include standard-making bodies, scientific organizations, regulatory organizations, air traffic management systems, aircraft owners and operators, pilots and crew, and even the public.

  15. Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    Science.gov (United States)

    Murphy, R. E.; Deering, D. W.

    1984-01-01

    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest.

  16. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

  17. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    International Nuclear Information System (INIS)

    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately

  18. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  19. A fast radiative transfer method for the simulation of visible satellite imagery

    Science.gov (United States)

    Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard

    2016-05-01

    A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.

  20. Non-linear Evolution of Rayleigh-Taylor Instability in a Radiation Supported Atmosphere

    CERN Document Server

    Jiang, Yan-Fei; Stone, James

    2012-01-01

    The non-linear regime of Rayleigh-Taylor instability (RTI) in a radiation supported atmosphere, consisting of two uniform fluids with different densities, is studied numerically. We perform simulations using our recently developed numerical algorithm for multi-dimensional radiation hydrodynamics based on a variable Eddington tensor as implemented in Athena, focusing on the regime where scattering opacity greatly exceeds absorption opacity. We find that the radiation field can reduce the growth and mixing rate of RTI, but this reduction is only significant when radiation pressure significantly exceeds gas pressure. Small scale structures are also suppressed in this case. In the non-linear regime, dense fingers sink faster than rarefied bubbles can rise, leading to asymmetric structures about the interface. By comparing the calculations that use a variable Eddington tensor (VET) versus the Eddington approximation, we demonstrate that anisotropy in the radiation field can affect the non-linear development of RTI...

  1. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems

    Science.gov (United States)

    Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.

    2012-12-01

    For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This

  2. Sensitivity of clear-sky direct radiative effect of the aerosol to micro-physical properties by using 6SV radiative transfer model: preliminary results

    Science.gov (United States)

    Bassani, Cristiana; Tirelli, Cecilia; Manzo, Ciro; Pietrodangelo, Adriana; Curci, Gabriele

    2015-04-01

    The aerosol micro-physical properties are crucial to analyze their radiative impact on the Earth's radiation budget [IPCC, 2007]. The 6SV model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997] has been used to perform physically-based atmospheric correction of hyperspectral airborne and aircraft remote sensing data [Vermote et al., 2009; Bassani et al. 2010; Tirelli et al., 2014]. The atmospheric correction of hyperspectral data has been shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. The role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of hyperspectral data acquired over water and land targets is investigated within the framework of CLAM-PHYM (Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission) and PRIMES (Synergistic use of PRISMA products with high resolution meteo-chemical simulations and their validation on ground and from satellite) projects, both funded by Italian Space Agency (ASI). In this work, the results of the radiative field of the Earth/Atmosphere coupled system simulated by using 6SV during the atmospheric correction of hyperspectral data are presented. The analysis of the clear-sky direct radiative effect is performed considering the aerosol micro-physical properties used to define the aerosol model during the atmospheric correction process. In particular, the AERONET [Holben et al., 1998] and FLEXAOD [Curci et al., 2014] micro-physical properties are used for each image to evaluate the contribution of the size distribution and refractive index of the aerosol type on the surface reflectance and on the direct radiative forcing. The results highlight the potential of the hyperspectral remote sensing data for atmospheric studies as well as for environmental studies. Currently, the future hyperspectral missions, such as the

  3. General Relativistic Radiative Transfer Code in Rotating Black Hole Spacetime: {ARTIST}

    Science.gov (United States)

    Takahashi, Rohta; Umemura, Masayuki

    2016-10-01

    We present a general relativistic radiative transfer code, {ARTIST} (Authentic Radiative Transfer In Space-Time), which is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of {ARTIST} is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole, which was originally explored by Hanni (1977). This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the {ARTIST} turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hot spot problem. All the simulations in the present study are performed in the equatorial plane around a Kerr black hole. The {ARTIST} is the first step to realize the general relativistic radiation hydrodynamics.

  4. A factorial assessment of the sensitivity of the BATS land-surface parameterization scheme. [BATS (Biosphere-Atmosphere Transfer Scheme)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A. (Macquarie Univ., North Ryde, New South Wales (Australia))

    1993-02-01

    Land-surface schemes developed for incorporation into global climate models include parameterizations that are not yet fully validated and depend upon the specification of a large (20-50) number of ecological and soil parameters, the values of which are not yet well known. There are two methods of investigating the sensitivity of a land-surface scheme to prescribed values: simple one-at-a-time changes or factorial experiments. Factorial experiments offer information about interactions between parameters and are thus a more powerful tool. Here the results of a suite of factorial experiments are reported. These are designed (i) to illustrate the usefulness of this methodology and (ii) to identify factors important to the performance of complex land-surface schemes. The Biosphere-Atmosphere Transfer Scheme (BATS) is used and its sensitivity is considered (a) to prescribed ecological and soil parameters and (b) to atmospheric forcing used in the off-line tests undertaken. Results indicate that the most important atmospheric forcings are mean monthly temperature and the interaction between mean monthly temperature and total monthly precipitation, although fractional cloudiness and other parameters are also important. The most important ecological parameters are vegetation roughness length, soil porosity, and a factor describing the sensitivity of the stomatal resistance of vegetation to the amount of photosynthetically active solar radiation and, to a lesser extent, soil and vegetation albedos. Two-factor interactions including vegetation roughness length are more important than many of the 23 specified single factors. The results of factorial sensitivity experiments such as these could form the basis for intercomparison of land-surface parameterization schemes and for field experiments and satellite-based observation programs aimed at improving evaluation of important parameters.

  5. A 1D radiative-convective model of H2O-CO2 atmospheres around young telluric planets: an update

    Science.gov (United States)

    Marcq, Emmanuel; Salvador, Arnaud; Massol, Hélène; Chassefière, Éric

    2016-04-01

    The study of the early phases of the evolution of terrestrial planets has recently known significant progress [1,2]. It appears that their cooling phase during the magma ocean stage is first dominated by a radiative cooling stage through its atmosphere. If the planet is able to reach radiative balance during this stage, then its further evolution is dominated by the escape flux, and no large scale condensation of water occurs (Hamano-type II planets). On the other hand, if the planet is far enough from the sun, then radiative equilibrium cannot be reached until the outgoing flux has fallen below the runaway greenhouse limit, implying the condensation of most atmospheric water vapor into a global water ocean, thus sheltering most water from atmospheric escape (Hamano-type I planet). In the solar system, Earth is clearly a type-I planet, whereas Venus was most likely a type-II planet from quite early on in its history [1,2]. In this presentation, we will deal with the atmospheric radiative model used by [2] and first described in [3]. After describing its recent improvements since [3] (pressure grid enabling an arbitrary total volatile amount, correction of the k-correlated radiative transfer in the thermal radiation, improvement of the numerical stability and integration scheme) and their consequences on the detectability of extrasolar type-I or type-II planets, we will deal with the possible improvements and extensions to such models, such as but not limited to: (1) adopting a 1D-spherical geometry suited for larger atmospheres around smaller planets, (2) improvement of the visible albedo parameterization based on recent 3D-modelling GCM [4]. [1] : K. Hamano et al., Nature (2013) [2] : T. Lebrun et al. JGR (2013) [3] : E. Marcq, JGR (2012) [4] : J. Leconte et al. (2015)

  6. Charge-Transfer CMOS Image Sensors: Device and Radiation Aspects

    NARCIS (Netherlands)

    Ramachandra Rao, P.

    2009-01-01

    The aim of this thesis was twofold: investigating the effect of ionizing radiation on 4-T CMOS image sensors and the possibility of realizing a CCD like sensor in standard 0.18-μm CMOS technology (for medical applications). Both the aims are complementary; borrowing and lending many aspects of radia

  7. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    Science.gov (United States)

    Barry, Mamadou Y.

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.

  8. An early warning indicator for atmospheric blocking events using transfer operators

    International Nuclear Information System (INIS)

    The existence of persistent midlatitude atmospheric flow regimes with time-scales larger than 5–10 days and indications of preferred transitions between them motivates to develop early warning indicators for such regime transitions. In this paper, we use a hemispheric barotropic model together with estimates of transfer operators on a reduced phase space to develop an early warning indicator of the zonal to blocked flow transition in this model. It is shown that the spectrum of the transfer operators can be used to study the slow dynamics of the flow as well as the non-Markovian character of the reduction. The slowest motions are thereby found to have time scales of three to six weeks and to be associated with meta-stable regimes (and their transitions) which can be detected as almost-invariant sets of the transfer operator. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths. Even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty

  9. Radiative Transfer Modeling of Lyman Alpha Emitters: I. Statistics of Spectra and Luminosity

    CERN Document Server

    Zheng, Zheng; Trac, Hy; Miralda-Escude, Jordi

    2009-01-01

    We combine a cosmological reionization simulation with box size of 100Mpc/h on a side and a Monte Carlo Lyman-alpha (Lya) radiative transfer code to model Lyman Alpha Emitters (LAEs) at z~5.7. The model introduces Lya radiative transfer as the single factor for transforming the intrinsic Lya emission properties into the observed ones. Spatial diffusion of Lya photons from radiative transfer results in extended Lya emission and only the central part with high surface brightness can be observed. Because of radiative transfer, the appearance of LAEs depends on density and velocity structures in circumgalactic and intergalactic media as well as the viewing angle, which leads to a broad distribution of apparent (observed) Lya luminosity for a given intrinsic Lya luminosity. Radiative transfer also causes frequency diffusion of Lya photons. The resultant Lya line is asymmetric with a red tail. The peak of the Lya line shifts towards longer wavelength and the shift is anti-correlated with the apparent to intrinsic L...

  10. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    Energy Technology Data Exchange (ETDEWEB)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  11. Extension of radiative transfer code MOMO, matrix-operator model to the thermal infrared – Clear air validation by comparison to RTTOV and application to CALIPSO-IIR

    International Nuclear Information System (INIS)

    1-D radiative transfer code Matrix-Operator Model (MOMO), has been extended from [0.2−3.65μm] the band to the whole [0.2−100μm] spectrum. MOMO can now be used for the computation of a full range of radiation budgets (shortwave and longwave). This extension to the longwave part of the electromagnetic radiation required to consider radiative transfer processes that are features of the thermal infrared: the spectroscopy of the water vapor self- and foreign-continuum of absorption at 12μm and the emission of radiation by gases, aerosol, clouds and surface. MOMO's spectroscopy module, Coefficient of Gas Absorption (CGASA), has been developed for computation of gas extinction coefficients, considering continua and spectral line absorptions. The spectral dependences of gas emission/absorption coefficients and of Planck's function are treated using a k-distribution. The emission of radiation is implemented in the adding–doubling process of the matrix operator method using Schwarzschild's approach in the radiative transfer equation (a pure absorbing/emitting medium, namely without scattering). Within the layer, the Planck-function is assumed to have an exponential dependence on the optical-depth. In this paper, validation tests are presented for clear air case studies: comparisons to the analytical solution of a monochromatic Schwarzschild's case without scattering show an error of less than 0.07% for a realistic atmosphere with an optical depth and a blackbody temperature that decrease linearly with altitude. Comparisons to radiative transfer code RTTOV are presented for simulations of top of atmosphere brightness temperature for channels of the space-borne instrument MODIS. Results show an agreement varying from 0.1 K to less than 1 K depending on the channel. Finally MOMO results are compared to CALIPSO Infrared Imager Radiometer (IIR) measurements for clear air cases. A good agreement was found between computed and observed radiance: biases are smaller than 0

  12. Heat and momentum transfer from an atmospheric argon hydrogen plasma jet to spherical particles

    International Nuclear Information System (INIS)

    In this thesis the author describes the energy and momentum transfer from the plasma jet to the spray particles. This is done both experimentally and theoretically. Also the internal energy process of the recombining plasma is discussed. All elastic and inelastic collisional and radiative processes, as well as transport effects within the plasma are considered. In the next section, the so called passive spectroscopy is treated. It describes the diagnostics of electron density and temperature measurement, as well as the investigation on heat content of the particles. Spatially resolved electron density and temperature profiles are presented. Next, the active spectroscopy, i.e. the laser Doppler anemometer is dealt with. With this diagnostic, axial spray-particle velocities inside the plasma jet were determined. The author also presents heat and momentum transfer modelling of the plasma, related to the plasma particle interaction. Finally, a one dimensional model verification is made, using the experimentally determined particle velocity and plasma temperature profiles. (Auth.)

  13. Parametric Study of Mixed Convective RadiativeHeat Transfer in an Inclined Annulus

    Directory of Open Access Journals (Sweden)

    Raed G. Saihood

    2008-01-01

    Full Text Available The steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR method is used to obtain all the computational results. The (B.F.C method is used to generate the grid of the problem. A computer program (Fortran 90 is built to calculate the steady state Nusselt number (Nu for Aspect Ratio AR (0.55-1 and Geometry Ratio GR (0.1-0.9. The fluid Prandtl number is 0.7, Rayleigh number Ra = 400, Reynolds number Re = 100, Optical Thickness (0 ≤ t ≤ 10, Conduction- Radiation parameter (0 ≤ N ≤ 100 and Inclination angle λ = 45. For the range of parameters considered, results show that radiation enhance heat transfer. It is also indicated in the results that heat transfer from the surface of the circle exceeds that of the rectangular duct. Generally, Nu is increased with increasing GR, t and N but it decreased with AR increase. When the radiation effect added to the heat transfer mechanism, the heat transfer rate increased. This effect increased with increasing in GR and decreasing with AR. The increasing in radiation properties lead to increase the radiation effect. Tecplot 7 program was used to plot the curves which cleared these relations and isotherms and streamlines which illustrate the behavior of air through the channel and its variation with other parameters. A correlation equation is concluded to describe the radiation effect. Comparison of the results with the previous work shows a good agreement.

  14. Limits Imposed on Heat Produced during Core Formation by Radiative Transfer Processes and Thermodynamic Laws

    Science.gov (United States)

    Criss, R. E.; Hofmeister, A.

    2010-12-01

    The popular view that Earth is sufficiently hot to still be shedding primordal heat, largely originating in the core, is inconsistent with thermodynamic constraints and recent heat transport studies. Previous work presumes that the large difference in gravitational potential energy (Ug) between a fictious, homogeneous reference state and Earth’s current layered configuration of metallic core and rocky mantle was converted to frictional heat during core formation, greatly increasing temperature (T) inside the Earth. However, heating (ΔT >0) was deduced by assuming that Ug is positive, which is inconsistent with Newton’s law of gravitation. Use of an erroneous sign for ΔUg has prevented recognition that the process is an exothermic transformation. Thermodynamic principles were not considered in previous analyses: neglecting the effect of the change in configuration on entropy and energy contributes greatly to the view that heat is retained. Instead, stringent limits are set on the permissible temperature increase by the rapid rate of ballistic radiative transfer, a process associated with transient events, as well as by the 1st and 2nd laws of thermodynamics. In the static, instantaneous model of core formation, configurational entropy (S) of the Earth decreases upon forming the ordered layered state; this entropy decrease is offset by a greater increase in S of the surrounding universe, which can only be accomplished by release of heat to space (the surroundings). Instantaneous dissipation of heat in the static model reasonably approximates radiative processes being superfast. Core formation involves negligible changes in volume and rotational energy, so Helmholtz free energy (=Ug-TS) is conserved, as in atmospheric processes and other graviational-thermodynamic problems. Because S of the universe is immense and heat must flow from hotter to colder bodies, negligible heat from core formation is retained, consistent with the exothermic nature of this transition

  15. GPU-based Monte Carlo dust radiative transfer scheme applied to AGN

    CERN Document Server

    Heymann, Frank

    2012-01-01

    A three dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons (PAH). Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting procedure and at high spatial resolution by a vectorized ray-tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust...

  16. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.

    Science.gov (United States)

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi

    2016-09-01

    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed.

  17. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.

    Science.gov (United States)

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi

    2016-09-01

    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed. PMID:27085689

  18. An efficient algorithm for two-dimensional radiative transfer in axisymmetric circumstellar envelopes and disks

    CERN Document Server

    Dullemond, C P

    2000-01-01

    We present an algorithm for two-dimensional radiative transfer in axisymmetric, circumstellar media. The formal integration of the transfer equation is performed by a generalization of the short characteristics (SC) method to spherical coordinates. Accelerated Lambda Iteration (ALI) and Ng's algorithm are used to converge towards a solution. By taking a logarithmically spaced radial coordinate grid, the method has the natural capability of treating problems that span several decades in radius, in the most extreme case from the stellar radius up to parsec scale. Flux conservation is guaranteed in spherical coordinates by a particular choice of discrete photon directions and a special treatment of nearly-radially outward propagating radiation. The algorithm works well from zero up to very high optical depth, and can be used for a wide variety of transfer problems, including non-LTE line formation, dust continuum transfer and high temperature processes such as compton scattering. In this paper we focus on multip...

  19. Study on radiation heat transfer and natural convection outside passive containment cooling system

    International Nuclear Information System (INIS)

    A 1 : 10 2D model of radiation heat transfer and natural convection outside the 2D steel containment was established in this paper. The advanced computational fluid dynamic analysis software Fluent was applied to complete the calculation. The velocity nephogram and the velocity vector diagram on the head of steel containment were obtained, and the results show that there is an air stagnant zone on the head of steel containment. The influence of channel width, airflow speed and emissivity of wall surface on heat transfer was studied as well. The appropriate channel width and airflow speed can enhance the heat transfer and the efficiency of heat exchange. The increase of the emissivity of wall surface can obviously improve the radiation heat transfer on the head of steel containment. (authors)

  20. Two-dimensional HID light source radiative transfer using discrete ordinates method

    Science.gov (United States)

    Ghrib, Basma; Bouaoun, Mohamed; Elloumi, Hatem

    2016-08-01

    This paper shows the implementation of the Discrete Ordinates Method for handling radiation problems in High Intensity Discharge (HID) lamps. Therefore, we start with presenting this rigorous method for treatment of radiation transfer in a two-dimensional, axisymmetric HID lamp. Furthermore, the finite volume method is used for the spatial discretization of the Radiative Transfer Equation. The atom and electron densities were calculated using temperature profiles established by a 2D semi-implicit finite-element scheme for the solution of conservation equations relative to energy, momentum, and mass. Spectral intensities as a function of position and direction are first calculated, and then axial and radial radiative fluxes are evaluated as well as the net emission coefficient. The results are given for a HID mercury lamp on a line-by-line basis. A particular attention is paid on the 253.7 nm resonance and 546.1 nm green lines.

  1. Study of natural energy system and downward atmospheric radiation. Part 1. Outline on measurement and result on downward atmospheric radiation; Shizen energy system to tenku hosharyo no kansoku kenkyu. 1. Kisho kansoku gaiyo to tenku hosharyo no kansoku kekka

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, K. [Kogakuin University, Tokyo (Japan); Masuoka, Y. [Yokogawa Architects and Engineers, Inc., Tokyo (Japan)

    1996-10-27

    For the study of a natural energy system taking advantage of radiation cooling, a simplified method for estimating downward atmospheric radiation quantities was examined, using observation records supplied from Hachioji City, Aerological Observatory in Tsukuba City, and four other locations. Downward atmospheric radiation quantities are closely related to partial vapor pressure in the atmosphere. Because partial vapor pressure changes according to the season, it was classified into two, for summer and for winter, and was referred to downward atmospheric radiation quantities for the establishment of their correlationships. Downward atmospheric radiation quantities were predicted on the basis of meteorological factors such as partial vapor pressure and free air temperature. Accuracy was examined of the simplified estimation equation for downward atmospheric radiation that had been proposed. A multiple regression analysis was carried out for calculating constants for the estimation equation, using partial vapor pressure, Stefan-Boltzmann constant, and free air dry-bulb absolute temperature, all closely correlated with atmospheric downward radiation quantities. Accuracy improved by time-based classification. At night, use of SAT (equivalent free air temperature) produced more accurate estimation. Though dependent upon local characteristics of the observation spot, the estimation equation works effectively. 10 refs., 10 figs., 3 tabs.

  2. Multigroup Approximation of Radiation Transfer in SF6 Arc Plasmas

    Directory of Open Access Journals (Sweden)

    Milada Bartlova

    2013-01-01

    Full Text Available The first order of the method of spherical harmonics (P1-approximation has been used to evaluate the radiation properties of arc plasmas of various mixtures of SF6 and PTFE ((C2F4n, polytetrafluoroethylene in the temperature range (1000 ÷ 35 000 K and pressures from 0.5 to 5 MPa. Calculations have been performed for isothermal cylindrical plasma of various radii (0.01 ÷ 10 cm. The frequency dependence of the absorption coefficients has been handled using the Planck and Rosseland averaging methods for several frequency intervals. Results obtained using various means calculated for different choices of frequency intervals are discussed.

  3. Atmospheres and radiating surfaces of neutron stars with strong magnetic fields

    CERN Document Server

    Potekhin, A Y; Chabrier, G

    2016-01-01

    We review the current status of the theory of thermal emission from the surface layers of neutron stars with strong magnetic fields $B\\sim 10^{10}-10^{15}$ G, including formation of the spectrum in a partially ionized atmosphere and at a condensed surface. In particular, we describe recent progress in modeling partially ionized atmospheres of central compact objects in supernova remnants, which may have moderately strong fields $B\\sim 10^{10}-10^{11}$ G. Special attention is given to polarization of thermal radiation emitted by a neutron star surface. Finally, we briefly describe applications of the theory to observations of thermally emitting isolated neutron stars.

  4. Review of relative biological effectiveness dependence on linear energy transfer for low-LET radiations

    International Nuclear Information System (INIS)

    Information on Japanese A-bomb survivors exposed to gamma radiation has been used to estimate cancer risks for the whole range of photon (x-rays) and electron energies which are commonly encountered by radiation workers in the work place or by patients and workers in diagnostic radiology. However, there is some uncertainty regarding the radiation effectiveness of various low-linear energy transfer (low-LET) radiations (x-rays, gamma radiation and electrons). In this paper we review information on the effectiveness of low-LET radiations on the basis of epidemiological and in vitro radiobiological studies. Data from various experimental studies for chromosome aberrations and cell transformation in human lymphocytes and from epidemiological studies of the Japanese A-bomb survivors, patients medically exposed to radiation for diagnostic and therapeutic procedures, and occupational exposures of nuclear workers are considered. On the basis of in vitro cellular radiobiology, there is considerable evidence that the relative biological effectiveness (RBE) of high-energy low-LET radiation (gamma radiation, electrons) is less than that of low-energy low-LET radiation (x-rays, betas). This is a factor of about 3 to 4 for 29 kVp x-rays (e.g. as in diagnostic radiation exposures of the female breast) and for tritium beta-rays (encountered in parts of the nuclear industry) relative to Co-60 gamma radiation and 2-5 MeV gamma-rays (as received by the Japanese A-bomb survivors). In epidemiological studies, although for thyroid and breast cancer there appears to be a small tendency for the excess relative risks to decrease as the radiation energy increases for low-LET radiations, it is not statistically feasible to draw any conclusion regarding an underlying dependence of cancer risk on LET for the nominally low-LET radiations. (review)

  5. Long-term global distribution of earth’s shortwave radiation budget at the top of atmosphere

    Directory of Open Access Journals (Sweden)

    N. Hatzianastassiou

    2004-05-01

    Full Text Available The mean monthly shortwave (SW radiation budget at the top of atmosphere (TOA was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2 supplemented by data from the National Centers for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE S4 scanner satellite data (1985–1989. The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR by 0.93 Wm−2 (or by 0.92%, within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm−2, with ±5 Wm−2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm−2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm−2 and 0.6% over the 14-year period (from January 1984 to December 1997, indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S–20° N, with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm−2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative

  6. Plant architecture, growth and radiative transfer for terrestrial and space environments

    Science.gov (United States)

    Norman, John M.; Goel, Narendra S.

    1993-01-01

    The overall objective of this research was to develop a hardware implemented model that would incorporate realistic and dynamic descriptions of canopy architecture in physiologically based models of plant growth and functioning, with an emphasis on radiative transfer while accommodating other environmental constraints. The general approach has five parts: a realistic mathematical treatment of canopy architecture, a methodology for combining this general canopy architectural description with a general radiative transfer model, the inclusion of physiological and environmental aspects of plant growth, inclusion of plant phenology, and integration.

  7. Spectral and refractive effects in non-stationary radiative transfer: a theoretical study in dense media

    Energy Technology Data Exchange (ETDEWEB)

    Fumeron, S. [Departement des Sciences Appliquees, Groupe de Recherche en Ingenierie des Procedes et Systemes, Universite du Quebec a Chicoutimi, P4-3240, CURAL, Chicoutimi, 555 Boulevard de l' Universite, Chicoutimi, Quebec, G7H 2B1 (Canada); Charette, A. [Departement des Sciences Appliquees, Groupe de Recherche en Ingenierie des Procedes et Systemes, Universite du Quebec a Chicoutimi, P4-3240, CURAL, Chicoutimi, 555 Boulevard de l' Universite, Chicoutimi, Quebec, G7H 2B1 (Canada)]. E-mail: andre_charette@uqac.ca; Ben-Abdallah, P. [Laboratoire de Thermocinetique, UMR CNRS 6607, Ecole Polytechnique, Site de la Chantrerie, 44 306 Nantes cedex (France)

    2005-09-15

    A theoretical study of unsteady radiative heat transfer inside refractive heterogeneous participating media is presented. In the approximation of space-time geometrical optics, some new properties for propagating waves are exhibited. Physically, it is shown that the time dependency of refractive index can give rise to an effect of spectral bounce, whereas space dependency is responsible for the existence of confined trajectories for light. Then, the problem of energy transport is studied: from the shape of Clausius Invariant in unsteady processes, the transient radiative transfer equation is built and the existence of amplification effects for specific intensity is presented.

  8. Application of the spectrally integrated Voigt function to line-by-line radiative transfer modelling

    Science.gov (United States)

    Quine, B. M.; Abrarov, S. M.

    2013-09-01

    We show that a new approach based on the spectrally integrated Voigt function (SIVF) enables the computation of line-by-line (LBL) radiative transfer at reduced spectral resolution without loss of accuracy. The algorithm provides rapid and accurate computation of area under the Voigt function in a way that preserves spectral radiance and, consequently, radiant intensity. The error analysis we provide shows the high-accuracy of the proposed SIVF approximations. A comparison of the performance of the method with that of the traditional LBL approach is presented. Motivations for the use and advantage of the SIVF as a replacement for conventional line function computations in radiative transfer are discussed.

  9. Efficient application of the spectrally integrated Voigt function to radiative transfer spectroscopy

    Science.gov (United States)

    Abrarov, Sanjar

    We present a new application of the spectrally integrated Voigt function (SIVF) to the radiative transfer spectroscopy that enables computation of the spectral radiance and radiance at reduced spectral resolution. Applying a technique based on the Fourier expansion of the exponential multiplier we obtain the series approximations providing high-accuracy and rapid SIVF computation. In contrast to traditional line-by-line (LBL) radiative transfer models, the proposed SIVF algorithm prevents underestimation in the absorption coefficients and, therefore, preserves the radiant energy. LBL sample computations utilizing SIVF algorithm show the advantages of the proposed methodology in terms of the accuracy and computational speed.

  10. A new ray-tracing scheme for 3D diffuse radiation transfer on highly parallel architectures

    OpenAIRE

    Tanaka, Satoshi; Yoshikawa, Kohji; Okamoto, Takashi; HASEGAWA, Kenji

    2014-01-01

    We present a new numerical scheme to solve the transfer of diffuse radiation on three-dimensional mesh grids which is efficient on processors with highly parallel architecture such as recently popular GPUs and CPUs with multi- and many-core architectures. The scheme is based on the ray-tracing method and the computational cost is proportional to $N_{\\rm m}^{5/3}$ where $N_{\\rm m}$ is the number of mesh grids, and is devised to compute the radiation transfer along each light-ray completely in ...

  11. Finite element analysis for radiative heat transfer in multidimensional participating media

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A finite element model is developed to simulate the radiative transfer in 2D and 3D complex-geometric enclosure filled with absorbing and scattering media. This model is based on the discrete ordinates method and finite element theory. The finite element formulations and detailed steps of numerical calculation are given.The discrepancy of the results produced by different space and solid angle discretization is also investigated and compared. The effect of the six-node quadric element on the accuracy is analyzed by a 2D rectangular enclosure. These results indicate that the present model can simulate radiative transfer in multidimensional complexgeometric enclosure with participating media effectively and accurately.

  12. Radio galaxies radiation transfer, dynamics, stability and evolution of a synchrotron plasmon

    CERN Document Server

    Pacholczyk, A G

    1977-01-01

    Radio Galaxies: Radiation Transfer, Dynamics, Stability and Evolution of a Synchrotron Plasmon deals with the physics of a region in space containing magnetic field and thermal and relativistic particles (a plasmon). The synchrotron emission and absorption of this region are discussed, along with the properties of its spectrum; its linear and circular polarization; transfer of radiation through such a region; its dynamics and expansion; and interaction with external medium.Comprised of eight chapters, this volume explores the stability, turbulence, and acceleration of particles in a synchrotro

  13. Near-Field Radiative Heat Transfer between Metamaterials coated with Silicon Carbide Film

    OpenAIRE

    Basu, Soumyadipta; Yang, Yue; Wang, Liping

    2014-01-01

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC.By careful tuning of the optical properties of metamaterial it is possible to excite electrical and magnetic resonance for the meta...

  14. Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar; Qasim, Muhammad [Dept. of Mathematics, Quaid-i-Azam Univ., Islamabad (Pakistan); Abbas, Zaheer [Dept. of Mathematics, FBAS, International Islamic Univ., Islamabad (Pakistan)

    2010-03-15

    This investigation deals with the influence of radiation on magnetohydrodynamic (MHD) and mass transfer flow over a porous stretching sheet. Attention has been particularly focused to the unsteadiness. The arising problems of velocity, temperature, and concentration fields are solved by a powerful analytic approach, namely, the homotopy analysis method (HAM). Velocity, temperature, and concentration fields are sketched for various embedded parameters and interpreted. Computations of skin friction coefficients, local Nusselt number, and mass transfer are developed and examined. (orig.)

  15. An early warning indicator for atmospheric blocking events using transfer operators

    CERN Document Server

    Tantet, Alexis; Dijkstra, Henk A

    2015-01-01

    The existence of persistent midlatitude atmospheric flow regimes with time-scales larger than 5-10 days and indications of preferred transitions between them motivates to develop early warning indicators for such regime transitions. In this paper, we use a hemispheric barotropic model together with estimates of transfer operators on a reduced phase space to develop an early warning indicator of the zonal to blocked flow transition in this model. It is shown that, the spectrum of the transfer operators can be used to study the slow dynamics of the flow as well as the non-Markovian character of the reduction. The slowest motions are thereby found to have time scales of three to six weeks and to be associated with meta-stable regimes (and their transitions) which can be detected as almost-invariant sets of the transfer operator. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths. Even though the model is highly simplified,...

  16. Model atmospheres and radiation of magnetic neutron stars: Anisotropic thermal emission

    Science.gov (United States)

    Pavlov, G. G.; Shibanov, Yu. A.; Ventura, J.; Zavlin, V. E.

    1994-01-01

    We investigate the anisotropy of the thermal radiation emitted by a surface element of a neutron star atmosphere (e.g., by a polar cap of a radio pulsar). Angular dependences of the partial fluxes at various photon energies, and spectra at various angles are obtained for different values of the effective temperature T(sub eff) and magnetic field strength B, and for different directions of the magnetic field. It is shown that the local radiation of the magnetized neutron star atmospheres is highly anisotropic, with the maximum flux emitted in the magnetic field direction. At high B the angular dependences in the soft X-ray range have two maxima, a high narrow peak along B and a lower and broader maximum at intermediate angles. The radiation is strongly polarized, the modulation of the degree of polarization due to the rotation of the neurtron star may be much higher than that for the radiative flux. The results obtained are compared with recent ROSAT observations of the thermal-like radiation from the radio pulsars PSR 1929+10 and PSR J0437-4715.

  17. Influence of complex component and particle polydispersity on radiative properties of soot aggregate in atmosphere

    International Nuclear Information System (INIS)

    The effects of morphological structure, water coating, dust mixing and primary particle size distribution on the radiative properties of soot fractal aggregates in atmosphere are investigated using T-matrix method. These fractal aggregates are numerically generated using a combination of the particle-cluster and cluster-cluster aggregation algorithms with fractal parameters representing soot aggregate in atmosphere. The radiative properties of compact aggregate notably deviate from that of the branched one, and the effect of morphology changes on the radiative properties in wet air cannot be neglected. However it is reasonable to use realization-averaged radiative properties to represent that of the aggregates with certain morphology. In wet air, the scattering, absorption and extinction cross-section and symmetry parameter of soot aggregates coated with water notably increase with water shell thickness. The mixing structures of dust have little effect on radiative properties of aggregates, but the volume fraction of dust has an obvious effect on extinction, scattering and absorption cross-section of aggregates when the size parameters are above the Rayleigh limit. Although the primary particle size distribution of soot aggregate has mild effect on the scattering albedo and asymmetry parameter, the deviations of the extinction, scattering, absorption cross-section among the three size distributions are significant in this study. The size distribution has a significant effect on forward scattering of phase function, while the effect can be neglected as the size parameter approaches to the Rayleigh limit.

  18. A new hybrid algorithm for solving transient combined conduction radiation heat transfer problems

    OpenAIRE

    Chaabane Raoudha; Askri Faouzi; Nasrallah Ben Sassi

    2011-01-01

    A new algorithm based on the lattice Boltzmann method (LBM) and the Control Volume Finite Element Method (CVFEM) is proposed as an hybrid solver for two dimensional transient conduction and radiation heat transfer problems in an optically emitting, absorbing and scattering medium. The LBM was used to solve the energy equation and the CVFEM was used to compute the radiative information. The advantages of the proposed methodology is to avoid problems that confronted when previous techniqu...

  19. Radiation Effects on the Flow and Heat Transfer over a Moving Plate in a Parallel Stream

    Institute of Scientific and Technical Information of China (English)

    Anuar Ishak

    2009-01-01

    Effects of thermal radiation on the steady laminar boundary layer flow over a moving plate in a moving fluid is investigated. Under certain conditions,the present problem reduces to the classical Blasius and Sakiadis problems.It is found that dual solutions exist when the plate and the fluid move in the opposite directions.Moreover,the existence of thermal radiation is to reduce the heat transfer rate at the surface.

  20. Solutions of a benchmark problem for radiative transfer applicable to laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Salter, J.M.; Lee, R.W.; Yobs, L.A.

    1988-02-01

    A description of a schematic, multi-ion stage, argon atom in a uniform temperature and density slab is presented. The level population of ion stages and the radiation field are calculated self-consistently using a number of radiative transfer techniques. The results are presented to provide a first step in generating a series of benchmarks for multistage ion problems relevant to laboratory plasmas.

  1. Observation of hard radiations in a laboratory atmospheric high-voltage discharge

    CERN Document Server

    Agafonov, A V; Chubenko, A P; Oginov, A V; Rodionov, A A; Rusetskiy, A S; Ryabov, V A; Shepetov, A L; Shpakov, K V

    2016-01-01

    The new results concerning neutron emission detection from a laboratory high-voltage discharge in the air are presented. Data were obtained with a combination of plastic scintillation detectors and $^3$He filled counters of thermal neutrons. Strong dependence of the hard x-ray and neutron radiation appearance on the field strength near electrodes, which is determined by their form, was found. We have revealed a more sophisticated temporal structure of the neutron bursts observed during of electric discharge. This may indicate different mechanisms for generating penetrating radiation at the time formation and development of the atmospheric discharge.

  2. Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, M.; Lauritzen, B.; Madsen, H.;

    2004-01-01

    A Kalman filter method using off-site radiation monitoring data is proposed as a tool for on-line estimation of the source term for short-range atmospheric dispersion of radioactive materials. The method is based on the Gaussian plume model, in which the plume parameters including the source term...... exhibit a ‘random walk’ process. The embedded parameters of the Kalman filter are determined through maximum-likelihood estimation making the filter essentially free of external parameters. The method is tested using both real and simulated radiation monitoring data. For simulated data, the method...

  3. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N.Y. [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N.A. [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I.V.; Bushnev, S.V.; Kondranin, T.V. [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1995-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  4. Prevention of radiation induced xerostomia by surgical transfer of submandibular salivary gland into the submental space

    International Nuclear Information System (INIS)

    Background and purpose: Xerostomia is a significant morbidity of radiation treatment in the management of head and neck cancers. We hypothesized that the surgical transfer of one submandibular salivary gland to the submental space, where it can be shielded from radiation treatment (XRT), would prevent xerostomia. Materials and methods: We conducted a prospective Phase II clinical trial and the patients were followed clinically with salivary flow studies and the University of Washington Quality of Life questionnaire. Results: We report the results on 76 evaluable patients. The salivary gland transfer was done in 60 patients. Nine patients (of 60) did not have postoperative XRT and in eight patients (of 60) the transferred gland was not shielded from XRT due to proximity of disease. The median follow up is 14 months. Of the 43 patients with the salivary gland transfer and post-operative XRT with protection of the transferred gland, 81% have none or minimal xerostomia, and 19% developed moderate to severe xerostomia. Three patients (6.9%) developed local recurrence, five patients (11.6%) developed distant metastases and five patients (11.6%) have died. There were no complications attributed to the surgical procedure. Conclusion: Surgical transfer of a submandibular salivary gland to the submental space preserves its function and prevents the development of radiation induced xerostomia

  5. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115)

    Science.gov (United States)

    Totterdill, Anna; Kovács, Tamás; Feng, Wuhu; Dhomse, Sandip; Smith, Christopher J.; Gómez-Martín, Juan Carlos; Chipperfield, Martyn P.; Forster, Piers M.; Plane, John M. C.

    2016-09-01

    Fluorinated compounds such as NF3 and C2F5Cl (CFC-115) are characterised by very large global warming potentials (GWPs), which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry-climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21) years and (492 ± 22) years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

  6. Three-dimensional radiation transfer modeling in a dicotyledon leaf

    Science.gov (United States)

    Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.

    1996-11-01

    The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.

  7. Technology transfer on radiation processing of natural polymer in Japan

    International Nuclear Information System (INIS)

    Carboxymethyl cellulose (CMC) crosslinked at paste-like condition forms hydrogel. The hydrogel was applied as a coolant to keep flesh of vegetables and fish at low temperature. Shochu (Japanese liquor of 25% alcohol content) residue produced by fermentation of rice and sweet potato was rapidly converted to animal feed by water absorption of CMC dry gel. Poly(lactic acid) crosslinked by irradiation in the presence of triallyl isocyanurate, TAIC was soaked in plasticizer to give softness. A maximum of 60 wt% plasticizer was incorporated in PLA resin and flexible PLA sheet was obtained. Growth of flowers was accelerated when sprayed with radiation degraded alginate shipment schedule of the flowers was advanced to one week. (author)

  8. Using Observations of Deep Convective Systems to Constrain Atmospheric Column Absorption of Solar Radiation in the Optically Thick Limit

    Science.gov (United States)

    Dong, Xiquan; Wielicki, Bruce A.; Xi, Baike; Hu, Yongxiang; Mace, Gerald G.; Benson, Sally; Rose, Fred; Kato, Seiji; Charlock, Thomas; Minnis, Patrick

    2008-01-01

    Atmospheric column absorption of solar radiation A(sub col) is a fundamental part of the Earth's energy cycle but is an extremely difficult quantity to measure directly. To investigate A(sub col), we have collocated satellite-surface observations for the optically thick Deep Convective Systems (DCS) at the Department of Energy Atmosphere Radiation Measurement (ARM) Tropical Western Pacific (TWP) and Southern Great Plains (SGP) sites during the period of March 2000 December 2004. The surface data were averaged over a 2-h interval centered at the time of the satellite overpass, and the satellite data were averaged within a 1 deg X 1 deg area centered on the ARM sites. In the DCS, cloud particle size is important for top-of-atmosphere (TOA) albedo and A(sub col) although the surface absorption is independent of cloud particle size. In this study, we find that the A(sub col) in the tropics is approximately 0.011 more than that in the middle latitudes. This difference, however, disappears, i.e., the A(sub col) values at both regions converge to the same value (approximately 0.27 of the total incoming solar radiation) in the optically thick limit (tau greater than 80). Comparing the observations with the NASA Langley modified Fu_Liou 2-stream radiative transfer model for optically thick cases, the difference between observed and model-calculated surface absorption, on average, is less than 0.01, but the model-calculated TOA albedo and A(sub col) differ by 0.01 to 0.04, depending primarily on the cloud particle size observation used. The model versus observation discrepancies found are smaller than many previous studies and are just within the estimated error bounds. We did not find evidence for a large cloud absorption anomaly for the optically thick limit of extensive ice cloud layers. A more modest cloud absorption difference of 0.01 to 0.04 cannot yet be ruled out. The remaining uncertainty could be reduced with additional cases, and by reducing the current

  9. Oxidation Effect on Pool Boiling Heat Transfer in Atmospheric Saturated Water

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hong Hyun; Jeong, Uiju; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of)

    2014-10-15

    During the hypothesized severe accidents, however, the modified nature of the oxidized outer surface of RPV may act as a significant heat transfer variable to achieve In-Vessel Retention through External Reactor Vessel Cooling (IVR-ERVC) strategy, which is the one of important mitigation strategies of severe accident to delay occurrence of critical heat flux (CHF). As well understood, the CHF is mainly affected by the two distinctive conditions classified to thermal hydraulic behavior of fluid system and surface characteristics. In this regard, a CHF test considering oxidation effect on the pool boiling heat transfer of the RPV outer surface has been proposed to evaluate realistic thermal margin of IVR-ERVC strategy. In this study, pool boiling heat transfer experiment was conducted under the condition of atmospheric saturated water. Oxidized surface characteristics were quantitatively evaluated with measurement of contact angle and roughness. In this study, oxide layer formation on the heated surface was investigated and experimentally simulated to find out its effect on the pool boiling CHF. Several SS316L substrates were oxidized in the corrosive environment under the condition of high temperature with different oxidation periods. Local pitting corrosion was observed on the heating surface in 5 days of short-term oxidation but a fully oxidized surface with somewhat uniform thickness, 1. Pool boiling heat transfer tests with the bare and oxidized heaters were conducted and major findings are summarized as follows: 1. Wettability in terms of the receding angle of the oxidized surface is enhanced regardless of the oxidation period. 2. Average roughness between the oxidized surfaces is almost the same in the range of nano-scale. 3. Effect of wettability and surface roughness on the CHF was negligible in the locally oxidized surface, which may be attributed to the presence of the disconnected porous channel. Unlike the local oxidation, fully oxidized surface shows

  10. Natural element method for radiative heat transfer in a semitransparent medium with irregular geometries

    Science.gov (United States)

    Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2013-05-01

    This paper develops a numerical solution to the radiative heat transfer problem coupled with conduction in an absorbing, emitting and isotropically scattering medium with the irregular geometries using the natural element method (NEM). The walls of the enclosures, having temperature and mixed boundary conditions, are considered to be opaque, diffuse as well as gray. The NEM as a meshless method is a new numerical scheme in the field of computational mechanics. Different from most of other meshless methods such as element-free Galerkin method or those based on radial basis functions, the shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The natural element solutions in dealing with the coupled heat transfer problem for the mixed boundary conditions have been validated by comparison with those from Monte Carlo method (MCM) generated by the authors. For the validation of the NEM solution to radiative heat transfer in the semicircular medium with an inner circle, the results by NEM have been compared with those reported in the literatures. For pure radiative transfer, the upwind scheme is employed to overcome the oscillatory behavior of the solutions in some conditions. The steady state and transient heat transfer problem combined with radiation and conduction in the semicircular enclosure with an inner circle are studied. Effects of various parameters such as the extinction coefficient, the scattering albedo, the conduction-radiation parameter and the boundary emissivity are analyzed on the radiative and conductive heat fluxes and transient temperature distributions.

  11. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  12. Can Top-of-Atmosphere Radiation Measurements Constrain Climate Predictions? Part I: Tuning

    OpenAIRE

    Simon F. B. Tett; Mineter, Michael J.; Cartis, Coralia; Rowlands, Daniel J.; Liu, Ping

    2013-01-01

    Perturbed physics configurations of version 3 of the Hadley Centre Atmosphere Model (HadAM3) driven with observed sea surface temperatures (SST) and sea ice were tuned to outgoing radiation observations using a Gauss-Newton line search optimization algorithm to adjust the model parameters. Four key parameters that previous research found affected climate sensitivity were adjusted to several different target values including two sets of observations. The observations used were the global avera...

  13. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Svendby, T.M.; Myhre, C.L.; Stebel, K.; Edvardsen, K; Orsolini, Y.; Dahlback, A.

    2012-07-01

    This is an annual report describing the activities and main results of the monitoring programme: Monitoring of the atmospheric ozone layer and natural ultraviolet radiation for 2011. 2011 was a year with generally low ozone values above Norway. A clear decrease in the ozone layer above Norway during the period 1979-1997 stopped after 1998 and the ozone layer above Norway seems now to have stabilized.(Author)

  14. Atmospheric propagation of high power laser radiation at different weather conditions

    OpenAIRE

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-01-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long fr...

  15. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes

    Science.gov (United States)

    Ngo, N. H.; Lisak, D.; Tran, H.; Hartmann, J.-M.

    2013-11-01

    We demonstrate that a previously proposed model opens the route for the inclusion of refined non-Voigt profiles in spectroscopic databases and atmospheric radiative transfer codes. Indeed, this model fulfills many essential requirements: (i) it takes both velocity changes and the speed dependences of the pressure-broadening and -shifting coefficients into account. (ii) It leads to accurate descriptions of the line shapes of very different molecular systems. Tests made for pure H2, CO2 and O2 and for H2O diluted in N2 show that residuals are down to ≃0.2% of the peak absorption, (except for the untypical system of H2 where a maximum residual of ±3% is reached), thus fulfilling the precision requirements of the most demanding remote sensing experiments. (iii) It is based on a limited set of parameters for each absorption line that have known dependences on pressure and can thus be stored in databases. (iv) Its calculation requires very reasonable computer costs, only a few times higher than that of a usual Voigt profile. Its inclusion in radiative transfer codes will thus induce bearable CPU time increases. (v) It can be extended in order to take line-mixing effects into account, at least within the so-called first-order approximation.

  16. Stratospheric trace gases from SCIAMACHY limb measurements using 3D full spherical Monte Carlo radiative transfer model Tracy-II

    Energy Technology Data Exchange (ETDEWEB)

    Pukite, Janis [Max- Planck-Institut fuer Chemie, Mainz (Germany); Institute of Atomic Physics and Spectroscopy, University of Latvia (Latvia); Kuehl, Sven; Wagner, Thomas [Max- Planck-Institut fuer Chemie, Mainz (Germany); Deutschmann, Tim; Platt, Ulrich [Institut fuer Umweltphysik, University of Heidelberg (Germany)

    2007-07-01

    A two step method for the retrieval of stratospheric trace gases (NO{sub 2}, BrO, OClO) from SCIAMACHY limb observations in the UV/VIS spectral region is presented: First, DOAS is applied on the spectra, yielding slant column densities (SCDs) of the respective trace gases. Second, the SCDs are converted into vertical concentration profiles applying radiative transfer modeling. The Monte Carlo method benefits from conceptual simplicity and allows realizing the concept of full spherical geometry of the atmosphere and also its 3D properties, which are important for a realistic description of the limb geometry. The implementation of a 3D box air mass factor concept allows accounting for horizontal gradients of trace gases. An important point is the effect of horizontal gradients on the profile inversion. This is of special interest in Polar Regions, where the Sun elevation is typically low and photochemistry can highly vary along the long absorption paths. We investigate the influence of horizontal gradients by applying 3-dimensional radiative transfer modelling.

  17. Radiation Heat Transfer in Particle-Laden Gaseous Flame: Flame Acceleration and Triggering Detonation

    OpenAIRE

    Liberman, M. A.; Ivanov, M. F.; Kiverin, A. D.

    2015-01-01

    In this study we examine influence of the radiation heat transfer on the combustion regimes in the mixture, formed by suspension of fine inert particles in hydrogen gas. The gaseous phase is assumed to be transparent for the thermal radiation, while the radiant heat absorbed by the particles is then lost by conduction to the surrounding gas. The particles and gas ahead of the flame is assumed to be heated by radiation from the original flame. It is shown that the maximum temperature increase ...

  18. Transfer of Fe:ZnSe laser radiation by hollow waveguide

    International Nuclear Information System (INIS)

    A special type of cyclic olefin polymer coated silver hollow glass waveguide with 700 μm inner diameter was utilized for original transfer of mid-infrared Fe:ZnSe laser radiation generating at 4.45 μm. This laser system was pumped by electro-optically Q-switched 2.94 μm Er:YAG laser radiation. For 1.1 mJ Fe:ZnSe laser energy with pulse duration 300 ns, the waveguide transmission of 4.45 μm radiation reached up to 64%. Bent waveguide showed the transmission decrease to 60%

  19. Evaluating Direct Radiative Effects of Absorbing Aerosols on Atmospheric Dynamics with Aquaplanet and Regional Model Results

    Science.gov (United States)

    Can, Ö.; Tegen, I.; Quaas, J.

    2015-12-01

    Effects of absorbing aerosol on atmospheric dynamics are usually investigated with help of general circulation models or also regional models that represent the atmospheric system as realistic as possible. Reducing the complexity of models used to study the effects of absorbing aerosol on atmospheric dynamics helps to understand underlying mechanisms. In this study, by using ECHAM6 General Circulation Model (GCM) in an Aquaplanet setting and using simplified aerosol climatology, an initial idealization step has been taken. The analysis only considers direct radiative effects, furthering the reduction of complex model results. The simulations include cases including aerosol radiative forcing, no aerosol forcing, coarse mode aerosol forcing only (as approximation for mineral dust forcing) and forcing with increased aerosol absorption. The results showed that increased absorption affects cloud cover mainly in subtropics. Hadley circulation is found to be weakened in the increased absorption case. To compare the results of the idealized model with a more realistic model setting, the results of the regional model COSMO-MUSCAT that includes interactive mineral dust aerosol and considers the effects of dust radiative forcing are also analyzed. The regional model computes the atmospheric circulation for the year 2007 twice, including the feedback of dust and excluding the dust aerosol forcing. It is investigated to which extent the atmospheric response to the dust forcing agrees with the simplified Aquaplanet results. As expected, in the regional model mineral dust causes an increase in the temperature right above the dust layer while reducing the temperature close to the surface. In both models the presence of aerosol forcing leads to increased specific humidity, close to ITCZ. Notwithstanding the difference magnitudes, comparisons of the global aquaplanet and the regional model showed similar patterns. Further detailed comparisons will be presented.

  20. Exposure to the atmospheric ionizing radiation environment: studies on Icelandic and Italian civilian aviation flight personnel

    Science.gov (United States)

    de Angelis, G.; Caldora, M.; Santaquilani, M.; Scipione, R.; Verdecchia, A.; Rafnsson, V.; Hrafnkelsson, J.; Sulem, P.; Gudjonsdottir, A. J.

    The largest source of data on human exposure to low dose rate radiation may be airline flight personnel, if enrolled for studies on health effects induced by the cosmic-ray-generated atmospheric ionizing radiation, whose total dose, increasing over the years, may cause delayed radiation-induced health effects, with the high-LET and highly ionizing neutron component typical of atmospheric radiation. With regards to this, the Italian civilian airline flight personnel have been studied by analyzing the atmospheric ionizing radiation exposure and associated effects. The study population includes all Italian civilian airline flight personnel, both cockpit and cabin crewmembers, whose work history records and actual flights (route, aircraft type, and date for each individual flight for each person where possible) were available. The dose calculations were performed along specific flight legs, taking into account the actual flight profiles for all different routes and the variations with time of solar and geomagnetic parameters, in order to take into account the whole atmospheric neutron spectrum. Dose values for each flight are applied to the flight history of study participants in order to estimate the individual annual and lifetime occupational radiation dose. Following the same protocols for both cohorts in terms of dose evaluation, a comparative study has been performed between the radiation exposure patterns of the Icelandic and the Italian civilian aviation flight personnel. These two populations represent two extremes within the group of worldwide airline personnel. The Icelandic crewmembers, like only in the world their Canadian colleagues, always fly over or very close to the geomagnetic pole, and are this way exposed to high doses within each flight leg, whereas the Italian crewmembers, apart from transatlantic flights, are always flying close to the geomagnetic equator or anyhow quite far from the geomagnetic pole, receiving a small dose rates for each flight