WorldWideScience

Sample records for atmospheric pb emissions

  1. External costs of atmospheric Pb emissions: valuation of neurotoxic impacts due to inhalation

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Thomsen, Marianne; Frohn, Lise;

    2010-01-01

    The Impact Pathway Approach (IPA) is an innovative methodology to establish links between emissions, related impacts and monetary estimates. Only few attempts have so far been presented regarding emissions of metals; in this study the external costs of airborne lead (Pb) emissions are assessed...... using the IPA. Exposure to Pb is known to provoke impacts especially on children's cognition. As cognitive abilities (measured as IQ, intelligence quotient) are known to have implications for lifetime income, a pathway can be established leading from figures for Pb emissions to the implied loss in...... earnings, and on this basis damage costs per unit of Pb emission can be assessed....

  2. External costs of atmospheric Pb emissions: valuation of neurotoxic impacts due to inhalation

    Directory of Open Access Journals (Sweden)

    Frohn Lise

    2010-02-01

    Full Text Available Abstract Background The Impact Pathway Approach (IPA is an innovative methodology to establish links between emissions, related impacts and monetary estimates. Only few attempts have so far been presented regarding emissions of metals; in this study the external costs of airborne lead (Pb emissions are assessed using the IPA. Exposure to Pb is known to provoke impacts especially on children's cognition. As cognitive abilities (measured as IQ, intelligence quotient are known to have implications for lifetime income, a pathway can be established leading from figures for Pb emissions to the implied loss in earnings, and on this basis damage costs per unit of Pb emission can be assessed. Methods Different types of models are here linked. It is relatively straightforward to establish the relationship between Pb emissions and consequent increase in air-Pb concentration, by means of a Gaussian plume dispersion model (OML. The exposed population can then be modelled by linking the OML-output to population data nested in geo-referenced grid cells. Less straightforward is to establish the relationship between exposure to air-Pb concentrations and the resulting blood-Pb concentration. Here an Age-Dependent Biokinetic Model (ADBM for Pb is applied. On basis of previous research which established links between increases in blood-Pb concentrations during childhood and resulting IQ-loss we arrive at our results. Results External costs of Pb airborne emissions, even at low doses, in our site are in the range of 41-83 €/kg emitted Pb, depending on the considered meteorological year. This estimate applies only to the initial effects of air-Pb, as our study does not address the effects due to the Pb environmental-accumulation and to the subsequent Pb re-exposure. These are likely to be between one and two orders of magnitude higher. Conclusions Biokinetic modelling is a novel tool not previously included when applying the IPA to explore impacts of Pb emissions

  3. Estimating emission source of lead using 210Pb specific activity (210Pb/Pb) and zinc as tracers in Slovenian forest soils

    International Nuclear Information System (INIS)

    Specific activity of 210Pb (210Pb/Pb) is a good indicator for distinguishing local and remote emission sources of Pb deposited on some forest floors in Slovenia. Another parameter (zinc in soil) gives additional information on possible emission sources and distance of Pb transported from the source. The procedure based on 210Pb activity measurements and non-destructive Pb and Zn determination is rather simple, and not necessary any chemical pre-treatments with strong acids. The soils investigated in this study were collected from several temperate forest sites (Zirovski Vrh, Idrija, Kocevski Rog, Pohorje, Gorisnica, Rakitna, Hotavlje, Otovci, Ptujska gora and Puce) in Slovenia where high level of Pb contamination has been known in some places. Regression analyses of the results suggest an applicability of the proposed procedure for estimating emission sources and atmospheric transportation of Pb. (author)

  4. Deposition of atmospheric 210Pb and total beta activity in Finland

    International Nuclear Information System (INIS)

    The seasonal and regional variation of the atmospheric 210Pb deposition in Finland was studied. The 210Pb activity concentration in precipitation shows a decreasing trend from southeastern Finland north-westwards. An average deposition of 40 Bq/m2 during a 12 months period was observed. The deposition of 210Pb shows a seasonal variation with minimum in spring and maximum in autumn and winter. The specific activity of 210Pb (activity of 210Pb per unit mass of stable lead) in the atmosphere has returned to the level prior to World War II owing to the reduced lead emissions into the atmosphere. (author)

  5. A record of atmospheric Pb-210 deposition in The Netherlands

    NARCIS (Netherlands)

    Beks, J.P.; Eisma, D.; Van Der Plicht, J.

    1998-01-01

    The deposition flux of total atmospheric 210Pb has been measured at two sites in The Netherlands: Texel from 1992 to 1996 and Groningen from 1989 to 1994. With predominant westerly oceanic winds, the annual 210Pb deposition is relatively low as 222Rn, the source for atmospheric 210Pb, is mainly exha

  6. Reconstruction of historical atmospheric Pb using Dutch urban lake sediments: A Pb isotope study

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, N., E-mail: n.walraven@geoconnect.nl [GeoConnect, Meester Dekkerstraat 4, 1901 PV Castricum (Netherlands); Os, B.J.H. van, E-mail: b.vanos@rce.nl [Rijksdienst voor Archeologie, Cultuurlandschap en Monumenten, P.O. Box 1600, 3800 BP Amersfoort (Netherlands); Klaver, G.Th., E-mail: g.klaver@brgm.nl [BRGM, 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2 (France); Middelburg, J.J., E-mail: j.b.m.middelburg@uu.nl [University Utrecht, Faculty of Geosciences, P.O. Box 80021, 3508 TA Utrecht (Netherlands); Davies, G.R., E-mail: g.r.davies@vu.nl [VU University Amsterdam, Faculty of Earth and Life Sciences, Petrology, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2014-06-01

    Lake sediments provide a record of atmospheric Pb deposition and changes in Pb isotope composition. To our knowledge, such an approach has not previously been performed in The Netherlands or linked to national air monitoring data. Results are presented for Pb content and isotope composition of {sup 137}Cs dated lake sediments from 2 Dutch urban lakes. Between 1942 and 2002 A.D. anthropogenic atmospheric Pb deposition rates in the two lakes varied from 12 ± 2 to 69 ± 16 μg cm{sup −2} year{sup −1}. The rise and fall of leaded gasoline is clearly reflected in the reconstructed atmospheric Pb deposition rates. After the ban on leaded gasoline, late 1970s/early 1980s, atmospheric Pb deposition rates decreased rapidly in the two urban lakes and the relative contributions of other anthropogenic Pb sources — incinerator ash (industrial Pb) and coal/galena — increased sharply. Atmospheric Pb deposition rates inferred from the lake record a clear relationship with nearby measured annual mean air Pb concentrations. Based on this relationship it was estimated that air Pb concentrations between 1942 and 2002 A.D. varied between 5 and 293 ng/m{sup 3}. - Highlights: • Sixty years of atmospheric Pb was reconstructed using urban lake sediments. • Stable Pb isotopes were applied to determine Pb sources in urban lakes. • The rise and fall of leaded gasoline is clearly reflected in the lake sediments. • Other dominant anthropogenic Pb sources are incinerator ash and coal/galena. • The lake Pb record shows a clear relationship with measured air Pb concentrations.

  7. Reconstruction of historical atmospheric Pb using Dutch urban lake sediments: A Pb isotope study

    International Nuclear Information System (INIS)

    Lake sediments provide a record of atmospheric Pb deposition and changes in Pb isotope composition. To our knowledge, such an approach has not previously been performed in The Netherlands or linked to national air monitoring data. Results are presented for Pb content and isotope composition of 137Cs dated lake sediments from 2 Dutch urban lakes. Between 1942 and 2002 A.D. anthropogenic atmospheric Pb deposition rates in the two lakes varied from 12 ± 2 to 69 ± 16 μg cm−2 year−1. The rise and fall of leaded gasoline is clearly reflected in the reconstructed atmospheric Pb deposition rates. After the ban on leaded gasoline, late 1970s/early 1980s, atmospheric Pb deposition rates decreased rapidly in the two urban lakes and the relative contributions of other anthropogenic Pb sources — incinerator ash (industrial Pb) and coal/galena — increased sharply. Atmospheric Pb deposition rates inferred from the lake record a clear relationship with nearby measured annual mean air Pb concentrations. Based on this relationship it was estimated that air Pb concentrations between 1942 and 2002 A.D. varied between 5 and 293 ng/m3. - Highlights: • Sixty years of atmospheric Pb was reconstructed using urban lake sediments. • Stable Pb isotopes were applied to determine Pb sources in urban lakes. • The rise and fall of leaded gasoline is clearly reflected in the lake sediments. • Other dominant anthropogenic Pb sources are incinerator ash and coal/galena. • The lake Pb record shows a clear relationship with measured air Pb concentrations

  8. Optical spectroscopy of undoped PbWO4 powders with different annealing atmospheres

    International Nuclear Information System (INIS)

    The photoacoustic spectrum, which is performed for the first time, optical reflection, and excitation and emission spectra of undoped PbWO4 powders with different annealing atmospheres were compared and analyzed. The red shifts of the absorption edge and the increased absorption around 425 and 600-800 nm in the vacuum annealed sample with respect to that in the oxygen annealed sample indicate the decrease of the O- centers in the sample. The increase of the blue luminescence in a vacuum annealing atmosphere suggests that annealing under vacuum atmosphere produces PbWO4 crystals with a better light yield

  9. A record of atmospheric 210Pb deposition in The Netherlands

    International Nuclear Information System (INIS)

    The deposition flux of total atmospheric 210Pb has been measured at two sites in The Netherlands: Texel from 1992 to 1996 and Groningen from 1989 to 1994. With predominant westerly oceanic winds, the annual 210Pb deposition is relatively low as 222Rn, the source for atmospheric 210Pb, is mainly exhaled by the continents. The daily fluctuations in 210Pb deposition are determined by the almost random daily fluctuations in precipitation and the concentration in groundlevel air. The variations in annual 210Pb deposition flux appear to be mainly correlated with the number of heavy rains or thunder storms. This explains the variations in annual deposition at short distance. The average 210Pb deposition at Groningen (1987-1994) is 200 mBq m-2 day-1. The 210Pb deposition over the North Sea is estimated to be 115 mBq m-2 day-1 in the same period. The deposition velocity in Groningen is 1.0 cm s-1, which is similar to measurements in Virginia and Connecticut. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Atmospheric transformation of diesel emissions.

    Science.gov (United States)

    Zielinska, Barbara; Samy, Shar; McDonald, Jacob D; Seagrave, JeanClare

    2010-04-01

    The hypothesis of this study was that exposing diesel exhaust (DE*) to the atmosphere transforms its composition and toxicity. Our specific aims were (1) to characterize the gas- and particle-phase products of atmospheric transformations of DE under the influence of daylight, ozone (O3), hydroxyl (OH) radicals, and nitrate (NO3) radicals; and (2) to explore the biologic activity of DE before and after the transformations took place. The study was executed with the aid of the EUPHORE (European Photoreactor) outdoor simulation chamber facility in Valencia, Spain. EUPHORE is one of the largest and best-equipped facilities of its kind in the world, allowing investigation of atmospheric transformation processes under realistic ambient conditions (with dilutions in the range of 1:300). DE was generated on-site using a modern light-duty diesel engine and a dynamometer system equipped with a continuous emission-gas analyzer. The engine (a turbocharged, intercooled model with common-rail direct injection) was obtained from the Ford Motor Company. A first series of experiments was carried out in January 2005 (the winter 2005 campaign), a second in May 2005 (the summer 2005 campaign), and a third in May and June 2006 (the summer 2006 campaign). The diesel fuel that was used closely matched the one currently in use in most of the United States (containing 47 ppm sulfur and 15% aromatic compounds). Our experiments examined the effects on the composition of DE aged in the dark with added NO3 radicals and of DE aged in daylight with added OH radicals both with and without added volatile organic compounds (VOCs). In order to remove excess nitrogen oxides (NO(x)), a NO(x) denuder was devised and used to conduct experiments in realistic low-NO(x) conditions in both summer campaigns. A scanning mobility particle sizer was used to determine the particle size and the number and volume concentrations of particulate matter (PM) in the DE. O3, NO(x), and reactive nitrogen oxides (NO

  11. The biogeochemistry of atmospherically derived Pb in the boreal forest of Sweden

    International Nuclear Information System (INIS)

    The use of stable Pb isotopes for tracing Pb contamination within the environment has strongly increased our understanding of the fate of airborne Pb contaminants within the boreal forest. This paper presents new stable Pb isotope (206Pb/207Pb ratio) measurements of solid soil samples, stream water (from a mire outlet and a stream draining a forest dominated catchment) and components of Picea abies (roots, needles and stemwood), and synthesizes some of the authors' recent findings regarding the biogeochemistry of Pb within the boreal forest. The data clearly indicate that the biogeochemical cycling of Pb in the present-day boreal forest ecosystem is dominated by pollution Pb from atmospheric deposition. The 206Pb/207Pb ratios of the mor layer (O-horizon), forest plants and stream water (mainly between 1.14 and 1.20) are similar to atmospheric Pb pollution (1.14-1.19), while the local geogenic Pb of the mineral soil (C-horizon) has high ratios (>1.30). Roots and basal stemwood of the analyzed forest trees have higher 206Pb/207Pb ratios (1.15-1.30) than needles and apical stemwood (1.14-1.18), which indicate that the latter components are more dominated by pollution derived Pb. The low 206Pb/207Pb ratios of the mor layer suggest that the upward transport of Pb as a result of plant uptake is small (-2 a-1) in comparison to atmospheric inputs (∼0.5 mg m-2 a-1) and annual losses with percolating soil-water (∼2 mg m-2 a-1); consequently, the Pb levels in the mor layer are now decreasing while the pool of Pb in the mineral soil is increasing. Streams draining mires appear more strongly affected by pollution Pb than streams from forested catchments, as indicated by Pb concentrations about three times higher and lower 206Pb/207Pb ratios (1.16 ± 0.01 in comparison to 1.18 ± 0.02). To what extent stream water Pb levels will respond to the build-up of Pb in deeper mineral soil layers remains uncertain

  12. A record of atmospheric 210Pb accumulation in the industrial city

    CERN Document Server

    Buraeva, E A; Stasov, V V; Zorina, L V; Shramenko, B I

    2013-01-01

    The deposition flux of total atmospheric 210Pb in the industrial city Rostov-on-Don, Russia from 2002 to 2010 has been measured. The variations in annual 210Pb deposition flux appear to be mainly correlated with the number of rains and significant amount of anthropogenic 210Pb, polluted into the surface layer of air in the home-heating period. The average 210Pb deposition is 1.75 mBq/m3. Several meteorological parameters which are strongly associated with the fluctuations of concentrations of 210Pb are identified. These results are useful to provide typical information on the atmosphere radioactivity in an industrial city.

  13. Atmospheric transport and deposition of Indonesian volcanic emissions

    Directory of Open Access Journals (Sweden)

    M. A. Pfeffer

    2005-11-01

    Full Text Available A regional climate model study has been performed to investigate the transport and atmospheric loss rates of emissions from Indonesian volcanoes and the sensitivity of these emissions to meteorological conditions and the solubility of the released emissions. Two experiments were conducted: 1 volcanic sulfur released as primarily SO2 and oxidation to SO42− determined by considering the major tropospheric chemical reactions; and 2 PbCl2 released as an infinitely soluble passive tracer. The first experiment was used to calculate SO2 loss rates from each active volcano resulting in an annual mean loss rate for all volcanoes of 1.1×10−5 s−1, or an e-folding rate of approximately 1 day. SO2 loss rate was found to vary seasonally, be poorly correlated with wind speed, and uncorrelated with temperature or relative humidity. The variability of SO2 loss rates is found to be correlated with the variability of wind speeds, suggesting that it is much more difficult to establish a ''typical'' SO2 loss rate for volcanoes that are exposed to inconsistent winds. Within an average distance of 69 km away from the active Indonesian volcanoes, 53% of SO2 is lost due to conversion to SO42−, 42% due to dry deposition, and 5% is lost due to lateral transport away from the dominant direction of plume travel. The solubility of volcanic emissions in water is shown to have a major influence on their atmospheric transport and deposition. High concentrations of PbCl2 are predicted to be deposited near to the volcanoes while volcanic S travels further away until removal from the atmosphere primarily via the wet deposition of H2SO4. The ratio of the concentration of PbCl2 to SO2 is found to exponentially decay at increasing distance from the volcanoes

  14. Atmospheric concentrations and deposition fluxes of 7Be and 210Pb at Rokkasho village, Japan

    International Nuclear Information System (INIS)

    Biweekly atmospheric concentrations and deposition fluxes of 7Be and 210Pb were measured at Rokkasho, Aomori Prefecture, Japan, from March 2000 to March 2006, to clarify their regional features. The atmospheric concentration of 7Be was low in summer and winter and high in spring and fall, and that of 210Pb was low in summer and high in winter. Negative correlations were between the atmospheric 7Be or 210Pb concentrations and precipitation in the sampling periods, and that suggested that both nuclides were removed from the atmosphere mainly by wet deposition (rain or snow). The deposition fluxes of 7Be and 210Pb were low in summer and high in winter to spring. Deposition fluxes of 7Be and 210Pb positively correlated to precipitation. From the results of the power spectral analysis by fast Fourier transform, annual periodicities of 7Be and 210Pb deposition at Rokkasho could be classified as a double peak distribution pattern and single peak distribution pattern, respectively. Backward trajectories for 72 h were calculated every 6 h in order to clarify the relation of air mass transport course and atmospheric concentrations of 210Pb. The results showed that atmospheric 210Pb concentrations were strongly affected by air mass from the northern Asian continental area above 40degN. (author)

  15. Atmospheric/climatic effects of aircraft emissions

    International Nuclear Information System (INIS)

    Exhaust emissions from aircraft include oxides of nitrogen (NOx), water vapor (H2O), sulfur dioxide (SO2), carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC) and particles (soot and sulfates). These emissions are small compared to industrial/urban surface emissions. However, because (1) atmospheric residence times of exhaust constituents are longer at altitude, particularly in the stratosphere, than they are in the boundary layer, (2) their background concentrations at altitude are lower than those near the surface, (3) the radiation balance is the more sensitive to atmospheric trace constituents the colder the temperature aloft and (4) inter-hemispheric mixing of aircraft effluents is inhibited, aircraft emissions near and above the tropopause and polewards of 40 degrees latitude can be environmentally critical. That's why atmospheric/climatic effects of aircraft emissions have again received scientific, economic and political scrutiny in the last few years, motivated by growth of subsonic traffic at about 5% per year over the past two decades and the advent of a technologically feasible operation of a supersonic high speed commercial transport (HSCT) fleet

  16. Dual-core mass-balance approach for evaluating mercury and210Pb atmospheric fallout and focusing to lakes

    Science.gov (United States)

    Van Metre, P.C.; Fuller, C.C.

    2009-01-01

    Determining atmospheric deposition rates of mercury and other contaminants using lake sediment cores requires a quantitative understanding of sediment focusing. Here we present a novel approach that solves mass-balance equations for two cores algebraically to estimate contaminant contributions to sediment from direct atmospheric fallout and from watershed and in-lake focusing. The model is applied to excess 210Pb and Hg in cores from Hobbs Lake, a high-altitude lake in Wyoming. Model results for excess 210Pb are consistent with estimates of fallout and focusing factors computed using excess 210Pb burdens in lake cores and soil cores from the watershed and model results for Hg fallout are consistent with fallout estimated using the soil-core-based 210Pb focusing factors. The lake cores indicate small increases in mercury deposition beginning in the late 1800s and large increases after 1940, with the maximum at the tops of the cores of 16-20 ??g/m 2year. These results suggest that global Hg emissions and possibly regional emissions in the western United States are affecting the north-central Rocky Mountains. Hg fallout estimates are generally consistent with fallout reported from an ice core from the nearby Upper Fremont Glacier, but with several notable differences. The model might not work for lakes with complex geometries and multiple sediment inputs, but for lakes with simple geometries, like Hobbs, it can provide a quantitative approach for evaluating sediment focusing and estimating contaminant fallout.

  17. Atmospheric concentrations of 212Pb and an observation of 212Pb originating from the 2000 eruptive activity of Miyake-jima volcano, at Kawasaki, Japan

    International Nuclear Information System (INIS)

    Atmospheric concentrations of 212Pb were observed with aerosol samples during the period from June, 1999 to December, 2000 at Kawasaki. The atmospheric concentrations of 212Pb ranged from 20 to 130 mBq/m3. Seasonal variations in 212Pb concentration showed the ''one-peak'' variation pattern: high concentrations appeared in winter season. The atmospheric concentration of 212Pb and SO2 after the eruption of Miyake-jima volcano on Aug. 29, 2000 were higher than average value in the season. After the eruption, the variation in the concentration of SO2 correlates with that of 212Pb. The atmospheric concentration of 212Pb showed an unusual and temporal increase in the period from late August to early September, 2000, being inferred to be attributed partly to the 212Pb fallout originating from the 2000 eruption of Miyake jima volcano, Japan. (author)

  18. The 210Pb budget of the North Sea. Atmospheric input versus sediment flux

    International Nuclear Information System (INIS)

    Atmospheric deposition is one of the main sources of 210Pb in the North Sea water. Annual variations of this flux are large in the Netherlands. Translated to the North Sea area the atmospheric deposition is 42 Bq.m-2.y-1. In the 210Pb budget of the North Sea, supply by rivers, as artificial supply by power plants and fertilizer plants, does not play a great role. Fishery activities is not a good scavenger in the total 210Pb budget. From measurements of 36 box-cores in the North Sea the average 210Pb flux to the sediment is estimated 150 Bq.m-2.y-1. Fluxes to the sediment smaller than 10% of the atmospheric flux, occur in the sandy areas of the Southern Bight and Dogger Bank. Large fluxes, up to 50 times the atmospheric deposition, occur mainly in the fine grained deposition areas of the Skagerrak and the Norwegian Trench. The net lateral flux accounts for 1/3 part of the flux to the sediment: the North Sea is a true sink for 210Pb. The radon flux from the sediment supplies 1/3 of the 210Pb flux to the sediment. Based on the 210Pb budget total mass accumulation in the North Sea is 1100 x 109 kg.y-1, this is an order of magnitude higher than figures obtained from transport of suspended matter and from 210Pb sedimentation rates. (author)

  19. Measurement of {sup 214} Pb, {sup 212} Pb {sup 210} Pb and {sup 7} Be activities in sizes fractionated aerosols in the lower atmosphere at Sacavem (Lisbon)

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Mario J.; Brogueira, Alfredo L.; Bettencourt, Antonio O. [Instituto Tecnologico e Nuclear, Sacavem (Portugal). Dept. de Protecao Radiologica e Seguranca Nuclear; Rosa, Rui N. [Universidade de Evora (Portugal). Dept. de Fisica

    2001-07-01

    Aerodynamic size distribution measurements of {sup 214} Pb, {sup 212} Pb {sup 210} Pb and {sup 7} Be were carried out using a five-stage high-volume cascade impactor with effective cut-off diameters of 0.49, 0.95, 1.5, 3.0, and 7.2 {mu}m. The activity of the samples was measured by {gamma}-ray spectrometry using both coaxial and ultra-low background well-type HPGe detectors. The activity size distribution measurements indicate that all radionuclides were associated with submicron aerosol in the accumulation mode, being {sup 210} Pb and {sup 7} Be attached to slightly larger particles, when compared to short-lived radon and thoron daughters. The mass size distributions show a significant contribution from aerosol particles larger than 7.2 {mu}m to the total mass concentration, which indicates the occurrence of resuspension processes. However, since that in most of the samples no {sup 210} Pb and short-lived {sup 214} Pb and {sup 212} Pb were found in association with larger particles, it seems that those nuclides were mostly originated by the decay of atmospheric radon (or thoron in the case of {sup 212} Pb) instead of soil resuspension. On average it was observed that about 80% of the {sup 214} Pb and {sup 212} Pb activity was associated with aerosol particles with aerodynamic diameters smaller than 0.49 {mu}m and about 90% with particles smaller than 0.95 {mu}m. (author)

  20. Atmospheric Ammonia Emissions from a Dairy

    Science.gov (United States)

    Rumburg, B. P.; Filipy, J. M.; Bays, J.; Mount, G. H.; Yonge, D.; Lamb, B. K.; Johnson, K.; Kincaid, R.

    2002-12-01

    Gaseous ammonia (NH3) emissions at high concentrations can damage human and animal respiratory systems. NH3 environmental impacts include aerosol formation, altering atmospheric chemistry, terrestrial and aquatic eutrophication, soil acidification and global warming. Preindustrial NH3 emissions are estimated to be 21 Tg yr-1 while current emissions are estimated to be 47 Tg yr-1 with most of the increase coming from domestic animals (Galloway et al., 1995). There is a lack of detailed emission data from the United States and there are many problems with applying emissions estimates from Europe due to the difference in farming practices between the two regions. Feed and manure management practices can have a large impact on emissions. We are studying NH3 emissions at the WSU dairy located near Pullman, WA to provide a detailed emission inventory of the various sources at the dairy. The dairy has approximately 170 milking cows housed in open air barns and the waste from the milking cows is stored in liquid slurry lagoons until it is applied to grass fields in the late summer. NH3 is measured using a short-path spectroscopic absorption near 200 nm with a sensitivity of a few ppbv and a time resolution of a few seconds. The open air short-path method is advantageous because it is self calibrating and avoids inlet wall adherence which is a major problem for most NH3 measurement techniques. As part of the detailed emission inventory, NH3 fluxes were determined from the milking stalls, main slurry lagoon and the application of slurry to the fields with a large sprinkler using a SF6 tracer technique and a dense point Gaussian plume model. NH3 emission fluxes from various parts of the dairy will be presented.

  1. Atmospheric emissions from road transportation in India

    International Nuclear Information System (INIS)

    India has become one of the biggest emitters of atmospheric pollutants from the road transportation sector globally. Here we present an up-to-date inventory of the exhaust emissions of ten species. This inventory has been calculated bottom-up from the vehicle mileage, differentiating by seven vehicle categories, four age/technology layers and three fuel types each, for the seven biggest cities as well as for the whole nation. The age composition of the rolling fleet has been carefully modelled, deducting about one quarter of vehicles still registered but actually out-of-service. The vehicle mileage is calibrated to the national fuel consumption which is essential to limit uncertainties. Sensitivity analyses reveal the primary impact of the emission factors and the secondary influence of vehicle mileage and stock composition on total emissions. Emission estimates since 1980 are reviewed and qualified. A more comprehensive inspection and maintenance is essential to limit pollutant emissions; this must properly include commercial vehicles. They are also the most important vehicle category to address when fuel consumption and CO2 emissions shall be contained. (author)

  2. Atmospheric depositions of 210Pb and 210Po in Lisbon, Portugal

    International Nuclear Information System (INIS)

    The long lived radon daughters 210Pb and 210Po were determined in samples of total surface deposition obtained with collectors continuously operated during 5 years, near Lisbon. The annual 210Pb flux was 66±12 Bqm-2, and the average annual 210Po flux was 8±3 Bq m-2, with an overall 210Po/210Pb activity ratio of 0.15±0.06. The deposition of 210Pb was positively correlated with seasonal rainfall, while 210Po was mainly originated in soil particles re-suspension throughout the year and also in seasonal forest fires. Unusually high 210Po/210Pb activity ratios, higher than unity, were occasionally recorded and the sources and causes are discussed. Long time-series of 210Pb and 210Po deposition fluxes, as presented herein, are rare although essential to test and constrain parameter of the atmospheric Global Circulation Models. (author)

  3. Atmospheric deposition patterns of 210Pb and 7Be in Cienfuegos, Cuba

    International Nuclear Information System (INIS)

    The radiometric composition of bulk deposition samples, collected monthly for one year, February 2010 until January 2011, at a site located in Cienfuegos (22° 03′ N, 80° 29′ W) (Cuba), are analysed in this paper. Measurement of 7Be and 210Pb activity concentrations were carried out in 12 bulk deposition samples. The atmospheric deposition fluxes of 7Be and 210Pb are in the range of 13.2–132 and 1.24–8.29 Bq m−2, and their mean values are: 56.6 and 3.97 Bq m−2, respectively. The time variations of the different radionuclide have been discussed in relation with meteorological factors and the mean values have been compared to those published in recent literature from other sites located at different latitudes. The annual average flux of 210Pb and 7Be were 47 and 700 Bq m−2 y−1, respectively. Observed seasonal variations of deposition data are explained in terms of different environmental features. The atmospheric deposition fluxes of 7Be and 210Pb were moderately well correlated with precipitation and well correlated with one another. The 210Pb/7Be ratios in the monthly depositions samples varied in the range of 0.05–0.10 and showed a strong correlation with the number of rainy days. - Highlights: • We evaluated for first time in Cuba the atmospheric deposition fluxes of 7Be and 210Pb. • The annual average flux of 210Pb and 7Be were 47 and 700 Bq m−2 y−1, respectively. • The atmospheric deposition fluxes of 7Be and 210Pb are correlated with precipitation. • 7Be and 210Pb present similar removal behaviour from the atmosphere

  4. Natural Radioisotopes of Pb, Bi and Po in the Atmosphere of Coal Burning Area

    Directory of Open Access Journals (Sweden)

    Asnor Azrin Sabuti

    2011-07-01

    Full Text Available This paper is discussing the changes of natural radionuclides 210Pb, 210Bi and 210Po in atmospheric samples (rainwater and solid fallout caused by Sultan Salahuddin Abdul Aziz coal-fired Power Plant (SSAAPP operation. We also describe the seasonal changes of 210Pb, 210Bi and 210Po to the monsoon seasons in Peninsular Malaysia. Bulk atmospheric trap was used to collect atmospheric samples for five months (7 Feb 2007 to 27 July 2007 and placed within the SSAAPP area. The natural radionuclide activity levels in the atmosphere were affected by local meteorological conditions to impact their variance over time. As a result, the natural radionulides were increased from the ambient value in atmospheric particles (solid fallout, which related to coal combustion by-product releases into atmosphere. In contrast, this was giving relatively lower or in the same magnitude from most places of radionuclides in rainwater samples. Degree of changes between 210Pb, 210Bi and 210Po affected by high temperature combustions were found to be different for each nuclide due to their respective volatility. 210Po in rainwater and solid fallout were considerably low during early inter-monsoon period which mainly controlled by the rainfall pattern. On the other hand, 210Pb and 210Bi in solid fallout were recorded higher concentrations which associated to drier conditions and more particulate content in air column during southwest monsoon. The mean activity ratio of 210BiRW/210PbRW and 210PoRW/210PbRW are 0.47 ± 0.04 and 0.52 ± 0.17, respectively. Whereas for 210BiSF/210PbSF and 210PoSF/210PbSF are 0.52 ± 0.05 and 0.71 ± 0.13, respectively. Some results showed high activity ratios, reaching to 1.87 ± 0.08 for 210Bi/210Pb and 4.58 ± 0.55 for 210Po/210Pb, of which due to additional of 210Bi and 210Po excess. These ratios also indicating that 210Pb and 210Bi could potentially come from the same source, compared to 210Po which varied differently, showing evidence it came

  5. Accumulation rates and predominant atmospheric sources of natural and anthropogenic Hg and Pb on the Faroe Islands

    Energy Technology Data Exchange (ETDEWEB)

    Shotyk, W.; Goodsite, M.E.; Roos-Barraclough, F.; Givelet, N.; Le Roux, G.; Weiss, D.; Cheburkin, A.K.; Knudsen, K.; Heinemeier, J.; Van der Knaap, W.O.; Norton, S.A.; Lohse, C. [University of Heidelberg, Heidelberg (Germany)

    2005-01-01

    A monolith representing 5420 C-14 yr of peat accumulation was collected from a blanket bog at Myrarnar, Faroe Islands. The maximum Hg concentration (498 ng/g at a depth of 4.5 cm) coincides with the maximum concentration of anthropogenic Pb (111 {mu}g/g). Age dating of recent peat accumulation using Pb-210 (CRS model) shows that the maxima in Hg and Pb concentrations occur at AD 1954 {+-} 2. These results, combined with the isotopic composition of Pb in that sample (Pb-206/Pb-207 = 1.1720 {+-} 0.0017), suggest that coal burning was the dominant source of both elements. From the onset of peat accumulation (ca. 4286 BC) until AD 1385, the ratios Hg/Br and Hg/Se were constant (2.2 {+-} 0.5 x 10{sup -4} and 8.5 {+-} 1.8 x 10{sup -3}, respectively). Since then, Hg/Br and Hg/Se values have increased, also reaching their maxima in AD 1954. The age date of the maximum concentrations of anthropogenic Hg and Pb in the Faroe Islands is consistent with a previous study of peat cores from Greenland and Denmark which showed maximum concentrations in AD 1953. The average rate of atmospheric Hg accumulation from 1520 BC to AD 1385 was 1.27 {+-} 0.38 {mu}g/m{sup 2}/yr. Episodic volcanic emissions and the continual supply of marine aerosols to the Faroe Islands were found not to have contributed significantly to the Hg inventory or the Hg accumulation rates, relative to these other areas. The maximum rate of Hg accumulation was 34 {mu}g/m{sup 2}/yr. The greatest fluxes of anthropogenic Hg accumulation calculated using Br and Se, respectively, were 26 and 31 {mu}g/m{sup 2}/yr.

  6. Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS

    International Nuclear Information System (INIS)

    Several characteristic emission lines from the metal targets (Cu, Zn and Pb) were investigated in trace presence of radon gas in the atmospheric air, using Q-SW Nd:YAG laser induced plasma inside a control chamber. The emission lines of metal species are noticeably enhanced in (Rn+air), relative to those in the synthetic air alone. Similar spectra were also taken in various sub-atmospheric environments in order to determine the optimum pressure for enhancement. Solid-state nuclear track detectors were also employed to count the tracks due to alpha particles for the activity assessment

  7. Accumulation rates and predominant atmospheric sources of natural and anthropogenic Hg and Pb on the Faroe Islands

    Science.gov (United States)

    Shotyk, W.; Goodsite, M. E.; Roos-Barraclough, F.; Givelet, N.; Le Roux, G.; Weiss, D.; Cheburkin, A. K.; Knudsen, K.; Heinemeier, J.; van Der Knaap, W. O.; Norton, S. A.; Lohse, C.

    2005-01-01

    A monolith representing 5420 14C yr of peat accumulation was collected from a blanket bog at Myrarnar, Faroe Islands. The maximum Hg concentration (498 ng/g at a depth of 4.5 cm) coincides with the maximum concentration of anthropogenic Pb (111 μg/g). Age dating of recent peat accumulation using 210Pb (CRS model) shows that the maxima in Hg and Pb concentrations occur at AD 1954 ± 2. These results, combined with the isotopic composition of Pb in that sample ( 206Pb/ 207Pb = 1.1720 ± 0.0017), suggest that coal burning was the dominant source of both elements. From the onset of peat accumulation (ca. 4286 BC) until AD 1385, the ratios Hg/Br and Hg/Se were constant (2.2 ± 0.5 × 10 -4 and 8.5 ± 1.8 × 10 -3, respectively). Since then, Hg/Br and Hg/Se values have increased, also reaching their maxima in AD 1954. The age date of the maximum concentrations of anthropogenic Hg and Pb in the Faroe Islands is consistent with a previous study of peat cores from Greenland and Denmark (dated using the atmospheric bomb pulse curve of 14C), which showed maximum concentrations in AD 1953. The average rate of atmospheric Hg accumulation from 1520 BC to AD 1385 was 1.27 ± 0.38 μg/m 2/yr. The Br and Se concentrations and the background Hg/Br and Hg/Se ratios were used to calculate the average rate of natural Hg accumulation for the same period, 1.32 ± 0.36 μg/m 2/yr and 1.34 ± 0.29 μg/m 2/yr, respectively. These fluxes are similar to the preanthropogenic rates obtained using peat cores from Switzerland, southern Greenland, southern Ontario, Canada, and the northeastern United States. Episodic volcanic emissions and the continual supply of marine aerosols to the Faroe Islands, therefore, have not contributed significantly to the Hg inventory or the Hg accumulation rates, relative to these other areas. The maximum rate of Hg accumulation was 34 μg/m 2/yr. The greatest fluxes of anthropogenic Hg accumulation calculated using Br and Se, respectively, were 26 and 31 μg/m 2

  8. Multi-year Surface Deposition of {sup 210}Pb and {sup 210}Po at Lisbon - Atmospheric Depositions of {sup 210}Pb and {sup 210}Po in Lisbon, Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando P.; Oliveira, Joao M.; Alberto, G. [Instituto Superior Tecnico/ Campus Tecnologico e Nuclear, Universidade Tecnica de Lisboa, E.N. 10, 2686-953 Sacavem (Portugal)

    2014-07-01

    The long lived radon daughters {sup 210}Pb and {sup 210}Po were determined in samples of total atmospheric depositions obtained with surface collectors continuously operated during 5 years, near Lisbon. The average annual {sup 210}Pb flux was 66±12 Bq m{sup -2}, and the average annual {sup 210}Po flux was 8±3 Bq m{sup -2}, with an overall {sup 210}Po/{sup 210}Pb activity ratio of 0.15±0.06. Direct determination of the {sup 210}Pb atmospheric flux was compared with the {sup 210}Pb excess determined in soil surface layers along with atmospheric depositions of {sup 137}Cs. The deposition of atmospheric {sup 210}Pb was positively correlated with seasonal rainfall, while {sup 210}Po was mainly originated in soil particles re-suspension throughout the year and also in seasonal forest fires. Unusually high {sup 210}Po/{sup 210}Pb activity ratios, higher than unity, were occasionally recorded in atmospheric depositions and the sources and causes are discussed. Long time-series of {sup 210}Pb and {sup 210}Po deposition fluxes, as presented herein are useful to test and constrain parameters of the atmospheric Global Circulation Models. (authors)

  9. Multi-year Surface Deposition of 210Pb and 210Po at Lisbon - Atmospheric Depositions of 210Pb and 210Po in Lisbon, Portugal

    International Nuclear Information System (INIS)

    The long lived radon daughters 210Pb and 210Po were determined in samples of total atmospheric depositions obtained with surface collectors continuously operated during 5 years, near Lisbon. The average annual 210Pb flux was 66±12 Bq m-2, and the average annual 210Po flux was 8±3 Bq m-2, with an overall 210Po/210Pb activity ratio of 0.15±0.06. Direct determination of the 210Pb atmospheric flux was compared with the 210Pb excess determined in soil surface layers along with atmospheric depositions of 137Cs. The deposition of atmospheric 210Pb was positively correlated with seasonal rainfall, while 210Po was mainly originated in soil particles re-suspension throughout the year and also in seasonal forest fires. Unusually high 210Po/210Pb activity ratios, higher than unity, were occasionally recorded in atmospheric depositions and the sources and causes are discussed. Long time-series of 210Pb and 210Po deposition fluxes, as presented herein are useful to test and constrain parameters of the atmospheric Global Circulation Models. (authors)

  10. Atmospheric process evaluation of mobile source emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    During the past two decades there has been a considerable effort in the US to develop and introduce an alternative to the use of gasoline and conventional diesel fuel for transportation. The primary motives for this effort have been twofold: energy security and improvement in air quality, most notably ozone, or smog. The anticipated improvement in air quality is associated with a decrease in the atmospheric reactivity, and sometimes a decrease in the mass emission rate, of the organic gas and NO{sub x} emissions from alternative fuels when compared to conventional transportation fuels. Quantification of these air quality impacts is a prerequisite to decisions on adopting alternative fuels. The purpose of this report is to present a critical review of the procedures and data base used to assess the impact on ambient air quality of mobile source emissions from alternative and conventional transportation fuels and to make recommendations as to how this process can be improved. Alternative transportation fuels are defined as methanol, ethanol, CNG, LPG, and reformulated gasoline. Most of the discussion centers on light-duty AFVs operating on these fuels. Other advanced transportation technologies and fuels such as hydrogen, electric vehicles, and fuel cells, will not be discussed. However, the issues raised herein can also be applied to these technologies and other classes of vehicles, such as heavy-duty diesels (HDDs). An evaluation of the overall impact of AFVs on society requires consideration of a number of complex issues. It involves the development of new vehicle technology associated with engines, fuel systems, and emission control technology; the implementation of the necessary fuel infrastructure; and an appropriate understanding of the economic, health, safety, and environmental impacts associated with the use of these fuels. This report addresses the steps necessary to properly evaluate the impact of AFVs on ozone air quality.

  11. Visible Upconversion Emission in Er3+-Doped GeO2-PbO-PbF2 Glass

    Institute of Scientific and Technical Information of China (English)

    杨中民; 徐时清; 胡丽丽; 姜中宏

    2003-01-01

    The upconversion fluorescence emission of Er3+ -doped 60GeO2-20PbO-20PbF2 glass was experimentally investigated under the pump of 976-nm laser diode. The results reveal the existence of intense emission bands centred around 524, 545, and 657nm at room temperature. The green emission at 524 and 545nm is due to the 4S3/2+2H11/2→4I15/2 transition and the red emission of 657 nm originates from the 4F9/2 → 4 I15/2 transition of Er3+. The quadratic dependence of the green and red emissions on excitation power indicates that a two-photon absorption process occurs under the 976-nm excitation. The excited- state absorption from 4I11/2 and the cross relaxation between two Er3+ ions in the 4I11/2 state contribute to the green emission. The red emission at 657nm is attributed to the excited-state absorption and cross relaxation processes in the 4I13/2 level as well as the 4S3/2level nonradiative transition of Er3+.

  12. Elliptic emission of K+ in 158A GeV Pb+Pb collisions

    International Nuclear Information System (INIS)

    We have studied the azimuthal angle distributions of identified charged particles near mid-rapidity region in semi-central Pb+Pb collisions at SPS energies. Our preliminary results show that π+ mesons and protons seem to be emitted in the reaction plane, while out-of-plane for K+ mesons. This phenomenon might be explained by the existence of another possible effect such as in-medium potential as well as the collective motion

  13. The contribution of aircraft emissions to the atmospheric sulfur budget

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, E. [Stockholm Univ. (Sweden). Dept. of Meteorology; Feichter, J. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Sausen, R.; Hein, R. [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-01-01

    An atmospheric general circulation model including the atmospheric sulfur cycle has been used to investigate the impact of aircraft sulfur emissions on the global sulfur budget of the atmosphere. The relative contribution from aircraft sulfur to the atmospheric sulfate burden is larger than the ratio between aircraft emissions and surface emissions due to the calculated long turn-over time of aircraft sulfate (about 12 days). However, in terms of the sulfate mass balance, aircraft emissions are small, contributing about 1% of the total sulfate mass north of 40 deg C where the aircraft emissions are largest. Despite this small contribution to sulfate mass, the aircraft emissions could potentially significantly enhance the background number concentration of aerosol particles. Based on the model calculations the increased stratospheric background aerosol mass observed during the last decades can not be explained by increased aircraft sulfur emissions 50 refs, 9 figs, 4 tabs

  14. Analysis of atmospheric aerosols by atomic emission spectrometry with electrical discharge sampling

    International Nuclear Information System (INIS)

    A procedure is developed for the determination of the concentration of heavy metals (Pb, Mn, Cu, Ni, Zn, and Cd) in atmospheric air by atomic emission spectrometry with gas-discharge sampling onto the end of a standard carbon electrode. A design of a two-section sampler is proposed; the sampler provides the rapid determination of deposition factors for the deposition of heavy metals contained in aerosol particles onto the end of a carbon electrode. Examples of determining metal concentrations in a model sample of air and in atmospheric air and determination limits of metals deposited onto the end of a carbon electrode are given

  15. Atmospheric deposition patterns of (210)Pb and (7)Be in Cienfuegos, Cuba.

    Science.gov (United States)

    Alonso-Hernández, Carlos M; Morera-Gómez, Yasser; Cartas-Águila, Héctor; Guillén-Arruebarrena, Aniel

    2014-12-01

    The radiometric composition of bulk deposition samples, collected monthly for one year, February 2010 until January 2011, at a site located in Cienfuegos (22° 03' N, 80° 29' W) (Cuba), are analysed in this paper. Measurement of (7)Be and (210)Pb activity concentrations were carried out in 12 bulk deposition samples. The atmospheric deposition fluxes of (7)Be and (210)Pb are in the range of 13.2-132 and 1.24-8.29 Bq m(-2), and their mean values are: 56.6 and 3.97 Bq m(-2), respectively. The time variations of the different radionuclide have been discussed in relation with meteorological factors and the mean values have been compared to those published in recent literature from other sites located at different latitudes. The annual average flux of (210)Pb and (7)Be were 47 and 700 Bq m(-2) y(-1), respectively. Observed seasonal variations of deposition data are explained in terms of different environmental features. The atmospheric deposition fluxes of (7)Be and (210)Pb were moderately well correlated with precipitation and well correlated with one another. The (210)Pb/(7)Be ratios in the monthly depositions samples varied in the range of 0.05-0.10 and showed a strong correlation with the number of rainy days. PMID:25233214

  16. Environmental atmospheric impact assessment by the emission of particles in an industrial area

    International Nuclear Information System (INIS)

    The content of metals present in suspended particulate matter was evaluated using analytical related nuclear techniques, in order to discriminate the contribution of different emission sources to the atmospheric concentration in the area of Campana, located in the Province of Buenos Aires. The levels of Ti, V, Cr, Mn, Ni, Cu, Zn, Sr, Ag, Cd y Pb were quantified by Wave Dispersion X-Ray Florescence spectrometry (WDXRF), Total Reflection X-Ray Fluorescence spectrometry (TRXRF) and Inducted Coupled Plasma Absorption Emission spectroscopy (ICP-AES). (author)

  17. Accumulation of atmospheric deposition of As, Cd and Pb by bush bean plants

    International Nuclear Information System (INIS)

    Bush bean (Phaseolus vulgaris) was exposed to atmospheric deposition of As, Cd and Pb in a polluted and a reference area. The atmospheric deposition of these elements was significantly related to the concentrations in leaves, stems and pods at green harvest. Surprisingly there was also a clear relation for As and Pb in the seeds at dry harvest, even though these seeds were covered by the husks. Root uptake of accumulated atmospheric deposits was not likely in such a short term experiment, as confirmed by the fact that soil pore water analysis did not reveal significant differences in trace element concentrations in the different exposure areas. For biomonitoring purposes, the leaves of bush bean are the most suitable, but also washed or unwashed pods can be used. This means that the obtained relationships are suitable to estimate the transfer of airborne trace elements in the food chain via bush bean. - Highlights: • Atmospheric deposition of trace elements accumulates in bean leaves, stems and pods. • Also thoroughly washed green pods are suitable for biomonitoring. • Even the non-exposed bean seeds accumulate As and Pb deposits to some extend. • A migration of trace elements from the husks to the seeds is most likely. - In a polluted area, atmospheric deposition of trace elements on the above-ground plant parts is influencing their concentration, even in the seeds

  18. Impact of atmospheric deposition of As, Cd and Pb on their concentration in carrot and celeriac

    International Nuclear Information System (INIS)

    Root crops, carrot and celeriac, were exposed to atmospheric deposition in a polluted versus reference area. An effect was observed on the As, Cd and Pb concentrations of the leaves and the storage organs. The concentrations in the whole storage organs correlated well with atmospheric deposition, which shows that they even could be used for biomonitoring. Nevertheless, leaves remain much more appropriate. The results revealed also a significant increase of the As and Cd concentration in the consumable part of the storage organs as a function of their atmospheric deposition. As such the experiments allowed deriving regression equations, useful for modeling the atmospheric impact of trace elements on the edible parts of root crops. For Pb, however, there was hardly any significant impact on the inner parts of the storage organs and as such the transfer of Pb in the food chain through root crops can be considered to be negligible. - Highlights: ► This paper is exploring new ideas on biomonitoring. ► Some airborne trace elements are transported to unexposed plant parts. ► Storage organs accumulate also airborne trace elements. ► Biomonitoring is useful to study the transfer of trace elements in the food chain. - Biomonitoring as a tool to study the impact of atmospherically deposited trace elements on the food chain.

  19. Estimation of the Arctic aerosols from local and long-range transport using relationships between 210Pb and 212Pb atmospheric activity concentrations

    International Nuclear Information System (INIS)

    In this study, the aerosol activity concentrations of 210Pb at 28 Canadian radiological monitoring stations from 2009 to 2013 were analyzed. The results show that the ratio of 210Pb winter average concentration to summer average concentration increases with increasing latitude. This could be used to evaluate the transport of pollutants to the Arctic region such as the Arctic haze from Eurasia through long-range atmospheric transport during winter. Based on 12 years of monitoring results from the Yellowknife station that includes both 210Pb and 212Pb concentrations, the study confirms that the seasonal distribution of 210Pb to 212Pb activity concentration ratios has a significant peak in winter and a relatively low value in summer, which can be used as an indicator of the air mass flow to the Arctic. The period dominated by long-range aerosol transport and Arctic haze was estimated by fitting a Gaussian distribution function to the peak values of this ratio in winter. A peak width parameter of full width at half maximum (FWHM) allows a year by year estimate of the period of influence by long-range transport of aerosols, and this varied between 67 and 88 days in this study. The fitted Gaussian peak also shows that the season of the continental influenced air mass in Yellowknife usually starts in mid-to-late November and ends in mid-to-late April. Thus, the 210Pb to 212Pb ratio distributions may enable the determination of periods dominated by long-range aerosol transport and the scale of the Arctic haze at different latitudes. - Highlights: • Twelve years 210Pb/212Pb monitoring results from low to high altitude are presented. • The 210Pbwinter/210Pbsummer ratio increases clearly with latitude of monitoring site. • The pollutant transport to the Arctic is estimated by distribution 210Pb/212Pb ratio. • The time scale of long-range transport aerosol bearing 210Pb to Arctic is reported

  20. Recent atmospheric lead deposition recorded in an ombrotrophic peat bog of Great Hinggan Mountains, Northeast China, from 210Pb and 137Cs dating

    International Nuclear Information System (INIS)

    Radioactive markers are useful in dating lead deposition patterns from industrialization in peat archive. Peat cores were collected in an ombrotrophic peat bog in the Great Hinggan Mountains in Northeast China in September 2008 and dated using 210Pb and 137Cs radiometric techniques. The mosses in both cores were examined systematically for dry bulk density, water and ash content. Lead also was measured using atomic emission spectroscopy with inductively coupled plasma (ICP-AES). Both patterned peat profiles were preserved well without evident anthropogenic disturbance. Unsupported 210Pb and 137Cs decreased with the depth in both of the two sample cores. The 210Pb chronologies were established using the constant rate of supply model (CRS) and are in good agreement with the 137Cs time marker. Recent atmospheric 210Pb flux in Great Hinggan Mountains peat bog was estimated to be 337 Bq m-2 y-1, which is consistent with published data for the region. Lead deposition rate in this region was also derived from these two peat cores and ranged from 24.6 to 55.8 mg m-2 y-1 with a range of Pb concentration of 14-262 μg g-1. The Pb deposition patterns were consistent with increasing industrialization over the last 135-170 y, with a peak of production and coal burning in the last 50 y in Northeast China. This work presents a first estimation of atmospheric Pb deposition rate in peatlands in China and suggests an increasing trend of environmental pollution due to anthropogenic contaminants in the atmosphere. More attention should be paid to current local pollution problems, and society should take actions to seek a balance between economic development and environmental protection.

  1. Recent atmospheric lead deposition recorded in an ombrotrophic peat bog of Great Hinggan Mountains, Northeast China, from {sup 210}Pb and {sup 137}Cs dating

    Energy Technology Data Exchange (ETDEWEB)

    Bao, K.; Xia, W.; Lu, X.; Wang, G. [Chinese Academy of Sciences, Changchun (China). Key Laboratory of Wetland Ecology & Environment

    2010-09-15

    Radioactive markers are useful in dating lead deposition patterns from industrialization in peat archive. Peat cores were collected in an ombrotrophic peat bog in the Great Hinggan Mountains in Northeast China in September 2008 and dated using {sup 210}Pb and {sup 137}Cs radiometric techniques. The mosses in both cores were examined systematically for dry bulk density, water and ash content. Lead also was measured using atomic emission spectroscopy with inductively coupled plasma (ICP-AES). Both patterned peat profiles were preserved well without evident anthropogenic disturbance. Unsupported {sup 210}Pb and {sup 137}Cs decreased with the depth in both of the two sample cores. The {sup 210}Pb chronologies were established using the constant rate of supply model (CRS) and are in good agreement with the {sup 137}Cs time marker. Recent atmospheric {sup 210}Pb flux in Great Hinggan Mountains peat bog was estimated to be 337 Bq m{sup -2} y{sup -1}, which is consistent with published data for the region. Lead deposition rate in this region was also derived from these two peat cores and ranged from 24.6 to 55.8 mg m{sup -2} y{sup -1} with a range of Pb concentration of 14-262 {mu} g g{sup -1}. The Pb deposition patterns were consistent with increasing industrialization over the last 135-170 y, with a peak of production and coal burning in the last 50 y in Northeast China. This work presents a first estimation of atmospheric Pb deposition rate in peatlands in China and suggests an increasing trend of environmental pollution due to anthropogenic contaminants in the atmosphere. More attention should be paid to current local pollution problems, and society should take actions to seek a balance between economic development and environmental protection.

  2. Recent atmospheric lead deposition recorded in an ombrotrophic peat bog of Great Hinggan Mountains, Northeast China, from 210Pb and 137Cs dating.

    Science.gov (United States)

    Bao, K; Xia, W; Lu, X; Wang, G

    2010-09-01

    Radioactive markers are useful in dating lead deposition patterns from industrialization in peat archive. Peat cores were collected in an ombrotrophic peat bog in the Great Hinggan Mountains in Northeast China in September 2008 and dated using (210)Pb and (137)Cs radiometric techniques. The mosses in both cores were examined systematically for dry bulk density, water and ash content. Lead also was measured using atomic emission spectroscopy with inductively coupled plasma (ICP-AES). Both patterned peat profiles were preserved well without evident anthropogenic disturbance. Unsupported (210)Pb and (137)Cs decreased with the depth in both of the two sample cores. The (210)Pb chronologies were established using the constant rate of supply model (CRS) and are in good agreement with the (137)Cs time marker. Recent atmospheric (210)Pb flux in Great Hinggan Mountains peat bog was estimated to be 337 Bq m(-2)y(-1), which is consistent with published data for the region. Lead deposition rate in this region was also derived from these two peat cores and ranged from 24.6 to 55.8 mg m(-2)y(-1) with a range of Pb concentration of 14-262 microg g(-1). The Pb deposition patterns were consistent with increasing industrialization over the last 135-170 y, with a peak of production and coal burning in the last 50 y in Northeast China. This work presents a first estimation of atmospheric Pb deposition rate in peatlands in China and suggests an increasing trend of environmental pollution due to anthropogenic contaminants in the atmosphere. More attention should be paid to current local pollution problems, and society should take actions to seek a balance between economic development and environmental protection. PMID:20621757

  3. Influence of Shell on Pre-scission Particle Emission of a Doubly Magic Nucleus 208Pb

    Institute of Scientific and Technical Information of China (English)

    YE Wei

    2004-01-01

    Using Smoluchowski equation, we study the shell effects on the emission of light particles in the fission process of a doubly magic nucleus 208 pb. Calculated results show that shell has a considerable effect on the neutron emission and that shell effect gradually becomes weak with increasing excitation energy. In addition, a dependence of shell effects in the neutron emission on the angular momentum has been found.

  4. Atmospheric Deposition of Pb, Zn, Cu, and Cd in Amman, Jordan

    International Nuclear Information System (INIS)

    Atmospheric samples were collected by high-volume air sampler and dust fall containers during the summer of 1995 at different sites in Amman City, Jordan. Heavy metal contents in settle able (dust fall) as well as in air particulates (suspended) were analyzed by graphite furnace atomic absorption spectrophotometry. The atmospheric concentrations of Zn, Cu, Pb, and Cd were 344, 170, 291, and 3.8 ng/m3 , respectively. On the other hand, the levels of these elements in dust fall deposition were 505, 94, 74, and 3.1 μg/g, respectively. The fluxes and dry deposition velocities of these heavy metals were determined and compared with the findings of other investigators worldwide. Significant enrichment coefficients of heavy metals in dust fall were observed. The enrichment coefficients were 12.1, 6.1, 11.7, and 1.1 for Zn, Cu, Pb, and Cd, respectively

  5. Observation of atmospheric 210Pb and 212Pb originating from the 2004 eruptive activity of Asama volcano, Japan, and relevant 222Rn releasing from the erupting magma

    International Nuclear Information System (INIS)

    This paper describes a study of observation of atmospheric 210Pb and 212Pb possibly from the volcano (36 deg N, 138 deg E) activity in the title and of measurement of 222Rn releasing efficiency with the ash-fall deposit collected around the period. The aerosol sample was collected from Sep. 1, an eruption day, on a building terrace (10 m high) of Meiji University at Kawasaki, located at 140 km SE of the volcano, every 24 hr on the glass fiber filter using a high volume air sampler. The filter was cut out to 4 disks, which were packed into acrylic canisters with a window of a thin Mylar film for non-destructive γ-ray measurement. 210Pb and 212Pb radioactivities were determined by the 46.5- and 238.6-keV γ-rays with an LEPS (low energy photon spectrometer) and an HPGe spectrometer, respectively. The ash-fall sample from the eruption Sep. 14, was collected at Kanrakumachi, Gunma Pref., 40 km SE of the volcano, and measurement for the growth curve of 222Rn from the fall started 1 week after the eruption. A well-type HPGe spectrometer was used for determination of the 351.9-keV γ-ray of 222Rn from 214Pb in equilibrium, which was normalized by the 911.1-keV 228Ac γ-ray. 210Pb and 212Pb emitted into the atmosphere were suggested to have been transported 140 km within the time of a few times of the 212Pb half life (10.6 hr) on the northerly wind. 210Pb and 212Pb, and 222Rn were suggested to be a possibly useful tool of monitoring magmatic activities. (S.I.)

  6. The Use of Biomonitors to Monitor Atmospheric Deposition of 210Pb

    International Nuclear Information System (INIS)

    The main source of 210Pb in the environment is the exhalation of 222Rn gas from the ground to the atmosphere during the radioactive decay of natural uranium - radium chain. In the atmosphere this radionuclide is rapidly attached to small particles - aerosols, predominantly on those particles below 0.3 mm. The half-life of 210Pb is longer than the atmospheric residence time of the aerosols on which it resides (1). By sedimentation and washout of aerosols this nuclide is then transferred to the soil or vegetation. The other main sources include burning of fossil fuels and phosphate fertilizers. The usual way to determine the levels of 210Pb and other radionuclides in the atmosphere is the use of a high volume filter system, which should operate for a long time to collect enough material for analysis. An other approach to determining the outdoor levels of radionuclides is the use of suitable biomonitors such as lichens or mosses. These organisms, although neither evolutionarie nor taxonomically related, have some common characteristics which enable them to be used as monitors for atmospheric pollution. They lack roots and protective organs against the substances derived from the atmosphere (stomata and cuticle) and are very efficient accumulators of atmospheric particulate material and chemical substances such as radionuclides or heavy metals (2). The levels of these substances in lichens and mosses are usually much higher than in air particulates or precipitation and for these reason the analysis is much easier. Another advantage of biomonitors over conventional sampling of air particulates or precipitation is that the collection of lichens or mosses is very cheap therefore allows a very large number of sites to be included in the same survey and permits detailed geographical deposition patterns to be drawn (3). It must be emphasised that concentration data on elements or radionuclides in lichens or mosses represent the relative deposition patterns over a certain

  7. Modeling the effects of atmospheric emissions on groundwater composition

    International Nuclear Information System (INIS)

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport

  8. The travel-related carbon dioxide emissions of atmospheric researchers

    OpenAIRE

    A. Stohl

    2008-01-01

    Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emis...

  9. Study of phase transitions in antiferroelectric PbZrO3 and PbHfO3 crystals by acoustic emission method

    International Nuclear Information System (INIS)

    Features of mechanical agreement of ferroelectric (FE) and antiferroelectric (AFE) phases under their phase transition into one another and to paraelectric (PE) phase in PbZr2O3 and PbHfO3 crystals are investigated. Analysis of results of measurements by acoustic emission method has shown that PbZrO3 crystal undergoes two phase transitions in the following sequence: AFE - 210 deg C - FE - 222 deg C - PE; AFE1-163 deg C - AFE2 - 200.5 deg C - PE - for PbHfO3 crystal

  10. Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi City, India.

    Science.gov (United States)

    Sharma, Rajesh Kumar; Agrawal, Madhoolika; Marshall, Fiona M

    2008-07-01

    Rapid growth in urbanization and industrialization in developing countries may significantly contribute in heavy metal contamination of vegetables through atmospheric depositions. In the present study, an assessment was made to investigate the spatial and seasonal variations in deposition rates of heavy metals and its contribution to contamination of palak (Beta vulgaris). Samples of bulk atmospheric deposits and Beta vulgaris for analysis of Cu, Zn, Cd and Pb were collected from different sampling locations differing in traffic density and land use patterns. The results showed that the sampling locations situated in industrial or commercial areas with heavy traffic load showed significantly elevated levels of Cu, Zn and Cd deposition rate as compared to those situated in residential areas with low traffic load. The deposition rates of Cu, Zn and Cd were significantly higher in summer and winter as compared to rainy season, however, Pb deposition rate was significantly higher in rainy and summer seasons as compared to winter season. Atmospheric depositions have significantly elevated the levels of heavy metals in B. vulgaris collected during evening as compared to those collected in morning hours. The study further showed that local population has maximum exposure to Cd contamination through consumption of B. vulgaris. The present study clearly points out the urban and industrial activities of a city have potential to elevate the levels of heavy metals in the atmospheric deposits, which may consequently contaminate the food chain and thus posing health risk to the local population. PMID:17879134

  11. The impact parameter dependence of the K MO X-ray emission in 208Pb+208Pb collisions

    International Nuclear Information System (INIS)

    The emission probabilities for quasimolecular K-X-radiation (K-MOR) have been measured in 208Pb+208Pb collisions at 4.3 MeV/u and 4.8 MeV/u as a function of the scattering angle using the particle-photon-coincidence technique. The probabilities exhibit a superposition of two exponential slopes with different fall-off constants. We identify the sharp fall off at very small impact parameters (<60 fm) with the K-MOR contribution from the decay of 1ssigma-vacancies. The flatter slope for impact parameters larger than 60 fm is attributed to the radiative decay of holes in 2psub(1/2)sigma molecular states. In this way, experimental ''1ssigma-MOR-emission probabilities'' could be extracted and compared with theory. For 4.3 MeV/u the 1ssigma- and 2psub(1/2)sigma-excitation probabilities could also be determined and have been compared to coupled-channel calculations and to a scaling law for 1ssigma-excitation. (orig.)

  12. Emissions of atmospheric pollutant associated to energy activities scenarios

    International Nuclear Information System (INIS)

    In this paper the methodology use for the determination of the mains atmospheric pollutant from energy activities in Cuba is presented. These emissions are estimated from the definition of economic development scenarios and the projection of the energy balances. The main considerations in the study are presented, as well as the analysis of the emissions behavior

  13. Atmospheric deposition fluxes of 7Be, 210Pb and chemical species to the Arabian Sea and Bay of Bengal

    International Nuclear Information System (INIS)

    Aerosol samples collected close to the air-sea interface, between February 1997 to February 1999, over the Arabian Sea and Bay of Bengal were analyzed to determine the atmospheric dry-deposition of Fe (dust inputs), anthropogenic constituents (NO3-, SO42-) and environmental nuclides (7Be, 210Pb). In general, aerosol 210Pb concentrations showed a good correlation with 7Be, suggesting the long-range transport of 210Pb from the continents (via upper troposphere) and similarities in the processes governing their deposition through the marine boundary layer (MBL). The relatively low 7Be/210Pb ratios observed over the Bay of Bengal, during February 1999, are dominated by aerosol transport from the continental surface sources. The dry deposition fluxes of 210Pb and 7Be, to these two oceanic regions, average around 245 and 1860 Bq m-2 y-l, respectively. The non-sea-salt (nss) SO42- (range: 1.7 to 9.4 μg m-3) and NO3- (range: 0.6 to 4.1 μg m-3) are uncorrelated in the MBL, presumably because continental pollution sources for SO42- overwhelm the transport of NO3- from crustal dust and biomass burning. The oceanic biogenic emission (DMS) constitutes a very minor source for nss-SO42-. The enhanced concentrations of aerosol NO3- and Fe observed over the Arabian Sea are attributed to dust storm activities from the adjacent desert areas (Saudi Arabia and Thar). Significant scatter in the linear regression analyses indicate that the aerosol composition along the coastal tracks is different from those transported to the open ocean. On average, dry deposition fluxes of N-NO3 and non-marine SO42- are 150 and 1225 mg m-2 y-1, respectively. In contrast, dry deposition of Fe over the Arabian Sea (255 mg m-2 y-1) far exceeds that over the Bay of Bengal (93 mg m-2 y-1). Thus, dust from desert regions appears to be a potential source of micronutrients (Fe) to the surface Arabian Sea. (author)

  14. Emissions to the atmosphere - monitoring and abatement

    International Nuclear Information System (INIS)

    In 1996, paper-mills will be subject to the requirements of the UK Environmental Protection Act 1990. This will involve the monitoring and reduction of emissions of SO2 and NOx. This paper describes the sources of these emissions - fluidised bed boilers, stoker fuel beds, pulverized fuel -and the available technologies for monitoring and abating them. The cost and effectiveness of pollution control is site specific. Large mills may benefit from the installation of Pound 100k monitoring systems with annual running costs of Pound 50 k; while small mills may achieve the desired results through periodic monitoring by consultants at Pound 10k a year. (author)

  15. Scavenging and fractionation of particle-reactive radioisotopes 7Be, 210Pb and 210Po in the atmosphere

    Science.gov (United States)

    Chen, Jinfang; Luo, Shangde; Huang, Yipu

    2016-09-01

    The scavenging and fractionation of 7Be, 210Pb, and 210Po in the atmosphere are investigated by measuring their activities in rainwater collected from 68 rain events during March 2004 to April 2006 at a coastal station of Xiamen, southeastern China. In addition to documenting the large temporal variations in activities, fluxes, and isotope ratios of 7Be, 210Pb and 210Po in rainwater and the role of rainfall intensity in radionuclide scavenging, our results show that an enhanced deposition of 7Be and 210Pb occurs in the spring than in other seasons and is attributed to the "funnel effect" due to the increased atmospheric vertical convective mixing in the spring. This latter hypothesis is further supported by the observed seasonal and inter-annual variations in 7Be/210Pb and 210Po/210Pb ratios showing that the weakening of vertical convective mixing or stratosphere-troposphere exchange (STE) at the study site is linked with the enhancement of summer monsoons. It appears that the rainfall intensity, in connection with the vertical (e.g., STE) and horizontal (summer monsoons) air transport, exerts an important control on the activities, fluxes, and isotope ratios of 7Be, 210Pb, and 210Po in the atmosphere. Application of the observational data to a theoretical model shows that there are significant fractionations among 7Be, 210Pb, and 210Po in the atmosphere, with the scavenging rate constant or reciprocal of the residence time of radionuclide in the atmosphere being 210Pb > 7Be > 210Po. A revised Poet et al. (1972)'s method is proposed for quantitative constraint on the scavenging behavior of radionuclide, aerosols, and aerosol-associated trace pollutants in the atmosphere.

  16. The use of Pb-210 to normalize fluxes and burdens of atmospheric contaminants in lake sediment cores

    Energy Technology Data Exchange (ETDEWEB)

    Brunskill, G.J.; Wilkinson, P.; Hunt, R.; Muir, D.; Billeck, B.; Lockhart, L. (Freshwater Inst., Winnipeg, Manitoba (Canada))

    1990-01-09

    It is possible to estimate the local annual atmospheric flux (Bq/m[sup 2] [sm bullet] yr) of Pb-210 to land and lake surfaces from measurements of the integral of excess Pb-210 in soil and peat profiles. If you compare this average Pb-210 flux to the soil surface, to the Pb-210 flux to deep lake sediments, you will usually find that the lake sediment flux is a factor of 2 to 6 greater. This is because most of the clay-sized and organic material added to the lake (and resuspended in the lake) each year is funneled into the deeper parts of the lake basin. The ratio of the deep lake Pb-210 sediment flux to the average terrestrial soil Pb-210 flux will be called the focusing factor, which can be used to crudely estimate whole lake sedimentation rates (g/m[sup 2] lake surface area [sm bullet] yr). Many industrial and agricultural contaminants are delivered to remote lakes by atmospheric deposition, and those contaminants that are strongly particle reactive will usually be resuspended and funneled into the deeper parts of the lake basin similar to Pb-210. Often a single sediment core history of deposition is used to estimate contaminant burdens and fluxes at the coring site in a lake basin. These deep basin contaminant burdens and fluxes can be divided by the focusing factor to estimate the burden per unit lake surface area and the atmospheric deposition rate to the lake surface area.

  17. The influence of atmospheric pressure on landfill methane emissions

    International Nuclear Information System (INIS)

    Landfills are the largest source of anthropogenic methane (CH4) emissions to the atmosphere in the United States. However, few measurements of whole landfill CH4 emissions have been reported. Here, we present the results of a multi-season study of whole landfill CH4 emissions using atmospheric tracer methods at the Nashua, New Hampshire Municipal landfill in the northeastern United States. The measurement data include 12 individual emission tests, each test consisting of 5-8 plume measurements. Measured emissions were negatively correlated with surface atmospheric pressure and ranged from 7.3 to 26.5 m3 CH4 min-1. A simple regression model of our results was used to calculate an annual emission rate of 8.4x106 m3 CH4 year-1. These data, along with CH4 oxidation estimates based on emitted landfill gas isotopic characteristics and gas collection data, were used to estimate annual CH4 generation at this landfill. A reported gas collection rate of 7.1x106 m3 CH4 year-1 and an estimated annual rate of CH4 oxidation by cover soils of 1.2x106 m3 CH4 year-1 resulted in a calculated annual CH4 generation rate of 16.7x106 m3 CH4 year-1. These results underscore the necessity of understanding a landfill's dynamic environment before assessing long-term emissions potential

  18. Modelling the evolution of 210Pb and 210Po size distributions in the atmosphere

    International Nuclear Information System (INIS)

    The study of radon (222Rn and 220Rn) decay products in the atmosphere is important for estimating air ionization, assessing the inhalation doses to humans and for understanding atmospheric transport processes. The decay products 218Po, 214Pb (T1/2 < 1 hour), 212Pb (T1/2 ∼ 10.6 hrs) are short lived and 210Po (T1/2 ∼ 13 days), 210Pb (T1/2 ∼ 22 years) are long lived. Within a short time after their formation, the decay product atom combine with air constituents to form molecular clusters which then get attached to existing aerosol particles. The activity size distributions of the short-lived components in the atmosphere show two major modes, namely fine and coarse modes. The long-lived components predominantly occur in the coarse mode. Several studies have been carried out on the decay product activity distributions to estimate their atmospheric residence times. An important aspect that has received little attention is the upward size evolution of the decay products due to the persistent coagulation of the coarse mode particles. The present study aims at the development of first principle model for progeny attachment dynamics to a coagulating aerosol, which will provide insight in understanding the evolution of activity size distribution. A theoretical model is formulated by considering the processes such a constant formation of background aerosols, attachment of progeny atoms to the aerosol, coagulation, physical decay, and deposition. A set of integro-differential equations for attached and unattached fractions are formulated and are solved by a comprehensive numerical approach. Comparative studies of the activity size distributions, the degree of mixing of radioactivity within particles are carried out for short-lived and long lived species. The results are in agreement with the observations which show that the mode of the activity size distribution strongly depends on the effective life time of the progeny species in the atmosphere. The size dependence of

  19. Two high resolution terrestrial records of atmospheric Pb deposition from New Brunswick, Canada, and Loch Laxford, Scotland

    International Nuclear Information System (INIS)

    Environmental archives like peat deposits allow for the reconstruction of both naturally and anthropogenically forced changes in the biogeochemical cycle of Pb as well as the quantification of past and present atmospheric Pb pollution. However, records of atmospheric Pb deposition from pre-industrial times are lacking. In a publication by Weiss et al. [Weiss, D., Shotyk, W., Boyle, E.A., Kramers, J.D., Appleby, P.G., Cheburkin, A.K., Comparative study of the temporal evolution of atmospheric lead deposition in Scotland and eastern Canada using blanket peat bogs. Sci Total Environ 2002;292:7-18]. Pb isotopes data measured by Q-ICP-MS and TIMS, concentration and enrichment data was presented for sites in eastern Canada (PeW1) and northwestern Scotland (LL7c), dating to 1586 A.D and 715 A.D., respectively. Here these same cores are re-analysed for Pb isotopes by MC-ICP-MS thereby acquiring 204Pb data and improving on the original data in terms of resolution and temporal coverage. Significant differences were found between the Q-ICP-MS/TIMS and MC-ICP-MS measurements, particularly at PeW1. These discrepancies are attributed to the problematic presence of organic matter during sample preparation and analysis complicated by the heterogeneity of the organic compounds that survived sample preparation steps. The precision and accuracy of Pb isotopes in complex matrices like peat is not always well estimated by industrial standards like NIST-SRM 981 Pb. Lead pollution histories at each site were constructed using the MC-ICP-MS data. The entire LL7c record is likely subject to anthropogenic additions. Contributions from local mining were detected in Medieval times. Later, coal use and mining in Scotland, Wales and England became important. After industrialization (ca. 1885 A.D.) contributions from Broken Hill type ores and hence, leaded petrol, dominate atmospheric Pb signatures right up to modern times. At PeW1 anthropogenic impacts are first distinguishable in the late 17th

  20. Future impact of transport emissions on the global atmospheric chemistry

    Science.gov (United States)

    Koffi, B.; Szopa, S.; Cozic, A.

    2009-04-01

    Emissions of air pollutants by road, air traffic and international shipping affect air quality and climate. Besides their effect on the ozone concentration and its related radiative forcing, they also affect the OH-concentration, i.e. the oxidizing capacity of the atmosphere. The pollutants are emitted by the three transport sectors into highly different environments. The O3 and OH potential productions induced by each of these sectors thus differ strongly. These transport emissions are expected to show drastic quantitative and geographic changes in the next decades, because of new emission regulations, increasing mobility, as well as demographic and economic growths. In addition to changes in emissions, significant changes in climate parameters such as H2O, temperature, and dynamics are expected to occur in the future global atmosphere. They will affect the oxidation processes and thereby the changes in the atmospheric concentrations induced by transport emissions. Within the EU-project QUANTIFY (Quantifying the Climate Impact of Global and European Transport Systems) the LMDz-INCA climate-chemistry model was used to estimate the effect of transport emissions on the global atmospheric chemical composition. In a first step, up-to-date emission datasets were used for the transport and non-transport anthropogenic emissions for present (2000) and future (2050, SRES A1b and B1 scenarios) using 2003 nudged meteorology. A strong reduction of the road emissions and a moderate (B1) to high (A1b) increase of the ship and aircraft emissions are expected by the year 2050. As a consequence, the impact of road emissions on ozone is shown to decrease drastically, whereas aviation would become the major transport sources of tropospheric ozone perturbation at global scale. According to the most likely scenario (A1b), the contribution of all transport modes to the ozone column would increase everywhere, reaching up to 13% in some areas such as Asia. In a second step of the study

  1. Atmospheric Sulfur Hexafluoride: Measurements and Emission Estimates from 1970 - 2008

    Science.gov (United States)

    Rigby, M. L.; Prinn, R. G.; Muhle, J.; Miller, B. R.; Dlugokencky, E. J.; Krummel, P. B.; Steele, L. P.; Fraser, P. J.; Leist, M.; Weiss, R. F.; Harth, C. M.; O'Doherty, S. J.; Greally, B. R.; Simmonds, P. G.; Derek, N.; Vollmer, M. K.; Kim, J.; Kim, K.; Porter, L. W.

    2009-12-01

    We present an air history of atmospheric sulfur hexafluoride (SF6) from the early 1970s through 2008. During this period, concentrations of this extremely potent and long-lived greenhouse gas have increased by more than an order of magnitude, and its growth has accelerated in recent years. In this study, historical concentrations are determined from archived air samples measured on the Advanced Global Atmospheric Gases Experiment (AGAGE) ‘Medusa’ gas chromatography/mass spectrometry system. These data are combined with modern high-frequency measurements from the AGAGE and National Oceanic and Atmospheric Administration (NOAA) in situ networks and ˜weekly samples from the NOAA flask network, to produce a unique time series with increasing global coverage spanning almost four decades. Using the three-dimensional chemical transport Model for Ozone and Related Tracers (MOZART v4.5) and a discrete Kalman filter, we derive estimates of the annual emission strength of SF6 on hemispheric scales from 1970 - 2004 and on continental scales from 2004 - 2008. Our emission estimates are compared to the recently compiled Emissions Database for Global Atmospheric Research (EDGAR v4), and emissions reported under the United Nations Framework Convention on Climate Change (UNFCCC). The cause of the recent growth rate increase is also investigated, indicating that the origin of the required emissions rise is likely to be South-East Asia.

  2. Methane emissions to the global atmosphere from coal mining

    International Nuclear Information System (INIS)

    The increase in atmospheric concentrations of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and chlorofluorocarbons (CFCs), and their contribution to a potential future warming of the Earth's lower atmosphere, are well documented. In this chapter, the authors report the results of a detailed assessment of coal mining and use as a source for atmospheric CH4. The results of their study have important implications for the policy process for mitigating the global warming potential from CH4. CH4 is a greenhouse gas which also partially controls the oxidizing capacity of the atmosphere. Ambient air measurements indicate that CH4 is increasing at an annual rate of about 1%. Future growth in atmospheric CH4 concentrations is likely to contribute more to a greenhouse warming effect than any other gas except CO2. Historical records of atmospheric CH4 indicate that preindustrial concentrations varied over a range of approximately 0.30 to 0.70 ppM, compared to the present average concentration of 1.7 ppM. Contemporary atmospheric CH4 concentrations and the currently observed rates of increase are unprecedented. There is a strong correlation between increasing atmospheric CH4 and human population growth during the past 150 years. CH4 is emitted to the atmosphere from flood soils, ruminant animals, fires, termites, natural gas exploitation, and coal mining. Annual CH4 release from these sources has been estimated to be 400 to 640 x 1012 g (1012 g = Tg). The annual emission rates for individual sources of atmospheric CH4 are highly uncertain by factors of 2 to 25. If annual CH4 emissions from coal mining are approximately 25 to 45 Tg, as suggested by preliminary estimates, they may represent one of the CH4 sources potentially most amenable to control in any future program to stabilize the composition of the atmosphere

  3. Atmospheric Inverse Estimates of Methane Emissions from Central California

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.

    2008-11-21

    Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.

  4. Atmospheric Pb-pollution by pre-medieval mining detected in the sediments of the brackish karst lake An Loch Mor, western Ireland

    International Nuclear Information System (INIS)

    This paper presents results of geochemical investigations of lake sediments from the karst lake An Loch Mor, Aran Islands, including the first highly resolved record of atmospheric Roman Pb pollution for Ireland. The natural Pb influx into the lake is largely contributed by 3 Pb components, which differ in their isotopic composition: detrital influx of Pb from the siliciclastic input, dissolved influx of Pb released by weathering of the local limestone, and dissolved influx of seawater Pb. The balance between the 3 Pb components varies in concert with the hydrological evolution of the lake. The influx of Pb in dissolved form is estimated by geochemical mass balance assuming that the siliciclastic influx is characterised by the Pb/Al-ratio of the Late Glacial clastic sediments. It typically accounts for 50-80% of total Pb input in the Holocene sediments of An Loch Mor. The natural dissolved influxes of Pb, Sc, and Y reach a similar order of magnitude. Normalisation with Sc and Y is applied to quantify contributions from anthropogenic Pb. Based on continuous sampling of 1 cm sample slices, variations in the influx of Roman Pb could be reconstructed at a time resolution of c. 5 a. Combined geochemical and Pb isotope mass balance is used to characterise the isotopic composition of anthropogenic Pb. Distinctly enhanced influx of anthropogenic Pb occurs in the 1st and 2nd century AD and shows high variability on decadal scale. This is in contrast to central European Pb records, which document a gradual increase and decrease in ancient atmospheric pollution by Roman Pb. The reconstructed high variability in the influx of Roman Pb in An Loch Mor documents variations in the wind regime of western Europe, temporarily favouring the transport of atmospheric Pb to western Ireland

  5. The travel-related carbon dioxide emissions of atmospheric researchers

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2008-04-01

    Full Text Available Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2. In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc. were calculated for the years 2005–2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.

  6. The travel-related carbon dioxide emissions of atmospheric researchers

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2008-11-01

    Full Text Available Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of CO2. In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc. were calculated for the years 2005–2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.

  7. Air mass origins by back trajectory analysis for evaluating atmospheric 210Pb concentrations at Rokkasho, Aomori, Japan

    International Nuclear Information System (INIS)

    Atmospheric concentrations of 210Pb change with various factors such as meso-scale meteorological conditions. We have already reported the biweekly atmospheric 210Pb concentrations in Rokkasho, Japan for 5 years and found that they had clear seasonal variations: low concentrations in summer and high values in winter to spring. To study the reasons for the seasonal variations, the origins of the air mass flowing to Rokkasho were analyzed by 3-D backward air mass trajectory analysis. Routes of the calculated trajectories were classified into four regions: northeastern and southeastern Asian Continent, sea and other regions. The atmospheric 210Pb concentrations were well correlated with the frequency of the routes through the northeastern Asian Continent. A non-linear multiple regression analysis of the 210Pb concentrations and the relative frequencies of the four routes showed good fitting of the predicted values to the observed ones, and indicated that the atmospheric 210Pb concentrations in Rokkasho depended on the frequency of the air mass from the northeastern Asian Continent. (author)

  8. Influence of emissions on regional atmospheric mercury concentrations

    Directory of Open Access Journals (Sweden)

    Bieser J.

    2013-04-01

    Full Text Available Mercury is a global pollutant that is rapidly transported in the atmosphere. Unlike the majority of air pollutants the background concentrations of mercury play a major role for the atmospheric concentrations on a hemispheric scale. In this study the influence of regional anthropogenic emissions in comparison to the global emissions on mercury concentrations over Europe are investigated. For this purpose an advanced threedimensional model system is used that consists of three components. The emission model SMOKE-EU, the meteorological model COSMO-CLM, and the chemistry transport model (CTM CMAQ. A variety of sensitivity runs is performed in order to determine the influence of different driving factors (i.e. boundary conditions, anthropogenic and natural emissions, emission factors, meteorological fields on the atmoshperic concentrations of different mercury species. This study is part of the European FP7 project GMOS (Global Mercury Observation System. The aim is to identify the most important drivers for atmospheric mercury in order to optimize future regional modelling studies in the course of the GMOS project. Moreover, the model results are used to determine areas of interest for air-plane based in-situ measurements which are also part of GMOS.

  9. Atmospheric benzenoid emissions from plants rival those from fossil fuels

    Science.gov (United States)

    Misztal, P. K.; Hewitt, C. N.; Wildt, J.; Blande, J. D.; Eller, A. S. D.; Fares, S.; Gentner, D. R.; Gilman, J. B.; Graus, M.; Greenberg, J.; Guenther, A. B.; Hansel, A.; Harley, P.; Huang, M.; Jardine, K.; Karl, T.; Kaser, L.; Keutsch, F. N.; Kiendler-Scharr, A.; Kleist, E.; Lerner, B. M.; Li, T.; Mak, J.; Nölscher, A. C.; Schnitzhofer, R.; Sinha, V.; Thornton, B.; Warneke, C.; Wegener, F.; Werner, C.; Williams, J.; Worton, D. R.; Yassaa, N.; Goldstein, A. H.

    2015-07-01

    Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y-1), pointing to the importance of these natural emissions in atmospheric physics and chemistry.

  10. Atmospheric Verification of Point Source Fossil Fuel CO2 Emissions

    Science.gov (United States)

    Turnbull, J. C.; Keller, E. D.; Norris, M. W.; Wiltshire, R.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.

    2015-12-01

    Large point sources (electricity generation and large-scale industry) make up roughly one third of all fossil fuel CO2 (CO2ff) emissions. Currently, these emissions are determined from self-reported inventory data, and sometimes from smokestack emissions monitoring, and the uncertainty in emissions from individual power plants is about 20%. We examine the utility of atmospheric 14C measurements combined with atmospheric transport modelling as a tool for independently quantifying point source CO2ff emissions, to both improve the accuracy of the reported emissions and for verification as we move towards a regulatory environment. We use the Kapuni Gas Treatment Facility as a test case. It is located in rural New Zealand with no other significant fossil fuel CO2 sources nearby, and emits CO2ff at ~0.1 Tg carbon per year. We use several different sampling methods to determine the 14C and hence the CO2ff content downwind of the emission source: grab flask samples of whole air; absorption of CO2 into sodium hydroxide integrated over many hours; and plant material which faithfully records the 14C content of assimilated CO2. We use a plume dispersion model to compare the reported emissions with our observed CO2ff mole fractions. We show that the short-term variability in plume dispersion makes it difficult to interpret the grab flask sample results, whereas the variability is averaged out in the integrated samples and we obtain excellent agreement between the reported and observed emissions, indicating that the 14C method can reliably be used to evaluated point source emissions.

  11. Inventory of U.S. 2012 dioxin emissions to atmosphere.

    Science.gov (United States)

    Dwyer, Henri; Themelis, Nickolas J

    2015-12-01

    In 2006, the U.S. EPA published an inventory of dioxin emissions for the U.S. covering the period from 1987-2000. This paper is an updated inventory of all U.S. dioxin emissions to the atmosphere in the year 2012. The sources of emissions of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), collectively referred to in this paper as "dioxins", were separated into two classes: controlled industrial and open burning sources. Controlled source emissions decreased 95.5% from 14.0 kg TEQ in 1987 to 0.6 kg in 2012. Open burning source emissions increased from 2.3 kg TEQ in 1987 to 2.9 kg in 2012. The 2012 dioxin emissions from 53 U.S. waste-to-energy (WTE) power plants were compiled on the basis of detailed data obtained from the two major U.S. WTE companies, representing 84% of the total MSW combusted (27.4 million metric tons). The dioxin emissions of all U.S. WTE plants in 2012 were 3.4 g TEQ and represented 0.54% of the controlled industrial dioxin emissions, and 0.09% of all dioxin emissions from controlled and open burning sources. PMID:26297638

  12. Atmospheric residence time of (210)Pb determined from the activity ratios with its daughter radionuclides (210)Bi and (210)Po.

    Science.gov (United States)

    Semertzidou, P; Piliposian, G T; Appleby, P G

    2016-08-01

    The residence time of (210)Pb created in the atmosphere by the decay of gaseous (222)Rn is a key parameter controlling its distribution and fallout onto the landscape. These in turn are key parameters governing the use of this natural radionuclide for dating and interpreting environmental records stored in natural archives such as lake sediments. One of the principal methods for estimating the atmospheric residence time is through measurements of the activities of the daughter radionuclides (210)Bi and (210)Po, and in particular the (210)Bi/(210)Pb and (210)Po/(210)Pb activity ratios. Calculations used in early empirical studies assumed that these were governed by a simple series of equilibrium equations. This approach does however have two failings; it takes no account of the effect of global circulation on spatial variations in the activity ratios, and no allowance is made for the impact of transport processes across the tropopause. This paper presents a simple model for calculating the distributions of (210)Pb, (210)Bi and (210)Po at northern mid-latitudes (30°-65°N), a region containing almost all the available empirical data. By comparing modelled (210)Bi/(210)Pb activity ratios with empirical data a best estimate for the tropospheric residence time of around 10 days is obtained. This is significantly longer than earlier estimates of between 4 and 7 days. The process whereby (210)Pb is transported into the stratosphere when tropospheric concentrations are high and returned from it when they are low, significantly increases the effective residence time in the atmosphere as a whole. The effect of this is to significantly enhance the long range transport of (210)Pb from its source locations. The impact is illustrated by calculations showing the distribution of (210)Pb fallout versus longitude at northern mid-latitudes. PMID:27132252

  13. Seven centuries of atmospheric Pb deposition recorded in a floating mire from Central Italy

    Science.gov (United States)

    Zaccone, Claudio; Lobianco, Daniela; D'Orazio, Valeria; Miano, Teodoro M.; Shotyk, William

    2016-04-01

    Floating mires generally consist of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Generally speaking, the entire floating mass (mat) is divided into a mat root zone and an underlying mat peat zone. Floating mires are distributed world-wide; large areas of floating marsh occur along rivers and lakes in Africa, the Danube Delta in Romania, the Amazon River in South America, and in the Mississippi River delta in USA, whereas smaller areas occur also in The Netherlands, Australia and Canada. While peat cores from ombrotrophic bogs have been often (and successfully) used to reconstruct changes in the atmospheric deposition of several metals (including Pb), no studies are present in literature about the possibility to use peat profiles from floating mires. To test the hypothesis that peat-forming floating mires could provide an exceptional tool for environmental studies, a complete, 4-m deep peat profile was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum palustre centre. The whole core was frozen cut each 1-to-2 cm (n =231), and Pb determined by quadrupole ICP-MS (at the ultraclean SWAMP lab, University of Alberta, Canada) in each sample throughout the first 100 cm, and in each odd-numbered slice for the remaining 300 cm. The 14C age dating of organic sediments (silty peat) isolated from the sample at 385 cm of depth revealed that the island probably formed ca. 700 yrs ago. Lead concentration trend shows at least two main zones of interest, i.e., a clear peak (ranging from 200 to 1600 ppm) between 110-115 cm of depth, probably corresponding to early 1960's - late 1970's, and a broad band (80-160 ppm) between 295-320 cm of depth, corresponding to approximately AD 1480

  14. Atmospheric emission characterization of Marcellus shale natural gas development sites.

    Science.gov (United States)

    Goetz, J Douglas; Floerchinger, Cody; Fortner, Edward C; Wormhoudt, Joda; Massoli, Paola; Knighton, W Berk; Herndon, Scott C; Kolb, Charles E; Knipping, Eladio; Shaw, Stephanie L; DeCarlo, Peter F

    2015-06-01

    Limited direct measurements of criteria pollutants emissions and precursors, as well as natural gas constituents, from Marcellus shale gas development activities contribute to uncertainty about their atmospheric impact. Real-time measurements were made with the Aerodyne Research Inc. Mobile Laboratory to characterize emission rates of atmospheric pollutants. Sites investigated include production well pads, a well pad with a drill rig, a well completion, and compressor stations. Tracer release ratio methods were used to estimate emission rates. A first-order correction factor was developed to account for errors introduced by fenceline tracer release. In contrast to observations from other shale plays, elevated volatile organic compounds, other than CH4 and C2H6, were generally not observed at the investigated sites. Elevated submicrometer particle mass concentrations were also generally not observed. Emission rates from compressor stations ranged from 0.006 to 0.162 tons per day (tpd) for NOx, 0.029 to 0.426 tpd for CO, and 67.9 to 371 tpd for CO2. CH4 and C2H6 emission rates from compressor stations ranged from 0.411 to 4.936 tpd and 0.023 to 0.062 tpd, respectively. Although limited in sample size, this study provides emission rate estimates for some processes in a newly developed natural gas resource and contributes valuable comparisons to other shale gas studies. PMID:25897974

  15. 210Pb and 7Be in aerosol component of atmosphere in Bratislava

    International Nuclear Information System (INIS)

    We were observing radioactivity of aerosol component of atmosphere since 2001 to 2004. The research was aimed on radionuclides Pb-210 and Be-7. Their concentrations ranged from 0.27 to 3.07 mBq · m-3, or from 0.46 to 4.37 mBq · m-3 with average values 0.81 mBq · m-3 or 2.01 mBq · m-3. Concentrations of both radionuclides showed anticipated seasonal variations. In the case of Be-7 the local minimum appears in lately years in summer period, which can be consequence of climate changes. Though this problem needs next measurements and research. (author)

  16. Spatial distribution and environmental behavior of atmospheric fallout Pb-210 and Cs-137 in Qarun Lake sediments

    International Nuclear Information System (INIS)

    Full text: Atmospheric fallout radionuclides have a wide range of environmental applications such as chronometry of sediment, soil erosion, and studying atmospheric flux and dispersion. They are playing a significant role in the radiological and health impacts of environmental radioactivity. They have both natural origin and man-made origin, such as Pb-210 and Cs-137. Qarun Lake is originally fresh water lake that became a salt water lake due to evaporation and agricultural drainage water input. The water body of the lake is not homogenizing regarding the water quality and sediment properties. Seventy four bottom sediment samples were collected. The specific activity, in Bq/kg, of Cs-137 and Pb-210 were measured using gamma-ray spectrometry based on hyper pure germanium detector and alpha particle spectrometry based on PIPS detector after chemical separation of Po-210. The average specific activity (range), in Bq/kg, of Cs-137, total Pb-210 and unsupported Pb-210 were 3.5 (0.3-6.8), 25.2 (14.9-32.1) and 9.7 (2.7-17.0), respectively. The relationship between Cs-137, Pb-210 and unsupported Pb-210 specific activity and sediment properties (pH, EC, organic matter content, Clay%, silt %, Sand% and CaCO3%) were discussed. (author)

  17. Guidelines on reducing atmospheric emissions from oil and gas facilities

    International Nuclear Information System (INIS)

    These guidelines have been produced by the United Kingdom Offshore Operators Association (UKOOA) to assist operators in improving emissions performance in the upstream oil and gas industry. The principal environmental concerns relevant to activities within the industry are: global climate change which could result from carbon dioxide and methane emissions; stratospheric ozone depletion caused by halons and chlorofluorocarbons; ground level ozone formation from reactions between volatile organic compounds and oxides of nitrogen; acidification caused by gases such as oxides of nitrogen and sulphur. The guidelines are set out under the following main areas: environmental concerns and legislative responses; atmospheric emissions sources; facility design for improved performance; improving performance of existing operations; cost-effectiveness of air emission reduction projects. (UK)

  18. Biomass fueled fluidized bed combustion: atmospheric emissions, emission control devices and environmental regulations

    International Nuclear Information System (INIS)

    Fluidized bed combustors have become the technological choice for power generation from biomass fuels in California. Atmospheric emission data obtained during compliance tests are compared for five operating 18 to 32 MW fluidized bed combustion power plants. The discussion focuses on the impact of fuel properties and boiler design criteria on the emission of pollutants, the efficiency of pollution control devices, and regulations affecting atmospheric emissions. Stack NOx emission factors are shown not to vary substantially among the five plants which burn fuels with nitrogen concentrations between 0.3 and 1.1% dry weight. All facilities use at least one particular control device, but not all use limestone injection or other control techniques for sulfur and chlorine. The lack of control for chlorine suggests the potential for emission of toxic species due to favorable temperature conditions existing in the particulate control devices, particularly when burning fuels containing high concentrations of chlorine. (Author)

  19. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    Science.gov (United States)

    Binetti, Enrico; Striccoli, Marinella; Sibillano, Teresa; Giannini, Cinzia; Brescia, Rosaria; Falqui, Andrea; Comparelli, Roberto; Corricelli, Michela; Tommasi, Raffaele; Agostiano, Angela; Curri, M. Lucia

    2015-10-01

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700-850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  20. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    KAUST Repository

    Binetti, Enrico

    2015-10-27

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  1. Modelling the impact of aircraft emissions on atmospheric composition

    Science.gov (United States)

    Wasiuk, D. K.; Lowenberg, M. H.; Shallcross, D. E.

    2012-12-01

    Emissions of the trace gases CO2, CO, H2O, HC, NOx, and SOx that have the potential to perturb large scale atmospheric composition are accumulating in the atmosphere at an unprecedented rate as the demand for air traffic continues to grow. We investigate the global and regional effects of aircraft emissions on the atmosphere and climate using mathematical modelling, sensitivity simulations, and perturbation simulations and present historical and spatial distribution evolution of the global and regional number of departures, fuel burn and emissions. A comprehensive aircraft movement database spanning years 2005 - 2012, covering 225 countries and over 223 million departures on approximately 41000 unique routes serves as a basis for our investigation. We combine air traffic data with output from an aircraft performance model (fuel burn and emissions) including 80 distinct aircraft types, representing 216 of all the aircraft flown in the world in 2005 - 2012. This accounts for fuel burn and emissions for 99.5% of the total number of departures during that time. Simulations are being performed using a state of the art 3D Lagrangian global chemical transport model (CTM) CRI-STOCHEM for simulation of tropospheric chemistry. The model is applied with the CRI (Common Representative Intermediates) chemistry scheme with 220 chemical species, and 609 reactions. This allows us to study in detail the chemical cycles driven by NOx, governing the rate of formation of O3 which controls the production of OH and indirectly determines the lifetime of other greenhouse gases. We also investigate the impact of the Eyjafjallajökull eruption on the European air traffic and present a model response to the perturbation of NOx emissions that followed.

  2. Reactive nitrogen in atmospheric emission inventories – a review

    Directory of Open Access Journals (Sweden)

    S. Reis

    2009-05-01

    Full Text Available Excess reactive Nitrogen (Nr has become one of the most pressing environmental problems leading to air pollution, acidification and eutrophication of ecosystems, biodiversity impacts, leaching of nitrates into groundwater and global warming. This paper investigates how current inventories cover emissions of Nr to the atmosphere in Europe, the United States of America, and The People's Republic of China. The focus is on anthropogenic sources, assessing the state-of-the-art of quantifying emissions of Ammonia (NH3, Nitrogen Oxides (NOx and Nitrous Oxide (N2O, the different purposes for which inventories are compiled, and to which extent current inventories meet the needs of atmospheric dispersion modelling. The paper concludes with a discussion of uncertainties involved and a brief outlook on emerging trends in the three regions investigated is conducted.

    Key issues are substantial differences in the overall magnitude, but as well in the relative sectoral contribution of emissions in the inventories that have been assessed. While these can be explained by the use of different methodologies and underlying data (e.g. emission factors or activity rates, they may lead to quite different results when using the emission datasets to model ambient air quality or the deposition with atmospheric dispersion models. Hence, differences and uncertainties in emission inventories are not merely of academic interest, but can have direct policy implications when the development of policy actions is based on these model results.

    The robustness of emission estimates varies greatly between substances, regions and emission source sectors. This has implications for the direction of future research needs and indicates how existing gaps between modelled and measured concentration or deposition rates could be most efficiently addressed.

    The observed current trends in emissions display decreasing NO

  3. Atmospheric monitoring for fugitive emissions from geological carbon storage

    Science.gov (United States)

    Loh, Z. M.; Etheridge, D.; Luhar, A.; Leuning, R.; Jenkins, C.

    2013-12-01

    We present a multi-year record of continuous atmospheric CO2 and CH4 concentration measurements, flask sampling (for CO2, CH4, N2O, δ13CO2 and SF6) and CO2 flux measurements at the CO2CRC Otway Project (http://www.co2crc.com.au/otway/), a demonstration site for geological storage of CO2 in south-western Victoria, Australia. The measurements are used to develop atmospheric methods for operational monitoring of large scale CO2 geological storage. Characterization of emission rates ideally requires concentration measurements upwind and downwind of the source, along with knowledge of the atmospheric turbulence field. Because only a single measurement location was available for much of the measurement period, we develop techniques to filter the record and to construct a ';pseudo-upwind' measurement from our dataset. Carbon dioxide and methane concentrations were filtered based on wind direction, downward shortwave radiation, atmospheric stability and hour-to-hour changes in CO2 flux. These criteria remove periods of naturally high concentration due to the combined effects of biogenic respiration, stable atmospheric conditions and pre-existing sources (both natural and anthropogenic), leaving a reduced data set, from which a fugitive leak from the storage reservoir, the ';(potential) source sector)', could more easily be detected. Histograms of the filtered data give a measure of the background variability in both CO2 and CH4. Comparison of the ';pseudo-upwind' dataset histogram with the ';(potential) source sector' histogram shows no statistical difference, placing limits on leakage to the atmosphere over the preceding two years. For five months in 2011, we ran a true pair of up and downwind CO2 and CH4 concentration measurements. During this period, known rates of gas were periodically released at the surface (near the original injection point). These emissions are clearly detected as elevated concentrations of CO2 and CH4 in the filtered data and in the measured

  4. X-ray emission of the night terrestrial atmosphere (experiment

    Science.gov (United States)

    Pugacheva, Galina; Pankov, Vladislav; Prokhin, Vladimir; Gusev, Anatoly; Spjeldvik, Walther; Martin, Inacio; Pugacheva, Galina

    A spectrometer RPS-1 onboard the LEO "CORONAS-F" satellite monitored solar X-rays in the energy range 3-31.5 keV (31.07.2001 - 06.12.2005 years) using CdTe solid state detector with thermoelectric semiconductor micro cooler. The device registered X-ray emission of the upper atmosphere at shadowed branches of the orbit. When touching the inner radiation belt in the South Atlantic anomaly and at high latitudes the device registered signals produced by energetic trapped particles. Among the other factors determining the flux registered by the device there are solar activity, the Earth position relatively the Sun (seasonality), satellite position, the telescope orientation relatively nadir when entering and leaving the Earth's shadow. This paper presents global maps of the atmospheric X-ray emission in four energy intervals 3-5; 5-8, 8-16, and 16-31.5 keV during the total period from 23.03.2002 up to 23.03.2003 and periods of 23.03.2002-23.09.2002 and 23.09.2002-23.03/2003 corresponding "summer" and "winter" seasons in the Northern hemisphere. The energy of the registered emission does not exceed 8 keV out of the radiation belt. Comparison of the seasonal maps reveals a gap between the radiation belts at low altitudes ( 500km) in the summer of 2002 probably due to compression of the magnetosphere and/or the seasonal atmospheric temperature changesin time period close to the maximum of solar activity and the absence of the gap in summer of 2004 year near to solar activity minimum. A weak emission of 3-5 keV x-rays in the gap within radiation belts is produced by interaction of galactic cosmic rays with the atmosphere.

  5. Atmospheric emissions from the upstream oil and gas industry

    International Nuclear Information System (INIS)

    The results are presented of a study set up to determine the nature and levels of atmospheric emissions resulting from United Kingdom oil and gas exploration and production activities. The study was commissioned by the UK Offshore Operators Association. Emissions by the upstream oil and gas industry of common pollutants, such as carbon monoxide, sulphur dioxide and nitrous oxide, and ozone depletion chemicals were shown in each case to be less than 1% of total UK emissions. Greenhouse gas emissions in the industry arise mainly from production operations with a small but significant contribution from onshore activities. Carbon dioxide is the major component followed in descending order by nitrogen oxides, methane and volatile organic compounds. In 1991, these emissions formed 3.2%, 4.6%, 2.9% and 2.8% of the UK totals respectively; overall this represented only about 3% of UK global warming emissions. The evidence of this study illustrates that the industry, which produces 67% of the UK's primary energy, is successfully managing its operations in an environmentally responsible way. (3 figures, 3 tables) (UK)

  6. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  7. Australian HFC, PFC and SF6 emissions: atmospheric verification

    Science.gov (United States)

    Fraser, P.; Dunse, B.; Krummel, P. B.; Steele, P.; Manning, A. J.

    2011-12-01

    The synthetic greenhouse gases (GHGs: hydrofluorocarbons - HFCs, perfluorocarbons - PFCs, and sulfur hexafluoride - SF6), emitted largely by the refrigeration, aluminium and electricity distribution industries respectively, are currently responsible for less than 2% of Australia's net long-lived GHG emissions (DCCEE, 2011). Nevertheless, they have attracted the attention of policymakers because (1) if their growth in concentrations and emissions continues unabated, particularly HFCs - currently growing at 10% per year - then they could be responsible globally (and in Australia) for more than 10% of the radiative forcing due to long-lived GHGs by 2050 (Velders et al., 2009); and (2) they provide the opportunity for a very cost-effective GHG mitigation strategy, because emissions can be reduced significantly through better engineering to minimize emissions, through a ban on dispersive uses (as solvents for example) and through the use of low GWP (Global Warming Potential) alternatives (for example hydrofluoroethers - HFEs). CSIRO, through its involvement in the AGAGE global program of monitoring non-carbon dioxide GHGs (Prinn et al., 2000), has been making high precision in situ measurements (12 per day) of HFCs, PFCs and SF6 at Cape Grim, Tasmania, since 2004, using a gas chromatograph-mass spectrometer detector (GC-MSD) fitted with a custom-built cryo-focussing unit (Medusa: Miller et al., 2008). The resultant data have been used to derive Australian emissions by inverse modelling (NAME, TAPM) and interspecies correlation (ISC). The overall agreement between so-called bottom-up estimates of Australian emissions, as reported to the UNFCCC (United Nations Framework Convention on Climate Change), and top-down estimates from atmospheric observations, using NAME, TAPM and ISC, is encouraging. Australian UNFCCC reported emissions (DCCEE, 2011) generally agree to within of 10% of emissions calculated from Cape Grim data, scaled on a population basis, with some notable

  8. Diurnal variations of 218Po, 214Pb, and 214Po and their effect on atmospheric electrical conductivity in the lower atmosphere at Mysore

    International Nuclear Information System (INIS)

    The short-lived radon daughters (218Po, 214Pb, 214Bi and 214Po) are natural tracers in the troposphere in particular near the ground surface. They are electrically charged particles and are chemically reactive. As soon as they are formed they get attached to the aerosol particles of the atmosphere. Their behaviour is similar to that of aerosols with respect to their growth, transport, removal processes in the atmosphere. The electrical conductivity of the atmosphere is mainly due to the presence of highly mobile (small) ions. Hence the electrical conductivity of air at near the surface of the earth mainly due to 222Rn, 218Po, 214Pb, 214Bi and 214Po concentrations, and depends on aerosol concentrations and meteorological parameters. The individual radon progeny concentrations (218Po, 214Pb, and 214Po) are measured using Air Flow meter. The concentration of radon in the atmospheric air is measured using Low Level Radon Detection System. The total energy released due to both radon and its progeny is computed in energy units (eV cm-3s-1) and is converted into ion-pair production rate (No. cm-3 s-1), 32 eV being the energy producing one-ion pair. The atmospheric electrical conductivity (both positive and negative) is measured using a Gerdien's apparatus with two identical tubes. The average values of 218Po, 214Pb, and 214Po are respectively 13.70, 1.45 and 1.92 Bq m-3 respectively. The average value of positive and negative electrical conductivity are 5.08 x 10-14U-1 m-1 and 4.67 x 10-14 U-1 m-1. The concentrations of radon, its progeny, and positive and negative conductivity show a similar kind of diurnal variations with maximum in the early morning hours and a minimum during day time. The activity is higher in winter than in summer and rainy season. (author)

  9. Osmium isotopic tracing of atmospheric emissions from an aluminum smelter

    Science.gov (United States)

    Gogot, Julien; Poirier, André; Boullemant, Amiel

    2015-09-01

    We present for the first time the use of osmium isotopic composition as a tracer of atmospheric emissions from an aluminum smelter, where alumina (extracted from bauxite) is reduced through electrolysis into metallic aluminum using carbonaceous anodes. These anodes are consumed in the process; they are made of petroleum coke and pitch and have high Re/Os elementary ratio. Due to the relatively large geological age of their source material, their osmium shows a high content of radiogenic 187Os produced from in situ187Re radioactive decay. The radiogenic isotopic composition (187Os/188Os ∼ 2.5) of atmospheric particulate emissions from this smelter is different from that of other typical anthropogenic osmium sources (that come from ultramafic geological contexts with unradiogenic Os isotopes, e.g., 187Os/188Os < 0.2) and also different from average eroding continental crust 187Os/188Os ratios (ca. 1.2). This study demonstrates the capacity of osmium measurements to monitor particulate matter emissions from the Al-producing industry.

  10. Measurement of the cross section for electromagnetic dissociation with neutron emission in Pb-Pb collisions at √SNN=2.76 TeV

    International Nuclear Information System (INIS)

    The first measurement of neutron emission in electromagnetic dissociation of 208Pb nuclei at the LHC is presented. The measurement is performed using the neutron zero degree calorimeters of the ALICE experiment, which detect neutral particles close to beam rapidity. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at √SNN = 2.76 TeV with neutron emission are σsingleEMD =187.4 ± 0.2(stat)+13.2-11.2(syst) b and σmutualEMD = 5.7±0.1(stat) ± 0.4(syst) b, respectively. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model. (authors)

  11. Measurement of the cross section for electromagnetic dissociation with neutron emission in Pb-Pb collisions at sqrt[s(NN)] = 2.76 TeV.

    Science.gov (United States)

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Agostinelli, A; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Aystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldini Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Bock, N; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bose, S; Bossú, F; Botje, M; Böttger, S; Boyer, B; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Bugaiev, K; Busch, O; Buthelezi, Z; Caballero Orduna, D; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chawla, I; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Colamaria, F; Colella, D; Conesa Balbastre, G; Conesa Del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Cotallo, M E; Crochet, P; Cruz Alaniz, E; Cuautle, E; Cunqueiro, L; Erasmo, G D; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, A; Dash, S; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; de Rooij, R; Del Castillo Sanchez, E; Delagrange, H; Deloff, A; Demanov, V; Dénes, E; Deppman, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Diaz Corchero, M A; Dietel, T; Divià, R; Djuvsland, O; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Dutta Majumdar, M R; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Feldkamp, L; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Grabski, V; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, O; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harmanova, Z; Harris, J W; Hartig, M; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jancurová, L; Jang, H J; Jangal, S; Janik, M A; Janik, R; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jirden, L; Jones, P G; Jung, H; Jusko, A; Kakoyan, V; Kalcher, S; Kaliňák, P; Kalisky, M; Kalliokoski, T; Kalweit, A; Kanaki, K; Kang, J H; Kaplin, V; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, B; Kim, D J; Kim, D W; Kim, J H; Kim, J S; Kim, M; Kim, S; Kim, S H; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Koch, K; Köhler, M K; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Korneev, A; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Ladrón de Guevara, P; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lazzeroni, C; Le Bornec, Y; Lea, R; Lechman, M; Lee, K S; Lee, S C; Lefèvre, F; Lehnert, J; Leistam, L; Lemmon, R C; Lenhardt, M; Lenti, V; León Monzón, I; León Vargas, H; Leoncino, M; Lévai, P; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luquin, L; Luzzi, C; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Mal'kevich, D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Martashvili, I; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, A K; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Naumov, N P; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nicassio, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piuz, F; Piyarathna, D B; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puchagin, S; Puddu, G; Pujol Teixido, J; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Real, J S; Redlich, K; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodrigues Fernandes Rabacal, B; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sándor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Sgura, I; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Son, H; Song, J; Song, M; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Stefanini, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strabykin, K; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sultanov, R; Sumbera, M; Susa, T; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szostak, A; Tagridis, C; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Tosello, F; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; van Leeuwen, M; Vande Vyvre, P; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Ovrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wan, R; Wang, D; Wang, M; Wang, Y; Wang, Y; Watanabe, K; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, A; Wilk, G; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhou, D; Zhou, F; Zhou, Y; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M

    2012-12-21

    The first measurement of neutron emission in electromagnetic dissociation of ^{208}Pb nuclei at the LHC is presented. The measurement is performed using the neutron zero degree calorimeters of the ALICE experiment, which detect neutral particles close to beam rapidity. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at sqrt[s(NN)]=2.76 TeV with neutron emission are σ(singleEMD)=187.4 ± 0.2(stat)(-11.2)(+13.2) (syst) b and σ(mutualEMD) = 5.7 ± 0.1(stat) ± 0.4(syst) b, respectively. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model. PMID:23368454

  12. Measurement of the Cross Section for Electromagnetic Dissociation with Neutron Emission in Pb-Pb Collisions at √sNN = 2.76 TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Bottger, Stefan; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caballero Orduna, Diego; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Del Castillo Sanchez, Eduardo; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Fragkiadakis, Michail; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jancurova, Lucia; Jangal, Swensy Gwladys; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalisky, Matus; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kanaki, Kalliopi; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Ajit Kumar; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, S; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujol Teixido, Jordi; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roukoutakis, Filimon; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selioujenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Sgura, Irene; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, catherine; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinbeck, Timm Morten; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Tagridis, Christos; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; vrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo

    2012-01-01

    The first measurement of neutron emission in electromagnetic dissociation of 208Pb nuclei at the LHC is presented. The measurement is performed using the neutron Zero Degree Calorimeters of the ALICE experiment, which detect neutral particles close to beam rapidity. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at √sNN = 2.76 TeV with neutron emission are σ_single EMD = 187.2±0.2 (stat.) +13.8−12.0 (syst.) b and σ_mutual EMD = 6.2 ± 0.1 (stat.) ±0.4 (syst.) b respectively. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model.

  13. Risk assessment of atmospheric emissions using machine learning

    Directory of Open Access Journals (Sweden)

    G. Cervone

    2008-09-01

    Full Text Available Supervised and unsupervised machine learning algorithms are used to perform statistical and logical analysis of several transport and dispersion model runs which simulate emissions from a fixed source under different atmospheric conditions.

    First, a clustering algorithm is used to automatically group the results of different transport and dispersion simulations according to specific cloud characteristics. Then, a symbolic classification algorithm is employed to find complex non-linear relationships between the meteorological input conditions and each cluster of clouds. The patterns discovered are provided in the form of probabilistic measures of contamination, thus suitable for result interpretation and dissemination.

    The learned patterns can be used for quick assessment of the areas at risk and of the fate of potentially hazardous contaminants released in the atmosphere.

  14. Impact of aircraft emissions on the atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dameris, M.; Sausen, R.; Grewe, V.; Koehler, I.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Steil, B. [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany); Bruehl, Ch. [Max-Planck-Inst. fuer Chemie (Otto-Hahn-Institut), Mainz (Germany)

    1997-12-31

    A hierarchy of models of different complexity has been applied to estimate the impact of aircraft NO{sub x} emissions on atmospheric chemistry. The global circulation model ECHAM3 has been coupled with two types of chemistry modules. The first of these describes only a simplified (linear) NO{sub x} and HNO{sub 3} chemistry while the second one is a comprehensive chemistry module (CHEM), describing tropospheric and stratospheric chemistry including photochemical reactions and heterogeneous reactions on sulphate aerosols and PSCs. The module CHEM has been coupled either off-line or with feedback via the ozone concentration. First results of multilayer integrations (over decades) are discussed. (author) 27 refs.

  15. Atmospheric emissions from two Estonian power plants using oil shale

    International Nuclear Information System (INIS)

    The Estonian thermal power plant and the Baltic thermal power plant in north-east Estonia near the city of Narva represent over 90 % of the installed electricity production capacity in Estonia. The plants use oil shale as a main fuel. The fuel consumption in the two plants was 13 million tons in 1993. Oil shale, a domestic fuel in Estonia, has some characteristics that are unusual compared to many other fuels. It has a high ash content (approx. 47 %), and a low heat value (approx. 8-9 MJ/kg LHV). The volatile matter of the combustible part is high (85-90 %). In combustion, a major part (up to 85 %) of sulphur in the fuel (1.5 %) goes through a sulphating reaction with allelic fuel constituents forming particulate sulphites and sulphates. The atmospheric emissions of the Estonian and the Baltic oil-shale power plants are regarded to have a significant impact on the environment of Estonia and the nearby countries. A lot of research has been done in Estonia on the behaviour of oil shale in the combustion process and the emission of environmental pollutants. In this study, the emission estimates were examined by internationally approved emission measurement technology. The objectives of the study were to provide data based on highest measurement technology for the evaluation of total emissions, study the effects of process operation on pollutant concentration in flue gases, compare the results achieved by local measurement methods, provide data for the estimation of the effects of the emissions in Finland. (orig.)

  16. The atmospheric depositional fluxes of 7Be, 210Pb and 210Po to Xiamen and Qingdao, China

    International Nuclear Information System (INIS)

    7Be (half life t1/2 = 54.3 d) is produced by the spallation of atmospheric oxygen and nitrogen with cosmic rays. 210Pb (t1/2= 22.3 a) in air is produced by decay from 222Rn (t1/2= 3.8d) which emanates into the atmosphere from the earth's surface. 210Po (t1/2= 138 days) in air is produced from the decay of 210Pb through 210Bi (t1/2=5.0 days). 7Be, 210Pb and 210Po is easily absorbed to aerosols and removed to land and ocean through precipitation and dry fallout. The atmospheric depositional fluxes of 7Be, 210Pb and 210Po to Xiamen and Qingdao were measured in this paper. The samples were collected with plastic vessels fixed on the top of the Oceanography Building of Xiamen University and the Environmental Engineering Building of Oceanography University of China in Qingdao of China. The sampling period is one month normally. The 7Be and 210Pb were measured using HPGe-γ spectrometer after concentration by Fe(OH)3 co-precipitation method, but the 210Po was counted with α spectrometer after the sample is digested and electroplated onto a silver planchet. From March to October 2004 at Xiamen, the depositional fluxes of 7Be varied from 0.58 to 2.78 Bq m-2 d-1 and the average is 1.99 Bq m-2 d-1, 210Pb varied from 0.24 to 0.86 Bq m-2 d-1, and the average is 0.60 Bq m-2 d-1; 210Po varied from 0.02 to 0.13 Bq m-2 d-1 and the average is 0.06 Bq m-2 d-1. The 7Be/210Pb activity ratio is between 0.67 and 5.53 and the average is 3.48. The flux of 7Be is lower in April, June and October; the flux of 210Pb in June is lower than other periods. The 7Be/210Pb activity ratio is -the highest in may while it is the lowest in April. From May to November 2004 at Qingdao, the depositional fluxes of 7Be varied between 1.54 and 2.60 Bq m-2 d-1 with the average 2.08 Bq m-2 d-1; 210Pb varied between 0.33 and 0.73 Bq m-2 d-1 with the average 0.55 Bq m-2 d-1; 210Po varied between 0.03 and 0.19 Bq m-2 d-1 with the average 0.08 Bq m-2 d-1. The 7Be/210Pb activity ratio is between 2.81 and 6.62 and

  17. Assessment of Atmospheric heavy metal deposition in North Egypt aerosols using neutron activation analysis and optical emission inductively coupled plasma

    International Nuclear Information System (INIS)

    The aim of the present study is to assess the current level of atmospheric heavy metal pollution of aerosols in different cities of North Egypt using the neutron activation analysis and optical emission inductively coupled plasma techniques. The results revealed that the highest concentrations of particulate matter PM10 and total suspended particulate matter were close to industrial areas. From the results of the enrichment factor calculations, the most significant elements of anthropogenic origin are Ba, Sb, Ce and Zn. - Highlights: → Average concentration of Cd using OE-ICP is below detection limit for all the samples. → Maximum average concentration of Pb in PM10 and TSP is 5425 and 570.3, respectively. → Concentration of 20 elements in PM10 and TSP aerosols are determined using the NAA. → EF revealed that Pb, Ba, Br, Ce, Hf, La Sb and Zn are of anthropogenic origin.

  18. Assessment of Atmospheric heavy metal deposition in North Egypt aerosols using neutron activation analysis and optical emission inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Araby, E.H., E-mail: elaraby_20032000@yahoo.com [Faculty of Science, Physics Department, Jezan University, KSA (Saudi Arabia); Abd El-Wahab, M., E-mail: wahab_magda@yahoo.com [Faculty of women for Arts, Science and Education, Physics Department, Ain Shams University, PO11757 Cairo (Egypt); Diab, H.M., E-mail: hnndiab@yahoo.co.uk [National Center of Nuclear Safety and Radiation Control, Atomic Energy Authority Cairo (Egypt); El-Desouky, T.M., E-mail: trkhegazy@yahoo.com [Faculty of women for Arts, Science and Education, Physics Department, Ain Shams University, PO11757 Cairo (Egypt); Mohsen, M., E-mail: m1mohsen@yahoo.com [Faculty of Science. Physics Department, Ain-Shams University, PO 11566 Cairo (Egypt)

    2011-10-15

    The aim of the present study is to assess the current level of atmospheric heavy metal pollution of aerosols in different cities of North Egypt using the neutron activation analysis and optical emission inductively coupled plasma techniques. The results revealed that the highest concentrations of particulate matter PM{sub 10} and total suspended particulate matter were close to industrial areas. From the results of the enrichment factor calculations, the most significant elements of anthropogenic origin are Ba, Sb, Ce and Zn. - Highlights: > Average concentration of Cd using OE-ICP is below detection limit for all the samples. > Maximum average concentration of Pb in PM10 and TSP is 5425 and 570.3, respectively. > Concentration of 20 elements in PM{sub 10} and TSP aerosols are determined using the NAA. > EF revealed that Pb, Ba, Br, Ce, Hf, La Sb and Zn are of anthropogenic origin.

  19. Nanosilver emissions to the atmosphere: a new challenge?

    Directory of Open Access Journals (Sweden)

    Walser T.

    2013-04-01

    Full Text Available Atmospheric deposition of silver in Switzerland decreased significantly between 1995 and 2010, but recent increases in nanosilver production present a potentially new emission source of silver. ’While nanosilver is usually integrated in a robust matrix and its release is either controlled, dampened (highly diluted silver in nanosilver textiles or prevented (computer modules, point source emissions of nanosilver can occur at the manufacturing sites. The emission of nanosize particles of particular concern because these particles penetrate deeply in the lungs, and have the potential of causing long-term adverse effects to humans. We investigated local silver emission patterns with bryophytes Brachythecium rutabulum and Hypnum cupressiforme and with bulk (dry and wet deposition measurements of silver, using Bergerhoff samplers, close to a nanosilver manufacturer. With mean values of 0.033 μg g−1, the silver concentrations in the mosses were the same as the background concentration of Switzerland (141 sites. The spatial distribution revealed a decrease in the silver concentrations in moss as a function of increasing distance from the nanosilver manufacturer. The monthly collected bulk depositions were higher in the area of nanosilver production (0.175 ± 0.13 μg m−2 day−1 in comparison to rural (0.105 ± 0.08 μg m−2 day−1 and urban areas (0.113 ± 0.05 μg m−2 day−1 of Eastern Switzerland. Contrary to other areas, the larger monthly variability of the deposition values close to the production site points towards highly variable silver emissions. Subtraction of the silver background deposition results in approximately 60 g deposited silver per year within a perimeter of 4 km from the nanoparticle manufacturer. Along with bulk deposition of silver, we also studied potential morphological changes of the deposited nanosilver. We found silver nanoparticles in the form of environmentally stable silver iodide. We conclude that the

  20. Spontaneous Emission Enhancement from polymer-embedded colloidal PbS Nanocrystals into Si-based photonics at telecom wavelengths

    CERN Document Server

    Humer, Markus; Jantsch, Wolfgang; Fromherz, Thomas

    2013-01-01

    We experimentally demonstrate the coupling of optically excited PbS nanocrystal (NC) photoluminescence (PL) into Si-based ring resonators and waveguides at 300K. The PbS NCs are dissolved into Novolak polymer at various concentrations and applied by drop-casting. The coupling mechanism and the spontaneous emission enhancement are experimentally investigated and compared to theoretical predictions. Quality (Q) factors of 2500 were obtained in emission and transmission for wavelengths centered around 1.45{\\mu}m. PL intensity shows a linear dependence on the excitation power and no degradation of the Q factors. Devices with stable optical properties are obtained by this versatile technique.

  1. Landfill is an important atmospheric mercury emission source

    Institute of Scientific and Technical Information of China (English)

    FENG Xinbin; TANG Shunlin; LI Zhonggen; WANG Shaofeng; LIANG Lian

    2004-01-01

    Since municipal wastes contain refuses with high mercury contents, incineration of municipal wastes becomes the major anthropogenic atmospheric mercury emission source. In China, landfills are however the main way to dispose of municipal wastes. Total gaseous mercury (TGM) concentrations in landfill gas of Gaoyan sanitary landfill located in suburb of Guiyang City were monitored using a high temporal resolved automated mercury analyzer, and mono-methylmercury (MMHg) and dimethylmercury (DMHg) concentrations in landfill gas were also measured using GC coupled with the cold vapor atomic fluorescence (CVAFS) method. Meanwhile, the TGM exchange fluxes between exposed waste and air and the soil surface of the landfill and air, were measured using low Hg blank quartz flux chamber coupled with high temporal resolved automated mercury analyzer technique. TGM concentrations in landfill gas from half year filling area averaged out at 665.52±291.25 ng/m3, which is comparable with TGM concentrations from flue gas of a small coal combustion boiler in Guiyang. The average MMHg and DMHg concentrations averaged out at 2.06±1.82 ng/m3 and 9.50±5.18 ng/m3, respectively. It is proven that mercury emission is the predominant process at the surfaces of both exposed wastes and soil of landfill. Landfills are not only TGM emission source, but also methylmercury emission source to the ambient air. There are two ways to emit mercury to the air from landfills, one is with the landfill gas through landfill gas duct, and the other through soil/air exchange. The Hg emission processes from landfills are controlled by meteorological parameters.

  2. On the attribution of contributions of atmospheric trace gases to emissions in atmospheric model applications

    Directory of Open Access Journals (Sweden)

    V. Grewe

    2010-06-01

    Full Text Available We present a revised tagging method, which describes the combined effect of emissions of various species from individual emission categories, e.g. the impact of both, nitrogen oxides and non-methane hydrocarbon emissions on ozone. This method is applied to two simplified chemistry schemes, which represent the main characteristics of atmospheric ozone chemistry. Analytical solutions are presented for this tagging approach. In the past, besides tagging approaches, sensitivity methods were used, which estimate the contributions from individual sources based on differences in two simulations, a base case and a simulation with a perturbation in the respective emission category. We apply both methods to our simplified chemical systems and demonstrate that potentially large errors (factor of 2 occur with the sensitivity method, which depend on the degree of linearity of the chemical system. For some chemical regimes this error can be minimised by employing only small perturbations of the respective emission, e.g. 5%. Since a complete tagging algorithm for global chemistry models is difficult to achieve, we present two error metrics, which can be applied for sensitivity methods in order to estimate the potential error of this approach for a specific application.

  3. Recent atmospheric Pb deposition at a rural site in southern Germany assessed using a peat core and snowpack, and comparison with other archives

    Science.gov (United States)

    Le Roux, Gaël; Aubert, Dominique; Stille, Peter; Krachler, Michael; Kober, Bernd; Cheburkin, Andriy; Bonani, Georges; Shotyk, William

    In a peat bog from Black Forest, Southern Germany, the rate of atmospheric Pb accumulation was quantified using a peat core dated by 210Pb and 14C. The most recent Pb accumulation rate (2.5 mg m -2 y -1) is similar to that obtained from a snowpack on the bog surface, which was sampled during the winter 2002 (1 to 4 mg m -2 y -1). The Pb accumulation rates recorded by the peat during the last 25 yr are also in agreement with published values of direct atmospheric fluxes in Black Forest. These values are 50 to 200 times greater than the "natural" average background rate of atmospheric Pb accumulation (20 μg m -2 y -1) obtained using peat samples from the same bog dating from 3300 to 1300 cal. yr B.C. The isotopic composition of Pb was measured in both the modern and ancient peat samples as well as in the snow samples, and clearly shows that recent inputs are dominated by anthropogenic Pb. The chronology and isotopic composition of atmospheric Pb accumulation recorded by the peat from the Black Forest is similar to the chronologies reported earlier using peat cores from various peat bogs as well as herbarium samples of Sphagnum and point to a common Pb source to the region for the past 150 years. In contrast, Pb contamination occurring before 1850 in southwestern Germany, differs from the record published for Switzerland mainly due to the mining activity in Black Forest. Taken together, the results show that peat cores from ombrotrophic bogs can yield accurate records of atmospheric Pb deposition, provided that the cores are carefully collected, handled, prepared, and analysed using appropriate methods.

  4. Enhanced 1.0 μm emission and simultaneously suppressed upconversion emission in Yb:PbF2 laser crystal codoped with NaF

    Science.gov (United States)

    Zhang, P. X.; Yin, J. G.; Hang, Y.; Yin, J. P.

    2013-04-01

    Na-codoped and only Yb-doped Yb:PbF2 crystals were successfully grown using the vertical Bridgman method. The influence of the ions codoped with Na+ on the distribution coefficients has been studied. Enhanced ˜1.0 μm emission and simultaneously suppressed upconversion emission was observed for Yb:PbF2 crystals codoped with 2 mol% NaF. A time-resolved spectroscopy study showed that the ions codoped with Na+ lengthen the fluorescence lifetime by 6%. Absorption spectra were also studied and showed that the ions codoped with Na+ can effectively suppress the formation of Yb2+ ions.

  5. Quantifying missing annual emission sources of heavy metals in the United Kingdom with an atmospheric transport model

    International Nuclear Information System (INIS)

    An atmospheric chemical transport model was adapted to simulate the concentration and deposition of heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, selenium, vanadium, and zinc) in the United Kingdom. The model showed that wet deposition was the most important process for the transfer of metals from the atmosphere to the land surface. The model achieved a good correlation with annually averaged measurements of metal concentrations in air. The correlation with measurements of wet deposition was less strong due to the complexity of the atmospheric processes involved in the washout of particulate matter which were not fully captured by the model. The measured wet deposition and air concentration of heavy metals were significantly underestimated by the model for all metals (except vanadium) by factors between 2 and 10. These results suggest major missing sources of annual heavy metal emissions which are currently not included in the official inventory. Primary emissions were able to account for only 9%, 21%, 29%, 21%, 36%, 7% and 23% of the measured concentrations for As, Cd, Cr, Cu, Ni, Pb and Zn. A likely additional contribution to atmospheric heavy metal concentrations is the wind driven re-suspension of surface dust still present in the environment from the legacy of much higher historic emissions. Inclusion of two independent estimates of emissions from re-suspension in the model was found to give an improved agreement with measurements. However, an accurate estimate of the magnitude of re-suspended emissions is restricted by the lack of measurements of metal concentrations in the re-suspended surface dust layer. - Highlights: • Concentrations and deposition of 9 heavy metals in the UK were simulated. • Modelled data were well correlated to measured concentrations and deposition. • The model greatly underestimated metal deposition and air concentrations. • Under-estimation was attributed to wind-driven re-suspension of surface dust.

  6. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET)

    International Nuclear Information System (INIS)

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters, and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user's guide, and a programmer's guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user's guide to the model with emphasis on running the code. The user's guide contains information about the model input and output. The third section is a programmer's guide to the code. It discusses the hardware and software required to run the code. The programmer's guide also discusses program structure and each of the program elements

  7. Exoplanet atmosphere. Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy.

    Science.gov (United States)

    Stevenson, Kevin B; Désert, Jean-Michel; Line, Michael R; Bean, Jacob L; Fortney, Jonathan J; Showman, Adam P; Kataria, Tiffany; Kreidberg, Laura; McCullough, Peter R; Henry, Gregory W; Charbonneau, David; Burrows, Adam; Seager, Sara; Madhusudhan, Nikku; Williamson, Michael H; Homeier, Derek

    2014-11-14

    Exoplanets that orbit close to their host stars are much more highly irradiated than their solar system counterparts. Understanding the thermal structures and appearances of these planets requires investigating how their atmospheres respond to such extreme stellar forcing. We present spectroscopic thermal emission measurements as a function of orbital phase ("phase-curve observations") for the highly irradiated exoplanet WASP-43b spanning three full planet rotations using the Hubble Space Telescope. With these data, we construct a map of the planet's atmospheric thermal structure, from which we find large day-night temperature variations at all measured altitudes and a monotonically decreasing temperature with pressure at all longitudes. We also derive a Bond albedo of 0.18(-0.12)(+0.07) and an altitude dependence in the hot-spot offset relative to the substellar point. PMID:25301972

  8. Probing Shell Correction at High Spin by Neutron Emission of Doubly Magic Nuclei 208pb and 132Sn

    Institute of Scientific and Technical Information of China (English)

    YEWei

    2005-01-01

    Shell effects in particle emission for two doubly magic nuclei 132Sn and 208pb were studied in the framework of Smoluchowski equation taking into account temperature and spin-dependent shell correction. It is shown that the shelle ffects in the emission of pre-scission neutrons are sensitive to the spin dependence of the shell correction at a moderate excitation energy. Therefore, we propose to use neutron multiplicity as an observable to probe the shell correction at high spins.

  9. Puff models for simulation of fugitive radioactive emissions in atmosphere

    International Nuclear Information System (INIS)

    A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)

  10. The Pb pollution fingerprint at Lochnagar: The historical record and current status of Pb isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Yang Handong [Environmental Change Research Centre, University College London, Pearson Building, Gower Street, London, WC1E 6BP (United Kingdom)]. E-mail: hyang@geog.ucl.ac.uk; Linge, Kathryn [NERC ICP Facility, School of Earth Sciences and Geography, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE (United Kingdom); Rose, Neil [Environmental Change Research Centre, University College London, Pearson Building, Gower Street, London, WC1E 6BP (United Kingdom)

    2007-02-15

    Ratios of {sup 206}Pb/{sup 207}Pb in a Lochnagar sediment core slowly decline from c. 1.32 at 140 cm to c. 1.23 at 9 cm, and then rapidly decline to c. 1.15 at the surface. Ninety percent of the Pb in the surface sediments can be attributed to anthropogenic sources. The {sup 206}Pb/{sup 207}Pb ratio data imply that catchment peat surface contains a higher fraction of anthropogenic Pb than the sediment surface. The {sup 206}Pb/{sup 207}Pb ratios in the surface of the sediment core are consistent with ratios in trapped sediments collected annually between 1998 and 2003. However, there is no significant decline in these recent samples suggesting that the reduction in atmospheric Pb emissions has not yet been recorded by the sediments due to Pb inputs from the catchment. As catchment peats store about 840 kg previously deposited anthropogenic Pb since 1860, it is likely that catchment inputs will continue to affect future {sup 206}Pb/{sup 207}Pb ratios. - Pb previously deposited and stored in Lochnagar catchment has a major affect on contemporary Pb in the lake system.

  11. Evidence of atmospheric nanoparticle formation from emissions of marine microorganisms

    Science.gov (United States)

    Sellegri, K.; Pey, J.; Rose, C.; Culot, A.; DeWitt, H. L.; Mas, S.; Schwier, A. N.; Temime-Roussel, B.; Charriere, B.; Saiz-Lopez, A.; Mahajan, A. S.; Parin, D.; Kukui, A.; Sempere, R.; D'Anna, B.; Marchand, N.

    2016-06-01

    Earth, as a whole, can be considered as a living organism emitting gases and particles into its atmosphere, in order to regulate its own temperature. In particular, oceans may respond to climate change by emitting particles that ultimately will influence cloud coverage. At the global scale, a large fraction of the aerosol number concentration is formed by nucleation of gas-phase species, but this process has never been directly observed above oceans. Here we present, using semicontrolled seawater-air enclosures, evidence that nucleation may occur from marine biological emissions in the atmosphere of the open ocean. We identify iodine-containing species as major precursors for new particle clusters' formation, while questioning the role of the commonly accepted dimethyl sulfide oxidation products, in forming new particle clusters in the region investigated and within a time scale on the order of an hour. We further show that amines would sustain the new particle formation process by growing the new clusters to larger sizes. Our results suggest that iodine-containing species and amines are correlated to different biological tracers. These observations, if generalized, would call for a substantial change of modeling approaches of the sea-to-air interactions.

  12. On the attribution of contributions of atmospheric trace gases to emissions in atmospheric model applications

    Directory of Open Access Journals (Sweden)

    V. Grewe

    2010-10-01

    Full Text Available We present an improved tagging method, which describes the combined effect of emissions of various species from individual emission categories, e.g. the impact of both, nitrogen oxides and non-methane hydrocarbon emissions on ozone. This method is applied to two simplified chemistry schemes, which represent the main characteristics of atmospheric ozone chemistry. Analytical solutions are presented for this tagging approach. In the past, besides tagging approaches, sensitivity methods were used, which estimate the contributions from individual sources based on differences in two simulations, a base case and a simulation with a perturbation in the respective emission category. We apply both methods to our simplified chemical systems and demonstrate that potentially large errors (factor of 2 occur with the sensitivity method, which depend on the degree of linearity of the chemical system. This error depends on two factors, the ability to linearise the chemical system around a base case, and second the completeness of the contributions, which means that all contributions should principally add up to 100%. For some chemical regimes the first error can be minimised by employing only small perturbations of the respective emission, e.g. 5%. The second factor depends on the chemical regime and cannot be minimized by a specific experimental set-up. It is inherent to the sensitivity method. Since a complete tagging algorithm for global chemistry models is difficult to achieve, we present two error metrics, which can be applied for sensitivity methods in order to estimate the potential error of this approach for a specific application.

  13. Diurnal variations of 218Po, 214Pb, and 214Po and their effect on atmospheric electrical conductivity in the lower atmosphere at Mysore city, Karnataka State, India

    International Nuclear Information System (INIS)

    The short-lived radon daughters (218Po, 214Pb, 214Bi and 214Po) are natural tracers in the troposphere, in particular near the ground surface. They are electrically charged particles and are chemically reactive. As soon as they are formed they get attached to the aerosol particles of the atmosphere. The behavior of radon daughters is similar to that of aerosols with respect to their growth, transport and removal processes in the atmosphere. The electrical conductivity of the atmosphere is mainly due to the presence of highly mobile ions. Galactic cosmic rays are the main source of ionization in the planetary boundary layer; however, near the surface of the earth, ions are produced mainly by decays of natural radioactive gases emanating from the soil surface and by radiations emitted directly from the surface. Hence the electrical conductivity of air near the surface of the earth is mainly due to radiations emitted by 222Rn, 218Po, 214Pb, 214Bi and 214Po, and depends on aerosol concentrations and meteorological parameters. In the present work the diurnal and seasonal variations of radon and its progeny concentrations are studied using Low Level Radon Detection System and Airflow Meter respectively. Atmospheric electrical conductivity of both positive and negative polarities is measured using a Gerdien Condenser. All the measurements were carried out simultaneously at one location in Mysore city (12°N, 76°E), India. The diurnal variation of atmospheric electrical conductivity was found to be similar to that of ion pair production rate estimated from radon and its progeny concentrations with a maximum in the early morning hours and minimum during day time. The annual average concentrations of 222Rn, 218Po, 214Pb, and 214Po at the study location were found to be 21.46, 10.88, 1.78 and 1.80 Bq m−3 respectively. The annual average values of positive and negative atmospheric electrical conductivity were found to be 18.1 and 16.6 f S m−1 respectively. The radon and

  14. Diurnal variations of (218)Po, (214)Pb, and (214)Po and their effect on atmospheric electrical conductivity in the lower atmosphere at Mysore city, Karnataka State, India.

    Science.gov (United States)

    Pruthvi Rani, K S; Paramesh, L; Chandrashekara, M S

    2014-12-01

    The short-lived radon daughters ((218)Po, (214)Pb, (214)Bi and (214)Po) are natural tracers in the troposphere, in particular near the ground surface. They are electrically charged particles and are chemically reactive. As soon as they are formed they get attached to the aerosol particles of the atmosphere. The behavior of radon daughters is similar to that of aerosols with respect to their growth, transport and removal processes in the atmosphere. The electrical conductivity of the atmosphere is mainly due to the presence of highly mobile ions. Galactic cosmic rays are the main source of ionization in the planetary boundary layer; however, near the surface of the earth, ions are produced mainly by decays of natural radioactive gases emanating from the soil surface and by radiations emitted directly from the surface. Hence the electrical conductivity of air near the surface of the earth is mainly due to radiations emitted by (222)Rn, (218)Po, (214)Pb, (214)Bi and (214)Po, and depends on aerosol concentrations and meteorological parameters. In the present work the diurnal and seasonal variations of radon and its progeny concentrations are studied using Low Level Radon Detection System and Airflow Meter respectively. Atmospheric electrical conductivity of both positive and negative polarities is measured using a Gerdien Condenser. All the measurements were carried out simultaneously at one location in Mysore city (12°N, 76°E), India. The diurnal variation of atmospheric electrical conductivity was found to be similar to that of ion pair production rate estimated from radon and its progeny concentrations with a maximum in the early morning hours and minimum during day time. The annual average concentrations of (222)Rn, (218)Po, (214)Pb, and (214)Po at the study location were found to be 21.46, 10.88, 1.78 and 1.80 Bq m(-3) respectively. The annual average values of positive and negative atmospheric electrical conductivity were found to be 18.1 and 16.6 f S m(-1

  15. Atmospheric methane emissions along the western Svalbard margin

    Science.gov (United States)

    Pohlman, J.; Greinert, J.; Silyakova, A.; Casso, M.; Ruppel, C. D.; Mienert, J.; Lund Myhre, C.; Bunz, S.

    2014-12-01

    transmit methane to the atmosphere by determining what fraction of methane in the geochemical plume is emitted to the atmosphere. We also compare the methane mass flux from the seep site to an adjacent section of the Prins Karls Forland coastal margin to constrain the relative importance of different types of high-latitude seafloor methane emissions.

  16. PbSe Quantum Dot Solar Cells with More than 6% Efficiency Fabricated in Ambient Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianbing [National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Science and Technology, Hubei (China); Gao, Jianbo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Church, Carena P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of California, Santa Cruz, CA (United States); Miller, Elisa M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Luther, Joseph M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Klimov, Victor I. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beard, Matthew C. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-09-09

    Colloidal quantum dots (QDs) are promising candidates for the next generation of photovoltaic (PV) technologies. Much of the progress in QD PVs is based on using PbS QDs, partly because they are stable under ambient conditions. There is considerable interest in extending this work to PbSe QDs, which have shown an enhanced photocurrent due to multiple exciton generation (MEG). One problem complicating such device-based studies is a poor stability of PbSe QDs toward exposure to ambient air. We develop a direct cation exchange synthesis to produce PbSe QDs with a large range of sizes and with in situ chloride and cadmium passivation. The synthesized QDs have excellent air stability, maintaining their photoluminescence quantum yield under ambient conditions for more than 30 days. When we use QDs, we fabricate high-performance solar cells without any protection and demonstrate a power conversion efficiency exceeding 6%, which is a current record for PbSe QD solar cells.

  17. Modeling study of natural emissions, source apportionment, and emission control of atmospheric mercury

    Science.gov (United States)

    Shetty, Suraj K.

    Mercury (Hg) is a toxic pollutant and is important to understand its cycling in the environment. In this dissertation, a number of modeling investigations were conducted to better understand the emission from natural surfaces, the source-receptor relationship of the emissions, and emission reduction of atmospheric mercury. The first part of this work estimates mercury emissions from vegetation, soil and water surfaces using a number of natural emission processors and detailed (LAI) Leaf Area Index data from GIS (Geographic Information System) satellite products. East Asian domain was chosen as it contributes nearly 50% of the global anthropogenic mercury emissions into the atmosphere. The estimated annual natural mercury emissions (gaseous elemental mercury) in the domain are 834 Mg yr-1 with 462 Mg yr-1 contributing from China. Compared to anthropogenic sources, natural sources show greater seasonal variability (highest in simmer). The emissions are significant, sometimes dominant, contributors to total mercury emission in the regions. The estimates provide possible explanation for the gaps between the anthropogenic emission estimates based on activity data and the emission inferred from field observations in the regions. To understand the contribution of domestic emissions to mercury deposition in the United States, the second part of the work applies the mercury model of Community Multi-scale Air Quality Modeling system (CMAQ-Hg v4.6) to apportion the various emission sources attributing to the mercury wet and dry deposition in the 6 United States receptor regions. Contributions to mercury deposition from electric generating units (EGU), iron and steel industry (IRST), industrial point sources excluding EGU and IRST (OIPM), the remaining anthropogenic sources (RA), natural processes (NAT), and out-of-boundary transport (BC) in domain was estimated. The model results for 2005 compared reasonably well to field observations made by MDN (Mercury Deposition Network

  18. Atmospheric deposition of 210Po and 210Pb in Malaysian waters during haze events

    International Nuclear Information System (INIS)

    Biogenic burning as forest fire phenomena occurring from April to August each year in the Sumatra and Borneo islands are major sources of biogenic uranium–thorium decay series in marine systems. 30 samples were collected during the Ekspedisi Pelayaran Saintifik Perdana 2009 cruise (EPSP 2009 cruise) between 12th June and 1st August 2009 from the Straits of Malacca to the Sulu and Sulawesi Seas to study the effect of haze and the monsoon season on the deposition rate of 210Po and 210Pb in Malaysian waters. All samples were spiked with 1 ml of lead [Pb(NO3)2; 25 mg ml-1] and 0.05 ml of Polonium-209 tracer (26.08 dpm ml-1). 210Po activity was determined by auto plating onto silver foil and counting using an alpha spectrometry system (Canberra model Alpha Analyst with a silicon-surface barrier detector). Lead that was collected via electrodeposition, formed lead sulphate (PbSO4) precipitation. This precipitate was wrapped onto plastic discs and counted for 210Pb beta activity using a gross alpha-beta counting system (Tennelec model LB-5100 low background gas-flowing anti-coincidence alpha/beta counter) after 1 month to allow bismuth ingrowths. The range of 210Po activities varied between 51.08 ± 15.1 and 742.08 ± 220.34 Bq/kg, whereas the activity of 210Pb ranged from 31.10 ± 4.20 to 880.23 ± 123.86 Bq/kg and 210Po/210Pb ratio value varied between sampling stations from 0.19 to 13.77. The contents of 210Po were also statistically positively correlated with the amount of total suspended particulate especially those recorded during heavy haze period events. (author)

  19. 基于地衣植物监测法的我国西南高山地区大气铅污染研究%Atmospheric Pb pollution in the alpine area of southwest China based on the lichens (Usnea longissima) analysis

    Institute of Scientific and Technical Information of China (English)

    燕婷; 刘恩峰; 张恩楼; 朱育新

    2015-01-01

    通过对我国西南(云南、四川)13个高山地区地衣植物-长松萝(Usnea longissima)中铅(Pb)含量及其稳定同位素组成(208Pb/206Pb和207Pb/206Pb)的测定与分析,并且与土壤Pb含量进行对比,探讨了该地区大气Pb污染及其来源特征.结果表明,各地区长松萝中Pb的含量范围为 1.5~64.5mg/kg,在临近城市及有色金属产区含量较高,与土壤中 Pb 含量(7.6~113.9mg/kg)空间变化一致;不同采样区长松萝与土壤中 Pb含量呈典型正相关关系(r=0.919, P<0.01),长松萝Pb含量反映了区域大气Pb污染程度差异.长松萝中 208Pb/206Pb和 207Pb/206Pb同位素比值范围分别为2.099~2.123和0.852~0.874.通过与主要潜在污染源Pb同位素对比分析,认为我国西南高山地区大气Pb污染主要源自该地区铅锌矿冶炼释放,并且还可能受到来自缅甸含铅汽油源的影响.%Concentrations and the isotopic compositions of Pb (208Pb/206Pb and 207Pb/206Pb) in the Usnea longissima from 13 regions in the alpine area of southwest China were analyzed. Atmospheric Pb pollution and the potential sources were discussed based on the chemical data as well as the Pb concentrations in the soils. Mean Pb concentrations varied between 1.5 and 64.5mg/kg in theUsnea longissima samples, which all showed high values in the regions near the city and non-ferrous metal production area, similar to the spatial variations of Pb concentrations in the soils. Concentrations of Pb in theUsnea longissima and soil showed positive correlation (r=0.919,P<0.01), implying the Pb concentrations in the Usnea longissima indicate the atmospheric Pb pollution levels. The208Pb/206Pb and207Pb/206Pb ratios were 2.099~2.123 and 0.852~0.874 in theUsnea longissima, respectively. Combining the results of Pb isotopic compositions in theUsnea longissima and in potential sources, we deduced that atmospheric Pb pollution in the alpine area of southwest China should primarily be attributed to regional emissions from

  20. Emission of thermally stimulated luminescence in mixed monocrystals KCl-KBr: Pb2+, KCl: Pb2+ and KBr: Pb2+ exposed at low doses

    International Nuclear Information System (INIS)

    It is reported the behavior of solid solutions of mixed crystals KCl1-x KBrx doped with divalent lead which were exposed to gamma radiation. The mixtures of KCl-KBr were varied, with x equivalents at 2, 50, 65, and 85 % including the extremes KCl: Pb2+ and KBr: Pb2+. It was maintained a concentration of divalent lead between 20 and 40 ppm in the crystalline lattice. The production of the generated defects by radiation have been correlated with the increase in the brilliance curves depending on the received dose by the mixed doped crystal. It has been used the thermal stimulation (Tl) for obtaining the crystal luminescence depending on the dose until 130 Gy with gammas of cobalt 60. The results shows that this mixed crystalline material of varied composition responds adequately to low doses which indicates that this would be a good detector of ionizing radiation. The results have been correlated with the optical properties of this mixed doped crystal, however it has been found that exists an important loss of luminescence depending on the halogen quantity presents in the mixed crystal. (Author)

  1. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories

    NARCIS (Netherlands)

    Wilson, Simon J.; Steenhuisen, Frits; Pacyna, Jozef M.; Pacyna, Elisabeth G.

    2006-01-01

    This paper describes the procedures employed to spatially distribute global inventories of anthropogenic emissions of mercury to the atmosphere, prepared by Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S. [2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environmen

  2. Element analysis of atmospheric particles collected on polytetrafluoroetylene (PTFE) filter using in-air helium ion induced X-ray emission method

    International Nuclear Information System (INIS)

    In order to confirm the availability of an in-air Helium ion induced X-ray emission method for multi-elemental analysis of polytetrafluoroetylene (PTFE) filter sample containing atmospheric particles, NIST urban particulate matter (SRM 1648) collected on PTFE filter using a special small chamber was analyzed by an in-air PIXE method with Helium ions and a proton beam. In addition, we analyzed 10 elements, mixing a standard solution with different concentrations to confirm detection sensitivity of characteristic X-ray peaks. As a result, it is suggested that 1) elements that are lighter than Zn and Pb can be satisfactorily measured using the in-air Helium ion induced X-ray emission method if the amount contained in the filter sample is at least 0.1 mg/L, i.e., 15 ng/cm2, 2) the in-air Helium ion induced X-ray emission method is useful as a method for quantitatively analyzing the light elements such as Mg, Al, Si, S and Cl that are important for identifying the behavior and characteristics of atmospheric particles from the PTFE filter sample containing atmospheric particles, and 3) in the case of the PTFE filter sample containing atmospheric particles, it is possible to measure elements from Mg to Pb by means of analysis using Helium ions and protons. (author)

  3. Atmospheric structure of the outer planets from thermal emission data

    International Nuclear Information System (INIS)

    The most powerful methods for determining atmospheric structure exploit the opacities provided by the collision induced H2 dipole and the γ4 fundamental of CH4. In addition to earth-based observations, useful measurements of thermal emission from Jupiter and Saturn have been or soon will be made by several spacecraft, with results cross-checked with independent radio occultation results. For Uranus and Neptune, only a limited set of whole-disk earth-based data exists. All the outer planets show evidence for stratospheric temperature inversions; temperature minima range from about 105 K for Jupiter and 87 K for Saturn, to roughly 55 K for Uranus and Neptune. In addition to better data, remaining problems may be resolved by better quantitative understanding of gas and aerosol absorption and scattering properties, chemical composition, and non-LTE source functions. Ultimately, temperature structure results must be supplemented by quantitative energy equilibrium models which will allow some meaning to be given to the relationships between such characteristics as temperature, clouds, incident solar and planetary radiation, and chemical composition. (Auth.)

  4. Regulation of radionuclides discharges to the atmosphere and emissions to the water from Ukraine NPPs

    International Nuclear Information System (INIS)

    The possible order of radionuclides discharges to the atmosphere and emissions to the water from Ukraine NPPs regulation is given allowance for laws and norms of Ukraine and ICRP and IAEA guidelines. For definition of a dose relevant to marginal discharges to the atmosphere and emissions to the water of separate radionuclides are counted dose coefficients (Sv/Bg). Considered three critical age groups: the babies (up to 1 year), children (till 10 years) and adult. The age group being critical for discharges to the atmosphere and emissions to the water are determined. The radionuclides producing the greatest contribution to a dose are determined. Guidelines on calculation of marginal radionuclides discharges to the atmosphere and emissions to the water of Ukraine NPPs are given. Matching of doses from actual radionuclides discharges to the atmosphere and emissions to the water of Ukraine NPPs with quotas, assigned in RSNU-97 is carried out

  5. Atmospheric Deposition-Carried Pb,Zn,and Cd from a Zinc Smelter and Their Effect on Soil Microorganisms

    Institute of Scientific and Technical Information of China (English)

    YANG Yuan-Gen; JIN Zhi-Sheng; BI Xiang-Yang; LI Fei-Li; SUN Li; LIU Jie; FU Zhi-You

    2009-01-01

    Dust emissions from smelters,as a major contributor to heavy metal contamination in soils,could severely influence soil quality.Downwind surface soils within 1.5 km of a zinc smelter,which was active for 10 years but ceased in 2000,in Magu Town,Guizhou Province,China were selected to examine Pb,Zn,and Cd concentrations and their fractionation along a distance gradient from a zinc smelter,and to study the possible effects of Pb,Zn,and Cd accumulation on soil microorganisms by comparing with a reference soil located at a downwind distance of 10 km from the zinc smelter.Soils within 1.5 km of the zinc smelter accumulated high levels of heavy metals Zn (508 mg kg-1),Pb (95.6 mg kg-1),and Cd (5.98 mg kg-2) with low ratios of Zn/Cd (59.1-115) and Pb/Cd (12.4-23.4).Composite pollution indices (CPIs) of surface soils (2.52-15.2) were 3 to 13 times higher than the reference soils.In metal accumulated soils,exchangeable plus carbonate-bound fractions accounted for more than 10% of the total Zn,Pb,and Cd.The saturation degree of metals (SDM) in soils within 1.5 km of the smelter (averaging 1.25) was six times higher than that of the reference soils (0.209).A smaller soil microbial biomass was found more frequently in metal accumulated soils (85.1-438 μg C g-1) than in reference soils (497 μg C g-1),and a negative correlation (P < 0.01) of soil microbial biomass carbon to organic carbon ratio (Cmic/Corg) with SDM was observed.Microbial consumption of carbon sources was more rapid in contaminated soils than in reference soils,and a shift in the substrate utilization pattern was apparent and was negatively correlated with SDM (R =-0.773,P < 0.01).Consequently,dust deposited Pb,Zn,and Cd in soils from zinc smelting were readily mobilized,and were detrimental to soil quality mainly in respect of microbial biomass.

  6. Probing Shell Correction at High Spin by Neutron Emission of Doubly Magic Nuclei 208pb and 132Sn

    Institute of Scientific and Technical Information of China (English)

    YE Wei

    2005-01-01

    Shell effects in particle emission for two doubly magic nuclei 132 Sn and 208 Pb were studied in the framework of Smoluchowski equation taking into account temperature and spin-dependent shell correction. It is shown that the shell effects in the enission of pre-scission neutrons are sensitive to the spin dependence of the shell correction at a moderate excitation energy. Therefore, we propose to use neutron multiplicity as an observable to probe the shell correction at high spins.

  7. A temporal increase in the atmospheric 210Pb concentration possibly due to the 1991 eruption of Pinatubo volcano. An observation at Seoul, the Republic of Korea

    International Nuclear Information System (INIS)

    A temporal increase in the atmospheric concentration of 210Pb was observed in December, 1991, and January, 1992, at Seoul, the Republic of Korea. This increase was estimated to be due to the fallout of the stratospheric 210Pb originating from the 1991 eruption of Pinatubo volcano, Philippines, along with the aerosol particles injected into the stratosphere by the eruption. The present observation was similar to the previous observations made at Tsukuba Science City, Japan. (author)

  8. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances.

    Science.gov (United States)

    Masiello, Guido; Serio, Carmine

    2013-04-10

    The problem of simultaneous physical retrieval of surface emissivity, skin temperature, and temperature, water-vapor, and ozone atmospheric profiles from high-spectral-resolution observations in the infrared is formulated according to an inverse problem with multiple regularization parameters. A methodology has been set up, which seeks an effective solution to the inverse problem in a generalized L-curve criterion framework. The a priori information for the surface emissivity is obtained on the basis of laboratory data alone, and that for the atmospheric parameters by climatology or weather forecasts. To ensure that we deal with a problem of fewer unknowns than observations, the dimensionality of the emissivity is reduced through expansion in Fourier series. The main objective of this study is to demonstrate the simultaneous retrieval of emissivity, skin temperature, and atmospheric parameters with a two-dimensional L-curve criterion. The procedure has been demonstrated with spectra observed from the infrared atmospheric sounder interferometer, flying onboard the European Meteorological Operational satellite. To check the quality and reliability of the methodology, we have used spectra recorded over regions characterized by known or stable emissivity. These include sea surface, for which effective emissivity models are known, and arid lands (Sahara and Namib Deserts) that are known to exhibit the characteristic spectral signature of quartz-rich sand. PMID:23670773

  9. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    OpenAIRE

    Levin, Ingeborg; Rödenbeck, Christian

    2007-01-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO2), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emission...

  10. Emission Sources and Chemical Composition of the Atmosphere of a Mega-city in South Asia

    Science.gov (United States)

    Husain, L.; Farhana, B. K.; Ghauri, B. M.

    2007-05-01

    chemistry and mixing heights on atmospheric processing of the chemical constituents. Aerosols collected on this campaign were found to carry the signatures of emissions from Afghanistan, North and Central Pakistan, North India in addition to the local pollution sources. Statistical analysis suggests emissions from coal and oil combustion, industrial processes, building construction sites and biomass burning as the primary emission sources. Carbonaceous aerosols contributed about 69% of the PM2.5 mass. Findings of our study will improve the understanding of the critical roles and interactions between chemical composition and size of atmospheric particles, atmospheric boundary layer and meteorological phenomena that manipulate the chemistry of an urban atmosphere. The results should play a vital role in any strategy to regulate emissions and improve air quality in the region.

  11. Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment

    Science.gov (United States)

    Aneja, Viney P.; Roelle, Paul A.; Murray, George C.; Southerland, James; Erisman, Jan Willem; Fowler, David; Asman, Willem A. H.; Patni, Naveen

    The Atmospheric Nitrogen Compounds II: Emissions, Transport, Transformation, Deposition and Assessment workshop was held in Chapel Hill, NC from 7 to 9 June 1999. This international conference, which served as a follow-up to the workshop held in March 1997, was sponsored by: North Carolina Department of Environment and Natural Resources; North Carolina Department of Health and Human Services, North Carolina Office of the State Health Director; Mid-Atlantic Regional Air Management Association; North Carolina Water Resources Research Institute; Air and Waste Management Association, RTP Chapter; the US Environmental Protection Agency and the North Carolina State University (College of Physical and Mathematical Sciences, and North Carolina Agricultural Research Service). The workshop was structured as an open forum at which scientists, policy makers, industry representatives and others could freely share current knowledge and ideas, and included international perspectives. The workshop commenced with international perspectives from the United States, Canada, United Kingdom, the Netherlands, and Denmark. This article summarizes the findings of the workshop and articulates future research needs and ways to address nitrogen/ammonia from intensively managed animal agriculture. The need for developing sustainable solutions for managing the animal waste problem is vital for shaping the future of North Carolina. As part of that process, all aspects of environmental issues (air, water, soil) must be addressed as part of a comprehensive and long-term strategy. There is an urgent need for North Carolina policy makers to create a new, independent organization that will build consensus and mobilize resources to find technologically and economically feasible solutions to this aspect of the animal waste problem.

  12. The behavior of 210Pb and 7Be in the atmosphere in Nagasaki

    International Nuclear Information System (INIS)

    Nagasaki is located in the western end of Japan, and first receives aerosol factors in Japan from the Eurasian Continent such as Asian dusts and directly almost with no mixing of the domestic factors. Since this geographically situation of Nagasaki area, we have measured the aerosol size and the concentration of 210Pb and 7Be adhering to aerosol. Seasonal variation of these data was analyzed combined with some weather data, the rainfall and the wind direction. We present and discuss some result from the analysis. (author)

  13. Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions

    Science.gov (United States)

    Lennartz, S. T.; Krysztofiak, G.; Marandino, C. A.; Sinnhuber, B.-M.; Tegtmeier, S.; Ziska, F.; Hossaini, R.; Krüger, K.; Montzka, S. A.; Atlas, E.; Oram, D. E.; Keber, T.; Bönisch, H.; Quack, B.

    2015-10-01

    Marine-produced short-lived trace gases such as dibromomethane (CH2Br2), bromoform (CHBr3), methyliodide (CH3I) and dimethyl sulfide (DMS) significantly impact tropospheric and stratospheric chemistry. Describing their marine emissions in atmospheric chemistry models as accurately as possible is necessary to quantify their impact on ozone depletion and Earth's radiative budget. So far, marine emissions of trace gases have mainly been prescribed from emission climatologies, thus lacking the interaction between the actual state of the atmosphere and the ocean. Here we present simulations with the chemistry climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry) with online calculation of emissions based on surface water concentrations, in contrast to directly prescribed emissions. Considering the actual state of the model atmosphere results in a concentration gradient consistent with model real-time conditions at the ocean surface and in the atmosphere, which determine the direction and magnitude of the computed flux. This method has a number of conceptual and practical benefits, as the modelled emission can respond consistently to changes in sea surface temperature, surface wind speed, sea ice cover and especially atmospheric mixing ratio. This online calculation could enhance, dampen or even invert the fluxes (i.e. deposition instead of emissions) of very short-lived substances (VSLS). We show that differences between prescribing emissions and prescribing concentrations (-28 % for CH2Br2 to +11 % for CHBr3) result mainly from consideration of the actual, time-varying state of the atmosphere. The absolute magnitude of the differences depends mainly on the surface ocean saturation of each particular gas. Comparison to observations from aircraft, ships and ground stations reveals that computing the air-sea flux interactively leads in most of the cases to more accurate atmospheric mixing ratios in the model compared to the computation from prescribed emissions

  14. Estimation of mercury emission from different sources to atmosphere in Chongqing, China.

    Science.gov (United States)

    Wang, Dingyong; He, Lei; Wei, Shiqiang; Feng, Xinbin

    2006-08-01

    This investigation presents a first assessment of the contribution to the regional mercury budget from anthropogenic and natural sources in Chongqing, an important industrial region in southwest China. The emissions of mercury to atmosphere from anthropogenic sources in the region were estimated through indirect approaches, i.e. using commonly acceptable emission factors method, which based on annual process throughputs or consumption for these sources. The natural mercury emissions were estimated from selected natural sources by the dynamic flux chamber technique. The results indicated that the anthropogenic mercury emissions totaled approximately 8.85 tons (t), more than 50% of this total originated in coal combustion and 23.7% of this total emission in the industrial process (include cement production, metal smelting and chemical industry). The natural emissions represented approximately 17% of total emissions (1.78 t yr(-1)). The total mercury emission to atmosphere in Chongqing in 2001 was 10.63 t. PMID:16219340

  15. Influence of ship emission on atmospheric pollutant concentration around Osaka Bay, Japan

    International Nuclear Information System (INIS)

    Marine traffic in Osaka Bay is very intensified and much atmosphere pollutant (SOx and NOx) from ships is released but there is no regulation about the ship emission. In this paper, we investigated the emission amounts of SOx NOx and HC from car, factory and ships in Osaka bay area and estimated the influence of the ship emission on the atmospheric pollutant concentration, using both the meteorological prediction model and the atmospheric pollutant concentration prediction model including the dry deposition and the chemical reaction. In Osaka bay area, the emission amounts of SOx and NOx from ships were about 30% of the total emission amounts, respectively. Using these emission data, the atmospheric pollutant concentration was simulated on a summer fine day when high oxidant concentration was measured at several observatories and was compared with the observed data. Though some differences were seen between the simulated results and the observed data, the diurnal variation agreed reasonably. The second simulation was carried out except for the ship emission and we estimated the influence of the ship emission on the atmospheric pollutant concentration. It was found that the ship emission raised SO2, NO2 and NO concentration not only in shore area but also in 40km inland. (Author)

  16. High resolution of anthropogenic atmospheric emissions of 12 heavy metals in the three biggest metropolitan areas, China

    Science.gov (United States)

    Tian, H.; Zhu, C.

    2015-12-01

    Atmospheric emissions of typical toxic heavy metals from anthropogenic sources have received worldwide concerns due to their adverse effects on human health and the ecosystem. An integrated inventory of anthropogenic emissions of twelve HMs (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn) in the three biggest metropolitan areas, including Beijing-Tianjin-Hebei (BTH) region, Yangtze River Delta (YRD) region and Pearl River Delta (PRD) region, are developed for 1980-2012 by combining with detailed activity data and inter-annual dynamic emission factors which are determined by S-shaped curves on account of technology progress, economic development, and emission control. The results indicate total emissions of twelve HMs in the three metropolitan regions have increased from 5448.8 tons in 1980 to 19054.9 tons in 2012, with an annual average growth rate of about 4.0%. Due to significant difference in industrial structures and energy consumption compositions, remarkable distinctions can be observed with respect to source contributions of total HM emissions from above three metropolitan areas. Specifically, the ferrous metal smelting sector, coal combustion by industrial boilers and coal combustion by power plants are found to be the primary source of total HM emissions in the BTH region (about 34.2%), YRD region (about 28.2%) and PRD region (about 24.3%), respectively. Furthermore, we allocate the annual emissions of these heavy metals in 2012 at a high spatial resolution of 9 km × 9 km grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). The peak of HM emissions are mainly distributed over the grid cells of Beijing, Tianjin, Tangshan, Shijiazhuang, Handan and Baoding in the BTH region; Shanghai, Suzhou, Wuxi, Nanjing, Hangzhou, Ningbo in the YRD region; Guangzhou, Shenzhen, Dongguan, Foshan in the PYD region, respectively. Additionally, monthly emission profiles are established in order to further identify

  17. Effect of Atmosphere on Volatile Emission Characteristic in Oxy-Fuel Combustion

    OpenAIRE

    Jia Luo; Shihe Chen; Le Wu

    2013-01-01

    A new type of power supply which was called oxy-fuel combustion power plant was introduced to reduce greenhouse gasses emission. In this paper the volatile emission characteristic of pulverized coal is studied under air atmosphere and oxy-fuel atmosphere. Combustion experiments of Datong bituminous coal were carried out in a wire mesh reactor at heating rates of 1 K/s, 10 K/s and 1000 K/s respectively under air and O2/CO2 atmosphere conditions in order to investigate the volatile emission ch...

  18. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    OpenAIRE

    N. Pirrone; Cinnirella, S.; Feng, X.; Finkelman, R. B.; H. R. Friedli; Leaner, J.; Mason, R.; Mukherjee, A B; Stracher, G. B.; D. G. Streets; K. Telmer

    2010-01-01

    This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial poi...

  19. Dual emission in asymmetric ``giant'' PbS/CdS/CdS core/shell/shell quantum dots

    Science.gov (United States)

    Zhao, Haiguang; Sirigu, Gianluca; Parisini, Andrea; Camellini, Andrea; Nicotra, Giuseppe; Rosei, Federico; Morandi, Vittorio; Zavelani-Rossi, Margherita; Vomiero, Alberto

    2016-02-01

    Semiconducting nanocrystals optically active in the infrared region of the electromagnetic spectrum enable exciting avenues in fundamental research and novel applications compatible with the infrared transparency windows of biosystems such as chemical and biological optical sensing, including nanoscale thermometry. In this context, quantum dots (QDs) with double color emission may represent ultra-accurate and self-calibrating nanosystems. We present the synthesis of giant core/shell/shell asymmetric QDs having a PbS/CdS zinc blende (Zb)/CdS wurtzite (Wz) structure with double color emission close to the near-infrared (NIR) region. We show that the double emission depends on the excitation condition and analyze the electron-hole distribution responsible for the independent and simultaneous radiative exciton recombination in the PbS core and in the CdS Wz shell, respectively. These results highlight the importance of the driving force leading to preferential crystal growth in asymmetric QDs, and provide a pathway for the rational control of the synthesis of double color emitting giant QDs, leading to the effective exploitation of visible/NIR transparency windows.Semiconducting nanocrystals optically active in the infrared region of the electromagnetic spectrum enable exciting avenues in fundamental research and novel applications compatible with the infrared transparency windows of biosystems such as chemical and biological optical sensing, including nanoscale thermometry. In this context, quantum dots (QDs) with double color emission may represent ultra-accurate and self-calibrating nanosystems. We present the synthesis of giant core/shell/shell asymmetric QDs having a PbS/CdS zinc blende (Zb)/CdS wurtzite (Wz) structure with double color emission close to the near-infrared (NIR) region. We show that the double emission depends on the excitation condition and analyze the electron-hole distribution responsible for the independent and simultaneous radiative exciton

  20. Modelling marine emissions and atmospheric distributions of halocarbons and DMS: the influence of prescribed water concentration vs. prescribed emissions

    Directory of Open Access Journals (Sweden)

    S. T. Lennartz

    2015-06-01

    Full Text Available Marine produced short-lived trace gases such as dibromomethane (CH2Br2, bromoform (CHBr3, methyliodide (CH3I and dimethylsulfide (DMS significantly impact tropospheric and stratospheric chemistry. Describing their marine emissions in atmospheric chemistry models as accurately as possible is necessary to quantify their impact on ozone depletion and the Earth's radiative budget. So far, marine emissions of trace gases have mainly been prescribed from emission climatologies, thus lacking the interaction between the actual state of the atmosphere and the ocean. Here we present simulations with the chemistry climate model EMAC with online calculation of emissions based on surface water concentrations, in contrast to directly prescribed emissions. Considering the actual state of the model atmosphere results in a concentration gradient consistent with model real-time conditions at ocean surface and atmosphere, which determine the direction and magnitude of the computed flux. This method has a number of conceptual and practical benefits, as the modelled emission can respond consistently to changes in sea surface temperature, surface wind speed, sea ice cover and especially atmospheric mixing ratio. This online calculation could enhance, dampen or even invert the fluxes (i.e. deposition instead of emissions of VSLS. We show that differences between prescribing emissions and prescribing concentrations (−28 % for CH2Br2 to +11 % for CHBr3 result mainly from consideration of the actual, time-varying state of the atmosphere. The absolute magnitude of the differences depends mainly on the surface ocean saturation of each particular gas. Comparison to observations from aircraft, ships and ground stations reveals that computing the air–sea flux interactively leads in most of the cases to more accurate atmospheric mixing ratios in the model compared to the computation from prescribed emissions. Calculating emissions online also enables effective testing of

  1. Triple functional DNA-protein conjugates: Signal probes for Pb(2+) using evanescent wave-induced emission.

    Science.gov (United States)

    Wang, Ruoyu; Zhou, Xiaohong; Shi, Hanchang

    2015-12-15

    We describe here a Pb(2+)-dependent DNAzyme-based evanescent wave-induced emission (EWIE) biosensing platform using triple functional DNA-protein conjugates as signal probes for Pb(2+) detection. Upon reaction with Pb(2+), the substrate strand is cleaved, releasing an invasion fragment, which is then hybridized with the complementary DNA strand immobilized on magnetic beads, while dissociating of the original hybridized signal probes. The signal probes, consisting of a streptavidin moiety and a Cy5.5 labeled DNA moiety, act simultaneously as signal conversion, signal recognition and signal report elements. Detection of the signal probes is accomplished by first adsorbing to the desthiobiotin-modified optical fiber, followed by fluorescence emission induced by an evanescent field. A linear calibration was obtained from 20 nM to 800 nM with a detection limit of 1 nM. The optical fiber system is robust enough for 250 sensing cycles and can be stored at room temperature over one month. These results demonstrate that application of DNA-streptavidin conjugates has been extended to DNAzyme-based biosensors, maintaining activity, specificity, regeneration and long-term storage ability. PMID:26120813

  2. Luminescence in semimagnetic Pb1-xMnxSe quantum dots grown in a glass host: Radiative and nonradiative emission processes

    Science.gov (United States)

    Silva, R. S.; Baffa, Oswaldo; Chen, Felipe; Lourenço, S. A.; Dantas, N. O.

    2013-04-01

    We report on the radiative and nonradiative emission processes from semimagnetic Pb1-xMnxSe quantum dots (QDs) embedded in a glass matrix. Emissions between the 4T1 → 6A1 states of Mn2+ ions located in the PbSe semiconductor gap were not observed. Electron Paramagnetic Resonance spectra confirmed that Mn2+ ions are located in two distinct QD sites. Furthermore, Magnetic Force Microscopy confirmed the formation of high quality Pb1-xMnxSe QDs with uniformly distributed magnetic moments.

  3. Polarized emission from CsPbX3 perovskite quantum dots

    Science.gov (United States)

    Wang, Dan; Wu, Dan; Dong, Di; Chen, Wei; Hao, Junjie; Qin, Jing; Xu, Bing; Wang, Kai; Sun, Xiaowei

    2016-06-01

    Compared to organic/inorganic hybrid perovskites, full inorganic perovskite quantum dots (QDs) exhibit higher stability. In this study, full inorganic CsPbX3 (X = Br, I and mixed halide systems Br/I) perovskite QDs have been synthesized and interestingly, these QDs showed highly polarized photoluminescence which is systematically studied for the first time. Furthermore, the polarization of CsPbI3 was as high as 0.36 in hexane and 0.40 as a film. The CsPbX3 perovskite QDs with high polarization properties indicate that they possess great potential for application in new generation displays with wide colour gamut and low power consumption.Compared to organic/inorganic hybrid perovskites, full inorganic perovskite quantum dots (QDs) exhibit higher stability. In this study, full inorganic CsPbX3 (X = Br, I and mixed halide systems Br/I) perovskite QDs have been synthesized and interestingly, these QDs showed highly polarized photoluminescence which is systematically studied for the first time. Furthermore, the polarization of CsPbI3 was as high as 0.36 in hexane and 0.40 as a film. The CsPbX3 perovskite QDs with high polarization properties indicate that they possess great potential for application in new generation displays with wide colour gamut and low power consumption. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01915c

  4. Instantaneous fluxless bonding of Au with Pb-Sn solder in ambient atmosphere

    Science.gov (United States)

    Lee, Teck Kheng; Zhang, Sam; Wong, Chee Cheong; Tan, Ah Chin

    2005-08-01

    A fluxless bonding technique has been developed as a method of flip-chip bonding for microelectronic packaging. The fluxless bonding technique can be achieved instantaneously in an ambient environment between metallic stud bumps and predefined molten solder. This paper describes the mechanics of the bonding action and verifies the effectiveness of this bonding method through wetting balance tests and scanning electron microscope and energy dispersive x-ray analysis. This technique has been demonstrated by using a gold stud bump to break the tin oxide layer over molten solder. This allows for a fast, solid liquid interdiffusion between gold (Au) and the fresh molten eutectic lead-tin (Pb-Sn) solder for joint formation during solidification. This bonding method has been successfully tested with 130-μm-pitch flip-chip bond pads on a joint-in-via flex substrate architecture.

  5. Comparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane

    OpenAIRE

    Olsen, S; G. Brasseur; Wuebbles, D.; Barrett, S; Dang, H; Eastham, S.; Jacobson, M.; A. Khodayari; Selkirk, H.; Sokolov, A.; Unger, N.

    2013-01-01

    One of the significant uncertainties in understanding the effects of aviation on climate is the effects of aviation emissions on ozone and atmospheric chemistry. In this study the effects of aviation emissions on atmospheric ozone for 2006 and two projections for 2050 are compared among seven models. The models range in complexity from a two-dimensional coupled model to three-dimensional offline and fully coupled three-dimensional chemistry-climate models. This study is the first step in a cr...

  6. Test emission of uranium hexafluoride in atmosphere. Results interpretation

    International Nuclear Information System (INIS)

    To permit the modelization of gaseous uranium hexafluoride behaviour in atmosphere, a validation test has been executed the 10 April 1987. The experimental conditions, the main results and a comparison with a diffusion model are given in this report

  7. Dual emission in asymmetric "giant" PbS/CdS/CdS core/shell/shell quantum dots.

    Science.gov (United States)

    Zhao, Haiguang; Sirigu, Gianluca; Parisini, Andrea; Camellini, Andrea; Nicotra, Giuseppe; Rosei, Federico; Morandi, Vittorio; Zavelani-Rossi, Margherita; Vomiero, Alberto

    2016-02-21

    Semiconducting nanocrystals optically active in the infrared region of the electromagnetic spectrum enable exciting avenues in fundamental research and novel applications compatible with the infrared transparency windows of biosystems such as chemical and biological optical sensing, including nanoscale thermometry. In this context, quantum dots (QDs) with double color emission may represent ultra-accurate and self-calibrating nanosystems. We present the synthesis of giant core/shell/shell asymmetric QDs having a PbS/CdS zinc blende (Zb)/CdS wurtzite (Wz) structure with double color emission close to the near-infrared (NIR) region. We show that the double emission depends on the excitation condition and analyze the electron-hole distribution responsible for the independent and simultaneous radiative exciton recombination in the PbS core and in the CdS Wz shell, respectively. These results highlight the importance of the driving force leading to preferential crystal growth in asymmetric QDs, and provide a pathway for the rational control of the synthesis of double color emitting giant QDs, leading to the effective exploitation of visible/NIR transparency windows. PMID:26837955

  8. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial variation distribution, uncertainties and control policies

    Directory of Open Access Journals (Sweden)

    H. Z. Tian

    2015-04-01

    Full Text Available Anthropogenic atmospheric emissions of typical toxic heavy metals have received worldwide concerns due to their adverse effects on human health and the ecosystem. By determining the best available representation of time-varying emission factors with S-shape curves, we established the multiyear comprehensive atmospheric emission inventories of 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn from primary anthropogenic activities in China for the period of 1949–2012 for the first time. Further, we allocated the annual emissions of these heavy metals in 2010 at a high spatial resolution of 0.5° × 0.5° grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP. Our results show that the historical emissions of Hg, As, Se, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn during the period of 1949–2012, have been increased by about 22–128 times at an annual average growth rate of 5.1–8.0%, amounting to about 79 570 t in 2012. Nonferrous metal smelting, coal combustion of industrial boilers, brake and tyre wear, and ferrous metals smelting represent the dominant sources for Hg / Cd, As / Se / Pb / Cr / Ni / Mn / Co, Sb / Cu, and Zn, respectively. In terms of spatial variation, the majority of emissions were concentrated in relatively developed regions, especially for the northern, eastern and southern coastal regions. In addition, because of the flourishing nonferrous metals smelting industry, several southwestern and central-southern provinces play a prominent role in some specific toxic heavy metals emissions, like Hg in Guizhou and As in Yunnan. Finally, integrated countermeasures are proposed to minimize the final toxic heavy metals discharge on accounting of the current and future demand of energy-saving and pollution reduction in China.

  9. Temporal and spatial distribution of atmospheric antimony emission inventories from coal combustion in China

    International Nuclear Information System (INIS)

    A multiple-year inventory of atmospheric antimony (Sb) emissions from coal combustion in China for the period of 1980-2007 has been calculated for the first time. Specifically, the emission inventories of Sb from 30 provinces and 4 economic sectors (thermal power, industry, residential use, and others) are evaluated and analyzed in detail. It shows that the total Sb emissions released from coal combustion in China have increased from 133.19 t in 1980 to 546.67 t in 2007, at an annually average growth rate of 5.4%. The antimony emissions are largely emitted by industrial sector and thermal power generation sector, contributing 53.6% and 26.9% of the totals, respectively. At provincial level, the distribution of Sb emissions shows significant variation. Between 2005 and 2007, provinces always rank at the top five largest Sb emissions are: Guizhou, Hunan, Hebei, Shandong, and Anhui. - Highlights: → Atmospheric Sb emission inventory from coal in China during 1980-2007 is developed. → We included 1612 coal samples to determine the provincial mean Sb contents in coal. →Emission inventories of Sb from 30 provinces and 4 economic sectors are evaluated. → Total 546.67t Sb emissions in 2007 are mainly emitted from industrial sector. → There is significant variation for Sb distribution among different provinces. - A multiple-year inventory of atmospheric antimony emissions from coal combustion in China for the period of 1980-2007 has been calculated for the first time.

  10. New dual emission fluorescent sensor for pH and Pb(II) based on bis(napfthalimide) derivative

    Energy Technology Data Exchange (ETDEWEB)

    Pina-Luis, Georgina, E-mail: gpinaluis@yahoo.com [Centro de Graduados e Investigacion en Quimica, Instituto Tecnologico de Tijuana, AP 1166, Tijuana 22500, BC (Mexico); Martinez-Quiroz, Marisela; Ochoa-Teran, Adrian [Centro de Graduados e Investigacion en Quimica, Instituto Tecnologico de Tijuana, AP 1166, Tijuana 22500, BC (Mexico); Santacruz-Ortega, Hisila [Departamento de investigacion en Polimeros y Materiales, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); Mendez-Valenzuela, Eduardo [Centro de Graduados e Investigacion en Quimica, Instituto Tecnologico de Tijuana, AP 1166, Tijuana 22500, BC (Mexico)

    2013-02-15

    This paper describes a novel dual emission bis-1,8-naphthalimide sensor for selective determination of pH and Pb{sup 2+} ions. The influence of the variability in the backbone that links the two fluorophores (naphthalimides) as a function of pH and metal ions was studied by UV-visible and fluorescence spectroscopy. Compounds 1(a-d) with different length alkyl linkers (CH{sub 2}){sub n} (n=1, 2, 4 and 6) showed no excimer formation in aqueous solution. Fluorescence emission of these derivatives varied in a narrow range of pH (5-8) and was only slightly influenced by the addition of metal ions in CH{sub 3}CN solutions. However, derivative 1e with amino-containing spacer (CH{sub 2}-NH-CH{sub 2}) showed excimer emission in aqueous solution, a wide response to pH (2.5-9.5) and fluorescence enhancement with selective behavior towards metal ions. The pH sensor based in derivative 1e has a sufficient selectivity for practical pH monitoring in the presence of Li{sup +}, Na{sup +}, K{sup +}, Cs{sup +}, Ca{sup 2+}, Mg{sup 2+}, Ba{sup 2+}, Cu{sup 2+}, Pb{sup 2+}, Ni{sup 2+}, Zn{sup 2+} and Cd{sup 2+}. The coordination chemistry of these complexes was studied by UV-Vis, fluorescence and {sup 1}H NMR. This chemosensor displayed high selectivity fluorescence enhancement toward Pb{sup 2+} ions in the presence of the metals ions mentioned in CH{sub 3}CN solutions. Competitive assays show that a 1-fold of metal cations in each case, compared with Pb{sup 2+} ions, results in less than {+-}5% fluorescence intensity changes. Linear calibration up to 1 Multiplication-Sign 10{sup -5} M for Pb(II) ions (R=0.9968) was obtained and detection limit resulted of 5.0 Multiplication-Sign 10{sup -8} M. - Highlights: Black-Right-Pointing-Pointer A novel dual emission bis-1,8-naphthalimide sensor for pH and Pb{sup 2+} ions is synthetized. Black-Right-Pointing-Pointer The excimer formation depends on the spacer that links the two naphthalimide groups. Black-Right-Pointing-Pointer Bis

  11. Control of Atmospheric Emissions in the Wood Pulping Industry, Volume 3.

    Science.gov (United States)

    Hendrickson, E. R.; And Others

    Volume 3 contains chapters 9 through 13 of the final report on the control of atmospheric emissions in the wood pulping industry. These chapters deal with the following topics: sampling and analytical techniques; on-going research related to reduction of emissions; research and development recommendations; current industry investment and operating…

  12. An assessment procedure for chemical utilisation schemes intended to reduce CO2 emissions to atmosphere

    NARCIS (Netherlands)

    Audus, H.; Oonk, H.

    1997-01-01

    The concept of reducing emissions of CO2 to the atmosphere by producing chemicals has been suggested by many people as a potential greenhouse gas mitigation option. The goal of such schemes is either: (i) fixation of CO2 in a chemical compound for a significant time, or, (ii) reduction of emissions

  13. Historical atmospheric mercury emissions and depositions in North America compared to mercury accumulations in sedimentary records

    Science.gov (United States)

    Pirrone, Nicola; Allegrini, Ivo; Keeler, Gerald J.; Nriagu, Jerome O.; Rossmann, Ronald; Robbins, John A.

    Gold and silver production in North America (included United States, Canada and Mexico) released a large amount of mercury to the atmosphere until well into this century when mercury (Hg) amalgamation was replaced by cyanide concentration. Since then, emissions from industries have been the dominant anthropogenic sources of atmospheric Hg in North America as a whole. Past Hg emissions from gold and silver extractions in North America during the 1800s do not show a clear evidence of atmospheric deposition occurred at the coring sites considered in this study. Estimated atmospheric emissions of Hg in North America peaked in 1879 (at about 1708 t yr -1) and 1920 (at about 940 t yr -1), primarily due to Hg emissions from gold and silver mining. After the Great Economic Depression (1929) Hg emissions peaked again in the 1947 (274 t yr -1), in 1970 (325 t yr -1) and in 1989 (330 t yr -1) as result of increased Hg emissions from industrial sources, though improvements in the emissions control technology in United States and Canada have been substantial. Estimates of total atmospheric deposition fluxes of Hg to water and terrestrial receptors were in the range of 14.3-19.8 μg m -2 yr -1 in North America as a whole, and averaged 135 μg m -2 yr -1 (global background + local emissions) in the Great Lakes. These values were in good agreement with recent estimates reported in literature. The comparison of atmospheric Hg deposition fluxes with Hg accumulation rates in sediment cores suggests that atmospheric deposition was the major source of Hg entering the lakes system at coring sites, however, important contributions to Lake Ontario sediment cores sites from 1940 to 1970 were likely originated from local point sources (i.e. direct discharges).

  14. The role of power plant atmospheric emissions in the deposition of nitrogen to the Chesapeake Bay

    International Nuclear Information System (INIS)

    The Maryland Power Plant Research Program (PPRP) has sponsored research on several aspects of atmospheric nitrogen emissions, source attribution, deposition estimation and impact assessment since the mid-eighties. The results of these studies will be presented and discussed in the context of power plant emissions control impact on nitrogen loadings to the Chesapeake Bay and watershed. Information needs with respect to power plant contribution and emission control policy will be identified and discussed from the perspective of PPRP

  15. Quantifying Uncertainty in Daily Temporal Variations of Atmospheric NH3 Emissions Following Application of Chemical Fertilizers

    Science.gov (United States)

    Balasubramanian, S.; Koloutsou-Vakakis, S.; Rood, M. J.

    2014-12-01

    Improving modeling predictions of atmospheric particulate matter and deposition of reactive nitrogen requires representative emission inventories of precursor species, such as ammonia (NH3). Anthropogenic NH3 is primarily emitted to the atmosphere from agricultural sources (80-90%) with dominant contributions (56%) from chemical fertilizer usage (CFU) in regions like Midwest USA. Local crop management practices vary spatially and temporally, which influence regional air quality. To model the impact of CFU, NH3 emission inputs to chemical transport models are obtained from the National Emission Inventory (NEI). NH3 emissions from CFU are typically estimated by combining annual fertilizer sales data with emission factors. The Sparse Matrix Operator Kernel Emissions (SMOKE) model is used to disaggregate annual emissions to hourly scale using temporal factors. These factors are estimated by apportioning emissions within each crop season in proportion to the nitrogen applied and time-averaged to the hourly scale. Such approach does not reflect influence of CFU for different crops and local weather and soil conditions. This study provides an alternate approach for estimating temporal factors for NH3 emissions. The DeNitrification DeComposition (DNDC) model was used to estimate daily variations in NH3 emissions from CFU at 14 Central Illinois locations for 2002-2011. Weather, crop and soil data were provided as inputs. A method was developed to estimate site level CFU by combining planting and harvesting dates, nitrogen management and fertilizer sales data. DNDC results indicated that annual NH3 emissions were within ±15% of SMOKE estimates. Daily modeled emissions across 10 years followed similar distributions but varied in magnitudes within ±20%. Individual emission peaks on days after CFU were 2.5-8 times greater as compared to existing estimates from SMOKE. By identifying the episodic nature of NH3 emissions from CFU, this study is expected to provide improvements

  16. Compilation and analyses of emissions inventories for the NOAA atmospheric chemistry project. Progress report, August 1997

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen for circa 1985 and 1990 and non-methane volatile organic compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity of the International Global Atmospheric Chemistry program. Global emissions of NOx for 1985 are estimated to be 21 Tg N/yr, with approximately 84% originating in the Northern Hemisphere. The global emissions for 1990 are 31 Tg N/yr for NOx and 173 Gg NMVOC/yr. Ongoing research activities for this project continue to address emissions of both NOx and NMVOCs. Future tasks include: evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates; derivation of quantitative uncertainty estimates for the emission values; and development of emissions estimates for 1995.

  17. Scaling laws for perturbations in the ocean–atmosphere system following large CO2 emissions

    Directory of Open Access Journals (Sweden)

    N. Towles

    2015-07-01

    Full Text Available Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR model (Zeebe et al., 2009; Zeebe, 2012b, we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.

  18. Mercury enrichment and its effects on atmospheric emissions in cement plants of China

    Science.gov (United States)

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming

    2014-08-01

    The cement industry is one of the most significant anthropogenic sources of atmospheric mercury emissions worldwide. In this study of three typical Chinese cement plants, mercury in kiln flue gas was sampled using the Ontario Hydro Method (OHM), and solid samples were analyzed. Particulate matter recycling, preheating of raw materials, and the use of coal and flue gas desulfurization derived gypsum contributed to emissions of Hg in the air and to accumulation in cement. Over 90% of the mercury input was emitted into the atmosphere. Mercury emission factors were 0.044-0.072 g/t clinker for the test plants. The major species emitted into the atmosphere from cement plants is oxidized mercury, accounting for 61%-91% of the total mercury in flue gas. The results of this study help improve the accuracy of the mercury emission inventory in China and provide useful information for developing mercury controls.

  19. The extrasolar planet atmosphere and exosphere: Emission and transmission spectroscopy

    CERN Document Server

    Tinetti, Giovanna

    2008-01-01

    We have entered the phase of extrasolar planets characterization, probing their atmospheres for molecules, constraining their horizontal and vertical temperature profiles and estimating the contribution of clouds and hazes. We report here a short review of the current situation using ground based and space based observations, and present the transmission spectra of HD189733b in the spectral range 0.5-24 microns.

  20. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    International Nuclear Information System (INIS)

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO2 concentrations and inverse modeling to verify nationally-reported biogenic CO2 emissions. The biogenic CO2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of −408 ± 136 Tg CO2 for the entire study region, which was not statistically different from the biogenic flux of −478 ± 146 Tg CO2 that was estimated using the atmospheric CO2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest C stock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC. (letter)

  1. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    Science.gov (United States)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J. B.; Kuster, W. C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J. A.; Cahill, T. M.; Holzinger, R.

    2009-03-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments - a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) - and found to be abundant within and above Blodgett Forest. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4-68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72-10.2 μgCg-1 h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  2. The Boston Methane Project: Mapping Surface Emissions to Inform Atmospheric Estimation of Urban Methane Flux

    Science.gov (United States)

    Phillips, N.; Crosson, E.; Down, A.; Hutyra, L.; Jackson, R. B.; McKain, K.; Rella, C.; Raciti, S. M.; Wofsy, S. C.

    2012-12-01

    Lost and unaccounted natural gas can amount to over 6% of Massachusetts' total annual greenhouse gas inventory (expressed as equivalent CO2 tonnage). An unknown portion of this loss is due to natural gas leaks in pipeline distribution systems. The objective of the Boston Methane Project is to estimate the overall leak rate from natural gas systems in metropolitan Boston, and to compare this flux with fluxes from the other primary methane emissions sources. Companion talks at this meeting describe the atmospheric measurement and modeling framework, and chemical and isotopic tracers that can partition total atmospheric methane flux into natural gas and non-natural gas components. This talk focuses on estimation of surface emissions that inform the atmospheric modeling and partitioning. These surface emissions include over 3,300 pipeline natural gas leaks in Boston. For the state of Massachusetts as a whole, the amount of natural gas reported as lost and unaccounted for by utility companies was greater than estimated landfill emissions by an order of magnitude. Moreover, these landfill emissions were overwhelmingly located outside of metro Boston, while gas leaks are concentrated in exactly the opposite pattern, increasing from suburban Boston toward the urban core. Work is in progress to estimate spatial distribution of methane emissions from wetlands and sewer systems. We conclude with a description of how these spatial data sets will be combined and represented for application in atmospheric modeling.

  3. Quantification of carbon dioxide, methane, nitrous oxide, and chloroform emissions over Ireland from atmospheric observations at Mace Head

    International Nuclear Information System (INIS)

    Flux estimates of CO2, CH4, N2O and CHCl3 over Ireland are inferred from continuous atmospheric records of these species. We use radon-222 (222Rn) as a reference compound to estimate unknown sources of other species. The correlation between each species and 222Rn is calculated for a suite of diurnal events that have been selected in the Mace Head record over the period 1995-1997 to represent air masses exposed to sources over Ireland. We established data selection criteria based on 222Rn and 212Pb concentrations. We estimated flux densities of 12x103 kg CH4/km2/yr, 680 kg N2O/km2/yr and 20 kg CHCl3/km2/yr for CH4, N2O and CHCl3, respectively. We also inferred flux densities of 250x103 kg C/km2/yr for CO2 during wintertime, and of 760x103 kg C/km2/yr for CO2 during summer night-time. Our CH4 inferred flux compare well with the CORINAIR90 and CORNAIR94 inventories for Ireland. The N2O emission flux we inferred is close to the inventory value by CORINAIR90, but twice the inventory value by CORINAIR94 and EDGAR 2.0. This discrepancy may have been caused by the use of the revised 1996 IPCC guidelines for national greenhouse gas inventories in 1994, which include a new methodology for N2O emissions from agriculture. We carried out the first estimation of CHCl3 emission fluxes over Ireland. This estimation is 4 times larger than the CHCl3 emission fluxes measured close to the Mace Head station over peatlands. Our CHCl3 emission fluxes estimate is consistent with the interpretation of the same data by Ryall (personal communication, 2000), who obtained, using a Lagrangian atmospheric transport model, CHCl3 fluxes of 24±7 kg CHCl3/km2/yr. Our estimates of CO2 emission fluxes during summer night-time and wintertime are close to those estimated from inventories and to one biogeochemical model of heterotrophic respiration

  4. Atmospheric lead deposition to Okefenokee Swamp, Georgia, USA

    Science.gov (United States)

    Jackson, B.P.; Winger, P.V.; Lasier, P.J.

    2004-01-01

    'Capsule:' Coal combustion emissions appear to be a major source of Pb in the Okefenokee wetland. Contamination of the environment from atmospheric deposition during the twentieth century is pervasive even in areas ostensibly considered pristine or remote from point sources. In this study, Pb concentrations in a Pb-210-dated peat core collected from the Okefenokee Swamp, GA were used to assess historical contaminant input via atmospheric deposition. Lead isotope ratios were determined by dynamic reaction cell ICP-MS (DRC-ICP-MS). Increases in Pb concentration occurred in the late nineteenth century and a marked rise in Pb concentrations pre-dated the widespread use of leaded gasoline within the US. The Pb-206/Pb-207 ratios of 1.19 during this period were consistent with coal combustion emissions. A later increase in Pb concentration, concurrent with a trend toward more radiogenic Pb-206/Pb-207 ratios in gasoline is consistent with an increased input of Pb from leaded gasoline emissions. However, it appears that coal combustion emissions remain a major source of Pb to the Okefenokee.

  5. Methane emission from flooded soils - from microorganisms to the atmosphere

    Science.gov (United States)

    Conrad, Ralf

    2016-04-01

    Methane is an important greenhouse gas that is affected by anthropogenic activity. The annual budget of atmospheric methane, which is about 600 million tons, is by more than 75% produced by methanogenic archaea. These archaea are the end-members of a microbial community that degrades organic matter under anaerobic conditions. Flooded rice fields constitute a major source (about 10%) of atmospheric methane. After flooding of soil, anaerobic processes are initiated, finally resulting in the disproportionation of organic matter to carbon dioxide and methane. This process occurs in the bulk soil, on decaying organic debris and in the rhizosphere. The produced methane is mostly ventilated through the plant vascular system into the atmosphere. This system also allows the diffusion of oxygen into the rizosphere, where part of the produced methane is oxidized by aerobic methanotrophic bacteria. More than 50% of the methane production is derived from plant photosynthetic products and is formed on the root surface. Methanocellales are an important group of methanogenic archaea colonizing rice roots. Soils lacking this group seem to result in reduced root colonization and methane production. In rice soil methane is produced by two major paths of methanogenesis, the hydrogenotrophic one reducing carbon dioxide to methane, and the aceticlastic one disproportionating acetate to methane and carbon dioxide. Theoretically, at least two third of the methane should be produced by aceticlastic and the rest by hydrogenotrophic methanogenesis. In nature, however, the exact contribution of the two paths can vary from zero to 100%. Several environmental factors, such as temperature and quality of organic matter affect the path of methane production. The impact of these factors on the composition and activity of the environmental methanogenic microbial community will be discussed.

  6. Atmospheric Pollutions Emissions, environmental challenges of Isfahan City

    OpenAIRE

    V. Ezzatian; S. Hasheminasab

    2013-01-01

    Extended abstract1-IntroductionThe recent fatal events with regard to the rise in the atmospheric pollutants levels have suggested that the reason of their occurrence be more identified. The long-term and short-term effects on the environment caused by pollutants that reached unacceptable level are apparent; existence of pollutatnts has led to short-term effects such as appearance and aggravation of cancer and respiratory‚ optic and lung diseases. The sequence of long-term effects is seen on ...

  7. Pb pollution from leaded gasoline in South America in the context of a 2000-year metallurgical history

    OpenAIRE

    Eichler, A.; Gramlich, Gabriela; Kellerhals, Thomas; L. Tobler; Schwikowski, Margit

    2015-01-01

    Exploitation of the extensive polymetallic deposits of the Andean Altiplano in South America since precolonial times has caused substantial emissions of neurotoxic lead (Pb) into the atmosphere; however, its historical significance compared to recent Pb pollution from leaded gasoline is not yet resolved. We present a comprehensive Pb emission history for the last two millennia for South America, based on a continuous, high-resolution, ice core record from Illimani glacier. Illimani is the hig...

  8. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.

    Science.gov (United States)

    Zhang, Yanxu; Jacob, Daniel J; Horowitz, Hannah M; Chen, Long; Amos, Helen M; Krabbenhoft, David P; Slemr, Franz; St Louis, Vincent L; Sunderland, Elsie M

    2016-01-19

    Observations of elemental mercury (Hg(0)) at sites in North America and Europe show large decreases (∼ 1-2% y(-1)) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg(0)/Hg(II) speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg(0) emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg(0) concentrations and in Hg(II) wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities. PMID:26729866

  9. Atmospheric Modeling and Verification of Point Source Fossil Fuel CO2 Emissions

    Science.gov (United States)

    Keller, E. D.; Turnbull, J. C.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.; Norris, M. W.; Zondervan, A.

    2014-12-01

    Emissions from large point sources (electricity generation and large-scale industry) of fossil fuel CO2 (CO2ff) emissions are currently determined from self-reported "bottom-up" inventory data, with an uncertainty of about 20% for individual power plants. As the world moves towards a regulatory environment, there is a need for independent, objective measurements of these emissions both to improve the accuracy of and to verify the reported amounts. "Top-down" atmospheric methods have the potential to independently constrain point source emissions, combining observations with atmospheric transport modeling to derive emission estimates. We use the Kapuni Gas Treatment Plant to examine methodologies and model sensitivities for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes and vents CO2 from locally extracted natural gas at a rate of ~0.1 Tg carbon per year. We measured the CO2ff content in three different types of observations: air samples collected in flasks over a period of a few minutes, sodium hydroxide solution exposed the atmosphere, and grass samples from the surrounding farmland, the latter two representing ~1 week integrated averages. We use the WindTrax Lagrangian plume dispersion model to compare these atmospheric observations with "expected" values given the emissions reported by the Kapuni plant. The model has difficulty accurately capturing the short-term variability in the flask samples but does well in representing the longer-term averages from grass samples, suggesting that passive integrated-sampling methods have the potential to monitor long-term emissions. Our results indicate that using this method, point source emissions can be verified to within about 30%. Further improvements in atmospheric transport modelling are needed to reduce uncertainties. In view of this, we discuss model strengths and weaknesses and explore model sensitivity to meteorological conditions

  10. Regional emission and loss budgets of atmospheric methane (2002-2012)

    Science.gov (United States)

    Saeki, T.; Patra, P. K.; Dlugokencky, E. J.; Ishijima, K.; Umezawa, T.; Ito, A.; Aoki, S.; Morimoto, S.; Kort, E. A.; Crotwell, A. M.; Ravi Kumar, K.; Nakazawa, T.

    2015-12-01

    Methane (CH4) plays important roles in atmospheric chemistry and short-term forcing of climate. Clear understanding of atmospheric CH4's budget of emissions and losses is required to aid sustainable development of Earth's future environment. We used an atmospheric chemistry-transport model (JAMSTEC's ACTM) for simulating atmospheric CH4. An inverse modeling system has been developed for estimating CH4 emissions (7 ensemble cases) from 53 land regions for 2002-2012 using measurements at 39 sites. Global net CH4 emissions varied between 505-509 and 524-545 Tg/yr during 2002-2004 and 2010-2012, respectively (ranges based on 6 inversion cases), with a step like increase in 2007 in agreement with atmospheric measurement. The inversion system did not account for interannual variations in radicals reacting with CH4 in atmosphere. Our results suggest that the recent update of EDGAR inventory (version 4.2FT2010) overestimated global total emissions by at least 25 Tg/yr in 2010. Increase in CH4 emission since 2004 originated in the tropical and southern hemisphere regions, with timing consistent with an increase of non-dairy cattle stocks by ~10% in 2012 from 1056 million heads in 2002, leading to ~10 Tg/yr increase in emissions from enteric fermentation. All 7 inversions robustly estimated the interannual variations in emissions, but poorly constrained the seasonal cycle amplitude or phase consistently for all regions due to sparse observational network. Forward simulation results using both the a priori and a posteriori emissions are compared with independent aircraft measurements for validation. By doing that we are able to reject the upper limit (545 Tg/yr) of global total emissions as 14 Tg/yr too high during 2008-2012, which allows us to further conclude that CH4 emission increase rate over the East Asia (China mainly) region was 7-8 Tg/yr between the 2002-2006 and 2008-2012 periods, contrary to 1-17 Tg/yr in the a priori emissions.

  11. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    Science.gov (United States)

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. PMID:27005790

  12. Isoprene leaf emission under CO2 free atmosphere: why and how?

    Science.gov (United States)

    Garcia, S.

    2015-12-01

    Isoprene (C5H8) is a reactive hydrocarbon gas emitted at high rates by tropical vegetation, which affects atmospheric chemistry and climate and, in the leaf level, is a very important agent against environmental stress. Under optimal conditions for photosynthesis, the majority of carbon used for isoprene biosynthesis is a direct product from recently assimilated atmospheric CO2. However, the contribution of 'alternate' carbon sources, that increase with leaf temperature, have been demonstrated and emissions of isoprene from 'alternate' carbon sources under ambient CO2 below the compensation point for photosynthesis have been observed. In this study, we investigated the response of leaf isoprene emissions under 450 ppm CO2 and CO2 free atmosphere as a function of light and leaf temperature. At constant leaf temperature (30 °C) and CO2 free atmospheres, leaves of the tropical species Inga edulis showed net emissions of CO2 and light-dependent isoprene emissions which stagnated at low light levels (75 µmol m-2 s-1 PAR) and account for 25% of that observed with 450 ppm CO2. Under constant light (1000 µmol m-2 s-1 PAR) and CO2 free atmospheres, a increase of leaf temperatures from 25 to 40 °C resulted in net emissions of CO2 and temperature-dependent isoprene emissions which reached values up to 17% of those under 450 ppm CO2. Our observations suggest that, under environmental stress, as high light/temperature and drought (when the stomata close and the amount of internal CO2 decreases), the 'alternate' carbon can maintain photosynthesis rates resulting in the production of isoprene, independent of atmospheric CO2, through the re-assimilation of internal released CO2 as an 'alternate' carbon sources for isoprene.

  13. Atmospheric Pollutions Emissions, environmental challenges of Isfahan City

    Directory of Open Access Journals (Sweden)

    V. Ezzatian

    2013-01-01

    Full Text Available Extended abstract1-IntroductionThe recent fatal events with regard to the rise in the atmospheric pollutants levels have suggested that the reason of their occurrence be more identified. The long-term and short-term effects on the environment caused by pollutants that reached unacceptable level are apparent; existence of pollutatnts has led to short-term effects such as appearance and aggravation of cancer and respiratory‚ optic and lung diseases. The sequence of long-term effects is seen on DNA‚ intelligence and physiology. The air pollution results in water and soil pollution. Of course, aquatics and plants are under the influence of these pollutions. Men are not safe from them because they enter man’s food chain too. The statistical model represented in this research can estimate the acceptable rate of surface- ozone by measuring the climatic data of synoptic meteorology of Isfahan Station and evaluating surface pollution rate of station of the Environment Protection Agency. This research shows that equations that profited from two variables including square sunshine and square carbon monoxide concentration could explain %35 of concentration changes in surface- ozone during a day. Even though multivariable regression models can explain dramatical concentration changes in surface– ozone and protector concentration, practical use of these models is limited because of numerous entrance variables. Ozone as one of the most significant secondary pollutants not only influences general health but also has a considerable effect on agriculture. Surface – ozone is in ppm or ppb and it comprises the number of ozone molecules per million and per billion of air molecule.2- Theoretical basis As regards exceptional importance and poisonous state of ozone special in agriculture, it is essential to measure the rate of this gas for quantitative and qualitative survey of garden products and birds and livestock’s health. In general pollutants threat

  14. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050

    Science.gov (United States)

    Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun

    2015-11-01

    This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from

  15. Mercury and plants in contaminated soils. 1: Uptake, partitioning, and emission to the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, T.L.; Gustin, M.S.; Fernandez, G.C.J. [Univ. of Nevada, Reno, NV (United States); Taylor, G.E. Jr. [George Mason Univ., Fairfax, VA (United States). Dept. of Biology

    1998-10-01

    The uptake, distribution, and subsequent emission of mercury to the atmosphere were investigated in five plant species (Lepidium latifolium [L.], Artemisia douglasiana [Bess in Hook], Caulanthus sp. [S. Watson], Fragaria vesca [L.], and Eucalyptus globulus [Labill]) with different ecological and physiological attributes. Transfer coefficients for mercury in the soil-plant system were calculated. Plant-to-atmosphere emissions of mercury were determined using a controlled environment gas-exchange system and ranged from 10 to 93 mg/m{sup 2}/h in the light; emissions in the dark were an order of magnitude less. Transfer coefficients for mercury within the soil-plant system increased acropetally (root-to-leaf axis) by orders of magnitude. Estimated mercury emissions from plants in the Carson River Drainage Basin of Nevada over the growing season (0.5 mg/m{sup 2}) add to the previously reported soil mercury emissions (8.5 mg/m{sup 2}), resulting in total landscape emissions of 9 mg/m{sup 2}. For L. latifolium, 70% of the mercury taken up by the roots during the growing season was emitted to the atmosphere. For every one molecule of mercury retained in foliage of L. latifolium, 12 molecules of mercury were emitted. Within this arid ecosystem, mercury emissions are a dominant pathway of the mercury cycle. Plants function as conduits for the interfacial transport of mercury from the geosphere to the atmosphere, and this role is undervalued in models of the behavior of mercury in terrestrial exosystems and in the atmosphere on a global scale.

  16. Simulations of atmospheric methane for Cape Grim, Tasmania, to constrain southeastern Australian methane emissions

    OpenAIRE

    Z. M. Loh; R. M. Law; Haynes, K. D.; P. B. Krummel; Steele, L. P.; P. J. Fraser; S. D. Chambers; Williams, A G

    2015-01-01

    This study uses two climate models and six scenarios of prescribed methane emissions to compare modelled and observed atmospheric methane between 1994 and 2007, for Cape Grim, Australia (40.7° S, 144.7° E). The model simulations follow the TransCom-CH4 protocol and use the Australian Community Climate and Earth System Simulator (ACCESS) and the CSIRO Conformal-Cubic Atmospheric Model (CCAM). Radon is also simulated and used to reduce the i...

  17. Simulations of atmospheric methane for Cape Grim, Tasmania, to constrain South East Australian methane emissions

    OpenAIRE

    Z. M. Loh; R. M. Law; Haynes, K. D.; P. B. Krummel; Steele, L. P.; P. J. Fraser; Chambers, S; Williams, A

    2014-01-01

    This study uses two climate models and six scenarios of prescribed methane emissions to compare modelled and observed atmospheric methane between 1994 and 2007, for Cape Grim, Australia (40.7° S, 144.7° E). The model simulations follow the TransCom-CH4 protocol and use the Australian Community Climate and Earth System Simulator (ACCESS) and the CSIRO Conformal-Cubic Atmospheric Model (CCAM). Radon is also simulated and used to reduce the i...

  18. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    Science.gov (United States)

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields. PMID:25955053

  19. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers

    CERN Document Server

    Schellart, P; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-01-01

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  20. Soil greenhouse gases emissions reduce the benefit of mangrove plant to mitigating atmospheric warming effect

    OpenAIRE

    Chen, Guangcheng; Chen, Bin; Yu, Dan; Ye, Yong; Tam, Nora F. Y.; Chen, Shunyang

    2016-01-01

    Mangrove soils have been recognized as sources of atmospheric greenhouse gases but the atmospheric fluxes are poorly characterized, and their adverse warming effect has scarcely been considered with respect to the role of mangrove wetlands in mitigating global warming. The present study balanced the warming effect of soil greenhouse gas emissions with plant carbon dioxide (CO2) sequestration rate in a highly productive mangrove wetland in South China to assess the role of mangrove wetland in ...

  1. Atmospheric constraints on the methane emissions from the East Siberian Shelf

    Science.gov (United States)

    Berchet, Antoine; Bousquet, Philippe; Pison, Isabelle; Locatelli, Robin; Chevallier, Frédéric; Paris, Jean-Daniel; Dlugokencky, Ed J.; Laurila, Tuomas; Hatakka, Juha; Viisanen, Yrjo; Worthy, Doug E. J.; Nisbet, Euan; Fisher, Rebecca; France, James; Lowry, David; Ivakhov, Viktor; Hermansen, Ove

    2016-03-01

    Subsea permafrost and hydrates in the East Siberian Arctic Shelf (ESAS) constitute a substantial carbon pool, and a potentially large source of methane to the atmosphere. Previous studies based on interpolated oceanographic campaigns estimated atmospheric emissions from this area at 8-17 TgCH4 yr-1. Here, we propose insights based on atmospheric observations to evaluate these estimates. The comparison of high-resolution simulations of atmospheric methane mole fractions to continuous methane observations during the whole year 2012 confirms the high variability and heterogeneity of the methane releases from ESAS. A reference scenario with ESAS emissions of 8 TgCH4 yr-1, in the lower part of previously estimated emissions, is found to largely overestimate atmospheric observations in winter, likely related to overestimated methane leakage through sea ice. In contrast, in summer, simulations are more consistent with observations. Based on a comprehensive statistical analysis of the observations and of the simulations, annual methane emissions from ESAS are estimated to range from 0.0 to 4.5 TgCH4 yr-1. Isotopic observations suggest a biogenic origin (either terrestrial or marine) of the methane in air masses originating from ESAS during late summer 2008 and 2009.

  2. Effectiveness of Emission Controls to Reduce the Atmospheric Concentrations of Mercury.

    Science.gov (United States)

    Castro, Mark S; Sherwell, John

    2015-12-15

    Coal-fired power plants in the United States are required to reduce their emissions of mercury (Hg) into the atmosphere to lower the exposure of Hg to humans. The effectiveness of power-plant emission controls on the atmospheric concentrations of Hg in the United States is largely unknown because there are few long-term high-quality atmospheric Hg data sets. Here, we present the atmospheric concentrations of Hg and sulfur dioxide (SO2) measured from 2006 to 2015 at a relatively pristine location in western Maryland that is several (>50 km) kilometers downwind of power plants in Ohio, Pennsylvania, and West Virginia. Annual average atmospheric concentrations of gaseous oxidized mercury (GOM), SO2, fine particulate mercury (PBM2.5), and gaseous elemental mercury (GEM) declined by 75%, 75%, 43%, and 13%, respectively, and were strongly correlated with power-plant Hg emissions from the upwind states. These results provide compelling evidence that reductions in Hg emissions from power plants in the United States had their intended impact to reduce regional Hg pollution. PMID:26606506

  3. Effective pollutant emission heights for atmospheric transport modelling based on real-world information

    International Nuclear Information System (INIS)

    Emission data needed as input for the operation of atmospheric models should not only be spatially and temporally resolved. Another important feature is the effective emission height which significantly influences modelled concentration values. Unfortunately this information, which is especially relevant for large point sources, is usually not available and simple assumptions are often used in atmospheric models. As a contribution to improve knowledge on emission heights this paper provides typical default values for the driving parameters stack height and flue gas temperature, velocity and flow rate for different industrial sources. The results were derived from an analysis of the probably most comprehensive database of real-world stack information existing in Europe based on German industrial data. A bottom-up calculation of effective emission heights applying equations used for Gaussian dispersion models shows significant differences depending on source and air pollutant and compared to approaches currently used for atmospheric transport modelling. - The comprehensive analysis of real-world stack data provides detailed default parameter values for improving vertical emission distribution in atmospheric modelling

  4. Parameterization of atmospheric long-wave emissivity in a mountainous site for all sky conditions

    Directory of Open Access Journals (Sweden)

    J. Herrero

    2012-03-01

    Full Text Available Long-wave radiation is an important component of the energy balance of the Earth's surface. The downward component, emitted by the clouds and aerosols in the atmosphere, is rarely measured, and is still not well understood. In mountainous areas, the models existing for its estimation through the emissivity of the atmosphere do not give good results, and worse still in the presence of clouds. In order to estimate this emissivity for any atmospheric state and in a mountainous site, we related it to the screen-level values of temperature, relative humidity and solar radiation. This permitted the obtaining of: (1 a new set of parametric equations and (2 the modification of the Brutsaert's equation for cloudy skies through the calibration of C factor to 0.34 and the parameterization of the cloud index N. Both fitted to the surface data measured at a weather station at a height of 2500 m a.s.l. in Sierra Nevada, Spain. This study analyzes separately three significant atmospheric states related to cloud cover, which were also deduced from the screen-level meteorological data. Clear and totally overcast skies are accurately represented by the new parametric expressions, while the intermediate situations corresponding to partly clouded skies, concentrate most of the dispersion in the measurements and, hence, the error in the simulation. Thus, the modeling of atmospheric emissivity is greatly improved thanks to the use of different equations for each atmospheric state.

  5. Differences between trends in atmospheric CO2 and the reported trends in anthropogenic CO2 emissions

    International Nuclear Information System (INIS)

    Averaged annual accumulation of CO2 in the atmosphere, dCa/dt, has been slowing from peak growth in 2002/2003 associated with anomalous climate-induced emissions at high northern latitudes. This slowing is widespread but determined with greatest certainty in the largest well-mixed portion of the global troposphere (30 deg S-90 deg S). We rely on atmospheric mixing for global integration and selection of atmospheric data for spatial representativeness. Prior to 2002/2003, after empirical adjustment for perturbations associated with ENSO and volcanic activity (EV), dCa/dt increases are well represented by linear regression, using direct monitoring records from 1990 or 1965, also from pre-industrial times using archived air. In contrast, modelled atmospheric trends due to reported emissions dCE/dt (assuming historically consistent oceanic and terrestrial uptake mechanisms), agree with dCa/dt or dCa/dt-EV up until 1990, are near-stable through the 1990s and increase by 29% between 2000 and 2008. Using atmospheric constraints based on trends in both dCa/dt-EV and interhemispheric gradient, the differences between trends in dCE/dt and atmospheric CO2 growth are most simply explained as an artefact of underestimating 1994-2003 emissions by around 6%. This is achieved with a near constant post-1965 airborne fraction; otherwise unusually complicated sink changes are required for the period.

  6. Possible reduction in trace element emission into the atmosphere

    International Nuclear Information System (INIS)

    The efficiency is assessed of trace element separation in solid particles separator facilities in a heat plant (electric separator) and in a steel making factory (textile filter). Fly ash samples were taken before and behind the separator and were analyzed using instrumental neutron activation analysis. The trace element contents in different samples are tabulated. For the heat plant the levels of Sb, As, Se, Cs and Hg were the highest while for the steel plant the highest figures were found for Fe, Mn, Cr, Cu and Ni. In assessing the operation of separators, the cumulation of trace elements in the finest fraction of solid emission should be taken into consideration. (M.D.). 1 fig., 4 tabs., 19 refs

  7. Proceedings of impact of aircraft emissions upon the atmosphere. V. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The study of the effect of aircraft on atmosphere is a new challenge that the scientific community has to face. This conference`s topics are various aspects of this challenge. The seven sessions of Volume 1 are: Present status and perspectives; Emission and traffic; Physics and chemistry of the aircraft wake; Natural and anthropogenic emissions - specific instrumentation; Global scale - chemistry; Global scale - climate. The 51 papers of Vol. 1. were indexed and abstracted individually for the Energy Database. (R.P.)

  8. Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China.

    Science.gov (United States)

    Zhang, Lei; Wang, Shuxiao; Wang, Long; Wu, Ye; Duan, Lei; Wu, Qingru; Wang, Fengyang; Yang, Mei; Yang, Hai; Hao, Jiming; Liu, Xiang

    2015-03-01

    China is the largest contributor to global atmospheric mercury (Hg), and accurate emission inventories in China are needed to reduce large gaps existing in global Hg mass balance estimates and assess Hg effects on various ecosystems. The China Atmospheric Mercury Emission (CAME) model was developed in this study using probabilistic emission factors generated from abundant on-site measurements and literature data. Using this model, total anthropogenic Hg emissions were estimated to be continuously increasing from 356 t in 2000 to 538 t in 2010 with an average annual increase rate of 4.2%. Industrial coal combustion, coal-fired power plants, nonferrous metal smelting, and cement production were identified to be the dominant Hg emission sources in China. The ten largest contributing provinces accounted for nearly 60% of the total Hg emissions in 2010. Speciated Hg emission inventory was developed over China with a grid-resolution of 36 × 36 km, providing needed emission fields for Hg transport models. In this new inventory, the sectoral Hg speciation profiles were significantly improved based on the latest data from field measurements and more detailed technology categorization. The overall uncertainties of the newly developed inventory were estimated to be in the range of -20% to +23%. PMID:25655106

  9. Life cycle inventory analysis of CO2 and SO2 emission of imperial smelting process for Pb-Zn smelter

    Institute of Scientific and Technical Information of China (English)

    李启厚; 郭学益; 肖松文; 黄凯; 张多默

    2003-01-01

    Based on the principle of life cycle assessment, CO2 and SO2 emission of Imperial Smelting Process in a certain zinc-lead smelter was analyzed by life cycle inventory method. According to the system expansion and substitution method, the environmental impacts of co-products were allocated among the main products of zinc, lead and sulfuric acid. The related impacts were assessed by use of Global Warming Potential (GWP) and Acidification Potential (ACP). The results show that the GWP index from 1998 to 2000 is 11.53, 11.65, 10.93 tCO2-eq/tZn respectively, the ACP index decreases from 14.88 kgSO2-eq/tZn in 1998 to 10.99 kgSO2-eq/tZn in 2000. Power and electricity generation, followed by smelting and zinc distillation, are mainly responsible for GWP. Sintering individually affects ACP. Reduction in greenhouse gas emissions of the ISP may come from energy conservation measures rather than from technological developments. And recycling more secondary Pb and Zn materials effectively treated by ISP, and reducing the amount of primary metal are the main ways to put SO2 emission under control.

  10. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies

    Science.gov (United States)

    Tian, H. Z.; Zhu, C. Y.; Gao, J. J.; Cheng, K.; Hao, J. M.; Wang, K.; Hua, S. B.; Wang, Y.; Zhou, J. R.

    2015-09-01

    Anthropogenic atmospheric emissions of typical toxic heavy metals have caused worldwide concern due to their adverse effects on human health and the ecosystem. By determining the best available representation of time-varying emission factors with S-shape curves, we establish the multiyear comprehensive atmospheric emission inventories of 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu, and Zn) from primary anthropogenic activities in China for the period of 1949-2012 for the first time. Further, we allocate the annual emissions of these heavy metals in 2010 at a high spatial resolution of 0.5° × 0.5° grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). Our results show that the historical emissions of Hg, As, Se, Cd, Cr, Ni, Sb, Mn, Co, Cu, and Zn, during the period of 1949-2012, increased by about 22-128 times at an annual average growth rate of 5.1-8.0 %, reaching about 526.9-22 319.6 t in 2012. Nonferrous metal smelting, coal combustion of industrial boilers, brake and tyre wear, and ferrous metal smelting represent the dominant sources of heavy metal emissions. In terms of spatial variation, the majority of emissions are concentrated in relatively developed regions, especially for the northern, eastern, and southern coastal regions. In addition, because of the flourishing nonferrous metal smelting industry, several southwestern and central-southern provinces play a prominent role in some specific toxic heavy metals emissions, like Hg in Guizhou and As in Yunnan. Finally, integrated countermeasures are proposed to minimize the final toxic heavy metals discharge on account of the current and future demand of energy-saving and pollution reduction in China.

  11. Regional Atmospheric Transport Code for Hanford Emission Tracking, Version 2(RATCHET2)

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, James V.; Rishel, Jeremy P.

    2006-07-01

    This manual describes the atmospheric model and computer code for the Atmospheric Transport Module within SAC. The Atmospheric Transport Module, called RATCHET2, calculates the time-integrated air concentration and surface deposition of airborne contaminants to the soil. The RATCHET2 code is an adaptation of the Regional Atmospheric Transport Code for Hanford Emissions Tracking (RATCHET). The original RATCHET code was developed to perform the atmospheric transport for the Hanford Environmental Dose Reconstruction Project. Fundamentally, the two sets of codes are identical; no capabilities have been deleted from the original version of RATCHET. Most modifications are generally limited to revision of the run-specification file to streamline the simulation process for SAC.

  12. The efficiency and sensitivity analysis of observations for atmospheric transport model with emissions

    Science.gov (United States)

    Wu, Xueran; Elbern, Hendrik; Jacob, Birgit

    2015-04-01

    Air quality and climate change are influenced by the fluxes of green house gases, reactive emissions and aerosols in the atmosphere. But observations of the chemical states in the atmosphere typically have low temporal and spatial density. Therefore, many works are introduced to spatio-temporal data assimilation methods in atmospheric chemistry in recent years. There is no doubt that the optimization of the initial state is always of great importance for the improvement of predictive skill. However, specified to the chemistry transport model with high dependence on the emissions in the troposphere, the optimization of the initial state is no longer the only issue. The lack of the ability to observe and estimate surface emission fluxes and important inner atmospheric fluxes with necessary accuracy is a major roadblock of hampering the progress in predictive skills of the atmospheric transport model. However, in many cases, the better estimations for both the initial state and emission rates are not always obtained with certain observational network configurations via various popular data assimilation methods, such as the ensemble Kalman filter and smoother and 4D-variation. It leads to the waste of resource by optimizing the improper parameters or brings the inaccuracy of the optimization by unsuitable weight between the initial state and emission rates. Hence, in order to make a scientific and quantitative decision about which parameters to be optimized and how to balance them before any data assimilation procedure, we establish the dynamic model for emission rates with the constraint of diurnal profile shape and extend the state vector of atmospheric transport model so that the emission rates are included. Then, a theoretical approach, based on Kalman filter and smoother and their ensemble cases, to evaluate the potential improvement is introduced. By singular value decomposition, the efficiency of observations to optimize initial state and emission rates of the

  13. Atomic carbon in comet atmospheres. Origin and emission spectra

    International Nuclear Information System (INIS)

    A detailed study of neutral carbon emissions is made, to precise the excitation mechanism nature, to determine the production mechanisms and examine wether information on CO and CO2 molecule abundance could be deduced, or wether another source must be looked for. After an exhaustive study of excitation rates necessary for theoretical intensity calculation, a new effect has been discovered, and which acts on the atom excitation rates, via their distribution on the fundamental hyperfine levels. On the other hand, the strong dependency of the excitation rate ratio with heliocentric velocity and with the hypothesis which is made on the atom population initial distribution has been revealed. The carbon abundance in all the comets of the initial sample has been calculated, then compared to the water one revealing two groups of comets. Then an abundance criterium to remove the CO and CO2 molecules from the carbon potential-parents in the Bradfield comet has been used while CO is the best candicate for C(3P) and C(1D) atom production in the West, Kohoutek and Bennet comets (but to certain conditions). The important conclusion is that, while the relative abundance (C2/OH, CN/OH,...) of the minor carbon compounds were constant, the CO relative abundance varies from an object to the other, probably an effect due to repeated passage of some comets near the sun

  14. Remarkably improved field emission of TiO2 nanotube arrays by annealing atmosphere engineering

    International Nuclear Information System (INIS)

    Highlights: • TNAs were prepared by anodization and annealed in different atmospheres. • The crystal structure and electronic properties of the prepared TNAs were investigated. • The field emission of TNAs was highly dependent on annealing atmosphere. • A low turn-on of 2.44 V/μm was obtained for TNAs annealed in H2 atmosphere. - Abstract: Highly ordered TiO2 nanotube arrays (TNAs) were prepared by anodization, and followed by annealing in the atmospheres of Air, Vacuum, Ar, and H2. The effect of annealing atmosphere on the crystal structure, composition, and electronic properties of TNAs were systematically investigated. Raman and EDS results indicated that the TNAs annealed in anaerobic atmospheres contained more oxygen vacancies, which result in the substantially improved electron transport properties and reduced work function. Moreover, it was found that the FE properties of TNAs were highly dependent on the annealing atmosphere. By engineering the annealing atmosphere, the turn-on field as low as 2.44 V/μm can be obtained from TNAs annealed in H2, which was much lower than the value of 18.23 V/μm from the TNAs annealed in the commonly used atmosphere of Air. Our work suggests an instructive and attractive way to fabricate high performance TNAs field emitters

  15. Remarkably improved field emission of TiO{sub 2} nanotube arrays by annealing atmosphere engineering

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ai-Zhen; Wang, Cheng-Wei, E-mail: cwwang@nwnu.edu.cn; Chen, Jian-Biao; Zhang, Xu-Qiang; Li, Yan; Wang, Jian

    2015-10-15

    Highlights: • TNAs were prepared by anodization and annealed in different atmospheres. • The crystal structure and electronic properties of the prepared TNAs were investigated. • The field emission of TNAs was highly dependent on annealing atmosphere. • A low turn-on of 2.44 V/μm was obtained for TNAs annealed in H{sub 2} atmosphere. - Abstract: Highly ordered TiO{sub 2} nanotube arrays (TNAs) were prepared by anodization, and followed by annealing in the atmospheres of Air, Vacuum, Ar, and H{sub 2}. The effect of annealing atmosphere on the crystal structure, composition, and electronic properties of TNAs were systematically investigated. Raman and EDS results indicated that the TNAs annealed in anaerobic atmospheres contained more oxygen vacancies, which result in the substantially improved electron transport properties and reduced work function. Moreover, it was found that the FE properties of TNAs were highly dependent on the annealing atmosphere. By engineering the annealing atmosphere, the turn-on field as low as 2.44 V/μm can be obtained from TNAs annealed in H{sub 2}, which was much lower than the value of 18.23 V/μm from the TNAs annealed in the commonly used atmosphere of Air. Our work suggests an instructive and attractive way to fabricate high performance TNAs field emitters.

  16. Atmospheric nitrogen in the Mississippi River Basin. Emissions, deposition and transport

    International Nuclear Information System (INIS)

    Atmospheric deposition of nitrogen has been cited as a major factor in the nitrogen saturation of forests in the north-eastern United States and as a contributor to the eutrophication of coastal waters, including the Gulf of Mexico near the mouth of the Mississippi River. Sources of nitrogen emissions and the resulting spatial patterns of nitrogen deposition within the Mississippi River Basin, however, have not been fully documented. An assessment of atmospheric nitrogen in the Mississippi River Basin was therefore conducted in 1998-1999 to: (1) evaluate the forms in which nitrogen is deposited from the atmosphere; (2) quantify the spatial distribution of atmospheric nitrogen deposition throughout the basin; and (3) relate locations of emission sources to spatial deposition patterns to evaluate atmospheric transport. Deposition data collected through the NADP/NTN (National Atmospheric Deposition Program/National Trends Network) and CASTNet (Clean Air Status and Trends Network) were used for this analysis. NOx Tier 1 emission data by county was obtained for 1992 from the US Environmental Protection Agency (Emissions Trends Viewer CD, 1985-1995, version 1.0, September 1996) and NH3 emissions data was derived from the 1992 Census of Agriculture (US Department of Commerce. Census of Agriculture, US Summary and County Level Data, US Department of Commerce, Bureau of the Census. Geographic Area series, 1995:1b) or the National Agricultural Statistics Service (US Department of Agriculture. National Agricultural Statistics Service Historical Data. Accessed 7/98 at URL, 1998. http://www.usda.gov/nass/pubs/hisdata.htm). The highest rates of wet deposition of NO3- were in the north-eastern part of the basin, downwind of electric utility plants and urban areas, whereas the highest rates of wet deposition of NH4+ were in Iowa, near the center of intensive agricultural activities in the Midwest. The lowest rates of atmospheric nitrogen deposition were on the western (windward

  17. A model to calculate consistent atmospheric emission projections and its application to Spain

    Science.gov (United States)

    Lumbreras, Julio; Borge, Rafael; de Andrés, Juan Manuel; Rodríguez, Encarnación

    Global warming and air quality are headline environmental issues of our time and policy must preempt negative international effects with forward-looking strategies. As part of the revision of the European National Emission Ceilings Directive, atmospheric emission projections for European Union countries are being calculated. These projections are useful to drive European air quality analyses and to support wide-scale decision-making. However, when evaluating specific policies and measures at sectoral level, a more detailed approach is needed. This paper presents an original methodology to evaluate emission projections. Emission projections are calculated for each emitting activity that has emissions under three scenarios: without measures (business as usual), with measures (baseline) and with additional measures (target). The methodology developed allows the estimation of highly disaggregated multi-pollutant, consistent emissions for a whole country or region. In order to assure consistency with past emissions included in atmospheric emission inventories and coherence among the individual activities, the consistent emission projection (CEP) model incorporates harmonization and integration criteria as well as quality assurance/quality check (QA/QC) procedures. This study includes a sensitivity analysis as a first approach to uncertainty evaluation. The aim of the model presented in this contribution is to support decision-making process through the assessment of future emission scenarios taking into account the effect of different detailed technical and non-technical measures and it may also constitute the basis for air quality modelling. The system is designed to produce the information and formats related to international reporting requirements and it allows performing a comparison of national results with lower resolution models such as RAINS/GAINS. The methodology has been successfully applied and tested to evaluate Spanish emission projections up to 2020 for 26

  18. Global emissions of mercury to the atmosphere in 2005 and their 2020 scenarios

    Science.gov (United States)

    Pacyna, Jozef M.; Pacyna, Elisabeth G.; Sundseth, Kyrre; Munthe, John; Wilson, Simon; Leaner, Joy

    2010-05-01

    About the three quarters of the total anthropogenic emissions of mercury in the year 2005 estimated to be 1930 tonnes comes from sources where mercury is emitted as a by-product, and the rest is emitted during various applications of mercury. The largest emissions of Hg to the global atmosphere occur from combustion of fossil fuels, mainly coal in utility, industrial, and residential boilers (almost 47 %), followed by artisanal mining (almost 17 %), non-ferrous metal production, including gold production (13.5%) and cement production (about 9.5 %). Doing nothing for the improvement of the Hg emission reductions (so-called Status Quo - SQ scenario) will cause an increase of the emissions in 2020 by almost 100 % compared to the 2020 Extended Emission Control (EXEC) emission reduction scenario. Even larger increase is estimated when the 2020 SQ scenario of Hg emissions is compared with the 2020 Maximum Feasible Technical Reduction (MFTR) emission reduction scenario. The EXEC scenario assumes economic progress at a rate dependent on the future development of industrial technologies and emission control technologies, i.e. mercury-reducing technology currently generally employed throughout Europe and North America would be implemented elsewhere. It further assumes that emissions control measures currently implemented or committed to in Europe to reduce mercury emission to air or water would be implemented around the world. The MFTR scenario assumes implementation of all solutions/ measures leading to the maximum degree of reduction of mercury emissions and its loads discharged to any environment; cost is taken into account but only as a secondary consideration. Emissions of Hg in various industrial sectors, such as cement production and metal manufacturing in the year 2020 can be 2 to 3 times larger if nothing will be done to improve emission control in comparison with the EXEC scenario.

  19. LA Megacity: An Integrated Land-Atmosphere System for Urban CO2 Emissions

    Science.gov (United States)

    Feng, S.; Lauvaux, T.; Newman, S.; Rao, P.; Patarasuk, R.; o'Keefe, D.; Huang, J.; Ahmadov, R.; Wong, C.; Song, Y.; Gurney, K. R.; Diaz Isaac, L. I.; Jeong, S.; Fischer, M. L.; Miller, C. E.; Duren, R. M.; Li, Z.; Yung, Y. L.; Sander, S. P.

    2015-12-01

    About 10% of the global population lives in the word's 20 megacities (cities with urban populations greater than 10 million people). Megacities account for approximately 20% of the global anthropogenic fossil fuel CO2 (FFCO2) emissions, and their proportion of emissions increases monotonically with the world population and urbanization. Megacities range in spatial extent from ~1000 - 10,000 km2 with complex topography and variable landscapes. We present here the first attempt at building an integrated land-atmosphere modeling system for megacity environments, developed and evaluated for urban CO2 emissions over the Los Angeles (LA) Megacity area. The Weather Research and Forecasting (WRF) - Chem model was coupled to a ~1.3-km FFCO2 emission product, "Hestia-LA", to simulate the transport of CO2 across the LA magacity. We define the optimal model resolution to represent both the spatial variability of the atmospheric dynamics and the spatial patterns from the CO2 emission distribution. In parallel, we evaluate multiple configurations of WRF with various physical schemes, using meteorological observations from the CalNex-LA campaign of May-June 2010. Our results suggest that there is no remarkable difference between the medium- (4-km) and high- (1.3-km) resolution simulations in terms of atmospheric model performance. However, the high-resolution modeled CO2 mixing ratios clearly outperform the results at medium resolution for capturing both the spatial distribution and the temporal variability of the urban CO2 signals. We compare the impact of physical representation errors and emission aggregation errors on the modeled CO2 mixing ratios across the LA megacity. Finally, we present a novel approach to evaluate the design of the current surface network over the LA megacity using the modeled spatial correlations. These results reinforce the importance of using high-resolution emission products over megacities to represent correctly the large spatial gradients in

  20. Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations

    Science.gov (United States)

    Seco, Roger; Peñuelas, Josep; Filella, Iolanda

    Emissions of volatile organic compounds (VOCs) have multiple atmospheric implications and play many roles in plant physiology and ecology. Among these VOCs, growing interest is being devoted to a group of short-chain oxygenated VOCs (oxVOCs). Technology improvements such as proton transfer reaction-mass spectrometry are facilitating the study of these hydrocarbons and new data regarding these compounds is continuously appearing. Here we review current knowledge of the emissions of these oxVOCs by plants and the factors that control them, and also provide an overview of sources, sinks, and concentrations found in the atmosphere. The oxVOCs reviewed here are formic and acetic acids, acetone, formaldehyde, acetaldehyde, methanol, and ethanol. In general, because of their water solubility (low gas-liquid partitioning coefficient), the plant-atmosphere exchange is stomatal-dependent, although it can also take place via the cuticle. This exchange is also determined by atmospheric mixing ratios. These compounds have relatively long atmospheric half-lives and reach considerable concentrations in the atmosphere in the range of ppbv. Likewise, under non-stressed conditions plants can emit all of these oxVOCs together at fluxes ranging from 0.2 up to 4.8 μg(C)g -1(leaf dry weight)h -1 and at rates that increase several-fold when under stress. Gaps in our knowledge regarding the processes involved in the synthesis, emission, uptake, and atmospheric reactivity of oxVOCs precludes the clarification of exactly what is conditioning plant-atmosphere exchange—and also when, how, and why this occurs—and these lacunae therefore warrant further research in this field.

  1. The Recombination Mechanism and True Green Amplified Spontaneous Emission in CH3NH3PbBr3 Perovskite

    KAUST Repository

    Priante, Davide

    2015-08-01

    True-green wavelength emitters at 555 nm are currently dominated by III-V semiconductor-based inorganic materials. Nevertheless, due to high lattice- and thermal-mismatch, the overall power efficiency in this range tends to decline for high current density showing the so-called efficiency droop in the green region (“green gap”). In order to fill the research green gap, this thesis examines the low cost solution-processability of organometal halide perovskites, which presents a unique opportunity for light-emitting devices in the green-yellow region owing to their superior photophysic properties such as high photoluminescence quantum efficiency, small capture cross section of defect states as well as optical bandgap tunability across the visible light regime. Specifically, the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material were investigated using low-temperature, power-dependent (77 K), temperature-dependent photoluminescence (PL) measurements. We noted three recombination peaks at 77K, one of which originated from bulk defect states, and other two from surface defect states. The latter were identified as bound-excitonic (BE) radiative transitions related to particle size inhomogeneity or grain size induced surface state in the sample. Both transitions led to PL spectra broadening as a result of concurrent blue- and red-shifts of these excitonic peaks. The blue-shift is most likely due to the Burstein-Moss (band filling) effect. Interestingly, the red-shift of the second excitonic peak becomes pronounced with increasing temperature leading to a true-green wavelength of 553 nm for CH3NH3PbBr3. On the other hand, red-shifted peak originates from the strong absorption in the second excitonic peak owed to the high density of surface states and carrier filling of these states due to the excitation from the first excitonic recombination. We also achieved amplified spontaneous emission around excitation threshold energy of 350 μJ/cm2

  2. Changes in Emissions in Megacities during the Past Decades: Impact on the Distribution of Atmospheric Compounds

    Science.gov (United States)

    Doumbia, E. H. T.; Granier, C.; Sindelarova, K.; Tilmes, S.; Bouarar, I.; Richter, A.; Hilboll, A.; Conley, A. J.; Garcia, R. R.; Kinnison, D. E.; Lamarque, J. F.; Marsh, D. R.; Smith, A. K.; Neely, R.; Turnock, S.

    2015-12-01

    The surface emissions of atmospheric compounds have changed dramatically in many world regions during the past decades. We will evaluate these changes through an analysis of different global and regional anthropogenic emissions inventories, focusing on several megacities. In European and North American megacities, surface emissions of chemical compounds have decreased significantly, while they have increased in many other megacities in different parts of the world. Simulations performed with the CAM4-Chem Community Earth System Model will be used to evaluate the impact of the changes in emissions on the distributions chemical compounds in different megacities. These simulations were performed as part of the Chemistry-Climate Model Initiative (CCMI), a project of the International Global Atmospheric Chemistry Project (IGAC). The analysis of the simulations will focus more particularly on nitrogen dioxide: this species has been observed by satellite measurements since the late 1990s. Model results and satellite observations will be analysed for everal megacities in Europe and North America, where strong emission controls have been implemented. Other megacities in China, India, Africa and South America, where few emission regulations have been enforced have seen large increases in their emissions: we will evaluate the consistency of the model simulations and satellite observations of NO2 in these cities.

  3. Verification of the ASTER/TIR atmospheric correction algorithm based on water surface emissivity retrieved

    Science.gov (United States)

    Tonooka, Hideyuki; Palluconi, Frank D.

    2002-02-01

    The standard atmospheric correction algorithm for five thermal infrared (TIR) bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is currently based on radiative transfer computations with global assimilation data on a pixel-by-pixel basis. In the present paper, we verify this algorithm using 100 ASTER scenes globally acquired during the early mission period. In this verification, the max-min difference (MMD) of the water surface emissivity retrieved from each scene is used as an atmospheric correction error index, since the water surface emissivity is well known; if the MMD retrieved is large, an atmospheric correction error also will be possibly large. As the results, the error of the MMD retrieved by the standard atmospheric correction algorithm and a typical temperature/emissivity separation algorithm is shown to be remarkably related with precipitable water vapor, latitude, elevation, and surface temperature. It is also mentioned that the expected error on the MMD retrieved is 0.05 for the precipitable water vapor of 3 cm.

  4. Quantifying the effects of China's pollution control on atmospheric mercury emissions

    Science.gov (United States)

    Zhong, H.

    2014-12-01

    China has conducted series of air pollution control policies to reduce the pollutant emissions. Although not specifically for mercury (Hg), those policies are believed to have co-benefits on atmospheric Hg emission control. On the basis of field-tests data and updated information of energy conservation and emission control, we have developed multiple-year inventories of anthropogenic mercury emissions in China from 2005 to 2012. Three scenarios (scenario 0(S0), scenario 1(S1), scenario 2(S2)) with different emission controls and energy path are designed for prediction of the future Hg emissions for the country. In particular, comprehensive assessments has been conducted to evaluate the evolution of emission factors, recent emission trends, effects of control measures as well as the reliability of our results. The national total emissions of anthropogenic Hg are estimated to increase from 679.0 metric tons (t) in 2005 to 749.8 t in 2012, with the peak at 770.6 t in 2011. The annual growth rate of emissions can then be calculated at 2.1% during 2005-2011, much lower than that of energy consumption or economy of the country. Coal combustion, gold metallurgy and nonferrous metal smelting are the most significant Hg sources of anthropogenic origin, accounting together for 85% of national total emissions. Tightened air pollution controls in China should be important reasons for the smooth emission trends. Compared with 2005, 299 t Hg were reduced in 2010 from power plants, iron and steel smelting, nonferrous-smelting and cement production, benefiting from the improvement of control measures for those sectors. The speciation of Hg emissions is relatively stable for recent years, with the mass fractions of around 55%, 9% and 6% for Hg0, Hg2+ and Hgp respectively. Integrating the policy commitments on energy saving, different from the most conservative case S0, S2 shares the same energy path with S1, but includes more stringent emission control. Under those scenarios, we

  5. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions.

    Science.gov (United States)

    Shen, Huizhong; Huang, Ye; Wang, Rong; Zhu, Dan; Li, Wei; Shen, Guofeng; Wang, Bin; Zhang, Yanyan; Chen, Yuanchen; Lu, Yan; Chen, Han; Li, Tongchao; Sun, Kang; Li, Bengang; Liu, Wenxin; Liu, Junfeng; Tao, Shu

    2013-06-18

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). The global total annual atmospheric emission of 16 PAHs in 2007 was 504 Gg (331-818 Gg, as interquartile range), with residential/commercial biomass burning (60.5%), open-field biomass burning (agricultural waste burning, deforestation, and wildfire, 13.6%), and petroleum consumption by on-road motor vehicles (12.8%) as the major sources. South (87 Gg), East (111 Gg), and Southeast Asia (52 Gg) were the regions with the highest PAH emission densities, contributing half of the global total PAH emissions. Among the global total PAH emissions, 6.19% of the emissions were in the form of high molecular weight carcinogenic compounds and the percentage of the carcinogenic PAHs was higher in developing countries (6.22%) than in developed countries (5.73%), due to the differences in energy structures and the disparities of technology. The potential health impact of the PAH emissions was greatest in the parts of the world with high anthropogenic PAH emissions, because of the overlap of the high emissions and high population densities. Global total PAH emissions peaked at 592 Gg in 1995 and declined gradually to 499 Gg in 2008. Total PAH emissions from developed countries peaked at 122 Gg in the early 1970s and decreased to 38 Gg in 2008. Simulation of PAH emissions from 2009 to 2030 revealed that PAH emissions in developed and developing countries would decrease by 46-71% and 48-64%, respectively, based on the six IPCC SRES scenarios. PMID:23659377

  6. Parameterization of subgrid aircraft emission plumes for use in large-scale atmospheric simulations

    Directory of Open Access Journals (Sweden)

    M. Z. Jacobson

    2009-11-01

    Full Text Available Aircraft emissions differ from other anthropogenic pollution in that they occur mainly in the upper troposphere and lower stratosphere where they can form condensation trails (contrails and affect cirrus cloud cover. In determining the effect of aircraft on climate, it is therefore necessary to examine these processes. Previous studies have approached this problem by treating aircraft emissions on the grid scale, but this neglects the subgrid scale nature of aircraft emission plumes. We present a new model of aircraft emission plume dynamics that is intended to be used as a subgrid scale model in a large scale atmospheric simulation. The model shows good agreement with a large eddy simulation of aircraft emission plume dynamics and with an analytical solution to the dynamics of a sheared Gaussian plume. We argue that this provides a reasonable model of line-shaped contrail dynamics and give an example of how it might be applied in a global climate model.

  7. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    International Nuclear Information System (INIS)

    Chronic nitrogen deposition has measureable impacts on soil and plant health. We investigate burning emissions from biomass grown in areas of high and low NOx deposition. Gas and aerosol-phase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not available, results indicate a systemic compositional difference between biomass grown in high and low deposition areas. Aerosol emissions from biomass grown in areas of high NOx deposition exhibit a lower volatility than biomass grown in a low deposition area. Furthermore, fuel elemental analysis, NOx emission rates, and aerosol particle number distributions differed significantly between the two sites. Despite the limited scale of fuels explored, there is strong evidence that the atmospheric emissions community must pay attention to the regional air quality of biomass fuels growth areas. (letter)

  8. Pollutant emission inventories: contribution of wood combustion in emissions of greenhouse gases and atmospheric pollutants

    International Nuclear Information System (INIS)

    The use of wood for energy applications has a significant contribution in emissions of some pollutants involved in acidification, eutrophication and ozone formation. The largest contribution is linked to the use of wood in domestic appliances. On contrary, the use of wood for steam and electricity production in industrial and collective heating boilers is reduced. Wood combustion in domestic appliances represents 31% of total emissions for CO, 20,6% for NMVOC, 24,8% for PM10, 37,5% for PM2.5 and 74,1% for 4 HAP in 2006. France must be in compliance with national emission ceilings implemented by the European Directive 2001/81/EC for SO2, NOx and NMVOC in 2010. New ceilings are being prepared by the European Commission for application in 2020. Moreover, a ceiling should be implemented for PM2.5. The increase in energy performances of domestic appliances is necessary as well as a large penetration of new appliances with high efficiency and low emissions to remove the oldest ones. The decrease of the energy demand of building and houses is also crucial. Wood combustion in industrial and large collective boilers is carried out in good conditions and emissions are low. Wood is a renewable energy. Its combustion is neutral for CO2 emissions as it is considered that when emitted, CO2 is absorbed by vegetation in growth. Wood use is an essential component for contributing to the CO2 emission reduction by 20% in 2020 compared to 1990 according to objectives fixed by the law project no.1 of the Grenelle of Environment and the European Commission and a proportion of 23% of renewable energy in the final energy consumption. This use must be carried out in well controlled and optimized conditions for avoiding emissions of classical pollutants and a durable management of forests can only enable their sink role for CO2. (author)

  9. Short and Long Term Impacts of Forest Bioenergy Production on Atmospheric Carbon Dioxide Emissions

    Science.gov (United States)

    Hudiburg, T.; Law, B. E.; Luyssaert, S.; Thornton, P. E.

    2011-12-01

    Temperate forest annual net uptake of CO2 from the atmosphere is equivalent to ~16% of the annual fossil fuel emissions in the United States. Mitigation strategies to reduce emissions of carbon dioxide have lead to investigation of alternative sources of energy including forest biomass. The prospect of forest derived bioenergy has led to implementation of new forest management strategies based on the assumption that they will reduce total CO2 emissions to the atmosphere by simultaneously reducing the risk of wildfire and substituting for fossil fuels. The benefit of managing forests for bioenergy substitution of fossil fuels versus potential carbon sequestration by reducing harvest needs to be evaluated. This study uses a combination of Federal Forest Inventory data (FIA), remote sensing, and a coupled carbon-nitrogen ecosystem process model (CLM4-CN) to predict net atmospheric CO2 emissions from forest thinning for bioenergy production in Oregon under varying future management and climate scenarios. We use life-cycle assessment (LCA) incorporating both the forest and forest product sinks and sources of carbon dioxide. Future modeled results are compared with a reduced harvest scenario to determine the potential for increased carbon sequestration in forest biomass. We find that Oregon forests are a current strong sink of 7.5 ± 1.7 Tg C yr-1 or 61 g C m-2 yr-1. (NBP; NEP minus removals from fire and harvest). In the short term, we find that carbon dynamics following harvests for fire prevention and large-scale bioenergy production lead to 2-15% higher emissions over the next 20 years compared to current management, assuming 100% effectiveness of fire prevention. Given the current sink strength, analysis of the forest sector in Oregon demonstrates that increasing harvest levels by all practices above current business-as-usual levels increases CO2 emissions to the atmosphere as long as the region's sink persists. In the long-term, we find that projected changes in

  10. Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources

    Science.gov (United States)

    Nelson, Peter F.; Morrison, Anthony L.; Malfroy, Hugh J.; Cope, Martin; Lee, Sunhee; Hibberd, Mark L.; Meyer, C. P. (Mick); McGregor, John

    2012-12-01

    The United Nations Environment Programme (UNEP) has begun a process of developing a legally binding instrument to manage emissions of mercury from anthropogenic sources. The UNEP Governing Council has concluded that there is sufficient evidence of significant global adverse impacts from mercury to warrant further international action; and that national, regional and global actions should be initiated as soon as possible to identify populations at risk and to reduce human generated releases. This paper describes the development of, and presents results from, a comprehensive, spatially and temporally resolved inventory of atmospheric mercury emissions from the Australian landmass. Results indicate that the best estimate of total anthropogenic emissions of mercury to the atmosphere in 2006 was 15 ± 5 tonnes. Three industrial sectors contribute substantially to Australian anthropogenic emissions: gold smelting (˜50%, essentially from a single site/operation), coal combustion in power plants (˜15%) and alumina production from bauxite (˜12%). A diverse range of other sectors contribute smaller proportions of the emitted mercury, but industrial emissions account for around 90% of total anthropogenic mercury emissions. The other sectors include other industrial sources (mining, smelting, and cement production) and the use of products containing mercury. It is difficult to determine historical trends in mercury emissions given the large uncertainties in the data. Estimates for natural and re-emitted emissions from soil, water, vegetation and fires are made using meteorological models, satellite observations of land cover and soil and vegetation type, fuel loading, fire scars and emission factors which account for the effects of temperature, insolation and other environmental variables. These natural and re-emitted sources comfortably exceed the anthropogenic emissions, and comprise 4-12 tonnes per year from vegetation, 70-210 tonnes per year from soils, and 21-63 tonnes

  11. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California.

    Science.gov (United States)

    Zhang, Hongliang; Magara-Gomez, Kento T; Olson, Michael R; Okuda, Tomoaki; Walz, Kenneth A; Schauer, James J; Kleeman, Michael J

    2015-12-15

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ±5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  12. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2008-11-01

    Full Text Available We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments – a gas chromatograph with mass spectrometer detector (GC-MS, a proton transfer reaction mass spectrometer (PTR-MS, and a thermal desorption aerosol GC-MS (TAG – and found to be abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO, a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4–68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72–10.2 μgCg−1h−1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  13. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2009-03-01

    Full Text Available We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments – a gas chromatograph with mass spectrometer detector (GC-MS, a proton transfer reaction mass spectrometer (PTR-MS, and a thermal desorption aerosol GC-MS (TAG – and found to be abundant within and above Blodgett Forest. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO, a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4–68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72–10.2 μgCg−1 h−1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  14. Abrupt reversal in emissions and atmospheric abundance of HCFC-133a (CF3CH2Cl)

    Science.gov (United States)

    Vollmer, Martin K.; Rigby, Matt; Laube, Johannes C.; Henne, Stephan; Rhee, Tae Siek; Gooch, Lauren J.; Wenger, Angelina; Young, Dickon; Steele, L. Paul; Langenfelds, Ray L.; Brenninkmeijer, Carl A. M.; Wang, Jia-Lin; Ou-Yang, Chang-Feng; Wyss, Simon A.; Hill, Matthias; Oram, David E.; Krummel, Paul B.; Schoenenberger, Fabian; Zellweger, Christoph; Fraser, Paul J.; Sturges, William T.; O'Doherty, Simon; Reimann, Stefan

    2015-10-01

    Hydrochlorofluorocarbon HCFC-133a (CF3CH2Cl) is an anthropogenic compound whose consumption for emissive use is restricted under the Montreal Protocol. A recent study showed rapidly increasing atmospheric abundances and emissions. We report that, following this rise, the atmospheric abundance and emissions have declined sharply in the past three years. We find a Northern Hemisphere HCFC-133a increase from 0.13 ppt (dry-air mole fraction in parts per trillion) in 2000 to 0.50 ppt in 2012-mid-2013 followed by an abrupt drop to ˜0.44 ppt by early 2015. Global emissions derived from these observations peaked at 3.1 kt in 2011, followed by a rapid decline of ˜0.5 kt yr-2 to reach 1.5 kt yr-1 in 2014. Sporadic HCFC-133a pollution events are detected in Europe from our high-resolution HCFC-133a records at three European stations, and in Asia from samples collected in Taiwan. European emissions are estimated to be <0.1 kt yr-1 although emission hot spots were identified in France.

  15. The Role of Temporal Evolution in Modeling Atmospheric Emissions from Tropical Fires

    Science.gov (United States)

    Marlier, Miriam E.; Voulgarakis, Apostolos; Shindell, Drew T.; Faluvegi, Gregory S.; Henry, Candise L.; Randerson, James T.

    2014-01-01

    Fire emissions associated with tropical land use change and maintenance influence atmospheric composition, air quality, and climate. In this study, we explore the effects of representing fire emissions at daily versus monthly resolution in a global composition-climate model. We find that simulations of aerosols are impacted more by the temporal resolution of fire emissions than trace gases such as carbon monoxide or ozone. Daily-resolved datasets concentrate emissions from fire events over shorter time periods and allow them to more realistically interact with model meteorology, reducing how often emissions are concurrently released with precipitation events and in turn increasing peak aerosol concentrations. The magnitude of this effect varies across tropical ecosystem types, ranging from smaller changes in modeling the low intensity, frequent burning typical of savanna ecosystems to larger differences when modeling the short-term, intense fires that characterize deforestation events. The utility of modeling fire emissions at a daily resolution also depends on the application, such as modeling exceedances of particulate matter concentrations over air quality guidelines or simulating regional atmospheric heating patterns.

  16. Influence of daily versus monthly fire emissions on atmospheric model applications in the tropics

    Science.gov (United States)

    Marlier, M. E.; Voulgarakis, A.; Faluvegi, G.; Shindell, D. T.; DeFries, R. S.

    2012-12-01

    Fires are widely used throughout the tropics to create and maintain areas for agriculture, but are also significant contributors to atmospheric trace gas and aerosol concentrations. However, the timing and magnitude of fire activity can vary strongly by year and ecosystem type. For example, frequent, low intensity fires dominate in African savannas whereas Southeast Asian peatland forests are susceptible to huge pulses of emissions during regional El Niño droughts. Despite the potential implications for modeling interactions with atmospheric chemistry and transport, fire emissions have commonly been input into global models at a monthly resolution. Recognizing the uncertainty that this can introduce, several datasets have parsed fire emissions to daily and sub-daily scales with satellite active fire detections. In this study, we explore differences between utilizing the monthly and daily Global Fire Emissions Database version 3 (GFED3) products as inputs into the NASA GISS-E2 composition climate model. We aim to understand how the choice of the temporal resolution of fire emissions affects uncertainty with respect to several common applications of global models: atmospheric chemistry, air quality, and climate. Focusing our analysis on tropical ozone, carbon monoxide, and aerosols, we compare modeled concentrations with available ground and satellite observations. We find that increasing the temporal frequency of fire emissions from monthly to daily can improve correlations with observations, predominately in areas or during seasons more heavily affected by fires. Differences between the two datasets are more evident with public health applications: daily resolution fire emissions increases the number of days exceeding World Health Organization air quality targets.

  17. Photoelectron emission as a tool to assess dose of electron radiation received by ZrO2:PbS films

    International Nuclear Information System (INIS)

    PbS nano dots embedded in ZrO2 thin film matrix (ZrO2:PbS films) were studied for application in nanodosimetry of electron radiation used in radiation therapy. ZrO2:PbS films were irradiated with 9 MeV electron radiation with doses 3, 7 and 10 Gy using medical linear accelerator. Detection of the dosimetric signal was made by measuring and comparing photoelectron emission current from ZrO2:PbS films before and after irradiation. It was found that electron radiation decreased intensity of photoemission current from the films. Derivatives of the photoemission spectra were calculated and maximums at photon energies 5.65 and 5.75 eV were observed. Amplitude of these maximums decreased after irradiation with electrons. Good linear correlation was found between the relative decrease of the intensity of these maximums and dose of electron radiation. Observed changes in photoemission spectra from ZrO2:PbS films under influence of electron radiation suggested that the films may be considered to be effective material for electron radiation dosimetry. Photoelectron emission is a tool that allows to read the signal from such dosimeter. (authors)

  18. Determination of lead isotopic composition of airborne particulate matter by ICPMS: implications for lead atmospheric emissions in Canada

    International Nuclear Information System (INIS)

    Full text: Quadrupole ICPMS was used for determination of trace metal concentrations and lead isotopic composition in fine particulate matter (PM2.5) collected at selected sites within the Canadian National Air Pollution Surveillance network, from February 2005 to February 2007. High enrichment factors indicated that lead is mostly of anthropogenic origin and consequently, the lead isotopic composition is directly related to that of pollution sources. The 206Pb/207Pb and 208Pb/207Pb ratios were measured and the results were compared to the isotopic signatures of lead from different sources. Various approaches were used to assess the impact of relevant sources and the meteorological conditions in the occurrence and distribution of lead in Canadian atmospheric aerosols. (author)

  19. Comparison of emissions estimates derived from atmospheric measurements with national estimates of HFCs, PFCs and SF6.

    Science.gov (United States)

    Harnisch, Jochen; Höhne, Niklas

    2002-01-01

    This paper assesses the feasibility of using atmospheric measurement of fluorinated greenhouse gases (HFCs, PFCs and SF6) for the review and verification of greenhouse gas inventories provided by national governments. For this purpose, available data were compiled. It was found that atmospheric measurements of these gases are available and provide an indication of global annual emissions with sufficient certainty to reach the following conclusions: Within the uncertainty of the method, it was found that emissions of HFC-23, a by-product of HCFC-22 production, as obtained from atmospheric measurements did not decrease as fast, as the countries have reported. In contrast, SF6 concentrations in the atmosphere suggest higher emissions than reported by countries. Regional emission estimates from atmospheric measurements are still in a more pioneering state and cannot be compared to national estimates. Intensified efforts to measure HFCs, PFCs and SF6 in the atmosphere are recommended. PMID:12391806

  20. Atmospheric emissions from vegetation fires in Portugal (1990–2008: estimates, uncertainty analysis, and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    J. M. C. Pereira

    2010-09-01

    Full Text Available Atmospheric emissions from wildfires in Portugal were estimated yearly over the period 1990–2008 using Landsat-based burnt area maps and land cover maps, national forest inventory data, biometric models, and literature review data. Emissions were calculated as the product of area burnt, biomass loading per unit area, combustion factor, and emission factor, using land cover specific values for all variables. Uncertainty associated with each input variable was quantified with a probability density function or a standard deviation value. Uncertainty and sensitivity analysis of estimates were performed with Monte Carlo and variance decomposition techniques. Area burnt varied almost 50-fold during the study period, from about 9000 ha in 2008 to 440 000 ha in 2003. Emissions reach maximum and minimum in the same years, with CO2eq values of 159 and 5655 Gg for 2008 and 2003, respectively. Emission factors, and the combustion factor for shrubs were identified as the variables with higher impact on model output variance. There is a very strong correlation between area burnt and emissions, allowing for accurate emissions estimates once area burnt is quantified. Pyrogenic emissions were compared against those from various economy sectors and found to represent 1% to 9% of the total.

  1. Modeling angular-dependent spectral emissivity of snow and ice in the thermal infrared atmospheric window.

    Science.gov (United States)

    Hori, Masahiro; Aoki, Teruo; Tanikawa, Tomonori; Hachikubo, Akihiro; Sugiura, Konosuke; Kuchiki, Katsuyuki; Niwano, Masashi

    2013-10-20

    A model of angular-dependent emissivity spectra of snow and ice in the 8-14 μm atmospheric window is constructed. Past field research revealed that snow emissivity varies depending on snow grain size and the exitance angle. Thermography images acquired in this study further revealed that not only welded snow particles such as sun crust, but also disaggregated particles such as granular snow and dendrite crystals exhibit high reflectivity on their crystal facets, even when the bulk snow surface exhibits blackbody-like behavior as a whole. The observed thermal emissive behaviors of snow particles suggest that emissivity of the bulk snow surface can be expressed by a weighted sum of two emissivity components: those of the specular and blackbody surfaces. Based on this assumption, a semi-empirical emissivity model was constructed; it is expressed by a linear combination of specular and blackbody surfaces' emissivities with a weighting parameter characterizing the specularity of the bulk surface. Emissivity spectra calculated using the model succeeded in reproducing the past in situ measured directional spectra of various snow types by employing a specific weighting parameter for each snow type. PMID:24216578

  2. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    Directory of Open Access Journals (Sweden)

    N. Pirrone

    2010-02-01

    Full Text Available This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr−1, artisanal small scale gold mining (400 Mg yr−1, non-ferrous metals manufacturing (310 Mg yr−1, cement production (236 Mg yr−1, waste disposal (187 Mg yr−1 and caustic soda production (163 Mg yr−1. Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions+re-emissions and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

  3. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    Science.gov (United States)

    Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R. B.; Friedli, H. R.; Leaner, J.; Mason, R.; Mukherjee, A. B.; Stracher, G. B.; Streets, D. G.; Telmer, K.

    2010-07-01

    This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1), cement production (236 Mg yr-1), waste disposal (187 Mg yr-1) and caustic soda production (163 Mg yr-1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions + re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

  4. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    Directory of Open Access Journals (Sweden)

    N. Pirrone

    2010-07-01

    Full Text Available This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr−1, artisanal small scale gold mining (400 Mg yr−1, non-ferrous metals manufacturing (310 Mg yr−1, cement production (236 Mg yr−1, waste disposal (187 Mg yr−1 and caustic soda production (163 Mg yr−1. Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions + re-emissions and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

  5. Intensity and polarization of the atmospheric emission at millimetric wavelengths at Dome Concordia

    CERN Document Server

    Battistelli, E S; Baù, A; Bergé, L; Bréelle, É; Charlassier, R; Collin, S; Cruciani, A; de Bernardis, P; Dufour, C; Dumoulin, L; Gervasi, M; Giard, M; Giordano, C; Giraud-Héraud, Y; Guglielmi, L; Hamilton, J -C; Landé, J; Maffei, B; Maiello, M; Marnieros, S; Masi, S; Passerini, A; Piacentini, F; Piat, M; Piccirillo, L; Pisano, G; Polenta, G; Rosset, C; Salatino, M; Schillaci, A; Sordini, R; Spinelli, S; Tartari, A; Zannoni, M

    2012-01-01

    Atmospheric emission is a dominant source of disturbance in ground-based astronomy at mm wavelengths. The Antarctic plateau is recognized to be an ideal site for mm and sub-mm observations, and the French/Italian base of Dome C is among the best sites on Earth for these observations. In this paper we present measurements, performed using the BRAIN-pathfinder experiment, at Dome C of the atmospheric emission in intensity and polarization at 150GHz, one of the best observational frequencies for CMB observations when considering cosmic signal intensity, atmospheric transmission, detectors sensitivity, and foreground removal. Careful characterization of the air-mass synchronous emission has been performed, acquiring more that 380 elevation scans (i.e. "skydip") during the third BRAIN-pathfinder summer campaign in December 2009/January 2010. The extremely high transparency of the Antarctic atmosphere over Dome Concordia is proven by the very low measured optical depth: =0.050 \\pm 0.003 \\pm 0.011 where the first er...

  6. Case study of the atmospheric dispersion of emissions from UPPR/CDTN, Brazil

    International Nuclear Information System (INIS)

    This work presents a study of the atmospheric dispersion of emissions released during activities of production and research of radiopharmaceuticals in the Center of Nuclear Technology Development (CDTN), localized in Belo Horizonte, Minas Gerais - Brazil. The installation, 'Unidade de Producao e Pesquisa de Radiofarmacos' (UPPR), was considered operating full time during a year. The general goal was to evaluate the radiological environmental impact due to these atmospheric emissions. The pollutants studied were the radionuclides F-18, C-11 and N-13. The meteorological view evaluated was a period of 365 days, simulated from the dates of a typical meteorological year. It was applied the dispersion model ARTM (Atmospheric Radionuclide Transport Model). The atmospheric emissions from UPPR were estimated for the simulation based in an extremely conservative operation condition. Others important data raised and analyzed were: topography, obstacles (buildings) and the land occupation around the CDTN. Among the main results, it is important to emphasize the estimate of the radionuclide concentration and the dose value calculated from these concentration. These results were compared with the dose restriction limit set by the standard CNEN 3.01. Areas of higher concentration were identified and are being used as reference for the positioning of the concentration's monitor of the pollutant by the Radiological Environmental Monitoring Program (PMA). (author)

  7. Emissions from pre-Hispanic metallurgy in the South American atmosphere.

    Directory of Open Access Journals (Sweden)

    François De Vleeschouwer

    Full Text Available Metallurgical activities have been undertaken in northern South America (NSA for millennia. However, it is still unknown how far atmospheric emissions from these activities have been transported. Since the timing of metallurgical activities is currently estimated from scarce archaeological discoveries, the availability of reliable and continuous records to refine the timing of past metal deposition in South America is essential, as it provides an alternative to discontinuous archives, as well as evidence for global trace metal transport. We show in a peat record from Tierra del Fuego that anthropogenic metals likely have been emitted into the atmosphere and transported from NSA to southern South America (SSA over the last 4200 yrs. These findings are supported by modern time back-trajectories from NSA to SSA. We further show that apparent anthropogenic Cu and Sb emissions predate any archaeological evidence for metallurgical activities. Lead and Sn were also emitted into the atmosphere as by-products of Inca and Spanish metallurgy, whereas local coal-gold rushes and the industrial revolution contributed to local contamination. We suggest that the onset of pre-Hispanic metallurgical activities is earlier than previously reported from archaeological records and that atmospheric emissions of metals were transported from NSA to SSA.

  8. The ENSO signal in atmospheric composition fields: emission driven vs. dynamically induced changes

    Directory of Open Access Journals (Sweden)

    A. Inness

    2015-05-01

    Full Text Available The El Niño Southern Oscillation (ENSO does not only affect meteorological fields but also has a large impact on atmospheric composition. Atmospheric composition fields from the Monitoring Atmospheric Composition and Climate (MACC reanalysis are used to identify the ENSO signal in tropospheric ozone, carbon monoxide, nitrogen oxide and smoke aerosols, concentrating on the months October to December. During El Niño years all these fields have increased concentrations over maritime South East Asia in October. The MACC Composition Integrated Forecasting System (C-IFS model is used to quantify the relative magnitude of dynamically induced and emission driven changes in the atmospheric composition fields. While changes in tropospheric ozone are a combination of dynamically induced and emission driven changes, the changes in carbon monoxide, nitrogen oxide and smoke aerosols are almost entirely emission driven in the MACC model. The ozone changes continue into December, i.e. after the end of the Indonesian fire season while changes in the other fields are confined to the fire season.

  9. Case study of the atmospheric dispersion of emissions from UPPR/CDTN, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Alberto A.; Cesar, Raisa H.S.; Maleta, Paulo G.M.; Grossi, Pablo A., E-mail: aab@cdtn.br, E-mail: raisa.hsc@gmail.com, E-mail: pgmm@cdtn.br, E-mail: pablo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work presents a study of the atmospheric dispersion of emissions released during activities of production and research of radiopharmaceuticals in the Center of Nuclear Technology Development (CDTN), localized in Belo Horizonte, Minas Gerais - Brazil. The installation, 'Unidade de Producao e Pesquisa de Radiofarmacos' (UPPR), was considered operating full time during a year. The general goal was to evaluate the radiological environmental impact due to these atmospheric emissions. The pollutants studied were the radionuclides F-18, C-11 and N-13. The meteorological view evaluated was a period of 365 days, simulated from the dates of a typical meteorological year. It was applied the dispersion model ARTM (Atmospheric Radionuclide Transport Model). The atmospheric emissions from UPPR were estimated for the simulation based in an extremely conservative operation condition. Others important data raised and analyzed were: topography, obstacles (buildings) and the land occupation around the CDTN. Among the main results, it is important to emphasize the estimate of the radionuclide concentration and the dose value calculated from these concentration. These results were compared with the dose restriction limit set by the standard CNEN 3.01. Areas of higher concentration were identified and are being used as reference for the positioning of the concentration's monitor of the pollutant by the Radiological Environmental Monitoring Program (PMA). (author)

  10. Simultaneous measurements of atmospheric emissions at 10, 33 and 90 GHz

    International Nuclear Information System (INIS)

    As part of a larger experiment to measure the cosmic microwave background radiation spectrum, frequent simultaneous measurements of the microwave thermal emission from the earth's atmosphere were made at three fixed frequencies, namely, 10 GHz, 33 GHz and 90 GHz. We performed these measurements at two separate locations, Berkeley and White Mountain, which greatly differed in altitude and climatic conditions. Typical values measured in Berkeley of the atmospheric antenna temperature during good weather are 3.13 +- 0.300K, 12.3 +- 0.30K and 34.6 +- 0.50K, for 10, 33, and 90 GHz respectively. Corresponding values measured at White Mountain are 1.15 +- 0.10K, 4.51 +- 0.180K and 11.0 +- 0.20K. Because the measurements are simultaneous in nature, correlations between the measurements taken at the various frequencies provide constraints on models of the microwave emission of the earth's atmosphere, especially models describing atmospheric emission as a function of precipitable water content

  11. Global oceanic emission of ammonia: Constraints from seawater and atmospheric observations

    Science.gov (United States)

    Paulot, F.; Jacob, D. J.; Johnson, M. T.; Bell, T. G.; Baker, A. R.; Keene, W. C.; Lima, I. D.; Doney, S. C.; Stock, C. A.

    2015-08-01

    Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a-1, much lower than current literature values (7-23 TgN a-1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a-1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2-5 TgN a-1, comparable in magnitude to other natural sources from open fires and soils.

  12. Emission to atmosphere of tritiated water formed at soil surface by oxidation of HT

    International Nuclear Information System (INIS)

    In the event of a release of molecular tritium to atmosphere, some tritium can oxidized at soil surface and be gradually re-emitted to atmosphere as HTO. The two processes are characterized by a deposition velocity and an emission rate, which are commonly used in deposition/emission models designed to calculate the concentrations of HTO in atmosphere. A technique has been developed to determine the emission rate and its evolution, by covering a small area of undisturbed soil by a field chamber, exposing the enclosed soil to molecular tritium, then determining the changes in HTO vapour content of a measured air-stream passing through the chamber. The emission rate is derived by dividing the amount of HTO extracted from the chamber during a given period of time, by the average amount of HTO contained in the soil during the same period. First experiments have been done on bare and grass-covered soils. The data obtained from these small-scale field experiments are consistent with those obtained from a full-scale field study carried out at nearly the same place

  13. Dark-to-arc transition in field emission dominated atmospheric microdischarges

    International Nuclear Information System (INIS)

    We study the voltage-current characteristics of gas discharges driven by field emission of electrons at the microscale. Particle-in-cell with Monte Carlo collision calculations are first verified by comparison with breakdown voltage measurements and then used to investigate atmospheric discharges in nitrogen at gaps from 1 to 10 μm. The results indicate the absence of the classical glow discharge regime because field electron emission replaces secondary electron emission as the discharge sustaining mechanism. Additionally, the onset of arcing is significantly delayed due to rarefied effects in electron transport. While field emission reduces the breakdown voltage, the power required to sustain an arc of the same density in microgaps is as much as 30% higher than at macroscale

  14. An investigation into the determination of some volatile elements in silicate rocks employing d.c. arc emission spectroscopy in artificial atmospheres

    International Nuclear Information System (INIS)

    The determination of 14 trace elements, namely As, Ag, Bi, Cd, Cu, Ga, Ge, Hg, In, Pb, Sb, Sn, Tl and Zn, in silicate rocks using d.c. arc optical emission spectrography (O.E.S.) and X-ray fluorescence spectroscopy (X.R.F.) was investigated. X.R.F. was shown to be capable of determining Cu, Ga, Pb and Zn in normal silicate rocks and Sn, As and Ge in samples enriched in these latter three elements. Improvement of the sensitivity of the trace elements selected employing d.c. arc excitation in artificial atmospheres was examined in detail. Excitation in argon, argon-oxygen and nitrogen resulted in many advantages. Several successful methods of overcoming these reduced volatilization rates were found. Increased amperage coupled with a special electrode design was one while the use of a small carrier electrode was another. The investigation demonstrated that all the elements chosen could not be determined using a single spectrographic method. The application of d.c. arc excitation in an atmosphere of argon to the determination of the volatile trace elements in non-silicate or other matrices, which do not form carbides, would appear to be a promising possibility

  15. Neutron emission from electromagnetic dissociation of Pb nuclei at √sNN = 2.76 TeV measured with the ALICE ZDC

    Directory of Open Access Journals (Sweden)

    Cortese P.

    2014-04-01

    The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at √sNN = 2.76 TeV, with neutron emission, are σsingle EMD = 187:4 ± 0.2 (stat.−11.2+13.2 (syst. b and σmutual EMD = 5.7 ± 0.1 (stat. ±0.4 (syst. b, respectively [1]. This is the first measurement of electromagnetic dissociation of 208Pb nuclei at the LHC energies, allowing a test of electromagnetic dissociation theory in a new energy regime. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model.

  16. Atmospheric polychlorinated biphenyls in Indian cities: Levels, emission sources and toxicity equivalents

    International Nuclear Information System (INIS)

    Atmospheric concentration of Polychlorinated biphenyls (PCBs) were measured on diurnal basis by active air sampling during Dec 2006 to Feb 2007 in seven major cities from the northern (New Delhi and Agra), eastern (Kolkata), western (Mumbai and Goa) and southern (Chennai and Bangalore) parts of India. Average concentration of Σ25PCBs in the Indian atmosphere was 4460 (±2200) pg/m−3 with a dominance of congeners with 4–7 chlorine atoms. Model results (HYSPLIT, FLEXPART) indicate that the source areas are likely confined to local or regional proximity. Results from the FLEXPART model show that existing emission inventories cannot explain the high concentrations observed for PCB-28. Electronic waste, ship breaking activities and dumped solid waste are attributed as the possible sources of PCBs in India. Σ25PCB concentrations for each city showed significant linear correlation with Toxicity equivalence (TEQ) and Neurotoxic equivalence (NEQ) values. Highlights: •Unlike decreasing trend of PCBs in United States and European countries, high levels of PCBs remain in the Indian atmosphere. •Existing emission inventories cannot explain the high PCB concentrations in Indian atmosphere. •Electronic waste recycling, ship dismantling and open burning of municipal solid waste are implicated as potential sources. -- Measurement of atmospheric Polychlorinated biphenyls in seven major Indian cities

  17. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux

    Directory of Open Access Journals (Sweden)

    Barthelemy Mathieu

    2014-01-01

    Full Text Available The solar UV (UltraViolet flux, especially the EUV (Extreme UltraViolet and FUV (Far UltraViolet components, is one of the main energetic inputs for planetary upper atmospheres. It drives various processes such as ionization, or dissociation which give rise to upper atmospheric emissions, especially in the UV and visible. These emissions are one of the main ways to investigate the upper atmospheres of planets. However, the uncertainties in the flux measurement or modeling can lead to biased estimates of fundamental atmospheric parameters, such as concentrations or temperatures in the atmospheres. We explore the various problems that can be identified regarding the uncertainties in solar/stellar UV flux by considering three examples. The worst case appears when the solar reflection component is dominant in the recorded spectrum as is seen for outer solar system measurements from HST (Hubble Space Telescope. We also show that the estimation of some particular line parameters (intensity and shape, especially Lyman α, is crucial, and that both total intensity and line profile are useful. In the case of exoplanets, the problem is quite critical since the UV flux of their parent stars is often very poorly known.

  18. Fossil fuel consumption and heavy metal emissions into the atmosphere in Russia

    International Nuclear Information System (INIS)

    In recent decades more and more attention has been paid to the problem of ecosystem pollution by heavy metals. Many trace elements are registered now as a global pollutant due to their toxic nature. Their negative influence on the environment is caused by accumulation in different ecosystem components and increased involvement in biochemical cycles. The atmosphere is the main medium through which pollutants transported from emission sources to background territories where heavy metals are deposited into water and on plants. Heavy metal emissions into the atmosphere cause certain global environmental problems due to their long lifetime and the long-term transport of these elements in the atmosphere, as well as the increasing rate of their accumulation in the environment even at most remote territories. Moreover, heavy metals have evidently entered human food chains. The influence of global ecosystem pollution by heavy metals on human health is not well known as yet. Most trace elements comes into the atmosphere with natural and man-made aerosols. The main sources of natural aerosols in the atmosphere are soil erosion and weathering of mountain rocks, volcanic and space dust, forest firing smoke, and others. Major anthropogenic sources of toxic elements are fossil fuel combustion, mining, industrial processes, and waste incineration. The anthropogenic flow of heavy metals to the atmosphere is about 94-97 per cent of the total. An inventory of emission sources should be the first step in developing a control strategy and modelling global and regional cycles of trace elements. In this article the situation with lead, cadmium and mercury emissions from coal combustion of power plants and gasoline combustion by road transport is discussed. Pollutant amounts released into the atmosphere in industrial regions induce not only local deterioration of air, but they also affect on remote areas, and areas sensitive to contamination, such as the Arctic region. Problems on the

  19. A comparative analysis of two highly spatially resolved European atmospheric emission inventories

    Science.gov (United States)

    Ferreira, J.; Guevara, M.; Baldasano, J. M.; Tchepel, O.; Schaap, M.; Miranda, A. I.; Borrego, C.

    2013-08-01

    A reliable emissions inventory is highly important for air quality modelling applications, especially at regional or local scales, which require high resolutions. Consequently, higher resolution emission inventories have been developed that are suitable for regional air quality modelling. This research performs an inter-comparative analysis of different spatial disaggregation methodologies of atmospheric emission inventories. This study is based on two different European emission inventories with different spatial resolutions: 1) the EMEP (European Monitoring and Evaluation Programme) inventory and 2) an emission inventory developed by the TNO (Netherlands Organisation for Applied Scientific Research). These two emission inventories were converted into three distinct gridded emission datasets as follows: (i) the EMEP emission inventory was disaggregated by area (EMEParea) and (ii) following a more complex methodology (HERMES-DIS - High-Elective Resolution Modelling Emissions System - DISaggregation module) to understand and evaluate the influence of different disaggregation methods; and (iii) the TNO gridded emissions, which are based on different emission data sources and different disaggregation methods. A predefined common grid with a spatial resolution of 12 × 12 km2 was used to compare the three datasets spatially. The inter-comparative analysis was performed by source sector (SNAP - Selected Nomenclature for Air Pollution) with emission totals for selected pollutants. It included the computation of difference maps (to focus on the spatial variability of emission differences) and a linear regression analysis to calculate the coefficients of determination and to quantitatively measure differences. From the spatial analysis, greater differences were found for residential/commercial combustion (SNAP02), solvent use (SNAP06) and road transport (SNAP07). These findings were related to the different spatial disaggregation that was conducted by the TNO and HERMES

  20. Ignition and NO Emissions of Coal and Biomass Blends under Different Oxy-fuel Atmospheres

    OpenAIRE

    Riaza Benito, Juan; Álvarez González, Lucía; Gil Matellanes, María Victoria; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando

    2013-01-01

    The effect of co-firing coal and biomass on the ignition behaviour and NO emissions was evaluated under both air and O2/CO2 (21-35% O2) atmospheres. The results showed a worsening of the ignition properties in the 21%O2/79%CO2 atmosphere in comparison with air. Furthermore, in order to obtain similar or better ignition properties, the oxygen concentration in the O2/CO2 mixture must be 30% or higher. A decrease of the ignition temperature was observed with the addition of biomass in air and ox...

  1. Global emission inventory and atmospheric transport of black carbon. Evaluation of the associated exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rong

    2015-06-01

    This thesis presents research focusing on the improvement of high-resolution global black carbon (BC) emission inventory and application in assessing the population exposure to ambient BC. A particular focus of the thesis is on the construction of a high-resolution (both spatial and sectorial) fuel consumption database, which is used to develop the emission inventory of black carbon. Above all, the author updates the global emission inventory of black carbon, a resource subsequently used to study the atmospheric transport of black carbon over Asia with the help of a high-resolution nested model. The thesis demonstrates that spatial bias in fuel consumption and BC emissions can be reduced by means of the sub-national disaggregation approach. Using the inventory and nested model, ambient BC concentrations can be better validated against observations. Lastly, it provides a complete uncertainty analysis of global black carbon emissions, and this uncertainty is taken into account in the atmospheric modeling, helping to better understand the role of black carbon in regional and global air pollution.

  2. Atmospheric polycyclic aromatic hydrocarbons and isomer ratios as tracers of biomass burning emissions in Northern India.

    Science.gov (United States)

    Rajput, Prashant; Sarin, M M; Sharma, Deepti; Singh, Darshan

    2014-04-01

    Emission from large-scale post-harvest agricultural-waste burning (paddy-residue burning during October-November and wheat-residue burning in April-May) is a conspicuous feature in northern India. The poor and open burning of agricultural residue result in massive emission of carbonaceous aerosols and organic pollutants to the atmosphere. In this context, concentrations of atmospheric polycyclic aromatic hydrocarbons (PAHs) and their isomer ratios have been studied for a 2-year period from a source region (Patiala: 30.2°N; 76.3°E) of two distinct biomass burning emissions. The concentrations of 4-6 ring PAHs are considerably higher compared to 2-3 ring PAHs in the ambient particulate matter (PM2.5). The crossplots of PAH isomer ratios, fluoranthene / (fluoranthene + pyrene) and indeno[1,2,3-cd]pyrene/(indeno[1,2,3-cd]pyrene + benzo[g,h,i]perylene) for two biomass burning emissions, exhibit distinctly different source characteristics compared to those for fossil-fuel combustion sources in south and south-east Asia. The PAH isomer ratios studied from different geographical locations in northern India also exhibit similar characteristics on the crossplot, suggesting their usefulness as diagnostic tracers of biomass burning emissions. PMID:24442960

  3. Global emission inventory and atmospheric transport of black carbon. Evaluation of the associated exposure

    International Nuclear Information System (INIS)

    This thesis presents research focusing on the improvement of high-resolution global black carbon (BC) emission inventory and application in assessing the population exposure to ambient BC. A particular focus of the thesis is on the construction of a high-resolution (both spatial and sectorial) fuel consumption database, which is used to develop the emission inventory of black carbon. Above all, the author updates the global emission inventory of black carbon, a resource subsequently used to study the atmospheric transport of black carbon over Asia with the help of a high-resolution nested model. The thesis demonstrates that spatial bias in fuel consumption and BC emissions can be reduced by means of the sub-national disaggregation approach. Using the inventory and nested model, ambient BC concentrations can be better validated against observations. Lastly, it provides a complete uncertainty analysis of global black carbon emissions, and this uncertainty is taken into account in the atmospheric modeling, helping to better understand the role of black carbon in regional and global air pollution.

  4. Stable atmospheric methane in the 2000s: key-role of emissions from natural wetlands

    Directory of Open Access Journals (Sweden)

    I. Pison

    2013-04-01

    Full Text Available Two atmospheric inversions (one fine-resolved and one process-discriminating and a process-based model for land surface exchanges are brought together to analyze the variations of methane emissions from 1990 to 2009. A focus is put on the role of natural wetlands and on the years 2000–2006, a period of stable atmospheric concentrations. From 1990 to 2000, the two inversions agree on the time-phasing of global emission anomalies. The process-discriminating inversion further indicates that wetlands dominate the time-variability of methane emissions with 90% of the total variability. Top-down and bottom-up methods are qualitatively in good agreement regarding the global emission anomalies. The contribution of tropical wetlands on these anomalies is found to be large, especially during the post-Pinatubo years (global negative anomalies with minima between −41 and −19 Tg y−1 in 1992 and during the alternate 1997–1998 el-Niño/1998–1999 la-Niña (maximal anomalies in tropical regions between +16 and +22 Tg y−1 for the inversions and anomalies due to tropical wetlands between +12 and +17 Tg y−1 for the process-based model. Between 2000 and 2006, during the stagnation of methane concentrations in the atmosphere, total methane emissions found by the two inversions on the one hand and wetland emissions found by the process-discriminating-inversion and the process model on the other hand are not fully consistent. A regional analysis shows that differences in the trend of tropical South American wetland emissions in the Amazon region are mostly responsible for these discrepancies. A negative trend (−3.9 ± 1.3 Tg y−1 is inferred by the process-discriminating inversion whereas a positive trend (+1.3 ± 0.3 Tg y−1 is found by the process model. Since a positive trend is consistent with satellite-derived extent of inundated areas, this inconsistency points at the difficulty for atmospheric inversions using surface observations to properly

  5. Optical emission and mass spectra observations during hydrogen combustion in atmospheric pressure microwave plasma

    International Nuclear Information System (INIS)

    We experimentally investigated hydrogen combustion by atmospheric pressure plasma generated by a 2.45 GHz microwave discharge. Small amounts of hydrogen and oxygen were mixed in the operational argon gas during discharge. To clarify the details of combustion, optical emission was measured. The constituents of combustion-processed gases were observed by a quadruple mass spectrometer. The degree of hydrogen oxidation, the so-called conversion rate, increased with input microwave power. The maximum hydrogen conversion rate was greater than 80% under these experimental conditions. During discharge, an optical emission peak due to OH radicals was observed. (author)

  6. Process analysis of the modelled 3-D mesoscale impact of aircraft emissions on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J.; Ebel, A.; Lippert, E.; Petry, H. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meterorologie

    1997-12-31

    A mesoscale chemistry transport model is applied to study the impact of aircraft emissions on the atmospheric trace gas composition. A special analysis of the simulations is conducted to separate the effects of chemistry, transport, diffusion and cloud processes on the transformation of the exhausts of a subsonic fleet cruising over the North Atlantic. The aircraft induced ozone production strongly depends on the tropopause height and the cruise altitude. Aircraft emissions may undergo an effective downward transport under the influence of stratosphere-troposphere exchange activity. (author) 12 refs.

  7. COMPILATION AND ANALYSES OF EMISSIONS INVENTORIES FOR THE NOAA ATMOSPHERIC CHEMISTRY PROJECT. PROGRESS REPORT, AUGUST 1997.

    Energy Technology Data Exchange (ETDEWEB)

    BENKOVITZ,C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories. The resulting global emissions for 1990 are 31 Tg N yr{sup -1} for NO{sub x} and 173 Gg NMVOC yr{sup -1}. Emissions of NO{sub x} are highest in the populated and industrialized areas of eastern North America and across Europe, and in biomass burning areas of South America, Africa, and Asia. Emissions of NMVOCs are highest in biomass burning areas of South America, Africa, and Asia. The 1990 NO{sub x} emissions were gridded to 1{sup o} resolution using surrogate data, and were given seasonal, two-vertical-level resolution and speciated into NO and NO{sub 2} based on proportions derived from the 1985 GEIA Version 1B inventory. Global NMVOC

  8. Estimating Sulfur hexafluoride (SF6) emissions in China using atmospheric observations and inverse modeling

    Science.gov (United States)

    Fang, X.; Thompson, R.; Saito, T.; Yokouchi, Y.; Li, S.; Kim, J.; Kim, K.; Park, S.; Graziosi, F.; Stohl, A.

    2013-12-01

    With a global warming potential of around 22800 over a 100-year time horizon, sulfur hexafluoride (SF6) is one of the greenhouse gases regulated under the Kyoto Protocol. Global SF6 emissions have been increasing since circa the year 2000. The reason for this increase has been inferred to be due to rapidly increasing emissions in developing countries that are not obligated to report their annual emissions to the United Nations Framework Convention on Climate Change, notably China. In this study, SF6 emissions during the period 2006-2012 for China and other East Asian countries were determined using in-situ atmospheric measurements and inverse modeling. We performed various inversion sensitivity tests, which show the largest uncertainties in the a posteriori Chinese emissions are associated with the a priori emissions used and their uncertainty, the station network, as well as the meteorological input data. The overall relative uncertainty of the a posteriori emissions in China is estimated to be 17% in 2008. Based on sensitivity tests, we employed the optimal parameters in our inversion setup and performed yearly inversions for the study period. Inversion results show that the total a posteriori SF6 emissions from China increased from 1420 × 245 Mg/yr in 2006 to 2741 × 472 Mg/yr in 2009 and stabilized thereafter. The rapid increase in emissions reflected a fast increase in SF6 consumption in China, a result also found in bottom-up estimates. The a posteriori emission map shows high emissions concentrated in populated parts of China. During the period 2006-2012, emissions in northwestern and northern China peaked around the year 2009, while emissions in eastern, central and northeastern China grew gradually during almost the whole period. Fluctuating emissions are observed for southwestern China. These regional differences should be caused by changes of provincial SF6 usage and by shifts of usage among different sectors. Fig. 1. Footprint emission sensitivity

  9. Atmospheric inversion for cost effective quantification of city CO2 emissions

    Science.gov (United States)

    Wu, L.; Broquet, G.; Ciais, P.; Bellassen, V.; Vogel, F.; Chevallier, F.; Xueref-Remy, I.; Wang, Y.

    2015-11-01

    Cities, currently covering only a very small portion (CO2, and are associated with 71-76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by Monitoring, Reporting and Verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we propose a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. We examine the cost-effectiveness and the performance of such a tool. The instruments presently used to measure CO2 concentrations at research stations are expensive. However, cheaper sensors are currently developed and should be useable for the monitoring of CO2 emissions from a megacity in the near-term. Our assessment of the inversion method is thus based on the use of several types of hypothetical networks, with a range of numbers of sensors sampling at 25 m a.g.l. The study case for this assessment is the monitoring of the emissions of the Paris metropolitan area (~ 12 million inhabitants and 11.4 Tg C emitted in 2010) during the month of January 2011. The performance of the inversion is evaluated in terms of uncertainties in the estimates of total and sectoral CO2 emissions. These uncertainties are compared to a notional ambitious target to diagnose annual total city emissions with an uncertainty of 5 % (2-sigma). We find that, with 10 stations only, which is the typical size of current pilot networks that are deployed in some cities, the uncertainty for the 1-month total city CO2 emissions is significantly reduced by the inversion by ~ 42 % but still corresponds to an annual uncertainty that is two times larger than the target of 5 %. By extending the network from 10 to 70 stations, the

  10. Atmospheric inversion for cost effective quantification of city CO2 emissions

    Directory of Open Access Journals (Sweden)

    L. Wu

    2015-11-01

    Full Text Available Cities, currently covering only a very small portion (2, and are associated with 71–76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by Monitoring, Reporting and Verification (MRV procedures that play a key role for market- or policy-based mitigation actions. Here we propose a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. We examine the cost-effectiveness and the performance of such a tool. The instruments presently used to measure CO2 concentrations at research stations are expensive. However, cheaper sensors are currently developed and should be useable for the monitoring of CO2 emissions from a megacity in the near-term. Our assessment of the inversion method is thus based on the use of several types of hypothetical networks, with a range of numbers of sensors sampling at 25 m a.g.l. The study case for this assessment is the monitoring of the emissions of the Paris metropolitan area (~ 12 million inhabitants and 11.4 Tg C emitted in 2010 during the month of January 2011. The performance of the inversion is evaluated in terms of uncertainties in the estimates of total and sectoral CO2 emissions. These uncertainties are compared to a notional ambitious target to diagnose annual total city emissions with an uncertainty of 5 % (2-sigma. We find that, with 10 stations only, which is the typical size of current pilot networks that are deployed in some cities, the uncertainty for the 1-month total city CO2 emissions is significantly reduced by the inversion by ~ 42 % but still corresponds to an annual uncertainty that is two times larger than the target of 5 %. By extending the network from 10 to

  11. Optimization of the inhibition of atmospheric window emission using photonic crystals

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Transfer matrix method is used to discuss the effect inhibition of photonic crystals on atmospheric window emission(ε-14 μm).According to the optical characteristics of the materials,germanium and zinc sulfide are used as the composing materials.The structure of the photonic crystals is optimized,and the optimal thickness values of the germanium and zinc sulfide are 0.63 and 1.11μm respectively while the ratio of optical thickness is 1:1 and the period is 8.The photonic crystals are prepared by evaporation coating method,and the optical properties of the photonic crystals are measured,the inhibition of the photonic crystals to atmospheric window emission is verified.

  12. Lead isotopes and trace metal ratios of aerosols as tracers of Pb pollution sources in Kanpur, India

    Science.gov (United States)

    Sen, Indra; Bizimis, Michael; Tripathi, Sachchida; Paul, Debajyoti; Tyagi, Swati; Sengupta, Deep

    2015-04-01

    The anthropogenic flux of Pb in the Earth's surface is almost an order of magnitude higher than its corresponding natural flux [1]. Identifying the sources and pathways of anthropogenic Pb in environment is important because Pb toxicity is known to have adverse effects on human health. Pb pollution sources for America, Europe, and China are well documented. However, sources of atmospheric Pb are unknown in India, particularly after leaded gasoline was phased out in 2000. India has a developing economy with a rapidly emerging automobile and high temperature industry, and anthropogenic Pb emission is expected to rise in the next decade. In this study, we report on the Pb- isotope compositions and trace metal ratios of airborne particulates collected in Kanpur, an industrial city in northern India. The Pb concentration in the airborne particulate matter varies between 14-216 ng/m3, while the other heavy metals vary by factor of 10 or less, e.g. Cd=0.3-3 ng/m3, As=0.4-3.5 ng/m3, Zn=36-161 ng/m3, and Cu=3-22 ng/m3. The 206Pb/207Pb, 208Pb/206Pb, and 208Pb/207Pb vary between 1.112 - 1.129, 2.123-2.141, and 2.409-2.424 respectively, and are highly correlated with each other (R2>0.9). Pb isotopes and trace metal data reveals that coal combustion is the major source of anthropogenic Pb in the atmosphere, with limited contribution from mining and smelting processes. We further conclude that combination of Pb isotope ratios and V/Pb ratios are powerful tracers for Pb source apportionment studies, which is otherwise difficult to differentiate based only on Pb systematics [1] Sen and Peucker-Ehrenbrink (2012), Environ. Sci. Technol.(46), 8601-8609

  13. Constraining atmospheric ammonia emissions through new observations with an open-path, laser-based sensor

    Science.gov (United States)

    Sun, Kang

    As the third most abundant nitrogen species in the atmosphere, ammonia (NH3) is a key component of the global nitrogen cycle. Since the industrial revolution, humans have more than doubled the emissions of NH3 to the atmosphere by industrial nitrogen fixation, revolutionizing agricultural practices, and burning fossil fuels. NH3 is a major precursor to fine particulate matter (PM2.5), which has adverse impacts on air quality and human health. The direct and indirect aerosol radiative forcings currently constitute the largest uncertainties for future climate change predictions. Gas and particle phase NH3 eventually deposits back to the Earth's surface as reactive nitrogen, leading to the exceedance of ecosystem critical loads and perturbation of ecosystem productivity. Large uncertainties still remain in estimating the magnitude and spatiotemporal patterns of NH3 emissions from all sources and over a range of scales. These uncertainties in emissions also propagate to the deposition of reactive nitrogen. To improve our understanding of NH3 emissions, observational constraints are needed from local to global scales. The first part of this thesis is to provide quality-controlled, reliable NH3 measurements in the field using an open-path, quantum cascade laser-based NH3 sensor. As the second and third part of my research, NH3 emissions were quantified from a cattle feedlot using eddy covariance (EC) flux measurements, and the similarities between NH3 turbulent fluxes and those of other scalars (temperature, water vapor, and CO2) were investigated. The fourth part involves applying a mobile laboratory equipped with the open-path NH3 sensor and other important chemical/meteorological measurements to quantify fleet-integrated NH3 emissions from on-road vehicles. In the fifth part, the on-road measurements were extended to multiple major urban areas in both the US and China in the context of five observation campaigns. The results significantly improved current urban NH3

  14. Chloroform formation in Arctic and Subarctic soils - mechanism and emissions to the atmosphere

    Science.gov (United States)

    Albers, Christian N.; Johnsen, Anders R.; Jacobsen, Ole S.

    2015-04-01

    It is well established that halogenated organic compounds are formed naturally in the terrestrial environment. These compounds include volatiles such as trihalomethanes that may escape to the atmosphere. In deed most of the atmospheric chloroform (and other trihalomethane species) is regarded to have a natural origin. This origin may be both marine and terrestrial. Chloroform formation in soil has been reported in a number of studies, mostly conducted in temperate and (sub-) tropical environments. We hereby report that also colder soils emit chloroform naturally. We measured in situ the fluxes of chloroform from soil to atmosphere in 6 Subarctic and 5 Arctic areas covering different dwarf heath, wetland and forest biotopes in Greenland and Northern Sweden. Emissions were largest from the forested areas, but all areas emitted measurable amounts of chloroform. Also the brominated analog bromodichloromethane was formed in Arctic and Subarctic soils but the fluxes to the atmosphere were much lower than the corresponding chloroform emissions. No other volatile poly-halogenated organic compounds were found to be emitted from the study areas. It has previously been proposed that chloroform is formed in temperate forest soils through trichloroacetyl intermediates formed by unspecific enzymatic chlorination of soil organic matter. We found positive relationships between chloroform emissions and the concentration of trichloroacetyl groups in soil within the various biotopes. The hydrolysis of trichloroacetyl compounds is, however, very pH dependent, excluding a simple relationship between trichloroacetyl concentration and chloroform emission in any given soil. However, our results show that at low pH, turnover time of soil trichloroacetyl compounds may be counted in decades while at pH above 6, turnover time may be just a few months. We found no relationship between trichloroacetyl concentration and total organic chlorine concentration in the soils indicating that more than

  15. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    OpenAIRE

    Jokinen, T; Berndt, T; Makkonen, R.; Kerminen, V-M; Junninen, H.; Paasonen, P.; Stratmann, F.; Herrmann, H.; Guenther, AB; Worsnop, DR; M. Kulmala; M. Ehn; Sipilä, M.

    2015-01-01

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic comp...

  16. Atmospheric Emissions, Depositions, and Transformations of Arsenic in Natural Ecosystem in Finland

    OpenAIRE

    Mukherjee, Arun B.; Prosun Bhattacharya

    2002-01-01

    For the last 2 decades, special attention has been paid to arsenic due to its high concentration in groundwater in many regions of the globe. There are not very many reports on arsenic concentration in the Finnish ecosystem, although the metal has been known to be highly toxic since ancient times. For the majority of people in Finland, the leading exposure route to arsenic is through food consumption.In this study, it has been observed that atmospheric emissions of arsenic from anthropogenic ...

  17. Some questions of remote control of gas emissions to atmosphere by using differential optical absorption spectrometers

    International Nuclear Information System (INIS)

    Full Text: In the article the possibility for increasing of measurement accuracy of emissive gases arising during open waste burning on garbage dumps has been considered. For this purpose it is suggested to combine Differential Optical Absorption Spectrometers (DOAS) method with three wavelength method. It is shown, that such combination of two methods allows taking into account separately the influence of fine and coarse components of atmosphere aerosol on measurement results of investigated gases

  18. Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems

    Directory of Open Access Journals (Sweden)

    M. G. Lawrence

    2009-12-01

    Full Text Available Bacteria are constantly being transported through the atmosphere, which may have implications for human health, agriculture, cloud formation, and the dispersal of bacterial species. We simulate the global transport of bacteria, represented as 1 μm and 3 μm diameter spherical solid particle tracers in a general circulation model. We investigate factors influencing residence time and distribution of the particles, including emission region, cloud condensation nucleus activity and removal by ice-phase precipitation. The global distribution depends strongly on the assumptions made about uptake into cloud droplets and ice. The transport is also affected, to a lesser extent, by the emission region, particulate diameter, and season. We find that the seasonal variation in atmospheric residence time is insufficient to explain by itself the observed seasonal variation in concentrations of particulate airborne culturable bacteria, indicating that this variability is mainly driven by seasonal variations in culturability and/or emission strength. We examine the potential for exchange of bacteria between ecosystems and obtain rough estimates of the flux from each ecosystem by using a maximum likelihood estimation technique, together with a new compilation of available observations described in a companion paper. Globally, we estimate the total emissions of bacteria-containing particles to the atmosphere to be 7.6×1023–3.5×1024 a−1, originating mainly from grasslands, shrubs and crops. We estimate the mass of emitted bacteria- to be 40–1800 Gg a−1, depending on the mass fraction of bacterial cells in the particles. In order to improve understanding of this topic, more measurements of the bacterial content of the air and of the rate of surface-atmosphere exchange of bacteria will be necessary. Future observations in wetlands, hot deserts, tundra, remote glacial and coastal regions and over oceans will be

  19. Neural-estimator for the surface emission rate of atmospheric gases

    OpenAIRE

    Paes, F. F.; Velho, H. F. Campos

    2009-01-01

    The emission rate of minority atmospheric gases is inferred by a new approach based on neural networks. The neural network applied is the multi-layer perceptron with backpropagation algorithm for learning. The identification of these surface fluxes is an inverse problem. A comparison between the new neural-inversion and regularized inverse solution id performed. The results obtained from the neural networks are significantly better. In addition, the inversion with the neural netwroks is fster...

  20. Vertical distribution of 210Pb around Uraniferous coal-fired power plant in Western Turkey

    International Nuclear Information System (INIS)

    Monitoring of 210Pb in soil, water, sediment and biological materials has been increasing in several pollution studies in recent years. The 210Pb in soils generated in situ by the decay of 226Ra is termed supported 210Pb and is in equilibrium with 226Ra. 210Pb activity in excess of the fraction which is derived from decay of the in situ 226Ra is called unsupported 210Pb. The amount of unsupported or atmospherically derived 210Pb in a soil can be calculated by measuring both the 210Pb and 226Ra activities and subtracting the 226Ra supported 210Pb component from the total 210Pb in the sample. We have determined the deposition rates of 210Pb from the atmosphere in Yatagan Region by measuring their inventories in core samples of cultivated and uncultivated soils.Yatagan is located in Western Turkey in a region where there are three CPPs operating with uraniferous coal. Energy production from coal is one of the major sources of increased natural radioactivity in the atmosphere. Soil samples were stored for a period of 2-3 half-lives (9 - 14 months) of 210Po (t1/2 =138 d) before analysis to allow build-up of 210Pb from 210Pb . The determination of the 210Po activity by alpha-counting provided an indirect measurement of the 210Pb activity. Measurements of 210Po were made through its 5.30 MeV alpha particle emission, using 208Po (5.11 MeV alpha emission, t1/2 = 2.9 yr) as the internal tracer. Measurements were made by silicon surface-barrier detector. The 210Pb activity concentrations in cultivated and uncultivated bulk soil cores varied between 83 Bq kg-1 - 22 Bq kg-1 and 250 Bq kg-1 - 55 Bq kg-1, respectively. (authors)

  1. Atmospheric Ammonia Emissions and a Nitrogen Mass Balance for a Dairy

    Science.gov (United States)

    Rumburg, B. P.; Mount, G. H.; Filipy, J. M.; Lamb, B.; Yonge, D.; Wetherelt, S.

    2003-12-01

    Atmospheric ammonia (NH3) emissions have many impacts on the environment and human health. Environmental NH3 impacts include terrestrial and aquatic eutrophication, soil acidification, and aerosol formation. Aerosols affect global radiative transfer and have been linked to human health effects. The global emissions of NH3 are estimated to be 45 Tg N yr-1 (Dentener and Crutzen, 1994) with most of the emissions coming from domestic animals. The largest per animal emission come from dairy cows at 33 kg N animal{-1} year{-1} versus 10 kg N animal{-1} {-1} for cattle. On a global scale the emissions uncertainty is about 25%, but local emissions are highly uncertain (Bouwman et al., 1997). Local emissions determination is required for proper treatment in air pollution models. The main sources of emission from dairies are the cow stalls where urea and manure react to form NH3, the storage lagoons where NH3 is the end product of microbial degradation and the disposal of the waste. There have been numerous studies of NH3 emissions in Europe but farming practices are quite different in Europe than in the U.S.. The impact of these differences on emissions is unknown. We have been studying the NH3 emissions from the Washington State University dairy for three years to develop a detailed emission model for use in a regional air pollution model. NH3 is measured using a short-path spectroscopic absorption near 200 nm with a sensitivity of a few ppbv and a time resolution of a few seconds. The open air short-path method is advantageous because it is self calibrating and avoids inlet wall adherence which is a major problem for most NH3 measurement techniques. A SF6 tracer technique has been used to measure fluxes from the three main emission sources: the cow stalls, anaerobic lagoon and the waste application to grass fields using a sprinkler system. Estimated yearly emissions from each source will be compared to a nitrogen mass balance model for the dairy.

  2. CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane

    Directory of Open Access Journals (Sweden)

    L. M. Bruhwiler

    2014-01-01

    Full Text Available We describe an assimilation system for atmospheric methane (CH4, CarbonTracker-CH4, and demonstrate the diagnostic value of global or zonally averaged CH4 abundances for evaluating the results. We show that CarbonTracker-CH4 is able to simulate the observed zonal average mole fractions and capture inter-annual variability in emissions quite well at high northern latitudes (53–90° N. CarbonTracker-CH4 estimates of total fluxes at high northern latitudes are about 81 Tg CH4 yr−1, about 12 Tg CH4 yr−1 (13% lower than prior estimates, a result that is consistent with other atmospheric inversions. Emissions from European wetlands are decreased by 30%, a result consistent with previous; however, emissions from wetlands in Boreal Eurasia are increased relative to the prior estimate. Although CarbonTracker-CH4 does not estimate increases in emissions from high northern latitudes for 2000 through 2010, significant inter-annual variability in high northern latitude fluxes is recovered. During the exceptionally warm Arctic summer of 2007, estimated emissions were greater than the decadal average by 4.4 Tg CH4 yr−1. In 2008, temperatures returned to more normal values over Arctic North America while they stayed above normal over Arctic Eurasia. CarbonTracker-CH4 estimates were 2.4 Tg CH4 yr−1 higher than the decadal average, and the anomalous emissions occurred over Arctic Eurasia, suggesting that the data allow discrimination between these two source regions. Also, the emission estimates respond to climate variability without having the system constrained by climate parameters. CarbonTracker-CH4 estimates for temperate latitudes are only slightly increased over prior estimates, but about 10 Tg CH4 yr−1 is redistributed from Asia to North America. We used time invariant prior flux estimates, so for the period from 2000 to 2006, when the growth rate of global atmospheric CH4 was very small, the assimilation does not produce increases in natural

  3. Correcting atmospheric effects in thermal ground observations for hyperspectral emissivity estimation

    Science.gov (United States)

    Timmermans, Joris; Buitrago, Maria

    2014-05-01

    Knowledge of Land surface temperature is of crucial importance in energy balance studies and environmental modeling. Accurate retrieval of land surface temperature (LST) demands detailed knowledge of the land surface emissivity. Measured radiation by remote sensing sensors to land surface temperature can only be performed using a-priori knowledge of the emissivity. Uncertainties in the retrieval of this emissivity can cause huge errors in LST estimations. The retrieval of emissivity (and LST) is per definition an underdetermined inversion, as only one observation is made while two variables are to be estimated. Several researches have therefore been performed on measuring emissivity, such as the normalized emissivity method, the temperature-emissivity separation (TES) using the minimum and maximum difference of emissivity and the use of vegetation indices. In each of these approaches atmospherically corrected radiance measurements by remote sensing sensors are correlated to ground measurements. Usually these ground measurements are performed with the ground equivalent of the remote sensing sensors; the CIMEL 312-2 has the same spectral bands as ASTER. This way parameterizations acquired this way are only usable for specific sensors and need to be redone for newer sensors. Recently hyperspectral thermal radiometers, such as the MIDAC, have been developed that can solve this problem. By using hyperspectral observations of emissivity, together with sensor simulators, ground measurements of different satellite sensor can be simulated. This facilitates the production of validation data for the different TES algorithms. However before such measurements can be performed extra steps of processing need to be performed. Atmospheric correction becomes more important in hyperspectral observations than for broadband observations, as energy levels measured per band is lower. As such the atmosphere has a relative larger contribution if bandwidths become smaller. The goal of this

  4. Environmental significance of atmospheric emission resulting from in situ burning of oiled salt marsh

    International Nuclear Information System (INIS)

    The environmental significance of atmospheric emissions resulting from in-situ burning used as remediation technique for removal of petroleum hydrocarbons entering Louisiana coastal salt marshes was quantified. Research conducted documented atmospheric pollutants produced and emitted to the atmosphere as the result of burning of oil contaminated wetlands. Samples collected from the smoke plume contained a variety of gaseous sulfur and carbon compounds. Carbonyl sulfide and carbon disulfide were the main volatile sulfur compounds. In contrast, concentrations of sulfur dioxide were almost negligible. Concentrations of methane and carbon dioxide in the smoke plume increased compared to ambient levels. Air samples collected for aromatic hydrocarbons in the smoke plume were dominated by pyrogenic or combustion derived aromatic hydrocarbons. The particulate fraction was dominated by phenanthrene and the C-1 and C-2 alkylated phenanthrene homologues. The vapor fraction was dominated by naphthalene and the C-1 to C-3 naphthalene homologues. (author)

  5. Emission Fourier transform spectroscopy for the remote sensing of the atmosphere

    Science.gov (United States)

    Bianchini, Giovanni; Cortesi, Ugo; Palchetti, Luca

    2002-02-01

    Fourier transform spectrometers (FTS), thanks to their intrinsic advantages of high throughput, high spectral resolution and multiplex acquisition of spectral channels, offer a powerful tool for the characterisation of the Earth's atmosphere. The use of photon noise limited detectors in FTS instruments operating in the middle/far infrared spectral region permits high sensitivity emission spectroscopy measurements, without the limitations arising from the use of an external radiation source. The wide operating spectral range of FTS instruments makes possible simultaneous detection of different atmospheric chemical species that show rotational and vibrational spectral bands in the middle/far infrared region. Spatially resolved measurements of the concentration of the interesting species are of fundamental interest in the study of local phenomena in atmospheric chemistry and physics, and can be obtained through the use of various observation and data inversion techniques. Among these, the best results in terms of vertical resolution are achieved through the limb sounding observation technique from airborne platform. As an example of possibilities offered by the above considered technique, results obtained from the SAFIRE-A (Spectroscopy of the Atmosphere using Far InfraRed Emission-Airborne) during the Antarctic campaign APE-GAIA (Airborne Polar Experiment-Geophysica Aircraft In Antarctica, Ushuaia, Argentina, September-October, 1999) are presented.

  6. Circular polarization of radio emission from air showers probes atmospheric electric fields in thunderclouds.

    Science.gov (United States)

    Gia Trinh, Thi Ngoc; Scholten, Olaf; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Horandel, Jörg R.; Nelles, Anna; Schellart, Pim; Rachen, Jorg; Rossetto, Laura; Rutjes, Casper; ter Veen, Sander; Thoudam, Satyendra

    2016-04-01

    When a high-energy cosmic-ray particle enters the upper layer of the atmosphere, it generates many secondary high-energy particles and forms a cosmic-ray-induced air shower. In the leading plasma of this shower electric currents are induced that emit electromagnetic radiation. These radio waves can be detected with LOw-Frequency ARray (LOFAR) radio telescope. Events have been collected under fair-weather conditions as well as under atmospheric conditions where thunderstorms occur. For the events under the fair weather conditions the emission process is well understood by present models. For the events measured under the thunderstorm conditions, we observe a large fraction of the circular polarization near the core of the shower which is not shown in the events under the fair-weather conditions. This can be explained by the change of direction of the atmospheric electric fields with altitude. Therefore, measuring the circular polarization of radio emission from cosmic ray extensive air showers during the thunderstorm conditions helps to have a better understanding about the structure of atmospheric electric fields in the thunderclouds.

  7. Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions

    Directory of Open Access Journals (Sweden)

    S. M. Miller

    2013-09-01

    Full Text Available Many inverse problems in the atmospheric sciences involve parameters with known physical constraints. Examples include non-negativity (e.g., emissions of some urban air pollutants or upward limits implied by reaction or solubility constants. However, probabilistic inverse modeling approaches based on Gaussian assumptions cannot incorporate such bounds and thus often produce unrealistic results. The atmospheric literature lacks consensus on the best means to overcome this problem, and existing atmospheric studies rely on a limited number of the possible methods with little examination of the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems and is also the first application of Markov chain Monte Carlo (MCMC to estimation of atmospheric trace gas fluxes. The approaches discussed here are broadly applicable. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two MCMC methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing alternative for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.

  8. Atmospheric ammonia over China: emission estimates and impacts on air quality

    Science.gov (United States)

    Zhang, Lin; Zhao, Yuanhong; Chen, Youfan; Henze, Daven

    2016-04-01

    Ammonia (NH3) in the atmosphere is an important precursor of inorganic aerosols, and its deposition through wet and dry processes can cause adverse effects on ecosystems. The ammonia emissions over China are particularly large due to intensive agricultural activities, yet our current estimates of Chinese ammonia emissions and associated consequences on air quality are subject to large errors. Here we use the GEOS-Chem chemical transport model and its adjoint model to better quantify this issue. The TES satellite observations of ammonia concentrations and surface measurements of wet deposition fluxes are assimilated into the model to constrain the ammonia emissions over China. Optimized emissions show a strong seasonal variability with emissions in summer a factor of 3 higher than winter. We improve the bottom-up estimate of Chinese ammonia emissions from fertilizer use by using more practical feritilizer application rates for different crop types, which explains most of the discrepancies between our top-down estimates and prior emission estimates. We further use the GEOS-Chem adjoint at 0.25x0.3125 degree resolution to examine the sources contributing to the PM2.5 air pollution over North China. We show that wintertime PM2.5 over Beijing is largely contributed by residential and industrial sources, and ammonia emissions from agriculture activities. PM2.5 concentrations over North China are particularly sensitive to NH3 emissions in cold seasons due to strong nitrate formation. By converting shorted-lived nitric acid to aerosol nitrate, NH3 significantly promotes the regional transport influences of PM2.5 sources.

  9. Modeling Atmospheric Emissions and Calculating Mortality Rates Associated with High Volume Hydraulic Fracturing Transportation

    Science.gov (United States)

    Mathews, Alyssa

    Emissions from the combustion of fossil fuels are a growing pollution concern throughout the global community, as they have been linked to numerous health issues. The freight transportation sector is a large source of these emissions and is expected to continue growing as globalization persists. Within the US, the expanding development of the natural gas industry is helping to support many industries and leading to increased transportation. The process of High Volume Hydraulic Fracturing (HVHF) is one of the newer advanced extraction techniques that is increasing natural gas and oil reserves dramatically within the US, however the technique is very resource intensive. HVHF requires large volumes of water and sand per well, which is primarily transported by trucks in rural areas. Trucks are also used to transport waste away from HVHF well sites. This study focused on the emissions generated from the transportation of HVHF materials to remote well sites, dispersion, and subsequent health impacts. The Geospatial Intermodal Freight Transport (GIFT) model was used in this analysis within ArcGIS to identify roadways with high volume traffic and emissions. High traffic road segments were used as emissions sources to determine the atmospheric dispersion of particulate matter using AERMOD, an EPA model that calculates geographic dispersion and concentrations of pollutants. Output from AERMOD was overlaid with census data to determine which communities may be impacted by increased emissions from HVHF transport. The anticipated number of mortalities within the impacted communities was calculated, and mortality rates from these additional emissions were computed to be 1 in 10 million people for a simulated truck fleet meeting stricter 2007 emission standards, representing a best case scenario. Mortality rates due to increased truck emissions from average, in-use vehicles, which represent a mixed age truck fleet, are expected to be higher (1 death per 341,000 people annually).

  10. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    Directory of Open Access Journals (Sweden)

    H. Cui

    2015-03-01

    rural and remote sites, attributed partly to weaker atmospheric oxidation and SOC formation compared to summer. Enhanced SOC formation from oxidization and anthropogenic activities like biomass combustion is judged to have crucial effects on severe haze events characterized by high particle concentrations. Several observational studies indicate an increasing trend in ambient OC/EC (but not in OC or EC individually from 2000 to 2010, confirming increased atmospheric oxidation of OC across the country. Combining the results of emission estimation and observations, the improvement over prior emission inventories is indicated by inter-annual comparisons and correlation analysis. It is also indicated, however, that the estimated growth in emissions might be faster than observed growth, and that some sources with high primary OC/EC like burning of biomass are still underestimated. Further studies to determine changing emission factors over time in the residential sector and to compare to other measurements such as satellite observations are thus suggested to improve understanding of the levels and trends of primary carbonaceous aerosol emissions in China.

  11. Inventory of atmospheric pollutant and greenhouse gas emissions in France. Sectoral series and extended analyses - SECTEN Format, April 2011

    International Nuclear Information System (INIS)

    This report supplies an update of emissions into the atmosphere in mainland France under the SNIEPA in accordance with the 'SECTEN' format defined by CITEPA. This report aims to reconstitute emissions broken down in accordance with the traditional economic sectors such as industry, residential/tertiary sector, agriculture, etc. (cf. Annex 2 for the corresponding links between SECTEN sectors and sub-sectors, and the SNAP nomenclature). Unless otherwise indicated, the results cover the period 1990-2010 (estimations for 2010 are preliminary), but also go back further in time: to 1980 for certain substances covered by the different protocols adopted under the 1979 UNECE Convention on Long-Range Transboundary Air Pollution. For other substances traditionally monitored by CITEPA for many years, the results go back to 1960 (SO2, NOx, CO2, CO). Data are presented for 28 different substances in total and various indicators such as those concerning acidification or the greenhouse effect. The report shows that for most substances, emissions have been drastically reduced over the last 10 or 20 years, especially during the period 1990-2009: Very sharp decrease (over 40%) SO2, NMVOCs, CO, SF6, PFCs in CO2 equivalent, As, Cd, Cr, Hg, Ni, Pb, Zn, dioxins and furans, PAHs, HCB, PCBs, PM2.5 and PM1.0, Sharp decrease (between 20 and 40%) NOx, N2O, Se, TSP, PM10 and acid equivalent index, Considerable decrease (between 5 and 20%) NH3, CH4 without LULUCF, CO2 without LULUCF, Cu and the global warming potential index without LULUCF, Stabilisation (between -5 and +5%) No substance, Very sharp increase (over 40%) HFCs in CO2 equivalent. For more than 2/3 of substances, emission levels in 2009 were the lowest since records began (1960 to 1990 depending on the substances). For the most part of atmospheric pollutants (except the greenhouse gases), the preliminary estimations for year 2010 look rather favorable as far as the estimated level is below than observed in 2009. Regarding the

  12. HST/ACS Observations of Europa's Atmospheric UV Emission at Eastern Elongation

    CERN Document Server

    Saur, Joachim; Roth, Lorenz; Nimmo, Francis; Strobel, Darrell F; Retherford, Kurt D; McGrath, Melissa A; Schilling, Nico; Gérard, Jean-Claude; Grodent, Denis

    2011-01-01

    We report results of a Hubble Space Telescope (HST) campaign with the Advanced Camera for Surveys to observe Europa at eastern elongation, i.e. Europa's leading side, on 2008 June 29. With five consecutive HST orbits, we constrain Europa's atmospheric \\ion{O}{1} 1304 \\A and \\ion{O}{1} 1356 \\A emissions using the prism PR130L. The total emissions of both oxygen multiplets range between 132 $\\pm$ 14 and 226 $\\pm$ 14 Rayleigh. An additional systematic error with values on the same order as the statistical errors may be due to uncertainties in modelling the reflected light from Europa's surface. The total emission also shows a clear dependence of Europa's position with respect to Jupiter's magnetospheric plasma sheet. We derive a lower limit for the O$_2$ column density of 6 $\\times$ 10$^{18}$ m$^{-2}$. Previous observations of Europa's atmosphere with STIS in 1999 of Europa's trailing side show an enigmatic surplus of radiation on the anti-Jovian side within the disk of Europa. With emission from a radially symm...

  13. The Reanalysis of the ROSAT Data of GQ Mus (1983) Using White Dwarf Atmosphere Emission Models

    CERN Document Server

    Balman, S

    2001-01-01

    The analyses of X-ray emission from classical novae during the outburst stage have shown that the soft X-ray emission below 1 keV, which is thought to originate from the photosphere of the white dwarf, is inconsistent with the simple blackbody model of emission. Thus, $ROSAT$ Position Sensitive Proportional Counter (PSPC) archival data of the classical novae GQ Mus 1983 (GQ Mus) have been reanalyzed in order to understand the spectral development in the X-ray wavelengths during the outburst stage. The X-ray spectra are fitted with the hot white dwarf atmosphere emission models developed for the remnants of classical novae near the Eddington luminosity. The post-outburst X-ray spectra of the remnant white dwarf is examined in the context of evolution on the Hertzsprung-Russell diagram using C-O enhanced atmosphere models. The data obtained in 1991 August (during the ROSAT All Sky Survey) indicate that the effective temperature is kT_e<54 eV (<6.2x10^5 K). The 1992 February data show that the white dwarf ...

  14. What would dense atmospheric observation networks bring to the quantification of city CO2 emissions?

    Science.gov (United States)

    Wu, Lin; Broquet, Grégoire; Ciais, Philippe; Bellassen, Valentin; Vogel, Felix; Chevallier, Frédéric; Xueref-Remy, Irène; Wang, Yilong

    2016-06-01

    Cities currently covering only a very small portion ( market- or policy-based mitigation actions. Here we analyze the potential of a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. This monitoring tool is configured for the quantification of the total and sectoral CO2 emissions in the Paris metropolitan area (˜ 12 million inhabitants and 11.4 TgC emitted in 2010) during the month of January 2011. Its performances are evaluated in terms of uncertainty reduction based on observing system simulation experiments (OSSEs). They are analyzed as a function of the number of sampling sites (measuring at 25 m a.g.l.) and as a function of the network design. The instruments presently used to measure CO2 concentrations at research stations are expensive (typically ˜ EUR 50 k per sensor), which has limited the few current pilot city networks to around 10 sites. Larger theoretical networks are studied here to assess the potential benefit of hypothetical operational lower-cost sensors. The setup of our inversion system is based on a number of diagnostics and assumptions from previous city-scale inversion experiences with real data. We find that, given our assumptions underlying the configuration of the OSSEs, with 10 stations only the uncertainty for the total city CO2 emission during 1 month is significantly reduced by the inversion by ˜ 42 %. It can be further reduced by extending the network, e.g., from 10 to 70 stations, which is promising for MRV applications in the Paris metropolitan area. With 70 stations, the uncertainties in the inverted emissions are reduced significantly over those obtained using 10 stations: by 32 % for commercial and residential buildings, by 33 % for road transport, by 18 % for the production

  15. Model assessment of atmospheric pollution control schemes for critical emission regions

    Science.gov (United States)

    Zhai, Shixian; An, Xingqin; Liu, Zhao; Sun, Zhaobin; Hou, Qing

    2016-01-01

    In recent years, the atmospheric environment in portions of China has become significantly degraded and the need for emission controls has become urgent. Because more international events are being planned, it is important to implement air quality assurance targeted at significant events held over specific periods of time. This study sets Yanqihu (YQH), Beijing, the location of the 2014 Beijing APEC (Asia-Pacific Economic Cooperation) summit, as the target region. By using the atmospheric inversion model FLEXPART, we determined the sensitive source zones that had the greatest impact on the air quality of the YQH region in November 2012. We then used the air-quality model Models-3/CMAQ and a high-resolution emissions inventory of the Beijing-Tianjian-Hebei region to establish emission reduction tests for the entire source area and for specific sensitive source zones. This was achieved by initiating emission reduction schemes at different ratios and different times. The results showed that initiating a moderate reduction of emissions days prior to a potential event is more beneficial to the air quality of Beijing than initiating a high-strength reduction campaign on the day of the event. The sensitive source zone of Beijing (BJ-Sens) accounts for 54.2% of the total source area of Beijing (BJ), but its reduction effect reaches 89%-100% of the total area, with a reduction efficiency 1.6-1.9 times greater than that of the entire area. The sensitive source zone of Huabei (HuaB-Sens.) only represents 17.6% of the total area of Huabei (HuaB), but its emission reduction effect reaches 59%-97% of the entire area, with a reduction efficiency 4.2-5.5 times greater than that of the total area. The earlier that emission reduction measures are implemented, the greater the effect they have on preventing the transmission of pollutants. In addition, expanding the controlling areas to sensitive provinces and cities around Beijing (HuaB-sens) can significantly accelerate the reduction

  16. Observation of the Emission Spectra of an Atmospheric Pressure Radio-frequency Plasma Jet

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An atmospheric pressure plasma jet (APPJ) using radio-frequency (13.56 MHz)power has been developed to produce homogeneous glow discharge at low temperature. With optical emission spectroscopy, we observed the excited species (atomic helium, atomic oxygen and metastable oxygen) generated in this APPJ and their dependence on gas composition ratio and RF power. O and O2(b1∑g+) are found in the effluent outside the jet by measuring the emission spectra of effluent perpendicular to the jet. An interesting phenomenon is found that there is an abnormal increase of O emission intensity (777.4 nm) between 10 mm and 40 mm away from the nozzle. This observation result is very helpful in practical operation.

  17. Air humidity incidence on the carbon monoxide emissions a gas atmospheric burner

    International Nuclear Information System (INIS)

    A study to determine the variation of the carbon monoxide emission was carried out when the humidity of the premix air was modified in an atmospheric burner working with petroleum liquid gas and natural gas. When the total humidity from the primary air was modified from 0,01223 to 0,03493 water kg/dry air kg in the case of PLG, it was found that the level of co emissions varied in volume from 0,1819 % to 0,2540 %, representing an increase of 38 %. With natural gas the humidity was modified from 0,01397 to 0,03228 water kg/dry air kg, obtaining emissions of CO in volume from 0,0942 % to 0,1020 %, for a total increase of 8,5 %. The study showed that the effect on the air humidity was more pronounced when the combustion with PLG was made, over passing the maximum levels allowed of carbon monoxide

  18. An intermediate complexity dynamic model for predicting accumulation of atmospherically-deposited metals (Ni, Cu, Zn, Cd, Pb) in catchment soils: 1400 to present

    International Nuclear Information System (INIS)

    The Intermediate Dynamic Model for Metals (IDMM) is a model for prediction of the pools of metals (Ni, Cu, Zn, Cd, Pb) in topsoils of catchments resulting from deposition of metals from the atmosphere. We used the model to simulate soil metal pools from 1400 onwards in ten UK catchments comprising semi-natural habitats, and compared the results with present day observations of soil metal pools. Generally the model performed well in simulating present day pools, and further improvements were made to simulations of Ni, Cu, Zn and Cd by adjusting the strength of metal adsorption to the soils. Some discrepancies between observation and prediction for Pb appeared to be due either to underestimation of cumulative deposition, or to overestimation of the metal pool under ‘pristine’, pre-industrial conditions. The IDMM provides a potential basis for large scale assessment of metal dynamics in topsoils. -- Highlights: •The Intermediate Dynamic Model for Metals (IDMM) is a new model for long term metal dynamics in semi-natural catchments. •The model describes well current day metal pools in ten semi-natural catchments of the UK. •The IDMM has clear potential for large scale simulation of metal dynamics in soils. -- The Intermediate Dynamic Model for Metals predicts the present day pools of Ni, Cu, Zn, Cd and Pb in semi-natural catchment soils of the UK

  19. HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models

    OpenAIRE

    C. A. Keller; M. S. Long; R. M. Yantosca; A. M. da Silva; Pawson, S.; Jacob, D. J.

    2014-01-01

    We describe the Harvard–NASA Emission Component version 1.0 (HEMCO), a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions, and species on a user-defined grid and can combine, overlay, and update a set of data inventories and scale factors, as specified by the user through the HEMCO configuration file. New emission inventories at any spatial and temporal resolution are readily added t...

  20. HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models

    OpenAIRE

    Keller, Christoph Andrea; Long, Michael Smither; Yantosca, Robert M.; A. M. da Silva; Pawson, S.; Jacob, Daniel James

    2014-01-01

    We describe the Harvard–NASA Emission Component version 1.0 (HEMCO), a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions, and species on a user-defined grid and can combine, overlay, and update a set of data inventories and scale factors, as specified by the user through the HEMCO configuration file. New emission inventories at any spatial and temporal resolution are readily added to HEMCO and can be...

  1. HEMCO v1.0: A versatile, ESMF-compliant component for calculating emissions in atmospheric models

    OpenAIRE

    C. A. Keller; M. S. Long; R. M. Yantosca; A. M. da Silva; Pawson, S.; Jacob, D. J.

    2014-01-01

    We describe the Harvard-NASA Emission Component version 1.0 (HEMCO), a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions and species on a user-specified grid and can combine, overlay, and update a set of data inventories and scale factors, selected by the user from a data library through the HEMCO configuration file. New emission inventories at any spatial and tempo...

  2. The Ademe research programme on atmospheric emissions from composting. Research findings and literature review - final report

    International Nuclear Information System (INIS)

    sites), of their dispersion to the atmosphere and subsequent exposure to the local population. Following on from this programme, a compilation of the results produced, drawing also from a literature review, has been undertaken and is presented here. This scientific work, written by the research partners of the programme, draws from both their expertise and gained experience. It can thus be considered a 'state of the art' of the current understanding of atmospheric emissions from composting: be it emission values, means of measurement or of their control. The document is organized in three main parts: In the first, the general principles of composting and the related atmospheric emissions are given. The section also sets out the current understanding of the main impacts on the environment and on the health of staff and people living near the composting sites. The second part is deals with the quantification of the emissions. It describes the methods and strategies of sampling and analysis for gas emissions (including odors) and for particulates (including micro-organisms). The quantitative emission data provided in this section are current figures taken from reference documents already produced by ADEME. These values are brought up to date with data taken from international scientific literature and from the results of the research programme on the emissions from composting. The current report takes note in particular of the knowledge of factors affecting emission. The section then sets out the dispersion of the gaseous emissions and particulates around the site. It brings in modelling and the concept of background noise, essential in the interpretation of the results from measurement campaigns of the environment around compost sites. The third part looks at the consequences of the work given in the report. This includes especially recommendations for the prevention of emissions and for the direction of future studies. The outlook for future and related research is also

  3. Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5

    Directory of Open Access Journals (Sweden)

    P. Bergamaschi

    2005-01-01

    Full Text Available A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1° × 1° resolution that is two-way nested into the global model domain (with resolution of 6° × 4°. This approach ensures consistent boundary conditions for the zoom domain and thus European top-down estimates consistent with global CH4 observations. The TM5 model, driven by ECMWF analyses, simulates synoptic scale events at most European and global sites fairly well, and the use of high-frequency observations allows exploiting the information content of individual synoptic events. A detailed source attribution is presented for a comprehensive set of 56 monitoring sites, assigning the atmospheric signal to the emissions of individual European countries and larger global regions. The available observational data put significant constraints on emissions from different regions. Within Europe, in particular several Western European countries are well constrained. The inversion results suggest up to 50-90% higher anthropogenic CH4 emissions in 2001 for Germany, France and UK compared to reported UNFCCC values (EEA, 2003. A recent revision of the German inventory, however, resulted in an increase of reported CH4 emissions by 68.5% (EEA, 2004, being now in very good agreement with our top-down estimate. The top-down estimate for Finland is distinctly smaller than the a priori estimate, suggesting much smaller CH4 emissions from Finnish wetlands than derived from the bottom-up inventory. The EU-15 totals are relatively close to UNFCCC values (within 4-30% and appear very robust for different inversion scenarios.

  4. Nitric oxide and nitrous oxide emission from Hungarian forest soils; link with atmospheric N-deposition

    Directory of Open Access Journals (Sweden)

    L. Horváth

    2005-06-01

    Full Text Available Studies of forest nitrogen (N budgets generally measure inputs to the atmosphere in wet and dry precipitation and outputs via hydrologic export. Although denitrification has been shown to be important in many wetland ecosystems, emission of nitrogen oxides from forest soils is an important, and often overlooked, component of an ecosystem nitrogen budget. During one year (2002-2003, emissions of nitric oxide (NO and nitrous oxide (N2O were measured from Sessile oak and Norway spruce forest soils in northeast Hungary. Accumulation in small static chambers followed by gas chromatography-mass spectrometry detection was used for the estimation of N2O emission flux. Because there are rapid chemical reactions of NO and ozone, small dynamic chambers were used for in situ NO flux measurements. Average soil emissions of NO were 1.2 and 2.1 µgNm-2h-1, and for N2O were 15 and 20 µgNm-2h-1, for spruce and oak soils, respectively. The previously determined nitrogen balance between the atmosphere and the forest ecosystem was re-calculated using these soil emission figures. The total (dry + wet atmospheric N-deposition to the soil was 1.42 and 1.59gNm-2yr-1 for spruce and oak, respectively, while the soil emissions are 0.14 and 0.20 gNm-2yr-1. Thus, about 10-13% of N compounds deposited to the soil, mostly as NH3/NH4+ and HNO3/NO3-, are transformed in the soil and emitted back to the atmosphere, mostly as a greenhouse gas (N2O.

  5. Reducing Uncertainty in Life Cycle CH4 Emissions from Natural Gas using Atmospheric Inversions

    Science.gov (United States)

    Schwietzke, S.; Griffin, W.; Matthews, S.

    2012-12-01

    Methane emissions associated with the production and use of natural gas (NG) are highly uncertain because of challenges to accurately measure fugitive CH4 emissions from NG leaks and venting throughout a large and complex industry. Better understanding the CH4 emissions from the NG life cycle is important for two reasons. First, the rising interest in NG use associated with the recent development of unconventional sources, such as shale gas, may cause a shift in the future energy system from coal towards more NG. Given its relatively high greenhouse gas potency, fugitive CH4 emissions from the NG life cycle have the potential to outweigh lower CO2 emissions compared to coal use in terms of their climate impacts over the next few decades. Second, worldwide NG related CH4 emissions play a key role in understanding the global CH4 budget. According to current atmospheric inversion studies, NG and oil production account for about 12% of global CH4 emissions. However, these results largely depend on prior emissions estimates whose uncertainties are poorly documented. The objective of this research is to analyze which ranges of global fugitive CH4 emissions from the NG life cycle are reasonable given atmospheric observations as a constraint. We establish a prior global CH4 inventory for NG, oil, and coal using emissions data from the life cycle assessment (LCA) literature. This inventory includes uncertainty estimates for different fuels, world regions, and time periods based on LCA literature, which existing inventories do not account for. Furthermore, global CH4 inversion modeling will be used to test bottom-up hypotheses of high NG leakage and venting associated with the upper bound of the prior inventory. Given the use of detailed LCA emissions factors, we will test bottom-up scenarios regarding management and technology improvements over time. The emissions inventory will be established for the past decade, and inversion modeling will be carried out using NOAA

  6. Are biogenic emissions a significant source of summertime atmospheric toluene in rural Northeastern United States?

    Directory of Open Access Journals (Sweden)

    M. L. White

    2008-06-01

    Full Text Available Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequentially, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004–2006. These included: 1 increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG content to meet U.S. EPA summertime volatility standards, 2 local industrial emissions and 3 local vegetative emissions. The contribution of fuel evaporation emission to summer toluene mixing ratios was estimated to range from 16 to 30 pptv d−1, and did not fully account for the observed enhancements (20–50 pptv in 2004–2006. Static chamber measurements of alfalfa, a crop at Thompson Farm, and dynamic branch enclosure measurements of loblolly pine trees in North Carolina suggested vegetative emissions of 5 and 12 pptv d−1 for crops and coniferous trees, respectively. Toluene emission rates from alfalfa are potentially much larger as these plants were only sampled at the end of the growing season. Measured biogenic fluxes were on the same order of magnitude as the influence from gasoline evaporation and industrial sources (regional industrial emissions estimated at 7 pptv d−1 and indicated that local vegetative emissions make a significant contribution to summertime toluene enhancements. Additional studies are needed to characterize the variability and factors controlling toluene emissions from alfalfa and other vegetation types throughout the growing season.

  7. Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?

    Directory of Open Access Journals (Sweden)

    M. L. White

    2009-01-01

    Full Text Available Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequently, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004–2006. These included: (1 increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG content to meet US EPA summertime volatility standards, (2 local industrial emissions and (3 local vegetative emissions. The contribution of fuel evaporation emission to summer toluene mixing ratios was estimated to range from 16 to 30 pptv d−1, and did not fully account for the observed enhancements (20–50 pptv in 2004–2006. Static chamber measurements of alfalfa, a crop at Thompson Farm, and dynamic branch enclosure measurements of loblolly pine trees in North Carolina suggested vegetative emissions of 5 and 12 pptv d−1 for crops and coniferous trees, respectively. Toluene emission rates from alfalfa are potentially much larger as these plants were only sampled at the end of the growing season. Measured biogenic fluxes were on the same order of magnitude as the influence from gasoline evaporation and industrial sources (regional industrial emissions estimated at 7 pptv d−1 and indicated that local vegetative emissions make a significant contribution to summertime toluene enhancements. Additional studies are needed to characterize the variability and factors controlling toluene emissions from alfalfa and other vegetation types throughout the growing season.

  8. On the effect of emissions from aircraft engines on the state of the atmosphere

    Directory of Open Access Journals (Sweden)

    U. Schumann

    Full Text Available Emissions from aircraft engines include carbon dioxide, water vapour, nitrogen oxides, sulphur components and various other gases and particles. Such emissions from high-flying global civil subsonic air traffic may cause anthropogenic climate changes by an increase of ozone and cloudiness in the upper troposphere, and by an enhanced greenhouse effect. The absolute emissions by air traffic are small (a few percent of the total compared to surface emissions. However, the greenhouse effect of emitted water and of nitrogen oxides at cruise altitude is potentially large compared to that of the same emissions near the earth's surface because of relatively large residence times at flight altitudes, low background concentrations, low temperature, and large radiative efficiency. Model computations indicate that emission of nitrogen oxides has doubled the background concentration in the upper troposphere between 40°N and 60°N. Models also indicate that this causes an increase of ozone by about 5-20%. Regionally, the observed annual mean change in cloudiness is 0.4%. It is estimated that the resultant greenhouse effect of changes in ozone and thin cirrus cloud cover causes a climatic surface temperature change of 0.01-0.1 K. These temperature changes are small compared to the natural variability. Recent research indicates that the emissions at cruise altitude may increase the amount of stratospheric aerosols and polar stratospheric clouds and thereby have an impact on the atmospheric environment. Air traffic is increasing about 5-6% per year, fuel consumption by about 3%, hence the effects of the related emissions are expected to grow. This paper surveys the state of knowledge and describes several results from recent and ongoing research.

  9. Theoretical Emission Spectra of Atmospheres of Hot Rocky Super-Earths

    CERN Document Server

    Ito, Yuichi; Kawahara, Hajime; Nagahara, Hiroko; Kawashima, Yui; Nakamoto, Taishi

    2015-01-01

    Motivated by recent detection of transiting high-density super-Earths, we explore the detectability of hot rocky super-Earths orbiting very close to their host stars. In the environment hot enough for their rocky surfaces to be molten, they would have the atmosphere composed of gas species from the magma oceans. In this study, we investigate the radiative properties of the atmosphere that is in the gas/melt equilibrium with the underlying magma ocean. Our equilibrium calculations yield Na, K, Fe, Si, SiO, O, and O$_2$ as the major atmospheric species. We compile the radiative-absorption line data of those species available in literature, and calculate their absorption opacities in the wavelength region of 0.1--100~$\\mathrm{\\mu m}$. Using them, we integrate the thermal structure of the atmosphere. Then, we find that thermal inversion occurs in the atmosphere because of the UV absorption by SiO. In addition, we calculate the ratio of the planetary to stellar emission fluxes during secondary eclipse, and find pr...

  10. Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling

    Science.gov (United States)

    Henne, Stephan; Brunner, Dominik; Oney, Brian; Leuenberger, Markus; Eugster, Werner; Bamberger, Ines; Meinhardt, Frank; Steinbacher, Martin; Emmenegger, Lukas

    2016-03-01

    Atmospheric inverse modelling has the potential to provide observation-based estimates of greenhouse gas emissions at the country scale, thereby allowing for an independent validation of national emission inventories. Here, we present a regional-scale inverse modelling study to quantify the emissions of methane (CH4) from Switzerland, making use of the newly established CarboCount-CH measurement network and a high-resolution Lagrangian transport model. In our reference inversion, prior emissions were taken from the "bottom-up" Swiss Greenhouse Gas Inventory (SGHGI) as published by the Swiss Federal Office for the Environment in 2014 for the year 2012. Overall we estimate national CH4 emissions to be 196 ± 18 Gg yr-1 for the year 2013 (1σ uncertainty). This result is in close agreement with the recently revised SGHGI estimate of 206 ± 33 Gg yr-1 as reported in 2015 for the year 2012. Results from sensitivity inversions using alternative prior emissions, uncertainty covariance settings, large-scale background mole fractions, two different inverse algorithms (Bayesian and extended Kalman filter), and two different transport models confirm the robustness and independent character of our estimate. According to the latest SGHGI estimate the main CH4 source categories in Switzerland are agriculture (78 %), waste handling (15 %) and natural gas distribution and combustion (6 %). The spatial distribution and seasonal variability of our posterior emissions suggest an overestimation of agricultural CH4 emissions by 10 to 20 % in the most recent SGHGI, which is likely due to an overestimation of emissions from manure handling. Urban areas do not appear as emission hotspots in our posterior results, suggesting that leakages from natural gas distribution are only a minor source of CH4 in Switzerland. This is consistent with rather low emissions of 8.4 Gg yr-1 reported by the SGHGI but inconsistent with the much higher value of 32 Gg yr-1 implied by the EDGARv4.2 inventory for

  11. Atmospheric concentrations and size distributions of aircraft-sampled Cd, Cu, Pb and Zn over the southern bight of the North Sea

    Science.gov (United States)

    Injuk, J.; Otten, Ph.; Laane, R.; Maenhaut, W.; Van Grieken, R.

    In an effort to assess the atmospheric input of heavy metals to the Southern Bight of the North Sea, aircraft-based aerosol samplings in the lower troposphere were performed between September 1988 and October 1989. Total atmospheric particulate and size-differentiated concentrations of Cd, Cu, Pb and Zn were determined as a function of altitude, wind direction, air-mass history and season. The obtained data are compared with results of ship-based measurements carried out previously and with literature values of Cu, Pb and Zn, for the marine troposphere of the southern North Sea. The results point out the high variability of the concentrations with the meterological conditions, as well as with time and location. The experimentally found particle size distribution are bimodal with a significant difference in fractions of small and large particles. These large aerosol particles have a direct and essential impact on the air-to-sea transfer of anthropogenic trace metals, in spite of their low numerical abundance and relatively low heavy metal content.

  12. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.

    Science.gov (United States)

    Tian, Hezhong; Wang, Yan; Cheng, Ke; Qu, Yiping; Hao, Jiming; Xue, Zhigang; Chai, Fahe

    2012-05-01

    Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary

  13. Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling

    Directory of Open Access Journals (Sweden)

    S. Song

    2015-02-01

    Full Text Available We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physio-chemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg0 observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations, and also matches regional over-water Hg0 and wet deposition measurements. The optimized global mercury emission to the atmosphere is ~5.8 Gg yr−1. The ocean accounts for 3.2 Gg yr−1 (55% of the total, and the terrestrial ecosystem is neither a net source nor a net sink of Hg0. The optimized Asian anthropogenic emission of Hg0 (gas elemental mercury is 650–1770 Mg yr−1, higher than its bottom-up estimates (550–800 Mg yr−1. The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23% of present-day atmospheric deposition.

  14. NO emission characteristics of superfine pulverized coal combustion in the O2/CO2 atmosphere

    International Nuclear Information System (INIS)

    Highlights: • Superfine pulverized coal combustion in O2/CO2 atmosphere is a new promising technology. • NO emissions of superfine pulverized coal combustion in O2/CO2 mixture were focused. • Coal particle sizes have significant effects on NO emissions in O2/CO2 combustion. - Abstract: The combination of O2/CO2 combustion and superfine pulverized coal combustion technology can make full use of their respective merits, and solve certain inherent disadvantages of each technology. The technology of superfine pulverized coal combustion in the O2/CO2 atmosphere is easy and feasible to be retrofitted with few reconstructions on the existing devices. It will become a useful and promising method in the future. In this paper, a one-dimensional drop-tube furnace system was adopted to study the NO emission characteristics of superfine pulverized coal combustion in the O2/CO2 atmosphere. The effects of coal particle size, coal quality, furnace temperature, stoichiometric ratio, etc. were analyzed. It is important to note that coal particle sizes have significant influence on NO emissions in the O2/CO2 combustion. For the homogeneous NO reduction, smaller coal particles can inhibit the homogeneous NO formations under fuel-rich combustion conditions, while it becomes disadvantageous for fuel-lean combustion. However, under any conditions, heterogeneous reduction is always more significant for smaller coal particle sizes, which have smoother pore surfaces and simpler pore structures. The results from this fundamental research will provide technical support for better understanding and developing this new combustion process

  15. Control of atmospheric CO_2 concentrations by 2050: A calculation on the emission rights of different countries

    Institute of Scientific and Technical Information of China (English)

    DING ZhongLi; DUAN XiaoNan; GE QuanSheng; ZHANG ZhiQiang

    2009-01-01

    This paper is to provide quantitative data on some critical issues in anticipation of the forthcoming international negotiations in Denmark on the control of atmospheric CO_2 concentrations. Instead of letting only a small number of countries dominate a few controversial dialogues about emissions re-ductions, a comprehensive global system must be established based on emissions allowances for different countries, to realize the long-term goal of controlling global atmospheric CO_2 concentrations.That a system rooted in "cumulative emissions per capita," the best conception of the "common but differentiated responsibilities" principle affirmed by the Kyoto Protocol according to fundamental standards of fairness and justice, was demonstrated. Based on calculations of various countries' cu-mulative emissions per capita, estimates of their cumulative emissions from 1900 to 2005, and their annual emissions allowances into the future (2006-2050), a 470 ppmv atmospheric CO_2 concentration target was set. According to the following four objective indicators-total emissions allowance from 1900 to 2050, actual emissions from 1900 to 2005, emissions levels in 2005, and the average growth rate of emissions from 1996 to 2005-all countries and regions whose population was more than 300000 in 2005 were divided into four main groups: countries with emissions deficits, countries and regions needing to reduce their gross emissions, countries and regions needing to reduce their emissions growth rates, and countries that can maintain the current emissions growth rates. Based on this pro-posal, most G8 countries by 2005 had already expended their 2050 emissions allowances. The accu-mulated financial value based on emissions has reached more than 5.5 trillion US dollars (20 dollars per ton of CO_2). Even if these countries could achieve their ambitious emissions reduction targets in the future, their per capita emissions from 2006 to 2050 would still be much higher than those of de

  16. Control of atmospheric CO2 concentrations by 2050: A calculation on the emission rights of different countries

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper is to provide quantitative data on some critical issues in anticipation of the forthcoming international negotiations in Denmark on the control of atmospheric CO2 concentrations. Instead of letting only a small number of countries dominate a few controversial dialogues about emissions reductions, a comprehensive global system must be established based on emissions allowances for different countries, to realize the long-term goal of controlling global atmospheric CO2 concentrations. That a system rooted in "cumulative emissions per capita," the best conception of the "common but differentiated responsibilities" principle affirmed by the Kyoto Protocol according to fundamental standards of fairness and justice, was demonstrated. Based on calculations of various countries’ cumulative emissions per capita, estimates of their cumulative emissions from 1900 to 2005, and their annual emissions allowances into the future (2006―2050), a 470 ppmv atmospheric CO2 concentration target was set. According to the following four objective indicators―total emissions allowance from 1900 to 2050, actual emissions from 1900 to 2005, emissions levels in 2005, and the average growth rate of emissions from 1996 to 2005―all countries and regions whose population was more than 300000 in 2005 were divided into four main groups: countries with emissions deficits, countries and regions needing to reduce their gross emissions, countries and regions needing to reduce their emissions growth rates, and countries that can maintain the current emissions growth rates. Based on this proposal, most G8 countries by 2005 had already expended their 2050 emissions allowances. The accu-mulated financial value based on emissions has reached more than 5.5 trillion US dollars (20 dollars per ton of CO2). Even if these countries could achieve their ambitious emissions reduction targets in the future, their per capita emissions from 2006 to 2050 would still be much higher than those of

  17. The global SF6 source inferred from long-term high precision atmospheric measurements and its comparison with emission inventories

    OpenAIRE

    I. Levin; Naegler, T.; Heinz, R.; Osusko, D.; Cuevas, E.; Engel, A.; J. Ilmberger; R. L. Langenfelds; Neininger, B; C. v. Rohden; L. P. Steele; Weller, R.; D. E. Worthy; S. A. Zimov

    2010-01-01

    Emissions of sulphur hexafluoride (SF6), one of the strongest greenhouse gases on a per molecule basis, are targeted to be collectively reduced under the Kyoto Protocol. Because of its long atmospheric lifetime (estimated as 800 to 3200 years), the accumulation of SF6 in the atmosphere is a direct measure of its global emissions. Examination of our extended data set of globally distributed high-precision SF6 observations shows an increase in SF6 abundance from near zero in t...

  18. Atmospheric Emissions and Depositions of Cadmium, Lead, and Zinc in Europe During the Period 1955-1987

    OpenAIRE

    Olendrzynski, K.; Anderberg, S.; Bartnicki, J.; PACYNA J.; Stigliani, W.M.

    1995-01-01

    This paper presents a preliminary estimate of atmospheric emissions of cadmium, lead and zinc in Europe during the period 1955-1987. The emission data are used as input to the IIASA's atmospheric transport model, TRACE m a c e toxic Air concentrations in Europe), to compute cumulative deposition loads of heavy metals onto European soils during the investigated time period. To the authors' knowledge, this is the first attempt of this kind in the open literature. The computed with the TRACE mod...

  19. A computational study of particulate emissions from an open pit quarry under neutral atmospheric conditions

    Science.gov (United States)

    Silvester, S. A.; Lowndes, I. S.; Hargreaves, D. M.

    2009-12-01

    The extraction of minerals from surface mines and quarries can produce significant fugitive dust emissions as a result of site activities such as blasting, road haulage, loading, crushing and stockpiling. If uncontrolled, these emissions can present serious environmental, health, safety and operational issues impacting both site personnel and the wider community. The dispersion of pollutant emissions within the atmosphere is principally determined by the background wind systems characterized by the atmospheric boundary layer (ABL). This paper presents an overview of the construction and solution of a computational fluid dynamics (CFD) model to replicate the development of the internal ventilation regime within a surface quarry excavation due to the presence of a neutral ABL above this excavation. This model was then used to study the dispersion and deposition of fugitive mineral dust particles generated during rock blasting operations. The paths of the mineral particles were modelled using Lagrangian particle tracking. Particles of four size fractions were released from five blast locations for eight different wind directions. The study concluded that dependent on the location of the bench blast within the quarry and the direction of the wind, a mass fraction of between 0.3 and 0.6 of the emitted mineral particles was retained within the quarry. The retention was largest when the distance from the blast location to the downwind pit boundary was greatest.

  20. Bacteria in the global atmosphere – Part 2: Modelling of emissions and transport between different ecosystems

    Directory of Open Access Journals (Sweden)

    S. M. Burrows

    2009-05-01

    Full Text Available Bacteria are constantly being transported through the atmosphere, which may have implications for human health, agriculture, cloud formation, and the dispersal of bacterial species. We simulated the global transport of bacterial cells, represented as 1μm diameter spherical solid particle tracers, in a chemistry-climate model. We investigated the factors influencing residence time and distribution of the particles, including emission region, CCN activity and removal by ice-phase precipitation. The global distribution depends strongly on the assumptions made about uptake into cloud droplets and ice. The transport is also affected, to a lesser extent, by the emission region and by season. We examine the potential for exchange of bacteria between ecosystems and obtain rough estimates of the flux from each ecosystem by using an optimal estimation technique, together with a new compilation of available observations described in a companion paper. Globally, we estimate the total emissions of bacteria to the atmosphere to be 1400 Gg per year with an upper bound of 4600 Gg per year, originating mainly from grasslands, shrubs and crops. In order to improve understanding of this topic, more measurements of the bacterial content of the air will be necessary. Future measurements in wetlands, sandy deserts, tundra, remote glacial and coastal regions and over oceans will be of particular interest.

  1. Influence of atmospheric emission from coal fuel cycle on the levels of natural radionuclides and heavy metals in the population

    International Nuclear Information System (INIS)

    From the determination of Ra, Pb, Zn and Cd concentrations in air and various human tissues of inhabitants exposed to large industrial emissions as well as of those of other regions it could be seen that geographical distribution of these elements is rather related to local natural background factors than to industrial activity in the region. The concentrations of 226Ra and Pb increased during the last century in precipitations in Southern Poland, but in the same time they decreased dramatically in the bones of the Polish population. The contemporary Polish bones contain about 10 times less Pb and 2 times less 226Ra than 11th to 19th century Polish bones and 18th century Peruvian bones. The decrease of 226Ra content probably results from the introduction of drinking-water treatment systems which remove majority of 226Ra and from decrease in consumption of cereals, which are principal sources of 226Ra intake in the diet

  2. Use of rare earth tracers for the study of diesel emissions in the atmosphere

    International Nuclear Information System (INIS)

    The emissions of diesel vehicles mainly contain soot, which is difficult to distinguish from soot originating from other sources. The use of a tracer which can be detected in extremely low mass concentrations and does not occur normally in the atmospheric aerosol can help to differentiate between aerosols from different sources. The rare earth element dysprosium has proven useful for this purpose. It can be detected by neutron activation analysis in quantities of nanograms and does not occur naturally. An organic, diesel soluble dysprosium compound was added to the fuel. During the combustion process the dysprosium is oxidized and attaches to the formed soot particles. For the atmospheric filter samples an extraction technique was used. This marking method has been successfully applied for an extended field experiment. (author)

  3. Atmospheric polychlorinated biphenyls in Indian cities: levels, emission sources and toxicity equivalents.

    Science.gov (United States)

    Chakraborty, Paromita; Zhang, Gan; Eckhardt, Sabine; Li, Jun; Breivik, Knut; Lam, Paul K S; Tanabe, Shinsuke; Jones, Kevin C

    2013-11-01

    Atmospheric concentration of Polychlorinated biphenyls (PCBs) were measured on diurnal basis by active air sampling during Dec 2006 to Feb 2007 in seven major cities from the northern (New Delhi and Agra), eastern (Kolkata), western (Mumbai and Goa) and southern (Chennai and Bangalore) parts of India. Average concentration of Σ25PCBs in the Indian atmosphere was 4460 (± 2200) pg/m(-3) with a dominance of congeners with 4-7 chlorine atoms. Model results (HYSPLIT, FLEXPART) indicate that the source areas are likely confined to local or regional proximity. Results from the FLEXPART model show that existing emission inventories cannot explain the high concentrations observed for PCB-28. Electronic waste, ship breaking activities and dumped solid waste are attributed as the possible sources of PCBs in India. Σ25PCB concentrations for each city showed significant linear correlation with Toxicity equivalence (TEQ) and Neurotoxic equivalence (NEQ) values. PMID:23954623

  4. A template of atmospheric molecular oxygen circularly polarized emission for CMB experiments

    CERN Document Server

    Fabbian, Giulio; Gervasi, Massimo; Tartari, Andrea; Zannoni, Mario

    2012-01-01

    We compute the polarized signal from atmospheric molecular oxygen due to Zeeman effect in the Earth magnetic field for various sites suitable for CMB measurements such as South Pole, Dome C (Antarctica) and Atacama desert (Chile). We present maps of this signal for those sites and show their typical elevation and azimuth dependencies. We find a typical circularly polarized signal (V Stokes parameter) level of 50 - 300 \\mu K at 90 GHz when looking at the zenith; Atacama site shows the lowest emission while Dome C site presents the lowest gradient in polarized brightness temperature (0.3 \\mu K/deg at 90 GHz). The accuracy and robustness of the template are tested with respect to actual knowledge of the Earth magnetic field, its variability and atmospheric parameters.

  5. Role of sectoral and multi-pollutant emission control strategies in improving atmospheric visibility in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    The Community Multi-scale Air Quality modeling system is used to investigate the response of atmospheric visibility to the emission reduction from different sectors (i.e. industries, traffic and power plants) in the Yangtze River Delta, China. Visibility improvement from exclusive reduction of NOx or VOC emission was most inefficient. Sulfate and organic aerosol would rebound if NOx emission was exclusively reduced from any emission sector. The most efficient way to improve the atmospheric visibility was proven to be the multi-pollutant control strategies. Simultaneous emission reductions (20–50%) on NOx, VOC and PM from the industrial and mobile sectors could result in 0.3–1.0 km visibility improvement. And the emission controls on both NOx (85%) and SO2 (90%) from power plants gained the largest visibility improvement of up to 4.0 km among all the scenarios. The seasonal visibility improvement subject to emission controls was higher in summer while lower in the other seasons. -- Highlights: • Atmospheric visibility in the Yangtze River Delta is modeled and evaluated. • Responses of visibility changes to various emission reduction scenarios are compared. • Sulfate aerosol will increase if only NOx emission is reduced. • The multi-pollutant control strategy is most efficient for improving visibility. -- Responses of visibility changes to various emission reduction scenarios are compared. The multi-pollutant control strategy is most efficient for improving visibility in YRD, China

  6. Attribution of atmospheric sulfur dioxide over the English Channel to dimethyl sulfide and changing ship emissions

    Science.gov (United States)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Smyth, Timothy J.

    2016-04-01

    Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory (PPAO) near Plymouth, United Kingdom, between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near Plymouth Sound. A new International Maritime Organization (IMO) regulation came into force in January 2015 to reduce the maximum allowed sulfur content in ships' fuel 10-fold in sulfur emission control areas such as the English Channel. Our observations suggest a 3-fold reduction in ship-emitted SO2 from 2014 to 2015. Apparent fuel sulfur content calculated from coincidental SO2 and carbon dioxide (CO2) peaks from local ship plumes show a high level of compliance to the IMO regulation (> 95 %) in both years (˜ 70 % of ships in 2014 were already emitting at levels below the 2015 cap). Dimethyl sulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from about one-third in 2014 to about one-half in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.

  7. Influence of modelled soil biogenic NO emissions on related trace gases and the atmospheric oxidizing capacity

    OpenAIRE

    Steinkamp, J.; Ganzeveld, L. N.; Wilcke, W.; Lawrence, M G

    2009-01-01

    The emission of nitric oxide (NO) by soils (SNOx) is an important source of oxides of nitrogen (NOx=NO+NO2) in the troposphere, with estimates ranging from 4 to 21 Tg of nitrogen per year. Previous studies have examined the influence of SNOx on ozone (O-3) chemistry. We employ the ECHAM5/MESSy atmospheric chemistry model (EMAC) to go further in the reaction chain and investigate the influence of SNOx on lower tropospheric NOx, O-3, peroxyacetyl nitrate (PAN), nitric acid (HNO3), the hydroxyl ...

  8. [Temporal behavior of light emission of dielectric barrier discharges in air at atmospheric pressure].

    Science.gov (United States)

    Yin, Zeng-qian; Dong, Li-fang; Han, Li; Li, Xue-chen; Chai, Zhi-fang

    2002-12-01

    The experimental setup of dielectric barrier discharge was designed which is propitious to optical measurement. Temporal behavior of light emission of dielectric barrier discharges (filamentary model) in air at atmospheric pressure was measured by using optical method. Temporal behavior of dielectric barrier discharges was obtained. The experimental results show that the discharge burst in each half cycle of applied voltage consists of a series of discharge pulses, the duration of each discharge pulse is about 30-50 ns, and the interval of the neighboring discharge pulses is about a few hundred ns. The result is of great importance to the application of dielectric barrier discharges. PMID:12914154

  9. Emission of pollutants in the atmosphere according to oil products quality

    International Nuclear Information System (INIS)

    In this paper the comparison of the environmental protection legal regulations as well as pollutants emission in atmosphere in a most European countries is shown. The air pollution directly depends on both fuel consumption and fuel quality. The fuel quality in Republic of Macedonia gradually is performing and incorporating with anchors European countries. On the other side, energy potentials have no rights to ignore environmental protection, neither environmental protection should be dominated under energy plants. Reciprocal antagonisms should be overtaken through corresponding legislation. (Author)

  10. Role of secondary emission on discharge dynamics in an atmospheric pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Tay, W. H.; Kausik, S. S.; Yap, S. L.; Wong, C. S., E-mail: cswong@um.edu.my [Plasma Technology Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-04-15

    The discharge dynamics in an atmospheric pressure dielectric barrier discharge (DBD) is studied in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes. The DBD discharge has been generated by a 50 Hz ac high voltage power source. The high-speed intensified charge coupled device camera is used to capture the images of filaments occurring in the discharge gap. It is observed that frequent synchronous breakdown of micro discharges occurs across the discharge gap in the case of negative current pulse. The experimental results reveal that secondary emissions from the dielectric surface play a key role in the synchronous breakdown of plasma filaments.

  11. Atmospheric emitted radiance interferometer (AERI): Status and the aerosol explanation for extra window region emissions

    Energy Technology Data Exchange (ETDEWEB)

    Revercomb, H.E.; Knuteson, R.O.; Best, F.A.; Dirkx, T.P. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1996-04-01

    High spectral resolution observations of downwelling emission from 3 to 19 microns have been made by the Atmospheric Emitted Radiance Interferometer (AERI) Prototype at the Southern Great Plains (SGP) Cloud and Radiative Testbed (CART) site for over two years. The spectral data set from AERI provides a basis for improving clear sky radiative transfer; determining the radiative impact of clouds, including the derivation of cloud radiative properties; defining the influences of aerosols in the window regions; and retrieving boundary layer state properties, including temperature, water vapor, and other trace gases. The data stream of radiometrically and spectrally calibrated radiances is routinely provided by Pacific Northwest Laboratory (PNL) to those science teams requesting it, and further information on the instrument and data characteristics is available in the ARM Science Team proceedings for 1993 and 1994 and in several conference publications. This paper describes the AERI status, calibration, field experiment wit a new AERI-01 and schedule, window region emissions, and future AERI plans.

  12. Atmospheric emissions and air quality impacts from natural gas production and use.

    Science.gov (United States)

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability. PMID:24498952

  13. Efficiency and Sensitivity Analysis of Observation Networks for Atmospheric Inverse Modelling with Emissions

    CERN Document Server

    Wu, Xueran; Jacob, Birgit

    2015-01-01

    The controllability of advection-diffusion systems, subject to uncertain initial values and emission rates, is estimated, given sparse and error affected observations of prognostic state variables. In predictive geophysical model systems, like atmospheric chemistry simulations, different parameter families influence the temporal evolution of the system.This renders initial-value-only optimisation by traditional data assimilation methods as insufficient. In this paper, a quantitative assessment method on validation of measurement configurations to optimize initial values and emission rates, and how to balance them, is introduced. In this theoretical approach, Kalman filter and smoother and their ensemble based versions are combined with a singular value decomposition, to evaluate the potential improvement associated with specific observational network configurations. Further, with the same singular vector analysis for the efficiency of observations, their sensitivity to model control can be identified by deter...

  14. A robust method for inverse transport modelling of atmospheric emissions using blind outlier detection

    Directory of Open Access Journals (Sweden)

    M. Martinez-Camara

    2014-05-01

    Full Text Available Emissions of harmful substances into the atmosphere are a serious environmental concern. In order to understand and predict their effects, it is necessary to estimate the exact quantity and timing of the emissions, from sensor measurements taken at different locations. There exists a number of methods for solving this problem. However, these existing methods assume Gaussian additive errors, making them extremely sensitive to outlier measurements. We first show that the errors in real-world measurement datasets come from a heavy-tailed distribution, i.e., include outliers. Hence, we propose to robustify the existing inverse methods by adding a blind outlier detection algorithm. The improved performance of our method is demonstrated on a real dataset and compared to previously proposed methods. For the blind outlier detection, we first use an existing algorithm, RANSAC, and then propose a modification called TRANSAC, which provides a further performance improvement.

  15. Nitric oxide delta band emission in the earth's atmosphere - Comparison of a measurement and a theory

    Science.gov (United States)

    Rusch, D. W.; Sharp, W. E.

    1981-01-01

    Attention is given to the altitude dependent emission rate in the delta-bands of nitric oxide as measured in the earth's atmosphere at night by a scanning ultraviolet spectrometer. It is noted that the reaction responsible is the two-body association of nitrogen and oxygen atoms. The measurements show a vertical intensity beneath the layer for the delta-band system of 19 R. The horizontal emission rate is found to increase from 70 R at 117 km to 140 R at 150 km. The data are analyzed with a one-dimensional, time-dependent, vertical-transport model of odd nitrogen photochemistry. The calculated and measured intensities agree so long as the quenching of N(2D) by atomic oxygen is near 5 x 10 to the -13 cu cm/sec.

  16. Parameterization of atmospheric longwave emissivity in a mountainous site for all sky conditions

    Directory of Open Access Journals (Sweden)

    J. Herrero

    2012-09-01

    Full Text Available Longwave radiation is an important component of the energy balance of the Earth's surface. The downward component, emitted by the clouds and aerosols in the atmosphere, is rarely measured, and is still not well understood. In mountainous areas, direct observations are even scarcer and the fitting of existing models is often subjected to local parameterization in order to surplus the particular physics of the atmospheric profiles. The influence of clouds makes it even harder to estimate for all sky conditions. This work presents a long-time continuous dataset of high-resolution longwave radiation measured in a weather station at a height of 2500 m a.s.l. in Sierra Nevada, Spain, together with the parameterization of the apparent atmospheric emissivity for clear and cloudy skies resulting from three different schemes. We evaluate the schemes of Brutsaert, and Crawford and Duchon with locally adjusted coefficients and compare them with a completely parametric expression adjusted for these data that takes into account three possible significant atmospheric states related to the cloud cover: clear, completely covered, and partly covered skies. All the parametric expressions are related to the screen-level values of temperature, relative humidity and solar radiation, which can be frequently found in standard weather stations. Unobserved cloudiness measurements needed for Brutsaert scheme for cloudy sky are also parameterized from screen-level measurements. The calibration performed for a 6-yr period at the study site resulted in satisfactory estimations of emissivity for all the analyzed schemes thanks to the local fitting of the parameterizations, with the best achievement found for the completely parametric expression. Further validation of the expressions in two alternative sites showed that the greater accuracy of the latter can also be found in very close sites, while a better performance of the Brutsaert scheme, with a more physical background

  17. Reconstructing the atmospheric concentration and emissions of CF4, C2F6 and C3F8 prior to direct atmospheric measurements, using air from polar firn and ice

    Science.gov (United States)

    Trudinger, Cathy; Etheridge, David; Sturges, William; Vollmer, Martin; Miller, Benjamin; Worton, David; Rigby, Matt; Krummel, Paul; Martinerie, Patricia; Witrant, Emmanuel; Rayner, Peter; Battle, Mark; Blunier, Thomas; Fraser, Paul; Laube, Johannes; Mani, Frances; Mühle, Jens; O'Doherty, Simon; Schwander, Jakob; Steele, Paul

    2015-04-01

    Perfluorocarbons are very potent and long-lived greenhouse gases in the atmosphere, released predominantly during aluminium production, electronic chip manufacture and refrigeration. Mühle et al. (2010) presented records of the concentration and inferred emissions of CF4 (PFC-14), C2F6 (PFC-116) and C3F8 (PFC-218) from the 1970s up to 2008, using measurements from the Cape Grim Air Archive and a suite of tanks with old Northern Hemisphere air, and the AGAGE in situ network. Mühle et al. (2010) also estimated pre-industrial concentrations of these compounds from a small number of polar firn and ice core samples. Here we present measurements of air from polar firn at four sites (DSSW20K, EDML, NEEM and South Pole) and from air bubbles trapped in ice at two sites (DE08 and DE08-2), along with recent atmospheric measurements to give a continuous record of concentration from preindustrial levels up to the present. We estimate global emissions (with uncertainties) consistent with the concentration records. The uncertainty analysis takes into account uncertainties in characterisation of the age of air in firn and ice by the use of two different (independently-calibrated) firn models (the CSIRO and LGGE-GIPSA firn models). References Mühle, J., A.L. Ganesan, B.R. Miller, P.K. Salameh, C.M. Harth, B.R. Greally, M. Rigby, L.W. Porter, L. P. Steele, C.M. Trudinger, P.B. Krummel, S. O'Doherty, P.J. Fraser, P.G. Simmonds, R.G. Prinn, and R.F. Weiss, Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane, Atmos. Chem. Phys., 10, 5145-5164, doi:10.5194/acp-10-5145-2010, 2010.

  18. Atmospheric emissions and pollution from the coal-fired thermal power plants in India

    Science.gov (United States)

    Guttikunda, Sarath K.; Jawahar, Puja

    2014-08-01

    In India, of the 210 GW electricity generation capacity, 66% is derived from coal, with planned additions of 76 GW and 93 GW during the 12th and the 13th five year plans, respectively. Atmospheric emissions from the coal-fired power plants are responsible for a large burden on human health. In 2010-11, 111 plants with an installed capacity of 121 GW, consumed 503 million tons of coal, and generated an estimated 580 ktons of particulates with diameter less than 2.5 μm (PM2.5), 2100 ktons of sulfur dioxides, 2000 ktons of nitrogen oxides, 1100 ktons of carbon monoxide, 100 ktons of volatile organic compounds, and 665 million tons of carbon dioxide. These emissions resulted in an estimated 80,000 to 115,000 premature deaths and 20.0 million asthma cases from exposure to PM2.5 pollution, which cost the public and the government an estimated INR 16,000 to 23,000 crores (USD 3.2 to 4.6 billion). The emissions were estimated for the individual plants and the atmospheric modeling was conducted using CAMx chemical transport model, coupled with plume rise functions and hourly meteorology. The analysis shows that aggressive pollution control regulations such as mandating flue gas desulfurization, introduction and tightening of emission standards for all criteria pollutants, and updating procedures for environment impact assessments, are imperative for regional clean air and to reduce health impacts. For example, a mandate for installation of flue gas desulfurization systems for the operational 111 plants could reduce the PM2.5 concentrations by 30-40% by eliminating the formation of the secondary sulfates and nitrates.

  19. Evaluating the contribution of regional emissions to atmospheric concentrations over the UK

    Science.gov (United States)

    Dhomse, Sandip; Wilson, Chris; Basso, Luana; Chipperfield, Martyn; Gloor, Emanuel; O'Doherty, Simon; Stavert, Ann; Young, Dickon; Stanley, Kieran; Grant, Aoife; Helfter, Carole; Mullinger, Neil; Nemitz, Eiko

    2016-04-01

    CO2 is the largest contributor to the anthropogenic greenhouse warming of the Earth's surface. Climate treaties will need verification tools for CO2 emission estimates - primarily those from fossil fuel emissions. Hence, the UK Natural Environment Research Council initiated the "gAs Uk and Global Emissions" (GAUGE) project, aimed at estimating and monitoring the UK's greenhouse gas emissions. GAUGE includes a comprehensive observational programme and a suite of forward and inverse atmospheric modelling tools. Observations include continuous records measured at 6 tall tower sites, regular north-south transects along the east coast of the UK using analysers mounted on ferries and dedicated flights using a BAe-146 aircraft. One of our approaches to estimate CO2 fluxes is based on an analysis of large CO2 deviations from a background baseline using the continuous tower records and the background record from Mace Head, with the deviations being interpreted as signals caused by the UK sources and sinks. First, we will here analyse to what extent the towers record similar / different signals. We will then use tagged tracer simulations with the TOMCAT atmospheric chemistry and transport model to analyse to what extent and under which synoptic the deviations from a background baseline can indeed be attributed to sources and sinks located in the UK. Based on our results we will evaluate this flux estimation approach and make suggestions under which conditions the approach is feasible. Depending on the results of the study we will also propose a simple column budgeting technique to estimate GHG fluxes for the UK using the continuous tower records.

  20. Emissions of polluting substances in the atmosphere at construction of the pipeline Bolshoy Chagan - Atyrau

    International Nuclear Information System (INIS)

    Full text : The main pipelines of Kazakhstan represent the most complicated mechanized and the automated hydraulic system which has been very branched out and long. It is equipped by powerful pump stations, lines and constructions of technological communication, telemechanics and automatics, fire-prevention devices, on occasion - furnaces of heating. Construction Oil and gas pipeline Bolschoy Chagan - Atyrau is intended for transportation of a mix of oil, acting on NPS Bolschoy Chagan with Karachaganak Oil and gas deposits (KNGKM), up to Atyrau for pumping in pipeline system of the Caspian pipeline consortium. The maximal volume of a transported product from Bolschoy Chagan up to pipeline KTK will make 10 million tons a year at full projected volume from KNGKM up to Atyrau - 11 million tons/years. The line Oil and gas pipeline Bolschoy Chagan - Atyrau is covered by a network of highways - soil, rural, with a covering and with the improved covering. The largest settlements located in a strip of passage of a line the following: Bolschoy Chagan, Kushum, Budarino, Chapaev, Mergenevo, Lbishchenskoe, Tajpak, Eltaj, Kulagino, Orlik, Green, Mahambet, Sarajshyk. The line Oil and gas pipeline represents a broken line in length of 455,25 km, stretched with the north on the south. The Earth, allocated under construction Oil and gas pipeline now are used for an agricultural production, mainly pasturable cattle breeding, and also in a small degree for cultivation grain, vegetable and agro cultures. According to influence of the equipment used at construction and operation Oil and gas pipeline on atmospheric air, inventory of sources of emissions is lead to an atmosphere in view of duration of work during which sources of emissions have been revealed all, total and as much as possible single emissions from stationary sources are calculated. It has been revealed, that here take place, both stationary sources of emissions, and mobile to which all motor transport concerns, and also

  1. Mapping Atmospheric Ammonia Emissions Using a Mobile Quantum Cascade Laser-based Open-path Sensor

    Science.gov (United States)

    Sun, K.; Tao, L.; Miller, D. J.; Khan, M. A.; Zondlo, M. A.

    2012-12-01

    Ammonia (NH3) is a key precursor to atmospheric fine particulate matter, with strong implications for regional air quality and global climate change. Despite the importance of atmospheric ammonia, its spatial/temporal variation is poorly characterized, and the knowledge of its sources, sinks, and transport is severely limited. Existing measurements suggest that traffic exhaust may provide significant amounts of ammonia in urban areas, which cause greater impacts on particulate matter formation and urban air quality. To capture the spatial and temporal variation of ammonia emissions, a portable, low power sensor with high time resolution is necessary. We have developed a portable open-path ammonia sensor with a detection limit of 0.5 ppbv ammonia for 1 s measurements. The sensor has a power consumption of about 60 W and is capable of running on a car battery continuously for 24 hours. An additional laser has been coupled to the sensor to yield concurrent N2O and CO measurements as tracers for determining various sources. The overall sensor prototype fits on a 60 cm × 20 cm aluminum breadboard. Roadside measurements indicated NH3/CO emission ratios of 4.1±5.4 ppbv/ppmv from a fleet of 320 vehicles, which agree with existing on-ramp measurements. Urban measurements in the Baltimore and Washington, DC metropolitan areas have shown significant ammonia mixing ratios concurrent with carbon monoxide levels from the morning and evening rush hours. On-road measurements of our open-path sensor have also been performed continuously from the Midwest to Princeton, NJ including urban areas such as Pittsburgh, tunnels, and relatively clean conditions. The emission ratios of ammonia against CO and/or CO2 help identify the sources and amounts of both urban and agricultural ammonia emissions. Preliminary data from both spatial mapping, monitoring, and vehicle exhaust measurements suggest that urban ammonia emissions from fossil fuel combustion are significant and may provide an

  2. Global atmospheric emissions and transport of polycyclic aromatic hydrocarbons: Evaluation of modeling and transboundary pollution

    Science.gov (United States)

    Shen, Huizhong; Tao, Shu

    2014-05-01

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimated country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). MOZART-4 (The Model for Ozone and Related Chemical Tracers, version 4) was applied to simulate the global tropospheric transport of Benzo(a)pyrene, one of the high molecular weight carcinogenic PAHs, at a horizontal resolution of 1.875° (longitude) × 1.8947° (latitude). The reaction with OH radical, gas/particle partitioning, wet deposition, dry deposition, and dynamic soil/ocean-air exchange of PAHs were considered. The simulation was validated by observations at both background and non-background sites, including Alert site in Canadian High Arctic, EMEP sites in Europe, and other 254 urban/rural sites reported from literatures. Key factors effecting long-range transport of BaP were addressed, and transboundary pollution was discussed.

  3. Emissions of Monoxide of Carbon and Methane in an atmospheric burner of natural gas

    International Nuclear Information System (INIS)

    In Colombia, the development of gas equipment industry has been characterized by a copy of foreign systems, without going further on the basic principles of operation and design of gas appliances. In order to guarantee an efficient and safe use of this energetic during the present plan of massive use of gas in the country, is necessary to know and dominate all the main phenomena influencing the design and operation of gas appliances, among them is the rate of primary aeration. In this study we analyze the production of CO and CH4 emissions in a premixed atmospheric burner when we modify pressure supply, tip size, injector size, mixer length and diameter of the throat. Results show that mixer geometry has a great influence on CO and CH4 emissions. When aeration rate was less or equal than 0.5 for power greater than 2.3 kw, CO emissions were beyond critic boundary. In the other hand, when we increased gas pressure supply, we observed those CH4 emissions decreased

  4. An AIS-based approach to calculate atmospheric emissions from the UK fishing fleet

    Science.gov (United States)

    Coello, Jonathan; Williams, Ian; Hudson, Dominic A.; Kemp, Simon

    2015-08-01

    The fishing industry is heavily reliant on the use of fossil fuel and emits large quantities of greenhouse gases and other atmospheric pollutants. Methods used to calculate fishing vessel emissions inventories have traditionally utilised estimates of fuel efficiency per unit of catch. These methods have weaknesses because they do not easily allow temporal and geographical allocation of emissions. A large proportion of fishing and other small commercial vessels are also omitted from global shipping emissions inventories such as the International Maritime Organisation's Greenhouse Gas Studies. This paper demonstrates an activity-based methodology for the production of temporally- and spatially-resolved emissions inventories using data produced by Automatic Identification Systems (AIS). The methodology addresses the issue of how to use AIS data for fleets where not all vessels use AIS technology and how to assign engine load when vessels are towing trawling or dredging gear. The results of this are compared to a fuel-based methodology using publicly available European Commission fisheries data on fuel efficiency and annual catch. The results show relatively good agreement between the two methodologies, with an estimate of 295.7 kilotons of fuel used and 914.4 kilotons of carbon dioxide emitted between May 2012 and May 2013 using the activity-based methodology. Different methods of calculating speed using AIS data are also compared. The results indicate that using the speed data contained directly in the AIS data is preferable to calculating speed from the distance and time interval between consecutive AIS data points.

  5. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007

    OpenAIRE

    H. Z. Tian; Wang, Y.; Xue, Z G; Cheng, K.; Qu, Y. P.; Chai, F. H; J. M. Hao

    2010-01-01

    Emissions of hazardous trace elements in China are of great concern because of their negative impacts on local air quality as well as on regional environmental health and ecosystem risks. In this paper, the atmospheric emissions of mercury (Hg), arsenic (As), and selenium (Se) from coal combustion in China for the period 1980–2007 are estimated on the basis of coal consumption data and emission factors, which are specified by different categories of combustion facilities, coal types, and the ...

  6. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007

    OpenAIRE

    H. Z. Tian; Wang, Y.; Xue, Z G; Cheng, K.; Qu, Y. P.; Chai, F. H; J. M. Hao

    2010-01-01

    Emissions of hazardous trace elements in China are of great concern because of their negative impacts on local air quality as well as on regional environmental health and ecosystem risks. In this paper, the atmospheric emissions of mercury (Hg), arsenic (As), and selenium (Se) from coal combustion in China for the period 1980–2007 are estimated on the basis of coal consumption data and emission factors, which are specified by different categories of combustion facilities, co...

  7. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2010-11-01

    Carlo simulation yields narrowed estimates of uncertainties compared to previous bottom-up emission studies, the results are not always consistent with those derived from satellite observations. The results thus represent an incremental research advance; while the analysis provides current estimates of uncertainty to researchers investigating Chinese and global atmospheric transport and chemistry, it also identifies specific needs in data collection and analysis to improve on them. Strengthened quantification of emissions of the included species and other, closely associated ones – notably CO2, generated largely by the same processes and thus subject to many of the same parameter uncertainties – is essential not only for science but for the design of policies to redress critical atmospheric environmental hazards at local, regional, and global scales.

  8. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region

    Science.gov (United States)

    Pirrone, N.; Costa, P.; Pacyna, J. M.; Ferrara, R.

    This report discusses past, current and projected mercury emissions to the atmosphere from major industrial sources, and presents a first assessment of the contribution to the regional mercury budget from selected natural sources. Emissions (1995 estimates) from fossil fuels combustion (29.8 t yr -1) , cement production (28.8 t yr -1) and incineration of solid wastes (27.6 t yr -1) , all together account for about 82% of the regional anthropogenic total (105.7 t yr -1) . Other industrial sources in the region are smelters (4.8 t yr -1) , iron-steel plants (4.8 t yr -1) and other minor sources (chlor-alkali plants, crematoria, chemicals production) that have been considered together in the miscellaneous category (9.6 t yr -1) . Regional emissions from anthropogenic sources increased at a rate of 3% yr-1 from 1983 to 1995 and are projected to increase at a rate of 1.9% yr-1 in the next 25 years, if no improvement in emission control policy occurs. On a country-by-country basis, France is the leading emitter country with 22.6 t yr -1 followed by Turkey (16.1 t yr -1) , Italy (11.4 t yr -1) , Spain (9.1 t yr -1) , the former Yugoslavia 7.9 ( t yr -1) , Morocco (6.9 t yr -1) , Bulgaria (6.8 t yr -1) , Egypt (6.1 t yr -1) , Syria (3.6 t yr -1) , Libya (2.9 t yr -1) , Tunisia (2.8 t yr -1) and Greece (2.7 t yr -1) , whereas the remaining countries account for less than 7% of the regional total. The annual emission from natural sources is 110 t yr -1, although this figure only includes the volatilisation of elemental mercury from surface waters and emissions from volcanoes, whereas the contribution due to the degassing of mercury from top soil and vegetation has not been included in this first assessment. Therefore, natural and anthropogenic sources in the Mediterranean region release annually about 215 t of mercury, which represents a significant contribution to the total mercury budget released in Europe and to the global atmosphere.

  9. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    KAUST Repository

    Priante, D.

    2015-02-23

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  10. Have atmospheric emissions from the Athabasca oil sands impacted lakes in northeastern Alberta, Canada?

    International Nuclear Information System (INIS)

    Rates of oil sands production in northeastern Alberta are outpacing attempts to understand the region's ecology. The extent of potential disturbances caused by atmospheric deposition may remain unknown. Studies have demonstrated that atmospheric sulphur dioxide (SO2) and nitrogen oxide (NOx) emissions from the Fort McMurray region of the province have the potential to acidify surface waters. In this study, diatom assemblages in sediment cores from 8 acid-sensitive lakes were analyzed in order to investigate the effects of emissions from oil sands processing plants on boreal lake ecosystems. Diatom stratigraphic data were synthesized using a principal components analysis (PCA) method. A total of 280 diatom taxa were used in the analyses. Results showed that diatom communities in the study lakes have undergone substantial changes over the last century. The study revealed that the lakes showed characteristic changes towards greater alkalinity and productivity. Results suggest that the boreal lakes differ fundamentally from acidified lakes studied in northern Europe and eastern North America. It was concluded that a series of complex interactions involving in-lake alkalinity production, internal nutrient loading, and climate change are responsible for changes in the lake ecosystems. 61 refs., 1 tab., 6 figs

  11. Characteristic temperatures of PbFe1/2Nb1/2O3 ferroelectrics crystals seen via acoustic emission

    International Nuclear Information System (INIS)

    PbFe1/2Nb1/2O3 ferroelectrics crystals have been investigated using an acoustic emission. All the characteristic points have been detected: the Néel antiferromagnetic–paramagnetic phase transition at 158.6 K, both the rhombohedral–tetragonal at 363–348 K and tetragonal–cubic at 382–365 K structural phase transitions, the intermediate temperature T* at 431–427.5 K and the Burns temperature T d, extending through 564–603 K. It is shown that a dielectric response is unable to locate the T d correctly, but both the thermal expansion and acoustic emission are able. Acoustic emission is found to be more powerful for T* than for T d, which is usually observed in some well known relaxor ferroelectrics. Such a phenomenon is discussed from a viewpoint of dynamics of polar nanoregions. (papers)

  12. Quantifying Atmospheric Mercury Emissions Sources in coastal California from Shipboard Measurements During CalNex 2010

    Science.gov (United States)

    Weiss-Penzias, P. S.; Lerner, B. M.; Williams, E. J.; Bates, T. S.; Gaston, C. J.; Prather, K. A.

    2011-12-01

    Mercury is a neurotoxin that can bioaccumulate in aquatic ecosystems to levels that are unsafe for humans and biota. It has both natural and anthropogenic sources to the atmosphere, where it can be transported and undergo transformations that lead to its deposition in both wet and dry forms. Due to recent surveys of mercury in fish in California that show widespread contamination, there is great interest in knowing the source of this mercury, whether it be from local, regional, or global emissions. In this study we made simultaneous measurements of gaseous elemental mercury (GEM), CO2, CO, NOx, SO2, O3, and meteorology during the spring of 2010 (May 14-June 8) on board the research vessel Atlantis during the CalNex campaign. The goal of this study was to observe and quantify emissions of GEM from known and potential sources along the California coast, including an incinerator, oil refineries, cargo ships, and natural ocean emissions. Additionally, an understanding of the behavior of GEM in the marine boundary layer under land-sea breeze conditions was sought. Our results indicate that on at least one occasion when the ship was located in the San Pedro harbor, emissions from an incinerator were observed, as indicated by high concentrations of GEM and unique single particle chemical composition. Using the ratio of the enhancements in GEM and CO and the CO emissions inventory for this facility, it was estimated that the annual GEM emissions were 11 +/- 5 kg. This is a factor of 5 lower than the reported total mercury emissions inventory for this facility in 2008. The discrepancy may be explained if a significant fraction of the emissions were gaseous oxidized and particulate mercury, since only GEM was measured. Additionally, a plume from a cargo ship was intercepted and the GEM/CO2 enhancement ratio indicated that approximately 13 tonnes of GEM are emitted from shipping worldwide, assuming values for global fuel usage and a CO2/fuel burned mass ratio. In spite of

  13. Cluster and factor analysis methods in the study of data on concentrations of 210Pb, 210Bi, 210Po and a number of stable elements in atmospheric aerosols

    International Nuclear Information System (INIS)

    We have performed cluster and factor analyses of results of determinations of the content of long-lived radon decay products (210Pb, 210Bi, 210Po) and 15 stable elements in atmospheric aerosols of the air near the surface. Using cluster analysis, we have isolated the test samples which are substantially different from the rest. Analysis of the factor loadings for a homogeneous group of filters has shown specificity in the behavior of the long-lived radon decay products and their strong intercollection. We have shown the absence of a number of technogenetic sources of nuclides of this group in the studied region. We note a correlation between the factor determining the variability of the long-lived radon decay products and the factor determining the content of stable lead and the mineral component

  14. Estimating global natural wetland methane emissions using process modelling: spatio-temporal patterns and contributions to atmospheric methane fluctuations

    Science.gov (United States)

    Zhu, Qiuan; Peng, Changhui; Chen, Huai; Fang, Xiuqin; Liu, Jinxun; Jiang, Hong; Yang, Yanzheng; Yang, Gang

    2015-01-01

    Aim The fluctuations of atmospheric methane (CH4) that have occurred in recent decades are not fully understood, particularly with regard to the contribution from wetlands. The application of spatially explicit parameters has been suggested as an effective method for reducing uncertainties in bottom-up approaches to wetland CH4 emissions, but has not been included in recent studies. Our goal was to estimate spatio-temporal patterns of global wetland CH4 emissions using a process model and then to identify the contribution of wetland emissions to atmospheric CH4fluctuations. Location Global. Methods A process-based model integrated with full descriptions of methanogenesis (TRIPLEX-GHG) was used to simulate global wetland CH4emissions. Results Global annual wetland CH4 emissions ranged from 209 to 245 Tg CH4 year−1 between 1901 and 2012, with peaks occurring in 1991 and 2012. There is a decreasing trend between 1990 and 2010 with a rate of approximately 0.48 Tg CH4 year−1, which was largely caused by emissions from tropical wetlands showing a decreasing trend of 0.44 Tg CH4 year−1 since the 1970s. Emissions from tropical, temperate and high-latitude wetlands comprised 59, 26 and 15% of global emissions, respectively. Main conclusion Global wetland CH4 emissions, the interannual variability of which was primary controlled by tropical wetlands, partially drive the atmosphericCH4 burden. The stable to decreasing trend in wetland CH4 emissions, a result of a balance of emissions from tropical and extratropical wetlands, was a particular factor in slowing the atmospheric CH4 growth rate during the 1990s. The rapid decrease in tropical wetland CH4emissions that began in 2000 was supposed to offset the increase in anthropogenic emissions and resulted in a relatively stable level of atmospheric CH4 from 2000 to 2006. Increasing wetland CH4 emissions, particularly after 2010, should be an important contributor to the growth in

  15. [The response of forest ecosystems to reduction in industrial atmospheric emission in the Kola Subarctic].

    Science.gov (United States)

    Koptsik, G N; Koptsik, S V; Smirnova, I E; Kudryavtseva, A D; Turbabina, K A

    2016-01-01

    In spite of reduction in atmospheric emission, current state of forest ecosystems within the impact zone of Severonickel enterprise still reflects the entire spectrum of anthropogenic digression stages. As the distance to the enterprise grows shorter, structural-functional changes in forest communities are manifested in dropping out of mosses and lichens, replacement of undershrub by Poaceae, worsening of timber stand and undergrowth conditions and their progressive dying-off, and, as a result, in forming of anthropogenic wastelands. Alterations of elemental composition of fir bark and needles due to exposure to pollutants consist in accumulation of nickel, copper, cobalt, arsenic, and sulfur along with depletion of calcium, magnesium, manganese, and zinc. According to the data obtained by correlation and multiparameter analyses, the accumulation of heavy metals in fir organs is closely related to the increasing of their concentration in root-inhabited soil layers as the distance to the pollution source is getting shorter. By comparison with the background fir grove, concentration of available compounds of nickel and copper in the ground litter of open fir-birch woodland near the enterprise increases by the factor of 30-60, reaching up 280 and 130 mg/kg respectively. With the increasing of anthropogenic stress, the ground litter becomes depleted of available calcium, magnesium, potassium, manganese, and zinc. For the first time, the coupled dynamics of vegetation and soil state in fir forests as a response to reduction in atmospheric emission is tracked back. The most distinguishable response to the reduction appears to be the development of small-leaved plants' young growth within the impact zone. For the last decade, concentration of nickel in fir needles and in ground litter has reduced by the factor of 1.2-2. As for copper, its concentration in needles has reduced by the factor of 2-4, though in ground litter remains the same. By comparison with the period of

  16. Atmospheric polybrominated diphenyl ethers (PBDEs) and Pb isotopes at a remote site in Southwestern China: Implications for monsoon-associated transport

    International Nuclear Information System (INIS)

    A 13-month sampling campaign was conducted at a remote site in southwestern China from October, 2005 to December, 2006. An integrated approach with lead isotopes and air back trajectory analysis was used to investigate the monsoon-associated atmospheric transport of PBDEs in tropical/subtropical Asia regions. The air concentration of PBDEs ranged from 1.6 to 57.5 pg m-3 (15.9 ± 12.0 pg m-3), comparable to reported levels at other remote sites in the world. BDE-209, followed by BDE-47 and -99 dominated the PBDE compositions, indicating a mixed deca- and penta-BDE source. Air mass back trajectory analysis revealed that the major potential source regions of BDE-47 and -99 could be southern China and Thailand, while those of BDE-209 are widely distributed in industrialized and urbanized areas in tropical Asia. The different lead isotope compositions of aerosols between trajectory clusters further substantiated the observation that the South Asian monsoon from spring to summer could penetrate deep into southwestern China, and facilitate long-range transport of airborne pollutants from South Asia. - Highlights: →The atmospheric levels of PBDEs and Pb isotopic ratios at a remote site were reported. →Significant high concentrations of BDE-47 and -99 were observed when air masses came from China and Southeast Asia. →High concentrations of BDE-209 and low Pb isotopic ratios were associated with Indian monsoon. →The onset of monsoon could facilitate long-range transport of airborne pollutants from South Asia.

  17. VOC emission into the atmosphere by trees and leaf litter in Polish forests

    Science.gov (United States)

    Isidorov, V.; Smolewska, M.; Tyszkiewicz, Z.

    2009-04-01

    It is generally recognized at present that the vegetation of continents is the principal source of reactive volatile organic compounds (VOC) of the atmosphere. The upper limit of the evaluation of global phytogenic VOC is 1100-1500 Tg/yr (Isidorov, 1990; Guenther et al., 1995). Although these global evaluations showing the place of phytogenic emission among of other VOC sources are important, evaluations for individual countries are also very important. This poster represents the results of the estimation of VOC emission from Polish forests. Calculations took into account the composition and age of forests. According to our estimation, the total VOC emission by the arboreal vegetation differs from 190 to 750 kt/yr, depending of weather conditions in different years. There are only few studies conducted on decaying plant material as a source of atmospheric VOCs, but still they are able to give evidence of the importance of this source. For Polish forests, the litter mass is estimated to be (16-19)106 t/yr. These organic materials undergo decomposition by mesofauna and microorganisms. In these processes volatile organic compounds (VOC) stored in the litter and secondary metabolites of litter-destroying fungi are emitted into the atmosphere. The scale of the phenomenon makes leaf litter an important VOC source in the atmosphere. The filling of numerous gaps in researches of VOC emissions from decomposing leaf litter demands carrying out of long term field experiments in various climatic conditions. In this communication we report also the results of 3.5-year experiment on qualitative and quantitative GC-MS investigations of VOC emitted into the gas phase from leaves litter of some species of deciduous and coniferous trees of Polish forests. Apart from terpenes and their oxygenated derivatives, which are usual in plant tissues, leaf litter intensively emits vast amounts of lower alcohols and carbonyl compounds. We suppose that these volatile substances are products

  18. Sensitivity of Biomarkers to Changes in Chemical Emissions in the Earth's Proterozoic Atmosphere

    CERN Document Server

    Grenfell, John Lee; von Paris, Philip; Godolt, Mareike; Hedelt, Pascal; Patzer, Beate; Stracke, Barbara; Rauer, Heike

    2010-01-01

    The search for life beyond the Solar System is a major activity in exoplanet science. However, even if an Earth-like planet were to be found, it is unlikely to be at a similar stage of evolution as the modern Earth. It is therefore of interest to investigate the sensitivity of biomarker signals for life as we know it for an Earth-like planet but at earlier stages of evolution. Here, we assess biomarkers i.e. species almost exclusively associated with life, in present-day and in 10% present atmospheric level oxygen atmospheres corresponding to the Earth's Proterozoic period. We investigate the impact of proposed enhanced microbial emissions of the biomarker nitrous oxide, which photolyses to form nitrogen oxides which can destroy the biomarker ozone. A major result of our work is regardless of the microbial activity producing nitrous oxide in the early anoxic ocean, a certain minimum ozone column can be expected to persist in Proterozoic-type atmospheres due to a stabilising feedback loop between ozone, nitrou...

  19. Quantifying Methane Emissions from the Arctic Ocean Seabed to the Atmosphere

    Science.gov (United States)

    Platt, Stephen; Pisso, Ignacio; Schmidbauer, Norbert; Hermansen, Ove; Silyakova, Anna; Ferré, Benedicte; Vadakkepuliyambatta, Sunil; Myhre, Gunnar; Mienert, Jürgen; Stohl, Andreas; Myhre, Cathrine Lund

    2016-04-01

    Large quantities of methane are stored under the seafloor in the shallow waters of the Arctic Ocean. Some of this is in the form of hydrates which may be vulnerable to deomposition due to surface warming. The Methane Emissions from Arctic Ocean to Atmosphere MOCA, (http://moca.nilu.no/) project was established in collaboration with the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE, https://cage.uit.no/). In summer 2014, and summer and autumn 2015 we deployed oceanographic CTD (Conductivity, Temperature, Depth) stations and performed state-of-the-art atmospheric measurements of CH4, CO2, CO, and other meteorological parameters aboard the research vessel Helmer Hanssen west of Prins Karl's Forland, Svalbard. Air samples were collected for isotopic analysis (13C, 2H) and quantification of other hydrocarbons (ethane, propane, etc.). Atmospheric measurements are also available from the nearby Zeppelin Observatory at a mountain close to Ny-Ålesund, Svalbard. We will present data from these measurements that show an upper constraint of the methane flux in measurement area in 2014 too low to influence the annual CH4 budget. This is further supported by top-down constraints (maximum release consistent with observations at the Helmer Hansen and Zeppelin Observatory) determined using FLEXPART foot print sensitivities and the OsloCTM3 model. The low flux estimates despite the presence of active seeps in the area (numerous gas flares were observed using echo sounding) were apparently due to the presence of a stable ocean pycnocline at ~50 m.

  20. Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain

    Science.gov (United States)

    Fernández-Camacho, R.; Rodríguez, S.; de la Rosa, J.; Sánchez de la Campa, A. M.; Alastuey, A.; Querol, X.; González-Castanedo, Y.; Garcia-Orellana, I.; Nava, S.

    2012-12-01

    Urban air quality impairment by ultrafine particles has become a matter of concern due to the adverse effects on human health. Most of the studies of ultrafine particles in urban air quality have focused on vehicle exhaust emissions. We studied how industrial emissions contribute to ultrafine particle concentrations in downwind urban ambient air. This research is based on experimental data collected in the ambient air of the industrial city of Huelva (SW Spain) over April 2008-December 2009 period (particle number, gaseous pollutants and black carbon concentrations and levels and chemical composition of PM10 and PM2.5 with daily and hourly resolution). This city is affected by emissions from the second largest Cu-smelter in Europe, phosphoric acid and fertilizer production plants and an oil refinery and petrochemical plant. Industrial emissions are the main cause of ultrafine particle episodes. When vehicle exhaust emissions are the main source, ultrafine particles typically show (24-h mean) concentrations within the range 14,700-5000 cm-3 (50th-1st), with 60% of these linked to this source and 30% to industrial emissions. In contrast, when daily mean levels of N are within the range 50,000-25,500 cm-3 (100th-70th), industrial and vehicle exhaust emissions accounted for 49 and 30%, respectively. High concentrations of toxic trace metals (As, Cu, Cd, Zn and Pb) were recorded when the study city suffered fumigations of the Cu-smelter plumes (e.g. 10-25 ng m-3 As, 1-2 ng m-3 Cd and >105 cm-3 of ultrafine particles). Because of these industrial emissions, ultrafine particle concentrations during daylight are about two times higher than those observed in other European cities. Recently, ultrafine particle emissions in vehicle exhausts have been subject to limit values in a recent stage of the EURO standards. Industrial emissions should also be considered.

  1. Using an independent geochronology based on palaeomagnetic secular variation (PSV) and atmospheric Pb deposition to date Baltic Sea sediments and infer 14C reservoir age

    Science.gov (United States)

    Lougheed, Bryan C.; Snowball, Ian; Moros, Matthias; Kabel, Karoline; Muscheler, Raimund; Virtasalo, Joonas J.; Wacker, Lukas

    2012-05-01

    Dating of sediment cores from the Baltic Sea has proven to be difficult due to uncertainties surrounding the 14C reservoir age and a scarcity of macrofossils suitable for dating. Here we present the results of multiple dating methods carried out on cores in the Gotland Deep area of the Baltic Sea. Particular emphasis is placed on the Littorina stage (8 ka ago to the present) of the Baltic Sea and possible changes in the 14C reservoir age of our dated samples. Three geochronological methods are used. Firstly, palaeomagnetic secular variations (PSV) are reconstructed, whereby ages are transferred to PSV features through comparison with varved lake sediment based PSV records. Secondly, lead (Pb) content and stable isotope analysis are used to identify past peaks in anthropogenic atmospheric Pb pollution. Lastly, 14C determinations were carried out on benthic foraminifera (Elphidium spec.) samples from the brackish Littorina stage of the Baltic Sea. Determinations carried out on smaller samples (as low as 4 μg C) employed an experimental, state-of-the-art method involving the direct measurement of CO2 from samples by a gas ion source without the need for a graphitisation step - the first time this method has been performed on foraminifera in an applied study. The PSV chronology, based on the uppermost Littorina stage sediments, produced ten age constraints between 6.29 and 1.29 cal ka BP, and the Pb depositional analysis produced two age constraints associated with the Medieval pollution peak. Analysis of PSV data shows that adequate directional data can be derived from both the present Littorina saline phase muds and Baltic Ice Lake stage varved glacial sediments. Ferrimagnetic iron sulphides, most likely authigenic greigite (Fe3S4), present in the intermediate Ancylus Lake freshwater stage sediments acquire a gyroremanent magnetisation during static alternating field (AF) demagnetisation, preventing the identification of a primary natural remanent magnetisation for

  2. The possible influence of volcanic emissions on atmospheric aerosols in the city of Colima, Mexico.

    Science.gov (United States)

    Miranda, Javier; Zepeda, Francisco; Galindo, Ignacio

    2004-01-01

    An elemental composition study of atmospheric aerosols from the City of Colima, in the Western Coast of Mexico, is presented. Samples of PM(15)-PM(2.5) and PM(2.5) were collected with Stacked Filter Units (SFU) of the Davis design, in urban and rural sites, the latter located between the City of Colima and the Volcán de Colima, an active volcano. Elemental analyses were carried out using Particle Induced X-ray Emission (PIXE). The gravimetric mass concentrations for the fine fraction were slightly higher in the urban site, while the mean concentrations in the coarse fraction were equal within the uncertainties. High Cl contents were determined in the coarse fraction, a fact also observed in emissions from the Volcán de Colima by other authors. In addition to average elemental concentrations, cluster analysis based on elemental contents was performed, with wind speed and direction data, showing that there is an industrial contributor to aerosols North of the urban area. Moreover, a contribution from the volcanic emissions was identified from the grouping of S, Cl, Cu, and Zn, elements associated to particles emitted by the Volcán de Colima. PMID:14568726

  3. The possible influence of volcanic emissions on atmospheric aerosols in the city of Colima, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Javier; Zepeda, Francisco; Galindo, Ignacio

    2004-01-01

    An elemental composition study of atmospheric aerosols from the City of Colima, in the Western Coast of Mexico, is presented. Samples of PM{sub 15}-PM{sub 2.5} and PM{sub 2.5} were collected with Stacked Filter Units (SFU) of the Davis design, in urban and rural sites, the latter located between the City of Colima and the Volcan de Colima, an active volcano. Elemental analyses were carried out using Particle Induced X-ray Emission (PIXE). The gravimetric mass concentrations for the fine fraction were slightly higher in the urban site, while the mean concentrations in the coarse fraction were equal within the uncertainties. High Cl contents were determined in the coarse fraction, a fact also observed in emissions from the Volcan de Colima by other authors. In addition to average elemental concentrations, cluster analysis based on elemental contents was performed, with wind speed and direction data, showing that there is an industrial contributor to aerosols North of the urban area. Moreover, a contribution from the volcanic emissions was identified from the grouping of S, Cl, Cu, and Zn, elements associated to particles emitted by the Volcan de Colima. - Elemental analyses of PM{sub 15} in the City of Colima, Mexico, were done to identify possible contributions from the Volcan de Colima, an active volcano.

  4. Heterogeneous doped one-dimensional photonic crystal with low emissivity in infrared atmospheric window

    Science.gov (United States)

    Miao, Lei; Shi, Jiaming; Wang, Jiachun; Zhao, Dapeng; Chen, Zongsheng; Wang, Qichao

    2016-05-01

    The characteristic matrix method in thin-film optical theory was used to calculate heterogeneous doped one-dimensional photonic crystals (1-D PCs), which were fabricated by alternate deposition of Te, ZnSe, and Si materials on a silicon wafer. The heterogeneous structure was adopted to broaden the photonic band gap, within which the low reflection valley was achieved by doping. Infrared spectrum tests showed that the average emissivities of the 1-D PC were 0.0845 and 0.281, corresponding, respectively, to the bands of 3 to 5 and 8 to 14 μm. Moreover, the emissivity was 0.45 over the 5 to 8 μm nonatmospheric window, and the reflectivity was 0.28 at the wavelength of 10.6 μm. The results indicated that the heterogeneous doped 1-D PC was able to selectively achieve low emissivities over infrared atmospheric windows and a low reflectivity for the CO2 laser, which exhibited remarkable competence in compatible infrared and laser stealth applications.

  5. Enhancement of φ mesons in p+Pb and Pb+Pb collisions at 158 AGeV/c

    Institute of Scientific and Technical Information of China (English)

    SABen-bao; FaesslerA.; FuchsC.; ZabrodinE.; TAIAn

    2001-01-01

    Using a hadron-string cascade model LUCIAE, the φ meson production in nuclear collisions (p+Pb and Pb+Pb) and elementary collisions (p+p) were studied systematically. Within the framework of the model, the experimentally measured φ enhancement in p+Pb and Pb+Pb over p+p collisions can be mostly explained by the collective effects in the gluon string emission and the reduction of the s-quark suppression.

  6. Quantifying Black Carbon emissions in high northern latitudes using an Atmospheric Bayesian Inversion

    Science.gov (United States)

    Evangeliou, Nikolaos; Thompson, Rona; Stohl, Andreas; Shevchenko, Vladimir P.

    2016-04-01

    Black carbon (BC) is the main light absorbing aerosol species and it has important impacts on air quality, weather and climate. The major source of BC is incomplete combustion of fossil fuels and the burning of biomass or bio-fuels (soot). Therefore, to understand to what extent BC affects climate change and pollutant dynamics, accurate knowledge of the emissions, distribution and variation of BC is required. Most commonly, BC emission inventory datasets are built by "bottom up" approaches based on activity data and emissions factors, but these methods are considered to have large uncertainty (Cao et al, 2006). In this study, we have used a Bayesian Inversion to estimate spatially resolved BC emissions. Emissions are estimated monthly for 2014 and over the domain from 180°W to 180°E and 50°N to 90°N. Atmospheric transport is modeled using the Lagrangian Particle Dispersion Model, FLEXPART (Stohl et al., 1998; 2005), and the inversion framework, FLEXINVERT, developed by Thompson and Stohl, (2014). The study domain is of particular interest concerning the identification and estimation of BC sources. In contrast to Europe and North America, where BC sources are comparatively well documented as a result of intense monitoring, only one station recording BC concentrations exists in the whole of Siberia. In addition, emissions from gas flaring by the oil industry have been geographically misplaced in most emission inventories and may be an important source of BC at high latitudes since a significant proportion of the total gas flared occurs at these high latitudes (Stohl et al., 2013). Our results show large differences with the existing BC inventories, whereas the estimated fluxes improve modeled BC concentrations with respect to observations. References Cao, G. et al. Atmos. Environ., 40, 6516-6527, 2006. Stohl, A. et al. Atmos. Environ., 32(24), 4245-4264, 1998. Stohl, A. et al. Atmos. Chem. Phys., 5(9), 2461-2474, 2005. Stohl, A. et al. Atmos. Chem. Phys., 13

  7. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters, and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user`s guide, and a programmer`s guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user`s guide to the model with emphasis on running the code. The user`s guide contains information about the model input and output. The third section is a programmer`s guide to the code. It discusses the hardware and software required to run the code. The programmer`s guide also discusses program structure and each of the program elements.

  8. Los Angeles megacity: a high-resolution land-atmosphere modelling system for urban CO2 emissions

    Science.gov (United States)

    Feng, Sha; Lauvaux, Thomas; Newman, Sally; Rao, Preeti; Ahmadov, Ravan; Deng, Aijun; Díaz-Isaac, Liza I.; Duren, Riley M.; Fischer, Marc L.; Gerbig, Christoph; Gurney, Kevin R.; Huang, Jianhua; Jeong, Seongeun; Li, Zhijin; Miller, Charles E.; O'Keeffe, Darragh; Patarasuk, Risa; Sander, Stanley P.; Song, Yang; Wong, Kam W.; Yung, Yuk L.

    2016-07-01

    Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land-atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as ˜ 1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May-June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of individual measurement sites when a

  9. Estimating Global Natural Wetland Methane Emissions Using Process Modeling: The Spatiotemporal Patterns and the Contributions to Atmospheric Methane Fluctuations

    Science.gov (United States)

    Zhu, Q.; Peng, C.; Liu, J.; Fang, X.; Jiang, H.

    2014-12-01

    Global wetland methane (CH4) emissions and its spatiotemporal patterns were evaluated using a new process-based model called TRIPLEX-GHG. The model was developed based on the Integrated Biosphere Simulator (IBIS), coupled with a new CH4 biogeochemistry module and a water table module to simulate CH4 emission processes in natural wetlands. The model has been validated using a number of field observations successfully. This study reported the initial results of global scale application, including total CH4 emissions, spatiotemporal patterns, and contributions to the atmospheric CH4 fluctuations. Global annual wetland CH4 emission ranged from 150 TgC yr-1 to 174 TgC yr-1 between 1901 and 2012 with the peak occurring in 1991 and 2012. Between 1990 and 2010, global CH4 emission decreased with a rate of approximately 0.38 TgC yr-1. It was largely due to the decrease of CH4 emissions from topical wetlands, which had a decreasing trend with a rate of 0.33 TgC yr-1 since the 1970s. CH4 emissions from tropical, temperate, and high latitude wetlands comprised 63%, 22% and 15% of global CH4 emission, respectively. Tropical wetlands are the primary contributor of the inter-annual variability of global wetland CH4 emissions as well as atmospheric CH4. The stable-to-decreasing wetland CH4 emissions owing to the balance of emissions between tropical and extratropical wetlands was a contributing factor to the slow-down atmospheric CH4 growth rate during 1990s. The rapid drop in tropical wetland CH4 emissions from 2000 onwards is supposed to offset the increases of the anthropogenic CH4 emissions, hence leading to a relatively stable level of atmospheric CH4 during 2000-2006. Increases of wetland CH4 emissions particularly after 2010 can be considered as an important contributor to the resumed growth of atmospheric CH4 since 2007 and for further increasing in the near future.

  10. Lead isotopic fingerprinting of aerosols to characterize the sources of atmospheric lead in an industrial city of India

    Science.gov (United States)

    Sen, Indra S.; Bizimis, Michael; Tripathi, Sachchida Nand; Paul, Debajyoti

    2016-03-01

    Anthropogenic Pb in the environment is primarily sourced from combustion of fossil fuel and high-temperature industries such as smelters. Identifying the sources and pathways of anthropogenic Pb in the environment is important because Pb toxicity is known to have adverse effects on human health. Pb pollution sources for America, Europe, and China are well documented. However, sources of atmospheric Pb are unknown in India, particularly after leaded gasoline was phased out in 2000. India has a developing economy with a rapidly emerging automobile and high temperature industry, and anthropogenic Pb emission is expected to rise in the next decade. In this study, we report on the Pb-isotope compositions and trace metal ratios of airborne particulates collected in Kanpur, a large city in northern part of India. The study shows that the PM10 aerosols had elevated concentration of Cd, Pb, Zn, As, and Cu in the Kanpur area, however their concentrations are well below the United States Environmental Protection Agency chronic exposure limit. Lead isotopic and trace metal data reveal industrial emission as the plausible source of anthropogenic Pb in the atmosphere in Kanpur. However, Pb isotopic compositions of potential source end-members are required to fully evaluate Pb contamination in India over time. This is the first study that characterizes the isotopic composition of atmospheric Pb in an Indian city after leaded gasoline was phased out by 2000.

  11. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    Science.gov (United States)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  12. Atmospheric Abundances, Trends and Emissions of CFC-216ba, CFC-216ca and HCFC-225ca

    Directory of Open Access Journals (Sweden)

    Corinna Kloss

    2014-06-01

    Full Text Available The first observations of the feedstocks, CFC-216ba (1,2-dichlorohexafluoropropane and CFC-216ca (1,3-dichlorohexafluoropropane, as well as the CFC substitute HCFC-225ca (3,3-dichloro-1,1,1,2,2-pentafluoropropane, are reported in air samples collected between 1978 and 2012 at Cape Grim, Tasmania. Present day (2012 mixing ratios are 37.8 ± 0.08 ppq (parts per quadrillion; 1015 and 20.2 ± 0.3 ppq for CFC-216ba and CFC-216ca, respectively. The abundance of CFC-216ba has been approximately constant for the past 20 years, whilst that of CFC-216ca is increasing, at a current rate of 0.2 ppq/year. Upper tropospheric air samples collected in 2013 suggest a further continuation of this trend. Inferred annual emissions peaked 421 at 0.18 Gg/year (CFC-216ba and 0.05 Gg/year (CFC-216ca in the mid-1980s and then decreased sharply as expected from the Montreal Protocol phase-out schedule for CFCs. The atmospheric trend of CFC-216ca and CFC-216ba translates into continuing emissions of around 0.01 Gg/year in 2011, indicating that significant banks still exist or that they are still being used. HCFC-225ca was not detected in air samples collected before 1992. The highest mixing ratio of 52 ± 1 ppq was observed in 2001. Increasing annual emissions were found in the 1990s (i.e., when HCFC-225ca was being introduced as a replacement for CFCs. Emissions peaked around 1999 at about 1.51 Gg/year. In accordance with the Montreal Protocol, restrictions on HCFC consumption and the short lifetime of HCFC-225ca, mixing ratios declined after 2001 to 23.3 ± 0.7 ppq by 2012.

  13. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    Science.gov (United States)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  14. Simulating the global atmospheric black carbon cycle: a revisit to the contribution of aircraft emissions

    Directory of Open Access Journals (Sweden)

    J. Hendricks

    2004-06-01

    Full Text Available The black carbon (BC burden of the upper troposphere and lowermost stratosphere (UTLS is investigated with the general circulation model (GCM ECHAM4. The special focus is the contribution of aircraft emissions to the UTLS BC loading. Previous studies on the role of aircraft emissions in the global BC cycle either neglect BC sources located at the Earth's surface or simplify the BC cycle by assuming pre-defined BC residence times. Here, the global BC cycle including emissions, transport, and removal is explicitly simulated. The BC emissions considered include surface sources as well as BC from aviation. This enables a consistent calculation of the relative contribution of aviation to the global atmospheric BC cycle. As a further extension to the previous studies, the aviation-induced perturbation of the UTLS BC particle number concentration is investigated. Several sensitivity studies were performed to evaluate the uncertainties associated with the model predictions. The simulated UTLS BC concentrations are compared to in-situ observations. The simulations suggest that the large-scale contribution of aviation to the UTLS BC mass budget typically amounts to only a few percent, even in the most frequented flight regions. The aviation impact far away from these regions is negligible. The simulated aircraft contributions to the UTLS BC particle number concentration are much larger compared to the corresponding mass perturbations. The simulations suggest that aviation can cause large-scale increases in the UTLS BC particle number concentration of more than 30% in regions highly frequented by aircraft. The relative effect shows a pronounced annual variation with the largest relative aviation impact occurring during winter.

  15. The global SF6 source inferred from long-term high precision atmospheric measurements and its comparison with emission inventories

    Directory of Open Access Journals (Sweden)

    R. Weller

    2010-03-01

    Full Text Available Emissions of sulphur hexafluoride (SF6, one of the strongest greenhouse gases on a per molecule basis, are targeted to be collectively reduced under the Kyoto Protocol. Because of its long atmospheric lifetime (estimated as 800 to 3200 years, the accumulation of SF6 in the atmosphere is a direct measure of its global emissions. Examination of our extended data set of globally distributed high-precision SF6 observations shows an increase in SF6 abundance from near zero in the 1970s to a global mean of 6.7 ppt by the end of 2008. In-depth evaluation of our long-term data records shows that the global source of SF6 decreased after 1995, most likely due to SF6 emission reductions in industrialised countries, but increased again after 1998. By subtracting those emissions reported by Annex I countries to the United Nations Framework Convention of Climatic Change (UNFCCC from our observation-inferred SF6 source leaves a surprisingly large gap of more than 70–80% of non-reported SF6 emissions in the last decade. This suggests a strong under-estimation of emissions in Annex I countries and underlines the urgent need for independent atmospheric verification of greenhouse gases emissions accounting.

  16. Ice core based Pb pollution from gasoline in South America in the context of a 2000 year metallurgical history

    Science.gov (United States)

    Eichler, Anja; Gramlich, Gabriela; Kellerhals, Thomas; Tobler, Leonhard; Schwikowski, Margit

    2015-04-01

    Lead (Pb) is highly neurotoxic and, in contrast to many other heavy metals including cobalt, copper, and zinc, it has no beneficial effects to humans even at low concentrations. The introduction of leaded gasoline in the 1920s initiated a period of unabated growth in the global emissions of Pb. Prior to the onset of leaded gasoline phase-out in the 1970s, atmospheric Pb levels increased dramatically. Long-term histories of Pb pollution in Eastern and Western Europe, Asia, and North America suggest that emissions from leaded gasoline within the Northern Hemisphere are dominant compared to that from metallurgy and coal combustion during the second half of the 20th century. However, there is no equivalent data for Southern America. Although exploitation of the extensive polymetallic deposits of the Andean Altiplano in South America since pre-colonial times has caused substantial emissions of neurotoxic Pb into the atmosphere, its historical significance compared to recent Pb pollution from leaded gasoline is not yet resolved. Here we present the first comprehensive, high-resolution two millennia Pb emission history for South America, based on ice core records of Pb concentrations, Pb enrichment factors (EFs), and Pb isotope ratios from Illimani glacier in Bolivia. Complementary to local air pollution recorded in lake sediments, ice cores from mid latitude glaciers provide information about more extended source areas. Illimani is the highest mountain of the eastern Bolivian Andes and is located at the northeastern margin of the Bolivian Altiplano. The ice core Pb deposition history revealed enhanced Pb EFs due to metallurgical processing for silver production during periods of the Tiwanaku/Wari culture (AD 450-950), the Inca empires (AD 1450-1532), colonial times (AD 1532-1900), and tin production at the beginning of the 20th century. After the 1960s 208Pb/207Pb ratios decreased significantly, whereas Pb EFs increased by a factor of three compared to the emission level

  17. Atmospheric methane observed from space over the Asian monsoon: implications for emission from Asian rice paddies

    Science.gov (United States)

    Hayashida, S.; Yoshizaki, S.; Frankenberg, C.; Yan, X.

    2010-12-01

    More than 40% of anthropogenic emissions of methane, the second most important greenhouse gas, is estimated to be from agricultural sources, including rice cultivation. Unfortunately, the strength of individual sources of methane remains uncertain, despite the importance of its effect in global warming. Here we focus on the Asian monsoon region to improve our understanding of methane emission from rice paddy fields. This region contains about 90% of the world’s rice fields. We analyze the temporal and spatial distribution of atmospheric methane concentrations observed from space and compare it with ground-based measurements and bottom-up emission inventory data coupled with rice field maps. Recently, Frankenberg et al. [2008] derived an updated version of methane concentration from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY: SCIA hereafter) instrument onboard ENVISAT. This showed a clear signature of methane enhancement over the Asian monsoon. As SCIA retrievals include all involve column densities, we carefully examined potential biases and variability due to the gradient of methane concentration over source regions by comparing these data with ground-based measurements at 53 stations of the WDCGG network. After evaluating the bias and variability of methane concentration over the source regions, we examined selected areas where rice paddies were highly concentrated, and the methane emission inventories were estimated to be large. The sampled areas were North and South India, Bangladesh, Myanmar, Thailand, South China, and the Sichuan Basin. All of these are known to be major rice cultivation areas. The time series of monthly mean SCIA retrievals were compared with the emission inventory data for rice cultivation archived in the GISS dataset and Yan et al. [2009], as well as with precipitation data (Huffman et al., 1997). The phase of seasonal variation of SCIA retrievals corresponded closely to those of emission

  18. A template of atmospheric O2 circularly polarized emission for CMB experiments

    CERN Document Server

    Spinelli, Sebastiano; Tartari, Andrea; Zannoni, Mario; Gervasi, Massimo

    2011-01-01

    We compute the circularly polarized signal from atmospheric molecular oxygen. Polarization of O2 rotational lines is caused by Zeeman effect in the Earth magnetic field. We evaluate the circularly polarized emission for various sites suitable for CMB measurements: South Pole and Dome C (Antarctica), Atacama (Chile) and Testa Grigia (Italy). An analysis of the polarized signal is presented and discussed in the framework of future CMB polarization experiments. We find a typical circularly polarized signal (V Stokes parameter) of ~ 50 - 300 {\\mu}K at 90 GHz looking at the zenith. Among the other sites Atacama shows the lower polarized signal at the zenith. We present maps of this signal for the various sites and show typical elevation and azimuth scans. We find that Dome C presents the lowest gradient in polarized temperature: ~ 0.3 {\\mu}K/\\circ at 90 GHz. We also study the frequency bands of observation: around {\

  19. Reduced VOC emissions from birch sawdust dried in a steam drier at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Granstrom, K.M. [Karlstad Univ., Karlstad (Sweden). Dept. of Environmental and Energy Systems, Div. of Engineering Sciences, Physics and Mathematics

    2003-07-01

    A study was conducted to determine the quantity and composition of volatile organic compounds (VOC) emitted from birch sawdust when it is dried in a steam dryer at atmospheric pressure. Sawdust is commonly dried for production of wood pellets and particle board. VOCs, which are emitted during the drying process, contribute to the formation of ground level ozone and other hazardous photochemical oxidants. The chemical composition of VOCs emitted from drying softwood is different from that emitted during the drying of hardwoods such as birch. The dryer used in this study was a pilot scale spouted bed in continuous operation. Sawdust was dried to different moisture contents. Two drying medium temperatures (170 degrees C and 200 degrees C) were applied. The results were then compared to the emissions from softwoods dried under similar conditions.

  20. The dependence of modeled OI 1356 and N2 Lyman Birge Hopfield auroral emissions on the neutral atmosphere

    Science.gov (United States)

    Germany, G. A.; Torr, M. R.; Richards, P. G.; Torr, D. G.

    1990-01-01

    The sensitivity of selected auroral emissions to anticipated changes in the neutral atmosphere was investigated from the results of a series of sensitivity studies conducted using an auroral emission code developed by Richards and Torr (1990). In particular, the behavior of OI 1356 and two Lyman Birge Hopfield (LBH) bands and their ratios to each other with changing atmospheric composition was examined. It was found that, for anticipated average uncertainties in the neutral atmosphere (factor 2 at auroral altitudes), the resultant change in the modeled intensities is comparable to or less than the uncertainty in the neutral atmosphere. The variation in the I 1356/I 1838 ratio over the equivalent of a solar cycle is less than 50 percent, and the summer-to-winter changes are approximately a factor of 2.

  1. The space and time impacts on U.S. regional atmospheric CO2 concentrations from a high resolution fossil fuel CO2 emissions inventory

    OpenAIRE

    Katherine D. Corbin; Denning, A Scott; Gurney, Kevin R

    2011-01-01

    To improve fossil fuel CO2 emissions estimates, high spatial and temporal resolution inventories are replacing coarse resolution, annual-mean estimates distributed by population density. Because altering the emissions changes a key boundary condition to inverse-estimated CO2 fluxes, it is essential to analyse the atmospheric impacts of redistributing anthropogenic emissions. Using a coupled ecosystem–atmosphere model, we compare 2004 atmospheric CO2 concentrations resulting from coarse and hi...

  2. Sensitivity of Venus surface emissivity retrieval to model variations of CO2 opacity, cloud features, and deep atmosphere temperature field

    OpenAIRE

    Kappel, David; Arnold, Gabriele; Haus, Rainer

    2012-01-01

    The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) aboard ESA’s Venus Ex- press space probe has acquired a wealth of nightside emission spectra from Venus and provides the first global database for systematic atmospheric and surface studies in the IR. The in- frared mapping channel (VIRTIS-M-IR) sounds the atmosphere and surface at high spatial and temporal resolution and coverage. Quantitative analyses of data call for a sophisticated radiative transfer simulation ...

  3. Atmospheric observation-based global SF6 emissions - comparison of top-down and bottom-up estimates

    OpenAIRE

    Levin, Ingeborg; Naegler, Tobias; Heinz, Renate; Osusko, Daniel; Cuevas, Emilio; Engel, Andreas; Ilmberger, Johann; Langenfelds, Ray L.; Neininger, Bruno; Rohden, Christoph von; Steele, L. Paul; Weller, Rolf; Worthy, Douglas E. W; Zimov, Sergej A.

    2010-01-01

    Emissions of sulphur hexafluoride (SF6), one of the strongest greenhouse gases on a per molecule basis, are targeted to be collectively reduced under the Kyoto Protocol. Because of its long atmospheric lifetime (estimated as 800 to 3200 years), the accumulation of SF6 in the atmosphere is a direct measure of its global emissions. Examination of our extended data set of globally distributed high-precision SF6 observations shows an increase in SF6 abundance from near zero in the 1970s to a glob...

  4. The global SF6 source inferred from long-term high precision atmospheric measurements and its comparison with emission inventories

    OpenAIRE

    2010-01-01

    Emissions of sulphur hexafluoride (SF6), one of the strongest greenhouse gases on a per molecule basis, are targeted to be collectively reduced under the Kyoto Protocol. Because of its long atmospheric lifetime (estimated as 800 to 3200 years), the accumulation of SF6 in the atmosphere is a direct measure of its global emissions. Examination of our extended data set of globally distributed high-precision SF6 observations shows an increase in SF6 abundance from near zero in the 1970s to a glob...

  5. Mars atmosphere studies with the SPICAM IR emission phase function observations

    Science.gov (United States)

    Trokhimovskiy, Alexander; Fedorova, Anna; Montmessin, Franck; Korablev, Oleg; Bertaux, Jean-Loup

    Emission Phase Function (EPF) observations is a powerful tool for characterization of atmosphere and surface. EPF sequence provides the extensive coverage of scattering angles above the targeted surface location which allow to separate the surface and aerosol scattering, study a vertical distribution of minor species and aerosol properties. SPICAM IR instrument on Mars Express mission provides continuous atmospheric observations in near IR (1-1.7 mu) in nadir and limb starting from 2004. For the first years of SPICAM operation only a very limited number of EPFs was performed. But from the mid 2013 (Ls=225, MY31) SPICAM EPF observations become rather regular. Based on the multiple-scattering radiative transfer model SHDOM, we analyze equivalent depths of carbon dioxide (1,43 mu) and water vapour (1,38 mu) absorption bands and their dependence on airmass during observation sequence to get aerosol optical depths and properties. The derived seasonal dust opacities from near IR can be used to retrieve the size distribution from comparison with simultaneous results of other instruments in different spectral ranges. Moreover, the EPF observations of water vapour band allow to access poorly known H2O vertical distribution for different season and locations.

  6. Deciphering the Atmospheric Composition of WASP-12b: A Comprehensive Analysis of its Dayside Emission

    CERN Document Server

    Stevenson, Kevin B; Madhusudhan, Nikku; Harrington, Joseph

    2014-01-01

    WASP-12b was the first planet reported to have a carbon-to-oxygen ratio (C/O) greater than one in its dayside atmosphere. However, recent work to further characterize its atmosphere and confirm its composition has led to incompatible measurements and divergent conclusions. Additionally, the recent discovery of stellar binary companions ~1" from WASP-12 further complicates the analyses and subsequent interpretations. We present a uniform analysis of all available Hubble and Spitzer Space Telescope secondary-eclipse data, including previously-unpublished Spitzer measurements at 3.6 and 4.5 microns. The primary controversy in the literature has centered on the value and interpretation of the eclipse depth at 4.5 microns. Our new measurements and analyses confirm the shallow eclipse depth in this channel, as first reported by Campo and collaborators and used by Madhusudhan and collaborators to infer a carbon-rich composition. To explain WASP-12b's observed dayside emission spectrum, we implemented several recent ...

  7. Emission of carbon. A most important component for greenhouse effect in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Milaev, V.B.; Kopp, I.Z.; Yasenski, A.N. [Scientific Research Inst. of Atmospheric Air Protection, St. Petersburg (Russian Federation)

    1995-12-31

    Greenhouse effect is most often defined as the probabilities of atmospheric air quasiequilibrium temperature increase as a result of air pollution due to emission of anthropogenic gaseous substances which are usually called `greenhouse gases`. Among greenhouse gases are primarily considered several gaseous substances which contain carbon atoms: carbon oxide, carbon dioxide and methane (CO, CO{sub 2} and CH{sub 4}), and chlorinated and fluorinated hydrocarbons (freons) spectra of which are transparent to solar radiation, but absorb and reradiate longwave radiation causing disturbance of quasistationary thermal regieme of the atmosphere. Qualitative estimates of the income and relative roles of different substances in occurrence of greenhouse effect differ considerable. At the modern state of knowledge the problem of greenhouse effect and greenhouse gases is considered in several aspects. The most widespread and investigated is climatic or meteorological aspect, it is discussed in a number of international works. Rather pressing is thermal physics aspect of the problem of estimating greenhouse effect, which consists in correct construction of a calculation model and usage of the most representative experimental data, since analytical methods require many assumptions, introduction of which may lead to results which differ very much. Bearing these uncertainties in mind the UNEP/WMO/ICSU conference has included into the number of the most urgent tasks in the study of greenhouse effect, the problem of determining the priority of factors which cause greenhouse effect, which in its turn predetermines the necessity to substantiate the methods of selection and criterion of comparative evaluation of such factors. (author)

  8. Biomonitoring the environmental impact of atmospheric emissions from the Avonmouth zinc smelter, United Kingdom.

    Science.gov (United States)

    Sims, Ian; Crane, Mark; Johnson, Ian; Credland, Peter

    2009-10-01

    This paper examines the impact of an industrial point-source atmospheric emission on the feeding of early life stages of a terrestrial invertebrate. Larvae of a bagworm moth, Luffia ferchaultella [Stephens], were fed terrestrial epiphytic algae (Desmococcus viridis [Menegh]) collected from five sites located along a 16 km transect around the Avonmouth zinc smelter. After 10 days of exposure symptoms of lethal and sublethal toxicity (mortality and paralysis) were observed. Reductions in the amount of faecal material (frass) produced were also identified, and these correlated with distance downwind of the smelter. The elevated concentrations of lead, mercury, arsenic, antimony, copper, cadmium, lead and nickel present in the algae could account for these symptoms of toxicity. Similar symptoms were observed when larvae were fed algae spiked with inorganic mercury. These results are consistent with other studies of soil toxicity conducted around the Avonmouth smelter. However, the current study suggests that the impacted area exceeds this 16 km transect and demonstrates the value of bagmoth larvae as sensitive biomonitors of metallic atmospheric pollutants above the rhizosphere. PMID:19603266

  9. Atmospheric emissions, depositions, and transformations of arsenic in natural ecosystem in Finland.

    Science.gov (United States)

    Mukherjee, Arun B; Bhattacharya, Prosun

    2002-06-20

    For the last 2 decades, special attention has been paid to arsenic due to its high concentration in groundwater in many regions of the globe. There are not very many reports on arsenic concentration in the Finnish ecosystem, although the metal has been known to be highly toxic since ancient times. For the majority of people in Finland, the leading exposure route to arsenic is through food consumption. In this study, it has been observed that atmospheric emissions of arsenic from anthropogenic sources have decreased by 90%, which is due to better control technology and strict regulation. Aquatic discharge also was attenuated from 7.1 metric tons (t) in 1990 to 0.7 t in 1999. The concentration of arsenic aerosols in the atmosphere in Finland varies between 0.46 to 0.75 ng m(-3). Its use in pesticides and insecticides also has been phased out in Finland. There is no information available regarding arsenic species in the Finnish environment. Elevated concentrations of arsenic in groundwater has been reported for many countries. In Finland two hot spots are reported--one in the south of Finland and the second in Lapland. In these areas, arsenic concentration in well water is greater than 10 microg l(-1) (WHO recommended value: groundwater is geogenic. PMID:12806160

  10. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020.

    Science.gov (United States)

    Pacyna, Elisabeth G; Pacyna, Jozef M; Fudala, Janina; Strzelecka-Jastrzab, Ewa; Hlawiczka, Stanislaw; Panasiuk, Damian

    2006-10-15

    The paper reviews the current state of knowledge regarding European emissions of mercury and presents estimates of European emissions of mercury to the atmosphere from anthropogenic sources for the year 2000. This information was then used as a basis for Hg emission scenario development until the year 2020. Combustion of coal in power plants and residential heat furnaces generates about half of the European emissions being 239 tonnes. The coal combustion is followed by the production of caustic soda with the use of the Hg cell process (17%). Major points of mercury emission generation in the mercury cell process include: by-product hydrogen stream, end box ventilation air, and cell room ventilation air. This technology is now being changed to other caustic soda production technologies and further reduction of Hg emissions is expected in this connection. The third category on the list of the largest Hg emitters in Europe is cement production (about 13%). The largest emissions were estimated for Russia (the European part of the country), contributing with about 27% to the European emissions, followed by Poland, Germany, Spain, Ukraine, France, Italy and the United Kingdom. Most of these countries use coal as a major source of energy in order to meet the electricity and heat demands. In general, countries in the Central and Eastern Europe generated the main part of the European emissions in 2000. Emission reductions between 20% and 80% of the 2000 emission amounts can be obtained by the year 2020, as estimated by various scenarios. PMID:16887169

  11. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020

    Energy Technology Data Exchange (ETDEWEB)

    Pacyna, Elisabeth G.; Pacyna, Jozef M. [Norwegian Institute for Air Research (NILU), Kjeller (Norway); Fudala, Janina; Strzelecka-Jastrzab, Ewa; Hlawiczka, Stanislaw [Institute for Ecology of Industrial Areas (IETU), Katowice (Poland); Panasiuk, Damian [NILU Polska, Katowice (Poland)

    2006-10-15

    The paper reviews the current state of knowledge regarding European emissions of mercury and presents estimates of European emissions of mercury to the atmosphere from anthropogenic sources for the year 2000. This information was then used as a basis for Hg emission scenario development until the year 2020. Combustion of coal in power plants and residential heat furnaces generates about half of the European emissions being 239 tonnes. The coal combustion is followed by the production of caustic soda with the use of the Hg cell process (17%). Major points of mercury emission generation in the mercury cell process include: by-product hydrogen stream, end box ventilation air, and cell room ventilation air. This technology is now being changed to other caustic soda production technologies and further reduction of Hg emissions is expected in this connection. The third category on the list of the largest Hg emitters in Europe is cement production (about 13%). The largest emissions were estimated for Russia (the European part of the country), contributing with about 27% to the European emissions, followed by Poland, Germany, Spain, Ukraine, France, Italy and the United Kingdom. Most of these countries use coal as a major source of energy in order to meet the electricity and heat demands. In general, countries in the Central and Eastern Europe generated the main part of the European emissions in 2000. Emission reductions between 20% and 80% of the 2000 emission amounts can be obtained by the year 2020, as estimated by various scenarios. (author)

  12. Mars Global Surveyor Thermal Emission Spectrometer (TES) Observations: Atmospheric Temperatures During Aerobraking and Science Phasing

    Science.gov (United States)

    Conrath, Barney J.; Pearl, John C.; Smith, Michael D.; Maguire, William C.; Christensen, Philip R.; Dason, Shymala; Kaelberer, Monte S.

    1999-01-01

    Between September 1997, when the Mars Global Surveyor spacecraft arrived at Mars, and September 1998 when the final aerobraking phase of the mission began, the Thermal Emission Spectrometer (TES) has acquired an extensive data set spanning approximately half of a Martian year. Nadir-viewing spectral measurements from this data set within the 15-micrometers CO2 absorption band are inverted to obtain atmospheric temperature profiles from the surface up to about the 0.1 mbar level. The computational procedure used to retrieve the temperatures is presented. Mean meridional cross sections of thermal structure are calculated for periods of time near northern hemisphere fall equinox, winter solstice, and spring equinox, as well as for a time interval immediately following the onset of the Noachis Terra dust storm. Gradient thermal wind cross sections are calculated from the thermal structure. Regions of possible wave activity are identified using cross sections of rms temperature deviations from the mean. Results from both near-equinox periods show some hemispheric asymmetry with peak eastward thermal winds in the north about twice the magnitude of those in the south. The results near solstice show an intense circumpolar vortex at high northern latitudes and waves associated with the vortex jet core. Warming of the atmosphere aloft at mid-northern latitudes suggests the presence of a strong cross-equatorial Hadley circulation. Although the Noachis dust storm did not become global in scale, strong perturbations to the atmospheric structure are found, including an enhanced temperature maximum aloft at high northern latitudes resulting from intensification of the Hadley circulation. TES results for the various seasonal conditions are compared with published results from Mars general circulation models, and generally good qualitative agreement is found.

  13. Study of the impact of atmospheric emissions ({sup 41}AR) during operation of a nuclear reactor research

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Simone F.; Barreto, Alberto A.; Jacomino, Vanusa Maria F.; Rodrigues, Paulo Cesar H. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The knowledge of the atmosphere dispersion of radionuclides, resulting from a nuclear reactor emissions during normal operation, is an important step in the process of nuclear licensing and environmental. This step requires a study to evaluate the radiological environmental impact. The results of this study are used by radiation protection agents to control the exposure of public to radiation during the operation of nuclear facilities. The elaboration of environmental impact assessment due to atmospheric emissions is based on a study of atmospheric dispersion. The aim of this study is estimate the concentrations of radionuclides in different compartments of the ecosystem and calculate the dose received by man as a result of radiation exposure in different scenarios of interest. This paper deals with the case study of the impact of atmospheric emissions of {sup 41}Ar during operation of a nuclear research reactor. This study was accomplished with the application of the dispersion model ARTM (Radionuclide Transport Atmospheric Model), along with the geoprocessing resources. Among the results are: the spatial distribution of population by age; topography of the region, local wind rose, atmospheric stability and the estimate of the concentration of radionuclide {sup 41}Ar and of dose. The results indicate that the dose, by external irradiation due to immersion in the cloud, was below the limits established by regulatory agencies. (author)

  14. Emission of trans, trans-2,4-decadienal from restaurant exhausts to the atmosphere

    Science.gov (United States)

    Yang, Hsi-Hsien; Chien, Shu-Mei; Lee, Hui-Ling; Chao, Mu-Rong; Luo, Hong-Wei; Hsieh, Dennis P. H.; Lee, Wen-Jhy

    Cooking exhausts may contribute significant organic compounds to the atmosphere. It has been shown that trans, trans-2,4-decadienal ( tt-DDE) is an important toxic compound in cooking oil fumes (COF). In this study, the emissions of tt-DDE were quantified in both gaseous and particulate phases of three kinds of restaurant exhausts (Chinese, western and barbecue). Samples of exhausts were collected with a sampling system meeting the criteria of US EPA Modified Method 5. The tt-DDE was analyzed by HPLC-MS/MS. The results indicate that the emission factors of tt-DDE in terms of μg customer -1 were in sequence: barbecue (1990)>Chinese (570)>western (63.8). The average proportion of tt-DDE in the particulate phase of the exhausts was 83% for the 16 investigated restaurants. Evidently, the majority of tt-DDE in the exhausts was in the particulate phase. There was no evident correlation found between phase distribution of tt-DDE and exhaust temperature in the restaurants investigated. The efficiencies of removal of particulate tt-DDE by air pollution control devices (APCDs) were assessed. The removal efficiencies of electrostatic precipitator (ESP), ESP and activated carbon in series, and wet scrubber were 64.2%, 86.3% and 71.3%, respectively.

  15. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2008-01-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transform...

  16. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2007-01-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B{&}W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transfo...

  17. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2007-01-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aer...

  18. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, Andreas; Hasselbach, Jan; Lauer, Peter; Baumann, Robert; Franke, Klaus; Gurk, Christian; Schlager, Hans; Weingartner, Ernest

    2008-01-01

    International audience Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airb...

  19. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2007-01-01

    International audience Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B{&}W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by ai...

  20. The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai

    Science.gov (United States)

    Chang, Yunhua; Zou, Zhong; Deng, Congrui; Huang, Kan; Collett, Jeffrey L.; Lin, Jing; Zhuang, Guoshun

    2016-03-01

    Agricultural activities are a major source contributing to NH3 emissions in Shanghai and most other regions of China; however, there is a long-standing and ongoing controversy regarding the contributions of vehicle-emitted NH3 to the urban atmosphere. From April 2014 to April 2015, we conducted measurements of a wide range of gases (including NH3) and the chemical properties of PM2.5 at hourly resolution at a Shanghai urban supersite. This large data set shows NH3 pollution events, lasting several hours with concentrations 4 times the annual average of 5.3 µg m-3, caused by the burning of crop residues in spring. There are also generally higher NH3 concentrations (mean ± 1 σ) in summer (7.3 ± 4.9 µg m-3; n = 2181) because of intensive emissions from temperature-dependent agricultural sources. However, the NH3 concentration in summer was only an average of 2.4 µg m-3 or 41 % higher than the average NH3 concentration of other seasons. Furthermore, the NH3 concentration in winter (5.0 ± 3.7 µg m-3; n = 2113) was similar to that in spring (5.1 ± 3.8 µg m-3; n = 2198) but slightly higher, on average, than that in autumn (4.5 ± 2.3 µg m-3; n = 1949). Moreover, other meteorological parameters like planetary boundary layer height and relative humidity were not major factors affecting seasonal NH3 concentrations. These findings suggest that there may be some climate-independent NH3 sources present in the Shanghai urban area. Independent of season, the concentrations of both NH3 and CO present a marked bimodal diurnal profile, with maxima in the morning and the evening. A spatial analysis suggests that elevated concentrations of NH3 are often associated with transport from regions west-northwest and east-southeast of the city, areas with dense road systems. The spatial origin of NH3 and the diurnal concentration profile together suggest the importance of vehicle-derived NH3 associated with daily commuting in the urban environment. To further examine vehicular NH3

  1. The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai

    Directory of Open Access Journals (Sweden)

    Y. H. Chang

    2015-12-01

    Full Text Available Agricultural activities are a major source contributing to NH3 emissions in Shanghai and most other regions of China; however, there is a long-standing and ongoing controversy regarding the contributions of vehicle-emitted NH3 to the urban atmosphere. From April 2014 to April 2015, we conducted measurements of a wide range of gases (including NH3 and the chemical properties of PM2.5 at hourly resolution at a Shanghai urban supersite. This large dataset shows NH3 pollution events, lasting several hours with concentrations four times the annual average of 5.3 μg m-3, caused by the burning of crop residues in spring. There are also generally higher NH3 concentrations (mean ± 1σ in summer (7.3 ± 4.9 μg m-3; n = 2181 because of intensive emissions from temperature-dependent agricultural sources. However, the NH3 concentration in summer was only an average of 2.4 μg m-3 or 41 % higher than the average NH3 concentration of other seasons. Furthermore, the NH3 concentration in winter (5.0 ± 3.7 μg m-3; n = 2113 was similar to that in spring (5.1 ± 3.8 μg m-3; n = 2204 but slightly higher, on average, than that in autumn (4.5 ± 2.3 μg m-3; n = 1949. Moreover, other meteorological parameters like planetary boundary layer height and relative humidity were not major factors affecting seasonal NH3 concentrations. These findings suggest that there may be some climate-independent NH3 sources present in the Shanghai urban area. Independent of season, the concentrations of both NH3 and CO present a marked bimodal diurnal profile, with maxima in the morning and the evening. A spatial analysis suggests that elevated concentrations of NH3 are often associated with transport from regions west-northwest and east-southeast of the city, areas with dense road systems. The spatial origin of NH3 and the diurnal concentration profile together suggest the importance of vehicle-derived NH3 associated with daily commuting in the urban environment. To further

  2. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    Science.gov (United States)

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. PMID:26141885

  3. Simulations of N2O concentrations for France using ecosystem models, emission databases and an atmospheric transport model

    Science.gov (United States)

    Massad, R. S.; Prieur, V.; Thompson, R.; Schultz, M.; Pison, I.; Bousquet, P.; Schmidt, M.; Lopez, M.; Boukari, E.; Lehuger, S.; Chaumartin, F.; Gabrielle, B.

    2012-04-01

    Soils are responsible for a major, although highly uncertain, share of the global emissions of nitrous oxide (N2O). N2O fluxes are strongly correlated to soil properties, soil management and local climatic conditions. These controlling factors interact at different temporal and spatial scales making it challenging to asses emissions at a regional level both with measurement and modeling. We used two biogeochemical simulation models CERES-EGC and O-CN to estimate N2O fluxes from agricultural soils over France, and compared them into the regional atmospheric chemistry-transport model CHIMERE (0.25°x0.25° for France). Comparisons between modelled and observed mixing ratios give insights on the quality of the emission scenarios used as input to the model, assuming small transport errors. The maps were tested by comparing CHIMERE simulations with time series of N2O atmospheric mixing ratios measured continuously in two locations over France during the year 2007. In an inverse mode, N2O emissions scenarios are used combination with N2O observed mixing ratios and an atmospheric transport model, to produce optimized emission scenarios. The model used is a global model (LMDZ-INCA, 3.75°x2.5° resolution with a 1°x1° zoom over Europe). For France the O-CN model which only accounts for crops and managed grassland emissions simulates total emissions of 95 Gg N-N2O/yr which are larger than total fluxes inferred from inversions (75 Gg N-N2O/yr). Inverted fluxes are 30% larger when compared to the prior emissions. Concerning CERES-EGC which only accounts for crops, the total emissions for 2007 sum-up to 20.4 Gg N-N2O/yr and are smaller than the total inverted flux.

  4. Atmospheric observations for quantifying emissions of point-source synthetic greenhouse gases (CF4, NF3 and HFC-23)

    Science.gov (United States)

    Arnold, Tim; Manning, Alistair J.; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Fraser, Paul J.; Mitrevski, Blagoj; Steele, L. Paul; Krummel, Paul B.; Mühle, Jens; Weiss, Ray F.

    2016-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacement compounds that are emitted from fugitive and mobile emission sources, these gases are largely emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane factories (HFC-23). In this work we show the potential for atmospheric measurements to understand regional sources of these gases and to highlight emission 'hotspots'. We target our analysis on measurements from two Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites that are particularly sensitive to regional emissions of these gases: Gosan on Jeju Island in the Republic of Korea and Cape Grim on Tasmania in Australia. These sites measure CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over a decade (2005-2015) at high spatial resolution. At present these gases make a small contribution to global radiative forcing, however, given that their impact could rise significantly and that point sources of such gases can be mitigated, atmospheric monitoring could be an important tool for aiding emissions reduction policy.

  5. Emission of intermediate mass fragments in the heavy ion interaction of (14.0 MeV/u) Pb + Au

    International Nuclear Information System (INIS)

    We have studied the heavy ion interactions of (14.0 MeV/u) Pb+Au using two threshold detectors, mica and CN-85. A thin layer of Au was deposited on each of the three mica and two CN-85 detector pieces. These target-detector assemblies were exposed to a beam of 14.0 MeV/u Pb ions having the fluence of 1.5x106/cm2 at GSI, Darmstadt, Germany. After removing the target material and etching the samples in appropriate etchants, we scanned 32.20 cm2 and 24.97 cm2 area of mica and CN-85, respectively. Based on the observed number of events of various multiplicities, we have determined the total as well as partial experimental reaction cross sections. It is shown that a significant number of intermediate mass fragments are emitted along with the heavy fragments in the present reaction. (author)

  6. CO2 non-LTE limb emissions in Mars' atmosphere as observed by OMEGA/Mars Express

    Science.gov (United States)

    Piccialli, A.; López-Valverde, M. A.; Määttänen, A.; González-Galindo, F.; Audouard, J.; Altieri, F.; Forget, F.; Drossart, P.; Gondet, B.; Bibring, J. P.

    2016-06-01

    We report on daytime limb observations of Mars upper atmosphere acquired by the OMEGA instrument on board the European spacecraft Mars Express. The strong emission observed at 4.3 μm is interpreted as due to CO2 fluorescence of solar radiation and is detected at a tangent altitude in between 60 and 110 km. The main value of OMEGA observations is that they provide simultaneously spectral information and good spatial sampling of the CO2 emission. In this study we analyzed 98 dayside limb observations spanning over more than 3 Martian years, with a very good latitudinal and longitudinal coverage. Thanks to the precise altitude sounding capabilities of OMEGA, we extracted vertical profiles of the non-local thermodynamic equilibrium (non-LTE) emission at each wavelength and we studied their dependence on several geophysical parameters, such as the solar illumination and the tangent altitude. The dependence of the non-LTE emission on solar zenith angle and altitude follows a similar behavior to that predicted by the non-LTE model. According to our non-LTE model, the tangent altitude of the peak of the CO2 emission varies with the thermal structure, but the pressure level where the peak of the emission is found remains constant at ˜0.03 ± 0.01 Pa, . This non-LTE model prediction has been corroborated by comparing SPICAM and OMEGA observations. We have shown that the seasonal variations of the altitude of constant pressure levels in SPICAM stellar occultation retrievals correlate well with the variations of the OMEGA peak emission altitudes, although the exact pressure level cannot be defined with the spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAM) nighttime data. Thus, observed changes in the altitude of the peak emission provide us information on the altitude of the 0.03 Pa pressure level. Since the pressure at a given altitude is dictated by the thermal structure below, the tangent altitude of the peak emission represents

  7. Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion

    Directory of Open Access Journals (Sweden)

    J. F. Meirink

    2008-11-01

    Full Text Available A four-dimensional variational (4D-Var data assimilation system for inverse modelling of atmospheric methane emissions is presented. The system is based on the TM5 atmospheric transport model. It can be used for assimilating large volumes of measurements, in particular satellite observations and quasi-continuous in-situ observations, and at the same time it enables the optimization of a large number of model parameters, specifically grid-scale emission rates. Furthermore, the variational method allows to estimate uncertainties in posterior emissions. Here, the system is applied to optimize monthly methane emissions over a 1-year time window on the basis of surface observations from the NOAA-ESRL network. The results are rigorously compared with an analogous inversion by Bergamaschi et al. (2007, which was based on the traditional synthesis approach. The posterior emissions as well as their uncertainties obtained in both inversions show a high degree of consistency. At the same time we illustrate the advantage of 4D-Var in reducing aggregation errors by optimizing emissions at the grid scale of the transport model. The full potential of the assimilation system is exploited in Meirink et al. (2008, who use satellite observations of column-averaged methane mixing ratios to optimize emissions at high spatial resolution, taking advantage of the zooming capability of the TM5 model.

  8. Managing agricultural emissions to the atmosphere: State of the science, fate and mitigation, and identifying research gaps

    Science.gov (United States)

    The impact of agriculture on regional air quality creates significant challenges to sustainability of food supplies and to the quality of national resources. Agricultural emissions to the atmosphere can lead to many nuisances, such as smog, haze, or offensive odors. They can also create more seriou...

  9. Daily and 3-hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Science.gov (United States)

    Mu, M.; Randerson, J. T.; vanderWerf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; Griffith, D. W. T.; Wunch, D.; Toon, G. C.; Sherlock, V.; Wennberg, P. O.

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003.2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS) ]derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top ]down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from

  10. Daily and Hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Science.gov (United States)

    Mu, M.; Randerson, J. T.; van der Werf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; Griffith, D. W. T.; Wunch, D.; Toon, G. C.; Sherlock, V.; Wennberg, P. O.

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We distributed monthly GFED3 emissions during 2003-2009 on a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) active fire observations. We found that patterns of daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of bunting in savannas. On diurnal timescales, our analysis of the GOES active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  11. Link between local scale BC emissions and large scale atmospheric solar absorption

    Directory of Open Access Journals (Sweden)

    P. S. Praveen

    2011-07-01

    Full Text Available Project Surya has documented indoor and outdoor concentrations of black carbon (BC from traditional biomass burning cook stoves in a rural village located in the Indo-Gangetic Plains (IGP region of N. India from November 2009- September 2010. In this paper, we systematically document the link between local scale aerosol properties and column averaged regional aerosol optical properties and atmospheric radiative forcing. We report observations from the first phase of Project Surya to estimate the source dependent (biomass and fossil fuels aerosol optical properties from local to regional scale. Data were collected using surface based observations of BC, organic carbon (OC, aerosol light absorption, scattering coefficient at the Surya village (SVI_1 located in IGP region, and satellite and AERONET observations at the regional scale (IGP. The daily mean BC concentrations at SVI_1 showed the large increase of BC during the dry season (December to February with values reaching 35 μg m−3. Space based LIDAR data reveal how the biomass smoke is trapped within the first kilometre during the dry season and its extension to above 5 km during the pre-monsoon season. As a result during the dry season, the variance in the daily mean SSA and column aerosol optical properties at the local IGP site correlated (with slopes in the range of 0.85 to 1.06 and R2>0.4 well with the "IGP_AERONET" (mean of six AERONET sites, thus suggesting in-situ observations at few locations can be used to infer spatial mean forcing. The atmospheric forcing due to BC and OC exceeded 20 W m−2 during all months from November to May, leading to the deduction that elimination of cook stove smoke emissions through clean cooking technologies will likely have a major positive impact on health and the regional climate.

  12. Calculated hydroxyl A2 sigma --> X2 pi (0, 0) band emission rate factors applicable to atmospheric spectroscopy

    Science.gov (United States)

    Cageao, R. P.; Ha, Y. L.; Jiang, Y.; Morgan, M. F.; Yung, Y. L.; Sander, S. P.

    1997-01-01

    A calculation of the A2 sigma --> X2 pi (0, 0) band emission rate factors and line center absorption cross sections of OH applicable to its measurement using solar resonant fluorescence in the terrestrial atmosphere is presented in this paper. The most accurate available line parameters have been used. Special consideration has been given to the solar input flux because of its highly structured Fraunhofer spectrum. The calculation for the OH atmospheric emission rate factor in the solar resonant fluorescent case is described in detail with examples and intermediate results. Results of this calculation of OH emission rate factors for individual rotational lines are on average 30% lower than the values obtained in an earlier work.

  13. Effects of a Relativistic Electron Beam Interaction with the Upper Atmosphere: Ionization, X-Rays, and Optical Emissions

    Science.gov (United States)

    Marshall, R. A.; Nicolls, M. J.; Sanchez, E. R.; Lehtinen, N. G.; Neilson, J.

    2014-12-01

    An artificial beam of relativistic (0.5--10 MeV) electrons has been proposed as an active experiment in the ionosphere and magnetosphere, with applications to magnetic field-line tracing, studies of wave-particle interactions, and beam-atmosphere interactions. The beam-atmosphere interaction, while a scientific endeavor of its own, also provides key diagnostics for other experiments. We present results of Monte Carlo simulations of the interaction of a beam of relativistic electrons with the upper atmosphere as they are injected downwards from a notional high altitude (thermospheric / ionospheric) injection platform. The beam parameters, defined by realistic parameters of a compact linear accelerator, are used to create a distribution of thousands of electrons. Each electron is injected downwards from 300 km altitude towards the dense atmosphere, where it undergoes elastic and inelastic collisions, leading to secondary ionization, optical emissions, and X-rays via bremsstrahlung. Here we describe the Monte Carlo model and present calculations of diagnostic outputs, including optical emissions, X-ray fluxes, secondary ionization, and backscattered energetic electron fluxes. Optical emissions are propagated to the ground through the lower atmosphere, including the effects of atmospheric absorption and scattering, to estimate the brightness of the emission column for a given beam current and energy. Similarly, X-ray fluxes are propagated to hypothetical detectors on balloons and satellites, taking into account Compton scattering and photoabsorption. Secondary ionization is used to estimate the radar signal returns from various ground-based radar facilities. Finally, simulated backscattered electron fluxes are measured at the injection location. The simulation results show that for realizable accelerator parameters, each of these diagnostics should be readily detectable by appropriate instruments.

  14. Emissions from vegetation fires and their influence on atmospheric composition over the Amazon Basin (Invited)

    Science.gov (United States)

    Andreae, M. O.; Artaxo, P.; Bela, M. M.; de Freitas, S. R.; Gerbig, C.; Longo, K. M.; Wiedemann, K. T.; Wofsy, S. C.

    2010-12-01

    Over the past decades, several campaigns have been conducted in the Amazon Basin, during which the emissions from biomass burning were characterized. Other campaigns, as well as remote sensing studies, have produced clear evidence that the budget of traces gases (including CO2) and aerosols over the Basin are strongly perturbed by vegetation fires. We will briefly review these studies and present some recent measurements made during the the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft measurement program, which consisted of two aircraft campaigns during November-December 2008 (BARCA-A) and May-June 2009 (BARCA-B). The measurements covered the altitude range from the surface up to about 4500 m, and spanned across the Amazon Basin. While our results confirm the importance of biomass burning for the atmospheric composition over the Amazon Basin in general, they also highlight some complexities. One is the influence of transatlantic transport: Amazonia is downwind of massive fire regions in Africa, and depending on season and locality, these can make an important contribution to the trace gas and aerosol burden over the Amazon Basin. Another difficulty arises from the fact that representative emission ratios for CO relative to CO2 are difficult to obtain in the field, owing to the influence of biospheric exchange on the distribution of CO2 concentrations. The consequences of these and other uncertainties for a quantitative assessment of the sources of trace gases over Amazonia and for the estimation of carbon exchange with the biosphere will be discussed.

  15. Emissions to the Atmosphere from Amine-Based Post Combustion CO2 Capture Plant – Regulatory Aspects

    Directory of Open Access Journals (Sweden)

    Azzi Merched

    2014-09-01

    Full Text Available Amine-based Post Combustion Capture (PCC of CO2 is a readily available technology that can be deployed to reduce CO2 emissions from coal fired power plants. However, PCC plants will likely release small quantities of amine and amine degradation products to the atmosphere along with the treated flue gas. The possible environmental effects of these emissions have been examined through different studies carried out around the world. Based on flue gas from a 400 MW ultra-supercritical coal fired power plant Aspen-Plus PCC process simulations were used to predict the potential atmospheric emissions from the plant. Different research initiatives carried out in this area have produced new knowledge that has significantly reduced the risk perception for the release of amine and amine degradation products to the atmosphere. In addition to the reduction of the CO2 emissions, the PCC technology will also help in reducing SOx and NO2 emissions. However, some other pollutants such as NH3 and aerosols will increase if appropriate control technologies are not adopted. To study the atmospheric photo-oxidation of amines, attempts are being made to develop chemical reaction schemes that can be used for air quality assessment. However, more research is still required in this area to estimate the reactivity of amino solvents in the presence of other pollutants such as NOx and other volatile organic compounds in the background air. Current air quality guidelines may need to be updated to include limits for the additional pollutants such as NH3, nitrosamines and nitramines once more information related to their emissions is available. This paper focuses on describing the predicted concentrations of major pollutants that are expected to be released from a coal fired power plant obtained by ASPEN-Plus PCC process simulations in terms of current air quality regulations and other regulatory aspects.

  16. International global atmospheric chemistry (IGAC) program global emissions inventory activity (GEIA). Proceedings of the IGAC/GEIA workshop on global emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Pacyna, J.M. [Norwegian Inst. for Air Research, Lillestroem (Norway); Graedel, T.E. [AT and T Bell Labs., Murray Hill, NJ (United States)

    1992-10-01

    In accordance with the work plan of the International Geosphere-Biosphere Program (IGBP)/International Global Atmospheric Chemistry (IGAC) Global Emission Inventory was organized by the GEIA Secretariat and the Norwegian Institute for Air Research (NILU). The workshop was attended by 34 participants from 9 countries and 3 international organizations. The overall goals of the workshop were to review the progress of work within individual GEIA projects and to plan further activity, as well as to discuss new projects. Major focus was placed on projects related to emissions of acidic components, such as SO{sub 2} and NO{sub x}, and other nitrogen compounds, and volatile organic compounds (VOCs)

  17. Simulation of radio emission from air showers in atmospheric electric fields

    CERN Document Server

    Buitink, S; Falcke, H; Kuijpers, J

    2010-01-01

    We study the effect of atmospheric electric fields on the radio pulse emitted by cosmic ray air showers. Under fair weather conditions the dominant part of the radio emission is driven by the geomagnetic field. When the shower charges are accelerated and deflected in an electric field additional radiation is emitted. We simulate this effect with the Monte Carlo code REAS2, using CORSIKA-simulated showers as input. In both codes a routine has been implemented that treats the effect of the electric field on the shower particles. We find that the radio pulse is significantly altered in background fields of the order of ~100 V/cm and higher. Practically, this means that air showers passing through thunderstorms emit radio pulses that are not a reliable measure for the shower energy. Under other weather circumstances significant electric field effects are expected to occur rarely, but nimbostratus clouds can harbor fields that are large enough. In general, the contribution of the electric field to the radio pulse ...

  18. Emission spectroscopy of an atmospheric pressure plasma jet operated with air at low frequency

    Science.gov (United States)

    Giuliani, L.; Gallego, J. L.; Minotti, F.; Kelly, H.; Grondona, D.

    2015-03-01

    Low-temperature, high-pressure plasma jets have an extensive use in plasma biology and plasma medicine, such as pathogen deactivation, wound disinfection, stopping of bleeding without damage of healthy tissue, acceleration of wound healing, control of bio-film proliferation, etc. In this work, a spectroscopic characterization of a typical plasma jet, operated in air at atmospheric pressure, is reported. Within the spectrum of wavelengths from 200 to 450 nm all remarkable emissions of N2 were monitored. Spectra of the N2 2nd positive system (C3Πu-B3Πg) emitted in air are the most convenient for plasma diagnostics, since they enable to determine electronic Te, rotational Tr and vibrational Tv temperatures by fitting the experimental spectra with the simulated ones. We used SPECAIR software for spectral simulation and obtained the best fit with all these temperatures about 3500K. The conclusion that all temperatures are equal, and its relatively high value, is consistent with the results of a previous work, where it was found that the experimentally determined electrical characteristic was consistent with the model of a thermal arc discharge, together with a highly collisional cathode sheet.

  19. Gas temperature determination in microwave discharges at atmospheric pressure by using different Optical Emission Spectroscopy techniques

    International Nuclear Information System (INIS)

    Non-thermal plasmas sustained at atmospheric pressure are considered as a very promising technology for different purposes, in which the knowledge of the gas temperature is an important issue. In this paper, the gas temperatures of different argon microwave (2.45 GHz) plasma torches were determined by using different Optical Emission Spectroscopy techniques. Thus, they were estimated through the analysis of N2+(B-X) and OH(A-X) molecular spectra. On the other hand, a method based on the measurement of the van der Waals broadening of 588.99 nm Na I line was employed, and the temperatures obtained from it were compared to the rotational temperatures derived from N2+(B-X) and OH(A-X) rotational bands. A reasonable good agreement was found between the values of temperatures obtained by using the 588.99 nm Na I line and those obtained from N2+ rotational band. - Highlights: • We measured the gas temperatures of different 2.45 GHz plasmas. • We obtained the gas temperature from N2 and OH molecular spectra. • We compared with an alternative method using 588.99 and 589.59 nm Na I lines. • A very good agreement between the values of Tgas obtained was found. • Τhe alternative method could be very helpful in plasmas containing nitrogen

  20. Evaluating the effects of China's pollution controls on inter-annual trends and uncertainties of atmospheric mercury emissions

    Science.gov (United States)

    Zhao, Y.; Zhong, H.; Zhang, J.; Nielsen, C. P.

    2015-04-01

    China's anthropogenic emissions of atmospheric mercury (Hg) are effectively constrained by national air pollution control and energy efficiency policies. In this study, improved methods, based on available data from domestic field measurements, are developed to quantify the benefits of Hg abatement by various emission control measures. Those measures include increased use of (1) flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems in power generation; (2) precalciner kilns with fabric filters (FF) in cement production; (3) mechanized coking ovens with electrostatic precipitators (ESP) in iron and steel production; and (4) advanced production technologies in nonferrous metal smelting. Investigation reveals declining trends in emission factors for each of these sources, which together drive a much slower growth of total Hg emissions than the growth of China's energy consumption and economy, from 679 metric tons (t) in 2005 to 750 t in 2012. In particular, estimated emissions from the above-mentioned four source types declined 3% from 2005 to 2012, which can be attributed to expanded deployment of technologies with higher energy efficiencies and air pollutant removal rates. Emissions from other anthropogenic sources are estimated to increase by 22% during the period. The species shares of total Hg emissions have been stable in recent years, with mass fractions of around 55, 39, and 6% for gaseous elemental Hg (Hg0), reactive gaseous mercury (Hg2+), and particle-bound mercury (Hgp), respectively. The higher estimate of total Hg emissions than previous inventories is supported by limited simulation of atmospheric chemistry and transport. With improved implementation of emission controls and energy saving, a 23% reduction in annual Hg emissions from 2012 to 2030, to below 600 t, is expected at the most. While growth in Hg emissions has been gradually constrained, uncertainties quantified by Monte Carlo simulation for recent years have increased

  1. First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere

    Science.gov (United States)

    Todd Clancy, R.; Sandor, Brad J.; García-Muñoz, Antonio; Lefèvre, Franck; Smith, Michael D.; Wolff, Michael J.; Montmessin, Franck; Murchie, Scott L.; Nair, Hari

    2013-09-01

    Visible and near-IR Meinel band emissions originate from excited OH in the terrestrial upper atmosphere (Meinel, I.A.B. [1950]. Astrophys. J. 111, 555. http://dx.doi.org/10.1086/145296), and have recently been detected in the Venus nightside upper mesosphere (Piccioni, G. et al. [2008]. Astron. Astrophys. 483, L29-L33. http://dx.doi.org/10.1051/0004-6361:200809761). Meinel band observations support key studies of transport and photochemistry in both of these atmospheres. In the case of Mars, OH regulates the basic stability of the CO2 atmosphere to photolytic decomposition (to CO and O2, e.g. Parkinson, T.D., Hunten, D.M. [1972]. J. Atmos. Sci. 29, 1380-1390. http://dx.doi.org/10.1175/1520-0469(1972)0292.0.CO;2), and yet has never been measured. We present the first detection of Mars atmospheric OH, associated with CRISM near-IR spectral limb observations of polar night Meinel band emissions centered at 1.45 and 2.9 μm. Meinel band (1-0), (2-1), and (2-0) average limb intensities of 990 ± 280, 1060 ± 480, and 200 ± 100 kiloRayleighs (kR), respectively, are determined for 70-90 NS polar winter latitudes over altitudes of 40-56 km. Additional OH bands, such as (3-2), (3-1), and (4-2), present ⩽1σ measurements. Uncertainty in the (4-2) band emission rate contributes to increased uncertainty in the determination of the O2(1Δg) (0-0)/(0-1) band emission ratio A00/A01=47-12+26. An average profile retrieval for Mars OH polar nightglow indicates 45-55 km altitude levels for volume emission rates (VER) of 0.4 (2-0) to 2 (1-0, 2-1) × 104 photons/(cm3 s). Similar to polar night O2(1Δg) emission (e.g. Clancy, R.T. et al. [2012]. J. Geophys. Res. (Planets) 117, E00J10. http://dx.doi.org/10.1029/2011JE004018), Meinel OH band emission is supported by upper level, winter poleward transport of O and H in the deep Hadley solsticial circulations of Mars. The retrieved OH emission rates are compared to polar winter OH nightglow simulated by the LMD (Laboratoire de M

  2. 2n-emission from 205Pb* nucleus using clusterization approach at Ebeam˜14-20 MeV

    Science.gov (United States)

    Kaur, Amandeep; Sandhu, Kiran; Sharma, Manoj Kumar

    2016-05-01

    The dynamics involved in n-induced reaction with 204Pb target is analyzed and the decay of the composite system 205Pb* is governed within the collective clusterization approach of the Dynamical Cluster-decay Model (DCM). The experimental data for 2n-evaporation channel is available for neutron energy range of 14-20 MeV and is addressed by optimizing the only parameter of the model, the neck-length parameter (ΔR). The calculations are done by taking the quadrupole (β2) deformations of the decaying fragments and the calculated 2n-emission cross-sections find nice agreement with available data. An effort is made to study the role of level density parameter in the decay of hot-rotating nucleus, and the mass dependence in level density parameter is exercised for the first time in DCM based calculations. It is to be noted that the effect of deformation, temperature and angular momentum etc. is studied to extract better description of the dynamics involved.

  3. Stimulated emission and optical gain in PbSe quantum dot-doped liquid-core optical fiber based on multi-exciton state

    Science.gov (United States)

    Zhang, Lei; Zhang, Bing; Li, Shuai; Zhu, Qiang; Zheng, Youjin

    2016-06-01

    We studied the properties of stimulated emission and optical gain of 4.4 nm PbSe quantum dot (QD)-doped liquid-core optical fiber based on multi-exciton state under strong pumping condition as a function of QD solution concentration, fiber length and pump power in order to establish the conditions to maximize stimulated emission intensities and optical gain. Auger recombination lifetime and internal quantum efficiency (IQE) were introduced in the multi-exciton model for calculation. Shifts of the spectral peak position were observed and explained in detail. The narrowing spectral half band width and the super linear intensity dependence of the output power with the pump accounted for the generation of stimulated emission. The maximal optical gain of ~30 dB was obtained which was larger than that of the single-exciton model under the same fiber parameters. Our interesting results might be useful in the design of optical fiber-based amplifiers and lasers.

  4. Pb pollution from leaded gasoline in South America in the context of a 2000-year metallurgical history.

    Science.gov (United States)

    Eichler, Anja; Gramlich, Gabriela; Kellerhals, Thomas; Tobler, Leonhard; Schwikowski, Margit

    2015-03-01

    Exploitation of the extensive polymetallic deposits of the Andean Altiplano in South America since precolonial times has caused substantial emissions of neurotoxic lead (Pb) into the atmosphere; however, its historical significance compared to recent Pb pollution from leaded gasoline is not yet resolved. We present a comprehensive Pb emission history for the last two millennia for South America, based on a continuous, high-resolution, ice core record from Illimani glacier. Illimani is the highest mountain of the eastern Bolivian Andes and is located at the northeastern margin of the Andean Altiplano. The ice core Pb deposition history revealed enhanced Pb enrichment factors (EFs) due to metallurgical processing for silver production during periods of the Tiwanaku/Wari culture (AD 450-950), the Inca empires (AD 1450-1532), colonial times (AD 1532-1900), and tin production at the beginning of the 20th century. After the 1960s, Pb EFs increased by a factor of 3 compared to the emission level from metal production, which we attribute to gasoline-related Pb emissions. Our results show that anthropogenic Pb pollution levels from road traffic in South America exceed those of any historical metallurgy in the last two millennia, even in regions with exceptional high local metallurgical activity. PMID:26601147

  5. Controlled waveguide coupling for photon emission from colloidal PbS quantum dot using tunable microcavity made of optical polymer and silicon

    Science.gov (United States)

    Nozaka, Takahiro; Mukai, Kohki

    2016-04-01

    A tunable microcavity device composed of optical polymer and Si with a colloidal quantum dot (QD) is proposed as a single-photon source for planar optical circuit. Cavity size is controlled by electrostatic micromachine behavior with the air bridge structure to tune timing of photon injection into optical waveguide from QD. Three-dimensional positioning of a QD in the cavity structure is available using a nanohole on Si processed by scanning probe microscope lithography. We fabricated the prototype microcavity with PbS-QD-mixed polymenthyl methacrylate on a SOI (semiconductor-on-insulator) substrate to show the tunability of cavity size as the shift of emission peak wavelength of QD ensemble.

  6. A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models

    Directory of Open Access Journals (Sweden)

    M. Karl

    2009-06-01

    Full Text Available We present a new European plant-specific emission inventory for isoprene, monoterpenes, sesquiterpenes and oxygenated VOC (OVOC, on a spatial resolution of 0.089×0.089 degrees, for implementation in atmospheric transport models. The inventory incorporates more accurate data on foliar biomass densities from several litterfall databases that became available in the last years for the main tree species in Europe. A bioclimatic correction factor was introduced to correct the foliar biomass densities of trees and crops for the different plant growth conditions that can be found in Pan-Europe. Long-term seasonal variability of agriculture and forest emissions was taken into account by implementing a new growing season concept. The 2004–2005 averaged annual total biogenic volatile organic compound (BVOC emissions for the Pan-European domain are estimated to be about 12 Tg with a large contribution from the OVOC class of about 4.5 Tg and from monoterpenes of about 4 Tg. Annual isoprene emissions are found to be about 3.5 Tg, insensitive to the chosen emission algorithm. Emissions of OVOC were found to originate to a large extent from agriculture. Further experiments on crop emissions should be carried out to check the validity of the applied standard emission factors. The new inventory aims at a fully transparent and verifiable aggregation of detailed land use information and at the inclusion of plant-specific emission data. Though plant-specific land use data is available with relatively high accuracy, a lack of experimental biomass densities and emission data on terpenes, sesquiterpenes and oxygenated VOC, in particular for agricultural plants, currently limits the setup of a highly accurate plant-specific emission inventory.

  7. Atmospheric three-dimensional inverse modeling of regional industrial emissions and global oceanic uptake of carbon tetrachloride

    Directory of Open Access Journals (Sweden)

    X. Xiao

    2010-11-01

    Full Text Available Carbon tetrachloride (CCl4 has substantial stratospheric ozone depletion potential and its consumption is controlled under the Montreal Protocol and its amendments. We implement a Kalman filter using atmospheric CCl4 measurements and a 3-dimensional chemical transport model to estimate the interannual regional industrial emissions and seasonal global oceanic uptake of CCl4 for the period of 1996–2004. The Model of Atmospheric Transport and Chemistry (MATCH, driven by offline National Center for Environmental Prediction (NCEP reanalysis meteorological fields, is used to simulate CCl4 mole fractions and calculate their sensitivities to regional sources and sinks using a finite difference approach. High frequency observations from the Advanced Global Atmospheric Gases Experiment (AGAGE and the Earth System Research Laboratory (ESRL of the National Oceanic and Atmospheric Administration (NOAA and low frequency flask observations are together used to constrain the source and sink magnitudes, estimated as factors that multiply the a priori fluxes. Although industry data imply that the global industrial emissions were substantially declining with large interannual variations, the optimized results show only small interannual variations and a small decreasing trend. The global surface CCl4 mole fractions were declining in this period because the CCl4 oceanic and stratospheric sinks exceeded the industrial emissions. Compared to the a priori values, the inversion results indicate substantial increases in industrial emissions originating from the South Asian/Indian and Southeast Asian regions, and significant decreases in emissions from the European and North American regions.

  8. X-ray thermal and magnetic study of superconducting Bi1.6Pb0.4Sr2Ca2Cu3Ox as a function of O2/N2 ratio in reaction atmosphere

    International Nuclear Information System (INIS)

    This paper reports on samples of Pb-doped BSCCO that were prepared under flowing O2 + N2 mixtures in variable ratios. X-ray diffraction shows a non-monotone change of lattice constants and of 212/2223 phase proportion with atmosphere composition, consistently with magnetic measurements. A high O2 content worsens heavily the superconducting properties. DTA results prove that all samples transform into 2201 phase just below melting, and allow to optimize the thermal treatment during preparation

  9. The impact of nitrogen oxides emissions from aircraft upon the atmosphere at flight altitudes—results from the aeronox project

    Science.gov (United States)

    Schumann, U.

    The AERONOX project investigated the emissions of nitrogen oxides (NO x) from aircraft engines and global air traffic at cruising altitudes, the resultant increase in NO x concentrations, and the effects on the composition of the atmosphere, in particular with respect to ozone formation in the upper troposphere and lower stratosphere. The project was structured into three subprojects: Engine exhaust emissions, physics and chemistry in the aircraft wake, and global atmospheric model simulations. A complementary program of work by aviation experts has provided detailed information on air traffic data which was combined with data on aircraft performance and emissions to produce a global emissions inventory. This summary gives an overview of the results of this project. Further details are given in the following papers of this issue and the final project report of 1995. The work resulted in improved predictive equations to determine NO x emissions at cruise conditions based on available data for aircraft/engine combinations, and NO x emission measurements on two engines in cruise conditions. This information was combined with a traffic database to provide a new global NO x emissions inventory. It was found that only minor chemical changes occur during the vortex regime of the emission plume; however, this result does not exclude the possibility of further changes in the dispersion phase. A variety of global models was set up to investigate the changes in NO x concentrations and photochemistry. Although aviation contributes only a small proportion (about 3%) of the total global NO x from all anthropogenic sources, the models show that aviation contributes a large fraction to the concentrations of NOX in the upper troposphere, in particular north of 30°N.

  10. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles

    OpenAIRE

    Riccobono, F.; Schobesberger, S.; Scott, CE; Dommen, J; Ortega, IK; L. Rondo; Almeida, J; Amorim, A.; BIANCHI, F.; Breitenlechner, M.; David, A.(CERN, European Organization for Nuclear Research, Geneva, Switzerland); Downard, A.; Dunne, EM; J. Duplissy; S. Ehrhart

    2014-01-01

    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in ...

  11. Atmospheric observation-based global SF6 emissions – comparison of top-down and bottom-up estimates

    Directory of Open Access Journals (Sweden)

    D. E. Worthy

    2009-12-01

    Full Text Available Emissions of sulphur hexafluoride (SF6, one of the strongest greenhouse gases on a per molecule basis, are targeted to be collectively reduced under the Kyoto Protocol. Because of its long atmospheric lifetime (≈3000 years, the accumulation of SF6 in the atmosphere is a direct measure of its global emissions. Examination of our extended data set of globally distributed high-precision SF6 observations shows an increase in SF6 abundance from near zero in the 1970s to a global mean of 6.7 ppt by the end of 2008. In-depth evaluation of our long-term data records shows that the global source of SF6 decreased after 1995, most likely due to SF6 emission reductions in industrialised countries, but increased again after 1998. By subtracting those emissions reported by Annex I countries to the United Nations Framework Convention of Climatic Change (UNFCCC from our observation-inferred SF6 source leaves a surprisingly large gap of more than 70–80% of non-reported SF6 emissions in the last decade.

  12. Electron-beam-sustained discharge revisited - light emission from combined electron beam and microwave excited argon at atmospheric pressure

    CERN Document Server

    Dandl, T; Neumeier, A; Wieser, J; Ulrich, A

    2015-01-01

    A novel kind of electron beam sustained discharge is presented in which a 12keV electron beam is combined with a 2.45GHz microwave power to excite argon gas at atmospheric pressure in a continuous mode of operation. Optical emission spectroscopy is performed over a wide wavelength range from the vacuum ultraviolet (VUV) to the near infrared (NIR). Several effects which modify the emission spectra compared to sole electron beam excitation are observed and interpreted by the changing plasma parameters such as electron density, electron temperature and gas temperature.

  13. Lead precipitation fluxes at tropical oceanic sites determined from 210Pb measurements

    International Nuclear Information System (INIS)

    Concentrations of lead, 210Pb, and 210Po were measured in rain selected for least influence by local sources of contamination at several tropical and subtropical islands (Enewetak; Pigeon Key, Florida; and American Samoa) and shipboard stations (near Bermuda and Tahiti). Ratios expressed as ng Pb/dpm 210Pb in rain were 250--900 for Pigeon Key (assuming 12% adsorption for 210Pb and no adsorption for lead), depending on whether the air masses containing the analyzed rain came from the Caribbean or from the continent, respectively; about 390 for the northern Sargasso Sea downwind from emissions of industrial lead in North America; 65 for Enewetak, remote from continental emissions of industrial lead in the northern hemisphere; and 14 near Tahiti, a remote location in the southern hemisphere where industrial lead emissions to the atmosphere are much less than in the northern hemisphere. (The American Samoa sample yielded a higher ratio than Tahiti; the reason for this is not clear but may be due to local Pb sources). The corresponding fluxes of lead to the oceans, based on measured or modeled 210Pb precipitation fluxes, are about 4 ng Pb/cm2y for Tahiti, 10 for Enewetak, and 270 for the Sargasso Sea site, and between 110 to 390 at Pigeon Key

  14. HEMCO v1.0: A versatile, ESMF-compliant component for calculating emissions in atmospheric models

    Directory of Open Access Journals (Sweden)

    C. A. Keller

    2014-01-01

    Full Text Available We describe the Harvard-NASA Emission Component version 1.0 (HEMCO, a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions and species on a user-specified grid and can combine, overlay, and update a set of data inventories and scale factors, selected by the user from a data library through the HEMCO configuration file. New emission inventories at any spatial and temporal resolution are readily added to HEMCO and can be accessed by the user without any pre-processing of the data files or modification of the source code. Emissions that depend on dynamic source types and local environmental variables such as wind speed or surface temperature are calculated in separate HEMCO extensions. HEMCO is fully compliant with the Earth System Modeling Framework (ESMF environment. It is highly portable and can be deployed in a new model environment with only few adjustments at the top-level interface. So far, we have implemented HEMCO in the NASA GEOS-5 Earth System Model (ESM and in the GEOS-Chem chemical transport model (CTM. By providing a widely applicable framework for specifying constituent emissions, HEMCO is designed to ease sensitivity studies and model comparisons, as well as inverse modeling in which emissions are adjusted iteratively. The HEMCO code, extensions, and data libraries are available at http://wiki.geos-chem.org/HEMCO.

  15. Evaluating the effects of China's pollution control on inter-annual trends and uncertainties of atmospheric mercury emissions

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2014-10-01

    Full Text Available China's atmospheric mercury (Hg emissions of anthropogenic origin have been effectively restrained through the national policy of air pollution control. Improved methods based on available field measurements are developed to quantify the benefits of Hg abatement through various emission control measures. Those measures include increased use of flue gas desulfurization (FGD and selective catalyst reduction (SCR systems for power sector, precalciners with fabric filter (FF for cement production, machinery coking with electrostatic precipitator (ESP for iron and steel production, and advanced manufacturing technologies for nonferrous metal smelting. Declining trends in emissions factors for those sources are revealed, leading to a much slower growth of national total Hg emissions than that of energy and economy, from 679 in 2005 to 750 metric tons (t in 2012. In particular, nearly half of emissions from the above-mentioned four types of sources are expected to be reduced in 2012, attributed to expansion of technologies with high energy efficiencies and air pollutant removal rates after 2005. The speciation of Hg emissions keeps stable for recent years, with the mass fractions of around 55, 39 and 6% for Hg0, Hg2+ and Hgp, respectively. The lower estimate of Hg emissions than previous inventories is supported by limited chemistry simulation work, but middle-to-long term observation on ambient Hg levels is further needed to justify the inter-annual trends of estimated Hg emissions. With improved implementation of emission controls and energy saving, 23% reduction in annual Hg emissions for the most optimistic case in 2030 is expected compared to 2012, with total emissions below 600 t. While Hg emissions are evaluated to be gradually constrained, increased uncertainties are quantified with Monte-Carlo simulation for recent years, particularly for power and certain industrial sources. The uncertainty of Hg emissions from coal-fired power plants, as an

  16. Evaluating the effects of China's pollution control on inter-annual trends and uncertainties of atmospheric mercury emissions

    Science.gov (United States)

    Zhao, Y.; Zhong, H.; Zhang, J.; Nielsen, C. P.

    2014-10-01

    China's atmospheric mercury (Hg) emissions of anthropogenic origin have been effectively restrained through the national policy of air pollution control. Improved methods based on available field measurements are developed to quantify the benefits of Hg abatement through various emission control measures. Those measures include increased use of flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems for power sector, precalciners with fabric filter (FF) for cement production, machinery coking with electrostatic precipitator (ESP) for iron and steel production, and advanced manufacturing technologies for nonferrous metal smelting. Declining trends in emissions factors for those sources are revealed, leading to a much slower growth of national total Hg emissions than that of energy and economy, from 679 in 2005 to 750 metric tons (t) in 2012. In particular, nearly half of emissions from the above-mentioned four types of sources are expected to be reduced in 2012, attributed to expansion of technologies with high energy efficiencies and air pollutant removal rates after 2005. The speciation of Hg emissions keeps stable for recent years, with the mass fractions of around 55, 39 and 6% for Hg0, Hg2+ and Hgp, respectively. The lower estimate of Hg emissions than previous inventories is supported by limited chemistry simulation work, but middle-to-long term observation on ambient Hg levels is further needed to justify the inter-annual trends of estimated Hg emissions. With improved implementation of emission controls and energy saving, 23% reduction in annual Hg emissions for the most optimistic case in 2030 is expected compared to 2012, with total emissions below 600 t. While Hg emissions are evaluated to be gradually constrained, increased uncertainties are quantified with Monte-Carlo simulation for recent years, particularly for power and certain industrial sources. The uncertainty of Hg emissions from coal-fired power plants, as an example

  17. Optical emission spectroscopy diagnostics of an atmospheric pressure direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Sismanoglu, B.N., E-mail: bogos@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Amorim, J., E-mail: jayr.amorim@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Souza-Correa, J.A., E-mail: jorge.correa@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Oliveira, C., E-mail: carlosf@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Gomes, M.P., E-mail: gomesmp@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil)

    2009-11-15

    This paper is about the use of optical emission spectroscopy as a diagnostic tool to determine the gas discharge parameters of a direct current (98% Ar-2% H{sub 2}) non-thermal microplasma jet, operated at atmospheric pressure. The electrical and optical behaviors were studied to characterize this glow discharge. The microplasma jet was investigated in the normal and abnormal glow regimes, for current ranging from 10 to 130 mA, at approx 220 V of applied voltage for copper cathode. OH (A {sup 2}SIGMA{sup +}, nu = 0 -> X {sup 2}PI, nu' = 0) rotational bands at 306.357 nm and also the 603.213 nm Ar I line, which is sensitive to van der Waals broadening, were used to determine the gas temperature, which ranges from 550 to 800 K. The electron number densities, ranging from 6.0 x 10{sup 14} to 1.4 x 10{sup 15} cm{sup -3}, were determined through a careful analysis of the main broadening mechanisms of the H{sub beta} line. From both 603.213 nm and 565.070 nm Ar I line broadenings, it was possible to obtain simultaneously electron number density and temperature (approx 8000 K). Excitation temperatures were also measured from two methods: from two Cu I lines and from Boltzmann-plot of 4p-4s and 5p-4s Ar I transitions. By employing H{sub alpha} line, the hydrogen atoms' H temperature was estimated (approx 18,000 K) and found to be surprisingly hotter than the excitation temperature.

  18. Evaluation of heavy metals in atmospheric emissions from automotive industry by total reflection X-ray fluorescence with synchrotron radiation

    International Nuclear Information System (INIS)

    This study had as goal to determine heavy metals and other elements (Ba, Br, Ca, Pb, Cl, Cr, Sr, Fe, Mn, Ni, K, Si, Ti and Zn) in atmospheric pollutants generated by an automotive industry located in the city of Engenheiro Coelho, state of Sao Paulo, Brazil. The sampling and sample preparation procedures were based on methods established by the Company of Sanitation and Technology (CETESB L9.234) and also by the Environmental Protection Agency (EPA - Method 29). The analysis was performed at XRF Beamline (D09B-XRF) in the Synchrotron Light Source Laboratory (Campinas/SP). A white beam of synchrotron radiation was used for sample and standard excitation which were irradiated by 100 seconds. For X-ray lines detection, a Ge (HP) detector with 150 eV of resolution at 5.9 keV was employed. For zinc, iron, barium, calcium and potassium, the values obtained were in the range of 30 mg/Nm3 and, for other elements, the concentrations were approximately 1 mg/Nm3. The sum of As, Be, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, Te and Zn concentration was compared with the limits established by CONAMA 264/1999 and SEMA 041/2002 resolutions (7.0 mg/Nm3) and it was observed that, for all samples, sums are higher than the permissive value mainly due to the high concentration of zinc. Detection limits for SR-TXRF technique were 0.10 μg/Nm3 for Pb and 0.02 μg/Nm3 for Zn. (author)

  19. A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque, NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin 15, Ireland

    2013-04-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

  20. Optimal capture and sequestration from the carbon emission flow and from the atmospheric carbon stock with heterogeneous energy consuming sectors

    OpenAIRE

    Amigues, Jean-Pierre; Lafforgue, Gilles; MOREAUX Michel

    2010-01-01

    We characterize the optimal exploitation paths of two primary energy resources. The first one is a non-renewable polluting resource, the second one a pollution-free renewable resource. Both resources can supply the energy needs of two sectors. Sector 1 is able to reduce the potential carbon emissions generated by its non-renewable energy consumption at a reasonable cost while sector 2 cannot. Another possibility is to capture the carbon spread in the atmosphere but at a significantly higher c...

  1. Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions

    Directory of Open Access Journals (Sweden)

    S. Eckhardt

    2007-05-01

    Full Text Available Soils and forests in the boreal region of the northern hemisphere are recognised as having a large capacity for storing air-borne Persistent Organic Pollutants (POPs, such as the polychlorinated biphenyls (PCBs. Following reductions of primary emissions of various legacy POPs, there is an increasing interest and debate about the relative importance of secondary re-emissions on the atmospheric levels of POPs. In spring of 2006, biomass burning emissions from agricultural fires in Eastern Europe were transported to the Zeppelin station on Svalbard, where record-high levels of many air pollutants were recorded (Stohl et al., 2007. Here we report on the extremely high concentrations of PCBs that were also measured during this period. 21 out of 32 PCB congeners were enhanced by more than two standard deviations above the long-term mean concentrations. In July 2004, about 5.8 million hectare of boreal forest burned in North America, emitting a pollution plume which reached the Zeppelin station after a travel time of 3–4 weeks (Stohl et al., 2006. Again, 12 PCB congeners were elevated above the long-term mean by more than two standard deviations, with the less chlorinated congeners being most strongly affected. We propose that these abnormally high concentrations were caused by biomass burning emissions. Based on enhancement ratios with carbon monoxide and known emissions factors for this species, we estimate that 130 and 66 μg PCBs were released per kilogram dry matter burned, respectively. To our knowledge, this is the first study relating atmospheric PCB enhancements with biomass burning. The strong effects on observed concentrations far away from the sources, suggest that biomass burning is an important source of PCBs for the atmosphere.

  2. Atmospheric three-dimensional inverse modeling of regional industrial emissions and global oceanic uptake of carbon tetrachloride

    Directory of Open Access Journals (Sweden)

    X. Xiao

    2010-05-01

    Full Text Available Carbon tetrachloride (CCl4 has substantial stratospheric ozone depletion potential and its consumption is controlled under the Montreal Protocol and its amendments. We implement a Kalman filter using atmospheric CC14 measurements and a 3-dimensional chemical transport model to estimate the interannual regional industrial emissions and seasonal global oceanic uptake of CCl4 for the period of 1996–2004. The Model of Atmospheric Transport and Chemistry (MATCH, driven by offline National Center for Environmental Prediction (NCEP reanalysis meteorological fields, is used to simulate CCl4 mole fractions and calculate their sensitivities to regional sources and sinks using a finite difference approach. High frequency observations from the Advanced Global Atmospheric Gases Experiment (AGAGE and NOAA Earth System Research Laboratory (ESRL and low frequency flask observations are together used to constrain the source and sink magnitudes, estimated as factors that multiply the a priori fluxes. Although industry data imply that the global industrial emissions were substantially declining with large interannual variations, the optimized results show only small interannual variations and a small decreasing trend. The global surface CCl4 mole fractions were declining in this period because the CCl4 oceanic and stratospheric sinks exceeded the industrial emissions. Compared to the a priori values, the inversion results indicate substantial increases in industrial emissions originating from the South Asian/Indian and Southeast Asian regions, and significant decreases in emissions from the European and North American regions.

  3. Quantitative analysis of Cd, Mo, Ni, Pb, Sn, W, and Zn in Zinc stearate by plasma emission spectrophotometry

    International Nuclear Information System (INIS)

    Zinc stearate is a material of nuclear interest because of its properties as lubricant and agglutinating. Such properties are applied in the sintering of uranium dioxide pellets for the nuclear fuel cycle. A control of impurities for zinc stearate is made by means of the Plasma Emission Spectrophotometry, comparing and certifying the analytical results with the Atomic absorption spectrophotometry technique. The analyzed elements were Cadmium, Molybdenum, Nickel, Lead, Tin, Tungsten and Zinc and the agreement between the methods were good. (Author)

  4. A CRIRES-search for H3+ emission from the hot Jupiter atmosphere of HD 209458 b

    CERN Document Server

    Lenz, Lea; Seifahrt, Andreas; Kaeufl, Hans-Ulrich

    2016-01-01

    Close-in extrasolar giant planets are expected to cool their thermospheres by producing H3+ emission in the near-infrared (NIR), but simulations predict H3+ emission intensities that differ in the resulting intensity by several orders of magnitude. We want to test the observability of H3+ emission with CRIRES at the Very Large Telescope (VLT), providing adequate spectral resolution for planetary atmospheric lines in NIR spectra. We search for signatures of planetary H3+ emission in the L` band, using spectra of HD 209458 obtained during and after secondary eclipse of its transiting planet HD 209458 b. We searched for H3+ emission signatures in spectra containing the combined light of the star and, possibly, the planet. With the information on the ephemeris of the transiting planet, we derive the radial velocities at the time of observation and search for the emission at the expected line positions and search for planetary signals and use a shift and add technique combining all observed spectra taken after sec...

  5. European emissions of HCFC-22 based on eleven years of high frequency atmospheric measurements and a Bayesian inversion method

    Science.gov (United States)

    Graziosi, F.; Arduini, J.; Furlani, F.; Giostra, U.; Kuijpers, L. J. M.; Montzka, S. A.; Miller, B. R.; O'Doherty, S. J.; Stohl, A.; Bonasoni, P.; Maione, M.

    2015-07-01

    HCFC-22 (CHClF2), a stratospheric ozone depleting substance and a powerful greenhouse gas, is the third most abundant anthropogenic halocarbon in the atmosphere. Primarily used in refrigeration and air conditioning systems, its global production and consumption have increased during the last 60 years, with the global increases in the last decade mainly attributable to developing countries. In 2007, an adjustment to the Montreal Protocol for Substances that Deplete the Ozone Layer called for an accelerated phase out of HCFCs, implying a 75% reduction (base year 1989) of HCFC production and consumption by 2010 in developed countries against the previous 65% reduction. In Europe HCFC-22 is continuously monitored at the two sites Mace Head (Ireland) and Monte Cimone (Italy). Combining atmospheric observations with a Bayesian inversion technique, we estimated fluxes of HCFC-22 from Europe and from eight macro-areas within it, over an 11-year period from January 2002 to December 2012, during which the accelerated restrictions on HCFCs production and consumption have entered into force. According to our study, the maximum emissions over the entire domain was in 2003 (38.2 ± 4.7 Gg yr-1), and the minimum in 2012 (12.1 ± 2.0 Gg yr-1); emissions continuously decreased between these years, except for secondary maxima in the 2008 and 2010. Despite such a decrease in regional emissions, background values of HCFC-22 measured at the two European stations over 2002-2012 are still increasing as a consequence of global emissions, in part from developing countries, with an average trend of ca 7.0 ppt yr-1. However, the observations at the two European stations show also that since 2008 a decrease in the global growth rate has occurred. In general, our European emission estimates are in good agreement with those reported by previous studies that used different techniques. Since the currently dominant emission source of HCFC-22 is from banks, we assess the banks' size and their

  6. A multi-scale approach to monitor urban carbon-dioxide emissions in the atmosphere over Vancouver, Canada

    Science.gov (United States)

    Christen, A.; Crawford, B.; Ketler, R.; Lee, J. K.; McKendry, I. G.; Nesic, Z.; Caitlin, S.

    2015-12-01

    Measurements of long-lived greenhouse gases in the urban atmosphere are potentially useful to constrain and validate urban emission inventories, or space-borne remote-sensing products. We summarize and compare three different approaches, operating at different scales, that directly or indirectly identify, attribute and quantify emissions (and uptake) of carbon dioxide (CO2) in urban environments. All three approaches are illustrated using in-situ measurements in the atmosphere in and over Vancouver, Canada. Mobile sensing may be a promising way to quantify and map CO2 mixing ratios at fine scales across heterogenous and complex urban environments. We developed a system for monitoring CO2 mixing ratios at street level using a network of mobile CO2 sensors deployable on vehicles and bikes. A total of 5 prototype sensors were built and simultaneously used in a measurement campaign across a range of urban land use types and densities within a short time frame (3 hours). The dataset is used to aid in fine scale emission mapping in combination with simultaneous tower-based flux measurements. Overall, calculated CO2 emissions are realistic when compared against a spatially disaggregated scale emission inventory. The second approach is based on mass flux measurements of CO2 using a tower-based eddy covariance (EC) system. We present a continuous 7-year long dataset of CO2 fluxes measured by EC at the 28m tall flux tower 'Vancouver-Sunset'. We show how this dataset can be combined with turbulent source area models to quantify and partition different emission processes at the neighborhood-scale. The long-term EC measurements are within 10% of a spatially disaggregated scale emission inventory. Thirdly, at the urban scale, we present a dataset of CO2 mixing ratios measured using a tethered balloon system in the urban boundary layer above Vancouver. Using a simple box model, net city-scale CO2 emissions can be determined using measured rate of change of CO2 mixing ratios

  7. Fermi large area telescope observations of the cosmic-ray induced γ-ray emission of the Earth's atmosphere

    International Nuclear Information System (INIS)

    We report on measurements of the cosmic-ray induced γ-ray emission of Earth's atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded ∼6.4x106 photons with energies >100 MeV and ∼250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission--often referred to as Earth albedo gamma-ray emission--has a power-law shape up to 500 GeV with spectral index Γ=2.79±0.06.

  8. PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models

    OpenAIRE

    Freitas, S. R.; Longo, K. M.; Alonso, M. F.; M. Pirre; Marecal, V.; Grell, G; R. Stockler; R. F. Mello; Sánchez Gácita, M.

    2011-01-01

    The preprocessor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emission fields of trace gases and aerosols for use in atmospheric-chemistry transport models. The considered emissions are from the most recent databases of urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources. For biomass burning, emissions can be also estimated directly from satellite fire detections using a fire emission model included...

  9. Volume 1 Chapter 2: Emissions and concentrations of radiatively active atmospheric trace constituents

    OpenAIRE

    W. Winiwarter

    2014-01-01

    Radiatively active atmospheric trace constituents consist of the following groups of compounds: long-lived greenhouse gases with residence times of years, subject to international conventions; short-lived gases formed in the atmosphere from precursor compounds, remaining in the atmosphere for hours or days: notably ozone; and aerosols, that is, airborne particles interacting with short-wave radiation with both direct and indirect effects. The "direct effect" covers scattering or absorption of...

  10. Airborne measurements of the atmospheric emissions from a fuel ethanol refinery

    Science.gov (United States)

    de Gouw, J. A.; McKeen, S. A.; Aikin, K. C.; Brock, C. A.; Brown, S. S.; Gilman, J. B.; Graus, M.; Hanisco, T.; Holloway, J. S.; Kaiser, J.; Keutsch, F. N.; Lerner, B. M.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Min, K.-E.; Neuman, J. A.; Nowak, J. B.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Trainer, M.; Veres, P. R.; Warneke, C.; Welti, A.; Wolfe, G. M.

    2015-05-01

    Ethanol made from corn now constitutes approximately 10% of the fuel used in gasoline vehicles in the U.S. The ethanol is produced in over 200 fuel ethanol refineries across the nation. We report airborne measurements downwind from Decatur, Illinois, where the third largest fuel ethanol refinery in the U.S. is located. Estimated emissions are compared with the total point source emissions in Decatur according to the 2011 National Emissions Inventory (NEI-2011), in which the fuel ethanol refinery represents 68.0% of sulfur dioxide (SO2), 50.5% of nitrogen oxides (NOx = NO + NO2), 67.2% of volatile organic compounds (VOCs), and 95.9% of ethanol emissions. Emissions of SO2 and NOx from Decatur agreed with NEI-2011, but emissions of several VOCs were underestimated by factors of 5 (total VOCs) to 30 (ethanol). By combining the NEI-2011 with fuel ethanol production numbers from the Renewable Fuels Association, we calculate emission intensities, defined as the emissions per ethanol mass produced. Emission intensities of SO2 and NOx are higher for plants that use coal as an energy source, including the refinery in Decatur. By comparing with fuel-based emission factors, we find that fuel ethanol refineries have lower NOx, similar VOC, and higher SO2 emissions than from the use of this fuel in vehicles. The VOC emissions from refining could be higher than from vehicles, if the underestimated emissions in NEI-2011 downwind from Decatur extend to other fuel ethanol refineries. Finally, chemical transformations of the emissions from Decatur were observed, including formation of new particles, nitric acid, peroxyacyl nitrates, aldehydes, ozone, and sulfate aerosol.

  11. Evaluation of size segregation of elemental carbon emission in Europe: influence on atmospheric long-range transportation

    Science.gov (United States)

    Chen, Y.; Cheng, Y. F.; Nordmann, S.; Birmili, W.; Denier van der Gon, H. A. C.; Ma, N.; Wolke, R.; Wehner, B.; Sun, J.; Spindler, G.; Mu, Q.; Pöschl, U.; Su, H.; Wiedensohler, A.

    2015-11-01

    Elemental Carbon (EC) has significant impact on human health and climate change. In order to evaluate the size segregation of EC emission and investigation of its influence on atmospheric transport processes in Europe, we used the fully coupled online Weather Research and Forecasting/Chemistry model (WRF-Chem) at a resolution of 2 km focusing on a region in Germany, in conjunction with a high-resolution EC emission inventory. The ground meteorology conditions, vertical structure and wind pattern were well reproduced by the model. The simulations of particle number/mass size distributions were evaluated by observations taken at the central European background site Melpitz. The fine mode aerosol was reasonably well simulated, but the coarse mode was substantially overestimated by the model. We found that it was mainly due to the nearby point source plume emitting a high amount of EC in the coarse mode. The comparisons between simulated EC and Multi-angle Absorption Photometers (MAAP) measurements at Melpitz, Leipzig-TROPOS and Bösel indicated that coarse mode EC (ECc) emission in the nearby point sources might be overestimated by a factor of 2-10. The emission fraction of EC in coarse mode was overestimated by about 10-30 % for Russian and 5-10 % for Eastern Europe (e.g.: Poland and Belarus), respectively. This overestimation in ECc emission fraction makes EC particles having less opportunity to accumulate in the atmosphere and participate to the long range transport, due to the shorter lifetime of coarse mode aerosol. The deposition concept model showed that the transported EC mass from Warsaw and Moskva to Melpitz may be reduced by 25-35 and 25-55 % respectively, due to the overestimation of ECc emission fraction. This may partly explain the underestimation of EC concentrations for Germany under eastern wind pattern in some other modelling research.

  12. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Science.gov (United States)

    Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

    2008-05-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dpemissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  13. Evaluation of size segregation of elemental carbon emission in Europe: influence on atmospheric long-range transportation

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2015-11-01

    Full Text Available Elemental Carbon (EC has significant impact on human health and climate change. In order to evaluate the size segregation of EC emission and investigation of its influence on atmospheric transport processes in Europe, we used the fully coupled online Weather Research and Forecasting/Chemistry model (WRF-Chem at a resolution of 2 km focusing on a region in Germany, in conjunction with a high-resolution EC emission inventory. The ground meteorology conditions, vertical structure and wind pattern were well reproduced by the model. The simulations of particle number/mass size distributions were evaluated by observations taken at the central European background site Melpitz. The fine mode aerosol was reasonably well simulated, but the coarse mode was substantially overestimated by the model. We found that it was mainly due to the nearby point source plume emitting a high amount of EC in the coarse mode. The comparisons between simulated EC and Multi-angle Absorption Photometers (MAAP measurements at Melpitz, Leipzig-TROPOS and Bösel indicated that coarse mode EC (ECc emission in the nearby point sources might be overestimated by a factor of 2–10. The emission fraction of EC in coarse mode was overestimated by about 10–30 % for Russian and 5–10 % for Eastern Europe (e.g.: Poland and Belarus, respectively. This overestimation in ECc emission fraction makes EC particles having less opportunity to accumulate in the atmosphere and participate to the long range transport, due to the shorter lifetime of coarse mode aerosol. The deposition concept model showed that the transported EC mass from Warsaw and Moskva to Melpitz may be reduced by 25–35 and 25–55 % respectively, due to the overestimation of ECc emission fraction. This may partly explain the underestimation of EC concentrations for Germany under eastern wind pattern in some other modelling research.

  14. Intense 2.89 μm emission from Dy³⁺/Yb³⁺-codoped PbF₂ crystal by 970 nm laser diode pumping.

    Science.gov (United States)

    Zhang, Peixiong; Xu, Min; Zhang, Lianhan; Hong, Jiaqi; Wang, Xianyong; Wang, Yaqi; Chen, Guangzhu; Hang, Yin

    2015-10-19

    A novel Dy(3+)/Yb(3+) co-doped PbF2 mid-IR laser crystal was successfully grown using the vertical Bridgman method. Efficient emission at around 3 μm from the crystal was observed under excitation of a conventional 970 nm laser diode (LD). The energy transfer efficiency from Yb(3+) to Dy(3+) in Dy(3+)/Yb(3+):PbF2 crystal is as high as (97.7±0.3)%. It is also found that the Dy(3+)/Yb(3+):PbF2 crystal possesses long fluorescence lifetime (15.4±0.2) ms, high quantum efficiency (95.0±0.3)%, and large emission cross section (1.37±0.11)×10(-20) cm2 corresponding to the stimulated emission of Dy(3+):(6)H(13/2)→(6)H(15/2) transition. Additionally, the phonon energy of the crystal was analyzed by the Raman spectrum. These results indicate that Dy(3+)/Yb(3+):PbF2 crystal may become a promising material for 3 μm solid state lasers under a conventional 970 nm LD pump. PMID:26480440

  15. Power Production with Zero Atmospheric Emissions for the 21st Century

    International Nuclear Information System (INIS)

    This paper describes a new concept for economically producing power without atmospheric emissions of regulated or greenhouse gases. A 5-MW to 10-MW experimental electric power generating plant is being designed for installation at the Lawrence Livermore National Laboratory to perform research to develop the new technology and to demonstrate its reliability. The research electric power generating plant will burn any gaseous fuel, including syngas derived from coal, with oxygen. Natural gas and oxygen will be used initially to produce a mixture of steam and carbon dioxide. The mixture will be delivered to three turbines in series to produce electricity. After leaving the low-pressure turbine, the gaseous mixture will be cooled in a condenser where the carbon dioxide separates from the steam. The carbon dioxide will be pumped into a local oil formation, which is located at a depth of 460 m below ground adjacent to the Laboratory. In the more general siting case, the carbon dioxide would be pumped into deep underground permeable strata. The natural gas will be combusted with oxygen in a gas generator to produce the turbine working fluid. Three turbines will drive an electric generator to generate electricity. In the first phase of the research, the plant will use three commercially available steam turbines that operate at a temperature of 566 C. In a second phase, the high- and low-pressure turbines will be replaced by turbines using uncooled blade technology developed by the US Department of Energy (DOE) to permit a turbine operation temperature of 816 C. The intermediate turbine will use actively cooled gas turbine technology and operate at a temperature of 1,425 C. This plant will have an efficiency of 50%. DOE has funded research to reduce the cost of oxygen generation using ceramic membranes. When this technology becomes available and when high-temperature steam turbines are developed, efficiencies of 60% are expected, including the energy cost of carbon dioxide

  16. Contribution of emission control and atmospheric diffusion ability to the improved air quality in 2015 of China

    Science.gov (United States)

    Wang, X.; Wang, K.

    2015-12-01

    China experiences extremely severe and frequent PM2.5 (fine particulate matters with diameters less than 2.5 µm) pollution in recent years, arousing unprecedented public concern. Tough targets have been set for three particularly smog-ridden regions: JingJinJi area, the Yangtze River Delta and Pearl River Delta, requiring these regions to reduce their atmospheric levels of PM2.5 by 25%, 20% and 15% respectively by the year 2017. A lot of mitigation actions have been taken to improve the air quality in China. In January 2013, China began to deploy instruments to measure PM2.5 nationally and released hourly observational data to the public. Observed PM2.5 concentrations showed a significant decrease in 2015 comparing to that of 2014 as shown in Fig.1. Many studies have attributed this kind of air quality improvement to the effect of emission control. However, air quality not only depends on the original emission, the atmospheric abilities of contaminant transfer, spread and wet deposition play a big role in reducing the ambient air pollutants and directly determined by the occurrence of pollution episodes. Here we used the first 2 years PM2.5 observation data in China to quantify the contribution of the effect of emission control and atmospheric ability of diffusing on reducing ambient PM2.5 concentrations. We found that PM2.5 decreased by 24% in 2015 winter (Dec. 2014-Feb. 2015) comparing to that in 2014; and 12% of decrease occurred for the spring time. The inconsistent seasonal improvement of air quality is mainly due to the favorable atmospheric background in 2015, with its frequent precipitation, infrequency of surface calm wind during the wintertime.

  17. Tracing changes in atmospheric sources of lead contamination using lead isotopic compositions in Australian red wine.

    Science.gov (United States)

    Kristensen, Louise Jane; Taylor, Mark Patrick; Evans, Andrew James

    2016-07-01

    Air quality data detailing changes to atmospheric composition from Australia's leaded petrol consumption is spatially and temporally limited. In order to address this data gap, wine was investigated as a potential proxy for atmospheric lead conditions. Wine spanning sixty years was collected from two wine regions proximal to the South Australian capital city, Adelaide, and analysed for lead concentration and lead and strontium isotopic composition for source apportionment. Maximum wine lead concentrations (328 μg/L) occur prior to the lead-in-air monitoring in South Australia in the later 1970s. Wine lead concentrations mirror available lead-in-air measurements and show a declining trend reflecting parallel reductions in leaded petrol emissions. Lead from petrol dominated the lead in wine ((206)Pb/(207)Pb: 1.086; (208)Pb/(207)Pb: 2.360) until the introduction of unleaded petrol, which resulted in a shift in the wine lead isotopic composition closer to vineyard soil ((206)Pb/(207)Pb: 1.137; (208)Pb/(207)Pb: 2.421). Current mining activities or vinification processes appear to have no impact with recent wine samples containing less than 4 μg/L of lead. This study demonstrates wine can be used to chronicle changes in environmental lead emissions and is an effective proxy for atmospherically sourced depositions of lead in the absence of air quality data. PMID:27037773

  18. Sensitivity of modeled atmospheric nitrogen species to variations in sea salt emissions in the North and Baltic Sea regions

    Science.gov (United States)

    Neumann, D.; Matthias, V.; Bieser, J.; Aulinger, A.; Quante, M.

    2015-10-01

    Coarse sea salt particles are emitted ubiquitously from the oceans' surfaces by wave breaking and bubble bursting processes. These particles impact atmospheric chemistry by affecting condensation of gas-phase species and nucleation of new fine particles, particularly in regions with high air pollution. In this study, atmospheric particle concentrations are modeled for the North and Baltic Sea regions, Northwestern Europe, using the Community Multiscale Air Quality (CMAQ) modeling system and evaluated against European Monitoring and Evaluation Programme (EMEP) measurement data. As model extension, sea salt emissions are scaled by water salinity because of low salinity in large parts of the Baltic Sea and in certain river estuaries. The resulting improvement in predicted sea salt concentrations is assessed. The contribution of surf zone emissions is separately considered. Additionally, the impact of sea salt particles on atmospheric nitrate, ammonium and sulfate concentrations is evaluated. The comparisons show that sea salt concentrations are commonly overestimated at coastal stations and partly underestimated when going inland. The introduced salinity scaling improves predicted Baltic Sea sea salt concentrations considerably. Dates of measured peak concentrations are appropriately reproduced by the model. The impact of surf zone emissions is negligible in both seas. Nevertheless, they might be relevant because surf zone emissions were cut at an upper threshold in this study. Deactivating sea salt leads to a minor increase of NH4+ and NO3- and a minor decrease of SO42- concentrations. However, the overall effect is very low and lower than the deviation from measurements. Size resolved measurements of Na+, NH4+, NO3-, and SO42- are needed for a more detailed analysis on the impact of sea salt particles.

  19. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles

    CERN Document Server

    Riccobono, Francesco; Baltensperger, Urs; Worsnop, Douglas R; Curtius, Joachim; Carslaw, Kenneth S; Wimmer, Daniela; Wex, Heike; Weingartner, Ernest; Wagner, Paul E; Vrtala, Aron; Viisanen, Yrjö; Vaattovaara, Petri; Tsagkogeorgas, Georgios; Tomé, Antonio; Stratmann, Frank; Stozhkov, Yuri; Spracklen, Dominick V; Sipilä, Mikko; Praplan, Arnaud P; Petäjä, Tuukka; Onnela, Antti; Nieminen, Tuomo; Mathot, Serge; Makhmutov, Vladimir; Lehtipalo, Katrianne; Laaksonen, Ari; Kvashin, Alexander N.; Kürten, Andreas; Kupc, Agnieszka; Keskinen, Helmi; Kajos, Maija; Junninen, Heikki; Hansel, Armin; Franchin, Alessandro; Flagan, Richard C; Ehrhart, Sebastian; Duplissy, Jonathan; Dunne, Eimear M; Downard, Andrew; David, André; Breitenlechner, Martin; Bianchi, Federico; Amorim, Antonio; Almeida, João; Rondo, Linda; Ortega, Ismael K; Dommen, Josef; Scott, Catherine E; Vrtala, Aron; Santos, Filipe D; Schallhart, Simon; Seinfeld, John H; Sipila, Mikko; Donahue, Neil M; Kirkby, Jasper; Kulmala, Markku

    2014-01-01

    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.

  20. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    Science.gov (United States)

    Baghi, R.; Helmig, D.; Guenther, A.; Duhl, T.; Daly, R.

    2012-10-01

    Emissions of biogenic volatile organic compounds (BVOC) from urban trees during and after blooming were measured during spring and early summer 2009 in Boulder, Colorado. Air samples were collected onto solid adsorbent cartridges from branch enclosures on the tree species crabapple (Malus sp.), horse chestnut (Aesculus carnea, "Ft. McNair"), honey locust (Gleditsia triacanthos, "Sunburst"), and hawthorn (Crataegus laevigata, "Pauls Scarlet"). These species constitute ~ 65% of the insect-pollinated fraction of the flowering tree canopy (excluding catkin-producing trees) from the street area managed by the City of Boulder. Samples were analyzed for C10-C15 BVOC by thermal desorption and gas chromatography coupled to a flame ionization detector and a mass spectrometer (GC/FID/MS). Identified emissions and emission rates from these four tree species during the flowering phase were found to vary over a wide range. Monoterpene emissions were identified for honey locust, horse chestnut and hawthorn. Sesquiterpene emissions were observed in horse chestnut and hawthorn samples. Crabapple flowers were found to emit significant amounts of benzyl alcohol and benzaldehyde. Floral BVOC emissions increased with temperature, generally exhibiting exponential temperature dependence. Changes in BVOC speciation during and after the flowering period were observed for every tree studied. Emission rates were significantly higher during the blooming compared to the post-blooming state for crabapple and honey locust. The results were scaled to the dry mass of leaves and flowers contained in the enclosure. Only flower dry mass was accounted for crabapple emission rates as leaves appeared at the end of the flowering period. Total normalized (30 °C) monoterpene emissions from honey locust were higher during flowering (5.3 μgC g-1 h-1) than after flowering (1.2 μgC g-1 h-1). The total normalized BVOC emission rate from crabapple (93 μgC g-1 h-1) during the flowering period is of the same

  1. Abatement of atmospheric emissions in North America: Progress to date and promise for the future

    International Nuclear Information System (INIS)

    Much progress has been made in acidic rain abatement in North America. This progress is examined with a focus on man-made emissions of sulfur dioxide and nitrogen oxides that contribute to acidic deposition. A review of US historical trends of SO2 and nitrogen oxides emissions since 1900 and projections of future emissions through the end of this century shoe emissions of SO2 decreasing from a peak in 1970 of 29 Tg/yr to about 26 Tg/yr, but nitrogen oxides emissions continuing an upward trend to about 25 Tg/yr. In Canada, SO2, NO and NO2 emissions are less than 20% of those in the US, and the trends are similar, with SO2 showing future decreases and NO and NO2 continuing to increase. Future industry in North America is expected to emit much lower levels of SO2, NO, and NO2. Technology is also available to limit nitrogen oxides emissions from future motor vehicles. Recent acidic deposition legislation in the US Congress to reduce electric utility and industrial emissions of SO2 by 9 to 13 Tg/yr is reviewed. The estimates of the cost to implement the proposals range from $2 billion to $23 billion over a 5-year period. Retrofitting existing utility and industrial boilers for maximum SO2, NO, and NO2 reduction carries the highest price tag. Several environmental policy options are explored for preventing emission increases and also promoting decreases in future emissions of SO2, NO, and NO2 in North America. Focus on nitrogen oxides emissions may be critical because population growth could cause significant increases in NO and NO2 from motor vehicle use

  2. Compilation and analyses of emissions inventories for NOAA`s atmospheric chemistry project. Progress report, August 1997

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, C.M.; Mubaraki, M.A.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories.

  3. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007.

    Science.gov (United States)

    Tian, Hezhong; Wang, Yan; Xue, Zhigang; Qu, Yiping; Chai, Fahe; Hao, Jiming

    2011-07-15

    Over half of coal in China is burned directly by power plants, becoming an important source of hazardous trace element emissions, such as mercury (Hg), arsenic (As), and selenium (Se), etc. Based on coal consumption by each power plant, emission factors classified by different boiler patterns and air pollution control devices configuration, atmospheric emissions of Hg, As, and Se from coal-fired power plants in China are evaluated. The national total emissions of Hg, As, and Se from coal-fired power plants in 2007 are calculated at 132 t, 550 t, and 787 t, respectively. Furthermore, according to the percentage of coal consumed by units equipped with different types of PM devices and FGD systems, speciation of mercury is estimated as follows: 80.48 t of Hg, 49.98 t of Hg(2+), and 1.89 t of Hg(P), representing 60.81%, 37.76%, and 1.43% of the totals, respectively. The emissions of Hg, As, and Se in China's eastern and central provinces are much higher than those in the west, except for provinces involved in the program of electricity transmission from west to east China, such as Sichuan, Guizhou, Yunnan, Shaanxi, etc. PMID:21621816

  4. Distributions, long term trends and emissions of four perfluorocarbons in remote parts of the atmosphere and firn air

    Directory of Open Access Journals (Sweden)

    J. C. Laube

    2012-02-01

    Full Text Available We report the first data set of atmospheric abundances for the following four perfluoroalkanes: n-decafluorobutane (n-C4F10, n-dodecafluoropentane (n-C5F12, n-tetradecafluorohexane (n-C6F14 and n-hexadecafluoroheptane (n-C7F16. All four compounds could be detected and quantified in air samples from remote locations in the Southern Hemisphere (at Cape Grim, Tasmania, archived samples dating back to 1978 and the upper troposphere (a passenger aircraft flying from Germany to South Africa. Further observations originate from air samples extracted from deep firn in Greenland and allow trends of atmospheric abundances in the earlier 20th century to be inferred. All four compounds were not present in the atmosphere prior to the 1960s. n-C4F10 and n-C5F12 were also measured in samples collected in the stratosphere confirming their very long atmospheric lifetimes.