WorldWideScience

Sample records for atmospheric particulate polycyclic

  1. Polycyclic Aromatic Hydrocarbons (PAHs) in urban atmospheric particulate of NCR, Delhi, India

    Science.gov (United States)

    Sonwani, Saurabh; Amreen, Hassan; Khillare, P. S.

    2016-07-01

    The present study identifies the particulate Polycyclic Aromatic hydrocarbons (PAHs) and their sources in ambient atmosphere of Delhi, India. PM10 (aerodynamic diameter, ≤10 μm) samples were collected weekly at two residential areas from July 2013 to January 2014. First sampling site was located in centre of the city, while other was at city's background (located in South-East direction of the Delhi). PM10 was collected on Whatman GF/A (8"x10") glass fibre filters using High-Volume sampler having a constant flow rate of 1.10 m3/min. A total of 55 samples, 27 from city centre and 28 from background site were collected during sampling period, covering two different seasons. The samples were analysed for determination of 16 Polycyclic Aromatic Hydrocarbons by using High Performance Liquid Chromatography (HPLC) system (Waters, USA). A source apportionment study using Molecular Diagnostic Ratio (MDR) and Principal Component Analysis (PCA) were conducted for both sampling sites in order to identify the potential PAHs sources in Delhi. MDR was used for the preliminary identification of sources and PCA was used for further confirmation of the PAH sources at both the sites in Delhi. Results indicated towards traffic and coal combustion related sources as dominant contributors of urban atmospheric PAHs in Delhi.

  2. Characterization of particulate polycyclic aromatic hydrocarbons in an urban atmosphere of central-southern Spain.

    Science.gov (United States)

    Villanueva, Florentina; Tapia, Araceli; Cabañas, Beatriz; Martínez, Ernesto; Albaladejo, José

    2015-12-01

    Over 1-year period, 13 polycyclic aromatic hydrocarbons (PAHs) associated with particulate matter PM10 have been monitored for the first time in the atmosphere of Ciudad Real, situated at the central-southern Spain. PM10-bound PAHs were collected using a high-volume sampler from autumn 2012 to summer 2013 and were analyzed by HPLC with fluorescence detector. The most abundant PAHs were pyrene, chrysene, benzo[b]fluoranthene, dibenzo[a,h]anthracene and benzo[g,h,i]perylene. The ∑PAH concentrations in Ciudad Real were 888, 368, 259 and 382 pg m(-3) for winter, spring, summer and autumn seasons, respectively. The diurnal variation of PAH was also investigated presenting the highest concentrations during the evening (19:00-23:00). Benzo[a]pyrene concentrations ranged from 2.4 to 110 pg m(-3), these values are lower than the target value proposed by the European legislation, 1 ng m(-3). Diagnostic ratios were used to identify potential sources of PAHs. Results suggest that vehicle emissions are the major source of identified PAHs, with a higher contribution of diesel engines although other anthropogenic sources could also have an impact on the PAH levels.

  3. Characterization and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban atmospheric Particulate of Tehran, Iran.

    Science.gov (United States)

    Hoseini, Mohammad; Yunesian, Masud; Nabizadeh, Ramin; Yaghmaeian, Kamyar; Ahmadkhaniha, Reza; Rastkari, Noushin; Parmy, Saeid; Faridi, Sasan; Rafiee, Ata; Naddafi, Kazem

    2016-01-01

    In this study, atmospheric concentrations of particulate-bound polycyclic aromatic hydrocarbons (PAHs) in Tehran megacity were determined to investigate the concentration, distribution, and sources of PAHs in PM10. The health risk from exposure to airborne BaPeq through inhalation pathway was also assessed. Toxic equivalency factors (TEFs) approach was used for quantitative risk estimate, and incremental lifetime cancer risk (ILCR) was calculated. PM10 samples were collected at ten sampling locations during the summer 2013 and winter 2014 by using two independent methods of field sampling. The PM10 concentration in winter (89.55 ± 15.56 μg m(-3)) was 1.19 times higher than that in summer (75.42 ± 14.93 μg m(-3)). Sixteen PAHs were measured with the total average concentrations of PAHs ranged from 56.98 ± 15.91 to 110.35 ± 57.31 ng m(-3) in summer and from 125.87 ± 79.02 to 171.25 ± 73.94 ng m(-3) in winter which were much higher than concentrations measured in most similar studies conducted around the world. Molecular diagnostic ratios were used to identify PAH emission sources. The results indicated that gasoline-driven vehicles are the major sources of PAHs in the study area. Risk analysis showed that the mean and 90 % probability estimated inhalation ILCRs were 7.85 × 10(-6) and 16.78 × 10(-6), respectively. Results of a sensitivity analysis indicated that BaP concentration and cancer slope factor (CSF) contributed most to effect on ILCR mean.

  4. Atmospheric behaviors of particulate-bound polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in Beijing, China from 2004 to 2010

    Science.gov (United States)

    Tang, Ning; Suzuki, Genki; Morisaki, Hiroshi; Tokuda, Takahiro; Yang, Xiaoyang; Zhao, Lixia; Lin, Jinming; Kameda, Takayuki; Toriba, Akira; Hayakawa, Kazuichi

    2017-03-01

    Airborne particulates were collected at an urban site (site 1) from 2004 to 2010 and at a suburban site (site 2) in 2010 in Beijing. Nine polycyclic aromatic hydrocarbons (PAHs) and five nitropolycyclic aromatic hydrocarbons (NPAHs) in the airborne particulates were determined by HPLC with fluorescence and chemiluminescence detection, respectively. The concentrations of PAHs and NPAHs were higher in heating season than in non-heating season at the two sites. Both the concentrations of PAHs and NPAHs decreased in the non-heating season but only the concentrations of NPAHs decreased in heating season at site 1, from 2004 to 2010. These findings suggest that source control measures implemented by the city of Beijing helped to reduce air pollution in Beijing. The concentrations of PAHs increased at site 1 in 2010, possibly because of the transport of emissions from windward other areas, such as Shanxi province. Several diagnostic ratios of PAHs and NPAHs showed that the different sources contributed to Beijing's air pollution, although coal combustion was the main source in the heating season and vehicle emission was the main source in the non-heating season. An analysis of physical parameters at Beijing showed that high wind speed can remove atmospheric PAHs and NPAHs in the heating season and that high relative humidity can remove them in the non-heating season.

  5. On-line enrichment and determination of polycyclic aromatic hydrocarbons in atmospheric particulates using high performance liquid chromatography with fluorescence as detector

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Seven polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulates were determinated by high performance liquid chromatography (HPLC) with fluorescence detector using direction injection and an on-line enrichment trap column. The method simplified the sample pretreatment, saved time and increased the efficiency. With the on-line trap column, PAHs were separated availably even underground injecting 1.0 ml sample with relatively high column efficiency. The recoveries of the seven PAHs were from 85% to 120% for spiked atmospheric particulate sample. The limit of detection was 15.3-39.6 ng/L (S/N=3.3). There were good linear correlations between the peak areas and concentrations of the seven kinds of PAHs in the range of 1-50 ng/ml with the correlation coefficients over 0.9970. Furthermore, it also indicated that the method is available to determine PAHs in atmospheric particulates well.

  6. Study of polycyclic aromatic hydrocarbons in atmospheric particulate matter of an urban area with iron and steel mills.

    Science.gov (United States)

    Menezes, Helvécio C; Cardeal, Zenilda L

    2012-07-01

    Polycyclic aromatic hydrocarbons (PAHs) were analyzed from ambient air particulate matter iron and steel mills. The carcinogenic potency of priority PAHs relative to benzo[a]pyrene was estimated for a period of six months. Benzo[a]pyrene equivalents were 7.52 ng/m(3) for the study period. The estimated risk of lifetime lung cancer was 6.5 × 10(-4) . A model based on the diagnostic ratio and principal component analysis was applied for source apportionment. Considering the entire study period, the burning of biomass and fuel oil accounted for about 70% of the PAH profile. An inventory was performed during the monitoring period, with 37 companies representing major industries located in the urban area. The observations were consistent with the distribution of sources and indicated that the iron and steel sector was the largest contributor.

  7. Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tsapakis, Manolis [Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, EL-71409 Heraklion (Greece); Stephanou, Euripides G. [Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, EL-71409 Heraklion (Greece)]. E-mail: stephanou@chemistry.uoc.gr

    2005-01-01

    The presence of polycyclic aromatic hydrocarbons (PAHs) in an urban region (Heraklion, Greece) and processes that govern their atmospheric fate were studied from November 2000 until February 2002. Sixteen samples were collected, by using an artifact-free sampling device, on a monthly basis and the concentration of PAHs in gas and particulate phase was determined. The most abundant members (gas + particles) were phenanthrene (20.0 {+-} 7.0 ng m{sup -3}), fluoranthene (6.5 {+-} 1.7 ng m{sup -3}), pyrene (6.6 {+-} 2.4 ng m{sup -3}), and chrysene (3.1 {+-} 1.5 ng m{sup -3}). Total concentration (gas + particulate) of PAH ranged from 44.3 to 129.2 ng m{sup -3}, with a mean concentration of 79.3 ng m{sup -3}. Total concentration of PAHs in gas phase ranged from 31.4 to 84.7 ng m{sup -3} with non-observable seasonal variation. Conversely, maximum PAH concentrations in the particulate phase occurred during winter months. Particulate concentration varied from 11.4 to 44.9 ng m{sup -3}, with an average of 25.2 ng m{sup -3}. PAH distribution between gas and particulate phase was in agreement with the sub-cooled vapor pressure. Shift in gas/particle distribution due to difference in ambient temperature elucidated to some extent the seasonal variation of the concentration of PAHs in particles. - Capsule: Ambient PAH partitioning between gas and particle phases vary between compounds and with environmental conditions.

  8. Distribution and Source Apportionment of Polycyclic Aromatic Hydrocarbons from Atmospheric Particulate Matter PM2.5 in Beijing

    Institute of Scientific and Technical Information of China (English)

    LIU Dameng; GAO Shaopeng; AN Xianghua

    2008-01-01

    A total of 11 PM2.5 samples were collected from October 2003 to October 2004 at 8 sampling sites in Beijing city.The PM2.5 concentrations are all above the PM2.5 pollution standard(65μg m(-3))established by Environmental Protection Agency,USA(USEPA)in 1997 except for the Ming Tombs site.PM2.5 con-centrations in winter are much higher than in summer.The 16 Polycyclic aromatic hydrocarbons(PAHs)listed as priority pollutants by USEPA in PM2.5 were completely identified and quantified by high perfor-mance liquid chromatography(HPLC)with variable wavelength detector(VWD)and fluorescence detector (FLD)employed.The PM2.5 concentrations indicate that the pollution situation is still serious in Beijing.The sum of 16 PAHs concentrations ranged from 22.17 to 5366 ng m-3.The concentrations of the heavier molecular weight PAHs have a different pollution trend from the lower PAHs.Seasonal variations were mainly attributed to the difference in coal combustion emission and meteorological conditions.The source apportionment analysis suggests that PAHs from PM2.5 in Beijing city mainly come from coal combustion and vehicle exhaust emission.New measures about restricting coal combustion and vehicle exhaust must be established as soon as possible to improve the air pollution situation in Beijing city.

  9. Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark

    DEFF Research Database (Denmark)

    Feilberg, A.; Poulsen, M.W.B.; Nielsen, T.

    2001-01-01

    The occurrence of selected nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) associated with atmospheric particulate matter has been investigated at an urban site and at a semi-rural site. For this purpose an analysis method based on gas chromatography and tandem ion trap mass spectrometry has...

  10. Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea

    Science.gov (United States)

    Park, Seung S.; Kim, Young J.; Kang, Chang H.

    Daily particulate- and vapor-phase polycyclic aromatic hydrocarbons (PAH) samples were collected at an urban site in Seoul, Korea, during five intensive sampling campaigns between October 1998 and December 1999. PAH samples collected on quartz fiber filters and PUF plugs were first extracted using dichloromethane with ultrasonication and supercritical fluid extraction methods, respectively, and then analyzed by GC/MSD/SIM. Seasonal trends in atmospheric PAH concentrations in the study area were highly influenced by fossil fuel usage for domestic heating, boundary layer height, and air temperature. The relative benzo[a]pyrene amount and particulate organic to elemental carbon ratio calculated from the measurement results suggested that photo-oxidation is not an important factor in the variation of PAH concentrations during the summer sampling periods. Correlation studies between specific PAH of the individual factors identified by principal component factor analysis and meteorological parameters revealed that both temperature and relative humidity gave greater effects on the semi-volatile PAH, PHEN and FLT, rather than on the heavier PAH, B(b+k)F and BghiP.

  11. DISTRIBUTION AND CHARACTERIZATION OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN AIRBORNE PARTICULATES OF EAST ASIA

    Institute of Scientific and Technical Information of China (English)

    Yan Liu; Libin Liu; Jin-Ming Lin; Ning Tang; Kazuichi Hayakawa

    2006-01-01

    A review is presented on the distribution and characterization of polycyclic aromatic hydrocarbons (PAHs)and their derivatives, including nitro-PAHs and hydro-PAHs, on atmospheric particulates of East Asia. Generally, PAH compounds with two or three aromatic rings are released mainly into the gas phase, while those containing three or more aromatic rings are associated with particulate matter (PM) emission. Particle-associated PAHs are primarily adsorbed on fine particles, and little associated with coarse particles. Investigation into the concentration level of PAHs in different areas can serve not only to reflect the pollutant status and sources but also to lead to the formulation of control strategies.The results of the present study show that China has more severe PAH pollution than such East Asian countries as Japan and Korea.

  12. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    Science.gov (United States)

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.

  13. Recent analytical methods for atmospheric polycyclic aromatic hydrocarbons and their derivatives.

    Science.gov (United States)

    Hayakawa, Kazuichi; Tang, Ning; Toriba, Akira

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs) are ubiquitous environmental pollutants. Moreover, some oxidative metabolites of these pollutants, such as hydroxylated and epoxide PAHs, cause endocrine disruption or produce reactive oxygen species. These compounds have become a large concern from the viewpoint of particulate matter (PM2.5 ) pollution. This report deals with recent studies concerning analytical methods for PAHs, NPAHs and related compounds in atmospheric and biological samples.

  14. Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates:A review

    Institute of Scientific and Technical Information of China (English)

    LIU Li-bin; LIU Yan; LIN Jin-ming; TANG Ning; HAYAKAWA Kazuichi; MAEDA Tsuneaki

    2007-01-01

    In the present work,the different sample collection, pretreatment and analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates is systematacially reviewed, and the applications of these pretreatment and analytical methods for PAHs are compared in detail. Some comments on the future expectation are also presented.

  15. Correlation between atmospheric polycyclic aromatic hydrocarbons exposure and urinary hydroxyl metabolites of polycyclic aromatic hydrocarbons in elderly population in Tianjin

    Institute of Scientific and Technical Information of China (English)

    秦晓蕾

    2013-01-01

    Objective To identify suitable hydroxyl polycyclic aromatic hydrocarbons(OH-PAHs) for co-evaluation of internal exposure level of PAHs by simultaneous determination of a variety of OH-PAHs in urine. Methods The 24-h individual particulate matter and morning urine

  16. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.

    Science.gov (United States)

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira

    2014-09-01

    This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively.

  17. Role of volcanic dust in the atmospheric transport and deposition of polycyclic aromatic hydrocarbons and mercury.

    Science.gov (United States)

    Stracquadanio, Milena; Dinelli, Enrico; Trombini, Claudio

    2003-12-01

    The role of volcanic ash as scavenger of atmospheric pollutants, in their transport and final deposition to the ground is examined. Attention is focused on polycyclic aromatic hydrocarbons (PAHs) and on particulate mercury (Hgp). The ash-fall deposits studied belong to the 2001 and 2002 eruptive activity of Mount Etna, Southern Italy, and were investigated at three (2001) and four (2002) sites downwind of the major tephra dispersal pattern. The dry deposition of mercury and PAHs was determined, and, in particular, a downward flux to the ground of PAHs (approximately 7.29 microg m(-2) per day) and mercury (750 ng m(-2) per day) was estimated in Catania from October 26 to October 28, 2002. Finally, evidence on the anthropogenic origin of PAHs scavenged from the troposphere by volcanic ash is supported by the analysis of PAH compositions in granulometrically homogeneous fractions.

  18. Health effects of atmospheric particulates: a medical geology perspective.

    Science.gov (United States)

    Duzgoren-Aydin, Nurdan S

    2008-01-01

    In this review, atmospheric particulates as composite airborne earth materials often containing both natural and anthropogenic components were examined in the context of medical geology. Despite a vast number of both experimental and epidemiological studies confirming the direct and indirect links between atmospheric particulates and human health, the exact nature of mechanisms affecting the particulate-induced pathogenesis largely remains unexplored. Future in depth research on these areas would be most successful if potential mechanisms are examined with reference to the physical (e.g., size, shape and surface), chemical, mineralogical and source characteristics of particulate matters. The underlying goal of this review was to present the relevant terminology and processes proposed in the literature to explain the interfaces and interactions between atmospheric particles and human body within the framework of "atmospheric particle cycles." The complexities of the interactions were demonstrated through case studies focusing on particulate matter air pollution and malignant mesothelioma occurrences due to environmental exposure to erionite-a fibrous zeolite mineral. There is an urgent need for a standard protocol or speciation methods applicable to earth-materials to guide and streamline studies on etiology of mineral-induced diseases. This protocol or speciation methods should provide relevant procedures to determine the level and extent of physical, chemical and mineralogical heterogeneity of particulate matters as well as quantitative in-situ particulate characteristics.

  19. Distributions, Sources, and Backward Trajectories of Atmospheric Polycyclic Aromatic Hydrocarbons at Lake Small Baiyangdian, Northern China

    Directory of Open Access Journals (Sweden)

    Ning Qin

    2012-01-01

    Full Text Available Air samples were collected seasonally at Lake Small Baiyangdian, a shallow lake in northern China, between October 2007 and September 2008. Gas phase, particulate phase and dust fall concentrations of polycyclic aromatic hydrocarbons (PAHs were measured using a gas chromatograph-mass spectrometer (GC-MS. The distribution and partitioning of atmospheric PAHs were studied, and the major sources were identified; the backward trajectories of air masses starting from the center of Lake Small Baiyangdian were calculated for the entire year. The following results were obtained: (1 The total concentration of 16 priority controlled PAHs (PAH16 in the gas phase was 417.2±299.8 ng·m−3, in the particulate phase was 150.9±99.2 ng·m−3, and in dust fall was 6930.2±3206.5 ng·g−1. (2 Vehicle emission, coal combustion, and biomass combustion were the major sources in the Small Baiyangdian atmosphere and accounted for 28.9%, 45.1% and 26.0% of the total PAHs, respectively. (3 Winter was dominated by relatively greater PAHs polluted northwesterly air mass pathways. Summer showed a dominant relatively clean southern pathway, whereas the trajectories in autumn and spring might be associated with high pollution from Shanxi or Henan province.

  20. Geochemical markers and polycyclic aromatic hydrocarbons in solvent extracts from diesel engine particulate matter.

    Science.gov (United States)

    Fabiańska, Monika; Kozielska, Barbara; Bielaczyc, Piotr; Woodburn, Joseph; Konieczyński, Jan

    2016-04-01

    Exhaust particulate from compression ignition (CI) engines running on engine and chassis dynamometers was studied. Particulate dichloromethane extracts were qualitatively and quantitatively analyzed for polycyclic aromatic hydrocarbons (PAHs) and biomarkers by gas chromatography with flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). PAH group profiles were made and the PAH group shares according to the number of rings (2 or 3; 4; 5 or more) as well as diagnostic indices were calculated. Values of geochemical ratios of selected biomarkers and alkyl aromatic hydrocarbons were compared with literature values. A geochemical interpretation was carried out using these values and biomarker and alkyl aromatic hydrocarbon distributions. It has been shown that geochemical features are unequivocally connected to the emission of fossil fuels and biofuels burned in CI engines. The effect of the exothermic combustion process is limited to low-molecular-weight compounds, which shows that the applied methodology permits source identification of PAHs coexisting in the particulate emitted.

  1. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    Science.gov (United States)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  2. A simple, comprehensive, and miniaturized solvent extraction method for determination of particulate-phase polycyclic aromatic compounds in air.

    Science.gov (United States)

    Santos, Aldenor G; Regis, Ana Carla D; da Rocha, Gisele O; Bezerra, Marcos de A; de Jesus, Robson M; de Andrade, Jailson B

    2016-02-26

    The method allowed simultaneous characterization of PAHs, nitro-PAHs and quinones in atmospheric particulate matter. This method employs a miniaturized micro-extraction step that uses 500 μL of an acetonitrile-dichloromethane mix and instrumental analysis by means of a high-resolution GC-MS. The method was validated using the SRM1649b NIST standard reference material as well as deuterated internal standards. The results are in good agreement with the certified values and show recoveries between 75% and 145%. Limit of detection (LOD) values for PAHs were found to be between 0.5 pg (benzo[a]pyrene) to 2.1 pg (dibenzo[a,h]anthracene), for nitro-PAHs ranged between 3.2 pg (1-nitrobenzo[e]pyrene) and 22.2 pg (3-nitrophenanthrene), and for quinones ranged between 11.5 pg (1,4-naphthoquinone) and 458 pg (9,10-phenanthraquinone). The validated method was applied to real PM10 samples collected on quartz fiber filters. Concentrations in the PM10 samples ranged from 0.06 to 15 ng m(-3) for PAHs, frompolycyclic aromatic compounds in airborne particles from both polluted and non-polluted atmospheres.

  3. Mineralogy and geochemistry of atmospheric particulates in western Iran

    Science.gov (United States)

    Ahmady-Birgani, Hesam; Mirnejad, Hassan; Feiznia, Sadat; McQueen, Ken G.

    2015-10-01

    This study investigates the mineralogy and physico-chemical properties of atmospheric particulates collected at Abadan (southwestern Iran) near the Persian Gulf coast and Urmia (northwestern Iran) during ambient and dust events over 6 months (winter 2011; spring 2012). Particle sizes collected were: TSP (total suspended particulates); PM10 (particulates Al, Mg, Na, Cl, P, S, Ca, K, Fe, Ti, and Si, mostly reflecting calcite, quartz, aluminosilicates, clays, gypsum and halite. Additionally, As, Pb, Zn, Mn, Sc, Nd, W, Ce, La, Ba and Ni were detected in TSP, PM10 and PM2.5 samples collected during dust events.

  4. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences

    2014-07-01

    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  5. Occupational exposure to polycyclic aromatic hydrocarbons in airborne particulate matter: validation and application of a gas chromatography-mass spectrometry analytical method.

    Science.gov (United States)

    Fioretti, Marzia; Catrambone, Tamara; Gordiani, Andrea; Cabella, Renato

    2010-12-01

    This study concerns the validation of an analytical method for the measurement of occupational exposure to trace levels of polycyclic aromatic hydrocarbons (PAHs) in airborne particulate matter (APM). Personal exposure to selected PAHs of five workers occupationally exposed to urban pollution in Rome, Italy, was evaluated. The samples were collected over 10 days evenly distributed during winter and summer of 2008. Polycyclic aromatic hydrocarbons were collected by a sampling pump and trapped in polytetrafluoroethylene filters; ultrasonic extraction was applied to extract PAH species from the matrix with toluene, and the concentrated extract was quantitatively analyzed by GC/MS. The analytical method was optimized and validated using a standard reference material of urban dust (SRM 1649a). Detection limits ranged from 0.8 ng per sample for indeno [1,2,3-cd] pyrene to 20.4 ng for sample for anthracene. Experimental results of the 50 personal samples collected showed that phenanthrene was the predominant polycyclic aromatic hydrocarbon [95% CI (32.42-41.13 ng m(-3))]; the highest benzo[a]pyrene concentration was 2.58 ng m(-3), approximately 2-fold higher than European annual target values (1 ng m(-3)). Seasonal variations of personal exposure to selected PAHs suggested higher emissions and reduced atmospheric reactivity of PAH compounds in winter. The analytical method was a suitable procedure for the determination of 13 of the 16 priority PAHs in APM personal samples and can be considered a useful tool to evaluate occupational exposure to low PAH levels.

  6. Spatial and temporal variability of particulate polycyclic aromatic hydrocarbons in Mexico City

    Science.gov (United States)

    Thornhill, D. A.; de Foy, B.; Herndon, S. C.; Onasch, T. B.; Wood, E. C.; Zavala, M.; Molina, L. T.; Gaffney, J. S.; Marley, N. A.; Marr, L. C.

    2008-06-01

    As part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) study in the Mexico City Metropolitan Area in March 2006, we measured particulate polycyclic aromatic hydrocarbons (PAHs) and other gaseous species and particulate properties, including light absorbing carbon or effective black carbon (BC), at six locations throughout the city. The measurements were intended to support the following objectives: to describe spatial and temporal patterns in PAH concentrations, to gain insight into sources and transformations of PAHs and BC, and to quantify the relationships between PAHs and other pollutants. Total particulate PAHs at the Instituto Mexicano del Petróleo (T0 supersite) located near downtown averaged 50 ng m-3, and aerosol active surface area averaged 80 mm2 m-3. PAHs were also measured on board the Aerodyne Mobile Laboratory, which visited six sites encompassing a mixture of different land uses and a range of ages of air parcels transported from the city core. A combination of analyses of time series, back trajectories, concentration fields, pollutant ratios, and correlation coefficients supports the concept of T0 as an urban source site, T1 as a receptor site with strong local sources, Pedregal and PEMEX as intermediate sites, Pico Tres Padres as a vertical receptor site, and Santa Ana as a downwind receptor site. Weak intersite correlations suggest that local sources are important and variable and that exposure to PAHs and BC cannot be represented by a single regional-scale value. The relationships between PAHs and other pollutants suggest that a variety of sources and ages of particles are present. Among carbon monoxide, nitrogen oxides (NOx), and carbon dioxide, particulate PAHs are most strongly correlated with NOx. Mexico City's PAH/BC mass ratio of 0.01 is similar to that found on a freeway loop in the Los Angeles area and approximately 8 30 times higher than that found in other cities. Evidence also suggests that primary

  7. Spatial and temporal variability of particulate polycyclic aromatic hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    D. A. Thornhill

    2008-06-01

    Full Text Available As part of the Megacities Initiative: Local and Global Research Observations (MILAGRO study in the Mexico City Metropolitan Area in March 2006, we measured particulate polycyclic aromatic hydrocarbons (PAHs and other gaseous species and particulate properties, including light absorbing carbon or effective black carbon (BC, at six locations throughout the city. The measurements were intended to support the following objectives: to describe spatial and temporal patterns in PAH concentrations, to gain insight into sources and transformations of PAHs and BC, and to quantify the relationships between PAHs and other pollutants. Total particulate PAHs at the Instituto Mexicano del Petróleo (T0 supersite located near downtown averaged 50 ng m−3, and aerosol active surface area averaged 80 mm2 m−3. PAHs were also measured on board the Aerodyne Mobile Laboratory, which visited six sites encompassing a mixture of different land uses and a range of ages of air parcels transported from the city core. A combination of analyses of time series, back trajectories, concentration fields, pollutant ratios, and correlation coefficients supports the concept of T0 as an urban source site, T1 as a receptor site with strong local sources, Pedregal and PEMEX as intermediate sites, Pico Tres Padres as a vertical receptor site, and Santa Ana as a downwind receptor site. Weak intersite correlations suggest that local sources are important and variable and that exposure to PAHs and BC cannot be represented by a single regional-scale value. The relationships between PAHs and other pollutants suggest that a variety of sources and ages of particles are present. Among carbon monoxide, nitrogen oxides (NOx, and carbon dioxide, particulate PAHs are most strongly correlated with NOx. Mexico City's PAH/BC mass ratio of 0.01 is similar to that found on a freeway loop in the Los Angeles area and approximately 8–30

  8. In vitro estrogenicity of ambient particulate matter: contribution of hydroxylated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wenger, Daniela; Gerecke, Andreas C; Heeb, Norbert V; Schmid, Peter; Hueglin, Christoph; Naegeli, Hanspeter; Zenobi, Renato

    2009-04-01

    Atmospheric particulate matter (PM1) was collected at an urban and a rural site in Switzerland during a hibernal high air pollution episode and was investigated for estrogenicity using an estrogen-sensitive reporter gene assay (ER-CALUX). All samples that were tested induced estrogen receptor-mediated gene expression in T47D human breast adenocarcinoma cells. Observed estrogenic activities corresponded to 17beta-estradiol (E2) CALUX equivalent concentrations ranging from 2 to 23 ng E2-CEQ per gram of PM1 (particulate matter of 2-hydroxyphenanthrene > 1-hydroxypyrene > 2-hydroxynaphthalene > 1-hydroxynaphthalene. Three of these hydroxy-PAHs, namely 2-hydroxyphenanthrene, 2-hydroxynaphthalene and 1-hydroxynaphthalene, were detected in all PM1 extracts. However, they contributed only 0.01-0.2% to the overall estrogenic activity. Hence, mainly other estrogenic compounds not yet identified by chemical analysis must be responsible for the observed activity. The temporal trend of PM1 estrogenicity at the urban and rural site, respectively, was compared with the time course of several air pollutants (NO2, NO, SO2, O3, CO) and meteorological parameters (temperature, humidity, air pressure, solar irradiation, wind velocity). However, specific emission sources and formation processes of atmospheric xenoestrogens could not be elucidated. This study showed that ambient particulate matter contains compounds that are able to interact with estrogen receptors in vitro and potentially also interfere with estrogen-regulated pathways in vivo.

  9. Cumulative health risk assessment of halogenated and parent polycyclic aromatic hydrocarbons associated with particulate matters in urban air.

    Science.gov (United States)

    Sun, Jian-Lin; Jing, Xin; Chang, Wen-Jing; Chen, Zheng-Xia; Zeng, Hui

    2015-03-01

    Halogenated polycyclic aromatic hydrocarbons (HPAHs) have been reported to occur widely in urban air. Nevertheless, knowledge about the human health risk associated with inhalation exposure to HPAHs is scarce so far. In the present study, nine HPAHs and 16 PAHs were determined in atmospheric particulate matter (PM) collected from Shenzhen, China to address this issue. Concentrations of Σ9HPAHs varied from 0.1 to 1.5 ng/m(3) and from 0.09 to 0.4 ng/m(3) in PM10 and PM2.5 samples, respectively. As for individuals, 9-bromoanthracene, 7-bromobenz(a)anthracene, and 9,10-dibromoanthracene were the dominant congeners. Levels of Σ16PAHs in PM10 and PM2.5 samples ranged from 3.2 to 81 ng/m(3) and from 2.8 to 85 ng/m(3), respectively. Among individual PAHs, chrysene, benzo[b]fluoranthene, and indeno[1,2,3-c,d]pyrene were the main congeners. According to the season, concentrations of HPAHs and PAHs in atmospheric PM10/PM2.5 samples show a similar decreasing trend with an order: winter>autumn>spring>summer. The daily intake (DI) of PM10/PM2.5-bound HPAHs and PAHs were estimated. Our results indicated that children have the highest DI levels via inhalation exposure. The incremental lifetime cancer risk (ILCR) induced by PM10/PM2.5-bound HPAHs and PAHs were calculated. The ILCR values showed a similar decreasing trend with an order: adults>children>seniors>adolescent. Overall, the ILCR values induced by HPAHs and PAHs were far below the priority risk level (10(-4)), indicating no obvious cancer risk. To our knowledge, this is the first study to investigate the human health risk associated with inhalation exposure to PM10/PM2.5-bound HPAHs.

  10. Characteristics of particulate-bound polycyclic aromatic hydrocarbons emitted from industrial grade biomass boilers.

    Science.gov (United States)

    Yang, Xiaoyang; Geng, Chunmei; Sun, Xuesong; Yang, Wen; Wang, Xinhua; Chen, Jianhua

    2016-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic or mutagenic and are important toxic pollutants in the flue gas of boilers. Two industrial grade biomass boilers were selected to investigate the characteristics of particulate-bound PAHs: one biomass boiler retro-fitted from an oil boiler (BB1) and one specially designed (BB2) biomass boiler. One coal-fired boiler was also selected for comparison. By using a dilution tunnel system, particulate samples from boilers were collected and 10 PAH species were analyzed by gas chromatography-mass spectrometry (GC-MS). The total emission factors (EFs) of PAHs ranged from 0.0064 to 0.0380 mg/kg, with an average of 0.0225 mg/kg, for the biomass boiler emission samples. The total PAH EFs for the tested coal-fired boiler were 1.8 times lower than the average value of the biomass boilers. The PAH diagnostic ratios for wood pellets and straw pellets were similar. The ratio of indeno(1,2,3-cd)pyrene/[indeno(1,2,3-cd)pyrene+benzo(g,h,i)perylene] for the two biomass boilers was lower than those of the reference data for other burning devices, which can probably be used as an indicator to distinguish the emission of biomass boilers from that of industrial coal-fired boilers and residential stoves. The toxic potential of the emission from wood pellet burning was higher than that from straw pellet burning, however both of them were much lower than residential stove exhausts.

  11. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    Science.gov (United States)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P natural gas emissions. In particular diesel vehicular emissions were the major source of PAHs at the studied sites. The use of Toxicity Equivalence Quantity (TEQ) concentration provide a better estimation of carcinogenicity activities; health risk to adults and children associated with PAHs inhalation was assessed by taking into account the lifetime average daily dose and corresponding incremental lifetime cancer risk (ILCR). The ILCR was within the acceptable range (10-6-10-4), indicating a low health risk to residents in these areas.

  12. Atmospheric particulate mercury in Lhasa city, Tibetan Plateau

    Science.gov (United States)

    Huang, Jie; Kang, Shichang; Guo, Junming; Zhang, Qianggong; Cong, Zhiyuan; Sillanpää, Mika; Zhang, Guoshuai; Sun, Shiwei; Tripathee, Lekhendra

    2016-10-01

    In an effort to understand the biogeochemical cycling and seasonal characteristics of atmospheric Hg, a total of 80 daily sampled total suspended particulates were collected at Lhasa, the largest city of Tibet, from April 2013 to August 2014 for particulate-bound Hg (HgP) analysis. Daily concentrations of atmospheric HgP ranged from 61.2 to 831 pg m-3 with an average of 224 pg m-3, which were unexpectedly comparable to those measured in most of the Chinese metropolises. Both the daily/monthly average HgP concentrations were slightly but not significantly higher during the non-monsoon season than during the monsoon season. Together with the fact that there was lack of significant relationship between HgP concentration and most meteorological parameters, no significant and distinct pattern for the seasonal characteristics of atmospheric HgP could be mainly attributed to the almost equal emission strength of two principal anthropogenic Hg sources (i.e., industrial emission sources during the non-monsoon season, and vehicular traffic and religious sources during the monsoon season). Moreover, the HgP dry deposition rate was estimated to be 35.3 μg m-2 yr-1 by using a theoretical model, which was significantly higher than those Hg wet fluxes. The elevated deposition rate implied that dry deposition may play an important role in the biogeochemical Hg cycling over the Tibetan Plateau.

  13. Atmospheric chemistry of polycyclic aromatic compounds with special emphasis on nitro derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Feilberg, A.

    2000-04-01

    Field measurements of polycyclic aromatic compounds (PAC) have been carried out at a semi-rural site and at an urban site. Correlation analyses, PAC indicators, and PAC ratios have been used to evaluate the importance of various sources of nitro-PAHs. A major source of nitro-PAHs is atmospheric transformation of PAHs initiated by OH radicals. Especially during long-range transport (LRT) of air pollution from Central Europe, the nitro-PAH composition in Denmark is dominated by nitro-PAHs formed in the atmosphere. Locally emitted nitro-PAHs are primarily from diesel vehicles. Levels of unsubstituted PAHs can also be strongly elevated in connection with LRT episodes. The ratio of 2-nitrofluoranthene relative to 1-nitropyrene is proposed as a measure of the relative photochemical age of particulate matter. Using this ratio, the relative mutagenicity of particle extracts appears to increase with increasing photochemical age. In connection with the field measurements, a method for measuring nitro-PAHs in particle extracts based on MS-MS detection has been developed. The atmospheric chemistry of nitronaphthalenes has been investigated with a smog chamber system combined with simulation with photochemical kinetics software. A methodology to implement gas-particle partitioning in a model based on chemical kinetics is described. Equilibrium constants (KP) for gas-particle partitioning of 1- and 2-nitronaphthalene have been determined. Mass transfer between the two phases appears to occur on a very short timescale. The gas phase photolysis of the nitronaphthalenes depends upon the molecular conformation. Significantly faster photolysis of 1-nitronaphthalene than of 2-nitronaphthalene is observed. The photochemistry of nitro-PAHs, and to some extent other PAC, associated with organic aerosols, has been studied with model systems simulating organic aerosol material. A number of aerosol constituents, including substituted phenols, benzaldehydes, and oxy-PAHs, are demonstrated to

  14. Determination of selected oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) in diesel and air particulate matter standard reference materials (SRMs).

    Science.gov (United States)

    Nocun, Margarete S; Schantz, Michele M

    2013-06-01

    Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) have recently received much attention in discussions regarding the negative impacts of particulate matter (PM) on human health and the environment. The National Institute of Standards and Technology provides several environmental matrix standard reference materials (SRMs) with certified and reference values for polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs. In this study, the concentrations of oxygenated PAHs are determined in three air PM SRMs (1649b, 1648a, and 2786) and three diesel PM SRMs (1650b, 2975, and 1975) using two independent gas chromatography-mass spectrometry methods. Concentrations of oxy-PAHs were at the milligrams per kilogram level with higher overall concentrations in diesel PM (up to 50 mg/kg for 9,10-anthraquinone). One of the highest oxy-PAH concentrations (up to 5 mg/kg) measured in the air particulate SRMs was for 7,12-benz[a]anthracenquinone. These results suggest that oxygenated PAHs should not be neglected in the analysis of PM as their concentrations can be as high as those of some PAHs and are one to two orders of magnitude higher than those for nitro-PAHs.

  15. Sanitary impact of the particulate atmospheric urban pollution; Impact sanitaire de la pollution atmospherique urbaine particulaire

    Energy Technology Data Exchange (ETDEWEB)

    Sentissi, M.

    1999-03-22

    The pollution of particulates origin is one of the principle actual problem relative to air quality. In France, the fine particulates come from industry and automobile traffic, especially, the diesel vehicles. The most worrying characteristic is their fineness, that allow them to stay in suspension during a long time and penetrate into pulmonary alveoli, with toxic elements at their surface such metals, acids, polycyclic aromatic hydrocarbons. The objective of this work is to take stock of epidemiology and toxicology studies evaluating the sanitary impact of particulates in suspension. (N.C.)

  16. Assessment of atmospheric distribution of polychlorinated biphenyls and polycyclic aromatic hydrocarbons using polyparameter model

    Directory of Open Access Journals (Sweden)

    Turk-Sekulić Maja M.

    2011-01-01

    Full Text Available Results of partial or total destruction of industrial plants, military targets, infrastructure, uncontrolled fires and explosions during the conflict period from 1991 to 1999, at the area of Western Balkans, were large amounts of hazardous organic matter that have been generated and emitted in the environment. In order to assess gas/particle partition of seven EPA polychlorinated biphenyls and sixteen EPA polycyclic aromatic hydrocarbons, twenty air samples have been collected at six urban, industrial and highly contaminated localities in Vojvodina. Hi-Vol methodology has been used for collecting ambiental air samples, that simultaneously collects gaseous and particulate phase with polyurethane foam filters (PUF and glass fiber filters (GFF. PUF and GFF filters have been analyzed, and concentration levels of gaseous PCBs and PAHs molecules in gaseous and particulate phase were obtained, converted and expressed through fraction of individual compounds sorbed onto particulate phase of the sample, in total detected quantity. Experimentally gained gas/particle partitioning values of PCBs and PAHs molecules have been compared with PP-LFER model estimated values. Significant deviation has been noticed during comparative analysis of estimated polyparameter model values for complete set of seven PCBs congeners. Much better agreement of experimental and estimated values is for polycyclic aromatic hydrocarbons, especially for molecules with four rings. These results are in a good correlation with literature data where polyparameter model has been used for predicting gas/particle partition of studied group of organic molecules.

  17. Atmospheric Input of Particulate Matter In The Arctic Ocean

    Science.gov (United States)

    Shevchenko, V. P.; Klyuvitkin, A. A.; Kriews, M.; Lisitzin, A. P.; Nothig, E.-M.; Novigatsky, A. N.; Smirnov, V. V.; Stein, R.; Vinogradova, A. A.

    Numerous studies have shown that aerosols in the Arctic are of importance for atmo- spheric chemistry and climate. But up to now atmospheric input of particulate matter in the Arctic Ocean is studied insufficiently. We began aerosol research in the Arctic marine boundary layer in 1991. In this presentation we summarized data on parti- cle size and composition of aerosols and on particulate material in snow cover col- lected during 10 years (1991-2000) onboard of Russian research vessels and German icebreaker "Polarstern". Concentrations of most chemical elements are nearly of the same order as literature data from other Arctic areas. A catastrophic increase of ele- ment content due to anthropogenic factor in the summer-autumn has not been found. The balance calculations based on our and literature data show that the contribution of aerosols to formation of the sedimentary material in the Arctic is close to the con- tribution of the river sediments beyond the marginal filters of rivers. For some chem- ical elements (Pb, Sb, Se, V) the aeolian source is very important. Our studies were financially supported by the Russian Foundation of Basic Research (grants RFBR 96- 05-00043 and 98-05-64279), DFG (grant STE-412/10-2) and by German and Russian Ministries for Science and Technology in the frame of Otto Schmidt Laboratory fel- lowship and "Laptev Sea 2000" project.

  18. Source Contribution Analysis of Surface Particulate Polycyclic Aromatic Hydrocarbon Concentrations in Northeastern Asia by Source-receptor Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-11-01

    We analyzed the sourceereceptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40-60%) and central China (30-40°N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.

  19. Composition of torched crude oil organic particulate emitted by refinery and its similarity to atmospheric aerosol in the surrounding area.

    Science.gov (United States)

    Yassaa, Noureddine; Cecinato, Angelo

    2005-09-01

    The absolute contents and relative distributions of organic aerosols [n-alkanes, n-alkanoic and n-alkenoic acids, n-alkan-2-ones and polycyclic aromatic hydrocarbons (PAH)] were determined in torched gases emitted during the crude oil extraction and in the free atmosphere of the Hassi-Messaoud city (Algeria). Monocarboxylic acids, both saturated and monounsaturated (from 9802 to 20,057 ng m(-3)), accounted for the major fraction of the total particulate organic matter identified both in torch exhaust and atmospheric particulate. n-Alkanes were also abundant both in the direct emission (from 460 to 632 ng m(-3)) and city atmosphere (462 ng m(-3)) and displayed a peculiar fingerprint characterised by the presence of a set of branched congeners around even carbon-numbered homologues and a strong even-to-odd predominance along the whole carbon number range (C16-C34). Whilst n-alkan-2-ones were absent in the city and poor in smokes emitted from the torches (from 31 to 42 ng m(-3)), PAH were present at low extents in all sites (from 18 to 65 ng m(-3)). The incomplete thermal combustion of torched crude oil was very likely the main source of these particle-bound organic constituents in the city and its surrounding region.

  20. Chemical characterization and stable carbon isotopic composition of particulate polycyclic aromatic hydrocarbons issued from combustion of 10 Mediterranean woods

    Directory of Open Access Journals (Sweden)

    A. Guillon

    2012-08-01

    Full Text Available The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were measured by gas chromatography coupled with a mass spectrometer (GC/MS and molecular isotopic compositions (δ13C of particulate-PAHs were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS. Wood species present similar molecular profiles with benz(aanthracene and chrysene as dominant PAHs, whereas levels of concentrations range from 1.8 to 11.4 mg g−1 OC (sum of PAHs. Diagnostic ratios are consistent with reference ratios from literature but are not sufficient to differentiate the different species of woods. Concerning isotopic methodology, PAH molecular isotopic compositions are specific for each species and contrary to molecular fingerprints, significant variations of δ13C are observed for the panel of PAHs. This work allows differentiating wood combustion from others origins of particulate matter (vehicular exhaust using isotopic measurements (with δ13CPAH = −28.7 to −26.6‰ but also confirms the necessity to investigate source characterisation at the emission in order to help and complete source assessment models. These first results on woodburnings will be useful for the isotopic approach of source tracking.

  1. Free amino acids in atmospheric particulate matter of Venice, Italy

    Science.gov (United States)

    Barbaro, Elena; Zangrando, Roberta; Moret, Ivo; Barbante, Carlo; Cescon, Paolo; Gambaro, Andrea

    2011-09-01

    The concentrations of free amino acids were determined in atmospheric particulate matter from the city of Venice (Italy) in order to better understand their origin. The analysis of aerosol samples was carried out via high-performance liquid chromatography coupled to a triple quadrupole tandem mass spectrometric detector (HPLC/ESI-MS/MS). The internal standard method was used and the analytical procedure was validated by evaluating the trueness, the precision, the recovery, the detection and the quantification limits. The particulate matter was collected using quartz fiber filters and extracted in methanol; after filtration the extract was directly analyzed. Forty samples were collected from April to October 2007 and the average concentrations of free amino acids in the aerosol were: alanine 35.6 pmol m -3, aspartic acid 31.1 pmol m -3, glycine 30.1 pmol m -3, glutamic acid 32.5 pmol m -3, isoleucine 2.4 pmol m -3, leucine 2.7 pmol m -3, methionine, cystine and 3-hydroxy-proline below the limit of detection, phenylalanine 2.8 pmol m -3, proline 43.3 pmol m -3, serine 8.6 pmol m -3, threonine 2.8 pmol m -3, tyrosine 1.7 pmolm -3, valine 3.8 pmol m -3, asparagine 70.2 pmol m -3, glutamine 38.0 pmol m -3, 4-hydroxy-proline 2.5 pmol m -3, methionine sulfoxide 1.1 pmol m -3, and methionine sulfone 0.1 pmol m -3. The total average concentration of these free amino acids in aerosol samples of Venice Lagoon was 334 pmol m -3. The temporal evolution and multivariate analysis indicated the photochemical origin of 4-hydroxy-proline and methionine sulfoxide and for other compounds an origin further away from the site of sampling, presumably reflecting transport from terrestrial sources.

  2. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification

    Science.gov (United States)

    Cheng, Chen; Bi, Chunjuan; Wang, Dongqi; Yu, Zhongjie; Chen, Zhenlou

    2017-01-01

    This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 mg·L-1 and were correlated with temperature (PPAHs concentrations ranged from 3.60-92.15 mg·L-1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 mg·m-2·d-1 and 4.06 mg·m-2·d-1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs.

  3. Cancer risk from polycyclic aromatic compounds in fine particulate matter generated from household coal combustion in Xuanwei, China.

    Science.gov (United States)

    Lui, K H; Bandowe, Benjamin A Musa; Tian, Linwei; Chan, Chi-Sing; Cao, Jun-Ji; Ning, Zhi; Lee, S C; Ho, K F

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM2.5) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. A sample from the community with the highest mortality contained the highest total concentration of PAHs, OPAHs and AZAs and posed the highest excess cancer risk from a lifetime of inhaling fine particulates. Positive correlations between total carbonyl-OPAHs, total AZAs and total PAHs implied that the emissions were dependent on similar factors, regardless of sample location and type. The calculated cancer risk ranged from 5.23-10.7 × 10(-3), which is higher than the national average. The risk in each sample was ∼1-2 orders of magnitude higher than that deemed high risk, suggesting that the safety of these households is in jeopardy. The lack of potency equivalency factors for the PAH derivatives could possibly have underestimated the overall cancer risk.

  4. Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter

    Science.gov (United States)

    Sagan, Carl; Khare, B. N.; Thompson, W. R.; Mcdonald, G. D.; Wing, Michael R.; Bada, Jeffrey L.; Vo-Dinh, Tuan; Arakawa, E. T.

    1993-01-01

    PAHs are important components of the interstellar medium and carbonaceous chondrites, but have never been identified in the reducing atmospheres of the outer solar system. Incompletely characterized complex organic solids (tholins) produced by irradiating simulated Titan atmospheres reproduce well the observed UV/visible/IR optical constants of the Titan stratospheric haze. Titan tholin and a tholin generated in a crude simulation of the atmosphere of Jupiter are examined by two-step laser desorption/multiphoton ionization mass spectrometry. A range of two- to four-ring PAHs, some with one to four alkylation sites, are identified, with a net abundance of about 0.0001 g/g (grams per gram) of tholins produced. Synchronous fluorescence techniques confirm this detection. Titan tholins have proportionately more one- and two-ring PAHs than do Jupiter tholins, which in turn have more four-ring and larger PAHs. The four-ringed PAH chrysene, prominent in some discussions of interstellar grains, is found in Jupiter tholins.

  5. A quantitative assessment of source contributions to fine particulate matter (PM2.5)-bound polycyclic aromatic hydrocarbons (PAHs) and their nitrated and hydroxylated derivatives in Hong Kong.

    Science.gov (United States)

    Ma, Yiqiu; Cheng, Yubo; Qiu, Xinghua; Lin, Yan; Cao, Jing; Hu, Di

    2016-12-01

    Atmospheric polycyclic aromatic hydrocarbons (PAHs) and their derivatives are of great concern due to their adverse health effects. However, source identification and apportionment of these compounds, particularly their nitrated and hydroxylated derivatives (i.e., NPAHs and OHPAHs), in fine particulate matter (PM2.5) in Hong Kong are still lacking. In this study, we conducted a 1-year observation at an urban site in Hong Kong. PM2.5-bound PAHs and their derivatives were measured, with median concentrations of 4590, 44.4 and 31.6 pg m(-3) for ∑21PAHs, ∑13NPAHs, and ∑12OHPAHs, respectively. Higher levels were observed on regional pollution days than on long regional transport (LRT) or local emission days. Based on positive matrix factorization analysis, four sources were determined: marine vessels, vehicle emissions, biomass burning, and a mixed source of coal combustion and NPAHs secondary formation. Coal combustion and biomass burning were the major sources of PAHs, contributing over 85% of PAHs on regional and LRT days. Biomass burning was the predominant source of OHPAHs throughout the year, while NPAHs mainly originated from secondary formation and fuel combustion. For benzo[a]pyrene (BaP)-based PM2.5 toxicity, the mixed source of coal combustion and NPAHs secondary formation was the major contributor, followed by biomass burning and vehicle emissions.

  6. Polycyclic aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effect of the primary furnace temperature.

    Science.gov (United States)

    Wang, J; Levendis, Y A; Richter, H; Howard, J B; Carlson, J

    2001-09-01

    A study is presented on laboratory-scale combustion of polystyrene (PS) to identify staged-combustion conditions that minimize emissions. Batch combustion of shredded PS was conducted in fixed beds placed in a bench-scale electrically heated horizontal muffle furnace. In most cases, combustion of the samples occurred by forming gaseous diffusion flames in atmospheric pressure air. The combustion effluent was mixed with additional air, and it was channeled to a second muffle furnace (afterburner) placed in series. Further reactions took place in the secondary furnace at a residence time of 0.7 s. The gas temperature of the primary furnace was varied in the range of 500-1,000 degrees C, while that of the secondary furnace was kept fixed at 1,000 degrees C. Sampling for CO, CO2, O2, soot, and unburned hydrocarbon emissions (volatile and semivolatile, by GC-MS) was performed at the exits of the two furnaces. Results showed that the temperature of the primary furnace, where PS gasifies, is of paramount importance to the formation and subsequent emissions of organic species and soot. Atthe lowesttemperatures explored, mostly styrene oligomers were identified at the outlet of the primary furnace, but they did not survive the treatment in the secondary furnace. The formation and emission of polycyclic aromatic hydrocarbons (PAH) and soot were suppressed. As the temperature in the first furnace was raised, increasing amounts of a wide range of both unsubstituted and substituted PAH containing up to at least seven condensed aromatic rings were detected. A similar trend was observed for total particulate yields. The secondary furnace treatment reduced the yields of total PAH, but it had an ambiguous effect on individual species. While most low molecular mass PAH were reduced in the secondary furnace, concentrations of some larger PAH increased under certain conditions. Thus, care in the selection of operating conditions of both the primary furnace (gasifier/ burner) and the

  7. Exposure to daily ambient particulate polycyclic aromatic hydrocarbons and cough occurrence in adult chronic cough patients: A longitudinal study

    Science.gov (United States)

    Anyenda, Enoch Olando; Higashi, Tomomi; Kambayashi, Yasuhiro; Thao, Nguyen Thi Thu; Michigami, Yoshimasa; Fujimura, Masaki; Hara, Johsuke; Tsujiguchi, Hiromasa; Kitaoka, Masami; Asakura, Hiroki; Hori, Daisuke; Yamada, Yohei; Hayashi, Koichiro; Hayakawa, Kazuichi; Nakamura, Hiroyuki

    2016-09-01

    The specific components of airborne particulates responsible for adverse health effects have not been conclusively identified. We conducted a longitudinal study on 88 adult patients with chronic cough to evaluate whether exposure to daily ambient levels of particulate polycyclic aromatic hydrocarbons (PAH) has relationship with cough occurrence. Study participants were recruited at Kanazawa University Hospital, Japan and were physician-diagnosed to at least have asthma, cough variant asthma and/or atopic cough during 4th January to 30th June 2011. Daily cough symptoms were collected by use of cough diaries and simultaneously, particulate PAH content in daily total suspended particles collected on glass fiber filters were determined by high performance liquid chromatography coupled with fluorescence detector. Population averaged estimates of association between PAH exposure and cough occurrence for entire patients and subgroups according to doctor's diagnosis were performed using generalized estimating equations. Selected adjusted odds ratios for cough occurrence were 1.088 (95% confidence interval (CI): 1.031, 1.147); 1.209 (95% CI: 1.060, 1.379) per 1 ng/m3 increase for 2-day lag and 6-day moving average PAH exposure respectively. Likewise, 5 ring PAH had higher odds in comparison to 4 ring PAH. On the basis of doctor's diagnosis, non-asthma group had slightly higher odds ratio 1.127 (95% CI: 1.033, 1.228) per 1 ng/m3 increase in 2-day lag PAH exposure. Our findings suggest that ambient PAH exposure is associated with cough occurrence in adult chronic cough patients. The association may be stronger in non-asthma patients and even at low levels although there is need for further study with a larger sample size of respective diagnosis and inclusion of co-pollutants.

  8. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate phase from burning incenses with various atomic hydrogen/carbon ratios

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tzu-Ting, E-mail: d89844001@ntu.edu.tw [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu, 300, Taiwan (China); Lin, Shaw-Tao [Department of Applied Chemistry, Providence University, 200 Chung-Chi Rd., Salu Dist., Taichung City 43301, Taiwan (China); Lin, Tser-Sheng [Department of Safety, Health, and Environmental Engineering, National United University, 2 Lien Da, Maioli, 360, Taiwan (China); Hong, Wei-Lun [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu, 300, Taiwan (China)

    2012-01-01

    Polycyclic aromatic hydrocarbons in the particulate phase generated from burning various incense was investigated by a gas chromatography/mass spectrometry. Among the used incenses, the atomic H/C ratio ranged from 0.51 to 1.69, yielding the emission factor ranges for total particulate mass and PAHs of 4.19-82.16 mg/g and 1.20-9.50 {mu}g/g, respectively. The atomic H/C ratio of the incense was the key factor affecting particulate mass and the PAHs emission factors. Both the maximum emission factor and the slowest burning rate appear at the H/C ratio of 1.57. The concentrations of the four-ring PAHs predominated and the major species among the 16 PAHs were fluoranthene, phenanthrene, pyrene, and chrysene for most incense types. The benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, and dibenzo[a,h]anthracene accounted for 87.08-93.47% of the total toxic equivalency emission factor. - Highlights: Black-Right-Pointing-Pointer The atomic H/C ratio of incense was the key factor affecting PAHs emission factors. Black-Right-Pointing-Pointer Burning incense with lower atomic H/C ratio minimized the production of total PAHs. Black-Right-Pointing-Pointer The BaP, BaA, BbF, and DBA accounted for 87.08-93.47% of the TEQ emission factor. Black-Right-Pointing-Pointer Special PAH ratios were regarded as characteristic ratios for burning incense.

  9. Generation rates and emission factors of particulate matter and particle-bound polycyclic aromatic hydrocarbons of incense sticks.

    Science.gov (United States)

    Lung, Shih-Chun Candice; Hu, Shu-Chuan

    2003-02-01

    The generation rates and emission factors of particulate matter and associated polycyclic aromatic hydrocarbons (PAHs) from incense burning were assessed in a laboratory setting. The differences among different segments of the same stick, among different sticks of the same kind of incense, and between two kinds of manually made Chih-Chen incense sticks (A and B) were evaluated. Joss sticks were burned inside a 44 cm long elutriator; personal environmental monitors fitted into the top of the elutriator were used to take PM2.5 and PM10 samples of incense smoke. Samples were analyzed for PAHs by gas chromatography-flame ionization Detector. It was found that particle and associated PAHs were generated approximately at 561 microg/min (geometric standard deviation (GSD) = 1.1) and 0.56 microg/min (GSD = 1.1) from Incense A, and at 661 microg/min (GSD = 1.7) and 0.46 microg/min (GSD = 1.3) from Incense B, respectively. One gram of Incense A emitted about 19.8 mg (GSD = 1.1) particulate matter and 17.1 microg (GSD = 1.2) particulate-phase PAHs, while one gram of Incense B produced around 43.6 mg (GSD = 1.1) of particles and 25.2 microg (GSD = 1.2) of particle-bound PAHs. There were significant differences in emissions between Incenses A and B, although they belong to the same class of incense. A 10-20% variability in emissions was observed in the main part of the manually produced stick, and a larger variation was found at both tips of the combustible part.

  10. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected.

  11. Size distributions of polycyclic aromatic hydrocarbons in the atmosphere and estimation of the contribution of ultrafine particles to their lung deposition.

    Science.gov (United States)

    Kawanaka, Youhei; Tsuchiya, Yoshiteru; Yun, Sun-Ja; Sakamoto, Kazuhiko

    2009-09-01

    This is the first estimation of the contribution of ultrafine particles to the lung deposition of particle-bound polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. The size distributions of nine PAHs (4-6 rings) were measured at roadside and suburban sites in winter in Japan. Deposition efficiencies and fluxes of PAHs in ultrafine mode (2.1 microm) to the human respiratory tract were calculated using the LUDEP computer-based model. From 10%-15% and 4.2%-6.9% of target PAHs were distributed in the ultrafine mode in the roadside and suburban atmosphere, respectively. The model calculations showed that as much as 18%-19% and 16%-17% of inhaled PAHs are deposited in the alveolar region of the lung for the roadside and suburban atmosphere, respectively. Total deposition fluxes of target PAHs in the alveolar region were about 1.5-fold greater for the roadside atmosphere than for the suburban atmosphere. Importantly, ultrafine particles were shown to contribute as much as 23%-30% and 10%-16% to PAH deposition in the alveolar region for the roadside and suburban atmosphere, respectively, although the contributions of ultrafine particles to the total particulate matter masswere only 2.3% in the roadside atmosphere and 1.3% in the suburban atmosphere. These results indicated that ultrafine particles are significant contributors to the deposition of PAHs into the alveolar region of the lung.

  12. Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion

    Science.gov (United States)

    Landera, Alexander

    2013-12-01

    Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards

  13. Source apportionment of atmospheric fine particulate matter collected at the Seney National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The trends in secondary organic aerosol at a remote location are studied using atmospheric fine particulate matter samples collected at Seney National Wildlife...

  14. Binding of polycyclic aromatic hydrocarbons by size classes of particulate in Hamilton Harbor water

    Energy Technology Data Exchange (ETDEWEB)

    Leppard, G.G. [National Water Research Inst., Burlington, Ontario (Canada). Aquatic Ecosystem Protection Branch]|[McMaster Univ., Hamilton, Ontario (Canada). Dept. of Biology; Flannigan, D.T. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Biology; Mavrocordatos, D. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Biology]|[Univ. of Lausanne (Switzerland). Dept. of Chemistry; Marvin, C.H. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Chemistry]|[Agriculture and Agri-Food Canada, Vineland Station Ontario (Canada). Pest Management Research Centre; Bryant, D.W.; McCarry, B.E. [McMaster Univ., Hamilton, Ontario (Canada)

    1998-11-15

    In aquatic systems there is considerable transport of organic contaminants on suspended particles that act as carriers and influence the redistribution, bioavailability, and ultimate fate of contaminants. Using methodology not previously applied to the analysis of lake water, the authors demonstrate that polycyclic aromatic hydrocarbons (PAH) in Hamilton Harbor are predominantly sorbed to suspended flocs. Techniques employed were as follows: (i) differential cascade sedimentation and centrifugation to separate suspended particles; (ii) scanning transmission electron microscopy and energy-dispersive spectroscopy to identify flocs and individual particles in the size range of 10{sup {minus}3}--10{sup 3} {micro}m; (iii) gas chromatography-mass spectrometry to identify PAH in extracts prepared from size classes. Heterogeneous flocs larger than 20 {micro}m accounted for roughly 98% of phenanthrene binding, 89% of fluoranthene binding, and 85% of pyrene binding.

  15. Induction of c-Jun by air particulate matter (PM₁₀) of Mexico city: Participation of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Salcido-Neyoy, Martha Estela; Sánchez-Pérez, Yesennia; Osornio-Vargas, Alvaro Román; Gonsebatt, María Eugenia; Meléndez-Zajgla, Jorge; Morales-Bárcenas, Rocío; Petrosyan, Pavel; Molina-Servin, Edith Danny; Vega, Elizabeth; Manzano-León, Natalia; García-Cuellar, Claudia M

    2015-08-01

    The carcinogenic potential of urban particulate matter (PM) has been partly attributed to polycyclic aromatic hydrocarbons (PAHs) content, which activates the aryl hydrocarbon receptor (AhR). Here we report the effect of PM with an aerodynamic size of 10 μm (PM10) on the induction of AhR pathway in A549 cells, evaluating its downstream targets CYP1B1, IL-6, IL-8 and c-Jun. Significant increases in CYP1B1 protein and enzyme activity; IL-6 and IL-8 secretion and c-Jun protein were found in response to PM10. The formation of PAH-DNA adducts was also detected. The involvement of AhR pathway was confirmed with Resveratrol as AhR antagonist, which reversed CYP1B1 and c-Jun induction. Nevertheless, in IL-6 and IL-8 secretion, the Resveratrol was ineffective, suggesting an effect independent of this pathway. Considering the role of c-Jun in oncogenesis, its induction by PM may be contributing to its carcinogenic potential through induction of AhR pathway by PAHs present in PM10.

  16. Polycyclic Aromatic Hydrocarbons and n-alkanes in Suspended Particulate Matter and Sediments from the Langat River, Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Alireza Riyahi Bakhtiari

    2009-07-01

    Full Text Available The Langat River basin has seen rapid developments in industrialization, urbanization and dramatic population increases during the past two decades. The composition and sources of polycyclic aromatic hydrocarbons (PAHs and aliphatic hydrocarbon (n-alkanes concentrations were determined in surface sediments (SS and suspended particulate matter (SPM collected from six locations in the Langat River. The total n-alkanes concentrations (∑HC ranged from 5900 to 23000 µg/g in SPM and 1700 to 8600 µg/g in SS samples. Total PAHs concentrations varied from 306 to 7968 ng/g in SPM and 558 to 980 ng/g in SS. PAHs and n-alkanes were dominated by higher molecular weight compounds in SS and low-medium molecular weight compounds in SPM. Carbon preference index (CPI values for n-alkanes in ranges C 25-33, C 15-35 and C 25-35 varied from 0.95 to 2.49 in SS and close to unity in SPM. The CPIs values indicated multiple n-alkanes sources (petrogenic and natural. PAHs isomer pairs ratios indicated multiple (petrogenic and pyrogenic with predominance of pyrogenic PAH sources. Analysis of the possible source of PAHs and n-alkanes indicated a complicated, combined PAHs and n-alkanes source in the Langat River.

  17. Characterisation of particulates and carcinogenic polycyclic aromatic hydrocarbons in wintertime wood-fired heating in residential areas

    Science.gov (United States)

    Bari, Md. Aynul; Baumbach, Guenter; Brodbeck, Johannes; Struschka, Michael; Kuch, Bertram; Dreher, Werner; Scheffknecht, Guenter

    2011-12-01

    Wood as a renewable and worldwide available fuel is used for residential heating in small-scale firings during winter. This wood combustion can cause very high emissions of inhalable particles resulting in short and long-term health effects. The target of this study was to characterise particulate matter, emissions of polycyclic aromatic hydrocarbons (PAHs) and their size distribution and to show that those emissions can be found in the ambient air of residential areas with wood-fired heating. Emission samples were collected from pellet stove and log wood boiler under different combustion conditions. Ambient PM 10 sampling was performed during two winter seasons at two rural residential areas near Stuttgart in Germany. Samples were extracted using toluene with ultrasonic bath and analysed by gas chromatography mass spectrometry (GC-MS). Twenty-one PAH compounds including nine carcinogenic ones were detected and quantified. It was found that emission concentrations of carcinogenic PAHs were higher during incomplete combustion compared to complete combustion. Significant amounts of ambient PAHs were found in the residential villages, where the contribution of carcinogenic PAHs was 44% of total PAHs in the ambient air during winter 2009. The morphology and elemental analysis of ambient particles were also investigated. The findings indicate a rising concern to reduce emissions from wood-fired heating during winter in residential areas and underline the importance of using good wood combustion technologies to improve the air quality.

  18. Determination of polycyclic aromatic hydrocarbons in fractions in asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-07-01

    An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 μg/L and the limits of quantification ranged from 1.7 to 1550 μg/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86 mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene.

  19. Effects of oil pipeline explosion on ambient particulate matter and their associated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Zhao, Yue; Cao, Lixin; Zhou, Qing; Que, Qiming

    2015-01-01

    Effects of the oil pipeline explosion on PM(2.5)-associated polycyclic aromatic hydrocarbons (PAHs) and their substituted (alkylated, nitrated, oxygenated, hydroxyl and chlorinated) derivatives are assessed near the accident scene of Qingdao, China. Compared with those in TSP-PM(2.5), gaseous phase, burn residue and unburned crude oil, eighty-nine PAHs in PM(2.5) are identified and quantified to investigate the composition, temporal and spatial distribution, and sources. The concentrations of PM(2.5)-associated parent PAHs increase approximately seven times from the non-explosion samples to the explosion samples (mean ± standard deviation: 112 ± 2 vs 764 ± 15 ng/m(3)), while some substituted products (nitro- and oxy-) increase by two orders of magnitude (3117 ± 156 pg/m(3) vs 740 ± 37 ng/m(3)). The toxicity evaluation indicates the BaP equivalent concentrations (based on the US EPA's toxicity factors) in PM(2.5) are much higher than those in the other phases, especially for a long duration after the tragic accident.

  20. Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey.

    Science.gov (United States)

    Akyüz, Mehmet; Cabuk, Hasan

    2009-10-15

    Airborne particulate matter (PM(2.5) and PM(10)) concentrations were measured in Zonguldak, Turkey from January to December 2007, using dichotomous Partisol 2025 sampler. Collected particulate matter was analyzed for 14 selected polycyclic aromatic hydrocarbons (PAHs) by high-performance liquid chromatography with fluorescence detection (HPLC-FL). The seasonal variations of PM(2.5) and PM(10) concentrations were investigated together with their relationships with meteorological parameters. The maximum daily concentrations of PM(2.5) and PM(10) reached 83.3 microg m(-3) and 116.7 microg m(-3) in winter, whereas in summer, they reached 32.4 microg m(-3) and 66.7 microg m(-3), respectively. Total concentration of PM(10)-associated PAHs reached 492.4 ng m(-3) in winter and 26.0 ng m(-3) in summer times. The multiple regression analysis was performed to predict total PM(2.5)- and PM(10)-associated PAHs and benzo(a)pyrene-equivalent (BaPE) concentrations with respect to meteorological parameters and particulate mass concentrations with the determination coefficients (R(2)) of 0.811, 0.805 and 0.778, respectively. The measured mean values of concentrations of total PM(2.5)- and PM(10)-associated PAHs were found to be 88.4 ng m(-3) and 93.7 ng m(-3) while their predicted mean values were found to be 92.5 ng m(-3) and 98.2 ng m(-3), respectively. In addition, observed and predicted mean concentration values of PM(2.5)-BaPE were found to be 14.1 ng m(-3) and 14.6 ng m(-3). The close annual mean concentrations of measured and predicted total particulate related PAHs imply that the models can be reliably used for future predictions of particulate related PAHs in urban atmospheres especially where fossil fuels are mainly used for heating.

  1. Evaluation of airborne respirable particulate matter and polycyclic aromatic hydrocarbon exposure of asphalt workers

    Directory of Open Access Journals (Sweden)

    Teresa Cirillo

    2007-12-01

    Full Text Available

    Introduction: Assessment of exposure to the airborne respirable particles (PM10 and polycyclic aromatic hydrocarbons (PAHs of asphalt manufacturing and road paving workers in the Campania region (Italy.

    Materials and Methods: A study was carried out during 2006 and involved 5 firms producing and employing bitumen in road paving activities. The workers studied were categorized on the basis of their job as workers in bitumen manufacturing, in road paving and in workers not exposed at bitumen fume considered like controls.

    Results: In the manufacturing plants the average concentrations of airborne PM10 were 1125±445 ìg/m3 in the HMA manufacturing workers’ areas; 314±81 ìg/m3 in the process surveyors’ cabins and 92±27 ìg/m3 in the controls’ areas (administrative offices. Within the breathing zones of the worker, the average PAHs levels in air were as follows: 367±198 ng/m3 for HMA manufacturing workers; 348±172 ng/m3 for process surveyors; 21±2 ng/m3 for the controls. At the road paving sites the average airborne PM10 levels were 1435±325 ìg/m3 for roller operators; 1610±356 ìg/m3 for paver operators; 319±108 ìg/m for the controls (traffic controllers. PAHs in the breathing zones were 1220±694 ng/m3 for the paver operators; 1360±575 ng/m3 for the roller operators’ and 139±135 ng/m3 for the traffic controllers’. The results show that the more consistent hazard for asphalt workers’ health is derived from exposure to airborne PM10 both in exposed and in non-exposed (controls workers.

  2. Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites

    Energy Technology Data Exchange (ETDEWEB)

    Manolis Mandalakis; Oerjan Gustafsson; Tomas Alsberg; Anna-Lena Egebaeck; Christopher M. Reddy; Li Xu; Jana Klanova; Ivan Holoubek; Euripides G. Stephanou [Stockholm University, Stockholm (Sweden). Department of Applied Environmental Science (ITM)

    2005-05-01

    Radiocarbon analysis of atmospheric polycyclic aromatic hydrocarbons (PAHs) from three background areas in Sweden, Croatia, and Greece was performed to apportion their origin between fossil and biomass combustion. Diagnostic ratios of PAHs implied that wood and coal combustion was relatively more important in the northern European site, while combustion of fossil fuels was the dominant source of PAHs to the two central-southern European background sites. The radiocarbon content ({Delta}{sup 14}C) of atmospheric PAHs in Sweden ranged between -388{per_thousand} and -381{per_thousand}, while more depleted values were observed for Greece (-914{per_thousand}) and Croatia (-888{per_thousand}). Using a 14C isotopic mass balance model it was calculated that biomass burning contributes nearly 10% of the total PAH burden in the studied southern European atmosphere with fossil fuel combustion making up the 90% balance. In contrast, biomass burning contributes about 50% of total PAHs in the atmosphere at the Swedish site. Results suggest that the relative contributions of biomass burning and fossil fuels to atmospheric PAHs may differ considerably between countries, and therefore, different national control strategies might be needed if a further reduction of these pollutants is to be achieved on a continental-global scale. 54 refs., 2 figs., 1 tab.

  3. Particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey.

    Science.gov (United States)

    Akyüz, Mehmet; Cabuk, Hasan

    2008-11-01

    Airborne fine (PM(2.5)) and coarse (PM(2.5-10)) particulate matter was collected from January to December in 2007 in Zonguldak, Turkey using dichotomous Partisol 2025 sampler. Fourteen selected polycyclic aromatic hydrocarbons (PAHs) in particulate matter were determined simultaneously by high-performance liquid chromatography with fluorescence detection (HPLC-FL) and seasonal distributions were examined. The source identification of PAHs in airborne particulates was performed by principal component analysis (PCA) in combination with diagnostic ratios. The predominant PAHs determined in PM(2.5) were pyrene, fluoranthene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene. The total concentrations of PAHs were up to 464.0 ng m(-3) in fine and 28.0 ng m(-3) in coarse fraction in winter, whereas in summer times were up to 22.9 and 3.0 ng m(-3) respectively. Approximately 93.3% of total PAHs concentration was determined in PM(2.5) in winter and 84.0% in summer. The concentration levels of PAHs fluctuate significantly within a year with higher means and peak concentrations in the winter compared to that of summer times. Higher benzo(a)pyrene-equivalent (BaPE) concentrations of PAHs were obtained for PM(2.5) especially in winter. The results obtained from PCA in combination with diagnostic ratios revealed that coal combustion and vehicle emissions were the major pollutant sources for both PM(2.5) and PM(2.5-10) associated PAHs in studied area. Two principal components for PM(2.5) and three for PM(2.5-10) were identified and these accounted for 89.4 and 85.2% of the total variance respectively. The emissions from coal combustion were estimated to be the main source of PAHs in the ambient air particulates with contributions of 80.8% of total variance for PM(2.5) and 53.8% for PM(2.5-10).

  4. Micro Pulse Lidar as a Tool for Active Remote Sensing of Atmospheric Particulate

    OpenAIRE

    B.Sudharshan Reddy; Y. Bhavani Kumar

    2013-01-01

    Lidars have been employed in the investigation of instantaneous vertical structure of atmospheric particulate. Remote measurements of particle backscattering and aerosol extinction coefficient provide the altitude distribution of particles existence in the atmosphere. This paper describes the technology of micro pulse lidar employed for computation of altitude profiles of particle backscattering and extinction coefficient. The vertical distribution of particles in the atmosphere was derived u...

  5. Dust measurement campaign in the Mantes region atmosphere; Campagne de mesures ``poussieres`` dans l`atmosphere de la region Mantaise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A measurement campaign have been carried out in the Mantes region (West of Paris) in order to determine particulate concentrations and types in the city atmosphere: granulometric particulate concentrations and concentration levels of the various types of airborne particulates (metals and metalloids, black smoke, polycyclic aromatic hydrocarbons, mono-cyclic aromatic hydrocarbons) are presented. The wind direction and speed have been taken into consideration

  6. Polycyclic aromatic hydrocarbons (PAHs in the atmospheres of two French alpine valleys: sources and temporal patterns

    Directory of Open Access Journals (Sweden)

    N. Marchand

    2004-01-01

    Full Text Available Alpine valleys represent some of the most important crossroads for international heavy-duty traffic in Europe, but the full impact of this traffic on air quality is not known due to a lack of data concerning these complex systems. As part of the program "Pollution des Vallées Alpines" (POVA, we performed two sampling surveys of polycyclic aromatic hydrocarbons (PAHs in two sensitive valleys: the Chamonix and Maurienne Valleys, between France and Italy. Sampling campaigns were performed during the summer of 2000 and the winter of 2001, with both periods taking place during the closure of the "Tunnel du Mont-Blanc". The first objective of this paper is to describe the relations between PAH concentrations, external parameters (sampling site localization, meteorological parameters, sources, and aerosol characteristics, including its carbonaceous fraction (OC and EC. The second objective is to study the capacity of PAH profiles to accurately distinguish the different emission sources. Temporal evolution of the relative concentration of an individual PAH (CHR and the PAH groups BghiP+COR and BbF+BkF is studied in order to differentiate wood combustion, gasoline, and diesel emissions, respectively. The results show that the total particulate PAH concentrations were higher in the Chamonix valley during both seasons, despite the cessation of international traffic. Seasonal cycles, with higher concentrations in winter, are also stronger in this valley. During winter, particulate PAH concentration can reach very high levels (up to 155 ng.m-3 in this valley during cold anticyclonic periods. The examination of sources shows the impact during summer of heavy-duty traffic in the Maurienne valley and of gasoline vehicles in the Chamonix valley. During winter, Chamonix is characterized by the strong influence of wood combustion in residential fireplaces, even if the temporal evolution of specific PAH ratios are difficult to interpret. Information on sources

  7. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric dustfall from the industrial corridor in Hubei Province, Central China.

    Science.gov (United States)

    Zhang, Jiaquan; Qu, Chengkai; Qi, Shihua; Cao, Junji; Zhan, Changlin; Xing, Xinli; Xiao, Yulun; Zheng, Jingru; Xiao, Wensheng

    2015-10-01

    Thirty atmospheric dustfall samples collected from an industrial corridor in Hubei Province, central China, were analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) to investigate their concentrations, spatial distributions, sources, and health risks. Total PAH concentrations (ΣPAHs) ranged from 1.72 to 13.17 µg/g and averaged 4.91 µg/g. High molecular weight (4-5 rings) PAHs averaged 59.67% of the ΣPAHs. Individual PAH concentrations were not significantly correlated with total organic carbon, possibly due to the semi-continuous inputs from anthropogenic sources. Source identification studies suggest that the PAHs were mainly from motor vehicles and biomass/coal combustion. The incremental lifetime cancer risks associated with exposure to PAHs in the dustfall ranged from 10(-4) to 10(-6); these indicate potentially serious carcinogenic risks for exposed populations in the industrial corridor.

  8. An assessment of the concentrations of particulate polycyclic aromatic hydrocarbons (PAHs) in the aftermath of a chemical store fire incident

    Institute of Scientific and Technical Information of China (English)

    M. Radzi Bin Abas; Nasr Yousef M. J. Omar; M. Jamil Maah

    2004-01-01

    PM10 airborne particles and soot deposit collected after a fire incident at a chemical store were analyzed in order to determine the concentrations of polycyclic aromatic hydrocarbons(PAHs). The samples were extracted with 1:1 hexane-dichloromethane by ultrasonic agitation. The extracts were then subjected to gas chromatography-mass spectrometric(GC-MS) analysis. The total PAHs concentrations in airborne particles and soot deposit were found to be 3.27 ( 1.55 ng/m3 and 12.81 ( 24.37 μg/g, respectively. Based on the molecular distributions of PAHs and the interpretation of their diagnostic ratios such as PHEN/(PHEN + ANTH), FLT/(FLT + PYR) and BeP/(BeP + BaP), PAHs in both airborne particles and soot deposit may be inferred to be from the same source. The difference in the value of IP/(IP + BgP) for these samples indicated that benzo[g,h,i]perylene and coronene tend to be attached to finer particles and reside in the air for longer periods. Comparison between the molecular distributions of PAHs and their diagnostic ratios observed in the current study with those reported for urban atmospheric and roadside soil particles revealed that they are of different sources.

  9. Interaction of DNA with aromatic hydrocarbons fraction in atmospheric particulates of Xigu District of Lanzhou, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Voluminously epidemiological studies show that the relationships exist between the air pollution and human health and cancer. Aromatic hydrocarbons (AHs) in air form a large class of organic pollutants, which are widely in environment and many of them are known to be carcinogenic and/or mutagenic and contribute to ambient air pollution. In the past decades, bioassays mainly have been used to evaluate the toxicity of chemical mixtures in atmospheric particulates or aqueous environment. However, it is well known that the covalent complexes formed by carcinogens with DNA may be exert negative results in bioassay. So the main aim of this paper is to develop an evaluation method of toxicity effects of chemical mixtures in atmospheric particulates from chemical standpoint. In this study, the in virto interaction of the AHs with DNA was investigated by absorption, fluorescence and resonance light scattering (RLS) spectroscopic techniques. The results showed that the AHs in the atmospheric particulates could combine with calf thymus DNA (ctDNA) and herring sperm DNA (hsDNA) without being activated or metabolized by organism, respectively. Intercalation may be present in the mechanism of interaction. The binding constants of the AHs with ctDNA and hsDNA were 2.5×102 and 2.0×103, respectively, which indicated that the interaction of the AHs with hsDNA is stronger than that with ctDNA. In addition, the relationships of dose-effect between the total mole concentration of chemical components and the ability of binding ct DNA and hsDNA were confirmed. This research made it possible to study the toxicity effects of chemical mixtures in atmospheric particulates by chemical method. It is believed that the composition and contents of unknown AHs and the interaction of DNA with AHs in atmospheric particulates of Xigu District of Lanzhou City, China are first reported in the past twenty years.

  10. Variations in atmospheric concentrations and isotopic compositions of gaseous and particulate boron in Shizuoka City, Japan

    Science.gov (United States)

    Sakata, Masahiro; Phan, Hang Giang; Mitsunobu, Satoshi

    2017-01-01

    To clarify the partitioning and isotopic fractionation of boron (B) into the gas and particle phases in the atmosphere, the concentrations and isotopic compositions of gaseous and particulate B were measured concurrently for more than one year at a site in Shizuoka City, Japan. This area has few anthropogenic sources of B, such as coal combustion facilities. Gaseous B concentration showed clearly a seasonal variation, increasing during summer and decreasing during winter. Conversely, particulate B concentration tended to decrease during the warm season and increase during winter. The increase in gaseous B concentration during summer is attributable to the enhanced emissions of B from sea-salt degassing owing to higher temperatures and the predominance of winds from the Pacific Ocean. Moreover, the decrease in gaseous B concentration and the increase in particulate B concentration during winter is probably due to the enhanced condensation of gaseous B on atmospheric particles. The δ11B values of gaseous and particulate B varied largely, and did not indicate a distinctive seasonal variation. A positive correlation was observed between the δ11B values of gaseous and particulate B (R2 = 0.518, P < 0.001). Moreover, the δ11B values of particulate B were approximately 0-20‰ lower than those of gaseous B. There is an isotopic fractionation (ΔB(OH)4- -B(OH)3) of about -20‰ between B(OH)3 and B(OH)4- species in solution (Kakihana et al., 1977). This tends to support the hypotheses that gaseous B is transformed to particulate B through the reaction of condensed B(OH)3 with chemical constituents on particles to precipitate borates, and that the condensed B(OH)3 remaining on particles is unstable and evaporates.

  11. Inferring Atmospheric Particulate Matter Concentrations from Chinese Social Media Data

    Science.gov (United States)

    Tao, Zhu; Kokas, Aynne; Zhang, Rui; Cohan, Daniel S.; Wallach, Dan

    2016-01-01

    Although studies have increasingly linked air pollution to specific health outcomes, less well understood is how public perceptions of air quality respond to changing pollutant levels. The growing availability of air pollution measurements and the proliferation of social media provide an opportunity to gauge public discussion of air quality conditions. In this paper, we consider particulate matter (PM) measurements from four Chinese megacities (Beijing, Shanghai, Guangzhou, and Chengdu) together with 112 million posts on Weibo (a popular Chinese microblogging system) from corresponding days in 2011–2013 to identify terms whose frequency was most correlated with PM levels. These correlations are used to construct an Air Discussion Index (ADI) for estimating daily PM based on the content of Weibo posts. In Beijing, the Chinese city with the most PM as measured by U.S. Embassy monitor stations, we found a strong correlation (R = 0.88) between the ADI and measured PM. In other Chinese cities with lower pollution levels, the correlation was weaker. Nonetheless, our results show that social media may be a useful proxy measurement for pollution, particularly when traditional measurement stations are unavailable, censored or misreported. PMID:27649530

  12. Atmospheric polycyclic aromatic hydrocarbons in north China: a winter-time study.

    Science.gov (United States)

    Liu, Shuzhen; Tao, Shu; Liu, Wenxin; Liu, Yanan; Dou, Han; Zhao, Jingyu; Wang, Luguang; Wang, Jingfei; Tian, Zaifeng; Gao, Yuan

    2007-12-15

    The contamination and outflow of atmospheric polycyclic aromatic hydrocarbons (PAHs) in the Chinese Northern Plain, a region with a total area of 300 000 km2 and a high PAH emission density, were investigated. Polyurethane foam (PUF) and PM10 samples were collected at 46 sites located in urban, rural (towns or villages), and control (remote mountain) areas in the winter from November 2005 to February 2006. The observed concentrations of atmospheric PAHs were generally higher than those reported for developed countries and southern Chinese cities. It was found that there was no significant difference in air PAH concentrations between the urban and the rural areas (514 +/- 563 ng/m3 and 610 +/- 645 ng/ m3, respectively), while the PAH concentrations at the control sites (57.1 +/- 12.6 ng/m3) were 1 order of magnitude lower than those at the other sites. The primary reason for the similarity in PAH concentrations between urban and rural areas was the fact that the predominant sources of biomass and domestic coal combustion were widely spread over the study area. The partition constants (K(PM10)) of PAHs were significantly correlated to the corresponding values of subcooled liquid-vapor pressure (pL0). However, the regression slopes of log K(PM10) versus log pL0 were much steeper than -1, indicating adsorption dominated over absorption. Three distinct patterns of outflow from the study area were identified by forward trajectory and cluster analysis.

  13. Rare earth element components in atmospheric particulates in the Bayan Obo mine region

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingqing, E-mail: wanglq@igsnrr.ac.cn; Liang, Tao, E-mail: liangt@igsnrr.ac.cn; Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM{sub 10}) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m{sup 3}, and those for PM{sub 10} were 42.8 and 68.9 ng/m{sup 3}, in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM{sub 10} and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM{sub 10} were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La{sub N}/Yb{sub N}, La{sub N}/Sm{sub N}, Gd{sub N}/Yb{sub N}). - Highlights: • TSP and PM{sub 10} samples were collected to analyze the levels and distributions of REE. • Enrichment factors indicated that REE enrichment was caused by anthropogenic sources. • The distribution of REEs showed a strong gradient in the prevailing wind direction. • Obvious fractionation between LREEs and HREEs is observed in atmospheric particulates.

  14. Micro Pulse Lidar as a Tool for Active Remote Sensing of Atmospheric Particulate

    Directory of Open Access Journals (Sweden)

    B.Sudharshan Reddy

    2013-08-01

    Full Text Available Lidars have been employed in the investigation of instantaneous vertical structure of atmospheric particulate. Remote measurements of particle backscattering and aerosol extinction coefficient provide the altitude distribution of particles existence in the atmosphere. This paper describes the technology of micro pulse lidar employed for computation of altitude profiles of particle backscattering and extinction coefficient. The vertical distribution of particles in the atmosphere was derived using a code developed in MATLAB. Enhancement of particle vertical distribution during the period of 2007 Diwali was shown as a case study.

  15. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004

    Science.gov (United States)

    Zhang, Yanxu; Tao, Shu

    The global atmospheric emissions of the 16 polycyclic aromatic hydrocarbons (PAHs) listed as the US EPA priority pollutants were estimated using reported emission activity and emission factor data for the reference year 2004. A database for emission factors was compiled, and their geometric means and frequency distributions applied for emission calculation and uncertainty analysis, respectively. The results for 37 countries were compared with other PAH emission inventories. It was estimated that the total global atmospheric emission of these 16 PAHs in 2004 was 520 giga grams per year (Gg y -1) with biofuel (56.7%), wildfire (17.0%) and consumer product usage (6.9%) as the major sources, and China (114 Gg y -1), India (90 Gg y -1) and United States (32 Gg y -1) were the top three countries with the highest PAH emissions. The PAH sources in the individual countries varied remarkably. For example, biofuel burning was the dominant PAH source in India, wildfire emissions were the dominant PAH source in Brazil, while consumer products were the major PAH emission source in the United States. In China, in addition to biomass combustion, coke ovens were a significant source of PAHs. Globally, benzo(a)pyrene accounted for 0.05% to 2.08% of the total PAH emission, with developing countries accounting for the higher percentages. The PAH emission density varied dramatically from 0.0013 kg km -2 y in the Falkland Islands to 360 kg km -2 y in Singapore with a global mean value of 3.98 kg km -2 y. The atmospheric emission of PAHs was positively correlated to the country's gross domestic product and negatively correlated with average income. Finally, a linear bivariate regression model was developed to explain the global PAH emission data.

  16. Universal Spectrum for Atmospheric Suspended Particulates: Comparison with Observations

    CERN Document Server

    Selvam, A M

    2010-01-01

    Atmospheric flows exhibit self-similar fractal space-time fluctuations on all space-time scales associated with inverse power law distribution for power spectra of meteorological parameters such as wind, temperature, etc. Fractal fluctuations imply long-range correlations, identified as self-organized criticality generic to dynamical systems in nature such as river flows, population dynamics, heart beat patterns etc., and are independent of the exact physical, chemical, physiological and other properties of the dynamical system. The physics of self-organized criticality is not yet identified. A general systems theory developed by the author visualizes the fractal fluctuations to result from the coexistence of eddy fluctuations in an eddy continuum, the larger scale eddies being the integrated mean of enclosed smaller scale eddies. The model predicts that the probability distributions of component eddy amplitudes and the corresponding variances (power spectra) are quantified by the same universal inverse power...

  17. Orange jasmine leaves as an indicator of atmospheric polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Benjalak Karnchanasest

    2005-07-01

    Full Text Available Sorption of atmospheric PAHs in orange jasmine leaves, Murraya paniculata (L. Jack and the potential of leaves to indicate atmospheric PAHs were investigated. Partitioning experiments between leaves and water were conducted to determine the partition coefficients of the compounds between the leaves and the water. The leaf samples were collected on 4 Bangkok roadsides, where the air samples were measured for 24 h using high volume, to analyze 16 PAHs. The actual measured PAH concentrations were compared to atmospheric concentrations calculated from the leaf/air partition coefficients and PAH leaf concentrations. It was found that they were well related as indicated by correlation coefficient (r2 > 0.70, particularly low molecular weight (MW PAHs, which were ACY, ACE, FLU, PHE and ANT. This was because low MW PAHs were mostly present in gas phase, which played a major role in leaf sorption. Therefore, high MW PAHs, existing mainly in particulate phase, exhibited lower correlation coefficient (r2 < 0.60.

  18. Distribution of Polycyclic Aromatic Hydrocarbons between the Particulate and the Gas Phase of Mainstream Cigarette Smoke in Relation to Cigarette Technological Characteristics

    Directory of Open Access Journals (Sweden)

    Kalaitzoglou M

    2014-12-01

    Full Text Available Particulate- and gas-phase polycyclic aromatic hydrocarbons (PAHs were determined in the mainstream smoke (MSS of 59 manufactured cigarette brands (commercially available brands of unknown tobacco and blend type with variable ‘tar’ yields and physical/technological characteristics. Depending on the existence/absence of filter, the ‘tar’ yield indicated on the packet, and the cigarette length and diameter, the examined cigarette brands were classified into 15 groups: non filter (NF, high (H, medium (M, light (L, super light (SL, ultra light (UL, one-tar yields (O, 100 mm long cigarettes (H-100, L-100, SL-100, UL-100, O-100, and slim cigarettes (SL-SLIM, UL-SLIM, O-SLIM. Cigarettes were smoked in a reference smoking machine equipped with glass fibre filters for collection of PAHs bound to total particulate matter (TPM, and polyurethane foam plugs (PUF for collection of gas-phase PAHs. The relationships of gas- and particulate-phase concentrations of PAHs (ng/cig with the contents of typical MSS components, such as TPM, ‘tar’, nicotine and carbon monoxide were investigated. In addition, the phase partitioning of PAHs in MSS was evaluated in relation to the technological characteristics of cigarettes.

  19. Effect of atmospheric parameters on fine particulate concentration in suburban Shanghai

    Institute of Scientific and Technical Information of China (English)

    Jian Yao; Wei Liu; Wangkun Chen; Guanghua Wang; Youshi Zeng; Yu Huang; Jun Lin

    2013-01-01

    A study was conducted on the effect of atmospheric parameters,including temperature,wind speed,and relative humidity,on fine particulate mass concentrations measured inJiading District of Shanghai,China,during the period from January 2009 to January 2010.A sensitivity analysis was applied to investigate the interaction between atmospheric parameters and particulate mass concentration.The experiment revealed that the concentration of particulates increased with particle size from 0.1 to 1.0μm,and decreased with the increase of particle size from 1.0 to 2.5 μm.The effects of atmospheric parameters on fine mass concentrations were significantly particle size-dependent.The PM1.0-2.5 may come from the size increase of smaller particulates after moisture absorption.And the variation of concentrations of PM0.1-1.0was mainly attributed to the accumulation of PM0.1.The ventilation index and dilution index were calculated on the basis of data collected in December 2009.A correlation analysis indicated that there was a significant relation between these two indexes and the particulate concentration by examining the three particle size ranges,0.0-0.1,0.1-1.0,and 1.0-2.5 μm.The Spearman correlation coefficients that related the ventilation index to the concentration for the three particle size ranges were-0.45,-0.56 and-0.47,respectively,while the coefficients that related the dilution index to the concentration were-0.36,-0.42and-0.45,respectively.

  20. Global atmospheric emissions and transport of polycyclic aromatic hydrocarbons: Evaluation of modeling and transboundary pollution

    Science.gov (United States)

    Shen, Huizhong; Tao, Shu

    2014-05-01

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimated country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). MOZART-4 (The Model for Ozone and Related Chemical Tracers, version 4) was applied to simulate the global tropospheric transport of Benzo(a)pyrene, one of the high molecular weight carcinogenic PAHs, at a horizontal resolution of 1.875° (longitude) × 1.8947° (latitude). The reaction with OH radical, gas/particle partitioning, wet deposition, dry deposition, and dynamic soil/ocean-air exchange of PAHs were considered. The simulation was validated by observations at both background and non-background sites, including Alert site in Canadian High Arctic, EMEP sites in Europe, and other 254 urban/rural sites reported from literatures. Key factors effecting long-range transport of BaP were addressed, and transboundary pollution was discussed.

  1. Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: A mass balance approach

    Science.gov (United States)

    McVeety, Bruce D.; Hites, Ronald A.

    A mass balance model was developed to explain the movement of polycyclic aromatic hydrocarbons (PAH) into and out of Siskiwit Lake, which is located on a wilderness island in northern Lake Superior. Because of its location, the PAH found in this lake must have originated exclusively from atmospheric sources. Using gas Chromatographie mass spectrometry, 11 PAH were quantified in rain, snow, air, lake water, sediment core and sediment trap samples. From the dry deposition fluxes, an aerosol deposition velocity of 0.99 ± 0.15 cm s -1 was calculated for indeno[1,2,3- cd]pyrene and benzo[ ghi]perylene, two high molecular weight PAH which are not found in the gas phase. The dry aerosol deposition was found to dominate the wet removal mechanism by an average ratio of 9:1. The dry gas flux was negative, indicating that surface volatilization was taking place; it accounted for 10-80 % of the total output flux depending on the volatility of the PAH. The remaining PAH were lost to sedimentation. From the dry gas flux, an overall mass transfer coefficient for PAH was calculated to be 0.18 ± 0.06 m d -1. In this case, the overall mass transfer is dominated by the liquid phase resistance.

  2. A source study of atmospheric polycyclic aromatic hydrocarbons in Shenzhen, South China.

    Science.gov (United States)

    Liu, Guoqing; Tong, Yongpeng; Luong, John H T; Zhang, Hong; Sun, Huibin

    2010-04-01

    Air pollution has become a serious problem in the Pearl River Delta, South China, particularly in winter due to the local micrometeorology. In this study, atmospheric polycyclic aromatic hydrocarbons (PAHs) were monitored weekly in Shenzhen during the winter of 2006. Results indicated that the detected PAHs were mainly of vapor phase compounds with phenanthrene dominant. The average vapor phase and particle phase PAHs concentration in Shenzhen was 101.3 and 26.7 ng m( - 3), respectively. Meteorological conditions showed great effect on PAH concentrations. The higher PAHs concentrations observed during haze episode might result from the accumulation of pollutants under decreased boundary layer, slower wind speed, and long-term dryness conditions. The sources of PAHs in the air were estimated by principal component analysis in combination with diagnostic ratios. Vehicle exhaust was the major PAHs source in Shenzhen, accounting for 50.0% of the total PAHs emissions, whereas coal combustion and solid waste incineration contributed to 29.4% and 20.6% of the total PAHs concentration, respectively. The results clearly indicated that the increasing solid waste incinerators have become a new important PAHs source in this region.

  3. Industrial Responsibility in the Emission of Particulate Matter in the Atmosphere

    Science.gov (United States)

    de Souza, Paulo A.; Rodrigues, O. D.; Morimoto, T.; Garg, Vijayendra K.

    1998-12-01

    The present investigation consists of the application of several techniques such as Mössbauer spectroscopy, X-ray diffraction, atomic absorption, electron probe micro analysis (EPMA), and thermo-gravimetric analysis, to the identification of the particulate matter in atmospheric aerosols in the metropolitan region of Vitória (MRV), ES, Brazil. The main sources of particulate matter and its emission characteristics within the steel industry have been studied to identify its contribution to air particles in Vitória region. The analysis reveals the total amount of industrial emission of the iron containing components in the atmosphere. The presence of goethite, hematite, magnetite, pyrite, silicates, marine chloride and total absence of heavy metals could be confirmed.

  4. Remote probing of atmospheric particulates from radiation extinction experiments: A review of methods

    Science.gov (United States)

    Fymat, A. L.

    1976-01-01

    The existing methodology for reconstructing the particle size distribution and inferring the refractive index of absorbing and scattering atmospheric particulates is critically reviewed. Emphasis is placed on method capabilities and shortcomings and, wherever possible, on achievable accuracy. The nature of the associated remote probing problem is analyzed with regard to the effects of the particulates on EM wave propagation in the atmosphere. The parameterization of size distribution is studied within the unifying framework of Pearson's distribution curves. The inversions of extinction measurements and their ratios are considered separately, and the potentialities of each type of measurement are identified. Work lacking in each of the methods reviewed is indicated. A method of determining both the effective complex refractive index and size distribution model parameters from the same data is also presented. Lastly, determination from extinction ratio data of the complex refractive index independent of size distribution is discussed and error analyzed.

  5. Atmospheric particulate mercury at the urban and forest sites in central Poland.

    Science.gov (United States)

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2016-02-01

    Particulate mercury concentrations were investigated during intensive field campaigns at the urban and forest sites in central Poland, between April 2013 and October 2014. For the first time, quantitative determination of total particulate mercury in coarse (PHg2.2) and fine (PHg0.7) aerosol samples was conducted in Poznań and Jeziory. The concentrations in urban fine and coarse aerosol fractions amounted to mercury concentrations. A strong impact of meteorological conditions (wind velocity, air mass direction, air temperature, and precipitation amount) on particulate mercury concentrations was also observed. In particular, higher variation and concentration range of PHg0.7 and PHg2.2 was reported for wintertime measurements. An increase in atmospheric particulate mercury during the cold season in the study region indicated that coal combustion, i.e., residential and industrial heating, is the main contribution factor for the selected particle size modes. Coarse particulate Hg at the urban site during summer was mainly attributed to anthropogenic sources, with significant contribution from resuspension processes and long-range transport. The highest values of PHg0.7 and PHg2.2 were found during westerly and southerly wind events, reflecting local emission from highly polluted areas. The period from late fall to spring showed that advection from the southern part of Poland was the main factor responsible for elevated Hg concentrations in fine and coarse particles in the investigated region. Moreover, September 2013 could be given as an example of the influence of additional urban activities which occurred approx. 10 m from the sampling site-construction works connected with replacement of the road surface, asphalting, etc. The concentrations of particulate Hg (>600.0 pg m(-3)) were much higher than during the following months when any similar situation did not occur. Our investigations confirmed that Hg in urban aerosol samples was predominantly related to local

  6. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    S. Moukhtar

    2011-11-01

    Full Text Available A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter is presented. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. Particulate matter was collected on quartz fibre filters using dichotomous high volume air samplers. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography and solid phase extraction. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyltrifluoroacetamide, was added for Gas Chromatography-Mass Spectrometry analysis. The second half of the sample was stored in a refrigerator. For samples with concentrations exceeding 1 ng μl−1, the second half of the sample was used for measurement of stable carbon isotope ratios by Gas Chromatography-Isotope Ratio Mass Spectrometry.

    The procedure described in this paper provides a method for the analysis of methylnitrophenols in atmospheric particulate matter at concentrations as low as 0.3 pg m−3 and for stable isotope ratios with an accuracy of better than ±0.5‰ for concentrations exceeding 100 pg m−3.

    In all atmospheric particulate matter samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol, with concentrations ranging from the low pg m−3 range in rural areas to more than 200 pg m−3 in some samples from a suburban location.

  7. Forecasting Atmospheric Particulate Sulfur Concentrations Using National Weather Service Synoptic Charts

    Science.gov (United States)

    1990-08-01

    ammonium bisulfate (NH4HSO4 ), ammonium sulfate ((NH 4)2SO 4), or sulfuric acid aerosol (H2SO4 ) (Tanner 1981; Georgii 1982, p. 301...particulate sulfur is primarily NH4HSO4 ( ammonium bisulfate ), and (NH4)2SO 4 ( ammonium sulfate) (Warneck 1988, p. 317). The relatively long residence...time and transport distances of atmospheric sulfur aerosols may allow for sulfuric acid deposition far from the sulfur source region. The long

  8. Remote sensing of atmospheric particulates: Technological innovation and physical limitations in applications to short-range weather prediction

    Science.gov (United States)

    Curran, R. J.; Kropfil, R.; Hallett, J.

    1984-01-01

    Techniques for remote sensing of particles, from cloud droplet to hailstone size, using optical and microwave frequencies are reviewed. The inherent variability of atmospheric particulates is examined to delineate conditions when the signal can give information to be effectively utilized in a forecasting context. The physical limitations resulting from the phase, size, orientation and concentration variability of the particulates are assessed.

  9. Assessing the inhalation cancer risk of particulate matter bound polycyclic aromatic hydrocarbons (PAHs) for the elderly in a retirement community of a mega city in North China.

    Science.gov (United States)

    Han, Bin; Liu, Yating; You, Yan; Xu, Jia; Zhou, Jian; Zhang, Jiefeng; Niu, Can; Zhang, Nan; He, Fei; Ding, Xiao; Bai, Zhipeng

    2016-10-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is limited by the lack of environmental exposure data among different subpopulations. To assess the exposure cancer risk of particulate carcinogenic polycyclic aromatic hydrocarbon pollution for the elderly, this study conducted a personal exposure measurement campaign for particulate PAHs in a community of Tianjin, a city in northern China. Personal exposure samples were collected from the elderly in non-heating (August-September, 2009) and heating periods (November-December, 2009), and 12 PAHs individuals were analyzed for risk estimation. Questionnaire and time-activity log were also recorded for each person. The probabilistic risk assessment model was integrated with Toxic Equivalent Factors (TEFs). Considering that the estimation of the applied dose for a given air pollutant is dependent on the inhalation rate, the inhalation rate from both EPA exposure factor book was applied to calculate the carcinogenic risk in this study. Monte Carlo simulation was used as a probabilistic risk assessment model, and risk simulation results indicated that the inhalation-ILCR values for both male and female subjects followed a lognormal distribution with a mean of 4.81 × 10(-6) and 4.57 × 10(-6), respectively. Furthermore, the 95 % probability lung cancer risks were greater than the USEPA acceptable level of 10(-6) for both men and women through the inhalation route, revealing that exposure to PAHs posed an unacceptable potential cancer risk for the elderly in this study. As a result, some measures should be taken to reduce PAHs pollution and the exposure level to decrease the cancer risk for the general population, especially for the elderly.

  10. Effects of polycyclic aromatic compounds in fine particulate matter generated from household coal combustion on response to EGFR mutations in vitro.

    Science.gov (United States)

    Ho, Kin-Fai; Chang, Chih-Cheng; Tian, Linwei; Chan, Chi-Sing; Musa Bandowe, Benjamin A; Lui, Ka-Hei; Lee, Kang-Yun; Chuang, Kai-Jen; Liu, Chien-Ying; Ning, Zhi; Chuang, Hsiao-Chi

    2016-11-01

    Induction of PM2.5-associated lung cancer in response to EGFR-tyrosine kinase inhibitors (EGFR-TKI) remains unclear. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM2.5) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. Human lung adenocarcinoma cells A549 (with wild-type EGFR) and HCC827 (with EGFR mutation) were exposed to the PM2.5, followed by treatment with EGFR-TKI. Two samples showed significant and dose-dependent reduction in the cell viability in A549. EGFR-TKI further demonstrated significantly decreased in cell viability in A549 after exposure to the coal emissions. Chrysene and triphenylene, dibenzo[a,h]anthracene, benzo[ghi]perylene, azaarenes and oxygenated polycyclic aromatic hydrocarbons (carbonyl-OPAHs) were all associated with EGFR-TKI-dependent reduced cell viability after 72-h exposure to the PM2.5. The findings suggest the coal emissions could influence the response of EGFR-TKI in lung cancer cells in Xuanwei.

  11. Polycyclic organic material (POM) in urban air. Fractionation, chemical analysis and genotoxicity of particulate and vapour phases in an industrial town in Finland

    Science.gov (United States)

    Pyysalo, Heikki; Tuominen, Jari; Wickström, Kim; Skyttä, Eija; Tikkanen, Leena; Salomaa, Sisko; Sorsa, Marja; Nurmela, Tuomo; Mattila, Tiina; Pohjola, Veijo

    Polycyclic organic material (POM) was collected by high-volume sampling on filter and on XAD-2 resin from the air of a small industrial town in Finland. Concurrent chemical analysis and the assays for genotoxic activity were performed on the particulate and the vapour phases of ambient air POM and their chemical fractions. Furthermore, correlations between seasonal meteorological parameters and POM concentrations were studied to reveal characteristic POM profiles for various emission sources. The range of total POM concentrations varied from 115 to 380 ng m -3 in late spring and from 17 to 83 ng m -3 in early winter. No direct correlation of ambient POM was seen with the temperature, but rather with the wind direction from various emission sources. Especially the low molecular weight compounds were associated with wind direction from industrial sources. Genotoxic activity, as detected by the Ames Salmonella/microsome test and the SCE assay in CHO cells, was found not only in the paniculate phase samples but also in the vapour phase. The polar fractions of some of the samples showed genotoxic activity, and also direct mutagenicity was observed with both the assay systems; these facts support the significance of compounds other than conventional polycyclic aromatic hydrocarbons (PAH) in the samples.

  12. Modelling Chemical Patterns of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in the Iberian Peninsula

    Science.gov (United States)

    Ratola, Nuno; Jiménez-Guerrero, Pedro

    2013-04-01

    Semi-volatile organic compounds (SVOCs) such as PBDEs, PCBs, organochlorine pesticides (OCPs) or PAHs, are widespread and generated in a multitude of anthropogenic (and natural for PAHs) processes and although they are found in the environment at low concentrations, possess an extraordinary carcinogenic capacity (Baussant et al., 2001) and high ecotoxicity due to their persistence in different matrices (air, soil, water, living organisms). In particular, PAHs are originated by combustion processes or release from fossil fuels and can be transported in the atmosphere over long distances in gaseous or particulate matter (Baek et al., 1991). The establishment of strategies for sampling and chemical transport modelling of SVOCs in the atmosphere aiming the definition and validation of the spatial, temporal and chemical transport patterns of contaminants can be achieved by an integrated system of third-generation models that represent the current state of knowledge in air quality modelling and experimental data collected in field campaigns. This has implications in the fields of meteorology, atmospheric chemistry and even climate change. In this case, an extensive database already obtained on levels of atmospheric PAHs from biomonitoring schemes in the Iberian Peninsula fuelled the establishment of the first models of behaviour for PAHs. The modelling system WRF+CHIMERE was implemented with high spatial and temporal resolution to the Iberian Peninsula in this first task (9 km for the Iberian Peninsula, 3 km to Portugal, 1 hour), using PAHs atmospheric levels collected over a year-long sampling scheme comprising 4 campaigns (one per season) in over 30 sites. Daily information on meteorological parameters such as air temperature, humidity, rainfall or wind speed and direction was collected from the weather stations closest to the sampling sites. Diagnosis and forecasts of these meteorological variables using MM5 or WRF were used to feed a chemistry transport model

  13. Coarse particulate matter in the atmosphere: what do we really know?

    Science.gov (United States)

    Wiedinmyer, C.; Li, R.; Hannigan, M.; Baker, K.; Hallar, A. G.; Clements, N.

    2011-12-01

    Particulate matter in the coarse mode (PMc) is defined as particles with aerodynamic diameters between 2.5 and 10 microns. These particles have been associated with detrimental health impacts, air quality issues, and can play a role in atmospheric processes that contribute to climate forcings. Atmospheric concentrations of particulate matter with aerodynamic diameters less than 10 and 2.5 microns are regulated in the United States; yet the knowledge about PMc is very uncertain and few studies have characterized the nature, chemistry, and sources of these particles. This presentation will review the current understanding of the characteristics of PMc in the atmosphere, including an overview of a recent study to understand the temporal and spatial patterns of PMc mass concentrations across the western U.S. Routinely measured concentrations of PMc are compared to modeled values to identify the current gaps in our ability to simulate PMc. Current models that simulate PMc not only underestimate the magnitude of the emissions of particles in the coarse size range, but also misrepresent the spatial heterogeneity and the temporal variations in the atmospheric concentrations of PMc in both rural and urban atmospheres. Recent measurements show that organic compounds contribute significantly to PMc mass concentrations in the western U.S. The results from chemical and biological measurements suggest some sources of PMc are currently not included in the emission inventories and chemical transport models. Suggested improvements to existing models of PMc include new emission factors, temporal allocations, and chemical speciation.

  14. Characteristics and sources of polycyclic aromatic hydrocarbons in atmospheric aerosols in the Kathmandu Valley, Nepal.

    Science.gov (United States)

    Chen, Pengfei; Kang, Shichang; Li, Chaoliu; Rupakheti, Maheswar; Yan, Fangping; Li, Quanlian; Ji, Zhenming; Zhang, Qianggong; Luo, Wei; Sillanpää, Mika

    2015-12-15

    The Kathmandu Valley in the foothills of the Himalayas, where the capital city of Nepal is located, has one of the most serious air pollution problems in the world. In this study, total suspended particle (TSP) samples collected over a year (April 2013-March 2014) in the Kathmandu Valley were analyzed for determining the concentrations of 15 priority particle-bound polycyclic aromatic hydrocarbons (PAHs). The TSP and PAH concentrations were extremely high, with annual average concentration being 199±124μg/m(3) and 155±130ng/m(3), respectively, which are comparable to those observed in Asian cities such as Beijing and Delhi. The TSP and PAH concentrations varied considerably, with the seasonal average concentration being maximal during the post-monsoon season followed by, in descending order, the winter, pre-monsoon, and monsoon seasons. In the winter and pre-monsoon seasons, ambient TSP and PAH concentrations increased because of emissions from brick kilns and the use of numerous small generators. Moreover, in the pre-monsoon season, forest fires in the surrounding regions influenced the TSP and PAH concentrations in the valley. PAHs with 4 to 6 rings constituted a predominant proportion (92.3-93.3%) of the total PAHs throughout the year. Evaluation of diagnostic molecular ratios indicated that the atmospheric PAHs in the Kathmandu Valley originated mainly from diesel and biomass combustion. The toxic equivalent quantity (TEQ) of particle phase PAHs ranged between 2.74 and 81.5ngTEQ/m(3), which is considerably higher than those reported in other South Asian cities, and 2-80 times higher than the World Health Organization guideline (1ngTEQ/m(3)). This suggests that ambient PAH levels in the Kathmandu Valley pose a serious health risk to its approximately 3.5 million residents.

  15. Long-range atmospheric transport and the distribution of polycyclic aromatic hydrocarbons in Changbai Mountain.

    Science.gov (United States)

    Zhao, Xiangai; Kim, Seung-Kyu; Zhu, Weihong; Kannan, Narayanan; Li, Donghao

    2015-01-01

    The Changbai (also known as "Baekdu") Mountain, on the border between China and North Korea, is the highest mountain (2750 m) in northeastern China. Recently, this mountain region has experienced a dramatic increase in air pollution, not only because of increasing volumes of tourism-derived traffic but also because of the long-range transport of polluted westerly winds passing through major industrial and urban cities in the eastern region of China. To assess the relative importance of the two sources of pollution, 16 polycyclic aromatic hydrocarbons (PAHs) as model substances were determined in the mountain soil. A total of 32 soil samples were collected from different sides of the mountain at different latitudes between July and August of 2009. The ∑PAH concentrations were within the range 38.5-190.1 ng g(-1) on the northern side, 117.7-443.6 ng g(-1) on the southern side, and 75.3-437.3 ng g(-1) on the western side. A progressive increase in the level of ∑PAHs with latitude was observed on the southern and western sides that face the westerly wind with abundant precipitation. However, a similar concentration gradient was not observed on the northern side that receives less rain and is on the leeward direction of the wind. The high-molecular-weight PAH compounds were predominant in the soils on the southern and western sides, while low-molecular-weight PAHs dominated the northern side soils. These findings show that the distribution of PAHs in the mountain soil is strongly influenced by the atmospheric long-range transport and cold trapping.

  16. [Analyzer Design of Atmospheric Particulate Matter's Concentration and Elemental Composition Based on β and X-Ray's Analysis Techniques].

    Science.gov (United States)

    Ge, Liang-quan; Liu, He-fan; Zeng, Guo-qiang; Zhang, Qing-xian; Ren, Mao-qiang; Li, Dan; Gu, Yi; Luo, Yao-yao; Zhao, Jian-kun

    2016-03-01

    Monitoring atmospheric particulate matter requires real-time analysis, such as particulate matter's concentrations, their element types and contents. An analyzer which is based on β and X rays analysis techniques is designed to meet those demands. Applying β-ray attenuation law and energy dispersive X-ray fluorescence analysis principle, the paper introduces the analyzer's overall design scheme, structure, FPGA circuit hardware and software for the analyzer. And the analyzer can measure atmospheric particulate matters' concentration, elements and their contents by on-line analysis. Pure elemental particle standard samples were prepared by deposition, and those standard samples were used to set the calibration for the analyzer in this paper. The analyzer can monitor atmospheric particulate matters concentration, 30 kinds of elements and content, such as TSP, PM10 and PM2.5. Comparing the measurement results from the analyzer to Chengdu Environmental Protection Agency's monitoring results for monitoring particulate matters, a high consistency is obtained by the application in eastern suburbs of Chengdu. Meanwhile, the analyzer are highly sensitive in monitoring particulate matters which contained heavy metal elements (such as As, Hg, Cd, Cr, Pb and so on). The analyzer has lots of characteristics through technical performance testing, such as continuous measurement, low detection limit, quick analysis, easy to use and so on. In conclusion, the analyzer can meet the demands for analyzing atmospheric particulate matter's concentration, elements and their contents in urban environmental monitoring.

  17. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate and gas phase from smoldering mosquito coils containing various atomic hydrogen/carbon ratios

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tzu-Ting, E-mail: d89844001@ntu.edu.tw [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China); Lin, Shaw-Tao [Department of Applied Chemistry, Providence University, No. 200 Chung-Chi Rd., Salu Dist., Taichung City 43301, Taiwan (China); Lin, Tser-Sheng [Department of Safety, Health, and Environmental Engineering, National United University, 2 Lien Da, Maioli 360, Taiwan (China); Chung, Hua-Yi [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China)

    2015-02-15

    The polycyclic aromatic hydrocarbon emissions in particulate and gas phases generated from smoldering mosquito coils containing various atomic H/C ratios were examined. Five types of mosquito coils were burned in a test chamber with a total airflow rate of 8.0 L/min at a constant relative humidity and temperature. The concentrations of individual PAHs were determined using the GC/MS technique. Among the used mosquito coils, the atomic H/C ratio ranged from 1.23 to 1.57, yielding total mass, gaseous, and particulate PAH emission factors of 28.17–78.72 mg/g, 26,139.80–35,932.98 and 5735.22–13,431.51 ng/g, respectively. The various partitions of PAHs in the gaseous and particulate phases were in the ranges, 70.26–83.70% and 16.30–29.74% for the utilized mosquito coils. The carcinogenic potency of PAH emissions in the particulate phase (203.82–797.76 ng/g) was approximately 6.92–25.08 times higher than that of the gaseous phase (26.27–36.07 ng/g). Based on the analyses of PAH emissions, mosquito coils containing the lowest H/C ratio, a low oxygen level, and additional additives (i.e., CaCO{sub 3}) are recommended for minimizing the production of total PAH emission factors and carcinogenic potency. - Highlights: • PAHs emissions are influenced by mosquito coils containing various atomic H/C ratios. • The PAHs generated by burning mosquito coils mainly occur in the gaseous phase. • Total TEQ emission factors of PAHs mainly consisted of the particulate phase (> 87%). • The BaP and BaA accounted for 71.13–77.28% of the total TEQ emission factors. • Special PAH ratios were regarded as characteristic ratios for burning mosquito coil.

  18. Do geostable polycyclic isoprenoids record the rise of oxygen in the ancient atmosphere?

    Science.gov (United States)

    Bosak, T.; Losick, R.; Pearson, A.

    2007-12-01

    Polycyclic terpenoids are among the most stable and abundant lipid compounds in sediments of all ages. They may record the composition of microbial communities and environmental conditions in the past, including the rise of molecular oxygen 2.7 billion years ago. A great deal is known about how some of these lipids are produced by the enzymatic cyclization of linear terpenoids by a family of triterpene cyclases, but whether and how specific polycyclic compounds reflect certain metabolisms or physiologies of modern microbes is not well understood. Here we demonstrate that a novel class of tetracyclic terpenoids is present in the spores of B. subtilis. These compounds are derived from the enzymatic cyclization of regular linear terpenoids by a protein homologous to known triterpenoid cyclases. The cyclization of regular linear terpenoids is thought to have produced the most ancient polycyclic terpenoids but, until now, there have not been any known modern microbial sources of such compounds. The presence of tetracyclic terpenoids increases the resistance of spores to hydrogen peroxide, a reactive oxygen species, establishing for the first time a physiological function of bacterial polycyclic terpenoids in vivo. Our work demonstrates that some polycyclic terpenoids play a direct role in protecting modern bacteria from reactive oxygen species. Similarly, their geostable derivatives in the rock record may imply the presence of oxidative stress related to the oxygenation of Earth's surface in the past.

  19. Development of an analytical method for the simultaneous determination of 15 carcinogenic polycyclic aromatic hydrocarbons and polycyclic aromatic nitrogen heterocyclic compounds. application to diesel particulates.

    Science.gov (United States)

    Sauvain, J J; Vu Duc, T; Huynh, C K

    2001-12-01

    A new method enabling the determination of 15 priority carcinogenic polyaromatic compounds (PAC) proposed by the US National Toxicology Program (NTP) has been developed and applied to diesel exhaust particulates (DEP). The clean-up procedure consists of solid-phase extraction (SPE) and HPLC fractionation on silica phases followed by liquid-liquid extraction and chromatography on a polyvinylbenzene copolymer column. The method gives good recoveries for all PAC studied except dibenzo[a,j]acridine and dibenzo[a,h]pyrene, for which recovery values are below 80%. The use of GC-MS ion trap and its capacity to achieve single-ion storage enhanced the sensitivity of the method, enabling the detection of high-molecular-weight PAH in the low ng g(-1) concentration range. Intermediate polarity GC columns, e.g. BPX-50 or equivalent, enabled better separation, when applied to DEP analysis, than the generally used DB-5 apolar phase. This is observed mainly for separation of isomeric compounds belonging to the benzofluoranthene and dibenzopyrene families. The application of this method to DEP sampled from the exhaust of a diesel engine and in confined locations such as a tunnel has shown that all PAH of the NTP list could be detected, except dibenzo[a,h]pyrene. No dibenzacridine or dibenzocarbazole could be detected in such matrices. The method is sufficiently sensitive to be applicable to environmental exposure measurements in occupational health surveys.

  20. Desorption of Herbicides from Atmospheric Particulates During High-Volume Air Sampling

    Directory of Open Access Journals (Sweden)

    Dwight V. Quiring

    2011-11-01

    Full Text Available Pesticides can be present in the atmosphere either as vapours and/or in association with suspended particles. High-volume air sampling, in which air is aspirated first through a glass fibre filter to capture pesticides associated with atmospheric particulates and then polyurethane foam (PUF, often in combination with an adsorbent resin such as XAD-2, to capture pesticides present as vapours, is generally employed during atmospheric monitoring for pesticides. However, the particulate fraction may be underestimated because some pesticides may be stripped or desorbed from captured particulates due to the pressure drop created by the high flow of air through the filter. This possibility was investigated with ten herbicide active ingredients commonly used on the Canadian prairies (dimethylamine salts of 2,4-D, MCPA and dicamba, 2,4-D 2-ethylhexyl ester, bromoxynil octanoate, diclofop methyl ester, fenoxaprop ethyl ester, trifluralin, triallate and ethalfluralin and seven hydrolysis products (2,4-D, MCPA, dicamba, bromoxynil, diclofop, clopyralid and mecoprop. Finely ground heavy clay soil fortified with active ingredients/hydrolysis products was evenly distributed on the glass fibre filters of high-volume air samplers and air aspirated through the samplers at a flow rate of 12.5 m3/h for a 7-day period. The proportion desorbed as vapour from the fortified soil was determined by analysis of the PUF/XAD-2 resin composite cartridges. The extent of desorption from the fortified soil applied to the filters varied from 0% for each of the dimethylamine salts of 2,4-D, MCPA and dicamba to approximately 50% for trifluralin, triallate and ethalfluralin.

  1. Special issue of Atmospheric Environment for Particulate Matter: Atmospheric Sciences, Exposure, and the Fourth Colloquium on PM and Human Health

    Science.gov (United States)

    Middlebrook, Ann; Turner, Jay; Solomon, Paul A.

    2004-10-01

    In response to epidemiological studies published over 20 years ago, at least three research communities have been intensively studying airborne particulate matter (PM). These efforts have been coordinated by approaching the source-atmospheric accumulation/receptor-exposure-dose-health effects paradigm (adopted from NRC, 2001) from different perspectives or along different parts of the paradigm. The atmospheric sciences communities consider the emissions of particles and precursors from sources, their transport and transformation in air to receptor locations, and finally removal from the atmosphere. The exposure communities' interest is to examine the pathways by which pollution or PM, in this case, approaches and enters the body, typically by trying to relate PM concentrations at a central location(s) to exposure and perhaps dose. Both the atmospheric sciences and exposure communities approach the paradigm from left to right. In contrast, the health effects communities have studied health outcomes, including hospital admissions, school absences, disease rates and deaths in human populations, and potential mechanisms of biological actions in laboratory settings. In general, the health effects communities' approach the paradigm from right to left attempting to correlate an observed adverse health effect with dose or exposure measures. For the most part, research results are reported in scientific publications and conferences for each community respectively. Over the years, there has been little effort to integrate information from these diverse groups in a substantive way. While a major attempt took place in 1998 at the Chapel Hill workshop (Albritton and Greenbaum, 1998), little has occurred since.

  2. Biomass Burning: The Cycling of Gases and Particulates from the Biosphere to the Atmosphere

    Science.gov (United States)

    Levine, J. S.

    2003-12-01

    Biomass burning is both a process of geochemical cycling of gases and particulates from the biosphere to the atmosphere and a process of global change. In the preface to the book, One Earth, One Future: Our Changing Global Environment (National Academy of Sciences, 1990), Dr. Frank Press, the President of the National Academy of Sciences, writes: "Human activities are transforming the global environment, and these global changes have many faces: ozone depletion, tropical deforestation, acid deposition, and increased atmospheric concentrations of gases that trap heat and may warm the global climate."It is interesting to note that all four global change "faces" identified by Dr. Press have a common thread - they are all caused by biomass burning.Biomass burning or vegetation burning is the burning of living and dead vegetation and includes human-initiated burning and natural lightning-induced burning. The bulk of the world's biomass burning occurs in the tropics - in the tropical forests of South America and Southeast Asia and in the savannasof Africa and South America. The majority of the biomass burning, primarily in the tropics (perhaps as much as 90%), is believed to be human initiated for land clearing and land-use change. Natural fires triggered by atmospheric lightning only accounts for ˜10% of all fires (Andreae, 1991). As will be discussed, a significant amount of biomass burning occurs in the boreal forests of Russia, Canada, and Alaska.Biomass burning is a significant source of gases and particulates to the regional and global atmosphere (Crutzen et al., 1979; Seiler and Crutzen, 1980; Crutzen and Andreae, 1990; Levine et al., 1995). Its burning is truly a multidiscipline subject, encompassing the following areas: fire ecology, fire measurements, fire modeling, fire combustion, remote sensing, fire combustion gaseous and particulate emissions, the atmospheric transport of these emissions, and the chemical and climatic impacts of these emissions. Recently

  3. The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue

    Science.gov (United States)

    Socorro, Joanna; Durand, Amandine; Temime-Roussel, Brice; Gligorovski, Sasho; Wortham, Henri; Quivet, Etienne

    2016-09-01

    The persistent organic pollutants (POPs) due to their physicochemical properties can be widely spread all over the globe; as such they represent a serious threat to both humans and wildlife. According to Stockholm convention out of 24 officially recognized POPs, 16 are pesticides. The atmospheric life times of pesticides, up to now were estimated based on their gas-phase reactivity. It has been only speculated that sorption to aerosol particles may increase significantly the half-lives of pesticides in the atmosphere. The results presented here challenge the current view of the half-lives of pesticides in the lower boundary layer of the atmosphere and their impact on air quality and human health. We demonstrate that semivolatile pesticides which are mostly adsorbed on atmospheric aerosol particles are very persistent with respect to the highly reactive hydroxyl radicals (OH) that is the self-cleaning agent of the atmosphere. The half-lives in particulate phase of difenoconazole, tetraconazole, fipronil, oxadiazon, deltamethrin, cyprodinil, permethrin, and pendimethalin are in order of several days and even higher than one month, implying that these pesticides can be transported over long distances, reaching the remote regions all over the world; hence these pesticides shall be further evaluated prior to be confirmed as POPs.

  4. Long-range transport of continentally-derived particulate carbon in the marine atmosphere: evidence from stable carbon isotope studies

    OpenAIRE

    Cachier, Héléne; BUAT-MÉNARD, PATRICK; Fontugne, Michel; Chesselet, Roger

    2011-01-01

    Since 1979, we have investigated marine and non-marine sources of particulate carbon in the marine atmosphere from measurements of carbon concentration and isotopic composition 13C/12C). Aerosol samples were collected, mostly during the Sea/Air Exchange (SEAREX) Program experiments, in the northern and southern hemispheres (Sargasso Sea, Enewetak Atoll, Peru upwelling, American Samoa, New Zealand, Amsterdam Island). The concentration and the isotopic composition of particulate carbon of marin...

  5. Emissions of particulate matter and associated polycyclic aromatic hydrocarbons from agricultural diesel engine fueled with degummed,deacidified mixed crude palm oil blends

    Institute of Scientific and Technical Information of China (English)

    Khamphe Phoungthong; Surajit Tekasakul; Perapong Tekasakul; Gumpon Prateepchaikul; Naret Jindapetch; Masami Furuuchi; Mitsuhiko Hata

    2013-01-01

    Mixed crude palm oil (MCPO),the mixture of palm fiber oil and palm kernel oil,has become of great interest as a renewable energy source.It can be easily extracted from whole dried palm fruits.In the present work,the degummed,deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long term usage.The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler.The 50% cut-off aerodynamic diameters for the first three stages were 10,2.5 and 1 μm,while the last stage collected all particles smaller than 1 μm.Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography.The results indicated that the size distribution of particulate matter was in the accumulation mode and the pattern of total PAHs associated with fine-particles (< 1 μm) showed a dominance of larger molecular weight PAHs (4-6 aromatic rings),especially pyrene.The mass median diameter,PM and total PAH concentrations decreased when increasing the palm oil content,but increased when the running hours of the engine were increased.In addition,Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaPeq) for all particle size ranges.As the palm oil was increased,the BaPeq decreased gradually.Therefore the degummed-deacidified MCPO blends are recommended for diesel substitute.

  6. The Stable and Radio- Carbon Isotopic Content of Labile and Refractory Carbon in Atmospheric Particulate Matter

    Science.gov (United States)

    McNichol, A. P.; Rosenheim, B. E.; Gerlach, D. S.; Hayes, J. M.

    2006-12-01

    Studies of the isotopic content of atmospheric particulate matter are hampered by difficulties in chemically defining the pools of carbon and analytically isolating the different pools. We are conducting studies on reference materials and atmospheric aerosol samples to develop a method to measure stable and radio- carbon isotopes on the labile and refractory carbon. We are using a flow-through combustion system that allows us to combust, collect and measure the isotopic content of the gases produced at all stages of heating/oxidizing. We compare our results to those measured using a chemothermal oxidation method (CTO) (Gustafsson et al., 2001). In this method, refractory carbon is defined as the material remaining after pre- combusting a sample at 375°C in the presence of oxygen for 24 hours. The reference materials are diesel soot, apple leaves and a hybrid of the two (DiesApple), all from NIST. These provide carbon with two well-defined fractions -- the soot provides refractory carbon that is radiocarbon dead and the apple leaves provide organic carbon that is radiocarbon modern. Radiocarbon results from DiesApple indicate that the "refractory" carbon defined by the CTO method is actually a mixture of old and modern carbon that contains over 25% modern carbon. This suggests that charred material formed from the apples leaves during the pre-combustion step is contributing to the fraction we identify as refractory carbon. We are studying this by analyzing the individual materials and the mixture using our flow-through system. First results with this system indicate that the refractory fraction trapped from the DiesApple contains much less modern carbon than the CTO method, less than 7%. We will present detailed concentration and isotopic results of the generation of carbon dioxide during programmed combustion of each of the reference materials. We studied the radiocarbon content of both the total carbon (TC) and refractory carbon in the fine particulate matter (PM

  7. Distribution and Source of Polycyclic Aromatic Hydrocarbons (PAHs) in Water Dissolved Phase, Suspended Particulate Matter and Sediment from Weihe River in Northwest China.

    Science.gov (United States)

    Chen, Yuyun; Jia, Rui; Yang, Shengke

    2015-11-06

    Weihe River is a typical river located in the arid and semi-arid regions of Northwest China. In this study, the distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) in Weihe River were investigated. The concentrations of ∑PAHs ranged from 351 to 4427 ng/L with a mean value of 835.4 ng/L in water dissolved phase (WDP), from 3557 ng/L to 147,907 ng/L with a mean value of 20,780 ng /L in suspended particulate matter (SPM), and from 362 to 15,667 ng/g dry weight (dw) with a mean value of 2000 ng/g dw in sediment, respectively. The concentrations of PAHs in Weihe River were higher compared with other rivers in the world. In both WDP and sediment, the highest concentrations of ∑PAHs were observed in the middle reach, while the lowest concentrations of ∑PAHs were found in the lower reach. For SPM, however, the PAHs concentrations in the lower reach were highest and the PAHs concentrations in the upper reach were lowest. The ratios of anthracene/(anthracene + phenanthrene) and fluoranthene/ (fluoranthene + pyrene) reflected a pattern of both pyrolytic and petrogenic input of PAHs in Weihe River. The potential ecosystem risk assessment indicated that harmful biological impairments occur frequently in Weihe River.

  8. Characterizations, relationship, and potential sources of outdoor and indoor particulate matter bound polycyclic aromatic hydrocarbons (PAHs) in a community of Tianjin, Northern China.

    Science.gov (United States)

    Han, B; Bai, Z; Liu, Y; You, Y; Xu, J; Zhou, J; Zhang, J; Niu, C; Zhang, N; He, F; Ding, X

    2015-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most toxic air pollutants in China. However, because there are unsubstantial data on indoor and outdoor particulate PAHs, efforts in assessing inhalation exposure and cancer risk to PAHs are limited in China. This study measured 12 individual PAHs in indoor and outdoor environments at 36 homes during the non-heating period and heating period in 2009. Indoor PAH concentrations were comparable with outdoor environments in the non-heating period, but were lower in the heating period. The average indoor/outdoor ratios in both sampling periods were lower than 1, while the ratios in the non-heating period were higher than those in the heating period. Correlation analysis and coefficient of divergence also verified the difference between indoor and outdoor PAHs, which could be caused by high ventilation in the non-heating period. To support this conclusion, linear and robust regressions were used to estimate the infiltration factor to compare outdoor PAHs to indoor PAHs. The calculated infiltration factors obtained by the two models were similar in the non-heating period but varied greatly in the heating period, which may have been caused by the influence of ventilation. Potential sources were distinguished using a diagnostic ratio and a mixture of coal combustion and traffic emission, which are major sources of PAHs.

  9. Inhibition of the WNT/β-catenin pathway by fine particulate matter in haze: Roles of metals and polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Lee, Kang-Yun; Cao, Jun-Ji; Lee, Chii-Hong; Hsiao, Ta-Chih; Yeh, Chi-Tai; Huynh, Thanh-Tuan; Han, Yong-Ming; Li, Xiang-Dong; Chuang, Kai-Jen; Tian, Linwei; Ho, Kin-Fai; Chuang, Hsiao-Chi

    2015-05-01

    Air pollution might have a great impact on pulmonary health, but biological evidence in response to particulate matter less than 2.5 μm in size (PM2.5) has been lacking. Physicochemical characterization of haze PM2.5 collected from Beijing, Xian and Hong Kong was performed. Biological pathways were identified by proteomic profiling in mouse lungs, suggesting that WNT/β-catenin is important in the response to haze PM2.5. Suppression of β-catenin levels, activation of caspase-3 and alveolar destruction, as well as IL-6, TNF-α and IFN-γ production, were observed in the lungs. The inhibition of β-catenin, TCF4 and cyclin D1 was observed in vitro in response to haze PM2.5. The inhibition of WNT/β-catenin signaling, apoptosis-related results (caspase-3 and alveolar destruction), and inflammation, particularly including caspase-3 and alveolar destruction, were more highly associated with polycyclic aromatic hydrocarbons in haze PM2.5. In conclusion, decreased WNT/β-catenin expression modulated by haze PM2.5 could be involved in alveolar destruction and inflammation during haze episodes.

  10. A critical and comparative appraisal of polycyclic aromatic hydrocarbons in sediments and suspended particulate material from a large South American subtropical estuary.

    Science.gov (United States)

    Cardoso, Fernanda D; Dauner, Ana Lúcia L; Martins, César C

    2016-07-01

    The Paranaguá Estuarine Complex (PEC) is an important socioeconomic estuary of the Brazilian coast that is influenced by the input of pollutants like polycyclic aromatic hydrocarbons (PAHs). Because of the apparent lack of comparative studies involving PAHs in different estuarine compartments, the aim of this study was to determine and compare PAH concentrations in surface sediment and suspended particulate material (SPM) in the PEC to evaluate their behaviour, compositions, sources and spatial distributions. The total PAH concentrations in the sediment ranged from 0.6 to 63.8 ng g(-1) (dry weight), whereas in the SPM these concentrations ranged from 391 to 4164 ng g(-1). Diagnostic ratios suggest distinct sources of PAHs to sediments (i.e., pyrolytic sources) and SPM (i.e., petrogenic sources such as vessel traffic). Thus, the recent introduction of PAHs is more clearly indicated in the SPM since oil related-compounds (e.g., alkyl-PAHs) remain present in similar concentrations. Further, this matrix may better reflect the current state of the environment at the time of sampling because of the absence of significant degradation.

  11. Exposure to atmospheric particulate matter enhances Th17 polarization through the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Michael van Voorhis

    Full Text Available Lung diseases, including asthma, COPD, and other autoimmune lung pathologies are aggravated by exposure to particulate matter (PM found in air pollution. IL-17 has been shown to exacerbate airway disease in animal models. As PM is known to contain aryl hydrocarbon receptor (AHR ligands and the AHR has recently been shown to play a role in differentiation of Th17 T cells, the aim of this study was to determine whether exposure to PM could impact Th17 polarization in an AHR-dependent manner. This study used both cell culture techniques and in vivo exposure in mice to examine the response of T cells to PM. Initially experiments were conducted with urban dust particles from a standard reference material, and ultimately repeated with freshly collected samples of diesel exhaust and cigarette smoke. The readout for the assays was increased T cell differentiation as indicated by increased generation of IL-17A in culture, and increased populations of IL-17 producing cells by intracellular flow cytometry. The data illustrate that Th17 polarization was significantly enhanced by addition of urban dust in a dose dependent fashion in cultures of wild-type but not AHR(-/- mice. The data further suggest that polycyclic aromatic hydrocarbons played a primary role in this enhancement. There was both an increase of Th17 cell differentiation, and also an increase in the amount of IL-17 secreted by the cells. In summary, this paper identifies a novel mechanism whereby PM can directly act on the AHR in T cells, leading to enhanced Th17 differentiation. Further understanding of the molecular mechanisms responsible for pathologic Th17 differentiation and autoimmunity seen after exposure to pollution will allow direct targeting of proteins involved in AHR activation and function for treatment of PM exposures.

  12. Seasonal variations in the concentration and solubility of elements in atmospheric particulate matter: a case study in Northern Italy

    Directory of Open Access Journals (Sweden)

    Canepari S.

    2013-04-01

    Full Text Available Atmospheric particulate matter is characterized by a variety of chemical components, generally produced by different sources. Chemical fractionation of elements, namely the determination of their extractable and residual fractions, may reliably increase the selectivity of some elements as tracers of specific PM sources. Seasonal variations of atmospheric particulate matter concentration in PM10 and PM2.5, of elemental concentration in PM10 and PM2.5, of the extractable and residual fraction of elements in different size fractions in the range 0.18 – 18 μm are reported in this paper. The effect of the ageing of the air masses is discussed.

  13. The Influence of Sandstorms and Long-Range Transport on Polycyclic Aromatic Hydrocarbons (PAHs in PM2.5 in the High-Altitude Atmosphere of Southern China

    Directory of Open Access Journals (Sweden)

    Minmin Yang

    2015-10-01

    Full Text Available PM2.5 (Particulate Matter 2.5 samples were collected at Mount Heng and analyzed for polycyclic aromatic hydrocarbons (PAHs. During sampling, a sandstorm from northern China struck Mount Heng and resulted in a mean PM2.5 concentration of 150.61 μg/m3, which greatly exceeded the concentration measured under normal conditions (no sandstorm: 58.50 μg/m3. The average mass of PAHs in PM2.5 was 30.70 μg/g, which was much lower than in the non-sandstorm samples (80.80 μg/g. Therefore, the sandstorm increased particle levels but decreased PAH concentrations due to dilution and turbulence. During the sandstorm, the concentrations of 4- and 5-ring PAHs were below their detection limits, and 6-ring PAHs were the most abundant. Under normal conditions, the concentrations of 2-, 3- and 6-ring PAHs were higher, and 4- and 5-ring PAHs were lower relative to the other sampling sites. In general, the PAH contamination was low to medium at Mount Heng. Higher LMW (low molecular weight concentrations were primarily linked to meteorological conditions, and higher HMW (high molecular weight concentrations primarily resulted from long-range transport. Analysis of diagnostic ratios indicated that PM2.5 PAHs had been emitted during the combustion of coal, wood or petroleum. The transport characteristics and origins of the PAHs were investigated using backwards Lagrangian particle dispersion modeling. Under normal conditions, the “footprint” retroplumes and potential source contributions of PAHs for the highest and lowest concentrations indicated that local sources had little effect. In contrast, long-range transport played a vital role in the levels of PM2.5 and PAHs in the high-altitude atmosphere.

  14. Development of a Novel Simulation Reactor for Chronic Exposure to Atmospheric Particulate Matter

    Science.gov (United States)

    Ye, Jianhuai; Salehi, Sepehr; North, Michelle L.; Portelli, Anjelica M.; Chow, Chung-Wai; Chan, Arthur W. H.

    2017-02-01

    Epidemiological studies have shown that air pollution is associated with the morbidity and mortality from cardiopulmonary diseases. Currently, limited experimental models are available to evaluate the physiological and cellular pathways activated by chronic multi-pollutant exposures. This manuscript describes an atmospheric simulation reactor (ASR) that was developed to investigate the health effects of air pollutants by permitting controlled chronic in vivo exposure of mice to combined particulate and gaseous pollutants. BALB/c mice were exposed for 1 hr/day for 3 consecutive days to secondary organic aerosol (SOA, a common particulate air pollutant) at 10–150 μg/m3, SOA (30 μg/m3) + ozone (65 ppb) or SOA + ozone (65 ppb) + nitrogen dioxide (NO2; 100 ppb). Daily exposure to SOA alone led to increased airway hyperresponsiveness (AHR) to methacholine with increasing SOA concentrations. Multi-pollutant exposure with ozone and/or NO2 in conjunction with a sub-toxic concentration of SOA resulted in additive effects on AHR to methacholine. Inflammatory cell recruitment to the airways was not observed in any of the exposure conditions. The ASR developed in this study allows us to evaluate the chronic health effects of relevant multi-pollutant exposures at ‘real-life’ levels under controlled conditions and permits repeated-exposure studies.

  15. Impacts of changes in North Atlantic atmospheric circulation on particulate matter and human health in Europe

    Science.gov (United States)

    Pausata, Francesco S. R.; Pozzoli, Luca; Van Dingenen, Rita; Vignati, Elisabetta; Cavalli, Fabrizia; Dentener, Frank J.

    2013-08-01

    In this study we use a global climate model to assess particulate matter (PM) variability induced by the North Atlantic Oscillation (NAO) in Europe during winter and the potential impact on human health of a future shift in the NAO mean state. Our study shows that extreme NAO phases in the 1990s modulated most of the interannual variability of winter PM concentrations in several European countries. Increased PM concentrations as a result of a positive shift in the mean winter NAO of one standard deviation would lead to about 5500 additional premature deaths in Mediterranean countries, compared to the simulated average PM health impact for the year 2000. In central-northern Europe, instead, higher wind speed and increased PM removal by precipitation lead to negative PM concentration anomalies with associated health benefits. We suggest that the NAO index is a useful indicator for the role of interannual atmospheric variability on large-scale pollution-health impacts.

  16. Concentration and size distribution of particulate oxalate in marine and coastal atmospheres - Implication for the increased importance of oxalate in nanometer atmospheric particles

    Science.gov (United States)

    Guo, Tianfeng; Li, Kai; Zhu, Yujiao; Gao, Huiwang; Yao, Xiaohong

    2016-10-01

    In literature, particulate oxalate has been widely studied in the total suspended particles (TSP), particles 100 nm. In this article, we measured oxalate's concentrations in size-segregated atmospheric particles down to 10 nm or 56 nm during eight campaigns performed at a semi-urban coastal site, over the marginal seas of China and from the marginal seas to the northwest Pacific Ocean (NWPO) in 2012-2015. When the sum of the oxalate's concentration in particles pollution event. Mode analysis results of particulate oxalate and the correlation between oxalate and sulfate suggested that the elevated concentrations of oxalate in PM10 were mainly related to enhanced in-cloud formation of oxalate via anthropogenic precursors. Size distribution data in the total of 136 sets of samples also showed approximately 80% of particulate oxalate's mass existing in atmospheric particles >100 nm. Consistent with previous studies, particulate oxalate in particles >100 nm was a negligible ionic component when comparing to particulate SO42- in the same size range. However, the mole ratios of oxalate/sulfate in particles 100 nm atmospheric particles such as PM2.5, PM10, TSP, etc.

  17. Biomonitoring of atmospheric particulate matter using magnetic properties of Salix matsudana tree ring cores.

    Science.gov (United States)

    Zhang, Chunxia; Huang, Baochun; Piper, John D A; Luo, Rensong

    2008-04-01

    Magnetic properties of atmospheric particulate matter collected by both natural and artificial dust receptors are increasingly being used as proxy parameters for environmental analyses. This study reports the first investigation of the relationship between smelting factory activity and the impact on the environment as recorded by the magnetic signature in Salix matsudana tree rings. Magnetic techniques including low-temperature experiments, successive acquisition of isothermal remanent magnetisation (IRM), hysteresis loops and measurements of saturated IRM (SIRM) indicated that magnetic particles were omnipresent in tree bark and trunk wood, and that these particles were predominantly magnetite with multidomain properties. The magnetic properties of tree trunk and branch cores sampled from different directions and heights implied that the acquisition of magnetic particles by a tree depends on both orientation and height. The differences of SIRM values of tree ring cores indicated that pollution source-facing tree trunk wood contained significantly more magnetic particles than other faces. The results indicated that magnetic particles are most likely to be intercepted and collected by tree bark and then enter into tree xylem tissues during the growing season to become finally enclosed into the tree ring by lignification. There was a significant correlation between time-dependent SIRM values of tree ring cores and the annual iron production of the smelting factory. From the dependence of magnetic properties with sampling direction and height, it is argued that magnetic particles in the xylem cannot move between tree rings. Accordingly, the SIRM of tree ring cores from the source-facing side can contribute to historic studies of atmospheric particulate matter produced by heavy metal smelting activities.

  18. Organic particulate material levels in the atmosphere: conditions favoring sensitivity to varying relative humidity and temperature.

    Science.gov (United States)

    Pankow, James F

    2010-04-13

    This study examines the sensitivity in predicted levels of atmospheric organic particulate matter (M(o), microg m(-3)) as those levels may potentially be affected by changes in relative humidity and temperature. In a given system, for each partitioning compound, f(g) and f(p) represent the gaseous and particulate fractions (f(g) + f(p) = 1). Sensitivity in the M(o) levels becomes dampened as the compounds contributing significantly to M(o) are increasingly found in the particle phase (f(p) --> 1). Thus, although local maxima in sensitivity can be encountered as M(o) levels increase, because as M(o) increases each f(p) --> 1, then increasing M(o) levels generally tend to reduce sensitivity in M(o) levels to changes in relative humidity and temperature. Experiments designed to elucidate the potential magnitudes of the effects of relative humidity and temperature on M(o) levels must be carried out at M(o) levels that are relevant for the ambient atmosphere: The f(p) values for the important partitioning compounds must not be elevated above ambient-relevant values. Systems in which M(o) levels are low (e.g., 1-2 microg m(-3)) and/or composed of unaged secondary organic aerosol are the ones most likely to show sensitivity to changing relative humidity and temperature. Results from two published chamber studies are examined in the above regard: [Warren B, et al. (2009) Atmos Environ 43:1789-1795] and [Prisle NL, et al. (2010) Geophys Res Lett 37:L01802].

  19. Speciation of atmospheric polycyclic aromatic hydrocarbons (PAHs) present during fog time collected submicron particles.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Sharma, Swati; Habib, Gazala; Gupta, Tarun

    2015-08-01

    Airborne submicron particles (PM1) were collected using PM1 sampler during the fog-dominated days (December 2013-January 2014). PM1 values varied between 58.12 μg/m(3) and 198.75 μg/m(3), and average mass concentration was 162.33 ± 38.25 μg/m(3) while total average concentration of particle-associated polycyclic aromatic hydrocarbon (PAHs) determined was 616.31 ± 30.31 ng/m(3). This is a signal for an alarming high pollution level at this site situated in the Indo-Gangetic Plain (IGP). PAHs were extracted from filters using toluene and acetonitrile. Quantitative measurements of polycyclic aromatic hydrocarbons (PAHs) were carried out using the high performance liquid chromatography (HPLC) technique. The extracts were analyzed for 16 target polycyclic aromatic hydrocarbons (PAHs) including carcinogenic compound benzo(a)pyrene (19.86 ± 38.98 ng/m(3)). Fluoranthene, benzo(a)anthracene, anthracene, and fluorene were the predominant compounds found in the samples collected during foggy days. Based on number of rings, four-ring PAH compounds had maximum contribution (43%) in this fog time collected submicron particles followed by three-ring (21%), five-ring (20%), six-ring (13%), and two-ring (3%), respectively. In winter and foggy days, wood and coal combustion and biomass burning also significantly contribute to the PAH levels. However, diagnostic ratio suggests diesel emissions as the prime source of PAHs at this sampling site.

  20. Mutagenicity profile of atmospheric particulate matter in a small urban center subjected to airborne emission from vehicle traffic and sugar cane burning.

    Science.gov (United States)

    Alves, Debora Kristina M; Kummrow, Fábio; Cardoso, Arnaldo A; Morales, Daniel A; Umbuzeiro, Gisela A

    2016-01-01

    Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella/microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella/microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m(3) without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro-polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NOx and ozone concentration, although more studies are required to confirm this hypothesis.

  1. Diurnal and nocturnal measurements of PAH, nitro-PAH, and oxy-PAH compounds in atmospheric particulate matter of a sugar cane burning region

    Science.gov (United States)

    Souza, Kely F.; Carvalho, Lilian R. F.; Allen, Andrew G.; Cardoso, Arnaldo A.

    2014-02-01

    Polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, and oxy-PAHs were studied in the atmospheric particulate matter of a subtropical rural region (São Paulo State, Brazil) affected by emissions from sugar cane burning. Diurnal and nocturnal samples were collected from May to June of 2010. In general, average PAH concentrations were significantly higher at night, suggesting that the compounds were predominantly emitted to the atmosphere during biomass burning (which was mainly performed at night). The maximum average PAH concentration was found for benzo[b]fluoranthene at night (2.9 ± 5.4 ng m-3). Among the nitro-PAH compounds, the highest average concentrations were obtained for 9-nitrophenanthrene in diurnal and nocturnal samples (1.5 ± 1.2 and 1.3 ± 2.1 ng m-3, respectively). In contrast to the PAH and nitro-PAH compounds, the oxy-PAHs could not be directly associated with sugar cane burning. The most abundant oxy-PAH compound was benzanthrone (1.6 ± 1.3 ng m-3) at night, followed by 9,10-anthraquinone (1.1 ± 0.9 ng m-3) and 9-fluorenone (0.4 ± 0.1 ng m-3) during the day. A correlation matrix was used to explore the origins of the different compounds. The data suggested that during the daytime, direct emissions (mainly in vehicle exhaust) contributed to the presence of PAHs, nitro-PAHs, and oxy-PAHs in air. Photochemical production also appeared to be a source of the majority of nitro-PAHs and oxy-PAHs, while photolysis could have contributed to removal of the nitro-PAHs during the daytime. At night, sugar cane burning emissions were the primary source of the PAHs and nitro-PAHs, with additional sources also contributing to the levels of oxy-PAHs in the atmosphere.

  2. Size and time-resolved roadside enrichment of atmospheric particulate pollutants

    Directory of Open Access Journals (Sweden)

    F. Amato

    2011-01-01

    Full Text Available Size and time-resolved roadside enrichments of atmospheric particulate pollutants in PM10 were detected and quantified in a Mediterranean urban environment (Barcelona, Spain. Simultaneous data from one urban background (UB, one traffic (T and one heavy traffic (HT location were analysed, and roadside PM10 enrichments (RE in a number of elements arising from vehicular emissions were calculated. Tracers of primary traffic emissions (EC, Fe, Ba, Cu, Sb, Cr, Sn showed the largest REs (>70%. Other traffic tracers (Zr, Cd showed lower but still consistent REs (25–40%, similar to those obtained for mineral matter resulting from road dust resuspension (Ca, La, Ce, Ti, Ga, Sr, 30–40%. The sum of primary and secondary organic carbon showed a RE of 41%, with contributions of secondary OC (SOC to total OC ranging from 46% at the HT site, 63% at the T site, and 78% in the UB. Finally, other trace elements (As, Co, Bi showed unexpected but consistent roadside enrichments (23% up to 69%, suggesting a link to traffic emissions even though the emission process is unclear.

    Hourly-resolved PM speciation data proved to be a highly resourceful tool to determine the source origin of atmospheric pollutants in urban environments. At the HT site, up to 62% of fine Mn was attributable to industrial plumes, whereas coarse Mn levels were mainly attributed to traffic. Similarly, even though Zn showed on average no roadside enrichment and thus was classified as industrial, the hourly-resolved data proved that at least 15% of coarse Zn may be attributed to road traffic emissions. In addition, our results indicate that secondary nitrate formation occurs within the city-scale, even in the absence of long atmospheric residence times or long-range atmospheric transport processes.

  3. The application of magnetic measurements for the characterization of atmospheric particulate pollution within the airport environment.

    Science.gov (United States)

    Jones, S; Richardson, N; Bennett, M; Hoon, S R

    2015-01-01

    The significant increase in global air travel which has occurred during the last fifty years has generated growing concern regarding the potential impacts associated with increasing emissions of atmospheric particulate matter (PM) on health and the environment. PM within the airport environment may be derived from a range of sources. To date, however, the identification of individual sources of airport derived PM has remained elusive but constitutes a research priority for the aviation industry.The aim of this research was to identify distinctive and characteristic fingerprints of atmospheric PM derived from various sources in an airport environment through the use of environmental magnetic measurements. PM samples from aircraft engine emissions, brake wear and tire wear residues have been obtained from a range of different aircraft and engine types. Samples have been analyzed utilizing a range of magnetic mineral properties indicative of magnetic mineralogy and grain size. Results indicate that the dusts from the three 'aircraft' sources, (i.e. engines, brakes and tires) display distinctive magnetic mineral characteristics which may serve as 'magnetic fingerprints' for these sources. Magnetic measurements of runway dusts collected at different locations on the runway surface also show contrasting magnetic characteristics which, when compared with those of the aircraft-derived samples, suggest that they may relate to different sources characteristic of aircraft emissions at various stages of the take-off/landing cycle. The findings suggest that magnetic measurements could have wider applicability for the differentiation and identification of PM within the airport environment.

  4. Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon

    Science.gov (United States)

    Borrás, Esther; Ródenas, Milagros; Vázquez, Mónica; Vera, Teresa; Muñoz, Amalia

    2015-12-01

    The phosphorothioate structure is highly present in several pesticides. However, there is a lack of information about its degradation process in air and the secondary pollutants formed. Herein, the atmospheric reactions of chlorpyrifos, one of the most world-used insecticide, and its main degradation product - chlorpyrifos-oxon - are described. The photo-oxidation under the presence of NOx was studied in a large outdoor simulation chamber for both chlorpyrifos and chlorpyrifos-oxon, observing a rapid degradation (Half lifetime < 3.5 h for both compounds). Also, the photolysis reactions of both were studied. The formation of particulate matter (aerosol mass yield ranged 6-59%) and gaseous products were monitored. The chemical composition of minor products was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as 3,5,6-trichloropyridin-2-ol and ethyl 3,5,6-trichloropyridin-2-yl hydrogen phosphate. An atmospheric degradation mechanism has been amplified based on an oxidation started with OH-nucleophilic attack to Pdbnd S bond.

  5. Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles

    Science.gov (United States)

    Teixeira, Elba Calesso; Garcia, Karine Oliveira; Meincke, Larissa; Leal, Karen Alam

    2011-08-01

    The purpose of the present study was to evaluate six nitro-polycyclic aromatic hydrocarbons (NPAHs) in fine (MAPA), RS, Brazil. The method used was of NPAHs isolation and derivatization, and subsequent gas chromatography by electron capture detection (CG/ECD). Results revealed a higher concentration of NPAHs, especially 3-nitrofluoranthene and 1-nitropyrene, in fine particles in the sampling sites studied within the MAPA. The diagnostic ratios calculated for PAHs and NPAHs identified the influence of heavy traffic, mainly of diesel emissions. The correlation of NPAHs with other pollutants (NO x, NO 2, NO and O 3) evidence the influence of vehicular emissions in the MAPA. The seasonal variation evidenced higher NPAHs concentrations in the fine particles during winter for most compounds studied.

  6. Atmospheric particulate mercury in the megacity Beijing: Efficiency of mitigation measures and assessment of health effects

    Science.gov (United States)

    Schleicher, N. J.; Schäfer, J.; Chen, Y.; Blanc, G.; Chen, Y.; Chai, F.; Cen, K.; Norra, S.

    2016-01-01

    Atmospheric particulate mercury (HgP) was studied before, during, and after the Olympic Summer Games in Beijing, China, in August 2008 in order to investigate the efficiency of the emission control measures implemented by the Chinese Government. These source control measures comprised traffic reductions, increase in public transportation, planting of vegetation, establishment of parks, building freeze at construction sites, cleaner production techniques for industries and industry closures in Beijing and also in the surrounding areas. Strictest measures including the "odd-even ban" to halve the vehicle volume were enforced from the 20th of July to the 20th of September 2008. The Olympic period provided the unique opportunity to investigate the efficiency of these comprehensive actions implemented in order to reduce air pollution on a large scale. Therefore, the sampling period covered summer (August, September) and winter (December and January) samples over several years from December 2005 to September 2013. Average HgP concentrations in total suspended particulates (TSP) sampled in August 2008 were 81 ± 39 pg/m3 while TSP mass concentrations were 93 ± 49 μg/m3. This equals a reduction by about 63% for TSP mass and 65% for HgP, respectively, compared to the previous two years demonstrating the short-term success of the measures. However, after the Olympic Games, HgP concentrations increased again to pre-Olympic levels in August 2009 while values in August 2010 decreased again by 30%. Moreover, winter samples, which were 2- to 11-fold higher than corresponding August values, showed decreasing concentrations over the years indicating a long-term improvement of HgP pollution in Beijing. However, regarding adverse health effects, comparisons with soil guideline values and studies from other cities highlighted that HgP concentrations in TSP remained high in Beijing despite respective control measures. Consequently, future mitigation measures need to be tailored more

  7. Mass Fraction Spatiotemporal Geostatistics and its Application to Map Atmospheric Polycyclic Aromatic Hydrocarbons after 9/11

    Science.gov (United States)

    Extensive research has been conducted on effects resulting from exposure to ambient particulate matter. Particulate matter has been linked to cardiovascular diseases, respiratory problems, and reproductive effects. A large body of work on particulate matter focuses on atmospher...

  8. Suspended Particulates Concentration (PM10 under Unstable Atmospheric Conditions over Subtropical Urban Area (Qena, Egypt

    Directory of Open Access Journals (Sweden)

    M. El-Nouby Adam

    2013-01-01

    Full Text Available The main purpose of this study is to evaluate the suspended particulates (PM10 in the atmosphere under unstable atmospheric conditions. The variation of PM10 was investigated and primary statistics were employed. The results show that, the PM10 concentrations values ranged from 6.00 to 646.74 μg m−3. The average value of PM10 is equal to 114.32 μg m−3. The high values were recorded in April and May (155.17 μg m−3 and 171.82 μg m−3, respectively and the low values were noted in February and December (73.86 μg m−3 and 74.05 μg m−3, respectively. The average value of PM10 of the hot season (125.35 × 10−6 g m−3 was higher than its value for the cold season (89.27 μg m−3. In addition, the effect of weather elements (air temperature, humidity and wind on the concentration of PM10 was determined. The multiple R between PM10 and these elements ranged from 0.05 to 0.47 and its value increased to reach 0.73 for the monthly average of the database used. Finally, the PM10 concentrations were grouped depending on their associated atmospheric stability class. These average values were equal to 122.80 ± 9 μg m−3 (highly unstable or convective, 109.37 ± 12 μg m−3 (moderately unstable and 104.42 ± 15 μg m−3 (slightly unstable.

  9. Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 in Guangzhou, China.

    Science.gov (United States)

    Liu, Jingjing; Man, Ruilin; Ma, Shexia; Li, Juansheng; Wu, Qi; Peng, Juanying

    2015-11-15

    The polycyclic aromatic hydrocarbons (PAHs) in PM2.5 contribute significantly to health risk. The objectives of this study were to assess the occurrence and variation in the concentrations and sources of PM2.5-bound PAHs sampled from the atmosphere of a typical southeastern Chinese city (Guangzhou) from June 2012 to May 2013, with the potential risks being investigated. The annual average concentration of PM2.5 was 64.88μgm(-3). The annual average concentration of PAHs in PM2.5 was 33.89ngm(-3). Benzo(a)pyrene (BaP) was found to be the predominant PAH in all PM2.5 samples throughout the year, constituting approximately 8.78% of the total PAH content. The significant meteorological parameters for most of the PAHs were sunshine time, air pressure, and humidity, together representing 10.7-52.4% of the variance in atmospheric PAH concentrations. Motor-vehicle exhaust and coal combustion were probably the main sources of PAHs in PM2.5 in Guangzhou. The average inhalation cancer risk (ICR) for a lifetime of 70years was 5.98×10(-4) (ranging from 8.39×10(-5) to 1.95×10(-3)).

  10. Atmospheric particulate matter levels, chemical composition and optical absorbing properties in Camagüey, Cuba.

    Science.gov (United States)

    Barja, Boris; Mogo, Sandra; Cachorro, Victoria E; Antuña, Juan Carlos; Estevan, Rene; Rodrigues, Ana; de Frutos, Ángel

    2013-02-01

    Atmospheric aerosol particles were collected at Camagüey, Cuba, during the period from February 2008 to April 2009 in order to know the particulate matter levels (PM) together with a general chemical and absorption characterization. The aerosols collection was carried out with a low volume particulate impactor twice a week. Gravimetric analysis of the particulate matter fractions PM10 and PM1 was carried out. An analysis of the eight major inorganic species (Na (+), K(+), Ca(2+), Mg(2+), NH4 (+), Cl(-), NO3(-) and SO4 (2-)) using ionic chromatography was conducted. The results were analyzed in two periods, the high aerosol concentration period (May to August) and the period with low aerosol concentration (the other months). During the high concentration period the average PM10 and PM1 levels were 35.11 μg m (-3) (std = 15.45 μg m(-3)) and 16.86 μg m(-3) (std = 6.14 μg m (-3)). During the low concentration period the average PM10 and PM1 levels were 23.13 μg m (-3) (std = 5.00 μg m(-3)) and 13.00 μg m(-3) (std = 4.02 μg m (-3)). For both periods, Cl(-), Na(+) and NO3 (-) are the predominant species in the coarse fraction (PM1-10), and SO 4(2-)and NH4(+) are the predominant species in the fine fraction (PM1). The spectral aerosol absorption coefficient, σ a, was measured for the wavelength range 400-700 nm with 10 nm steps. The σ a values were obtained with a filter transmission method for the fine fraction and were evaluated for 54 days covering a wide range of atmospheric conditions including a Saharan dust intrusion. σ a ranges from 8.5 M m(-1) to 34.5 M m(-1) at a wavelength of 550 nm, with a mean value of 18.7 M m (-1). The absorption Ångström parameter, αa, calculated for the pair of wavelengths (450/700 nm) presents a mean value of 0.33 (std = 0.19), which is a very low value comparing with those that can be found in the bibliography. Although the sampling period is short, these data represent the first evaluation of PM values with their

  11. [Sample preparation methods for chromatographic analysis of organic components in atmospheric particulate matter].

    Science.gov (United States)

    Hao, Liang; Wu, Dapeng; Guan, Yafeng

    2014-09-01

    The determination of organic composition in atmospheric particulate matter (PM) is of great importance in understanding how PM affects human health, environment, climate, and ecosystem. Organic components are also the scientific basis for emission source tracking, PM regulation and risk management. Therefore, the molecular characterization of the organic fraction of PM has become one of the priority research issues in the field of environmental analysis. Due to the extreme complexity of PM samples, chromatographic methods have been the chief selection. The common procedure for the analysis of organic components in PM includes several steps: sample collection on the fiber filters, sample preparation (transform the sample into a form suitable for chromatographic analysis), analysis by chromatographic methods. Among these steps, the sample preparation methods will largely determine the throughput and the data quality. Solvent extraction methods followed by sample pretreatment (e. g. pre-separation, derivatization, pre-concentration) have long been used for PM sample analysis, and thermal desorption methods have also mainly focused on the non-polar organic component analysis in PM. In this paper, the sample preparation methods prior to chromatographic analysis of organic components in PM are reviewed comprehensively, and the corresponding merits and limitations of each method are also briefly discussed.

  12. Characteristics and source appointment of atmospheric particulate mercury over East China Sea: Implication on the deposition of atmospheric particulate mercury in marine environment.

    Science.gov (United States)

    Duan, Lian; Cheng, Na; Xiu, Guangli; Wang, Fujiang; Chen, Ying

    2017-02-12

    Total Suspended Particulate (TSP) samples were collected at Huaniao Island in northern East China Sea (ECS) from March 2012 to January 2013. Chemical analysis were conducted to measure the concentration of total particulate mercury (TPM) and speciated particulate mercury including HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury (RPM). The bromine (Br) and iodine (I) on particles were also detected. The mean concentration of TPM during the study period was 0.23 ± 0.15 ng m(-3), while the obviously seasonal variation was found that the concentrations of TPM in spring, summer, fall and winter were 0.34 ± 0.20 ng m(-3), 0.15 ± 0.03 ng m(-3), 0.15 ± 0.05 ng m(-3) and 0.27 ± 0.26 ng m(-3), respectively. The statistically strong correlation of bromine and iodine to HPM was only found in spring with r = 0.81 and 0.77 (p < 0.01), respectively. While the strongest correlations between EPM and bromine and iodine were found in winter with r = 0.92 (Br) and 0.96 (I) (p < 0.01), respectively. The clustered 72-h backward trajectories of different seasons and the whole sampling period were categorized into 4 groups. In spring, the clusters passed a long distance across the East China Sea and brought about low concentration of mercury due to the deposition of mercury over the sea. The cluster of air mass across the sea had low concentration of HPM in winter, which suggested that the oxidation of mercury in winter might be related to other oxidants. During the whole sampling period, the air mass from the north of China contributed to the higher concentration of TPM in Huaniao Island.

  13. A comparison study of atmospheric polycyclic aromatic hydrocarbons in three Indian cities using PUF disk passive air samplers

    Science.gov (United States)

    Cheng, Hairong; Deng, Zongming; Chakraborty, Paromita; Liu, Di; Zhang, Ruijie; Xu, Yue; Luo, Chunlin; Zhang, Gan; Li, Jun

    2013-07-01

    A passive air sampling campaign was conducted to measure polycyclic aromatic hydrocarbons (PAHs) in Kolkata, Mumbai and Chennai, the three major cities of India. The measured total PAH concentrations ranged from 6480 to 54,800 ng sample-1, comparable to the highest levels across the globe. Three- to four-ring PAHs were the dominant components in the atmosphere. According to the spatial distribution, the PAH concentrations were the highest in Kolkata and the lowest in Chennai. Kolkata and Mumbai were characterized by a relatively high proportion of HMW (high molecular weight) PAHs, which can be ascribed to the difference in the economic and energy structures in the urban areas. Surprisingly, there was not significant decrease in PAH concentrations from urban to rural sites. Rural sources, generally associated with traditional biomass combustion, could be as important as urban sources in India. In this study, the total BaPeq (BaP toxic equivalent) concentrations generally exceeded the human exposure limit, posing potential risk to the health of the local residents.

  14. Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil

    Science.gov (United States)

    de P. Pereira, Pedro A.; Lopes, Wilson A.; Carvalho, Luiz S.; da Rocha, Gisele O.; de Carvalho Bahia, Nei; Loyola, Josiane; Quiterio, Simone L.; Escaleira, Viviane; Arbilla, Graciela; de Andrade, Jailson B.

    Respiratory system is the major route of entry for airborne particulates, being the effect on the human organism dependent on chemical composition of the particles, exposure time and individual susceptibility. Airborne particulate trace metals are considered to represent a health hazard since they may be absorbed into human lung tissues during breathing. Fossil fuel and wood combustion, as well as waste incineration and industrial processes, are the main anthropic sources of metals to the atmosphere. In urban areas, vehicular emissions—and dust resuspension associated to road traffic—become the most important manmade source. This work investigated the atmospheric concentrations of TSP, PM 10 and elements such as iron, manganese, copper and zinc, from three different sites around Salvador Region (Bahia, Brazil), namely: (i) Lapa Bus Station, strongly impacted by heavy-duty diesel vehicles; (ii) Aratu harbor, impacted by an intense movement of goods, including metal ores and concentrates and near industrial centers and; (iii) Bananeira Village located on Maré Island, a non-vehicle-influenced site, with activities such as handcraft work and fishery, although placed near the port. Results have pointed out that TSP concentrations ranged between 16.9 (Bananeira) and 354.0 μg m -3 (Aratu#1), while for PM 10 they ranged between 30.9 and 393.0 μg m -3, both in the Lapa Bus Station. Iron was the major element in both Lapa Station and Aratu (#1 and #2), with average concentrations in the PM 10 samples of 148.9, 79.6 and 205.0 ng m -3, respectively. Zinc, on the other hand, was predominant in samples from Bananeira, with an average concentration of 145.0 ng m -3 in TSP samples, since no PM 10 sample was taken from this site. The main sources of iron in the Lapa Station and Aratu harbor were, respectively, soil resuspension by buses and discharge of solid granaries, as fertilizers and metal ores. On the other hand, zinc and copper in the bus station were mainly from

  15. Molecular composition of sugars in atmospheric particulate matter from interior Alaska

    Science.gov (United States)

    Haque, Md. Mozammel; Kawamura, Kimitaka; Kim, Yongwon

    2015-04-01

    Sugars can account for 0.5-8% of carbon in atmospheric particulate matter, affecting the earth climate, air quality and public health. Total of 33 total suspended particle (TSP) samples were collected from Fairbanks, Alaska in June 2008 to June 2009 using a low volume air sampler. Here, we report the molecular characteristics of anhydro-sugars (levoglucosan, galactosan and mannosan), primary saccharides (xylose, fructose, glucose, sucrose and trehalose) and sugar alcohols (erythritol, arabitol, mannitol and inositol). The average contribution of sugars to the organic carbon (OC) was also determined to be 0.92%. Sugar compounds were measured using solvent extraction/TMS-derivatization technique followed by gas chromatography-mass spectrometry (GC-MS) determination. The concentrations of total quantified sugar compounds ranged from 2.3 to 453 ng m-3 (average 145 ng m-3). The highest concentration was recorded for levoglucosan in summer, with a maximum concentration of 790 ng m-3 (average 108 ng m-3). Levoglucosan, which is specifically formed by a pyrolysis of cellulose, has been used as an excellent tracer of biomass burning. The highest level of levoglucosan indicates a significant contribution of biomass burning in ambient aerosols. Galactosan (average 20 ng m-3) and mannosan (average 27 ng m-3), which are also formed through the pyrolysis of cellulose/hemicelluloses, were identified in all samples. The average concentrations of arabitol, mannitol, glucose and sucrose were also found 14.7, 14.6, 14.1 and 16.8 ng m-3, respectively. They have been proposed as tracers for resuspension of surface soil and unpaved road dust, which contain biological materials including fungi and bacteria. These results suggest that there is some impact of bioaerosols on climate over Interior Alaska. We will also measure water-soluble organic carbon (WSOC) and inorganic ions for all samples.

  16. A study of the association between atmospheric particulate matter and blood pressure in the population.

    Science.gov (United States)

    Zhang, Huawei; Qian, Jin; Zhao, Haiping; Wang, Jinda; Zhu, Hang; Zhou, Ying; Wang, Juan; Guo, Jin; Gehendra, Mahara; Qiu, Hongyan; Sun, Zhijun; He, Dian

    2016-06-01

    This systematic review and meta-analysis was conducted to assess the association between the level of atmospheric particulate matter (PM) and the increase in blood pressure (BP) for different exposure terms (≤ 7 vs > 7 days) and age groups (pressure [SBP] and diastolic blood pressure [DBP]). Among a total of 719 identified articles, 68 were reviewed in depth, of which only 20 satisfied the inclusion criteria. A significant association was found between PM10 levels and higher BP. The β values were 0.270mmHg (95% confidence interval [CI] 0.068-0.482) for SBP and 0.215mmHg (95% CI 0.058-0.372) for DBP. These β values mean that, for every 10 mg/m(3) increase in PM10, SBP increased by 0.270mmHg and DBP by 0.215 mmHg. Subgroup analyses were conducted for different exposure terms and age groups. A positive association was seen between PM2.5 and SBP. The β value of SBP was 0.495mmHg (95% CI 0.03-0.96) with every 10 mg/m(3) increase in PM2.5. There were no significant associations in both age groups and non-older groups. There was no significant association between PM2.5 and DBP, either in the overall effect or in the subgroup effects. In conclusion, significant associations were found between higher BP and higher PM10 levels, but the association between BP and levels of PM2.5 levels was unclear.

  17. Eco-physiological Effects of Atmospheric Ozone and Polycyclic Aromatic Hydrocarbons (PAHs) on Plants

    Science.gov (United States)

    Bandai, S.; Sakugawa, H. H.

    2012-12-01

    [Introduction] Tropospheric ozone is one of most concerned air pollutant, by causing damage to trees and crops. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants found in various environmental compartments. Photo-induced toxicity of PAHs can be driven from formation of intracellular single oxygen and other reactive oxygen intermediates (ROI) leading to biological damages.(1) In the present study, we measured photosynthesis rate and other variables to investigate the effects of ozone and PAHs on the eco-physiological status of plants such as eggplant, common bean and strawberry. Plants treated with the single or combined air pollutants are expected to exhibit altered physiological, morphological and possibly growth changes. [Materials and Methods] We performed three exposure experiments. Exp.1. Eggplant (Solanum melongena) seedlings, were placed in the open-top chambers (n=6 plants/treatment). Treatment system was ozone (O)(120ppb), phenanthrene (P)(10μM), O+P, fluoranthene (F)(10μM), O+F, mannitol (M)(1mM) and the control (Milli-Q water)(C). P, F and M were sprayed three times weekly on the foliage part of eggplant. Average volume sprayed per seedling was 50mL. The treatment period was 30days and [AOT 40 (Accumulated exposure over a threshold of 40 ppb)]=28.8 ppmh. Exp.2, Common bean (Phaseolus vulgaris L.) seedlings were used (n=5 plants/treatment). The treatment system was the same as Exp.1. The treatment period was 40days and [AOT 40]=38.4ppmh. Exp.3. Strawberry (Fragaria L.) seedlings were used (n=5 plants/treatment). Treatment system was O (120ppb), F(10μM), O+F, F+M, O+M and C. The treatment period was 90days and [AOT 40]=86.4ppmh. Ecophysiological variables examined were photosynthesis rate measured at saturated irradiance (Amax), stomatal conductance to water vapour (gs), internal CO2 concentration (Ci), photochemical efficiency of PS2 in the dark (Fv/Fm), chlorophyll contents, visual symptom assessment and elemental composition in the

  18. Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: A combined approach to sampling and analysis

    Science.gov (United States)

    Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.

    2008-01-01

    Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production

  19. Spatial character of the gaseous and particulate state compound correlation of urban atmospheric pollution in winter and summer

    Institute of Scientific and Technical Information of China (English)

    XU Xiangde; SHI Xiaohui; XIE Lian; DING Guoan; MIAO Qiuju; MA Jianzhong; ZHENG Xiangdong

    2005-01-01

    The spatial/temporal variation information of atmospheric dynamic-chemical processes at observation site points of the "canopy" boundary of Beijing urban building ensemble and over urban area "surface", as well as the seasonal correlation structure of the gaseous and particulate states of urban atmospheric pollution (UAP) and its seasonal conversion feature at observation points are investigated, using the comprehensive observation data of the Beijing City Air Pollution Observation Experiment (BECAPEX) in winter and summer 2003 with a "point-surface" combined research approach. By using "one dimension spatial empirical orthogonal function (EOF)" principal component analysis (PCA) mode, the seasonal change of gaseous and particulate states of atmospheric aerosols and the association feature of pollutant species under the background of the complicated structure of urban boundary layer (UBL) are analyzed. The comprehensive analyses of the principal components of particle concentrations,gaseous pollutant species, and meteorological conditions reveal the seasonal changes of the complex constituent and structure features of the gaseous and particulate states of UAP to further trace the impact feature of urban aerosol pollution surface sources and the seasonal difference of the component structure of UAP. Research results suggest that in the temporal evolution of the gaseous and particulate states of winter/summer UAP, NOx, CO, and SO2 showed an "in-phase" evolution feature, however, O3 showed an "inverse-phase" relation with other species,all possessing distinctive dependent feature. On the whole, summer concentrations of gaseous pollutants CO, SO2, and NOx were obviously lower than winter ones, especially, the reduction in CO concentration was most distinctive, and ones in SO2 and NOx were next. However, the summer O3 concentration was more than twice winter one. Winter/summer differences in PM10and PM2.5 particle concentrations were relatively not obvious, which

  20. Trace elements associated with atmospheric particulate matter in the Upper Hunter Valley, NSW, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Farhana, Biswas Karabi [Bangladesh Institute of Research and Rehabilitation in Diabetes, Endcrine and Metabolic Disorders (BIRDEM), Research Division, Dhaka (Bangladesh); Bridgman, Howard [University of Newcastle, Dept. of Geography and Environmental Science (Australia); McOrist, Gordon [Australian Nuclear Science and Technology Organization (ANSTO), Environment Division, Menai (Australia)

    2002-05-01

    Airbone particulate matter, both total suspended particulate (TSP) and PM{sub 10}, and soil samples from four sampling sites were collected in the Upper Hunter Valley in NSW, Australia in early 1999. This study aimed to measure relative amounts of particulates during this period, and identify associated trace elements and their potential sources. Particulates were analyzed for trace elements using Neutron Activation Analysis technique. Total concentrations ({mu}g m{sup -3}) of TSP and PM{sub 10} varied within 7-135 and 4-19, respectively, among sampling sites. Mean concentrations (ng m{sup -3}) of iron, barium, zinc, lanthanum, bromine, chromium, rubidium, neodymium, cobalt, hafnium, cerium, thorium, uranium, scandium and cesium varied within 2042-2867, 529-1500, 28-40, 5.45-11.44, 5.3-20.6, 10.4-12.7, 4.14-11.56, 5.4-8.1, 1.16-1.98, 1.76-2.17, 0.71-3.9, 0.21-0.50, 0.29-0.84, 0.28-1.23, and 0.18-0.30, respectively. Significant correlation between sites for many elements suggested some common source(s) of some elements. The enrichment levels of the trace elements identified some crustal materials as a predominant source of particulate matter. (author)

  1. Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt.

    Science.gov (United States)

    Khairy, Mohammed A; Lohmann, Rainer

    2013-05-01

    In this study, three receptor models [factor analysis/multiple linear regression (FA/MLR), positive matrix factorization (PMF) and UNMIX] were applied seasonally to investigate the source apportionment of PAHs in the atmospheric environment of Alexandria, and a lifetime cancer risk was assessed. ∑44 (gas+particle) PAH concentrations varied from 330 to 1770ngm(-3) and 170-1290ngm(-3) in the summer and winter seasons respectively. PAH concentrations at the industrial sites were significantly higher than at the traffic and residential sites during the winter season (p<0.001). Summer PAH concentrations were significantly higher than the winter season at the traffic sites (p=0.027). Results obtained from the three receptor models were comparable. Vehicle emissions, both diesel and gasoline contributed on average 36.0-49.0% and 19.0-34.0% respectively, natural gas combustion 11.0-27.0% and, during the summer only, also evaporative/uncombusted petroleum sources 8.00-18.0%. Seasonal trends were found for the gasoline emission source. Overall, PMF and UNMIX models afforded better source identification than did FA/MLR. The lifetime cancer risk assessment showed that incremental lifetime cancer risks (ILTCRs) were greater than the acceptable level of 10(-6) through dermal and ingestion routes at all the investigated sites and through the inhalation route at the industrial and traffic sites only. Total ILTCRs (6.64×10(-3)-4.42×10(-2)) indicated high potential risks to the local residents.

  2. Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Brazil

    Science.gov (United States)

    Teixeira, Elba Calesso; Agudelo-Castañeda, Dayana M.; Fachel, Jandyra Maria Guimarães; Leal, Karen Alam; Garcia, Karine de Oliveira; Wiegand, Flavio

    2012-11-01

    The purpose of the present study was to evaluate the polycyclic aromatic hydrocarbons (PAHs) in fine (PM2.5) and coarse particles (PM2.5-10) in an urban and industrial area in the Metropolitan Area of Porto Alegre (MAPA), Brazil. Sixteen U.S. Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) were measured. Filters containing ambient air particulate were extracted with dichloromethane using Soxhlet. Extracts were later analyzed, for determining PAH concentrations, using a gaseous chromatograph coupled with a mass spectrometer (GC-MS). The polycyclic aromatic hydrocarbons (PAHs) were more concentrated in PM2.5 with an average of 70% of total PAHs in the MAPA. The target PAH apportionment among the main emission sources was carried out by diagnostic PAH concentration ratios, and principal component analysis (PCA). PAHs with higher molecular weight showed higher percentages in the fine particles in the MAPA. Based on the diagnostic ratios and PCA analysis, it may be concluded that the major contribution of PAHs was from vehicular sources (diesel and gasoline), especially in the PM2.5 fraction, as well as coal and wood burning. The winter/summer ratio in the PM2.5 and PM2.5-10 fractions in the MAPA was 3.1 and 1.8, respectively, revealing the seasonal variation of PAHs in the two fractions. The estimated toxicity equivalent factor (TEF), used to assess the contribution of the carcinogenic potency, confirms a significant presence of the moderately active carcinogenic PAHs BaP and DahA in the samples collected in the MAPA.

  3. 欧洲大气颗粒物污染治理%Atmospheric Particulates Pollution Control in Europe

    Institute of Scientific and Technical Information of China (English)

    尹盛鑫; 尹军

    2013-01-01

    欧洲历史上曾长期遭受大气颗粒物污染问题的困扰,比如,发生过1930年比利时马斯河谷事件及1952年伦敦烟雾事件。但最近几十年来,经过长期努力,欧洲对大气颗粒物的治理工作取得了显著成绩。目前,我国大气颗粒物来源情况与欧洲存在较大的差异,但欧洲通过在交通和能源等方面对污染源的治理有效减少大气颗粒物排放的经验,对我国治理“雾霾”具有重要的借鉴意义。%Europe has suffered from the air pollution caused by atmospheric particulates for decades, for instance, Smog Incident in Meuse Valley in 1930, and the Great Smog of London in 1952. However, due to its long-term commitment, Europe has made great achievements on control of this pollution in recent decades. This paper analyzed measures taken by Europe to control the emission of particulate matter via its energy use and transport management, which has great signiifcance to the treatment of particulate matter pollution emerging in China.

  4. Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry

    OpenAIRE

    Shih-Chun Candice Lung; Chun-Hu Liu

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs are ubiquitous in the environment. Some of them are probable carcinogens and some are source markers. This work presents an ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry (UHPLC-APPI-MS/MS) method for simultaneous analysis of 20 PAHs and nine nitro-PAHs. These compounds are separated in 15 minutes in the positive mode and 11 minutes in the negative mode, one half of GC/MS analysi...

  5. [Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: taking Populus tomentosa as an example].

    Science.gov (United States)

    Zhang, Zhi-Dan; Xi, Ben-Ye; Cao, Zhi-Guo; Jia, Li-Ming

    2014-08-01

    Taking Populus tomentosa as an example, a methodology called elution-weighing-particle size-analysis (EWPA) was proposed to evaluate quantitatively the ability of retaining fine particulate matter (PM2.5, diameter d ≤ 2.5 μm) and atmospheric particulate matter by plant leaves using laser particle size analyzer and balance. This method achieved a direct, accurate measurement with superior operability about the quality and particle size distribution of atmospheric particulate matter retained by plant leaves. First, a pre-experiment was taken to test the stability of the method. After cleaning, centrifugation and drying, the particulate matter was collected and weighed, and then its particle size distribution was analyzed by laser particle size analyzer. Finally, the mass of particulate matter retained by unit area of leaf and stand was translated from the leaf area and leaf area index. This method was applied to a P. tomentosa stand which had not experienced rain for 27 days in Beijing Olympic Forest Park. The results showed that the average particle size of the atmospheric particulate matter retained by P. tomentosa was 17.8 μm, and the volume percentages of the retained PM2.5, inhalable particulate matter (PM10, d ≤ 10 μm) and total suspended particle (TSP, d ≤ 100 μm) were 13.7%, 47.2%, and 99.9%, respectively. The masses of PM2.5, PM10, TSP and total particulate matter were 8.88 x 10(-6), 30.6 x 10(-6), 64.7 x 10(-6) and 64.8 x 10(-6) g x cm(-2) respectively. The retention quantities of PM2.5, PM10, TSP and total particulate matter by the P. tomentosa stand were 0.963, 3.32, 7.01 and 7.02 kg x hm(-2), respectively.

  6. Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai

    Science.gov (United States)

    Chen, Xiaojia; Balasubramanian, Rajasekhar; Zhu, Qiongyu; Behera, Sailesh N.; Bo, Dandan; Huang, Xian; Xie, Haiyun; Cheng, Jinping

    2016-04-01

    Atmospheric particulate mercury (PHg) is recognized as a global pollutant that requires regulation because of its significant impacts on both human health and wildlife. The haze episodes that occur frequently in China could influence the transport and fate of PHg. To examine the characteristics of PHg during haze and non-haze days, size-fractioned particles were collected using thirteen-stage Nano-MOUDI samplers (10 nm-18 μm) during a severe haze episode (from December 2013 to January 2014) in Shanghai. The PHg concentration on haze days (4.11 ± 0.53 ng m-3) was three times higher than on non-haze days (1.34 ± 0.15 ng m-3). The ratio of the PHg concentration to total gaseous mercury (TGM) ranged from 0.42 during haze days to 0.21 during non-haze days, which was possibly due to the elevated concentration of particles for gaseous elemental mercury (GEM) adsorption, elevated sulfate and nitrate contributing to GEM oxidation, and the catalytic effect of elevated water-soluble inorganic metal ions. PHg/PM10 during haze days (0.019 ± 0.004 ng/μg) was lower than during non-haze days (0.024 ± 0.002 ng/μg), and PHg/PM10 was significantly reduced with an increasing concentration of PM10, which implied a relatively lower growth velocity of mercury than other compositions on particles during haze days, especially in the diameter range of 0.018-0.032 μm. During haze days, each size-fractioned PHg concentration was higher than the corresponding fraction on non-haze days, and the dominant particle size was in the accumulation mode, with constant accumulation to a particle size of 0.56-1.0 μm. The mass size distribution of PHg was bimodal with peaks at 0.32-0.56 μm and 3.1-6.2 μm on non-haze days, and 0.56-1.0 μm and 3.1-6.2 μm on haze days. There was a clear trend that the dominant size for PHg in the fine modes shifted from 0.32-0.56 μm during non-haze days to 0.56-1.0 μm on haze days, which revealed the higher growth velocity of PHg on haze days due to the

  7. 大气颗粒物中多环芳烃污染特征及防治对策%Pollution Characteristics and Prevention and Control Measures of Polycyclic Aromatic Hydrocarbons in Atmospheric Participate Matters

    Institute of Scientific and Technical Information of China (English)

    刘树保; 邓秀芬

    2012-01-01

    介绍了大港油田大气颗粒物和多环芳烃的污染现状,并对大港油田地区大气特征构成及大气颗粒物中多环芳烃的污染特征作了初步分析,得出大港油田地区大气颗粒物中多环芳烃污染类型为燃油型,并据此提出了防治多环芳烃污染的相应对策.%This article introduces the pollution status of atmospheric participate matter and polycyclic aromatic hydrocarbons. After analyzing the atmospheric composition and pollution characteristics of the polycyclic aromatic hydrocarbons in the atmospheric matter in Dagang Oilfield, it reaches the conclusions that the polycyclic aromatic hydrocarbons in the atmospheric matter in Dagang Oilfield are fuel type. According to the pollution type of polycyclic aromatic hydrocarbons, it proposes the corresponding countermeasures to prevent and control the pollution of polycyclic aromatic hydrocarbons.

  8. Class separation of lipids and polycyclic aromatic hydrocarbons in normal phase high performance liquid chromatography - a prospect for analysis of aromatics in edible vegetable oils and biodiesel exhaust particulates.

    Science.gov (United States)

    Olsson, Petter; Sadiktsis, Ioannis; Holmbäck, Jan; Westerholm, Roger

    2014-09-19

    The retention characteristics of the major lipid components in biodiesels and edible oils as well as representative polycyclic aromatic compounds (PAHs) have been investigated on five different normal phase HPLC stationary phases, in order to optimize class separation for an automatized online HPLC cleanup of PAHs prior GC-MS analysis. By stepwise comparison of different hexane/MTBE compositions as mobile phases on cyano-, phenyl-, pentabromobenzyl-, nitrophenyl- and amino-modified silica columns, the capacity and selectivity factors for each analyte and column could be calculated. It was concluded that the most suitable column for backflush isolation of PAHs in biodiesel and edible oil matrices was the pentabromobenzyl-modified silica (PBB). A previously described online HPLC-GC-MS system using the PBB column was then evaluated by qualitative and quantitative analysis of a biodiesel exhaust particulate extract and a vegetable oil reference material. The GC-MS full scan analysis of the biodiesel particulate extract showed that the lipids had been removed from the sample and a fraction containing PAHs and oxygenated derivatives thereof had been isolated. Quantified mass fractions of PAHs of the reference material BCR-458 agreed well for most of the certified PAH mass fractions in the spiked coconut oil reference material.

  9. Determination of gaseous and particulate carbonyls (glycolaldehyde, hydroxyacetone, glyoxal, methylglyoxal, nonanal and decanal) in the atmosphere at Mt. Tai

    Science.gov (United States)

    Kawamura, K.; Okuzawa, K.; Aggarwal, S. G.; Irie, H.; Kanaya, Y.; Wang, Z.

    2013-05-01

    Gaseous and particulate semi-volatile carbonyl compounds were determined every three hours in the atmosphere of Mount Tai (elevation, 1534 m) in the North China Plain during 2-5, 23-24 and 25 June 2006 under clear sky conditions. Using a two-step filter cartridge in a series, particulate carbonyls were first collected on a quartz filter and then gaseous carbonyls were collected on a quartz filter impregnated with O-benzylhydroxylamine (BHA). After the two-step derivatization with BHA and N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA), carbonyl derivatives were measured using a gas chromatography. The gaseous concentrations were obtained as follow: glycolaldehyde (range 0-826 ng m-3, average 303 ng m-3), hydroxyacetone (0-579 ng m-3, 126 ng m-3), glyoxal (46-1200 ng m-3, 487 ng m-3), methylglyoxal (88-2690 ng m-3, 967 ng m-3), n-nonanal (0-500 ng m-3, 89 ng m-3), and n-decanal (0-230 ng m-3, 39 ng m-3). These concentrations are among the highest ever reported in the urban and forest atmosphere. We found that gaseous α-dicarbonyls (glyoxal and methylglyoxal) are more than 20 times more abundant than particulate carbonyls and that glycolaldehyde is one order of magnitude more abundant than in aerosol phase. In contrast, hydroxyacetone and normal aldehydes (nonanal and decanal) are equally present in both phases. Time-resolved variations of carbonyls did not show any a clear diurnal pattern, except for hydroxyacetone. We found that glyoxal, methylglyoxal and glycolaldehyde positively correlated with levoglucosan (a tracer of biomass burning), suggesting that a contribution from field burning of agricultural wastes (wheat crops) is significant for the bifunctional carbonyls in the atmosphere of Mt. Tai. Upward transport of the pollutants to the mountaintop from the low lands in the North China Plain is a major process to control the distributions of carbonyls in the upper atmosphere over Mt. Tai.

  10. Observations of the effect of atmospheric processes on the genotoxic potency of airborne particulate matter

    DEFF Research Database (Denmark)

    Feilberg, Anders; Nielsen, Torben; Binderup, Mona-Lise

    2002-01-01

    In this study, the relationship between genotoxic potency and the occurrence of polycyclic aromatic hydrocarbons (PAH), including benzo(a)pyrene (BaP), and nitro-PAH in urban and semi-rural air masses has been investigated. The Salmonella/microsome assay has been used as a measure of genotoxic...... potency. We find that the ratios of BaP/ mutagenicity and PAH/mutagenicity are highly variable. The processes responsible for the variation are formation and degradation of mutagens and transport of polluted air masses from heavily industrialized regions, Air masses from Central Europe are shown...... been used in the past as an indicator of the carcinogenic risk of airborne particles, it is suggested that the cancer risk of air pollution has to be re-evaluated....

  11. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    Science.gov (United States)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  12. Determination of atmospheric gaseous and particulate sulfur compounds. [Atmospheric SO/sub 2/ sampling, calibration, and data processing

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.L.; Forrest, J.; Newman, L.

    1977-01-01

    The corrosive influence of atmospheric sulfur compounds to man's health and his environment has been demonstratably costly. Damage to building materials, textiles, animals, plants, and artworks have been well documented and can in some cases be directly translated into financial loss. Indirect effects such as contribution to respiratory disease and increased death rates are more subtle but no less real. For both economic and ecological reasons, it has become imperative that atmospheric concentrations be minimized. Anthropogenic sources of atmospheric sulfur compounds are principally the combustion of fossil fuels, which produce sulfur dioxide along with several percent of sulfur trioxide. The predominant form of atmospheric gaseous sulfur is sulfur dioxide, accompanied by small amounts of hydrogen sulfide and organic sulfur compounds such as mercaptans and sulfides. Aerosol sulfur exists primarily as sulfates, including bisulfate and sulfuric acid. The core of any monitoring system is the analytical instrument or technique. Methods for SO/sub 2/ sampling, calibration, and data acquisition and reduction are reviewed. 305 references.

  13. High time resolution observation and statistical analysis of atmospheric light extinction properties and the chemical speciation of fine particulates

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In recent years,the visibility deterioration caused by regional fine particulate pollution becomes one of the crucial air pollution problems in the urban areas of our country.The rapid variation of visibility and fine particulates make it difficult to estimate the relationship between them precisely and accurately unless high time resolution observation data can be accessed.This study aims to fill this gap in the field of atmospheric science by establishing a formula using multiple linear regressions.Excellent fitting goodness (R2=0.913,n=3167) was obtained using 10 min average of high-resolution real-time light scattering coefficients,light absorption coefficients,main chemical speciation concentration in PM1 and some meteorological parameters from 17 Jan to 16 Feb,2009.It shows that the average light extinction coefficient during the observation in the winter of Shenzhen was measured to be 290 ± 183 Mm?1,consisting of 72% of light scattering and 21% of absorption.In terms of the percentage contribution of PM1 chemical species to the total light extinction,the organic matter was estimated to be most with an average of 45%,followed by ammonium sulfate with an average of 24%.The contributions of black carbon and ammonium nitrate were 17% and 12%,respectively.Besides,the diurnal variation of light extinction was investigated as well in this study.

  14. Physicochemical characteristics and biological activities of seasonal atmospheric particulate matter sampling in two locations of Paris.

    Science.gov (United States)

    Baulig, Augustin; Poirault, Jean-Jacques; Ausset, Patrick; Schins, Roel; Shi, Tingming; Baralle, Delphine; Dorlhene, Pascal; Meyer, Martine; Lefevre, Roger; Baeza-Squiban, Armelle; Marano, Francelyne

    2004-11-15

    Fine particulate matter present in urban areas seems to be incriminated in respiratory disorders. The aim of this study was to relate physicochemical characteristics of PM2.5 (particulate matter collected with a 50% efficiency for particles with an aerodynamic diameter of 2.5 microm) to their biological activities toward a bronchial epithelial cell line 16-HBE. Two seasonal sampling campaigns of particles were realized, respectively, in a kerbside and an urban background station in Paris. Sampled-PM2.5 mainly consist of particles with a size below 1 microm and are mainly composed of soot as assessed by analytical scanning electron microscopy. The different PM2.5 samples contrasted in their PAH content, which was the highest in the kerbside station in winter, as well as in their metal content. Kerbside station samples were characterized by the highest Fe and Cu content, which appears correlated to their hydroxyl radical generating properties measured by electron paramagnetic resonance. Particles were compared by their capacity to induce cytotoxicity, intracellular ROS production, and proinflammatory cytokine release (GM-CSF and TNF-alpha). At a concentration of 10 microg/cm2, all samples induced peroxide production and cytokine release to the similar extent in the absence of cytotoxicity. In conclusion, whereas the PM2.5 samples differ by their PAH and metal composition, they induce the same biological responses likely either due to components bioavailability and/ or interactions between PM components.

  15. Shipboard and ground measurements of atmospheric particulate mercury and total mercury in precipitation over the Yellow Sea region.

    Science.gov (United States)

    Nguyen, Duc Luong; Kim, Jin Young; Shim, Shang-Gyoo; Ghim, Young Sung; Zhang, Xiao-Shan

    2016-12-01

    The first ever shipboard measurements for atmospheric particulate mercury (Hg(p)) over the Yellow Sea and ground measurements for atmospheric Hg(p) and total mercury (THg) in precipitation at the remote sites (Deokjeok and Chengshantou) and the urban sites (Seoul and Ningbo) surrounding the Yellow Sea were carried out during 2007-2008. The Hg(p) regional background concentration of 56.3 ± 55.6 pg m(-3) over the Yellow Sea region is much higher than the typical background concentrations of Hg(p) in terrestrial environments (mercury emission sources from East Asia. The episodes of highly elevated Hg(p) concentrations at the Korean remote site were influenced through long-range transport from source regions in the Liaoning Province - one of China's most mercury-polluted regions and in the western region of North Korea. Interestingly, wet scavenging of atmospheric Hg(p) is the predominant mechanism regulating concentration of THg in precipitation at the Chinese sites; whereas, wet scavenging of gaseous oxidized mercury (GOM) might play the more important role than that of Hg(p) at the Korean sites. The highest annual wet and dry deposition fluxes of Hg were found at the Ningbo site. The comparison between wet and dry deposition fluxes suggested that dry deposition might play the more important role than wet deposition in Chinese urban areas (source regions); whereas, wet deposition is more important in Korean areas (downwind regions).

  16. Heavy metals in particulate and colloidal matter from atmospheric deposition of urban Guangzhou, South China.

    Science.gov (United States)

    Huang, Wen; Duan, Dandan; Zhang, Yulong; Cheng, Hefa; Ran, Yong

    2014-08-30

    Suspended particulate matter (SPM) and colloidal matter (COM) in annual dry and wet deposition samples in urban Guangzhou were for the first time collected, and their trace metals were investigated by using inductively coupled plasma mass spectrometry (ICP-MS). The deposition flux of SPM and of metal elements varied largely among the investigated seasons, and reached the maximum in spring. The correlation analysis indicated that significant correlations existed among some of the metal elements in the deposition samples. The enrichment factors (EF) of metals in COM in the deposition ranging from 79.66 to 130,000 were much higher than those of SPM ranging from 1.65 to 286.48, indicating the important role of COM. The factor analysis showed that emissions from street dust, non-ferrous metal production, and heavy fuel oil were major sources of the trace metals. Positive matrix factorization (PMF) model was used to quantitatively estimate anthropogenic source.

  17. Large-scale atmospheric circulation and local particulate matter concentrations in Bavaria - from current observations to future projections

    Science.gov (United States)

    Beck, Christoph; Weitnauer, Claudia; Brosy, Caroline; Hald, Cornelius; Lochbihler, Kai; Siegmund, Stefan; Jacobeit, Jucundus

    2016-04-01

    Particulate matter with an aerodynamic diameter of 10 μm or less (PM10) may have distinct adverse effects on human health. Spatial and temporal variations in PM10 concentrations reflect local emission rates, but are as well influenced by the local and synoptic-scale atmospheric conditions. Against this background, it can be furthermore argued that potential future climate change and associated variations in large-scale atmospheric circulation and local meteorological parameters will probably provoke corresponding changes in future PM10 concentration levels. The DFG-funded research project „Particulate matter and climate change in Bavaria" aimed at establishing quantitative relationships between daily and monthly PM10 indices at different Bavarian urban stations and the corresponding large-scale atmospheric circulation as well as local meteorological conditions. To this end, several statistical downscaling approaches have been developed for the period 1980 to 2011. PM10 data from 19 stations from the air quality monitoring network (LÜB) of the Bavarian Environmental Agency (LfU) have been utilized as predictands. Large-scale atmospheric gridded data from the NCEP/NCAR reanalysis data base and local meteorological observational data provided by the German Meteorological Service (DWD) served as predictors. The downscaling approaches encompass the synoptic downscaling of daily PM10 concentrations and several multivariate statistical models for the estimation of daily and monthly PM10, i.e.monthly mean and number of days exceeding a certain PM10 concentration threshold. Both techniques utilize objective circulation type classifications, which have been optimized with respect to their synoptic skill for the target variable PM10. All downscaling approaches have been evaluated via cross validation using varying subintervals of the 1980-2011 period as calibration and validation periods respectively. The most suitable - in terms of model skill determined from cross

  18. Influence of Biomass Burning on Temporal and Diurnal Variations of Acidic Gases, Particulate Nitrate, and Sulfate in a Tropical Urban Atmosphere

    OpenAIRE

    Sailesh N. Behera; Rajasekhar Balasubramanian

    2014-01-01

    The present study investigated the temporal and diurnal distributions of atmospheric acidic gases (sulphur dioxide (SO2), nitrous acid (HONO), and nitric acid (HNO3)) and those of particulate nitrate (NO3-) and sulfate (SO42-) through a comprehensive field campaign during the largest smoke haze episode in Singapore, a representative country in Southeast Asia (SEA). To identify the atmospheric behavior of these pollutants during the smoke haze period, the data generated from the measurement ca...

  19. Size-resolved particulate water-soluble organic compounds in the urban, mountain and marine atmosphere

    Directory of Open Access Journals (Sweden)

    G. Wang

    2010-07-01

    Full Text Available Primary (i.e., sugars and sugar alcohols and secondary water-soluble organic compounds (WSOCs (i.e., dicarboxylic acids and aromatic acids were characterised on a molecular level in size-segregated aerosols from the urban and mountain atmosphere of China and from the marine atmosphere in the outflow region of East Asia. Levoglucosan is the most abundant WSOCs in the urban and mountain atmosphere, whose accumulated concentrations in all stages are 1–3 orders of magnitude higher than those of marine aerosols. In contrast, malic, succinic and phthalic acids are dominant in the marine aerosols, which are 3–6 times more abundant than levoglucosan. This suggests that a continuous formation of secondary organic aerosols is occurring in the marine atmosphere during the long-range transport of air mass from inland China to the North Pacific. Sugars and sugar-alcohols, except for levoglucosan, gave a bimodal size distribution in the urban and mountain areas, peaking at 0.7–1.1 μm and >3.3 μm, and a unimodal distribution in the marine region, peaking at >3.3 μm. In contrast, levoglucosan and all the secondary WSOCs, except for benzoic and azelaic acids, showed a unimodal size distribution with a peak at 0.7–1.1 μm. Geometric mean diameters (GMDs of the WSOCs in fine particles (<2.1 μm at the urban site are larger in winter than in spring, due to an enhanced coagulation effect under the development of an inversion layer. However, GMDs of levoglucosan and most of the secondary WSOCs in the coarse mode are larger in the mountain and marine air and smaller in the urban air. This is most likely caused by an enhanced hygroscopic growth due to the high humidity of the mountain and marine atmosphere.

  20. A preliminary analysis of the inhalable particulate lead in the ambient atmosphere of the city of Riyadh, Saudi Arabia

    Science.gov (United States)

    El-Shobokshy, M. S.

    The inhalable particles in the ambient atmosphere in the city of Riyadh have been sampled during the working day (7 a.m.-4 p.m.) over the test period. Samples were taken every 3 h using an Automatic Dichotomous Sampler placed in the College of Engineering, King Saud University at a height of 25 m above the ground. A weather station 3 m above the sampler was used to record (simultaneously) the meteorological data. These data were used to determine the wind rose and the hourly standard deviation of the horizontal wind direction, which, in turn, gives the hourly atmospheric stability class. The particulates in each size range: coarse (2.5-15 μm) and fine (concentration of lead during the working day is about twice the international standards. The concentration decreases during the weekends (Thursday and Friday) due to the reduction in traffic loads, and decreases to a minimum on Fridays when most of industrial activities are stopped. More than 70% of the lead fluxes passed by the sampler are associated with wind from E to S which is the direction of the city center and the industrial site of Riyadh.

  1. Particulate organic acids in the atmosphere of Italian cities: Are they environmentally relevant?

    Science.gov (United States)

    Balducci, Catia; Cecinato, Angelo

    2010-02-01

    Mono- and dicarboxylic n-alkyl acids were extensively investigated in downtown Rome, Italy, and in Montelibretti, ˜30 km NE of the city, during 2005-2007. Congeners ranging from lauric to mellisic, and from succinic to α,ω-docosanedioic acids were evaluated as well as phthalic, palmitoleic and oleic acids, by solvent extraction of airborne particulates followed by derivatization with propanol in the presence of boron trifluoride, and gas chromatographic-mass spectrometric analysis. Shorter measurements were made in Milan, in Taranto, at suburban and rural sites of Italy, and in the polar regions, from 1996 to 2005. The predominance of palmitic and stearic acids observed elsewhere was confirmed, and the behaviour of azelaic and phthalic acids resulted strongly dependent upon the year season. In the urban sites, among the long-chain compounds, the lignoceric acid was usually the most abundant, while the cerotic, montanic and mellisic homologues cumulatively never exceeded 8% of the total. Unlike other contaminants, the concentrations of organic acids remained fairly invariant over the last decade, suggesting that more attention must be paid to them in the future.

  2. Green Ocean Amazon 2014/15 High-Volume Filter Sampling: Atmospheric Particulate Matter of an Amazon Tropical City and its Relationship to Population Health Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Machado, C. M. [Federal Univ. of Amazonas (Brazil); Santos, Erickson O. [Federal Univ. of Amazonas (Brazil); Fernandes, Karenn S. [Federal Univ. of Amazonas (Brazil); Neto, J. L. [Federal Univ. of Amazonas (Brazil); Souza, Rodrigo A. [Univ. of the State of Amazonas (Brazil)

    2016-08-01

    Manaus, the capital of the Brazilian state of Amazonas, is developing very rapidly. Its pollution plume contains aerosols from fossil fuel combustion mainly due to vehicular emission, industrial activity, and a thermal power plant. Soil resuspension is probably a secondary source of atmospheric particles. The plume transports from Manaus to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARM site at Manacapuru urban pollutants as well as pollutants from pottery factories along the route of the plume. Considering the effects of particulate matter on health, atmospheric particulate matter was evaluated at this site as part of the ARM Facility’s Green Ocean Amazon 2014/15 (GoAmazon 2014/15) field campaign. Aerosol or particulate matter (PM) is typically defined by size, with the smaller particles having more health impact. Total suspended particulate (TSP) are particles smaller than 100 μm; particles smaller than 2.5 μm are called PM2.5. In this work, the PM2.5 levels were obtained from March to December of 2015, totaling 34 samples and TSP levels from October to December of 2015, totaling 17 samples. Sampling was conducted with PM2.5 and TSP high-volume samplers using quartz filters (Figure 1). Filters were stored during 24 hours in a room with temperature (21,1ºC) and humidity (44,3 %) control, in order to do gravimetric analyses by weighing before and after sampling. This procedure followed the recommendations of the Brazilian Association for Technical Standards local norm (NBR 9547:1997). Mass concentrations of particulate matter were obtained from the ratio between the weighted sample and the volume of air collected. Defining a relationship between particulate matter (PM2.5 and TSP) and respiratory diseases of the local population is an important goal of this project, since no information exists on that topic.

  3. Summertime Spatial Variations in Atmospheric Particulate Matter and Its Chemical Components in Different Functional Areas of Xiamen, China

    Directory of Open Access Journals (Sweden)

    Shuhui Zhao

    2015-02-01

    Full Text Available Due to the highly heterogeneous and dynamic nature of urban areas in Chinese cities, air pollution exhibits well-defined spatial variations. Rapid urbanization in China has heightened the importance of understanding and characterizing atmospheric particulate matter (PM concentrations and their spatiotemporal variations. To investigate the small-scale spatial variations in PM in Xiamen, total suspended particulate (TSP, PM10, PM5 and PM2.5 measurements were collected between August and September in 2012. Their average mass concentrations were 102.50 μg∙m−3, 82.79 μg∙m−3, 55.67 μg∙m−3 and 43.70 μg∙m−3, respectively. Organic carbon (OC and elemental carbon (EC in PM2.5 were measured using thermal optical transmission. Based on the PM concentrations for all size categories, the following order for the different functional areas studied was identified: hospital > park > commercial area > residential area > industrial area. OC contributed approximately 5%–23% to the PM2.5 mass, whereas EC accounted for 0.8%–6.95%. Secondary organic carbon constituted most of the carbonaceous particles found in the park, commercial, industrial and residential areas, with the exception of hospitals. The high PM and EC concentrations in hospitals were primarily caused by vehicle emissions. Thus, the results suggest that long-term plans should be to limit the number of vehicles entering hospital campuses, construct large-capacity underground parking structures, and choose hospital locations far from major roads.

  4. The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue

    OpenAIRE

    Joanna Socorro; Amandine Durand; Brice Temime-Roussel; Sasho Gligorovski; Henri Wortham; Etienne Quivet

    2016-01-01

    The persistent organic pollutants (POPs) due to their physicochemical properties can be widely spread all over the globe; as such they represent a serious threat to both humans and wildlife. According to Stockholm convention out of 24 officially recognized POPs, 16 are pesticides. The atmospheric life times of pesticides, up to now were estimated based on their gas-phase reactivity. It has been only speculated that sorption to aerosol particles may increase significantly the half‐lives of pes...

  5. Determination of polycyclic aromatic hydrocarbons and their nitro-, amino-derivatives absorbed on particulate matter 2.5 by multiphoton ionization mass spectrometry using far-, deep-, and near-ultraviolet femtosecond lasers.

    Science.gov (United States)

    Tang, Yuanyuan; Imasaka, Tomoko; Yamamoto, Shigekazu; Imasaka, Totaro

    2016-06-01

    Multiphoton ionization processes of parent-polycyclic aromatic hydrocarbons (PPAHs), nitro-PAHs (NPAHs), and amino-PAHs (APAHs) were examined by gas chromatography combined with time-of-flight mass spectrometry using a femtosecond Ti:sapphire laser as the ionization source. The efficiency of multiphoton ionization was examined using lasers emitting in the far-ultraviolet (200 nm), deep-ultraviolet (267 nm), and near-ultraviolet (345 nm) regions. The largest signal intensities were obtained when the far-ultraviolet laser was employed. This favorable result can be attributed to the fact that these compounds have the largest molar absorptivities in the far-ultraviolet region. On the other hand, APAHs were ionized more efficiently than NPAHs in the near-ultraviolet region because of their low ionization energies. A sample extracted from a real particulate matter 2.5 (PM2.5) sample was measured, and numerous signal peaks arising from PAH and its analogs were observed at 200 nm. On the other hand, only a limited number of signed peaks were observed at 345 nm, some of which were signed to PPAHs, NPAHs, and APAHs. Thus, multiphoton ionization mass spectrometry has potential for the use in comprehensive analysis of toxic environmental pollutants.

  6. Improved efficiency of extraction of polycyclic aromatic hydrocarbons (PAHs) from the National Institute of Standards and Technology (NIST) Standard Reference Material Diesel Particulate Matter (SRM 2975) using accelerated solvent extraction.

    Science.gov (United States)

    Masala, Silvia; Ahmed, Trifa; Bergvall, Christoffer; Westerholm, Roger

    2011-12-01

    The efficiency of extraction of polycyclic aromatic hydrocarbons (PAHs) with molecular masses of 252, 276, 278, 300, and 302 Da from standard reference material diesel particulate matter (SRM 2975) has been investigated using accelerated solvent extraction (ASE) with dichloromethane, toluene, methanol, and mixtures of toluene and methanol. Extraction of SRM 2975 using toluene/methanol (9:1, v/v) at maximum instrumental settings (200 °C, 20.7 MPa, and five extraction cycles) with 30-min extraction times resulted in the following elevations of the measured concentration when compared with the certified and reference concentrations reported by the National Institute of Standards and Technology (NIST): benzo[b]fluoranthene, 46%; benzo[k]fluoranthene, 137%; benzo[e]pyrene, 103%; benzo[a]pyrene, 1,570%; perylene, 37%; indeno[1,2,3-cd]pyrene, 41%; benzo[ghi]perylene, 163%; and coronene, 361%. The concentrations of the following PAHs were comparable to the reference values assigned by NIST: indeno[1,2,3-cd]fluoranthene, dibenz[a,h]anthracene, and picene. The measured concentration of dibenzo[a,e]-pyrene was lower than the information value reported by the NIST. The measured concentrations of other highly carcinogenic PAHs (dibenzo[a,l]pyrene, dibenzo[a,i]pyrene, and dibenzo[a,h]pyrene) in SRM 2975 are also reported. Comparison of measurements using the optimized ASE method and using similar conditions to those applied by the NIST for the assignment of PAH concentrations in SRM 2975 indicated that the higher values obtained in the present study were associated with more complete extraction of PAHs from the diesel particulate material. Re-extraction of the particulate samples demonstrated that the deuterated internal standards were more readily recovered than the native PAHs, which may explain the lower values reported by the NIST. The analytical results obtained in the study demonstrated that the efficient extraction of PAHs from SRM 2975 is a critical requirement for the

  7. Mammalian cell-transforming potential of traffic-linked ultrafine particulate matter PM0.056 in urban roadside atmosphere.

    Science.gov (United States)

    Verma, Mukesh K; Poojan, Shiv; Sultana, Sarwat; Kumar, Sushil

    2014-09-01

    We examined the clastogenic and cell-transforming potential of ultrafine particulate matter fraction PM0.056 of urban ambient aerosol using mammalian cells. PM1.0, PM0.56 and PM0.056 fractions were sampled from roadside atmosphere of an urban area using the cascade impactor MOUDI-NR-110. The potential to induce cytotoxicity, DNA damage and micronuclei formation was examined at the test concentrations of 3, 6, 12.5, 25, 50 and 100 μg/ml using the 3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the plasmid relaxation assay and the C3H10T1/2 (10T1/2) cells. The cell-transforming potential was investigated in vitro using 10T1/2 cell transformation assay and the soft agar assay. PM1, PM0.56 and PM0.056 fractions were found to be toxic in dose-dependent manner. These induced cytotoxicity at five test concentrations, the ultrafine particle fraction PM0.056 showed greater cytotoxic potential. PM0.056 induced micronucleus formation in 10T1/2 cells. The effect was statistically significant. The DNA-damaging potential was measured in a plasmid relaxation assay. Both fine and ultrafine particle fraction PM0.56 and PM0.056 displayed greater effect as compared to larger PM1 fraction. DNA damage was found to be dependent on particulate matter intrinsic pro-oxidant chemicals. The ability of the ultrafine particle fraction PM0.056 to induce morphological cell transformation was demonstrated by significant and dose-dependent increases in type III focus formation by morphologically transformed cells in culture flasks and their clonal expansion in soft agar. It is concluded that the traffic-linked ultrafine particle fraction PM0.056 in the atmosphere by the roadside of an urban area is clastogenic and able to induce morphological transformation of mammalian cells.

  8. Secondary brown carbon - Formation of light-absorbing compounds in atmospheric particulates from selected dicarbonyls and amines

    Science.gov (United States)

    Kampf, Christopher; Filippi, Alexander; Hoffmann, Thorsten

    2015-04-01

    One of the main open questions regarding organic compounds in atmospheric chemistry today is related to the formation of optically-active compounds and the occurrence of so called brown carbon (Andreae and Gelencsér, 2006). While organic compounds in ambient fine particles for decades have been assumed to not absorb solar radiation, thus resulting in a net cooling effect on climate (IPCC, 2007), it is now generally accepted that a continuum of light-absorbing carbonaceous species is present in fine aerosols (Pöschl, 2003). In this study, light-absorbing compounds from reactions between dicarbonyl compounds, i.e., glyoxal, methylglyoxal, acetylacetone, 2,3-butanedione, 2,5-hexanedione, and glutaraldehyde, and amine species, i.e., ammonia and glycine, were investigated at atmospherically relevant concentrations in bulk solution experiments mimicking atmospheric particulates. Product analyses were performed using UV/Vis spectrophotometry and (ultra) high performance liquid chromatography coupled to diode array detection and ion trap mass spectrometry (HPLC-DAD-ESI-MS/MS), as well as ultra-high resolution (Orbitrap) mass spectrometry (UHPLC-ESI-HRMS/MS). We demonstrate that light-absorbing compounds are formed from a variety of atmospherically relevant dicarbonyls via particle phase reactions with amine nucleophiles. Single dicarbonyl and mixed dicarbonyl experiments were performed and products were analyzed. The reaction products are suggested to be cyclic nitrogen containing compounds such as imidazoles or dihydropyridines as well as open chain compounds resulting from aldol condensation reactions. Further, the reactive turnover was found to be higher at increasing pH values. The aforementioned processes may be of higher relevance in regions with high aerosol pH, e.g., resulting from high ammonia emissions as for example in northern India (Clarisse et al., 2009). References Andreae, M.O., and Gelencsér, A. (2006): Black carbon or brown carbon? The nature of light

  9. Dispersion of atmospheric fine particulate matters in simulated lung fluid and their effects on model cell membranes.

    Science.gov (United States)

    Zhou, Qiuhua; Wang, Lixin; Cao, Zhaoyu; Zhou, Xuehua; Yang, Fan; Fu, Pingqing; Wang, Zhenhua; Hu, Jingtian; Ding, Lei; Jiang, Wei

    2016-01-15

    Atmospheric fine particulate matter (PM2.5) was collected to investigate its dispersion in simulated lung fluid (SLF) and its interaction with model cell membranes. Organic acids, NH4(+), SO4(2-) and NO3(-) were detected in PM2.5 soluble fraction, and heavy metals were detected from the total mass. The insoluble fraction contained kaolinite, CaCO3, aliphatic carbons, aromatic rings, carboxyl and hydroxyl groups reflected by the infrared spectra. Proteins dispersed PM2.5 in SLF, resulted in smaller hydrodynamic diameter (dH) and slower sedimentation rate. Conversely, phospholipids increased dH value and accelerated sedimentation rate. Giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) were used as model cell membranes. PM2.5 adhered on and disrupted the membrane containing positively-charged lipids but not the membrane containing neutrally- and negatively-charged lipids, which was monitored by microscopy and a quartz crystal microbalance with dissipation (QCM-D). The cationic sites on membrane were necessary for PM2.5 adhesion, but membrane should be disrupted by the combined action of electrostatic forces and hydrogen bonds between PM2.5 oxygen containing groups and the lipid phosphate groups. Our results specified the roles of proteins and phospholipids in PM2.5 dispersion and transport, highly suggested that the health hazard of PM2.5 was related to the biomolecules in the lung fluid and the particle surface groups.

  10. Occurrence of polycyclic aromatic hydrocarbons (PAHs) in seawater from the Western Taiwan Strait, China.

    Science.gov (United States)

    Wu, Yu-Ling; Wang, Xin-Hong; Li, Yong-Yu; Hong, Hua-Sheng

    2011-01-01

    Seawater samples (including surface water and bottom water) were collected from the Western Taiwan Strait (WTS) during June 24-25, 2009; polycyclic aromatic hydrocarbons (PAHs) in dissolved phase and particulate phase were analyzed, respectively. The results showed that the total concentrations of PAHs in the dissolved phase and particulate phase were ranged from 12.3 to 58.0 ng L(-1), and 10.3-45.5 ng L(-1), which showed a low-middle contamination level in the China Seas. The spatial variability of PAHs may be related to the complicated currents of WTS, especially the Min-Zhe coastal current. PAHs diagnostic ratios suggested that PAHs mainly originated from the inputs of pyrolytic (combustion) sources, which might be contributed to land-based atmospheric deposition. The particle-water partition coefficients of individual PAH showed that partitions were not correlated with suspended particulate matter content, dissolved organic carbon or salinity, similar to the Yangtze coastal area.

  11. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuefei [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Jiang Zucheng [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); He Man [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China)]. E-mail: binhu@whu.edu.cn

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3}(Eu) to 6.7 pg m{sup -3}(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c = 1 {mu}g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. - A new method for direct determination of trace rare earth elements in coal fly ash and atmospheric particulates by fluorination ETV-ICP-MS with slurry sampling.

  12. Investigation of mechanisms of polycyclic aromatic hydrocarbons (PAHs) initiated from the thermal degradation of styrene butadiene rubber (SBR) in N2 atmosphere.

    Science.gov (United States)

    Kwon, Eilhann; Castaldi, Marco J

    2008-03-15

    This study has been carried out to characterize the thermal decomposition of styrene-butadiene rubber (SBR), using thermogravimetric analysis (TGA) coupled to online GC/MS, and to investigate the formation and ultimate fate of chemical species produced during gasification of SBR. A preliminary mechanistic understanding has been developed to explain the formation and relationship of light hydrocarbons (C1-C4), substituted aromatics, and polycyclic aromatic hydrocarbons (PAHs) during the decomposition of SBR in a N2 atmosphere. Identification and absolute concentrations of over 50 major and minor species (from hydrogen to benzo[ghi]perylene) have been established, and the measurements have been carried out between 300 and 500 at 10 degrees C/min heating rate in a N2 atmosphere. The concentration of styrene reached 120 PPMV and the concentration of other substituted aromatics, such as toluene and ethyl benzene reached 20 and 5 PPMV, respectively. These measurements indicate PAH formation at a relatively lower temperature as compared to conventional fuel, such as coal and diesel. The PAH sequence is not simply the constructing of larger PAHs from smaller ones to achieve the complex polymer structures. It is possible to generate large PAH molecules while circumventing the typical construction pathway.

  13. Using testate amoeba as potential biointegrators of atmospheric deposition of phenanthrene (polycyclic aromatic hydrocarbon) on "moss/soil interface-testate amoeba community" microecosystems.

    Science.gov (United States)

    Meyer, Caroline; Desalme, Dorine; Bernard, Nadine; Binet, Philippe; Toussaint, Marie-Laure; Gilbert, Daniel

    2013-03-01

    Microecosystem models could allow understanding of the impacts of pollutants such as polycyclic aromatic hydrocarbons on ecosystem functioning. We studied the effects of atmospheric phenanthrene (PHE) deposition on the microecosystem "moss/soil interface-testate amoebae (TA) community" over a 1-month period under controlled conditions. We found that PHE had an impact on the microecosystem. PHE was accumulated by the moss/soil interface and was significantly negatively correlated (0.4 < r(2) < 0.7) with total TA abundance and the abundance of five species of TA (Arcella sp., Centropyxis sp., Nebela lageniformis, Nebela tincta and Phryganella sp.). Among sensitive species, species with a superior trophic level (determined by the test aperture size) were more sensitive than other TA species. This result suggests that links between microbial groups in the microecosystems are disrupted by PHE and that this pollutant had effects both direct (ingestion of the pollutant or direct contact with cell) and/or indirect (decrease of prey) on the TA community. The TA community seems to offer a potential integrative tool to understand mechanisms and processes by which the atmospheric PHE deposition affects the links between microbial communities.

  14. Spatio-temporal variations and influencing factors of polycyclic aromatic hydrocarbons in atmospheric bulk deposition along a plain-mountain transect in western China

    Science.gov (United States)

    Xing, Xinli; Zhang, Yuan; Yang, Dan; Zhang, Jiaquan; Chen, Wei; Wu, Chenxi; Liu, Hongxia; Qi, Shihua

    2016-08-01

    Ten atmospheric bulk deposition (the sum of wet and dry deposition) samplers for polycyclic aromatic hydrocarbons (PAHs) were deployed at a plain-mountain transect (namely PMT transect, from Daying to Qingping) in Chengdu Plain, West China from June 2007 to June 2008 in four consecutive seasons (about every three months). The bulk deposition fluxes of ∑15-PAHs ranged from 169.19 μg m-2 yr-1 to 978.58 μg m-2 yr-1 with geometric mean of 354.22 μg m-2 yr-1. The most prevalent PAHs were 4-ring (39.65%) and 3-ring (35.56%) PAHs. The flux values were comparable to those in rural areas. Higher fluxes of total PAHs were observed in the middle of PMT transect (SL, YX and JY, which were more urbanized than other sites). The seasonal deposition fluxes in the sampling profile indicated seasonality of the contaminant source was an important factor in controlling deposition fluxes. PAHs bulk deposition was negatively correlated with meteorological parameters (temperature, wind speed, humidity, and precipitation). No significant correlations between soil concentrations and atmospheric deposition were found along this transect. PAHs in soil samples had combined sources of coal, wood and petroleum combustion, while a simple source of coal, wood and grass combustion for bulk deposition. There were significant positive correlation relationship (p region of China or farther regions via long-range transport.

  15. On the Fractal Mechanism of Interrelation Between the Genesis, Size and Composition of Atmospheric Particulate Matters in Different Regions of the Earth

    CERN Document Server

    Rusov, Vitaliy D; Jacimovic, Radojko R; Pavlovich, Vladimir N; Bondarchuk, Yuriy A; Vaschenko, Vladimir N; Zelentsova, Tatiana N; Beglaryan, Margarita E; Linnik, Elena P; Smolyar, Vladimir P; Kosenko, Sergey I; Gudyma, Alla A

    2011-01-01

    Experimental data from the National Air Surveillance Network of Japan from 1974 to 1996 and from independent measurements performed simultaneously in the regions of Ljubljana (Slovenia), Odessa (Ukraine) and the Ukrainian "Academician Vernadsky" Antarctic station (64{\\deg}15'W; 65{\\deg}15'S), where the air elemental composition was determined by the standard method of atmospheric particulate matter (PM) collection on nucleopore filters and subsequent neutron activation analysis, were analyzed. Comparative analysis of different pairs of atmospheric PM element concentration data sets, measured in different regions of the Earth, revealed a stable linear (on a logarithmic scale) correlation, showing a power law increase of every atmospheric PM element mass and simultaneously the cause of this increase - fractal nature of atmospheric PM genesis. Within the framework of multifractal geometry we show that the mass (volume) distribution of atmospheric PM elemental components is a log normal distribution, which on a l...

  16. Role of atmospheric ammonia in particulate matter formation in Houston during summertime

    Science.gov (United States)

    Gong, Longwen; Lewicki, Rafał; Griffin, Robert J.; Tittel, Frank K.; Lonsdale, Chantelle R.; Stevens, Robin G.; Pierce, Jeffrey R.; Malloy, Quentin G. J.; Travis, Severin A.; Bobmanuel, Loliya M.; Lefer, Barry L.; Flynn, James H.

    2013-10-01

    Simultaneous high-time-resolution measurements of atmospheric NH3, HNO3, soluble gas-phase chloride, and aerosol species were made in Houston, TX, from August 5, 2010 to August 9, 2010. Gaseous NH3 was measured using a 10.4-μm external cavity quantum cascade laser-based sensor employing conventional photo-acoustic spectroscopy, while gaseous HNO3 and HCl were sampled using a mist chamber-ion chromatograph (IC) system. Particle chemical composition was determined using a particle-into-liquid-sampler-IC system. There was a large amount of variability in the gas phase mixing ratios of NH3 (3.0 ± 2.5 ppb), HNO3 (287.4 ± 291.6 ppt), and HCl (221.3 ± 260.7 ppt). Elevated NH3 levels occurred around mid-day when NH (0.5 ± 1.0 μg m-3) and SO (4.5 ± 4.3 μg m-3) also increased considerably, indicating that NH3 likely influenced aerosol particle mass. By contrast, the formation of NH4NO3 and NH4Cl was not observed during the measurements. Point sources (e.g., power plant and chemical plant) might be potential contributors to the enhancements in NH3 at the measurement site under favorable meteorological conditions. Increased particle number concentrations were predicted by the SAM-TOMAS model downwind of a large coal-fired power plant when NH3 emissions (based on these measurements) were included, highlighting the potential importance of NH3 with respect to particle number concentration. Separate measurements also indicate the role of NH3 in new particle formation in Houston under low-sulfur conditions.

  17. Organic content of particulate matter in the atmosphere of Quargla City, Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Yassaa, N. [University of Sciences and Technology, Institute of Chemistry, Laboratoire d' Analyse Organique Fonctionelle, El-Alia (Algeria); Meklati, B.Y. [Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Algier (Algeria); Cecinato, A.; Marino, F.; Balducci, C. [Consiglio Nazionale delle Ricerche, Istituto sull' Inquinamento Atmosferico, Area della Ricerca di Roma, Monterotondo Scalo, RM (Italy)

    2001-10-01

    The particle-bound organic compounds comprising n-alkanes, n-alkanoic monocarboxylic acids, polynuclear aromatic hydrocarbons (PAH) and nitrated polynuclear aromatic hydrocarbons (NPAH) were investigated in ambient air of the Quargla city area (Algeria) during a short campaign performed in November 1999. The distribution profile of n-alkanes was consistent with the petrogenic origin of aerosols, suggesting that they were related to torching processes of crude oil refuses in the petroleum extraction field located not far from Quargla. Instead, the presence of n-alkanoic acids of low molecular weight was indicative of microbial activity experienced by the site. PAH levels were low when compared to other polluted areas. The presence of 2-nitrofluoranthene and 2-nitropyrene, which can result from in-situ nitration of fluoranthene and pyrene, was concurrent with the substantial depletion of the most reactive among PAH, suggesting that photochemical processes influence the composition of the Saharian atmosphere. [Italian] Una breve campagna di monitoraggio e' stata eseguita nell'area di Quargla (citta' dell'entroterra algerino) al fine di investigare la composizione degli aerosoli organici dell'atmosfera. Sono stati identificati e valutati gli n-alcani, gli acidi alcanoici mono-carbossilici, gli idrocarburi policiclici aromatici (PAH) ed i PAH nitrati (NPAH). La composizione della frazione alifatica era compatibile con l'origine petrogenica degli aerosoli, concordando con quella caratteristica dei pennacchi fumosi ai pozzi petroliferi di un vicino campo di estrazione. La presenza degli omologhi leggeri tra gli acidi n-alcanoici (fino a C{sub 1}8) era indicativa di attivita' microbica. I PAH mostravano concentrazioni in aria inferiori a quelle di aree inquinate. La presenza di 2-nitrofluorantene e 2-nitropirene, di origine almeno parzialmente fotochimica, contemporanea alla scomparsa dei piu' reattivi tra i PAH, indica che la

  18. Mechanistic understanding of polycyclic aromatic hydrocarbons (PAHs) from the thermal degradation of tires under various oxygen concentration atmospheres.

    Science.gov (United States)

    Kwon, Eilhann E; Castaldi, Marco J

    2012-12-04

    The thermal degradation of tires under various oxygen concentrations (7-30%/Bal. N(2)) was investigated thermo-gravimetrically at 10 °C min(-1) heating rate over a temperature range from ambient to 1000 °C. Significant mass loss (~55%) was observed at the temperature of 300-500 °C, where the thermal degradation rate was almost identical and independent of oxygen concentrations due to simultaneous volatilization and oxidation. A series of gas chromatography/mass spectroscopy (GC/MS) measurements taken from the effluent of a thermo-gravimetric analysis (TGA) unit at temperature of 300-5000 °C leads to the overall thermal degradation mechanisms of waste tires and some insights for understanding evolution steps of air pollutants including volatile organic carbons (VOCs) and polycyclic aromatic hydrocarbons (PAHs). In order to describe the fundamental mechanistic behavior on tire combustion, the main constituents of tires, styrene butadiene rubber (SBR) and polyisoprene (IR), has been investigated in the same experimental conditions. The thermal degradation of SBR and IR suggests the reaction mechanisms including bond scissions followed by hydrogenation, gas phase addition reaction, and/or partial oxidation.

  19. Size distributions of polycyclic aromatic hydrocarbons in urban atmosphere: sorption mechanism and source contributions to respiratory deposition

    Science.gov (United States)

    Lv, Yan; Li, Xiang; Xu, Ting Ting; Cheng, Tian Tao; Yang, Xin; Chen, Jian Min; Iinuma, Yoshiteru; Herrmann, Hartmut

    2016-03-01

    In order to better understand the particle size distribution of polycyclic aromatic hydrocarbons (PAHs) and their source contribution to human respiratory system, size-resolved PAHs have been studied in ambient aerosols at a megacity Shanghai site during a 1-year period (2012-2013). The results showed the PAHs had a bimodal distribution with one mode peak in the fine-particle size range (0.4-2.1 µm) and another mode peak in the coarse-particle size range (3.3-9.0 µm). Along with the increase in ring number of PAHs, the intensity of the fine-mode peak increased, while the coarse-mode peak decreased. Plotting of log(PAH / PM) against log(Dp) showed that all slope values were above -1, suggesting that multiple mechanisms (adsorption and absorption) controlled the particle size distribution of PAHs. The total deposition flux of PAHs in the respiratory tract was calculated as being 8.8 ± 2.0 ng h-1. The highest lifetime cancer risk (LCR) was estimated at 1.5 × 10-6, which exceeded the unit risk of 10-6. The LCR values presented here were mainly influenced by accumulation mode PAHs which came from biomass burning (24 %), coal combustion (25 %), and vehicular emission (27 %). The present study provides us with a mechanistic understanding of the particle size distribution of PAHs and their transport in the human respiratory system, which can help develop better source control strategies.

  20. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Andrysík, Zdeněk; Vondráček, Jan; Marvanová, Soňa; Ciganek, Miroslav; Neča, Jiří; Pěnčíková, Kateřina; Mahadevan, Brinda; Topinka, Jan; Baird, William M; Kozubík, Alois; Machala, Miroslav

    2011-09-01

    Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of AhR-mediated responses, including induction of the AhR-mediated transcription, such as cytochrome P450 1A1/1B1 expression, and the AhR-dependent cell proliferation. Importantly, these toxic events occurred at doses one order of magnitude lower than DNA damage. The AhR-mediated activity of the neutral fraction was linked to PAHs and their derivatives, as polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls were only minor contributors to the overall AhR-mediated activity. Taken together, our data suggest that more attention should be paid to the AhR-dependent nongenotoxic events elicited by urban PM constituents, especially PAHs and their derivatives.

  1. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim

    2012-05-04

    RATIONALE To enhance the ionization efficiencies in atmospheric pressure photoionization mass spectrometry a dopant with favorable ionization energy such as chlorobenzene is typically used. These dopants are typically toxic and difficult to mix with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs) was developed and optimized using ultra high performance liquid chromatography (UPLC) coupled to atmospheric pressure photoionization high-resolution mass spectrometry. Various single and multicomponent mixed dopants consisting of ethanol, chlorobenzene, bromobenzene, anisole and toluene were evaluated. RESULTS Fourteen out of eighteen PAHs were successfully separated and detected at low pg/μL levels within 5 min with high mass accuracy ≤4 ppm. The optimal mixed multicomponent dopant consisted of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v %) and it improved the limit of detection (LOD) by 2- to 10-fold for the tested PAHs compared to those obtained with pure chlorobenzene. CONCLUSIONS A novel multicomponent dopant that contains 99% ethanol and 1% mixture of chlorobenzene, bromobenzene and anisole was found to be an effective dopant mixture to ionize PAHs. The developed UPLC multicomponent dopant assisted atmospheric pressure photoionization high-resolution mass spectrometry offered a rapid non targeted screening method for detecting the PAHs at low pg/;μL levels within a 5 min run time with high mass accuracy a;circ4 ppm. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area.

    Science.gov (United States)

    Callén, M S; López, J M; Iturmendi, A; Mastral, A M

    2013-12-01

    The total PAH associated to the airborne particulate matter (PM10) was apportioned by one receptor model based on positive matrix factorization (PMF) in an urban environment (Zaragoza city, Spain) during February 2010-January 2011. Four sources associated with coal combustion, gasoline, vehicular and stationary emissions were identified, allowing a good modelling of the total PAH (R(2) = 0.99). A seasonal behaviour of the four factors was obtained with higher concentrations in the cold season. The NE direction was one of the predominant directions showing the negative impact of industrial parks, a paper factory and a highway located in that direction. Samples were classified according to hierarchical cluster analysis obtaining that, episodes with the most negative impact on human health (the highest lifetime cancer risk concentrations), were produced by a higher contribution of stationary and vehicular emissions in winter season favoured by high relative humidity, low temperature and low wind speed.

  3. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 around 2013 Asian Youth Games period in Nanjing

    Science.gov (United States)

    Li, Xuxu; Kong, Shaofei; Yin, Yan; Li, Li; Yuan, Liang; Li, Qi; Xiao, Hui; Chen, Kui

    2016-06-01

    Eighteen polycyclic aromatic hydrocarbons (PAHs) in PM2.5 collected near the Nanjing Olympic Sports Center across the Asian Youth Games (AYG) period (from August 2 to August 28, 2013) were analyzed using GC-MS. Their levels, sources and health risks to human were discussed. Results showed that the total concentrations of PAHs in PM2.5 were 9.43, 7.21 and 8.83 ng m- 3 for pre- (August 3-15), during- (August 16-24) and post- (August 25-28) AYG periods, respectively. They were dominated by 5-ring and 6-ring PAHs. Total PAHs concentrations in PM2.5 during AYG period decreased by 24%, when compared with those for pre-AYG period. For combustion-derived PAHs and carcinogenic PAHs, they decreased by 26% and 21%, respectively. It implied that the pollution control measures implemented during the AYG can effectively reduce the emission of PAHs from various sources. The poor correlations between PAHs and meteorological parameters also favored that the variations of PAHs were raised by the changes of emission sources. Diagnostic ratios and principal component analysis revealed that vehicle emission and coal combustion were the predominant contributors, with minimal effects from biomass burning and petroleum. The health risks for human exposed to PAHs in PM2.5 were quantitatively assessed by BaP equivalent concentration (BaPeq) and the incremental lifetime cancer risk (ILCR). The estimated ILCR value of PAHs during the AYG periods decreased by 23% and 27% for children and adults when compared with those for the pre-AYG, respectively. It indicated that the pollution control measures reduced the risks of PAHs to sportsmen or human gathered around the Olympic Sport Center.

  4. Development of methods to examine the effects of atmospheric particulate matter (PM) on human peripheral blood leukocytes

    Science.gov (United States)

    Zussman, Lisa Ann

    In vitro methods to study the effect of atmospheric particulate matter (PM) on leukocyte function using human peripheral blood were developed. These methods were demonstrated using the blood of 1-5 individuals and National Institute of Standards and Technology (NIST) urban PM #1648, diesel PM #1650, silica PM, and a locally collected PM sample (New Jersey PM10). For the blood samples analyzed in this study NIST urban PM and New Jersey PM10 treatment mediated the release of granule contents from peripheral blood leukocytes and induced structural changes associated with degranulation. Flow cytometry revealed PM-induced changes in phagocytosis and cell structure associated with degranulation. Transmission electron microscopy confirmed NIST urban PM-induced cell structure changes were associated with PM internalization. Colorametric and electrophoretic methods showed no PM-induced release of primary granules and a slight PM-induced release of secondary granules associated with only NIST urban PM. Enzyme Immunosorbent Assays detected increased histamine release from basophils treated with NIST urban PM, a locally collected PM, and the soluble and insoluble components of these particles. NIST urban PM was found to be a potent inducer of histamine release in 4 out of 6 individuals tested. Fractionation studies revealed that soluble (aqueous) and insoluble fractions of NIST urban PM contain histamine-releasing activity. This was also demonstrated for the New Jersey PM10 sample for which the soluble fraction exhibited the most activity. Complementary studies with inhibitors of IgE-mediated histamine release conducted on one test subject suggest that PM-induced histamine release was partially mediated by IgE. A new hypothesis has been formed, suggesting that particle toxicity is related to PM-induced histamine release. Due to the bioactive nature of histamine and its association with many cardiopulmonary responses, the PM- mediated release of histamine should be investigated

  5. Performance testing of cross flow heat exchanger operating in the atmosphere of flue gas particulate with vapor condensation

    Directory of Open Access Journals (Sweden)

    Nuntaphan, A.

    2006-05-01

    Full Text Available Performance testing of a cross flow heat exchanger operating under the atmosphere of flue gas particulate from combustion was carried out in this work. This heat exchanger exchanges heat between flue gas from the fuel oil combustion and cold water. The heat exchanger is composed of a spiral finned tube bank having 3 rows and 8 tubes per row with a staggered arrangement. The fin spacings considered are 2.85 and 6.10 mm. The theories of thermodynamics and heat transfer are used for analyzing the performance of this system.In this experiment, the flue gas temperature of 200ºC from combustion having 0.35 kg/s mass flow rate flows along outside surface of the heat exchanger and transfers heat to the 25ºC cooling water having 0.15 kg/s mass flow rate flowing in the tube side. Each experiment uses 750 hr for testing. During the testing, part of flue gas condenses on the heat transfer surface.From the experiment, it was found that the heat transfer rate of both heat exchangers tended to decrease with time while the airside pressure drop increased. These results come from the fouling on the heat transfer surface. Moreover, it is found that the heat exchanger having 2.85 mm fin spacing has an approximately 4 times higher fouling resistance than that of the 6.10 mm fin spacing.In this work a model for calculating the fouling resistance is also developed as a the function of time. The model is developed from that of Kern and Seaton and the mean deviation of the model is 0.789.

  6. Atmospheric pressure solid analysis probe coupled to quadrupole-time of flight mass spectrometry as a tool for screening and semi-quantitative approach of polycyclic aromatic hydrocarbons, nitro-polycyclic aromatic hydrocarbons and oxo-polycyclic aromatic hydrocarbons in complex matrices.

    Science.gov (United States)

    Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina

    2015-01-01

    A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva.

  7. Eco-toxicological bioassay of atmospheric fine particulate matter (PM2.5) with Photobacterium Phosphoreum T3.

    Science.gov (United States)

    Wang, Wenxin; Shi, Chanzhen; Yan, Yan; Yang, Yunfei; Zhou, Bin

    2016-11-01

    A bioluminescent bacterium, Photobacterium phosphoreum T3 (PPT3), was used as a bio-indicator for the atmospheric fine particulate matter (PM2.5) to determine the eco-toxicity of PM2.5. The PM2.5 contains toxic chemicals, which reduce light output. The PM2.5 samples were collected in the period from March 2014 to January 2015 in Nanjing and analyzed for the chemical composition versus their eco-toxicity. The eco-toxicological responses of each toxicant were detected in PM2.5 samples with PPT3. The dose-response curves obtained were verified using the Weibull fitting function. According to the measured EC50 values (EC50, the concentration of a toxicant that inhibits 50% of the bioluminescence), the toxicity sequence was: B[a]P>hexa-PCB>tetra-PCB>tri-PCB>Pb(2+)>DEHP>Cu(2+)>DBP>BDE209>Zn(2+)>DMP>DEP, where B[a]P is benzo(a)pyrene, PCB is polychlorinated biphenyl, DEHP is diethylhexyl phthalate, DBP is dibutyl phthalate, BDE209 is decabromodiphenyl ether, DMP is dimethyl phthalate, and DEP is diethyl phthalate. All the PM2.5 samples analyzed proved to be weak toxic for PPT3. The toxicity of PM2.5 was assessed by the dose-addition of organic species and heavy metallic elements existing in PM2.5 with PPT3. The bioluminescence test showed that the metals and organics detected in PM2.5 promoted PM2.5 toxicity. The total detectable organics (denoted by ΣOrs) exhibited slightly higher toxicity than the total metals (denoted by ΣMs). In contrast, the sum of water-soluble ions (denoted by ΣIons) was beneficial to PPT3. The PM2.5 toxicity increased as the PM2.5 trapped more organics or metallic elements from the industrial or densely populated urban areas, where the PM2.5 had a high inhibition rate of bioluminescence for PPT3 in contrast to the residential PM2.5 samples, where the minimum inhibition rate was observed. The toxicity of PM2.5 samples varied with the mass concentrations, chemical constituents, and sampling locations. The chemicals in PM2.5, especially organic

  8. Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry

    Science.gov (United States)

    Lung, Shih-Chun Candice; Liu, Chun-Hu

    2015-08-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs are ubiquitous in the environment. Some of them are probable carcinogens and some are source markers. This work presents an ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry (UHPLC-APPI-MS/MS) method for simultaneous analysis of 20 PAHs and nine nitro-PAHs. These compounds are separated in 15 minutes in the positive mode and 11 minutes in the negative mode, one half of GC/MS analysis time. Two pairs of precursor/product ions are offered, which is essential for confirmation. This method separates and quantifies benzo[a]pyrene (the most toxic PAHs) and non-priority benzo[e]pyrene (isomers, little toxicity) to avoid overestimation of toxin levels, demonstrating its importance for health-related researches. With 0.5% 2,4-difluoroanisole in chlorobenzene as the dopant, limits of detection of PAHs except acenaphthylene and those of nitro-PAHs except 2-nitrofluoranthene are below 10 pg and 3 pg, respectively, mostly lower than or comparable to those reported using LC-related systems. The responses were linear over two orders of magnitude with fairly good accuracy and precision. Certified reference materials and real aerosol samples were analyzed to demonstrate its applicability. This fast, sensitive, and reliable method is the first UHPLC-APPI-MS/MS method capable of simultaneously analyzing 29 environmentally and toxicologically important PAHs and nitro-PAHs.

  9. Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry.

    Science.gov (United States)

    Lung, Shih-Chun Candice; Liu, Chun-Hu

    2015-08-12

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs are ubiquitous in the environment. Some of them are probable carcinogens and some are source markers. This work presents an ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry (UHPLC-APPI-MS/MS) method for simultaneous analysis of 20 PAHs and nine nitro-PAHs. These compounds are separated in 15 minutes in the positive mode and 11 minutes in the negative mode, one half of GC/MS analysis time. Two pairs of precursor/product ions are offered, which is essential for confirmation. This method separates and quantifies benzo[a]pyrene (the most toxic PAHs) and non-priority benzo[e]pyrene (isomers, little toxicity) to avoid overestimation of toxin levels, demonstrating its importance for health-related researches. With 0.5% 2,4-difluoroanisole in chlorobenzene as the dopant, limits of detection of PAHs except acenaphthylene and those of nitro-PAHs except 2-nitrofluoranthene are below 10 pg and 3 pg, respectively, mostly lower than or comparable to those reported using LC-related systems. The responses were linear over two orders of magnitude with fairly good accuracy and precision. Certified reference materials and real aerosol samples were analyzed to demonstrate its applicability. This fast, sensitive, and reliable method is the first UHPLC-APPI-MS/MS method capable of simultaneously analyzing 29 environmentally and toxicologically important PAHs and nitro-PAHs.

  10. Monitoring of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of southern Luxembourg using XAD-2 resin-based passive samplers.

    Science.gov (United States)

    Schummer, Claude; Appenzeller, Brice M; Millet, Maurice

    2014-02-01

    XAD-2 resin-based passive samplers (PAS) with dimensions adapted to 100 mL accelerated solvent extraction cells were used to study the temporal and spatial variations of 17 PAHs on five sites in the atmosphere of southern Luxembourg. This new design allowed extracting the PAS without emptying the resin from the shelter. PAH analyses were done with gas chromatography-tandem mass spectrometry. PAS were deployed for 1 year with varying sampling periodicities, and 16 PAHs were detected with concentrations ranging from 1 ng/PAS for chrysene to 9,727 ng/PAS for naphthalene. The PAS were found adapted to the monitoring of temporal and spatial variations for lightweight PAHs (up to four aromatic rings) though not for heavy PAHs with five aromatic rings or more, as these compounds are preferably in the particle phase of the atmosphere and the amount of these PAHs trapped on the PAS will be too low.

  11. HPLC—UV法测定城市大气颗粒物中的硝基多环芳烃%An Analysis of Nitrated Polycyclic Aromatic Hydrocarbons in Urban Air Particulate Matter by High Performance Liquid Chromatography with UV Detection

    Institute of Scientific and Technical Information of China (English)

    杨丹; 卫昆; 黄艳婷; 徐小敏

    2011-01-01

    Concentrations of nitro-polycyclic aromatic hydrocarbons (NPAHs) on total suspended particles in Dongguan City have been reported. The sample pre-treatment process is optimized and qualitative and quantitative analyses of NPAHs are performed by using a High Performance liquid chromatography with UV detection (HPLC-UV). The resuhs show that the content of 4 NPAHs of atmospheric particles in Dongguan is much higher than in other regions and only second to Guangzhou. The automotive emissions is the main source, but there are other direct emissions source for 3-nitrofluoranthene.%研究了东莞市大气颗粒物上硝基多环芳烃的含量,并优化了样品的前处理过程,采用HPLC—UV定性定量分析了东莞市大气颗粒物上4种硝基多环芳烃的含量,结果发现东莞市颗粒物上硝基多环芳烃的含量显著高于已有报道的其它地区,仅次于广州,其可能的主要来源为汽车尾气的排放,其中3-硝基荧蒽还有其它直接排放源。

  12. Field measurement of acid gases and soluble anions in atmospheric particulate matter using a parallel plate wet denuder and an alternating filter-based automated analysis system.

    Science.gov (United States)

    Boring, C Bradley; Al-Horr, Rida; Genfa, Zhang; Dasgupta, Pumendu K; Martin, Michael W; Smith, William F

    2002-03-15

    We present a new fully automated instrument for the measurement of acid gases and soluble anionic constituents of atmospheric particulate matter. The instrument operates in two independent parallel channels. In one channel, a wet denuder collects soluble acid gases; these are analyzed by anion chromatography (IC). In a second channel, a cyclone removes large particles and the aerosol stream is then processed by another wet denuder to remove potentially interfering gases. The particles are then collected by one of two glass fiber filters which are alternately sampled, washed, and dried. The washings are preconcentrated and analyzed by IC. Detection limits of low to subnanogram per cubic meter concentrations of most gaseous and particulate constituents can be readily attained. The instrument has been extensively field-tested; some field data are presented. Results of attempts to decipher the total anionic constitution of urban ambient aerosol by IC-MS analysis are also presented.

  13. Quantification of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate using stable isotope dilution liquid chromatography with atmospheric-pressure photoionization tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Xiaotao; Hou, Hongwei; Chen, Huan; Liu, Yong; Wang, An; Hu, Qingyuan

    2015-09-17

    A stable isotope dilution liquid chromatography with tandem mass spectrometry method for the analysis of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate was developed and validated. Compared with previously reported methods, this method has lower limits of detection (0.04-1.35 ng/cig). Additionally, the proposed method saves time, reduces the number of separation steps, and reduces the quantity of solvent needed. The new method was applied to evaluate polycyclic aromatic hydrocarbon content in 213 commercially available cigarettes in China, under the International Standardization Organization smoking regime and the Health Canadian intense smoking regime. The results showed that the total polycyclic aromatic hydrocarbon content was more than two times higher in samples from the Health Canadian intense smoking regime than in samples from the International Standardization Organization smoking regime (1189.23 vs. 2859.50 ng/cig, ppolycyclic aromatic hydrocarbons (and total polycyclic aromatic hydrocarbons) increased with labeled tar content in both of the tested smoking regimes. There was a positive correlation between total polycyclic aromatic hydrocarbons under the International Standardization Organization smoking regime with that under the Health Canadian intense smoking regime. The proposed liquid chromatography with tandem mass spectrometry method is satisfactory for the rapid, sensitive, and accurately quantitative evaluation of polycyclic aromatic hydrocarbon content in cigarette smoke condensate, and it can be applied to assess potential health risks from smoking. This article is protected by copyright. All rights reserved.

  14. Correlation between atmospheric polycyclic aromatic hydrocarbons exposure and urinary hydroxyl metabolites of polycyclic aromatic hydrocarbons in elderly population in Tianjin, China%天津市老年人群大气多环芳烃暴露与尿中多环芳烃羟基代谢物的关联研究

    Institute of Scientific and Technical Information of China (English)

    秦晓蕾; 范娇; 薛晓丹; 韩斌; 汤乃军; 张利文

    2012-01-01

    Objective To identify suitable hydroxyl polycyclic aromatic hydrocarbons (OH-PAHs) for co-evaluation of internal exposure level of PAHs by simultaneous determination of a variety of OH-PAHs in urine.Methods The 24-h individual particulate matter and morning urine samples of 112 subjects were collected during June 2011.PAHs carried by individual particulate matter samples and OH-PAHs in urine samples were detected by gas chromatography-mass spectrometry.Results Seven OH-PAHs were detected in urine samples,among which 1-hydroxy-naphthalene (1-OHNap) concentration was the highest [(20.54±28.94)μmol/mol Cr],while 1-hydroxy-pyrene (1-OHP) concentration was the lowest [(0.73±0.63) μmol/mol Cr].The concentrations of these seven OH-PAHs decreased in the following order:1-hydroxy-naphthalene (1-OHNap) >9-hydroxy-fluorene (9-OHFlu) > 2-hydroxy-naphthalene (2-OHNap) > 3-hydroxy-fluorene (3-OHFlu) > 2-hydroxy-fluorene (2-OHFlu) > 6-hydroxy-chrysene (6-OHChr) > 1-hydroxy-pyrene (1-OHP).The effects of gender and smoking upon the contents of OH-PAHs in urine samples were not significant.There was a good correlation between total hydroxy-naphthalene (ΣOHNap) and 1-OHNap (r=0.948),and a good correlation was also showed between total hydroxy-fluorene (ΣOHFlu) and 9-OHFlu (r=0.975).Naphthalene carried byatmospheric particulate matters demonstrated better correlation with 1-OHNap than 2-OHNap,while fluorene carried by atmospheric particulate matters showed better correlation with 9-OHFlu than 3-OHFlu and 2-OHFlu.The correlation coefficients of Σ OHNap,Σ OHFlu and 6-OHChr with 1-OHP were 0.427,0.543 and 0.655,respectively,and the correlations were not strong.Conclusion It cannot reflect internal exposure level of PAHs to use 1-OHP as the only biomarker,while 1-OHNap and 9-OHFlu can be well predictive of the exposure levels of corresponding total OH-PAHs,suggesting that simultaneous determination of 1-OHNap,9-OHFlu and 1-OHP can be more accurate and comprehensive in

  15. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F.; Jiang, Z.C.; He, M.; Hu, B. [Wuhan University, Wuhan (China). Dept. of Chemistry

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3} (Eu) to 6.7 Pg m{sup -3} (Nd) with the precisions of 4.1% (Yb) to 10% (La) = 1 {mu} g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  16. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling.

    Science.gov (United States)

    Zhang, Yuefei; Jiang, Zucheng; He, Man; Hu, Bin

    2007-07-01

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m(-3)(Eu) to 6.7 pg m(-3)(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c=1 microg L(-1), n=9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  17. Seasonal and spatial variation of atmospheric particulate matter in a developing megacity, the Greater Cairo, Egypt Egipto

    Energy Technology Data Exchange (ETDEWEB)

    Zakey, A.S. [The Abdus Salam International Centre of Theoretical Physics (ICTP) Trieste (Italy)]. E-mail: azakey@ictp.it; Abdel-Wahab, M.M. [Cairo University, Department of Meteorology, Faculty of Science, Cairo (Egypt); Pettersson, J.B.C.; Gatari, M.J.; Hallquist, M. [Department of Chemistry, Atmospheric Science, Goeteborg University, Goeteborg (Sweden)

    2008-04-15

    As an example of a developing megacity the Greater Cairo (GC) area in Egypt has been evaluated with respect to atmospheric particulate matter (PM) and lead (Pb). Particulate matter was collected during 2001-2002 in the two size fractions PM{sub 2}.5 and PM{sub 1}0 at 17 sites representing different activities (industrial, urban, residential and background condition). The PM concentrations were generally high, with yearly average PM{sub 2}.5 and PM{sub 1}0 values of 85 {+-} 12 and 170 {+-} 25 {mu}g/m{sup -}3, respectively. On an annual scale, the high PM levels were due to many sources that included traffic, waste burning and wind blown dust particles emitted from the desert outside GC and the Moqattam hill inside GC. On a seasonal scale, the PM concentrations were highest in the industrial sector during spring, the dusty season, due to the combined effect of dust storm events and anthropogenic emissions over GC. The lowest seasonal concentrations were recorded in the summer season at the background sites. There was a marked increase in PM levels during the period October to December due to burning of waste from harvested rice in the agriculture area in the Nile Delta (north of Cairo). The highest PM{sub 2}.5/PM{sub 1}0 ratio was recorded in the urban sector (0.59) while the lowest ratio was recorded in the residential sector (0.32). The PM{sub 2}.5 and PM{sub 1}0 samples were also analyzed for Pb in order to address the influence of different emission sources. The monthly average concentrations of Pb in both PM{sub 2}.5 (Pb{sub 2}.5) and PM{sub 1}0 (Pb{sub 1}0) varied between 0.4 and 1.8 {+-} {mu}g m{sup -}3 at the non industrial sites. The concentrations were significantly higher in the industrial areas, where concentration up to a maximum of 16 {+-} g m{sup -}3 could be observed. Both the high lead and PM concentrations measured are contributing to local environmental pollution. GC is subjected to high concentrations of particulates most of the year. There is no

  18. Influence of Biomass Burning on Temporal and Diurnal Variations of Acidic Gases, Particulate Nitrate, and Sulfate in a Tropical Urban Atmosphere

    Directory of Open Access Journals (Sweden)

    Sailesh N. Behera

    2014-01-01

    Full Text Available The present study investigated the temporal and diurnal distributions of atmospheric acidic gases (sulphur dioxide (SO2, nitrous acid (HONO, and nitric acid (HNO3 and those of particulate nitrate (NO3- and sulfate (SO42- through a comprehensive field campaign during the largest smoke haze episode in Singapore, a representative country in Southeast Asia (SEA. To identify the atmospheric behavior of these pollutants during the smoke haze period, the data generated from the measurement campaign were divided into three distinct periods: prehaze, during haze, and posthaze periods. The 24 hr average data indicated that ambient SO2, HONO, and HNO3 during the smoke haze episodes increased by a factor ranging from 1.2 to 2.6 compared to those during the prehaze and posthaze periods. Similarly, in the case of particulates SO42- and NO3-, the factor ranged from 2.3 to 4.2. Backward air trajectories were constructed and used to find the sources of biomass burning to the recurring smoke haze in this region. The air trajectory analysis showed that the smoke haze episodes experienced in Singapore were influenced by transboundary air pollution, caused by severe biomass burning events in the islands of Indonesia.

  19. The investigation of atmospheric particulate matter pollution in Suzhou%苏州市大气颗粒物污染状况调查

    Institute of Scientific and Technical Information of China (English)

    陈益欧; 张玉良; 王娅; 王培; 田海林

    2012-01-01

    Objective To investigate the pollution status, vertical distribution and concentration variation within 24 hours of total suspended particles ( TSPs) , paniculate matter ≤ 10 μm ( PM10) , particulate matter ≤ 5(PM5 )and particulate matter ≤2.5 μm(PM2.5) in major functional areas of Suzhou and the protective effect of different type masks on particulate matter. Methods (1) The concentration of atmospheric TSPs, PM10, PM5 and PM2. 5 in seven functional areas in Suzhou was monitored for three consecutive days. (2) A residential building of 25 stories was chosen and the concentration of TSPs, PM10, PM5, PM2. 5 was detected at the 1st, 5th, 10th, 15th,20th and the 25th floor respectively. ( 3 ) The concentrations of the four particulate matter were detected every two-hours for three consecutive days to investigate how concentration of particulate matter varies within 24 hours. (4) The concentration of the four kinds of particulate matter was analyzed with the sampling head of monitor wrapped with disposable non-woven medical mask, fashion-type mask, gauze mask or activated carbon anti-dust mask respectively, and the protective effect of the four masks on particulate matter was compared. Results (1) The concentration of PM2. 5 was higher than the national health limit in all seven functional areas in Suzhou. (2) No significant difference in vertical distribution of particulate matter was found among different floors in residential buildings (P > 0. 05). (3) Two small peaks of particulate matter appeared in the morning and evening respectively while the top appeared at dawn ( P < 0.05). (4) Disposable non-woven medical mask showed the best protective effect on particulate matter among the four tested masks. Conclusion PM2.5 is the main particulate matter in Suzhou area. In addition the 4 kinds of particulate matter: TSP, PM10, PM5 and PM2. 5 are of higher concentration in the early morning. No significant difference was detected from an altitude of less than 75

  20. Development of a gas chromatography-mass spectrometry method for the determination of pesticides in gaseous and particulate phases in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Borras, E.; Sanchez, P.; Munoz, A. [Instituto Universitario Centro de Estudios Ambientales del Mediterraneo CEAM-UMH (Fundacion CEAM-UMH), 46980 Paterna, Valencia (Spain); Tortajada-Genaro, L.A., E-mail: luitorge@qim.upv.es [Instituto IDM, Departamento de Quimica, Universitat Politecnica de Valencia, Cami de Vera s/n 46022 Valencia (Spain)

    2011-08-05

    Highlights: {yields} An efficient method for the determination of sixteen pesticides in atmospheric samples. {yields} XAD-4 is an interesting support for collecting gas-phase pesticides, with similar performances than the conventional XAD-2. {yields} The ultrasonic extraction is cheaper, less aggressive and time-consuming with excellent analytical parameters. {yields} The method has been successfully tested by using high volume atmospheric simulation chamber and field campaigns. - Abstract: A reliable multi-residue method for determining gaseous and particulate phase pesticides in atmospheric samples has been developed. This method, based on full scan gas chromatography-mass spectrometry (GC-MS), allowed the proper determination of sixteen relevant pesticides, in a wide range of concentrations and without the influence of interferences. The pesticides were benfluralin, bitertanol, buprofezin, chlorfenvinphos, chlorpyrifos, chlorpyrifos-methyl, ethalfluralin, fenthion, lindane, malathion, methidathion, propachlor, propanil, pyriproxifen, tebuconazol and trifluralin. Comparisons of two types of sampling filters (quartz and glass fibre) and four types of solid-phase cartridges (XAD-2, XAD-4, Florisil and Orbo-49P) showed that the most suitable supports were glass fibre filter for particulate pesticides and XAD-2 and XAD-4 cartridges for gaseous pesticides (>95% recovery). Evaluations of elution solvents for ultrasonic-assisted extraction demonstrated that isooctane is better than ethylacetate, dichloromethane, methanol or a mixture of acetone:hexane (1:1). Recovery assays and the standard addition method were performed to validate the proposed methodology. Moreover, large simulator chamber experiments allowed the best study of the gas-particle partitioning of pesticides for testing the sampling efficiency for the validation of an analytical multiresidue method for pesticides in air. Satisfactory analytical parameters were obtained, with a repeatability of 5 {+-} 1%, a

  1. Development of a gas chromatography-mass spectrometry method for the determination of pesticides in gaseous and particulate phases in the atmosphere.

    Science.gov (United States)

    Borrás, E; Sánchez, P; Muñoz, A; Tortajada-Genaro, L A

    2011-08-05

    A reliable multi-residue method for determining gaseous and particulate phase pesticides in atmospheric samples has been developed. This method, based on full scan gas chromatography-mass spectrometry (GC-MS), allowed the proper determination of sixteen relevant pesticides, in a wide range of concentrations and without the influence of interferences. The pesticides were benfluralin, bitertanol, buprofezin, chlorfenvinphos, chlorpyrifos, chlorpyrifos-methyl, ethalfluralin, fenthion, lindane, malathion, methidathion, propachlor, propanil, pyriproxifen, tebuconazol and trifluralin. Comparisons of two types of sampling filters (quartz and glass fibre) and four types of solid-phase cartridges (XAD-2, XAD-4, Florisil and Orbo-49P) showed that the most suitable supports were glass fibre filter for particulate pesticides and XAD-2 and XAD-4 cartridges for gaseous pesticides (>95% recovery). Evaluations of elution solvents for ultrasonic-assisted extraction demonstrated that isooctane is better than ethylacetate, dichloromethane, methanol or a mixture of acetone:hexane (1:1). Recovery assays and the standard addition method were performed to validate the proposed methodology. Moreover, large simulator chamber experiments allowed the best study of the gas-particle partitioning of pesticides for testing the sampling efficiency for the validation of an analytical multiresidue method for pesticides in air. Satisfactory analytical parameters were obtained, with a repeatability of 5±1%, a reproducibility of 13±3% and detection limits of 0.05-0.18 pg m(-3) for the particulate phase and 26-88 pg m(-3) for the gaseous phase. Finally, the methodology was successfully applied to rural and agricultural samples in the Mediterranean area.

  2. Seasonal dynamics of coarse atmospheric particulate matter between 2.5 μm and 80 μm in Beijing and the impact of 2008 Olympic Games

    Science.gov (United States)

    Norra, Stefan; Yu, Yang; Dietze, Volker; Schleicher, Nina; Fricker, Mathieu; Kaminski, Uwe; Chen, Yuan; Stüben, Doris; Cen, Kuang

    2016-01-01

    Beijing is well known as a megacity facing severe atmospheric pollution problems. One very important kind of pollution is the high amount of particles in Beijing's atmosphere. Numerous studies investigated the dynamics of fine particles smaller 10 μm. Less information is available on the coarse particle fraction larger 10 μm, although geogenic dusts, which often are composed by those coarser particles, frequently affect the air quality in Beijing. Therefore, systematic sampling and analysis of size fractionated particulate matter between 2.5 and 80 μm was performed in Beijing from April 2005 till October 2009. Atmospheric particles were collected in the North-West of Beijing using a cost-effective passive sampling method called Sigma-2. Altogether, 200 weeks could be analysed and assessed. Concentrations and size distribution of atmospheric coarse particles were determined by automated microscopic single particle analysis. Seasonal variability of the total mass of different size fractions was identified as follows: spring > winter > autumn > summer. High concentrations of transparent mineral particles indicate the activity of geogenic sources in spring and winter time, due to asian dust events and resuspension of soil from local bare land during dry and windy periods. The percentage of opaque particle components differs seasonally with relatively high values in winter, confirming combustion of fossil fuels for heating purposes as a predominant pollution source in this season. The influence of meteorological conditions on concentrations and size distribution of atmospheric particulate matter between 2.5 and 80 μm is demonstrated for the whole sampling period. Lowest pollution by coarse aerosols occurred during the period of the 2008 Olympic Summer Games. A general trend of decreasing total coarse particle mass concentrations was observed. Due to frequently observed high total coarse particle mass concentrations of several 100 μg·m-³ it is strongly recommended

  3. Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing.

    Science.gov (United States)

    Xu, L Y; Xie, X D; Li, S

    2013-07-01

    This study combines the methods of observation statistics and remote sensing retrieval, using remote sensing information including the urban heat island (UHI) intensity index, the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), and the difference vegetation index (DVI) to analyze the correlation between the urban heat island effect and the spatial and temporal concentration distributions of atmospheric particulates in Beijing. The analysis establishes (1) a direct correlation between UHI and DVI; (2) an indirect correlation among UHI, NDWI and DVI; and (3) an indirect correlation among UHI, NDVI, and DVI. The results proved the existence of three correlation types with regional and seasonal effects and revealed an interesting correlation between UHI and DVI, that is, if UHI is below 0.1, then DVI increases with the increase in UHI, and vice versa. Also, DVI changes more with UHI in the two middle zones of Beijing.

  4. 大气颗粒物中重金属分布特征和来源的研究进展%Advances in the Study on Distribution Characteristics and Sources of Heavy Metals in Atmospheric Particulates LI

    Institute of Scientific and Technical Information of China (English)

    李万伟; 李晓红; 徐东群

    2011-01-01

    In recent years, more and more attention was paid to environmental air pollution caused by atmospheric particulate matters. The studies on atmospheric particulate matter concerned mainly in PM 10 and PM2.5, ultrafine particulate matter (PM0.1) have gradually aroused the attention of many researchers. The main research of atmospheric particulate matter focused on the detection concentrations at different time, different space, and different diameter, particle composition analysis,human health effects and the other aspects. In the present paper, the levels of heavy metals, characteristics of distribution, existing form and the sources identification of heavy metals in atmospheric particulate matter were reviewed, the current research results of heavy metals in particulate matter were summarized and the future prospects of research in this field were discussed also.%近年来,大气颗粒物引起的环境空气污染受到广泛的关注.颗粒物的研究内容主要集中在不同时间、空间和不同粒径颗粒物浓度的测定、成分分析和健康效应等方面.该文针对颗粒物中的重金属成分,从其含量水平、分布特征、赋存状态和来源分析上进行综述,总结目前对颗粒物中重金属的研究成果,并展望该领域研究方向.

  5. Atmospheric Dust in the Upper Colorado River Basin: Integrated Analysis of Digital Imagery, Total Suspended Particulate, and Meteorological Data

    Science.gov (United States)

    Urban, F. E.; Reynolds, R. L.; Neff, J. C.; Fernandez, D. P.; Reheis, M. C.; Goldstein, H.; Grote, E.; Landry, C.

    2012-12-01

    Improved measurement and observation of dust emission and deposition in the American west would advance understanding of (1) landscape conditions that promote or suppress dust emission, (2) dynamics of dryland and montane ecosystems, (3) premature melting of snow cover that provides critical water supplies, and (4) possible effects of dust on human health. Such understanding can be applied to issues of land management, water-resource management, as well as the safety and well-being of urban and rural inhabitants. We have recently expanded the scope of particulate measurement in the Upper Colorado River basin through the establishment of total-suspended-particulate (TSP) measurement stations located in Utah and Colorado with bi-weekly data (filter) collection, along with protocols for characterizing dust-on-snow (DOS) layers in Colorado mountains. A sub-network of high-resolution digital cameras has been co-located with several of the TSP stations, as well as at other strategic locations. These real-time regional dust-event detection cameras are internet-based and collect digital imagery every 6-15 minutes. Measurements of meteorological conditions to support these collections and observations are provided partly by CLIM-MET stations, four of which were deployed in 1998 in the Canyonlands (Utah) region. These stations provide continuous, near real-time records of the complex interaction of wind, precipitation, vegetation, as well as dust emission and deposition, in different land-use settings. The complementary datasets of dust measurement and observation enable tracking of individual regional dust events. As an example, the first DOS event of water year 2012 (Nov 5, 2011), as documented at Senator Beck Basin, near Silverton, Colorado, was also recorded by the camera at Island-in-the-Sky (200 km to the northwest), as well as in aeolian activity and wind data from the Dugout Ranch CLIM-MET station (170 km to the west-northwest). At these sites, strong winds and the

  6. A Study on the Relationship Among Visibility, Atmospheric Suspended Particulate Concentration, and Meteorological Conditions in Hong Kong

    Institute of Scientific and Technical Information of China (English)

    LEUNG Yin-kong; WU Man-chi; YEUNG King-kay

    2009-01-01

    By making use of the 2005 hourly data of visibility at Chek Lap Kok and suspended particulate (PM2.5) at Tung Chung, PM2.5 concentration and visibility (excluding cases with mist, fog, rain, or relative humidity,95%) are found to have a reciprocal relationship with correlation coefficient about 0.8. Besides, similar seasonal trends are exhibited in both the number of hours of reduced visibility (visibility below 8 km and excluding cases with mist, fog, rain, or relative humidity≥95%) and PM2.5 concentration, i.e., with higher value attained in winter and lower value in summer. Backward trajectory analysis using HYSPLIT indicates that this phenomenon is related to the source of air mass affecting Hong Kong. For continental trajectories, the average daily occurrence of reduced visibility and the daily mean PM2.5 concentration were much higher than the corresponding occurrence of reduced visibility and mean PM2.5 concentration for maritime trajectories. A case study on an event with a tropical cyclone approaching Hong Kong is included in this paper to demonstrate the significance of meteorological conditions in determining the visibility and PM2.5 concentration.

  7. Annual distribution of allergenic fungal spores in atmospheric particulate matter in the Eastern Mediterranean; a comparative study between ergosterol and quantitative PCR analysis

    Directory of Open Access Journals (Sweden)

    N. Lang-Yona

    2012-03-01

    Full Text Available Airborne fungal spores are an important fraction of atmospheric particulate matter and are major causative agents of allergenic and infectious diseases. Predicting the variability and species of allergy-causing fungal spores requires detailed and reliable methods for identification and quantification. There are diverse methods for their detection in the atmosphere and in the indoor environments; yet, it is important to optimize suitable methods for characterization of fungal spores in atmospheric samples. In this study we sampled and characterized total and specific airborne fungal spores from PM10 samples collected in Rehovot, Israel over an entire year. The total fungal spore concentrations vary throughout the year although the species variability was nearly the same. Seasonal equivalent spore concentrations analyzed by real-time quantitative-PCR-based methods were fall > winter > spring > summer. Reported concentrations based on ergosterol analysis for the same samples were and fall > spring > winter > summer. Correlation between the two analytical methods was found only for the spring season. These poor associations may be due to the per-spore ergosterol variations that arise from both varying production rates, as well as molecular degradation of ergosterol. While conversion of genome copies to spore concentration is not yet straightforward, the potential for improving this conversion and the ability of qPCR to identify groups of fungi or specific species makes this method preferable for environmental spore quantification. Identifying tools for establishing the relation between the presence of species and the actual ability to induce allergies is still needed in order to predict the effect on human health.

  8. Annual distribution of allergenic fungal spores in atmospheric particulate matter in the eastern mediterranean; a comparative study between ergosterol and quantitative PCR analysis

    Directory of Open Access Journals (Sweden)

    N. Lang-Yona

    2011-10-01

    Full Text Available Airborne fungal spores are an important fraction of atmospheric particulate matter and are major causative agents of allergenic and infectious diseases. Predicting the variability and species of allergy-causing fungal spores requires detailed and reliable methods for identification and quantification. There are diverse methods for their detection in the atmosphere and in the indoor environments; yet, it is important to optimize suitable methods for characterization of fungal spores in atmospheric samples. In this study we sampled and characterized total and specific airborne fungal spores from PM10 samples collected in Rohovot, Israel over an entire year. The total fungal spore concentrations vary throughout the year although the species variability was nearly the same. Seasonal equivalent spore concentrations analyzed by real-time quantitative-PCR-based methods were fall > winter > spring > summer. Reported concentrations based on ergosterol analysis for the same samples were and fall > spring > winter > summer. Correlation between the two analytical methods was found only for the spring season. These poor associations may be due to the per-spore ergosterol variations that arise from both varying production rates, as well as molecular degradation of ergosterol. While conversion of genome copies to spore concentration is not yet straightforward, the potential for improving this conversion and the ability of qPCR to identify groups of fungi or specific species makes this method preferable for environmental spore quantification. Identifying tools for establishing the relation between the presence of species and the actual ability to induce allergies is still needed in order to predict the effect on human health.

  9. Annual distribution of allergenic fungal spores in atmospheric particulate matter in the Eastern Mediterranean; a comparative study between ergosterol and quantitative PCR analysis

    Science.gov (United States)

    Lang-Yona, N.; Dannemiller, K.; Yamamoto, N.; Burshtein, N.; Peccia, J.; Yarden, O.; Rudich, Y.

    2012-03-01

    Airborne fungal spores are an important fraction of atmospheric particulate matter and are major causative agents of allergenic and infectious diseases. Predicting the variability and species of allergy-causing fungal spores requires detailed and reliable methods for identification and quantification. There are diverse methods for their detection in the atmosphere and in the indoor environments; yet, it is important to optimize suitable methods for characterization of fungal spores in atmospheric samples. In this study we sampled and characterized total and specific airborne fungal spores from PM10 samples collected in Rehovot, Israel over an entire year. The total fungal spore concentrations vary throughout the year although the species variability was nearly the same. Seasonal equivalent spore concentrations analyzed by real-time quantitative-PCR-based methods were fall > winter > spring > summer. Reported concentrations based on ergosterol analysis for the same samples were and fall > spring > winter > summer. Correlation between the two analytical methods was found only for the spring season. These poor associations may be due to the per-spore ergosterol variations that arise from both varying production rates, as well as molecular degradation of ergosterol. While conversion of genome copies to spore concentration is not yet straightforward, the potential for improving this conversion and the ability of qPCR to identify groups of fungi or specific species makes this method preferable for environmental spore quantification. Identifying tools for establishing the relation between the presence of species and the actual ability to induce allergies is still needed in order to predict the effect on human health.

  10. The application of carbon-14 analyses to the source apportionment of atmospheric carbonaceous particulate matter: a review.

    Science.gov (United States)

    Heal, Mathew R

    2014-01-01

    Organic carbon (OC) and elemental carbon (EC) together constitute a substantial proportion of airborne particulate matter (PM). Insight into the sources of this major contributor to PM is important for policies to mitigate the impact of PM on human health and climate change. In recent years measurement of the abundance of the radioisotope of carbon ((14)C) in samples of PM by accelerator mass spectrometry has been used to help quantify the relative contributions from sources of fossil carbon and contemporary carbon. This review provides an introduction to the different sources of carbon within PM and the role of (14)C measurements, a description of the preparation of PM samples and of the instrumentation used to quantify (14)C, and a summary of the results and source apportionment methods reported in published studies since 2004. All studies report a sizable fraction of the carbonaceous PM as of non-fossil origin. Even for PM collected in urban locations, the proportions of non-fossil carbon generally exceed 30%; typically the proportion in urban background locations is around 40-60% depending on the local influence of biomass burning. Where values have been measured directly, proportions of non-fossil carbon in EC are lower than in OC, reflecting the greater contribution of fossil-fuel combustion to EC and the generally small sources of contemporary EC. Detailed source apportionment studies point to important contributions from biogenic-derived secondary OC, consistent with other evidence of a ubiquitous presence of heavily oxidized background secondary OC. The review concludes with some comments on current issues and future prospects, including progress towards compound-class and individual-compound-specific (14)C analyses.

  11. Evaluation of Uncertainties in Measuring Particulate Matter Emission Factors from Atmospheric Fugitive Sources Using Optical Remote Sensing

    Science.gov (United States)

    Yuen, W.; Ma, Q.; Du, K.; Koloutsou-Vakakis, S.; Rood, M. J.

    2015-12-01

    Measurements of particulate matter (PM) emissions generated from fugitive sources are of interest in air pollution studies, since such emissions vary widely both spatially and temporally. This research focuses on determining the uncertainties in quantifying fugitive PM emission factors (EFs) generated from mobile vehicles using a vertical scanning micro-pulse lidar (MPL). The goal of this research is to identify the greatest sources of uncertainty of the applied lidar technique in determining fugitive PM EFs, and to recommend methods to reduce the uncertainties in this measurement. The MPL detects the PM plume generated by mobile fugitive sources that are carried downwind to the MPL's vertical scanning plane. Range-resolved MPL signals are measured, corrected, and converted to light extinction coefficients, through inversion of the lidar equation and calculation of the lidar ratio. In this research, both the near-end and far-end lidar equation inversion methods are considered. Range-resolved PM mass concentrations are then determined from the extinction coefficient measurements using the measured mass extinction efficiency (MEE) value, which is an intensive PM property. MEE is determined by collocated PM mass concentration and light extinction measurements, provided respectively by a DustTrak and an open-path laser transmissometer. These PM mass concentrations are then integrated with wind information, duration of plume event, and vehicle distance travelled to obtain fugitive PM EFs. To obtain the uncertainty of PM EFs, uncertainties in MPL signals, lidar ratio, MEE, and wind variation are considered. Error propagation method is applied to each of the above intermediate steps to aggregate uncertainty sources. Results include determination of uncertainties in each intermediate step, and comparison of uncertainties between the use of near-end and far-end lidar equation inversion methods.

  12. Biotransformation of polycyclic aromatic hydrocarbons in marine polychaetes

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Giessing, Anders; Rasmussen, Lene Juel

    2008-01-01

    Deposit-feeding polychaetes constitute the dominant macrofauna in marine environments that tend to be depositional centers for organic matter and contaminants. Polychaetes are known to accumulate polycyclic aromatic hydrocarbons (PAHs) from both particulate and dissolved phases but less is known...

  13. A preliminary characterization of the mutagenicity of atmospheric particulate matter collected during sugar cane harvesting using the Salmonella/microsome microsuspension assay.

    Science.gov (United States)

    de Aragão Umbuzeiro, Gisela; Franco, Alexandre; Magalhães, Dulce; de Castro, Francisco José Viana; Kummrow, Fábio; Rech, Célia Maria; Rothschild Franco de Carvalho, Lilian; de Castro Vasconcellos, Pérola

    2008-05-01

    During sugar cane harvesting season, which occurs from May to November of each year, the crops are burnt, cut, and transported to the mills. There are reports showing that mutagenic activity and PAH content increase during harvesting season in some areas of São Paulo State in comparison with nonharvesting periods. The objective of this work was to preliminarily characterize the mutagenic activity of the total organic extracts as well as corresponding organic fractions of airborne particulate matter (PM) collected twice from two cities, Araraquara (ARQ) and Piracicaba (PRB), during sugar cane harvesting season using the Salmonella/microsome microssuspension assay. One sample collected in São Paulo metropolitan area was also included. The mutagenicity of the total extracts ranged from 55 to 320 revertants per cubic meter without the addition of S9 and from not detected to 57 revertants per cubic meter in the presence of S9 in areas with sugar cane plantations. Of the three fractions analyzed, the most polar ones (nitro and oxy) were the most potent. A comparison of the response of TA98 with YG1041 and the increased potencies without S9 indicated that nitro compounds are causing the observed effect. More studies are necessary to verify the sources of the mutagenic activity such as burning of vegetal biomass and combustion of heavy duty vehicles used to transport the sugar cane to the mills. The Salmonella/microsome assay can be an important tool to monitor the atmosphere for mutagenicity during sugar cane harvesting season.

  14. Evaluation of polyurethane foam, polypropylene, quartz fiber, and cellulose substrates for multi-element analysis of atmospheric particulate matter by ICP-MS.

    Science.gov (United States)

    Upadhyay, Nabin; Majestic, Brian J; Prapaipong, Panjai; Herckes, Pierre

    2009-05-01

    Traditional methods for the analysis of trace metals require particulate matter (PM) collected on specific filter substrates. In this paper, methods for elemental analysis of PM collected on substrates commonly used for organic analysis in air quality studies are developed. Polyurethane foam (PUF), polypropylene (PP), and quartz fiber (QF) substrates were first digested in a mixture of HNO(3)/HCl/HF/H(2)O(2) using a microwave digestion system and then analyzed for elements by inductively coupled plasma mass spectrometry. Filter blanks and recoveries for standard reference materials (SRMs) on these substrates were compared with a cellulose (CL) substrate, more commonly used for trace metal analysis in PM. The results show concentrations of filter blanks in the order of QF > PUF > PP > CL with a high variability in PUF and PP blanks relative to QF. Percent recovery of most elements from the SRMs on all substrates are within +/-20% of certified or reference values. QF substrates showed consistent blanks with a reproducibility better than +/-10% for the majority of elements. Therefore, QF substrates were applied to ambient PM collected in a variety of environments from pristine to polluted. Concentrations of field blanks for > or = 18 of 31 elements analyzed on a small section of QF substrate are < or = 25% of the amounts present in samples for urban atmospheres. Results suggest that QF used in a high-volume sampler can be a suitable substrate to quantify trace elements, in addition to organic species and hence reduce logistics and costs in air pollution studies.

  15. Size distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in aerosol particle samples from the atmospheric environment of Delhi, India.

    Science.gov (United States)

    Gupta, Sandeep; Kumar, Krishan; Srivastava, Arun; Srivastava, Alok; Jain, V K

    2011-10-15

    Ambient aerosol particles were collected using a five-stage impactor at six different sites in Delhi. The impactor segregates the TSPM into five different sizes (viz. >10.9, 10.9-5.4, 5.4-1.6, 1.6-0.7, and 10.9+10.9 to 5.4+5.4 to 1.6μm) and fine (1.6 to 0.7+<0.7μm). It was observed that the dominant PAHs found were pyrene, benzo(a)pyrene, benzo(ghi)perylene and benzo(b)fluoranthene for both the coarse and fine fractions. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) has been carried out using principal component analysis method (PCA) in both coarse and fine size modes. The major sources identified in this study, responsible for the elevated concentration of PAHs in Delhi, are vehicular emission and coal combustion. Some contribution from biomass burning was also observed.

  16. Temporal variability of atmospheric particulate matter and chemical composition during a growing season at an agricultural site in northeastern China.

    Science.gov (United States)

    Chen, Weiwei; Tong, Daniel; Zhang, Shichun; Dan, Mo; Zhang, Xuelei; Zhao, Hongmei

    2015-12-01

    This study presents the observations of PM10 and PM2.5 concentrations at an agricultural site from April to October 2012 in Dehui city, China. Ambient air was sampled by filter-based samplers and online PM monitors. The filter samples were analyzed to determine the abundance of ionic/inorganic elements, organic carbon (OC) and elemental carbon (EC). The daily PM10 concentrations varied significantly over the monitoring period, with an average of 168±63 (in the range of 52-277)μg/m(3) during the land preparation/planting period (26 April-15 June), 85±65 (36-228)μg/m(3) during the growing season (16 June-25 September), and 207±88 (103-310)μg/m(3) during the harvest period (26 September-31 October). PM2.5 accounted for 44%, 56% and 66% of atmospheric PM10 during these periods, respectively. The PM10 diurnal variation showed a distinct peak from 16:00 to 21:00 (LST) during the growing and harvesting seasons, while a gradual increase throughout the daytime until 17:00 was observed during tilling season. Mineral dust elements (Al, Ca, Fe, and Mg) dominated the PM10 chemical composition during the tilling season; OC, NO3(-), SO4(2-) and NH4(+) during the growing season; and carbonaceous species (i.e., OC and EC) during the harvesting season. Our results indicate that the soil particles emitted by farm tillage and organic matter released from straw burning are the two most significant sources of PM10 emissions contributing to the recurring high pollution events in this region. Therefore, development of agricultural PM inventories from soil tillage and straw burning is prioritized to support air quality modeling.

  17. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters

    Directory of Open Access Journals (Sweden)

    Stéfani Novoa

    2017-01-01

    Full Text Available The accurate measurement of suspended particulate matter (SPM concentrations in coastal waters is of crucial importance for ecosystem studies, sediment transport monitoring, and assessment of anthropogenic impacts in the coastal ocean. Ocean color remote sensing is an efficient tool to monitor SPM spatio-temporal variability in coastal waters. However, near-shore satellite images are complex to correct for atmospheric effects due to the proximity of land and to the high level of reflectance caused by high SPM concentrations in the visible and near-infrared spectral regions. The water reflectance signal (ρw tends to saturate at short visible wavelengths when the SPM concentration increases. Using a comprehensive dataset of high-resolution satellite imagery and in situ SPM and water reflectance data, this study presents (i an assessment of existing atmospheric correction (AC algorithms developed for turbid coastal waters; and (ii a switching method that automatically selects the most sensitive SPM vs. ρw relationship, to avoid saturation effects when computing the SPM concentration. The approach is applied to satellite data acquired by three medium-high spatial resolution sensors (Landsat-8/Operational Land Imager, National Polar-Orbiting Partnership/Visible Infrared Imaging Radiometer Suite and Aqua/Moderate Resolution Imaging Spectrometer to map the SPM concentration in some of the most turbid areas of the European coastal ocean, namely the Gironde and Loire estuaries as well as Bourgneuf Bay on the French Atlantic coast. For all three sensors, AC methods based on the use of short-wave infrared (SWIR spectral bands were tested, and the consistency of the retrieved water reflectance was examined along transects from low- to high-turbidity waters. For OLI data, we also compared a SWIR-based AC (ACOLITE with a method based on multi-temporal analyses of atmospheric constituents (MACCS. For the selected scenes, the ACOLITE-MACCS difference was

  18. Changes in atmospheric concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls between the 1990s and 2010s in an Australian city and the role of bushfires as a source.

    Science.gov (United States)

    Wang, Xianyu; Thai, Phong K; Li, Yan; Li, Qingbo; Wainwright, David; Hawker, Darryl W; Mueller, Jochen F

    2016-06-01

    Over recent decades, efforts have been made to reduce human exposure to atmospheric pollutants including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) through emission control and abatement. Along with the potential changes in their concentrations resulting from these efforts, profiles of emission sources may have also changed over such extended timeframes. However relevant data are quite limited in the Southern Hemisphere. We revisited two sampling sites in an Australian city, where the concentration data in 1994/5 for atmospheric PAHs and PCBs were available. Monthly air samples from July 2013 to June 2014 at the two sites were collected and analysed for these compounds, using similar protocols to the original study. A prominent seasonal pattern was observed for PAHs with elevated concentrations in cooler months whereas PCB levels showed little seasonal variation. Compared to two decades ago, atmospheric concentrations of ∑13 PAHs (gaseous + particle-associated) in this city have decreased by approximately one order of magnitude and the apparent halving time (t1/2) was estimated as 6.2 ± 0.56 years. ∑6iPCBs concentrations (median value; gaseous + particle-associated) have decreased by 80% with an estimated t1/2 of 11 ± 2.9 years. These trends and values are similar to those reported for comparable sites in the Northern Hemisphere. To characterise emission source profiles, samples were also collected from a bushfire event and within a vehicular tunnel. Emissions from bushfires are suggested to be an important contributor to the current atmospheric concentrations of PAHs in this city. This contribution is more important in cooler months, i.e. June, July and August, and its importance may have increased over the last two decades.

  19. Emission of polycyclic aromatic hydrocarbons and lead during Chinese mid-autumn festival.

    Science.gov (United States)

    Kuo, Chung-Yih; Lee, Hong-Shen; Lai, Jeang-Hung

    2006-07-31

    The emission factors of total particulate polycyclic aromatic hydrocarbons (PAHs), Benzo(a)pyrene (BaP), BaP-equivalent doses (BaP(eq)) and Pb for burning three kinds of charcoal were investigated in this study: fast-lighting charcoal, Taiwanese, and Indonesian charcoal (the latter two of which are not fast-lighting). Compared to the burning of Taiwanese and Indonesian charcoal, the burning of fast-lighting charcoal can emit much larger amounts of total PAHs, BaP(eq) and Pb into the atmosphere. The emission factors of total PAHs, BaP and BaP(eq) for broiling meat were noticeably higher than those for broiling vegetables and non-fish seafood. When using Indonesian charcoal to broil meat, the total emission factors of particulate PAHs and BaP were about 15.7 and 0.39 mg/kg, respectively. The total amounts of particulate PAHs and Pb emitted from cookouts during Mid-Autumn Festival were 2881 and 120 g, respectively. Total PAHs and BaP(eq) in PM(10) aerosols on Mid-Autumn Festival nights increased about 1.6 and 1.5 times, respectively, higher than those on non-festival nights. The mean concentration of Pb on the nights of Mid-Autumn Festival increases to about 2.8 times that of non-festival nights.

  20. Quantification of elemental and organic carbon in atmospheric particulate matter using color space sensing-hue, saturation, and value (HSV) coordinates.

    Science.gov (United States)

    Olson, Michael R; Graham, Eric; Hamad, Samera; Uchupalanun, Pajean; Ramanathan, Nithya; Schauer, James J

    2016-04-01

    A fast and cost effective application of color sensing was used to quantify color coordinates of atmospheric particulate matter collected on filters to quantify elemental and organic carbon (EC/OC) loading. This is a unique and novel approach for estimating OC composition. The method used a colorimeter and digital photography to obtain XYZ color space values and mathematically transformed them to HSV cylindrical-coordinates; a quantification method was applied to estimate the NIOSH and IMPROVE (TOR) EC/OC loadings from a set of globally diverse PM samples. When applied to 315 samples collected at three US EPA Chemical Speciation Network (CSN) sampling sites, the HSV model proved to be a robust method for EC measurement with an R(2)=0.917 for predicted versus measured loading results and a CV(RMSE)=16.1%. The OC quantified from the same sample filters had an R(2)=0.671 and a CV(RMSE)=24.8% between the predicted and measured results. The method was applied to NIOSH EC/OC results from a set of samples from rural China, Bagdad, and the San Joaquin Valley, CA, and the EC and OC CV(RMSE) were 30.8% and 49.3%, respectively. Additionally, the method was applied to samples with color quantified by a digital photographic image (DPI) with EC results showing good agreement with a CV(RMSE) of 22.6%. OC concentrations were not captured as accurately with the DPI method, with a CV(RMSE) of 77.5%. The method's low analytical cost makes it a valuable tool for estimating EC/OC exposure in developing regions and for large scale monitoring campaigns.

  1. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): Toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources

    Science.gov (United States)

    Sagnotti, Leonardo; Macrı, Patrizia; Egli, Ramon; Mondino, Manlio

    2006-12-01

    Environmental problems linked to the concentration of atmospheric particulate matter with dimensions less than 10 μm (PM10) in urban settings have stimulated a variety of scientific researches. This study reports a systematic analysis of the magnetic properties of PM10 samples collected by six automatic stations installed for air quality monitoring through the Latium Region (Italy). We measured the low-field magnetic susceptibility of daily air filters collected during the period July 2004 to July 2005. For each station, we derived an empirical linear correlation linking magnetic susceptibility to the concentration of PM10 produced by local sources (i.e., in absence of significant inputs of exogenous dust). An experimental approach is suggested for estimating the percentage of nonmagnetic PM10 transported from natural far-sided sources (i.e., dust from North Africa and marine aerosols). Moreover, we carried out a variety of additional magnetic measurements to investigate the magnetic mineralogy of selected air filters spanning representative periods. The results indicate that the magnetic fraction of PM10 is composed by a mixture of low-coercivity, magnetite-like, ferrimagnetic particles with a wide spectrum of grain sizes, related to a variety of natural and anthropogenic sources. The natural component of PM10 has a characteristic magnetic signature that is indistinguishable from that of eolian dust. The anthropogenic PM10 fraction is mostly originated from circulating vehicles and is a mixture of prevailing fine superparamagnetic particles and subordinate large multidomain grains; the former are more directly related to exhaust, whereas the latter may be associated to abrasion of metallic parts.

  2. Atmospheric concentrations and air–soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing–Tianjin region, North China

    Science.gov (United States)

    Wang, Wentao; Simonich, Staci; Giri, Basant; Chang, Ying; Zhang, Yuguang; Jia, Yuling; Tao, Shu; Wang, Rong; Wang, Bin; Li, Wei; Cao, Jun; Lu, Xiaoxia

    2013-01-01

    Forty passive air samplers were deployed to study the occurrence of gas and particulate phase PAHs in remote, rural village and urban areas of Beijing–Tianjin region, North China for four seasons (spring, summer, fall and winter) from 2007 to 2008. The influence of emissions on the spatial distribution pattern of air PAH concentrations was addressed. In addition, the air–soil gas exchange of PAHs was studied using fugacity calculations. The median gaseous and particulate phase PAH concentrations were 222 ng/m3 and 114 ng/m3, respectively, with a median total PAH concentration of 349 ng/m3. Higher PAH concentrations were measured in winter than in other seasons. Air PAH concentrations measured at the rural villages and urban sites in the northern mountain region were significantly lower than those measured at sites in the southern plain during all seasons. However, there was no significant difference in PAH concentrations between the rural villages and urban sites in the northern and southern areas. This urban–rural PAH distribution pattern was related to the location of PAH emission sources and the population distribution. The location of PAH emission sources explained 56%–77% of the spatial variation in ambient air PAH concentrations. The annual median air–soil gas exchange flux of PAHs was 42.2 ng/m2/day from soil to air. Among the 15 PAHs measured, acenaphthylene (ACY) and acenaphthene (ACE) contributed to more than half of the total exchange flux. Furthermore, the air–soil gas exchange fluxes of PAHs at the urban sites were higher than those at the remote and rural sites. In summer, more gaseous PAHs volatilized from soil to air because of higher temperatures and increased rainfall. However, in winter, more gaseous PAHs deposited from air to soil due to higher PAH emissions and lower temperatures. The soil TOC concentration had no significant influence on the air–soil gas exchange of PAHs. PMID:21669328

  3. Bulky PAH-DNA induced by exposure of a co-culture model of human alveolar macrophages and embryonic epithelial cells to atmospheric particulate pollution; Adduits encombrants a l'ADN dans des cocultures de cellules pulmonaires humaines exposees a une pollution atmospherique particulaire

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Imane; Garcon, Guillaume; Billet, Sylvain; Shirali, Pirouz [Universite Lille Nord de France - Lille (France); Unite de Chimie Environnementale et Interactions sur le Vivant, MREI, Universite du Littoral Cote d' Opale, Dunkerque (France); Andre, Veronique; Le Goff, Jeremie; Sichel, Francois [GRECAN, Universite de Caen Basse-Normandie et centre Francois Baclesse, Caen (France); Roy Saint-Georges, Francoise; Mulliez, Philippe [Service de Pneumologie, Hopital Saint-Philibert, GHICL, Lille (France)

    2012-01-15

    Because of their deep penetration in human lungs, fine airborne particulate matter were described as mainly responsible for the deleterious effects of exposure to air pollution on health. Organic constituents are adsorbed on particles surface and, after inhalation, some (polycyclic aromatic hydrocarbons, PAHs) can be activated into reactive metabolites and can bind to DNA. The formation of bulky DNA adducts has been researched after exposure of mono-and co-cultures of alveolar macrophages (AM) and human embryonic human lung epithelial (L132), to fine air pollution particulate matter Air samples have been collected with cascade impactor and characterized: size distribution (92.15% < 2.5{mu}.m), specific surface area (1 m{sup 2}/g), inorganic (Fe, AI, Ca, Na, K, Mg, Pb, etc.) and organic compounds (PAHs, etc.). {sup 32}P post-labeling method was applied to detect bulky DNA adducts in AM and L132, in mono-and co-cultures, 72 h after their exposure to atmospheric particles at their Lethals and Effects concentrations or (LC or CE) to 50% (i.e. MA: EC{sub 50} = 74.63 {mu}g/mL and L132: LC-5-0 = 75.36 {mu}g/mL). Exposure to desorbed particles (MA: C1= 61.11 {mu}g/mL and L132 : C2 = 61.71 {mu}g/mL) and B[a]P (1 {mu}M) were included. Bulky PAH-DNA adducts were detected in AM in mono-culture after exposure to total particles (Pt), to B[a]P and desorbed particles (Pd). Whatever the exposure, no DNA adduct was detected in L132 in mono-culture. These results are coherent with the enzymatic activities of cytochrome P450 l Al in AM and L132. Exposure of co-culture to Pt, or Pd induced bulky adducts to DNA in AM but not in L132. Exposure to B[a]P alone has altered the DNA of AM and L132, in co-culture. Exposure to Pt is closer to the environmental conditions, but conferred an exposure to amounts of genotoxic agents compared to studies using organic extracts. The formation of bulky DNA adducts was nevertheless observed in AM exposed to Pt, in mono- or co-culture, indicating that

  4. Particulate pollution and stone deterioration

    OpenAIRE

    Kendall, Michaela

    1998-01-01

    The soiling and damage of building surfaces may be enhanced by particulate air pollution, reducing the aesthetic value and lifetimes of historic buildings and monuments. This thesis focuses on the deposition of atmospheric particulate material to building surfaces and identifies potential sources of this material. It also identifies environmental factors influencing two deterioration effects: surface soiling and black crust growth. Two soiling models have been compared to assess their effecti...

  5. Characterization of Fine Airborne Particulate Collected in Tokyo and Major Atmospheric Emission Sources by Using Single Particle Measurement of SEM-EDX

    Science.gov (United States)

    Sato, K.; Iijima, A.; Furuta, N.

    2008-12-01

    In our long-term monitoring of size-classified Airborne Particulate Matter (APM) in Tokyo since 1995, it had been demonstrated that toxic elements such as As, Se, Cd, Sb and Pb were extremely enriched in fine APM (PM2.5). However, in that study, total sampled APM on a filter was digested with acids, and thus only averaged elemental composition in fine APM could be obtained. One of the effective methods to determine the origin of APM is single particle measurement by using SEM-EDX. By using characteristic shapes observed by SEM and marker elements contained in APM measured by EDX, detailed information for source identification can be obtained. In this study, fine APM (PM2.5) was collected at various locations such as roadside, diesel vehicle exhaust, a heavy oil combustion plant and a waste incineration plant as well as ambient atmosphere in Tokyo, and characteristics of fine particles that will be utilized for identification of emission sources are elucidated. Fine particles can be classified into 3 main characteristic shape groups; edge-shaped, cotton-like and spherical. Shape of particles collected in a heavy oil combustion plant and a waste incineration plant was mostly spherical, and these particles may be associated with thermal process. Diesel exhaust particles were predominantly cotton-like which may consist of coagulated nano-sized particles. Most of brake abrasion dusts were edge-shaped, which may be associated with mechanical abrasion of brake pads. In the elemental analysis of fine particles, high concentrations of Sb, Cu, Ti and Ba were detected in brake abrasion dusts. Since these elements are major constituents of brake pads, these can be used for marker elements of brake abrasion dusts. High concentration of C was detected in diesel exhaust particles and oil combustion particles, and thus C can be used for marker elements of their origin. Furthermore, high concentrations of C, Ca and K were detected in fly ash from a waste incineration plant, which

  6. Investigation of time-resolved atmospheric conditions and indoor/outdoor particulate matter concentrations in homes with gas and biomass cook stoves in Nogales, Sonora, Mexico.

    Science.gov (United States)

    Holmes, Heather A; Pardyjak, Eric R

    2014-07-01

    This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States-Mexico border During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14-30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 microg m(-3) and biomass stoves 163 to 504 microg m(-1). Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 microg m(-3)). The former is evident in the median and range of daytime PM values (median PM3: 250 microg m(-3), maximum: 9411 microg m(-3)), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 microg m(-3), maximum: 10,846 microg m(-3)). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 microg m(-3)). Implications: Regulatory air quality standards are based on outdoor

  7. Atmospheric Particulate Matter PM2.5 and Its Sources%大气颗粒物PM2.5及其源解析

    Institute of Scientific and Technical Information of China (English)

    杨新兴; 尉鹏; 冯丽华

    2013-01-01

      大气颗粒物的来源分为两类:一类是自然源;另一类是人为源。自然源主要包括:岩石土壤风化、森林大火、火山爆发、流星雨、沙尘暴、海盐粒子、植物花粉、真菌孢子、细菌体,以及各种有机物质的自燃过程等。人为源主要包括:汽车尾气排放、摩托车尾气排放、火车机车排放、飞机尾气排放、轮船排放、工业窑炉排放、民用炉灶排放、农用拖拉机排放、工业粉尘、交通道路扬尘、建筑工地扬尘、裸露地面扬尘、烹饪油烟、街头无序烧烤、垃圾焚烧、农田秸秆焚烧、燃放烟花爆竹、寺庙香火和烟民抽烟等。在大气颗粒物中,细颗粒物主要来自化石燃料和生物质的燃烧过程。专家们认为细颗粒物是导致北京地区雾霾灾害天气频繁出现的最主要因素。汽车尾气排放大量的空气污染物。有车族对北京市严重的大气污染和雾霾灾害的形成,负有首要责任。有车族,少开车,或者不开车,是解决目前北京严重的大气污染,阻止雾霾灾害天气频繁出现的根本出路。%The sources of the particulates in the atmosphere may be put in two kinds: One of which is called natural source, and another is called anthropogenic source. The major natural sources include forest fire, volcanic eruption, sand and dust storm, flying dust on the earth’s surface, sea salt particles, plant pollens, plant spores, germ bodies, and self-burning process of organic substance in the natural world, etc. The major anthropogenic sources include: automobile exhaust, motor exhaust, train engine, airplane exhaust, steamboat exhaust, industrial boilers, Stoves and furnaces of civil uses, tractor exhaust, industrial dust, dust from highways, dust from construction sites, dust from uncovered lands, oil and smoke from cooking, barbecue on the streets, refuse incineration, burn of agricultural straw, set off firecrackers, burning

  8. Sulfur dioxide and particulates as atmospheric pollution vectors. El dioxide de Azufre la materia particulada como vectores de la contaminacion atmosferica

    Energy Technology Data Exchange (ETDEWEB)

    Cabeza, J.M.

    1993-01-01

    Samples taken from 1 st January 1990 till 31st December 1991 at different locations in Spain are presented. From these results and using priority lists and indexes suggested in the literature, the main conclusion is that sulfur dioxide and particulates are not a danger for the public health in the city of Aviles (one of the most contaminated cities in Spain). (Author)

  9. Particulate matter dynamics

    CERN Document Server

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01

    A substantial fraction of the particulate matter released into the atmosphere by industrial or natural processes corresponds to particles whose aerodynamic diameters are greater than 50 mm. It has been shown that, for these particles, the classical description of Gaussian plume diffusion processes, is inadequate to describe the transport and deposition. In this paper we present new results concerning the dispersion of coarse particulate matter. The simulations are done with our own code that uses the Bulirsch Stoer numerical integrator to calculate threedimensional trajectories of particles released into the environment under very general conditions. Turbulent processes are simulated by the Langevin equation and weather conditions are modeled after stable (Monin-Obukhov length L> 0) and unstable conditions (L <0). We present several case studies based on Monte Carlo simulations and discusses the effect of weather on the final deposition of these particles.

  10. Study of the chemical elements and polycyclic aromatic hydrocarbons in atmospheric particles of PM 10 and PM 2.5 in the urban and rural areas of South Brazil

    Science.gov (United States)

    Dallarosa, Juliana; Calesso Teixeira, Elba; Meira, Lindolfo; Wiegand, Flavio

    2008-07-01

    The purpose of this work is to study the chemical elements and PAHs associated with atmospheric particulate in samples of PM 10 collected in the Metropolitan Area of Porto Alegre—MAPA, Rio Grande do Sul, Brazil. In addition, to study the chemical elements associated with particles of different fractions of PM 10-2.5 and PM 2.5 using dichotomous sampling, in urban (MAPA) and rural areas. Two types of samplers were used: HV PM 10 and Dichotomous (PM 10-2.5 and PM 2.5). Samples were collected during 2002 and 2005. The concentration of the elements Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn was determined by PIXE (Particle-Induced X-ray Emission), while the concentrations of 16 major PAHs were determined according to EPA with a gas chromatograph coupled to a mass spectrometer (GS/MS). Results showed that elements of anthropogenic origin (V, Zn, Cr, Ni, Cu, and S) were mainly associated with the fraction PM 2.5, while the soil dust (Si, Al, Ti and Fe) were found mainly on fraction PM 10-2.5. In samples of PM 10, the most frequent PAHs found were Bgp, Flt, BaA, Chr, B(b + k)F, BaP and Dba. The types of emission and their association with the atmospheric parameters were studied applying the statistical analysis of the principal component method. The main sources found in the area under study were vehicles, industries (steel mills and a coal-fired power station), dust, sea breeze, and burning.

  11. Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China

    Science.gov (United States)

    Teich, Monique; van Pinxteren, Dominik; Wang, Michael; Kecorius, Simonas; Wang, Zhibin; Müller, Thomas; Močnik, Griša; Herrmann, Hartmut

    2017-02-01

    The relative contributions of eight nitrated aromatic compounds (NACs: nitrophenols and nitrated salicylic acids) to the light absorption of aqueous particle extracts and particulate brown carbon were determined from aerosol particle samples collected in Germany and China.High-volume filter samples were collected during six campaigns, performed at five locations in two seasons: (I) two campaigns with strong influence of biomass-burning (BB) aerosol at the TROPOS institute (winter, 2014, urban background, Leipzig, Germany) and the Melpitz research site (winter, 2014, rural background); (II) two campaigns with strong influence from biogenic emissions at Melpitz (summer, 2014) and the forest site Waldstein (summer, 2014, Fichtelgebirge, Germany); and (III) two CAREBeijing-NCP campaigns at Xianghe (summer, 2013, anthropogenic polluted background) and Wangdu (summer, 2014, anthropogenic polluted background with a distinct BB episode), both in the North China Plain. The filter samples were analyzed for NAC concentrations and the light absorption of aqueous filter extracts was determined. Light absorption properties of particulate brown carbon were derived from a seven-wavelength aethalometer during the campaigns at TROPOS (winter) and Waldstein (summer). The light absorption of the aqueous filter extracts was found to be pH dependent, with larger values at higher pH. In general, the aqueous light absorption coefficient (Abs370) ranged from 0.21 to 21.8 Mm-1 under acidic conditions and 0.63 to 27.2 Mm-1 under alkaline conditions, over all campaigns. The observed mass absorption efficiency (MAE370) was in a range of 0.10-1.79 m2 g-1 and 0.24-2.57 m2 g-1 for acidic and alkaline conditions, respectively. For MAE370 and Abs370, the observed values were higher in winter than in summer, in agreement with other studies. The lowest MAE was observed for the Waldstein (summer) campaign (average of 0.17 ± 0.03 m2 g-1), indicating that freshly emitted biogenic aerosols are only

  12. Atmospheric pollution in Lisbon urban atmosphere

    Science.gov (United States)

    Oliveira, C.

    2009-04-01

    Lisbon is the capital city of Portugal with about 565,000 residents in 2008 and a population density of 6,600 inhabitants per square kilometre. Like several other major metropolis, the town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants, a quarter of the overall Portuguese population. Besides their local residents, it is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams, with important consequences on air pollution levels and obvious negative impacts on human health. Airborne particulate matter limit values are frequently exceeded, making urgent the existence of consistent programs to monitor and help taking measures to control them. Within the Portuguese project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere) financed by the Portuguese Science Foundation ("Fundação para a Ciência e a Tecnologia"), an aerosol and vapour phase sampling program is being implemented in the city of Lisbon at two selected contrasting zones, namely a typically busy area with intense road traffic and frequent exceedences of the particulate matter standard for the maximum allowable concentration, and a residential quieter area, thus with a cleaner atmosphere characterised as an urban background site. An one month-long sampling campaign was performed during the summer of 2008, where particulate matter was collected in two fractions (coarse 2.5µm

  13. Investigation of the ionization mechanism of polycyclic aromatic hydrocarbons using an ethanol/bromobenzene/chlorobenzene/anisole mixture as a dopant in liquid chromatography/atmospheric pressure photoionization mass spectrometry

    KAUST Repository

    Amad, Maan H.

    2012-09-23

    RATIONALE An ethanol-based multicomponent dopant consisting of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v/v/v) has been used as a dopant for atmospheric pressure photoionization (APPI) of polycyclic aromatic hydrocarbons (PAHs). In this study the mechanism of ionization of PAHs assisted by the ethanol-based multicomponent dopant is investigated. METHODS The reactant background cluster ions of the ethanol-based multicomponent dopant observed in the positive ion APPI were studied. These studies were performed to investigate the mechanism behind the generation of a molecular radical cation (M +•) for PAHs by APPI assisted by the ethanol-based multicomponent dopant. Full scan and MS/MS analyses were conducted using an LTQ Orbitrap mass spectrometer. The effect of acidification of the mobile phase on the dopant cluster ion formation was also investigated. RESULTS With the ethanol-based multicomponent dopant, a single type of molecular radical cation M +• was observed for the studied PAHs. The characteristic ion signal of the multicomponent dopant mixture consisted of mainly anisole photoions at m/z 108.05697 and its adduct ions at m/z 124.05188 and 164.07061. The anisole ion response at m/z 108.05697 was stable in the presence of acetonitrile, methanol, water and 0.1% formic acid mobile phase composition. CONCLUSIONS The abundance formation of anisole photoions shows the universality of this multicomponent dopant in ionizing compounds with ionization energy ranging from 7.1-8.2 eV. Since the ionization energy of anisole is 8.2 eV and is lower than those of chlorobenzene (9.07 eV) and bromobenzene (9.0 eV), the mechanism of formation of anisole photoions even with its very minute amounts was not only governed by its photoionization by the krypton lamp photon energy (10.0 eV and 10.6 eV), but also by charge transfer from bromobenzene and chlorobenzene radical cations. PAH molecules were mainly ionized by charge transfer reaction from

  14. Atmospheric black carbon deposition and characterization of biomass burning tracers in a northern temperate forest

    Science.gov (United States)

    Santos, F.; Fraser, M. P.; Bird, J. A.

    2014-10-01

    Aerosol black carbon (BC) is considered the second largest contributor to global warming after CO2, and is known to increase the atmosphere's temperature, decrease the albedo in snow/ice, and influence the properties and distribution of clouds. BC is thought to have a long mean residence time in soils, and its apparent stability may represent a significant stable sink for atmospheric CO2. Despite recent efforts to quantify BC in the environment, the quantification of BC deposition rates from the atmosphere to terrestrial ecosystems remains scarse. To better understand the contribution of atmospheric BC inputs to soils via dry deposition and its dominant emission sources, atmospheric fine particle (PM2.5) were collected at the University of Michigan Biological Station from July to September in 2010 and 2011. PM2.5 samples were analyzed for organic C, BC, and molecular markers including particulate sugars, carboxylic acids, n-alkanes, polycyclic aromatic hydrocarbons, and cholestane. Average atmospheric BC concentrations in northern Michigan were 0.048 ± 0.06 μg m-3 in summer 2010, and 0.049 ± 0.064 μg m-3 in summer 2011. Based on atmospheric concentrations, particulate deposition calculations, and documented soil BC, we conclude that atmospheric deposition is unlikely to comprise a significant input pathway for BC in northern forest ecosystem. The major organic tracers identified in fine particulates (e.g. levoglucosan and docosanoic acid) suggest that ambient PM2.5 concentrations were mainly influenced by biomass burning and epicuticular plant waxes. These results provide baseline data needed for future assessments of atmospheric BC in rural temperate forests.

  15. Retrieval of the optical depth and vertical distribution of particulate scatterers in the atmosphere using O2 A- and B-band SCIAMACHY observations over Kanpur: a case study

    Directory of Open Access Journals (Sweden)

    U. Platt

    2012-05-01

    Full Text Available Due to the well-defined vertical profile of O2 in the atmosphere, the strong A-band (757–774 nm has long been used to estimate vertical distributions of aerosol/cloud from space. We extend this approach to include part of the O2 B-band (684–688 nm as well. SCIAMACHY onboard ENVISAT is the first instrument to provide spectral data at moderate resolution (0.2–1.5 nm in the UV/VIS/NIR including both the O2 A- and B-bands. Using SCIAMACHY specifications, we make combined use of these bands in an optimal estimation algorithm. Theoretical studies show that our algorithm is applicable both over bright and dark surfaces for the retrieval of a lognormal approximation of the vertical profile of particulate matter, in addition to its optical thickness. Synthetic studies and information content analyses prove that such a combined use provides additional information on the vertical distribution of atmospheric scatterers, attributable to differences in the absorption strengths of the two bands and their underlying surface albedos. Due to the high computational cost of the retrieval, we restrict application to real data to a case study over Kanpur through the year 2003. Comparison with AERONET data shows a commonly observed seasonal pattern of haziness, manifesting a correlation coefficient of r = 0.92 for non-monsoon monthly mean AOTs. The retrieved particulate optical thickness is found to be anti-correlated with the relative contrast of the Lambertian equivalent reflectivity (LER at 682 nm and 755 nm by a coefficient of 0.788, confirming the hypothesis made in Sanghavi et al. (2010. Our case study demonstrates a stable physics-based retrieval of particulate matter using only SCIAMACHY data. The feasibility of our approach is enhanced by the information provided by measurements around the O2 B-band in addition to the A-band. Nonetheless, operational application to SCIAMACHY data remains challenged by radiometric uncertainties, yielding simultaneous

  16. Particulate hydroxy-PAH emissions from a residential wood log stove using different fuels and burning conditions

    Science.gov (United States)

    Avagyan, Rozanna; Nyström, Robin; Lindgren, Robert; Boman, Christoffer; Westerholm, Roger

    2016-09-01

    Hydroxylated polycyclic aromatic hydrocarbons are oxidation products of polycyclic aromatic hydrocarbons, but have not been studied as extensively as polycyclic aromatic hydrocarbons. Several studies have however shown that hydroxylated polycyclic aromatic hydrocarbons have toxic and carcinogenic properties. They have been detected in air samples in semi urban areas and combustion is assumed to be the primary source of those compounds. To better understand the formation and occurrence of particulate hydroxylated polycyclic aromatic hydrocarbons from residential wood log stove combustion, 9 hydroxylated polycyclic aromatic hydrocarbons and 2 hydroxy biphenyls were quantified in particles generated from four different types of wood logs (birch, spruce, pine, aspen) and two different combustion conditions (nominal and high burn rate). A previously developed method utilizing liquid chromatography - photo ionization tandem mass spectrometry and pressurized liquid extraction was used. Polycyclic aromatic hydrocarbons were analyzed along with hydroxylated polycyclic aromatic hydrocarbons. The hydroxylated polycyclic aromatic hydrocarbon emissions varied significantly across different wood types and burning conditions; the highest emissions for nominal burn rate were from spruce and for high burn rate from pine burning. Emissions from nominal burn rate corresponded on average to 15% of the emissions from high burn rate, with average emissions of 218 μg/MJfuel and 32.5 μg/MJfuel for high burn rate and nominal burn rate, respectively. Emissions of the measured hydroxylated polycyclic aromatic hydrocarbons corresponded on average to 28% of polycyclic aromatic hydrocarbons emissions. This study shows that wood combustion is a large emission source of hydroxylated polycyclic aromatic hydrocarbons and that not only combustion conditions, but also wood type influences the emissions of hydroxylated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons. There are

  17. Thermal Desorption-Gas Chromatography or Gas Chromatograph-Mass Spectrometry for Analysis of Semi-Volatile Compounds on Atmospheric Particulate Matters%热解析-气相色谱或气相色谱-质谱法分析大气可吸入颗粒物中的半挥发性有机化合物

    Institute of Scientific and Technical Information of China (English)

    孟虎; 赵景红; 段春凤; 郝亮; 关亚风

    2014-01-01

    A thermal desorption ( TD) device was developed and coupled to gas chromatography ( GC) or gas chromatography-mass spectrometry ( GC-MS ) for the qualitative and quantitative analysis of semi-volatile organic compounds on atmospheric particulate matters ( PM ) . The TD was operated by direct heating and placed on the GC injector, leading to high heating rate and easy transfer of analytes to GC without focusing of analytes by cold trap. For establishing the TD-GC method, the materials used for supporting PM samples, temperature and time of thermal desorption, and types of sample injection were investigated for detection of sixteen polycyclic aromatic hydrocarbons ( PAHs) and nine n-alkanes. The limits of detection of the proposed TD-GC method were in the range of 0. 014-0. 093 ng for PAHs, and 0. 016-0. 026 ng for n-alkanes, respectively, with the correlation coefficients of correlation above 0. 9975. The TD-GC method was applied to the determination of trace PAHs and n-alkanes on PM10 samples from three cities. The recoveries were in the range of 95%-135% ( PAHs) and 95%-115% ( n-alkanes) , respectively. Finally, the TD was coupled to GC-MS for comparison of the contents of PAHs and n-alkanes on PMx with different particulate size ( x=10 , 5, 2, 1, 0. 5, 0. 25, 0. 1).%研制了一种热解析装置,并与气相色谱或气相色谱-质谱联用,定性定量分析了大气可吸入颗粒物中的半挥发性有机物。装置为直热式加热,升温速率快;直接安装在色谱进样器上方,无需冷阱聚焦。将热解析装置与气相色谱联用,优化了样品承载体材质、热解析条件和进样模式,并用于16种多环芳烃和9种正构烷烃的检测。结果表明,热解析-气相色谱方法对多环芳烃和正构烷烃的检出限分别为0.014~0.093 ng和0.016~0.026 ng,线性相关系数大于0.9975;用于3个城市PM10中的痕量多环芳烃和正构烷烃的定量测定,回收率分别在95%~135%(多环芳烃)和95%~115%(正构烷

  18. Phototransformation of Polycyclic Aromatic Hydrocarbons (PAHs) on a Non-Semi Conductive Surface Such as Silica

    Energy Technology Data Exchange (ETDEWEB)

    Dabestani, R., Sigman, M.E.

    1997-09-16

    Polycyclic aromatic hydrocarbons (PAH), by products of fossil fuel production and consumption, constitute a large class of environmental pollutants. These toxic and sometimes carcinogenic compounds are also found in coal tar and fly ash. When released into the air, they can be sorbed onto particulates present in the atmosphere where they find their way into soil and ground water upon being washed by rain. During their residence time in the environment, PAHs will be exposed to solar radiation and may undergo phototransformation to other products. Thus, light induced photodegradation of PM`s at the solid/air interfaces can play a significant role in their depletion. Light-induced processes have been claimed to enhance transformation of these PM`s in the environment. However, detailed studies on the nature and identities of photoproducts formed during the transformation of these compounds on solid surfaces is scarce. Since insulators such as silica, alumina,silicoaluminates and calcium carbonate are believed to constitute up 20-30% of inorganic particulates present in the atmosphere, they serve as environmentally relevant model surfaces to study the photophysical and photochemical behavior of PM`s. Although photochemistry of organic compounds adsorbed on solid surfaces has received much attention in recent years, the specific properties of the interface which influence photoprocesses and the exact mechanism of interaction between a surface and a substrate are often not well understood. We have investigated the photochemistry of many PAHs including eight that are on Environmental Protection Agency`s (EPA) sixteen priority pollutant PAH list shown in Table 1 at silica/air interface.

  19. Polycyclic aromatic hydrocarbons and their nitrated derivatives associated with PM10 from Kraków city during heating season

    Directory of Open Access Journals (Sweden)

    Styszko Katarzyna

    2016-01-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs, their nitro-derivatives (NPAHs and hundreds of other organic compounds are present in ambient air in gas and particulate form. PAHs and NPAHs originate from diesel and gasoline exhaust emission and other combustion sources. NPAHs are also formed through the nitration of parent PAHs in the atmosphere. Concentrations of PAHs and NPAHs in the particulate matter fraction PM10 collected in the centre of Kraków (27.01.2014 – 17.02.2014 were investigated. The thirteen PAHs and four NPAHs: fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, benzo[a]pyrene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene, benzo[g,h,i]perylene, dibenz[a,h]anthracene, 2-nitrofluorene, 9-nitroanthracene, 3-nitrofluoranthene and 1-nitropyrene were extracted from particulate matter and analysed applying the GC/MS technique. Depending on the compounds the relative recoveries ranged from 72 to 94%. The concentrations of PM10 in the study period ranged between 23.5 and 153.8 μg·m-3. The average concentrations of PAHs and NPAHs ranged from 26.6 to 276.4 ng·m-3 and from 0.6 to 9.1 ng·m-3, respectively. The highest concentrations were observed for benzo[a]pyrene, benzo[a]anthracene, pyrene and fluoranthene. The average concentration of benzo[a]pyrene (BaP, which is a marker for the particle-bound atmospheric PAHs, was 9.5 ng·m-3. The concentrations of 3-nitrofluoranthene and 1-nitropyrene were below the quantification limits of the method (< MQL.

  20. 40 CFR Appendix L to Part 50 - Reference Method for the Determination of Fine Particulate Matter as PM2.5 in the Atmosphere

    Science.gov (United States)

    2010-07-01

    ... increased pressure drop across the loaded filter. This upper limit cannot be specified precisely because it... Maximum pressure drop (clean filter). 30 cm H2O column @ 16.67 L/min clean air flow. 6.7 Maximum moisture... any atmospheric conditions specified, under section 7.4.7 of this appendix, at a filter pressure...

  1. Polarization signatures of airborne particulates

    Science.gov (United States)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  2. Polycyclic aromatic hydrocarbons in soils of Beijing and Tianjin region: vertical distribution, correlation with TOC and transport mechanism

    Institute of Scientific and Technical Information of China (English)

    HE Fengpeng; ZHANG Zhihuan; WAN Yunyang; LU Song; WANG Liang; BU Qingwei

    2009-01-01

    Concentrations and compositions of 20 polycyclic aromatic hydrocarbons (PAHs) or heterocyclic aromatic hydrocarbons (HAHs) were investigated in 16 soil profiles of Beijing and Tianjin region. Transport of high molecular weight PAHs (HMWPAHs) and correlation between total organic carbon (TOC) and the concentrations were also discussed. The results indicated that highly contaminated sites were located at urban or wastewater irrigation areas and pollutants mainly accumulated in topsoil (<40 cm), with a sharp content decrease at the vertical boundary of 30--40 cm. Total PAHs/HAHs concentrations in soils from Tianjin were markedly greater than those from Beijing. Even the contents at bottoms of soil profiles in Tianjin were higher than those in topsoils of Beijing soil profile. HMWPAHs (4-6 rings PAHs) dominated the PAH profiles, exhibiting a uniform distribution of pyrogenic origin between topsoils and deep layers. Furthermore, the percentages of HMWPAHs remained relative constant with the depth of soil profiles, which were consistent with the distribution of particulate matter-associated PAHs in the local atmospheric environments. Therefore, HMWPAHs transport with particulates might be the predominant source found in soil profiles.

  3. Relationship between polycyclic aromatic hydrocarbons (PAHs) and particle size in dated core sediments in Lake Lianhuan, Northeast China.

    Science.gov (United States)

    Sun, Li; Zang, Shuying

    2013-09-01

    Atmospheric particle associated with pyrogenic polycyclic aromatic hydrocarbons (PAHs) poses serious threats to human health by inhalation exposure, especially in semiarid areas. Hence, the distributions of PAHs and particle size in two core sediments collected from Lake Lianhuan, Northeast China were studied. The sediments were dated radiometrically, and particle size distribution and PAH concentration were evaluated and potential human health risk was assessed. From 1980 to 2007, the dominant PAHs in the two cores were 2- and 3-ring PAHs, and the concentrations of 3-6 ring PAHs gradually increased from the early 1990s. Diagnostic ratios indicated that pyrogenic PAHs were the main sources of PAHs which changed over time from combustions of wood and coal to liquid fossil fuel sources. Fine particles (PAHs (especially carcinogenic 5-6 ring PAHs) and 10-35 μm particulate fractions indicated that eolian particles played an important role in adsorbing pyrogenic PAHs. Petroleum source of PAHs was only identified during the 1980s in one core sediments, in which positive correlations between 2-ring PAHs and particulate fractions of >125 μm were found. Future research should focus on the seven carcinogenic pyrogenic PAHs due to a rapidly increasing trend since 1995 based on the assessment of toxic equivalency factors.

  4. Microscopic and chemical studies of metal particulates in tree bark and attic dust: evidence for historical atmospheric smelter emissions, Humberside, UK.

    Science.gov (United States)

    Tye, A M; Hodgkinson, E S; Rawlins, B G

    2006-09-01

    Tree barks and attic dusts were examined as historical archives of smelter emissions, with the aim of elucidating the pathways of pollution associated with a plume of Sn and Pb contamination in top soils, found close to the former Capper Pass smelter, Humberside, UK. Samples were collected from three villages within the area of the contamination plume. Scanning electron microscopy (SEM) and bulk chemical analyses were used to assess particle type, number and deposition patterns. SEM analysis of dusts and bark revealed that Sn and Pb particles were present in samples from all three villages along with copper, zinc and iron particles. These were almost entirely dusts demonstrated that concentrations of Sn, Pb, Cu, As, Sb and Cd diminished with increasing distance from the source. Strong positive correlations were found between Sn and Pb, As, Sb and Cd in the attic dusts. Enrichment factors (EF) were calculated for these trace elements based on topsoil element concentrations obtained from the soil survey of the study area. Decreases in these trace element concentrations and EF values with distance away from the smelter are consistent with trends found in the soil survey for Sn and Pb and are typical of deposition patterns around smelter stacks. The study demonstrates that tree bark and attic dusts can be effective archives of metal particulates deposited from large static emission sources.

  5. Urinary metabolites of polycyclic aromatic hydrocarbons in Saudi Arabian schoolchildren in relation to sources of exposure.

    Science.gov (United States)

    Alghamdi, Mansour A; Alam, Mohammed S; Stark, Christopher; Mohammed, Nuredin; Harrison, Roy M; Shamy, Magdy; Khoder, Mamdouh I; Shabbaj, Ibrahim I; Göen, Thomas

    2015-07-01

    Polycyclic aromatic hydrocarbons contain a number of known carcinogenic compounds, and urinary biomarkers have been widely used as a measure of exposure but quantitative relationships with exposure variables have proved elusive. This study aimed to quantify the relationship between exposures to phenanthrene and pyrene from atmospheric and dietary sources with the excretion of 1-hydroxypyrene and hydroxyphenanthrenes in urine as biomarkers of exposure. The study population consisted of 204 male schoolchildren attending three schools in different parts of Jeddah, Saudi Arabia who provided urine samples on each of three consecutive days. Outdoor air measurements of polycyclic aromatic hydrocarbons were made at the schools and the children provided information on diet, exposure to environmental tobacco smoke and incense, and various lifestyle factors through a questionnaire. Mixed models with random effects for subjects nested within site were fitted in order to examine the relationship between exposure variables and urinary PAH metabolites. A unit increase (1 ng m(-3)) in ambient pyrene (particulate plus gaseous phase) was associated with a 3.5% (95% CI: 1.01%, 5.13%) increase in urinary 1-hydroxypyrene concentration. A unit increase in ambient phenanthrene was associated with a 1.01% (95% CI: 0.03%, 2.02%) increase in total hydroxyphenanthrene concentrations. Consumption of chargrilled food increased the 1-hydroxypyrene and hydroxyphenanthrene concentrations by 24% (95% CI: 11%, 37%) and 17% (95% CI: 8%, 26%) respectively. We did not find evidence of association for environmental tobacco smoke exposure or incense burning. It is concluded that both respiratory exposure and consumption of chargrilled food are considerable sources of PAH exposure in this population as reflected by concentrations of urinary biomarkers.

  6. Analysis of Glyoxal and Methylglyoxal in atmospheric particulate matter - Qualification and Quantification using a derivatisation method for HPLC-ESI-MS

    Science.gov (United States)

    Kampf, Christopher; Hoffmann, Thorsten

    2010-05-01

    In recent years much effort has been put into the analysis of so called secondary organic aerosols (SOA). SOA is produced through gas phase oxidation of volatile organic compounds (VOC's) by atmospheric oxidants like OH- or NO3-radicals or ozone with subsequent gas-particle partitioning of the low volatility products. VOC's are emitted by both biogenic and anthropogenic sources in large amounts into the atmosphere. However, it is found that gas to particle partitioning alone cannot explain the complete amount of SOA produced in the atmosphere. It is therefore proposed that heterogeneous reactions on the particle surface or in the particles themselves could lead to the formation of additional SOA mass from semi-volatile compounds such as the reactive dialdehydes glyoxal and methylglyoxal[1]. Global glyoxal and methylglyoxal emissions are estimated to be 45 Tg a-1 and 140 Tg a-1, respectively. The oxidation of biogenic isoprene contributes to about 47% of the total glyoxal mass formed and even to about 79% for methylglyoxal[2]. Due to their high solubility in water (hydration of aldehyde functions), glyoxal and methylglyoxal have a high potential to form SOA via heterogeneous reactions in the particle phase although their volatility is relatively high. Several studies propose oligomerisation or formation of imidazole derivatives as potential reaction pathways to reduce their volatility[1,3,4,5]. Here we present a method for the qualification and quantification of both glyoxal and methylglyoxal in atmospheric PM2.5 filter samples via derivatisation with phenylhydrazine. Reproducibility, recovery and limits of detection and quantification are given. The method is found to be easily suitable for measurements at atmospheric concentration levels for both substances. First results of a measurement campaign in Mainz, Germany in August 2009 are shown for a proof of principle. Initial problems of the method development due to the chemical nature of the analytes und future

  7. Analytical quality control in trace element analysis of atmospheric particulate; Controllo di qualita' nell'analisi degli elementi in traccia contenuti nel particolato atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Rizzio, E.; Giavieri, G.; Bergamaschi, L.; Profumo, A.; Gallorini, M. [Consiglio Nazionale delle Ricerche, Centro di Radiochimica e Analisi per Attivazione, Pavia (Italy)

    2001-07-01

    Trace elements (TE) determination in airborne particulate matter collected onto filters requires an accurate evaluation of the entire analytical procedure. Since many elements have to be determined in few milligrams of air dust at nanogram level, possible sources of error can arise from uncontrolled parameters such as blank of the filters, sample homogeneity, pre-analytical treatment, primary and comparator standards. These potential critical points are here presented and discussed on the basis of the experience developed in the laboratory in previous studies. The data were obtained in several TE air monitoring campaigns in urban as well as in rural-residential areas of north Italy. Instrumental neutron activation analysis (INAA) and electrothermal atomic absorption spectroscopy (ET-AAS) have been used for the investigation of more than 30 trace elements. [Italian] La corretta determinazione di elementi in tracce (TE) nel particolato atmosferico raccolto su filtri e, in special modo nel PM10, richiede un'accurata valutazione dell'intera procedura analitica. Molti elementi sono presenti a livello di nanogrammi e devono essere determinati in frazioni di milligrammo di materiale. Cio' richiede un severo controllo di qualita' sui dati ottenuti mediante la valutazione degli errori che possono derivare da ogni singolo passaggio del processo analitico. In questo lavoro vengono discussi quei parametri che, a prescindere dalle tecniche analitiche utilizzate, possono influire, in modo sostanziale, sulla qualita' del dato finale. In particolare vengono considerati: il bianco dei filtri, l'omogeneita' del campione, il trattamento pre-analitico, gli standard primari e quelli di riferimento. I dati sperimentali di questo studio si riferiscono alla determinazione di oltre 30 elementi in tracce in campioni di particolato atmosferico raccolto in zone urbane, industriali e rurali-residenziali durante precedenti campagne di monitoraggio. La maggior

  8. Anthropogenic versus geogenic contribution to total suspended atmospheric particulate matter and its variations during a two-year sampling period in Beijing, China.

    Science.gov (United States)

    Schleicher, Nina; Norra, Stefan; Chai, Fahe; Chen, Yizhen; Wang, Shulan; Stüben, Doris

    2010-02-01

    Weekly samples of total suspended particles in air (TSP) were taken in south-east Beijing for a two-year period continuously from August 2005 to August 2007. Mass concentrations varied between 76 and 1028 microg m(-3) with an average concentration of 370 microg m(-3) for the whole period. The chemical composition and the mass concentration of aerosols in combination with meteorological data are reflecting specific influences of distinct aerosol sources on the pollution of Beijing's atmosphere. Lead (Pb), titanium (Ti), zinc (Zn) and copper (Cu) concentrations were chosen as indicator elements for different sources. Their amounts considerably varied over the course of the year. Element ratios, such as Pb/Ti, supported the distinction between periods of predominant geogenic or anthropogenic caused pollution. However, the interactions between aerosols from different sources are numerous and aerosol pollution still is a big and complex challenge for the sustainable development of Beijing.

  9. Hourly atmospheric concentrations of Cs-134 and Cs-137 at monitoring stations for suspended particulate matter in and south of Fukushima after the Fukushima Daiichi Nuclear Power Plant accident

    Science.gov (United States)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2013-04-01

    No data has been found of continuous monitoring of radioactive materials in the atmosphere in Fukushima area after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident on March 11, 2011, although it greatly contributes to accurate evaluation of the internal exposure dose, to reconstruction of emission time series of released radionuclides, and to validation of numerical simulations by atmospheric transport models. Then, we have challenged to retrieve the radioactivity in atmospheric aerosols collected every hour on a filter tape of Suspended Particulate Matter (SPM) monitoring system with beta ray attenuation method used at air pollution monitoring stations in east Japan. A test measurement for hourly atmospheric concentrations of Cs-134 and Cs-137 was successfully performed with a Ge detector for the used filter tapes during March 15-23, 2011, at three stations in Fukushima City 60 km northwest of the FD1NPP and four stations in southwest Ibaraki prefecture more than 150 km southwest of the FD1NPP. The data in Fukushima City revealed high Cs-137 concentrations of 10-30 Bq m-3 from the evening of March 15 to the early morning of March 16, when a large amount of radioactive materials was simultaneously deposited on the land surface by precipitation according to the measurement of radiation dose rate. Higher Cs-137 concentrations of 10-50 Bq m-3 were also found from the afternoon of March 20 to the morning of March 21, and which could not be detected by the radiation dose rate due to no precipitation. In contrast, much higher concentrations with the maximum of 320 Bq m-3 in southwest Ibaraki than in Fukushima City were found on the morning of March 15 and 21 under strong temperature inversion near the surface. The polluted air masses with high radioactive materials were passed away within a few hours as a plume in southwest Ibaraki, while the high Cs-137 concentrations lasted for 10-16 hours in Fukushima City where the polluted air masses after their transport

  10. Global fate and distribution of polycyclic aromatic hydrocarbons emitted from Europe and Russia

    Science.gov (United States)

    Sehili, Aissa M.; Lammel, Gerhard

    The long-range atmospheric transport (LRT) of polycyclic aromatic hydrocarbons (PAHs) is not fully understood and has hardly been addressed by model studies. By model experiments the LRT of PAH emissions into air from Europe and Russia is studied testing several scenarios of gas-particle partitioning and degradability by reaction with ozone and the hydroxyl and nitrate radicals for two PAHs, benzo[a]pyrene (BAP) and fluoranthene (FLT). The model used is the atmosphere general circulation model ECHAM5 with a dynamic modal aerosol sub-model, HAM, ozone and sulfur species chemistry and bidirectional mass exchange on 2D marine (ocean surface mixed layer) and terrestrial surfaces (top soil layer and vegetation surfaces). After 5 years the substances are found to be mostly distributed to the soil compartment (64-97% as the global mean, varying with substance and season), which after 10 years is still filling; 1-5% are found in air and 2-33% in ocean. It is found that the lifetime and vertical distribution of the substances in the atmosphere and the LRT potential are all significantly influenced by the partitioning and degradation scenario. The total environmental burden is higher when sorption to organic matter and black carbon are considered to determine gas-particle partitioning rather than adsorption to the surface of particulate matter. The effect is +20% for BAP but sevenfold for FLT. Concentrations in Arctic air are mostly underestimated by the model, which is partly explained by emissions not considered in the simulation. The comparison shows, however, that degradation of the sorbed BAP and FLT molecules should be significantly slower than the respective gaseous molecules and that absorptive partitioning is necessary to explain the LRT potential of FLT.

  11. Assessment of exposure to atmospheric particles: contribution of individual measurements; Evaluation de l'exposition aux particules atmospheriques: apport des mesures individuelles

    Energy Technology Data Exchange (ETDEWEB)

    Mosqueron, L.; Momas, I. [Universite Rene Descartes, Faculte des Sciences Pharmaceutiques et Biologiques, Lab. d' Hygiene et de Sante Publique, 75 - Paris (France); Le Moullec, Y. [Laboratoire d' Hygiene de la Ville de Paris, 75 (France); Momas, I. [Direction de l' Action Sociale, de l' Enfance et de la Sante, Cellule Epidemiologie, 75 - Paris (France)

    2001-02-01

    There are few studies of individual exposure to atmospheric particles, because of the relatively bulky and noisy sampling devices. These personalized measurements, generally associated with micro-environmental measurements, are aimed at studying the distribution of individual exposure and identifying its main determinants. Methods: A synopsis of the methods implemented in such studies (populations studied, measurements strategies, questionnaires on time-activity patterns, residences and work place) was detailed. The major results are presented and discussed from an epidemiological point of view. Results: The individual exposure measured with portable devices generally were generally found to be higher than the estimations made by combining micro-environmental (outdoor and indoor) measurements and data from time-activity diaries. The difference between results of these two approaches, known as 'personal cloud', remains poorly understood. Correlations between individual measurements and outdoor concentrations are weak; nevertheless, day to day variations of these two series of measurements are better related. The main determinants of individual exposure to particles are identified but a quantification of their contribution remains difficult, except for passive smoking. Conclusion: Personal measurements cannot be used to estimate particle exposure in large scale epidemiological studies. This exposure needs to be modeled. (authors)

  12. Influence of in-port ships emissions to gaseous atmospheric pollutants and to particulate matter of different sizes in a Mediterranean harbour in Italy

    Science.gov (United States)

    Merico, E.; Donateo, A.; Gambaro, A.; Cesari, D.; Gregoris, E.; Barbaro, E.; Dinoi, A.; Giovanelli, G.; Masieri, S.; Contini, D.

    2016-08-01

    Ship emissions are a growing concern, especially in coastal areas, for potential impacts on human health and climate. International mitigation strategies to curb these emission, based on low-sulphur content fuels, have proven useful to improve local air quality. However, the effect on climate forcing is less obvious. Detailed information on the influence of shipping to particles of different sizes is needed to investigate air quality and climate interaction. In this work, the contributions of maritime emissions to atmospheric concentrations of gaseous pollutants (NO, NO2, SO2, and O3) and of particles (sizes from 0.009 μm to 30 μm) were investigated considering manoeuvring (arrival and departure of ships) and hotelling phases (including loading/unloading activities). Results showed that the size distributions of shipping contributions were different for the two phases and could be efficiently described, using measured data, considering four size-ranges. The largest contribution to particles concentration was observed for Dp pollutant emissions and of the contribution to particle mass concentration. However, an increase of the contribution to particle number concentration (PNC) was observed. Results suggested that harbour logistic has a relevant role in determining the total impact of shipping on air quality of the nearby coastal areas. Additionally, future policies should focus on PNC that represents an important fraction of emissions also for low-sulphur fuels. DOAS remote sensing proved a useful tool to directly measure NO2 and SO2 ship emissions giving estimates comparable with those of emission inventory approach.

  13. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  14. Characterization of TSP-bound n-alkanes and polycyclic aromatic hydrocarbons at rural and urban sites of Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Wu Shuiping [Laboratory for Earth Surface Processes, College of Environmental Sciences, Peking University, Beijing 100871 (China); Tao Shu [Laboratory for Earth Surface Processes, College of Environmental Sciences, Peking University, Beijing 100871 (China)]. E-mail: taos@urban.pku.edu.cn; Zhang Zhihuan [Laboratory for Earth Surface Processes, College of Environmental Sciences, Peking University, Beijing 100871 (China); Lan Tian [Laboratory for Earth Surface Processes, College of Environmental Sciences, Peking University, Beijing 100871 (China); Zuo Qian [Laboratory for Earth Surface Processes, College of Environmental Sciences, Peking University, Beijing 100871 (China)

    2007-05-15

    Total suspended particle (TSP) was collected and analyzed at rural and urban sites in Tianjin, China during the domestic heating season (from 15 November to 15 March) of 2003/4 for n-alkanes and 16 polycyclic aromatic hydrocarbons (PAHs). The normalized distribution of n-alkanes with the peak at C {sub 22}, C {sub 23}, C {sub 24} or C {sub 25} suggested that fossil fuel utilization was the major source of particulate n-alkanes at both sites. PAHs normalized distribution for each sample was similar and the higher molecular weight PAH dominated the profile (around 90%) indicating a stronger combustion source at both sites. Precipitation and wind were the most important meteorological factors influencing TSP and PAHs atmospheric concentrations. In the urban area the emission height had significant influence on PAHs levels at different heights under the relative stable atmospheric conditions. Coal combustion was the major source for TSP-bound PAHs at both sites based on some diagnostic ratios. - Precipitation and sampling height can significantly influence TSP and TSP-bound PAHs.

  15. Characterization of atmospheric particulate matter in a museum in an urban area; Caratterizzazione del particolato aerosospeso all'interno di un museo situato in area urbana

    Energy Technology Data Exchange (ETDEWEB)

    Berico, M.; Formignani, M. [ENEA, Divisione Protezione dell' Uomo e degli Ecosistemi, Centro Ricerche Ezio Clementel, Bologna (Italy)

    2001-07-01

    In February 2001 the Internal Dosimetry Laboratory of ENEA Institute for Radioprotection carried out a measurement campaign of atmospheric aerosol in a museum, in the urban area of Bologna, in the frame of GIANO project of ENEA. The aerosol mass size distribution was measured and a high mass concentration of aerosol, 39.5 {mu}g/m{sup 3}, with an aerodynamic diameter less than 0.5 {mu}m was found. A comparison with the composition of the outdoor aerosol was made as well. In an urban area fine particles are generally generated by vehicles exhaust (particularly diesel-powered ones) and are constituted essentially of carbon black. Because of their surface adsorption properties these carbon black particles typically contain varying quantities of substances. Deposition of fine particles on the surfaces of works of art can lead to visual degradation and further damages due to chemical reactions with the adsorbed compounds. [Italian] Nell'ambito del progetto di Grafica Innovativa per il patrimonio Artistico Nazionale e per l'Occupazione Giovanile (GIANO) dell'ENEA, il laboratorio di dosimetria interna dell'Istituto per la Radioprotezione dell'ENEA, che ha competenze nella caratterizzazione fisica dell'aerosol, ha effettuato una campagna preliminare di misura del particolato aerosospeso presente all'interno di un museo nell'area urbana della citta' di Bologna. I dati dei campionamenti hanno rilevato la presenza di un'alta concentrazione in massa, 44.7 {mu}/m{sup 3}, di particolato aerosospeso inferiore a 10.5 {mu}m, composta per circa il 90%, 39.5% {mu}/m{sup 3}, da particelle con diametro aerodinamico inferiore a 0.5 {mu}m. La provenienza dalle emissioni dei motori a combustibili fossili, del particolato con queste dimensioni, ha consentito il confronto con i dati relativi alle misure di concentrazione di particolato aerosospeso effettuate presso un incrocio ad alta intensita' di traffico della citta'. Dalle

  16. Determination of Gaseous and Particulate Trifluoroacetic Acid in Atmosphere Environmental Samples by Gas Chromatography-Mass Spectrometry%大气中气相和颗粒相三氟乙酸浓度测定

    Institute of Scientific and Technical Information of China (English)

    胡瑕; 吴婧; 翟紫含; 张博雅; 张剑波

    2013-01-01

    建立了我国大气中气相和颗粒相三氟乙酸(Trifluoroacetic acid,TFA)的采集和分析方法.采用环形扩散管-滤膜联用装置分离气相和颗粒相,利用环形扩散管的碱性涂层吸附气相TFA,石英滤膜吸附颗粒相物质.对气相和颗粒相样品分别处理,以2,4-二氟苯胺作为衍生剂,与TFA反应生成TFA的苯胺产物,采用GC/MS进行分析.本方法在0.31 ~4.91μg/L浓度范围内呈线性关系(R2=0.9991),检出限为66 ng/L.采样装置回收率为(101±3)%,当采样量为48 m3,TFA大气浓度检出限为31 pg/m3.于2012年4 ~10月在北京大学采样点采集大气,测得其中TFA总浓度在501 ~ 7447 pg/m3范围,TFA在气相中的浓度大于在颗粒相中的浓度,气固分配系数Kp随温度变化.%Trifluoroacetic acid (TFA) concentration was measured in air samples by a sampling device composed of annular denuders coupled with a quartz filter,which was efficient for collection and separation of gaseous and particulate TFA.Gaseous TFA was performed by means of annular denuders coated with alkaline solution,while particulate TFA was absorbed by quartz filters.TFA can be determined by gas chromatographymass spectrometry after derivation with 2,4-difluoroaniline.Calibration curves were linear with a correlation coefficient of 0.9991.Detection limit of TFA was 66 ng/L,which was 31 pg/m3 when sampling volume was 48 m3.Recoveries of the TFA sampling device ranged between 98% and 105% with relative standard deviation (RSD) ≤ 3%.The developed method was applied for the determination of TFA in atmosphere samples collected in Peking University in Beijing in 2012.Total TFA concentrations ranged between 501 and 7447 pg/m3.Concentrations of gaseous TFA were significantly higher than those of particulate,and the gasparticle partition coefficient of TFA decreased as air temperature rose.

  17. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator.

    Science.gov (United States)

    Liang, Fuyan; Lu, Mingming; Keener, Tim C; Liu, Zifei; Khang, Soon-Jai

    2005-10-01

    Diesel-powered equipment is known to emit significant quantities of fine particulate matter to the atmosphere. Numerous organic compounds can be adsorbed onto the surfaces of these inhalable particles, among which polycyclic aromatic hydrocarbons (PAHs) are considered potential occupational carcinogens. Guidelines have been established by various agencies regarding diesel emissions and various control technologies are under development. The purpose of this study is to identify, quantify and compare the organic compounds in diesel particulate matter (DPM) with the diesel fuel and engine oil used in a non-road diesel generator. Approximately 90 organic compounds were quantified (with molecular weight ranging from 120 to 350), which include alkanes, PAHs, alkylated PAHs, alkylbenzenes and alkanoic acids. The low sulfur diesel fuel contains 61% alkanes and 7.1% of PAHs. The identifiable portion of the engine oil contains mainly the alkanoic and benzoic acids. The composition of DPM suggests that they may be originated from unburned diesel fuel, engine oil evaporation and combustion generated products. Compared with diesel fuel, DPM contains fewer fractions of alkanes and more PAH compounds, with the shift toward higher molecular weight ones. The enrichment of compounds with higher molecular weight in DPM may be combustion related (pyrogenic).

  18. Environmental Behaviors and Toxicities of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Hayakawa, Kazuichi

    2016-01-01

    Airborne particulate matter (PM) has been collected at four cities in Japan starting in the late 1990s, at five or more major cities in China, Korea and Russia starting in 2001 and at the Noto Peninsula starting in 2004. Nine polycyclic aromatic hydrocarbons (PAHs) and eleven nitropolycyclic aromatic hydrocarbons (NPAHs) were determined by HPLC with fluorescence and chemiluminescence detections, respectively. Annual concentrations of PAHs and NPAHs were in the order, China>Russia≫Korea=Japan, with seasonal change (winter>summer). During the observation period, concentrations of PAHs and NPAHs in Japanese cities significantly decreased but the increases in the PAH concentration were observed in Chinese and Russian cities. Concentrations of PAHs and NPAHs were higher in the Northern China than those in the Southern China. At the Noto peninsula, which is in the main path of winter northwest winds and a year-round jet stream that blow from the Asian continent to Japan, the concentrations were high in winter and low in summer every year. A cluster analysis and back trajectory analysis indicated that PAHs and NPAHs were long-range transported from Northeastern China, where coal burning systems such as coal-heating boilers are considered to be the major contributors of PAHs and NPAHs. A dramatic change in atmospheric concentrations of PAHs and NPAHs in East Asia suggests the rapid and large change of PM2.5 pollution in East Asia. Considering the adverse health effects of PM2.5, continuous monitoring of atmospheric PAHs and NPAHs is necessary in this area.

  19. Airborne particulates. European directives and standardization; Matieres particulaires dans l`air ambiant directives europeennes et normalisation

    Energy Technology Data Exchange (ETDEWEB)

    Houdret, J.L. [Ecole Nationale Superieure des Mines, 59 - Douai (France)

    1996-12-31

    The development of future European directives concerning atmospheric dusts and particulates, organization of the in-charge committee, measurement requirements and limit value determination processes are presented. Various measuring methods and instruments used for particulate and aerosol measurements are reviewed

  20. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  1. Source Identification of Polycyclic Aromatic Hydrocarbons by Diagnostic Ratios and Positive Matrix Factorization

    Science.gov (United States)

    Dvorska, A.; Jarkovsky, J.; Lammel, G.; Klanova, J.

    2009-04-01

    by a single, well defined PAH source. By determination of the total PAH concentrations (sum of gas and particulate phases) the propagation of sampling artefacts related to PAH partitioning into statistical errors is avoided. The main results are: Major PAH source categories exhibit a significant seasonality, coronene as a marker for traffic (Bi et al., 2003) should be used with care. Long-term trends of the major PAH sources are insignificant. Literature: Bi X.H., Sheng G.Y., Peng P., Chen Y.J., Zhang Z.Q., Fu J.M., 2003. Distribution of particulate- and vapor-phase n-alkanes and polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China. Atmos. Environ. 37, 289-298. Paatero P. (1997): Least square formulation of robust non-negative factor analysis, Chemometrics Intelligent Lab. Systems 37, 23-35. Readman J.W., Mantoura R.F., Rhead M.M., 1987. A record of polycyclic aromatic hydrocarbon (PAH) pollution obtained from accreting sediments of the Tamar estuary, UK: evidence for non-equilibrium behaviour of PAH. Sci. Total Environ. 66, 73-94. Tauler R., Paatero P., Hopke P., Henry R.C., Spiegelman C., Park E.S., Poirot R.L., 2006. State of the art in methods and software for the identification, resolution and apportionment of contamination sources In: Summit on Environmental Modelling and Software (Proceedings of the iEMSs 3rd Biennial Meeting; Voinov A., Jakeman A.J., Rizzoli A.E., eds.), International Environmental Modelling and Software Society, Burlington, USA. WHO (2003) - World Health Organization: Health risks of persistent organic pollutants from long-range transboundary air pollution. WHO Regional Office for Europe, Copenhagen, 252 pp. Yunker M.B., Macdonald R.W., Vingarzan R., Mitchell R.H., Goyette D., Sylvestre S., 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33, 489-515.

  2. Assessing Polycyclic Aromatic Hydrocarbons (PAHs) using passive air sampling in the atmosphere of one of the most wood-smoke-polluted cities in Chile: The case study of Temuco.

    Science.gov (United States)

    Pozo, Karla; Estellano, Victor H; Harner, Tom; Diaz-Robles, Luis; Cereceda-Balic, Francisco; Etcharren, Pablo; Pozo, Katerine; Vidal, Victor; Guerrero, Fabián; Vergara-Fernández, Alberto

    2015-09-01

    This study addresses human health concerns in the city of Temuco that are attributed to wood smoke and related pollutants associated with wood burning activities that are prevalent in Temuco. Polycyclic Aromatic Hydrocarbons (PAHs) were measured in air across urban and rural sites over three seasons in Temuco using polyurethane foam (PUF) disk passive air samplers (PUF-PAS). Concentrations of ΣPAHs (15 congeners) in air ranged from BDL to ∼70 ng m(-3) and were highest during the winter season, which is attributed to emissions from residential heating by wood combustion. The results for all three seasons showed that the PAH plume was widespread across all sites including rural sites on the outskirts of Temuco. Some interesting variations were observed between seasons in the composition of PAHs, which were attributed to differences in seasonal point sources. A comparison of the PAH composition in the passive samples with active samples (gas+particle phase) from the same site revealed similar congener profiles. Overall, the study demonstrated that the PUF disk passive air sampler provides a simple approach for measuring PAHs in air and for tracking effectiveness of pollution control measures in urban areas in order to improve public health.

  3. Determination of arsenic in air particulates and diesel exhaust particulates by spectrophotometry

    Institute of Scientific and Technical Information of China (English)

    S. M. Talebi; M. Abedi

    2005-01-01

    A method was developed for the determination of trace arsenic by spectrophotometry. The proposed method is rapid, simple,and inexpensive. This method can be used for sensitive determination of trace arsenic in environmental samples and especially in air particulates. The results obtained by this method as a proposed method were compared with those obtained by hydride generation atomic absorption spectrometry as a popular reported method for the determination of arsenic and an excellent agreement was found between them. The method was also used for determination of arsenic associated with airborne particulate matter and diesel exhaust particulates.The results showed that considerable amount of arsenic are associated with diesel engine particulates. The variation in concentration of arsenic was also investigated. The atmospheric concentration of arsenic was different in different sampling stations was dependent to the traffic density.

  4. 低阶碎煤有氧热解制备兰炭的工艺条件%Preparation Conditions of Char via Pyrolysis of Low-rank Particulate Coal in Oxygen-containing Atmosphere

    Institute of Scientific and Technical Information of China (English)

    钟梅; 高士秋; 张志凯; 岳君容; 许光文

    2012-01-01

    Physicochemical properties of char made by pyrolyzing a kind of low-rank particulate coal in O2-containing atmosphere and a quartz sand fluidized bed were investigated. The tested conditions included coal particle size, O2 concentration, pyrolysis temperature and residence time. The char with fixed carbon content over 82%(ω) and volatile matter below 7%(ω) was obtained by pyrolyzing the coal with particle size of i~13 mm at the temperatures above 850 ℃ in the atmosphere with O2 content not below 3%(φ) for pyrolysis time not shorter than 120 s. With the increase of temperature from 650℃ to 950'C, the corresponding interlayer spacing (d002) of the crystallite structure calculated from the XRD intensities was in the range from 0.383 to 0.372 nm, indicating a gradually condensed and ordered structure. BET specific surface area first increased then decreased with O2 concentration, and reached its maximum 242.71 m2/g at O2 7%(φ), corresponding to the highest oxidation reactivity of char. The char produced via long-time pyrolysis in the O2-contaning atmosphere lowered the specific surface area and reactivity due to the burn-off of some formed pores.%以流化石英砂为介质,研究了热解温度、O2浓度、原煤停留时间及粒径等流化条件对由小粒径低阶碎煤所制半焦的理化性质的影响.结果表明,1~13 mm小粒径低阶煤在热解温度大于850℃及O2浓度、热解时间分别不低于3%(φ)和120 s的条件下,可制得固定碳含量高于82%(ω)、挥发分含量低于7%(ω)的兰炭.热解温度由650℃升至950℃,碳晶格的微晶晶面间距(d002)由0.383 nm减小至0.372 nm,半焦晶格的有序化程度增加.氧气浓度为7%(φ)时,半焦的比表面积最大,为242.71 m2/g,同时氧化反应活性也最大.延长有氧气氛下的热解时间,半焦孔隙结构因烧蚀而坍塌,半焦的比表面积和活性降低.

  5. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China.

    Science.gov (United States)

    Tao, Shu; Li, Xinrong; Yang, Yu; Coveney, Raymond M; Lu, Xiaoxia; Chen, Haitao; Shen, Weiran

    2006-08-01

    A USEPA, procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo[a]pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from approximately 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from approximately 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 +/- 2.87 ng/m3 on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m3, 41% of the entire population lives within this area.

  6. FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0.

    Science.gov (United States)

    Schneider, Ismael Luís; Teixeira, Elba Calesso; Agudelo-Castañeda, Dayana Milena; Silva e Silva, Gabriel; Balzaretti, Naira; Braga, Marcel Ferreira; Oliveira, Luís Felipe Silva

    2016-01-15

    Nitro-polycyclic aromatic hydrocarbons (NPAHs) represent a group of organic compounds of significant interest due to their presence in airborne particulates of urban centers, wide distribution in the environment, and mutagenic and carcinogenic properties. These compounds, associated with atmospheric particles of size mutagenic risks of the studied NPAHs associated with PM1.0 samples were also determined for two sampling sites: Canoas and Sapucaia do Sul. The results showed that NPAH standard spectra can effectively identify NPAHs in PM1.0 samples. The transmittance and emissivity sample spectra showed broader bands and lower relative intensity than the standard NPAH spectra. The carcinogenic risk and the total mutagenic risk were calculated using the toxic equivalent factors and mutagenic potency factors, respectively. Canoas showed the highest total carcinogenic risk, while Sapucaia do Sul had the highest mutagenic risk. The seasonal analysis suggested that in the study area the ambient air is more toxic during the cold periods. These findings might of significant importance for the decision and policy making authorities.

  7. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen [Peking University, Beijing (China). Laboratory for Earth Surface Processes, College of Environmental Sciences

    2006-08-01

    A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

  8. Intermolecular interactions governing the partition between particulate and gas phases for typical organic pollutants

    Institute of Scientific and Technical Information of China (English)

    YU HaiYing; QIAO XianLiang; YANG Ping; DING GuangHui; CHEN JingWen

    2007-01-01

    The partition coefficients between particulate and gas phases (Kp) for organic pollutants are of great importance to characterize the behavior of organic pollutants in atmosphere, and are basic data needed by ecological risk assessment. Partial least squares (PLS) regression with 16 theoretical molecular structural descriptors was used to develop polyparameter linear free energy relationship (LFER) model for Kp of 18 aliphatic hydrocarbons, 21 polycyclic aromatic hydrocarbons (PAHs), 16 polychlorinated biphenyls (PCBs) and 13 polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs). The obtained model has a good predictive ability and robustness, which can be used for estimating Kp of chemicals with similar structures. Intermolecular dispersive interactions play a leading role in governing Kp, followed by charge-transfer interactions and hindrance effects of molecular size. The respective models developed for different group compounds imply that the action mechanism is similar, and dipole-dipole and dipole-induced dipole interactions play a minor role in governing Kp of n-alkanes, PCBs and PCDD/Fs.

  9. Contorted polycyclic aromatics.

    Science.gov (United States)

    Ball, Melissa; Zhong, Yu; Wu, Ying; Schenck, Christine; Ng, Fay; Steigerwald, Michael; Xiao, Shengxiong; Nuckolls, Colin

    2015-02-17

    CONSPECTUS: This Account describes a body of research in the design, synthesis, and assembly of molecular materials made from strained polycyclic aromatic molecules. The strain in the molecular subunits severely distorts the aromatic molecules away from planarity. We coined the term "contorted aromatics" to describe this class of molecules. Using these molecules, we demonstrate that the curved pi-surfaces are useful as subunits to make self-assembled electronic materials. We have created and continue to study two broad classes of these "contorted aromatics": discs and ribbons. The figure that accompanies this conspectus displays the three-dimensional surfaces of a selection of these "contorted aromatics". The disc-shaped contorted molecules have well-defined conformations that create concave pi-surfaces. When these disc-shaped molecules are substituted with hydrocarbon side chains, they self-assemble into columnar superstructures. Depending on the hydrocarbon substitution, they form either liquid crystalline films or macroscopic cables. In both cases, the columnar structures are photoconductive and form p-type, hole- transporting materials in field effect transistor devices. This columnar motif is robust, allowing us to form monolayers of these columns attached to the surface of dielectrics such as silicon oxide. We use ultrathin point contacts made from individual single-walled carbon nanotubes that are separated by a few nanometers to probe the electronic properties of short stacks of a few contorted discs. We find that these materials have high mobility and can sense electron-deficient aromatic molecules. The concave surfaces of these disc-shaped contorted molecules form ideal receptors for the molecular recognition and assembly with spherical molecules such as fullerenes. These interfaces resemble ball-and-socket joints, where the fullerene nests itself in the concave surface of the contorted disc. The tightness of the binding between the two partners can be

  10. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  11. 40 CFR 60.122 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... subpart shall discharge or cause the discharge into the atmosphere from a blast (cupola) or reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf). (2... shall discharge or cause the discharge into the atmosphere from any pot furnace any gases which...

  12. Fluidizing device for solid particulates

    Science.gov (United States)

    Diebold, J.P.; Scahill, J.W.

    A flexible whip suspended in a hopper is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  13. Simulated transport of polycyclic aromatic hydrocarbons in artificial streams

    Energy Technology Data Exchange (ETDEWEB)

    Bartell, S.M.; Landrum, P.F.; Giesy, J.P.; Leversee, G.J.

    1981-01-01

    A model was constructed to predict the pattern of flow and accumulation of three polycyclic aromatic hydrocarbons (PAH) (anthracene, naphthalene, and benzo(a)pyrene) in artificial streams located on the Savannah River Plant near Aiken, South Carolina. Predictions were based upon the premise that the fundamental chemistry of individual PAH contains useful information for predictive purposes. Model processes included volatilization, photolysis, sorption to sediments and particulates, and net accumulation by biota. Simulations of anthracene transport were compared to results of an experiment conducted in the streams. The model realistically predicted the concentration of dissolved anthracene through time and space. Photolytic degradation appeared to be a major pathway of anthracene flux from the streams.

  14. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    Science.gov (United States)

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  15. Characterization of iron in airborne particulate matter

    Science.gov (United States)

    Tavares, F. V. F.; Ardisson, J. D.; Rodrigues, P. C. H.; Brito, W.; Macedo, W. A. A.; Jacomino, V. M. F.

    2014-01-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and 57Fe-Mössbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. 57Fe-Mössbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area.

  16. Aromatic Radicals-Acetylene Particulate Matter Chemistry

    Science.gov (United States)

    2011-12-01

    atmosphere1. In addition to acute respiratory problems, long-term effects include lung cancer and cardiopulmonary diseases , as studied by Pope at al...problems such as ischemic heart disease , fatal arrhythmia, and congestive heart failure4,5. Strategies to reduce fine particulate matter (PM...acetylene reaction have been made by Fahr and Stein15, who deduced an Arrhenius expression in a 4 temperature range between 1000 and 1330 K in

  17. Airborne Exposures to Polycyclic Aromatic Compounds Among Workers in Asphalt Roofing Manufacturing Facilities.

    Science.gov (United States)

    Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E

    2015-01-01

    We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very

  18. Root-cause analysis of particulate matter loading. Ion chromatography in employment; Ursachenanalyse der Feinstaubbelastung. Ionenenchromatographie im Einsatz

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, Wolfgang [Technische Univ. Berlin (Germany). Arbeitsgruppe Atmosphaerenforschung

    2012-01-15

    Particulate matter is a component of the atmosphere and repeatedly has made infamous headlines in recent years. Essentially this is attributable to the fact that particulate matter air hygienically is a problem. In numerous major cities and metropolitan areas the limiting values often are exceeded. In recent years, measures to reduce particulate concentrations achieved some successes. Any further reduction in exceeding situations is essential.

  19. 北京地区大气细颗粒物的个体暴露水平%Personal exposure levels to atmospheric fine particulate matters in Beijing, China

    Institute of Scientific and Technical Information of China (English)

    闫伟奇; 张潇尹; 郎凤玲; 曹军

    2014-01-01

    From December, 2012to April, 2013, measurements of personal exposure levels to atmospheric fine particulate matter (PM2.5) in Beijing were conducted using laser dust monitor (Model LD6S) with the method of daily tracking for single participant, and the different participants’ time-activity journals were also collected to calculate the daily averaged exposure levels and merge application. During the monitoring period, the ambient PM2.5 concentrations issued by the Beijing Municipal Environmental Monitoring Centre were recorded synchronously. The local mean concentrations of PM2.5 in winter and in spring were 127µg/m3and 69 µg/m3, respectively, and the former was much higher than the latter. The median value of personal daily exposure level was 54µg/m3and the averaged ratio to the ambient PM2.5 concentration was 0.60. The averaged indoor exposure fraction reached 80%of the total exposure, and the outdoor exposure and the traffic exposure separately accounted for about 10%. There was no significant difference between the exposure levels of different populations and different seasons. As the ambient PM2.5 concentration exceeded 75µg/m3, a significant correlation existed between the ambient PM2.5 concentration and the PM2.5 concentrations in different microenvironments, including residential house, office, restaurant, bus and street.%于2012年12月至2013年4月采用LD6S型微电脑激光粉尘仪在北京地区采取单人逐日跟踪的方式记录了多名个体对大气细颗粒物(PM 2.5)的暴露水平,同时收集研究对象的时间-活动日志,计算日平均暴露水平,再进行多人多日合并处理.并于研究时段内同步记录北京市环境保护监测中心发布的空气质量监测数据.结果表明,研究期间北京地区冬季与春季PM 2.5的平均浓度分别为127,69µg/m3.个体日均暴露水平中值为54µg/m3,与大气质量浓度的平均比值为0.60.个体室内暴露分量均值达到总暴露量的80%,

  20. Evaluation of airborne particulate matter pollution in Kenitra City Morocco

    OpenAIRE

    2013-01-01

    Two size fractions of atmospheric particulate matter < 2.5 µm and 2.5-10 µm were collected in Kenitra City from February 2007 to February 2008. The sampling was done using a Gent Stacked sampler on nuclepore polycarbonate filters and the collected filters were analyzed using Total Reflection X-Ray Fluorescence (TXRF) and Atomic Absorption Spectroscopy (AAS). The particulate matter trends show higher concentrations during the summer as compared to other seasons. The highest concentrations were...

  1. Determination of Polycyclic Aromatic Hydrocarbons in Automobile Exhaust by Means of High-Performance Liquid Chromatography with Fluorescence Detection

    DEFF Research Database (Denmark)

    Nielsen, Tom

    1979-01-01

    A chromatographic method has been developed and applied to the determination of polycyclic aromatic hydrocarbons (PAHs) in particulate matter in automobile exhaust, in petrols, and in crankcase oils. The PAHs were purified from other organic compounds by thin-layer chromatography, separated by high-performance...... liquid chromatography, and measured by means of on-line fluorescence detection. The identities of the PAHs were verified by comparing the emission spectra obtained by a stop-flow technique with those of standard PAHs...

  2. Univers de Particules

    CERN Multimedia

    CERN Video Productions

    2010-01-01

    Dans l’Univers, tout est fait de particules. Mais d’où viennent-elles? Quelle est l’origine des lois de la nature? Au rez-de-chaussée du Globe de la science et de l’innovation, l’exposition permanente « Univers de particules » vous invite à un voyage vers le Big Bang en explorant le CERN. Avec à la clé des réponses aux questions: pourquoi cette recherche ? Comment accélérer des particules ? Comment les détecter ? Quelles sont les théories sur la matière et sur l’Univers aujourd’hui ? Quelles retombées pour notre vie quotidienne ?

  3. Lability of Secondary Organic Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Giles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM, no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.

  4. Biogeochemical and physical controls on concentrations of polycyclic aromatic hydrocarbons in water and plankton of the Mediterranean and Black Seas

    Science.gov (United States)

    Berrojalbiz, Naiara; Dachs, Jordi; Ojeda, MaríA. José; Valle, MaríA. Carmen; Castro-JiméNez, Javier; Wollgast, Jan; Ghiani, Michela; Hanke, Georg; Zaldivar, José Manuel

    2011-12-01

    The Mediterranean and Black Seas are unique marine environments subject to important anthropogenic pressures due to atmospheric and riverine inputs of organic pollutants. They include regions of different physical and trophic characteristics, which allow the studying of the controls on pollutant occurrence and fate under different conditions in terms of particles, plankton biomass, interactions with the atmosphere, biodegradation, and their dependence on the pollutant physical chemical properties. Polycyclic Aromatic Hydrocarbons (PAHs) have been measured in samples of seawater (dissolved and particulate phases) and plankton during two east-west sampling cruises in June 2006 and May 2007. The concentrations of dissolved PAHs were higher in the south-western Black Sea and Eastern Mediterranean than in the Western Mediterranean, reflecting different pollutant loads, trophic conditions and cycling. Particle and plankton phase PAH concentrations were higher when lower concentrations of suspended particles and biomass occurred, with apparent differences due to the PAH physical chemical properties. The surface PAH particle phase concentrations decreased when the total suspended particles (TSP) increased for the higher molecular weight (MW) compounds, consistent with controls due to particle settling depletion of water column compounds and dilution. Conversely, PAH concentrations in plankton decreased at higher biomass only for the low MW PAHs, suggesting that biodegradative processes in the water column are a major driver of their occurrence in the photic zone. The results presented here are the most extensive data set available for the Mediterranean Sea and provide clear evidence of the important physical and biological controls on PAH occurrence and cycling in oceanic regions.

  5. Microwave regenerated particulate trap

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A.C. Jr.; Yonushonis, T.M. [Cummins Engine Co., Inc., Columbus, IN (United States); Haberkamp, W.C.; Mako, F.; Len, L.K,; Silberglitt, R.; Ahmed, I. [FM Technologies, Inc., Fairfax, VA (United States)

    1997-12-31

    It has been demonstrated that a fibrous particulate filter can extract particulate matter from the diesel exhaust. However, additional engineering efforts remains to achieve the design target of 90%. It has also be shown that with minor modifications magnetrons produced for home ovens can endure a simulated diesel operating environment. Much work remains to develop a robust product ready to complete extensive engine testing and evaluation. These efforts include: (1) additional environmental testing of magnetrons; (2) vibration testing of the filter in the housing; (3) evaluating alternative methods/designs to seal the center bore; and (4) determining the optimum coating thickness that provides sufficient structural integrity while maintaining rapid heating rates.

  6. Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere: part I. PAHs, PCBs and OCPs and the matrix chemical composition.

    Science.gov (United States)

    Landlová, Linda; Cupr, Pavel; Franců, Juraj; Klánová, Jana; Lammel, Gerhard

    2014-05-01

    Atmospheric particulate matter (PM) abundance, mass size distribution (MSD) and chemical composition are parameters relevant for human health effects. The MSD and phase state of semivolatile organic pollutants were determined at various polluted sites in addition to the PM composition and MSD. The distribution pattern of pollutants varied from side to side in correspondence to main particle sources and PM composition. Levels of particle-associated polycyclic aromatic hydrocarbons (PAHs) were 1-30 ng m(-3) (corresponding to 15-35 % of the total, i.e., gas and particulate phase concentrations), of polychlorinated biphenyls (PCBs) were 2-11 pg m(-3) (4-26 % of the total) and of DDT compounds were 2-12 pg m(-3) (4-23 % of the total). The PM associated amounts of other organochlorine pesticides were too low for quantification. The organics were preferentially found associated with particles matrix composition, amount of contaminants and toxicological effects occur. Legislative regulation based on gravimetric determination of PM mass can clearly be insufficient for assessment.

  7. Global distribution and Gas-particle Partitioning of Polycyclic Aromatic Hydrocarbons - a Modelling Study

    Science.gov (United States)

    Lammel, G.; Sehili, A. M.

    2009-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are emitted in all combustion processes. Some undergo re-volatilisation (multi-hopping). Little is known about degradation pathways and the processes determining gas-particle partitioning (Lohmann & Lammel, 2004). Distribution and fate have no been studied on the global scale so far (except for emissions in Europe and Russia; Sehili & Lammel, 2007). Anthracene (ANT), fluoranthene (FLT) and benzo[a]pyrene (BAP) have been studied under present-day climate and each 3 scenarios of atmospheric degradation and gas-particle partitioning using an atmospheric general circulation model with embedded dynamic aerosol submodel, ECHAM-HAM (Stier et al., 2005) and re-volatilization from ground compartments (Semeena et al., 2006). 10 years were simulated with a time-step of 30 min and 2.8°x2.8° and 19 levels. Emissions were compiled based on emission factors in 27 major types of combustion technologies, scaled to 141 combustion technologies and their global distribution as of 1996 (1°x1°) according to fuel type and the PM1 emission factor (Bond et al., 2004). The emissions were entried uniformly throughout the entire simulation time. Scenarios tested: AD = adsorption (according to the Junge empirical relationship; Pankow, 1987), OB = absorption in organic matter and adsorption to soot (Lohmann & Lammel, 2004) without and DP = with degradation in the atmospheric particulate phase. Gas-particle partitioning in air influences drastically the atmospheric cycling, total environmental fate (e.g. compartmental distributions) and the long-range transport potential (LRTP) of the substances studied. The LRTP is mostly regional. Comparison with observed levels indicate that degradation in the particulate phase must be slower than in the gas-phase. Furthermore, the levels of semivolatile PAHs (ANT and FLT) at high latitudes and a European mid latitude site cannot be explained by partitioning due to adsorption alone, but point to both absorption into

  8. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated pesticides in background air in central Europe - investigating parameters affecting wet scavenging of polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Shahpoury, P.; Lammel, G.; Holubová Šmejkalová, A.; Klánová, J.; Přibylová, P.; Váňa, M.

    2015-02-01

    Concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and chlorinated pesticides (CPs) were measured in air and precipitation at a background site in central Europe. ∑ PAH concentrations in air and rainwater ranged from 0.7 to 327.9 ng m-3 and below limit of quantification (< LOQ) to 2.1 × 103 ng L-1. The concentrations of PCBs and CPs in rainwater were < LOQ. ∑ PCB and ∑ CP concentrations in air ranged from < LOQ to 44.6 and < LOQ to 351.7 pg m-3, respectively. The potential relationships between PAH wet scavenging and particulate matter and rainwater properties were investigated. The concentrations of ionic species in particulate matter and rainwater were significantly correlated, highlighting the importance of particle scavenging process. Overall, higher scavenging efficiencies were found for relatively less volatile PAHs, underlining the effect of analyte gas-particle partitioning on scavenging process. The particulate matter removal by rain, and consequently PAH wet scavenging, was more effective when the concentrations of ionic species were high. In addition, the elemental and organic carbon contents of the particulate matter were found to influence the PAH scavenging.

  9. Particulate Matter (PM) Pollution

    Science.gov (United States)

    ... affect the heart and lungs and cause serious health effects. December 1, 2016 - EPA proposes air quality determinations for eleven areas designated "nonattainment" for the 24-hour fine particle standards. Particulate Matter (PM) Pollution PM Basics What is PM, and how does ...

  10. PAH in airborne particulate matter.. Carcinogenic character of PM10 samples and assessment of the energy generation impact

    Energy Technology Data Exchange (ETDEWEB)

    Callen, M.S.; Cruz, M.T. de la; Lopez, J.M.; Mastral, A.M. [Instituto de Carboquimica (CSIC), Zaragoza (Spain)

    2011-02-15

    One of the main anthropogenic sources producing Polycyclic Aromatic Hydrocarbons (PAH) is related to combustion processes especially transport, power generation processes and other industrial activities. Therefore, the main cities constitute one of the main pollution sources for population. Due to the carcinogenic character of some of these pollutants, Directive 2004/107/EC established a target value of 1.0 ng/m{sup 3} with regard to Benzo(a)pyrene (BaP) for the total content in the particulate matter fraction averaged over a calendar year. Nevertheless, the consideration of only BaP can underestimate the carcinogenic character of the particulate matter. In this work, the carcinogenic character of the airborne PM10 of Zaragoza was studied during 2003-2004 by determining the concentration of BaP equivalents (BaP-eq), using toxic equivalent factors provided by Larsen and Larsen. Diagnostic ratios were used to discern regarding the main pollution sources in Zaragoza city in which the prevailing emission sources were related to diesel emissions and combustion sources. As PAH can travel long distances around the world, the impact of local pollution sources and long-range atmospheric transport on those samples exceeding 1.0 ng/m{sup 3} of BaP-eq that imply higher risk for human health were assessed by considering BaA/Chry and BaP/BeP ratios and by studying the origin of the air masses with the backward air trajectories according to the HYSPLIT model. Those samples were mainly produced during cold season. The local pollution sources were the dominant sources although one episode of long-range transport from European countries could be observed. (author)

  11. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  12. Polycyclic aromatic hydrocarbons in sediments of China Sea.

    Science.gov (United States)

    Li, Yanxia; Duan, Xiaoyong

    2015-10-01

    Increasing pollution pressures were placed in the coastal and estuarine ecosystems in China because of the elevated pollutants discharged from various sources. Polycyclic aromatic hydrocarbons (PAHs) in the environment were closely linked to human activities, which have been intensively studied for their geochemical interest as markers. In this review, the status of PAH contamination in China Sea was assessed by comprehensive reviews of the concentrations, sources, and fates of PAHs in sediments of China Sea. PAH concentrations in China Sea sediments decreased from north to south due to the higher emissions in North China. Atmosphere was probably the main carrier of PAHs in the north due to the higher contents of atmospheric fine particles and higher wind speeds. However, riverine inputs were probably the most important sources of PAHs in the coastal sediments of South China due to higher rainfall.

  13. Semivolatile Particulate Organic Material Southern Africa during SAFARI 2000

    Science.gov (United States)

    Eatough, D. J.; Eatough, N. L.; Pang, Y.; Sizemore, S.; Kirchstetter, T. W.; Novakov, T.

    2005-01-01

    During August and September 2000, the University of Washington's Cloud and Aerosol Research Group (CARG) with its Convair-580 research aircraft participated in the Southern African Fire-Atmosphere Research Initiative (SAFARI) 2000 field study in southern Africa. Aboard this aircraft was a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), which was used to determine semivolatile particulate material with a diffusion denuder sampler. Denuded quartz filters and sorbent beds in series were used to measure nonvolatile and semivolatile materials, respectively. Results obtained with the PC-BOSS are compared to those obtained with conventional quartz-quartz and Teflon-quartz filter pack samplers. Various 10-120 min integrated samples were collected during flights through the h e troposphere, in the atmospheric boundary layer, and in plumes from savanna fires. Significant fine particulate semivolatile organic compounds (SVOC) were found in all samples. The SVOC was not collected by conventional filter pack samplers and therefore would not have been determined in previous studies that used only filter pack samplers. The SVOC averaged 24% of the fine particulate mass in emissions from the fires and 36% of the fine particulate mass in boundary layer samples heavily impacted by aged emissions from savanna fires. Concentrations of fine particulate material in the atmospheric mixed layer heavily impacted by aged savanna frre emissions averaged 130 micrograms per cubic meter. This aerosol was 85% carbonaceous mated.

  14. A robust sebum, oil, and particulate pollution model for assessing cleansing efficacy of human skin.

    Science.gov (United States)

    Peterson, G; Rapaka, S; Koski, N; Kearney, M; Ortblad, K; Tadlock, L

    2016-10-31

    With increasing concerns over the rise of atmospheric particulate pollution globally and its impact on systemic health and skin ageing, we have developed a pollution model to mimic particulate matter trapped in sebum and oils creating a robust (difficult to remove) surrogate for dirty, polluted skin.

  15. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations

    Science.gov (United States)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    1996-08-01

    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that

  16. Partitioning and source diagnostics of polycyclic aromatic hydrocarbons in rivers in Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z. [College of Environmental Sciences, Peking University, Beijing 100871 (China); Tao, S. [College of Environmental Sciences, Peking University, Beijing 100871 (China)]. E-mail: taos@urban.pku.edu.cn; Pan, B. [College of Environmental Sciences, Peking University, Beijing 100871 (China); Liu, W.X. [College of Environmental Sciences, Peking University, Beijing 100871 (China); Shen, W.R. [Tianjin Environmental Protection Bureau, Tianjin 300191 (China)

    2007-03-15

    Water, suspended particulate matter (SPM), and sediment samples were collected from ten rivers in Tianjin and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), dissolved organic carbon (DOC), particulate organic carbon (POC) in SPM and total organic carbon (TOC) in sediment. The behavior and fate of PAHs influenced by these parameters were examined. Generally, organic carbon was the primary factor controlling the behavior of the 16 PAH species. Partitioning of PAHs between SPM and water phase was studied, and K {sub OC} for some PAH species were found to be significantly higher than the predicted values. The source of PAHs contamination was diagnosed by using PAH isomer ratios. Coal combustion was identified to be a long-term and prevailing contamination source for sediment, while sewage/wastewater source could reasonably explain a short-term PAHs contamination of SPM. - Distribution of PAHs among water, suspended solids and sediment was under strong influence of naturally occurring organic carbon.

  17. Source apportionment of particulate matter in Denmark

    Science.gov (United States)

    Moenster, J.; Glasius, M.; Nielsen, O. J.; Bilde, M.; Jensen, F. P.

    2005-12-01

    Atmospheric particulate matter (PM) has received considerable attention over the last decade as an important component of air pollution, particularly due to its health effects on the exposed population. Typically the mass of particles with diameters smaller that 10 μm (PM10) has been used in large cohort studies to estimate health effects such as increase in hospitalization rate, asthma attacks and premature deaths. Particles smaller than 2.5 μm (PM2.5) and ultra fine particles have been used in various epidemiological studies and correlations between exposure to fine and ultra fine particles and health effects have been found. Limits of acceptable concentrations of PM10, PM2.5 and some carcinogenic species have been made, and it is important to find the origin of the particulate matter to prevent exceeds of these limits. This can be done by measuring particle mass, organic/inorganic fractions of particles, the chemical components and other relevant factors, and then use receptor modeling for source apportionment of the particulate matter. We have done measurements at street level and urban background in Copenhagen, Denmark, to determine the origin of different sizes of particulate matter and the toxic organic compounds connected to these particles. We also did measurements in a small village with less traffic and more residential wood combustion for a comparison between traffic and wood combustion generated pollution. Our results show a significant amount of particulate matter coming from non local sources and are dominated by long-range transported inorganic salts. The amount of these is highly depended on the wind direction and thus on the origin of the wind plume. The origin of the carcinogenic organic compound benzo(a)pyrene was found to be local combustion sources. To prevent events of high particulate matter concentration in Copenhagen, Denmark, a reduction of emission from the local traffic will only lead to a minor effect, since the majority of the

  18. Composição elementar do material particulado presente no aerossol atmosférico do município de Sete Lagoas, Minas Gerais Elemental composition of the particulate matter present in the atmospheric aerosols of Sete Lagoas, MG

    Directory of Open Access Journals (Sweden)

    Paula Guimarães Moura Queiroz

    2007-10-01

    Full Text Available The main objective of this study was the identification of sources generating particulate matter in the atmospheric aerosols of Sete Lagoas, Minas Gerais. The measurement of the mineral composition was accomplished by X-ray diffractometry and the elemental concentration by neutron activation analysis. The results showed that Al, Cl, Cu, Fe, K, Mg and Na are the predominant chemical elements in the total suspended particles (TPS. The presence of Na, Ba, Cl, Cu, Eu, Fe and Sm in those particles with aerodynamic diameter smaller than 10 µm (PM10, indicates that soil dust and ceramic and pig iron industries are the main sources of air quality degradation in the region.

  19. Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs on traffic and suburban sites of a European megacity: Paris (France

    Directory of Open Access Journals (Sweden)

    J. Ringuet

    2012-09-01

    Full Text Available The size distribution of particulate nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs was determined during two field campaigns at a traffic site in summer 2010 and at a suburban site during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation experiment in summer 2009. Both, OPAHs and NPAHs were strongly associated (>85% to fine particles (Dp< 2.5 μm increasing the interest of their study on a sanitary point of view. Results showed really different NPAH and OPAH particle size distributions between both sites. At traffic site, clearly bimodal (notably for NPAHs particle size distributions (Dp = 0.14 and 1.4 μm were observed, while the particle size distributions were more scattered at the suburban site, especially for OPAHs. Bimodal particle size distribution observed at traffic site for the NPAH could be assigned to the vehicle emissions and the particle resuspension. Broadest distribution observed at the suburban site could be attributed to the mass transfer of compounds by volatilization/sorption processes during the transport of particles in the atmosphere. Results also showed that the combination of the study of particle size distributions applied to marker compounds (primary: 1-nitropyrene; secondary: 2-nitrofluoranthene and to NPAH or OPAH chemical profiles bring some indications on their primary and/or secondary origin. Indeed, 1,4-anthraquinone seemed only primary emitted by vehicles while 7-nitrobenz[a]anthracene, benz[a]antracen7,12-dione and benzo[b]fluorenone seemed secondarily formed in the atmosphere.

  20. Toxicity to chicken embryos of organic extracts from airborne particulates separated into five sizes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.

    1988-07-01

    The chicken embryo assay has been used for research on the toxicity of complex extracts derived from different environmental sources, as well as of individual compounds. However, only a few studies have been made on the toxicological effects of extracts derived from airborne particulate matter in chicken embryo. These studies showed that the toxic effect was due to the polycyclic aromatic hydrocarbons (PAHs) in the particles, although their structure and quantity were the factors determining the extent of the toxicity. Airborne particulate matter is composed of particles of different sizes, which can be separated into five classes according to their size by an Andersen high-volume sampler. Each class contained many kinds of compounds such as PAHs. In this study, airborne particulate matter was extracted according to particle size, the extracts analyzed for PAHs, and tested for embryotoxicity.

  1. Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning

    Directory of Open Access Journals (Sweden)

    J. He

    2010-04-01

    Full Text Available An intensive field study was conducted in the urban atmosphere of Singapore to investigate the composition of organic compounds in both gaseous and particulate phases during the period of August to early November 2006. 17 atmospheric samples were collected. These samples were subjected to accelerated solvent extraction with a mixture of dichloromethane and acetone and separated into functional group fractions for analyses by GC/MS. Over 180 organic compounds belonging to three major fractions (n-alkanes, polycyclic aromatic hydrocarbons (PAHs, and polar organic compounds (POCs were identified and quantified. The characteristics and abundance of the n-alkanes, PAHs, mono and dicarboxylic acids, methoxylated phenols and other POCs were determined. The composition of these organic compounds fluctuated temporally with most of them being relatively higher in October than those in other months of the sampling period. 3-D backward air mass trajectory analyses together with the carbon preference index (CPI, molecular diagnostic ratios and molecular markers were used to investigate the origin of organic species measured in this study. Based on these diagnostic tools, the increased abundance of atmospheric organic species during October could be attributed to the occurrence of regional smoke haze episodes due to biomass burning in Indonesia. Among the POCs investigated, phthalic acid and cis-pinonic acid showed a strong linear relationship with maximum daily ozone concentration, indicating secondary organic aerosols (SOA to be an important contributor to ambient atmospheric organics over Singapore.

  2. VIIRSN Level-3 Standard Mapped Image, Particulate Organic Carbon, Monthly, 4km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes Particulate Organic Carbon data from ther NPP-Suomi spacecraft. Measurements are gathered by VIIRS instrument carried aboard the...

  3. VIIRSN Level-3 Standard Mapped Image, Particulate Organic Carbon, 8-Day, 4km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes Particulate Organic Carbon data from the NPP-Suomi Spacecraft Measurements are gathered by the VIIRS instrument carried aboard the...

  4. VIIRSN Level-3 Standard Mapped Image, Particulate Inorganic Carbon, Monthly, 4km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes Particulate Inorganic Carbon data from ther NPP-Suomi spacecraft. Measurements are gathered by VIIRS instrument carried aboard the...

  5. VIIRSN Level-3 Standard Mapped Image, Particulate Inorganic Carbon, 8-Day, 4km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes Particulate Inorganic Carbon data from the NPP-Suomi Spacecraft Measurements are gathered by the VIIRS instrument carried aboard the...

  6. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium

    Science.gov (United States)

    The ability of the white rot fungus Phanerochaete chrysosporium to degrade polycyclic aromatic hydrocarbons (PAHs) that are present in anthracene oil (a distillation product obtained from coal tar) was demonstrated. Analysis by capillary gas chromatography and high-performance li...

  7. Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Bakes, E. L. O.

    2000-01-01

    We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.

  8. 40 CFR 60.132 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf... subpart shall discharge or cause the discharge into the atmosphere from any blast (cupola) or electric furnace any gases which exhibit 10 percent opacity or greater....

  9. Simulation of the propagation and deposition of polycyclic aromatic hydrocarbons for a winter-time period in Baden-Wuerttemberg; Simulation der Ausbreitung und Deposition von polyzyklischen aromatischen Kohlenwasserstoffen fuer eine Winterepisode in Baden-Wuerttemberg

    Energy Technology Data Exchange (ETDEWEB)

    Nester, K. [Forschungzentrum Karlsruhe (Germany). Inst. fuer Meteorologie und Klimaforschung

    1997-12-31

    Polycyclic aromatic hydrocarbons (PAHs) belong to the group of environmentally hazardous substances because of their cancerogenous effect. They occur both as gases and in particulate form and are released by man into the atmosphere as combustion products. They play a role not only in the atmosphere but also in soil. An essential process permitting these substances to penetrate into the soil is by deposition from the atmosphere.- The study had the aim of assessing atmospheric PAH deposition to the soil. The outcome is used to simulate PAH behaviour in soil, a task which also forms part of the interlaboratory project `soil`. As PAHs are regularly measured only in a few places, PAH transfer from atmosphere to soil needs to be numerically modelled. That the model can do this was first of all to be demonstrated for a short period. The result is described in the paper. Subsequently, statements regarding long-term PAH transfer are attempted. (orig.) [Deutsch] Die Polycyklischen Aromatischen Kohlenwasserstoffe (PAK) gehoeren wegen ihrer kanzerogenen Wirkungen zu den umweltbelastenden Substanzen. Sie treten sowohl als Gase als auch als Partikel auf und werden antropogen als Verbrennungsprodukte in die Atmosphaere freigesetzt. Neben ihrer Wirkung in der Atmosphaere spielen sie im Boden eine Rolle. Ein wesentlicher Prozess, der diese Substanzen in den Boden gelangen laesst, ist die Deposition aus der Atmosphaere zum Boden. Ziel der Untersuchungen war es, den atmosphaerischen Eintrag der PAK in den Boden zu bestimmen. Dieser Eintrag dient der Simulation des Verhaltens der PAK im Boden, der ebenfalls Bestandteil des Verbundprojekts `Boden` war. Da es nur wenige Stellen gibt, an denen regelmaessig PAK`s gemessen werden, ist es notwendig, den PAK Eintrag aus der Atmosphaere zum Boden mittels Modellrechnungen abzuschaetzen. Dabei sollte zunaechst fuer eine kurze Episode gezeigt werden, dass das Modell in der Lage ist, dies zu leisten. Dieses Ergebnis wird im folgenden vorgestellt

  10. Temperature-induced volatility of molecular markers in ambient airborne particulate matter

    Directory of Open Access Journals (Sweden)

    C. R. Ruehl

    2010-08-01

    Full Text Available Molecular markers are organic compounds used to represent known sources of particulate matter (PM in statistical source apportionment studies. The utility of molecular markers depends on, among other things, their ability to represent PM volatility under realistic atmospheric conditions. We measured the particle-phase concentrations and temperature-induced volatility of commonly-used molecular markers in California's heavily polluted San Joaqin Valley. Concentrations of elemental carbon, organic carbon, levoglucosan, and polycyclic aromatic hydrocarbons were not reduced by mild (~10 K heating. In contrast, both hopane/sterane and n-alkane concentrations were reduced, especially during the summer sampling events at the urban site. These results suggest that hopanes and steranes have effective saturation concentrations ~1 μg m−3, and therefore can be considered semi-volatile in realistic ambient conditions. The volatility behavior of n-alkanes during the urban summer is consistent with that predicted for absorption by suberic acid (a C8 diacid using a group contribution modelling method. Observations can also be matched by an absorbent whose composition is based on recently-obtained high-resolution aerosol mass spectrometer factors (approximately 33% "hydrocarbon-like" and 67% oxygenated organic aerosol. The diminished volatility of the n-alkanes, hopanes, and steranes during rural and/or winter experiments could be explained by a more oxygenated absorbing phase along with a non-absorptive partitioning mechanism, such as adsorption to soot. This suggests that the temperature-induced volatility of large hydrocarbons in PM is most important if a relatively non-polar absorbing organic phase exists. While the activity coefficients of most organic aerosol compounds may be close to unity, the assumption of ideality for large hydrocarbons (e.g., hopanes may result in large errors in partitioning calculations.

  11. Characterization of chemical components and bioreactivity of fine particulate matter (PM2.5) during incense burning.

    Science.gov (United States)

    Lui, K H; Bandowe, Benjamin A Musa; Ho, Steven Sai Hang; Chuang, Hsiao-Chi; Cao, Jun-Ji; Chuang, Kai-Jen; Lee, S C; Hu, Di; Ho, K F

    2016-06-01

    The chemical and bioreactivity properties of fine particulate matter (PM2.5) emitted during controlled burning of different brands of incense were characterized. Incenses marketed as being environmentally friendly emitted lower mass of PM2.5 particulates than did traditional incenses. However, the environmentally friendly incenses produced higher total concentrations of non-volatile polycyclic aromatic hydrocarbons (PAHs) and some oxygenated polycyclic aromatic hydrocarbons (OPAHs). Human alveolar epithelial A549 cells were exposed to the collected PM2.5, followed by determining oxidative stress and inflammation. There was moderate to strong positive correlation (R > 0.60, p incenses contained higher concentrations of several PAH and OPAH compounds than did traditional incense. Moreover, these PAHs and OPAHs were strongly correlated with inflammatory responses. The findings suggest a need to revise existing regulation of such products.

  12. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater — Using humic acid and iron nano-sized colloids as test particles

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret;

    2015-01-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution...... to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMWPAHs was highest in the Particulate fractions (particles N 0.7 μm). The highest concentration of PAHs in the Colloidal...... fraction was found in the sample with occurrence of small nano-sized particles (b10 nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater. © 2015 Elsevier B.V. All...

  13. Atmospheric emissions as a tool in evaluation of sustainability research in oil industry; Emissao atmosferica como uma ferramenta na avaliacao do desenvolvimento sustentavel na industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Zanella, Nicolas P.; Baich, Paulo R.M.; Machado, Maria I. [Fundacao Universidade do Rio Grande (FURG), RS (Brazil)

    2008-07-01

    This work is directly to analysis of atmosphere surrounding Ipiranga Refinery; witch is located in the city of Rio Grande, in estate of Rio Grande do Sul. The refinery is surrounded by neighborhood, witch are impacted by atmospheric emissions of refinery. The objective of this work is correlating the refinery to the inhabitants that lives near the refinery, using an environmental sustainability index. This work will be achieve by analysis of Polycyclic Aromatic Hydrocarbons (PAH) bounded in particulate matter with diameter of 100 {mu}m (PTS), the acquisition of health data on the city hospitals and correlation of this data with PAH concentrations in Particulate Matter. The Samples were obtain by FEPAM, witch have three samples sites in the center of city. The samples was obtained by a High Volume Sampler equipped with quartz fiber filters. The meteorological data important to this work, like wind direction and speed, will be obtain in Meteorological Station on FURG. The results expect to this work are the quantification of PAH bounded with PM-100 and the quantification of PAH emitted by Ipiranga Refinery. And possibly, to correlate this data to made the Environmental Sustainability index. (author)

  14. Airborne Particulate Threat Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  15. Development of two fine particulate matter standard reference materials (<4 μm and <10 μm) for the determination of organic and inorganic constituents.

    Science.gov (United States)

    Schantz, Michele M; Cleveland, Danielle; Heckert, N Alan; Kucklick, John R; Leigh, Stefan D; Long, Stephen E; Lynch, Jennifer M; Murphy, Karen E; Olfaz, Rabia; Pintar, Adam L; Porter, Barbara J; Rabb, Savelas A; Vander Pol, Stacy S; Wise, Stephen A; Zeisler, Rolf

    2016-06-01

    Two new Standard Reference Materials (SRMs), SRM 2786 Fine Particulate Matter (Particulate Matter (particulate matter (PM). These materials have been characterized for the mass fractions of selected polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs, brominated diphenyl ether (BDE) congeners, hexabromocyclododecane (HBCD) isomers, sugars, polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners, and inorganic constituents, as well as particle-size characteristics. These materials are the first Certified Reference Materials available to support measurements of both organic and inorganic constituents in fine PM. In addition, values for PAHs are available for RM 8785 Air Particulate Matter on Filter Media. As such, these SRMs will be useful as quality control samples for ensuring compatibility of results among PM monitoring studies and will fill a void to assess the accuracy of analytical methods used in these studies. Graphical Abstract Removal of PM from filter for the preparation of SRM 2786 Fine Particulate Matter.

  16. Temporal variability of Polycyclic Aromatic Hydrocarbons in a receptor site of Puebla -Tlaxcala Valley.

    Science.gov (United States)

    Padilla Barrera, Zuhelen; Torres Jardón, Ricardo; Gerardo Ruiz, Luis; Castro, Telma

    2015-04-01

    The Puebla-Tlaxcala Valley is a region with high population scattered over two states, where emissions from combustion of a variety of materials and fuels represent a major problem in the deterioration of air quality. Polycyclic aromatic hydrocarbons (PAHs) are a class of semi-volatile organic compounds that are formed during combustion. PAH are present in large amounts in the particulate matter comes from the combustion and no combustion. The particle-bound PAHs are formed by accumulation and condensation mechanisms in the particle. In its condensed form are mainly associated with fine particles (< 0.10 um). The major emission sources of PAHs are open burning, industrial boilers and emission from cars and trucks. Emission rates of PAHs vary significantly depending on vehicle use: fuel type, engine type and catalytic converter, and once emitted into the atmosphere, particulate PAHs may undergo transformation by photo-oxidation. The measurements were made with a photoelectric aerosol sensor (PAS 2000 CE) and a diffusion charger (DC 2000 CE), the first determines the concentration of PAHs, while the second determines the active surface of particles. The use of these two sensors in parallel is a useful tool to identify quantitatively the greatest source of emission, describe the physical and chemical characteristics of the particles. Correlations between PAHs with the active surface (DC), NOy and CO, together with an analysis of weather atmospheric transport to approximate the possible origin of these particles. The coefficient PAHs / DC associated with the backward trajectory analysis is a tool to identify potential areas of emission. The correlation between PAHs and NOx reflects emissions associated with diesel combustion, while the correlation between PAHs and CO, combustion of gasoline. Concentration patterns were recorded over 24 hours in both PAHs and DC. The average concentration of PAHs was 4.9 ng/m3 and the maximum of 81.9 ng/m3 , while the average active

  17. Effects of Maternal Exposure to Atmospheric Particulates during Pregnancy and Lactation Period on Central Nervous System of Filial Generation among Rats%妊娠期和哺乳期暴露于大气颗粒物对仔鼠中枢神经系统的影响

    Institute of Scientific and Technical Information of China (English)

    李久存; 魏永杰; 陈田; 钱琴; 郭建; 宋艳双; 胡洁琼; 贾光

    2011-01-01

    To study the effects on learning and memory ability and the content changes of monoamine neurotransmitter in hippocampus of filial generation when maternal rats exposed to atmospheric particulates during pregnancy and lactation period. Methods During Dec. 28th, 2009 to Feb. 7th, 2010, the experimental group was exposed to actual atmosphere in some area of Beijing in pregnancy and lactation period, while the control group exposed to atmosphere filtered without particulates. For the three weeks old young rats, the learning and memory ability were examined by using Morris water maze, while the content changes of monoamine neurotransmitter in hippocampus of neonatal mice were determined. Results In the place navigation period, the potential time finding flat incubation for offsprings in exposed group was significantly longer than that in the control group; in the spatial probe test period, the time of crossing the quadrant with flat and the traversing time decreased in exposed group. The contents of norepinephrine (NE) and 5-hydroxytryptamine(5-HT) in hippocampos of exposed rats were significantly increased, while dopamine (DA) was decreased but only with statistical significance in male rats.Conclusion Exposure to ambient atmospheric particulates in pregnancy and lactation periods can affect the central nervous system function of filial generation rats.%目的 研究母鼠在孕期及子代哺乳期暴露于大气颗粒物对仔鼠学习记忆能力以及海马单胺类神经递质含量的影响.方法 选择健康成年妊娠0d(见栓当天)SD大鼠,于2009年12月28日-2010年2月7日,采用平行的两个暴露箱,将妊娠期和哺乳期的暴露组孕鼠暴露于室外大气,对照组孕鼠暴露于经过滤装置滤除颗粒物后的大气;对其3周龄仔鼠用Morris水迷宫检测学习记忆能力,并检测仔鼠海马组织单胺类神经递质含量.结果 暴露组仔鼠寻找平台潜伏期时间长于对照组(P<0.001).暴露组仔鼠海马

  18. Regional-scale simulation of transport and transformations of semi-volatile polycyclic aromatic hydrocarbons (PAHs) in East Asia: diurnal variations investigation

    Science.gov (United States)

    Mu, Qing; Lammel, Gerhard; Cheng, Yafang

    2015-04-01

    Semi-volatile PAHs are major pollutants of urban air, mostly regionally transported and reaching remote environments[1]. Some semi-volatile PAHs are carcinogenic. About 22% of global PAHs emissions are in China. The transport and sinks (atmospheric reactions, deposition) of semi-volatile PAHs in East Asia are studied using a modified version of the Weather Research and Forecasting model coupled with chemistry (WRF/Chem [2]). For this purpose, PAHs' gas and particulate phase chemical reactions and dry and wet deposition processes are included. We use emissions of 2008 [3] which include technical combustion processes (coal, oil, gas, waste and biomass) and open fires and apply diurnal time functions as those of black carbon. The model was run for phenanthrene (3-ring PAH, p = 1.5×10-2 Pa at 298 K) and benzo(a)pyrene (5-ring PAH, p = 7×10-7 Pa) for July 2013 with hourly output and 27 km horizontal grid spacing. The comparison of model predicted phenanthrene concentrations with measurements at a rural site near Beijing (own data, unpublished) validates the model's ability to simulate diurnal variations of gaseous PAHs. The model's performance is better in simulating day time than night time gaseous PAHs. The concentrations of PAHs had experienced significant diurnal variations in rural and remote areas of China. Elevated concentration levels of 40-60 ng m-3 for phenanthrene and 1-10 ng m-3 for benzo(a)pyrene are predicted in Shanxi, Guizhou, the North China Plain, the Sichuan Basin and Chongqing metropolitan areas due to the high emission densities at those locations. References [1] Keyte, I.J., Harrison, R.M., and Lammel, G., 2013: Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons - a review, Chem. Soc. Rev., 42, 9333-9391. [2] Grell, G.A, Peckham, S.E, Schmitz, R, McKeen, S.A, Frost, G, Skamarock, W.C, and Eder, B., 2005: Fully coupled online chemistry within the WRF model, Atmos. Environ., 39, 6957-6975. [3] Shen, H. Z

  19. Seasonal variations of fine particulate organosulfates derived from biogenic and anthropogenic hydrocarbons in the mid-Atlantic United States

    Science.gov (United States)

    Meade, L. Edward; Riva, Matthieu; Blomberg, Max Z.; Brock, Amanda K.; Qualters, Elisa Marie; Siejack, Richard A.; Ramakrishnan, Kumar; Surratt, Jason D.; Kautzman, Kathryn E.

    2016-11-01

    Organosulfates (OSs) are an important and ubiquitous class of organic compounds found in ambient fine particulate matter (PM2.5) that serves as markers for multiphase chemical processes leading to secondary organic aerosol (SOA) formation. In this study, high-volume filter sampling was implemented to collect PM2.5 samples during the August 2012-June 2013 time period in suburban Towson, MD. By utilizing ultra-performance liquid chromatography coupled with high-resolution quadrupole time-of-flight mass spectrometry employing an electrospray ionization source (UPLC/ESI-HR-QTOFMS), 58 OSs were characterized and quantified in PM2.5 collected across all seasons. The selection of the extraction solvent was also found to be important for OS characterization. Seasonal trends demonstrate that the atmospheric oxidation of biogenic volatile organic compounds (VOCs) dominates OS formation in early fall and spring, with substantial contributions from isoprene OS (∼15 ng/m3), and limonene and α-pinene OS (∼5 ng/m3). From November to March anthropogenic OSs, including polycyclic aromatic hydrocarbon (PAH)- and alkane-derived OSs recently characterized in laboratory-generated SOA, reached their highest levels averaging 4 ng/m3. Nitrogen-containing OSs derived from terpene chemistry remain consistent over the sampling period averaging 2 ng/m3 and do not demonstrate strong seasonal fluctuations. Correlations between the identified OSs and known organic acids that arise from either the atmospheric oxidation of biogenic or anthropogenic VOCs assist in source apportionment. Meteorological data coupled with air mass back-trajectory analyses using HYSPLIT provide insight into meteorological and transport conditions that promote the formation/occurrence of OSs within the mid-Atlantic U.S. region.

  20. Antileishmanial activity of polycyclic derivatives

    Directory of Open Access Journals (Sweden)

    Sarciron M.E.

    2005-09-01

    Full Text Available 33 polycyclic derivatives have been studied and tested on Leishmania donovani and L. major promastigotes. Their antileishmanial activity was assessed in vitro and an assay of their cytotoxicity was realized on human myelomonocytic cell line. The reference molecules used in the assays were amphotericin B and pentamidine. Among the compounds tested, 29 possess an antileishmanial activity; 25 of those were more active against L. donovani than amphotericin B, and nine were as effective as amphotericin B against L. major. Many synthesized derivatives were more active against L.donovani than against L. major. The cytotoxicity studies have shown that among the thirty-three derivatives tested, 12 molecules have an IC50 towards THP-1 cells about equal than that reference drugs, the 21 other derivatives are much less toxic. A 3D QSAR study was undertaken and has permitted to predict activity against L. donovani and L. major and to highlight critical area to optimize activity against the two species.

  1. Birds and polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Albers, P.H.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.

  2. Deuterated polycyclic aromatic hydrocarbons: Revisited

    CERN Document Server

    Doney, Kirstin D; Mori, Tamami; Onaka, Takashi; Tielens, A G G M

    2016-01-01

    The amount of deuterium locked up in polycyclic aromatic hydrocarbons (PAHs) has to date been an uncertain value. We present a near-infrared (NIR) spectroscopic survey of HII regions in the Milky Way, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) obtained with AKARI, which aims to search for features indicative of deuterated PAHs (PAD or Dn-PAH) to better constrain the D/H ratio of PAHs. Fifty-three HII regions were observed in the NIR (2.5-5 {\\mu}m), using the Infrared Camera (IRC) on board the AKARI satellite. Through comparison of the observed spectra with a theoretical model of deuterated PAH vibrational modes, the aromatic and (a)symmetric aliphatic C-D stretch modes were identified. We see emission features between 4.4-4.8 {\\mu}m, which could be unambiguously attributed to deuterated PAHs in only six of the observed sources, all of which are located in the Milky Way. In all cases, the aromatic C-D stretching feature is weaker than the aliphatic C-D stretching feature, and, in the case o...

  3. Simultaneously catalytic removal of NOx and particulate matter on diesel particulate filter

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The simultaneous removal of NOx and particulate matter (PM) exhausted from diesel engine was studied with a diesel particulate filter (DPF) on which a mixed metal oxide catalyst, Cu0.95K0.05Fe2O4 was loaded. The NOx reduction was observed in the same temperature range of the CO2 formation, implying the occurrence of the simultaneous removal of NOx and PM in an oxidizing atmosphere. It was shown that SOF and soot in PM are attributed to the reduction of NOx at lower and higher temperatures, respectively. The oxidation of PM was enhanced by the coexistence of NO and O2. The ignition and exhaustion temperatures of PM decrease as the order NO>O2>NO+O2. This is a combined process of PM trapping as well as the catalytic reactions of soot oxidation and NOx reduction, promising the most desirable after-treatment of diesel exhausts.

  4. Diurnal variability of polycyclic aromatic compound (PAC) concentrations: Relationship with meteorological conditions and inferred sources

    Science.gov (United States)

    Alam, Mohammed S.; Keyte, Ian J.; Yin, Jianxin; Stark, Christopher; Jones, Alan M.; Harrison, Roy M.

    2015-12-01

    Polycyclic aromatic hydrocarbons (PAH) and their nitro and oxy derivatives have been sampled every three hours over one week in winter at two sites in Birmingham UK. One site is heavily influenced by road traffic and is close to residential dwellings, while the other site is a background urban location at some distance from both sources of emission. The time series of concentrations has been examined along with the ratio of concentrations between the two sampling sites. A comparison of averaged diurnal profiles has shown different patterns of behaviour which has been investigated through calculating ratios of concentration at 18:00-21:00 h relative to that at 06:00-09:00 h. This allows identification of those compounds with a strong contribution to a traffic-related maximum at 06:00-09:00 h which are predominantly the low molecular weight PAHs, together with a substantial group of quinones and nitro-PAHs. Changes in partitioning between vapour and particulate forms are unlikely to influence the ratio as the mean temperature at both times was almost identical. Most compounds show an appreciable increase in concentrations in the evening which is attributed to residential heating emissions. Compounds dominated by this source show high ratios of 18:00-21:00 concentrations relative to 06:00-09:00 concentrations and include higher molecular weight PAH and a substantial group of both quinones and nitro-PAH. The behaviour of retene, normally taken as an indicator of biomass burning, is suggestive of wood smoke only being one contributor to the evening peak in PAH and their derivatives, with coal combustion presumably being the other main contributor. Variations of PAH concentrations with wind speed show a dilution behaviour consistent with other primary pollutants, and high concentrations of a range of air pollutants were observed in an episode of low temperatures and low wind speeds towards the end of the overall sampling period consistent with poor local dispersion

  5. Bioethanol-gasoline fuel blends: exhaust emissions and morphological characterization of particulate from a moped engine.

    Science.gov (United States)

    Seggiani, Maurizia; Prati, M Vittoria; Costagliola, M Antonietta; Puccini, Monica; Vitolo, Sandra

    2012-08-01

    This study was aimed at evaluating the effects of gasoline-ethanol blends on the exhaust emissions in a catalyst-equipped four-stroke moped engine. The ethanol was blended with unleaded gasoline in at percentages (10, 15, and 20% v/v). The regulated pollutants and the particulate matter emissions were evaluated over the European ECE R47 driving cycle on the chassis dynamometer bench. Particulate matter was characterized in terms of total mass collected on filters and total number ofparticles in the range 7 nm-10 microm measured by electrical low-pressure impactor (ELPI). In addition, particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions were evaluated to assess the health impact of the emitted particulate. Finally, an accurate morphological analysis was performed on the particulate by high-resolution transmission electron microscope (TEM) equipped with a digital image-processing/data-acquisition system. In general, CO emission reductions of 60-70% were obtained with 15 and 20% v/v ethanol blends, while the ethanol use did not reduce hydrocarbon (HC) and NOx emissions. No evident effect of ethanol on the particulate mass emissions and associated PAHs emissions was observed. Twenty-one PAHs were quantified in the particulate phase with emissions ranging from 26 to 35 microg/km and benzo[a]pyrene equivalent (BaPeq) emission factors from 2.2 to 4.1 microg/km. Both particulate matter and associated PAHs with higher carcinogenic risk were mainly emitted in the submicrometer size range (<0.1 microm). On the basis of the TEM observations, no relevant effect of the ethanol use on the particulate morphology was evidenced, showing aggregates composed ofprimary particles with mean diameters in the range 17.5-32.5 nm.

  6. Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Tao, S.; Pan, B.; Fan, W.; He, X.C.; Zuo, Q.; Wu, S.P.; Li, B.G.; Cao, J.; Liu, W.X.; Xu, F.L.; Wang, X.J.; Shen, W.R.; Wong, P.K. [Peking University, Beijing (China). College of Environmental Science

    2005-03-01

    Abstract: Tianjin urban/industrial complex is highly polluted by some persistent organic pollutants. In this study, the levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) were tested in sediment, water, and suspended particulate matter (SPM) samples in 10 rivers in Tianjin. The total concentration of 16 PAHs varied from 0.787 to 1943 {mu}g/g dry weight in sediment, from 45.81 to 1272 ng/L in water, and from 0.938 to 64.2 {mu}g/g dry weight in SPM. The levels of PAHs in these media are high in comparison with values reported from other river and marine systems. Variability of total concentrations of PAHs in sediment, water, and SPM from nine different rivers is consistent with each other. No obvious trends of total PAHs concentration variations were found between upstream and downstream sediment, water, and SPM samples for most rivers, which indicate local inputs and disturbances along these rivers. The spatial distributions of three-phase PAHs are very similar to each other, and they are also similar to those found in topsoil. However, their chemical profiles are significantly different from that of topsoil. The change of profiles is consistent with the different aqueous transport capability of 16 PAHs. Low molecular weight PAHs predomination suggests a relatively recent local source and coal combustion source of PAHs in the study area.

  7. 保定市大气气溶胶中正构烷烃的污染水平及来源识别%Pollution Characteristics and Source Identification of Atmospheric Particulate Matters n-Alkanes in Baoding City

    Institute of Scientific and Technical Information of China (English)

    李杏茹; 杜熙强; 王英锋; 王跃思

    2013-01-01

    Organic matter has been a very important component in the ambient particulate matter of big cities in China. In order to investigate the mass concentrations and sources of the organic matter which are adsorbed in ambient particulate matters in the industry cities of Hebei province, aerosol samples were collected with Anderson sampler during Sep. 2009 to Aug. 2010, in Baoding city, Hebei province. The concentration of n-alkanes was determined via GC-MS. About 66. 7% of the daily average concentrations of fine particulate matters were higher than the 24-hour average threshold value of class II standard of the ambient air quality standard ( GB 3095-2012, 75 μg·m-3). About 96% of the daily average concentrations of inhalable particles were higher than 150 μg·m ( GB 3095 - 2012). The total concentration of n-alkanes was in the range of 111. 23-979. 81 μg·m-3 with an average of 264. 2 μg·m-3. The n-alkene homologues from C14 to C32 were detected with different peak carbon numbers ranging from 20 to 27 in different seasons. In summer, the peak carbon number was 27 , while it was C20, C21 or C22 in winter and spring. The CPI values were 0. 97 , 1. 24 , 0. 92 and 0.86 in spring, summer, autumn and winter, respectively, with an average of 1.01. These results indicated that the incomplete combustion of fossil fuel and vehicle emissions was the main resource of n-alkanes in winter and spring, and the high plant waxes were playing a major role in summer and autumn. The primary sources were anthropogenic activities all year round.%有机物已成为我国城市大气颗粒物中最重要组成部分.为认知河北工业城市大气颗粒物中有机物浓度水平和来源,于2010年9月~ 2011年8月,利用安德森9级惯性撞击式颗粒物采样器在河北省保定市采集了大气颗粒物样品,采用有机溶剂萃取-气相色谱/质谱法定量分析了其中的正构烷烃.结果表明,采样期间保定市大气细粒子日均浓度67%超过GB 3095

  8. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer

    Directory of Open Access Journals (Sweden)

    Thamaraiselvan Rengarajan

    2015-03-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are a group of compounds consisting of two or more fused aromatic rings. Most of them are formed during incomplete combustion of organic materials such as wood and fossil fuels, petroleum products, and coal. The composition of PAH mixtures varies with the source and is also affected by selective weathering effects in the environment. PAHs are ubiquitous pollutants frequently found in a variety of environments such as fresh water and marine sediments, the atmosphere, and ice. Due to their widespread distribution, the environmental pollution due to PAHs has aroused global concern. Many PAHs and their epoxides are highly toxic, mutagenic and/or carcinogenic to microorganisms as well as to higher forms of life including humans. The main aim of this review is to provide contemporary information on PAH sources, route of exposure, worldwide emission rate, and adverse effects on humans, especially with reference to cancer.

  9. Atmospheric Plasma Depainting

    Science.gov (United States)

    2014-11-19

    Plasma Carbon Dioxide Water Vapor 11 Atmospheric Plasma Depainting, ASETSDefense, Nov 19, 2014 Features and Benefits of APCR Technology Feature...Depainting, ASETSDefense, Nov 19, 2014 14 APC on Aluminum Removal to Primer RAM on Carbon Fiber Partial Topcoat Removal APC Topcoat RAM...60Hz Plasma Flux™ Power Supply VENT To Facility HEPA <= Filtration COTS Six-Axis Robot Aircraft part Particulate Collection System

  10. Quantitative elemental determination of the particulate matter in the atmosphere of Pachuca city and the Real del Monte village, Hidalgo by means of PIXE technique; Determinacion elemental cuantitativa de la materia particulada en la atmosfera de la ciudad de Pachuca y el poblado de Real del Monte, Hidalgo, mediante la tecnica PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Guasso G, C.L. [ITT, 50000 Toluca (Mexico)

    2001-07-01

    All the pollutants that are generated so much of anthropogenic activities as natural cause effects to the health, and of course its increase the atmospheric pollution. Today in day for the great advance of the technology other pollutants are even generated but noxious to the human being's health, such it is the case of the particles, which are also called particulate matter airborne (MPA). This has motivated, to establish control measures leaning in collection strategies and certified analysis techniques, accurate and reliable. In the National Institute of Nuclear Research (ININ) they have been carried out studies on particulate matter airborne. In 1991 it was installed, calibrated and validated the nuclear technique of atomic origin based on proton beams known as PIXE. The characterization of the (MPA) it is carried out applying this technique and the collection by means of Dichotomous collectors (SFU). The thesis work that is presented next, includes the topic of the atmospheric pollution by particulate matter airborne (MPA) in a mining region, inside the Hidalgo State. The study was carried out during the 1998 winter season, only embracing the whole month of March in alternate days giving a total of 112 samples. Two sites that are highly active in the mining were studied, these are: the Real del Monte town and the Hidalgo state capital: Pachuca. Four samples per day were collected beginning to the 7:00 am--7:00 pm (daytime period) and concluding to the 7:00 pm -7:00 am (nocturne period). The characterization of its elementary content is carried out using the X-ray emission induced by particles technique (PIXE) that is a nuclear technique able to analyze 23 chemical elements beginning from the Al to the Pb, it requires of a very small sample quantity, it is very sensitive and it is not destructive. This characterization one carries out so much for fraction PM{sub 2.5} (fine) like as PM{sub 10} (thick) in both sites, also it was analyzed the temporary

  11. Analytical Procedure Development to Determine Polycyclic Aromatic Compounds in the PM{sub 2}.5-PM{sub 1}0 Fraction of Atmospheric Aerosols; Desarrollo de una Metodologia Analitica para la Determinacion de Compuestos Aromaticos Policiclicos en las Fracciones PM{sub 2}.5-PM{sub 1}0 del Aerosol Atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Barrado, A. I.; Garcia, S.; Perez, R. M.

    2013-06-01

    This paper presents an optimized and validated analytical methodology for the determination of various polycyclic aromatic compounds in ambient air using liquid chromatography with fluorescence detection. This analysis method was applied to samples obtained during more than one year in an area of Madrid. Selected compounds have included thirteen polycyclic hydrocarbons considered priorities by the EPA, and hydroxylated derivatives, which have been less investigated in air samples by liquid chromatography with fluorescence detection. We have characterized and compared the concentration ranges of compounds identified and studied seasonal and monthly variations. In addition, the techniques have been applied to study multivariate correlations, factor analysis and cluster analysis to extract as much information as possible for interpretation and more complete and accurate characterization of the results and their relationship with meteorological parameters and physicochemical. (Author) 50 refs.

  12. Evaluation of airborne particulate matter pollution in Kenitra City, Morocco

    Directory of Open Access Journals (Sweden)

    Abdelfettah Benchrif

    2013-04-01

    Full Text Available Two size fractions of atmospheric particulate matter < 2.5 µm and 2.5-10 µm were collected in Kenitra City from February 2007 to February 2008. The sampling was done using a Gent Stacked sampler on nuclepore polycarbonate filters and the collected filters were analyzed using Total Reflection X-Ray Fluorescence (TXRF and Atomic Absorption Spectroscopy (AAS. The particulate matter trends show higher concentrations during the summer as compared to other seasons. The highest concentrations were obtained for Ca in coarse particles and Fe for fine particles. However, the lowest concentrations were observed for Cd in both particulate sizes. The principal component analysis (PCA based on multivariate study enabled the identification of soil, road dust and traffic emissions as common sources for coarse and fine particles.

  13. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements

    Science.gov (United States)

    Cao, Xinyue; Hao, Xuewei; Shen, Xianbao; Jiang, Xi; Wu, Bobo; Yao, Zhiliang

    2017-01-01

    Polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 18 diesel trucks of different sizes and with different emission standards were tested in Beijing using a portable emission measurement system (PEMS). Both the gaseous- and particulate-phase PAHs and NPAHs were quantified by high-performance liquid chromatography (HPLC) in the laboratory. The emission factors (EFs) of the total PAHs from light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs) were 82229.11 ± 41906.06, 52867.43 ± 18946.47 and 93837.35 ± 32193.14 μg/km, respectively, much higher than the respective values of total NPAHs from their counterpart vehicles. The gaseous phase had an important contribution to the total PAHs and NPAHs, with a share rate of approximately 69% and 97% on average, respectively. The driving cycle had important impacts on the emissions of PAHs and NPAHs, especially for LDDTs and HDDTs. Higher emissions of PAHs and NPAHs were detected on non-highway roads compared to that on highways for these two types of vehicles. Compared to the results of different studies, the difference in the EFs of PAHs and NPAHs can reach several orders of magnitudes, which would introduce errors in the development of an emission inventory of PAHs and NPAHs.

  14. Scavenging of particulate elemental carbon into stratus cloud

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Naoki; Maeda, Takahisa [National Inst. for Resources and Environment, Tsukuba (Japan)

    1995-12-31

    The role of atmospheric aerosols on the alternation of cloud radiative properties has widely been recognized since 1977 when Tomey and his coworkers have numerically demonstrated the effect of increased cloud condensation nuclei (CCN). At the same time, cloud processes are one of the most important factor in controlling the residence time of atmospheric aerosols through the wet removal process. The redistribution of the size and the composition of pre-cloud aerosols is also the important role of cloud process on the nature of atmospheric aerosols. In order to study these cloud-aerosol interaction phenomena, the incorporation of aerosols into cloud droplets is the first mechanism to be investigated. Among the several mechanisms for the incorporation of aerosols into cloud droplets, nucleation scavenging, is the potentially important process in the view of cloud-aerosol interactions. This critical supersaturation for a given radius of a particle can be theoretically calculated only for pure species, e.g., NaCl. However, a significant portion of the atmospheric aerosols is in the form of internal mixture of multiple components, such as SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +} and particulate elemental carbon. The knowledge acquired by field measurements is therefore essential on this subject. The present study focuses on the scavenging of major components of urban atmospheric aerosols, in particular the incorporation of particulate elemental carbon into stratus cloud. Particulate elemental carbon is the strongest light absorbing species in visible region, and has potential to change the optical property of cloud. On the basis of the measurements conducted at a mountain located in the suburb of Tokyo Metropolitan area, Japan, some insights on the scavenging of particulate elemental carbon into cloud droplet will be presented

  15. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  16. Trans-Pacific and regional atmospheric transport of anthropogenic semivolatile organic compounds in the Western United States

    Science.gov (United States)

    Primbs, Toby

    The atmospheric transport of anthropogenic semivolatile organic compounds (SOCs) from Asian sources to the Western U.S. was investigated. In addition, the SOC extraction method was optimized. Hansen solubility parameter plots were used to aid in the pressurized liquid extraction (PLE) solvent selection of air sampling media in order to minimize polymeric matrix interferences. To estimate the emissions of anthropogenic semivolatile organic compounds (SOCs) from East Asia and to identify unique SOC molecular markers in Asian air masses, air samples were collected on the island of Okinawa, Japan in Spring 2004. Elevated concentrations of hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), and particulate-phase polycyclic aromatic hydrocarbons (PAHs) were attributed to air masses from China. A large proportion of the variation in the current use pesticides, gas-phase PAHs, and polychlorinated biphenyl (PCB) concentrations was explained by meteorology. Using measured PAH, carbon monoxide (CO), and black carbon concentrations and estimated CO and black carbon emission inventories, the emission of 6 carcinogenic particulate-phase PAHs were estimated to be 1518-4179 metric tons/year for all of Asia and 778-1728 metric tons/year for only China. Atmospheric measurements of anthropogenic SOCs were made at Mt. Bachelor Observatory (MBO), located in Oregon's Cascade Range. PAH concentrations at MBO increased with the percentage of air mass time in Asia and, in conjunction with other data, provided strong evidence that particulate-phase PAHs are emitted from Asia and undergo trans-Pacific atmospheric transport to North America. Enhanced HCB, alpha-HCH, and gamma-HCH concentrations also occurred during trans-Pacific atmospheric transport, compared with regional (Western U.S.) air masses during similar time periods. Gas-phase PAH and fluorotelomer alcohol (FTOH) concentrations significantly increased with the percentage of air mass time

  17. Risk of human exposure to polycyclic aromatic hydrocarbons: A case study in Beijing, China.

    Science.gov (United States)

    Yu, Yanxin; Li, Qi; Wang, Hui; Wang, Bin; Wang, Xilong; Ren, Aiguo; Tao, Shu

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) can cause adverse effects on human health. The relative contributions of their two major intake routes (diet and inhalation) to population PAH exposure are still unclear. We modeled the contributions of diet and inhalation to the overall PAH exposure of the population of Beijing in China, and assessed their human incremental lifetime cancer risks (ILCR) using a Mont Carlo simulation approach. The results showed that diet accounted for about 85% of low-molecular-weight PAH (L-PAH) exposure, while inhalation accounted for approximately 57% of high-molecular-weight PAH (H-PAH) exposure of the Beijing population. Meat and cereals were the main contributors to dietary PAH exposure. Both gaseous- and particulate-phase PAHs contributed to L-PAH exposure through inhalation, whereas exposure to H-PAHs was mostly from the particulate-phase. To reduce the cancer incidence of the Beijing population, more attention should be given to inhaled particulate-phase PAHs with considerable carcinogenic potential.

  18. Emission factors of polycyclic aromatic hydrocarbons from domestic coal combustion in China.

    Science.gov (United States)

    Geng, Chunmei; Chen, Jianhua; Yang, Xiaoyang; Ren, Lihong; Yin, Baohui; Liu, Xiaoyu; Bai, Zhipeng

    2014-01-01

    Domestic coal stove is widely used in China, especially for countryside during heating period of winter, and polycyclic aromatic hydrocarbons (PAHs) are important in flue gas of the stove. By using dilution tunnel system, samples of both gaseous and particulate phases from domestic coal combustion were collected and 18 PAH species were analyzed by GC-MS. The average emission factors of total 18 PAH species was 171.73 mg/kg, ranging from 140.75 to 229.11 mg/kg for bituminous coals, while was 93.98 mg/kg, ranging from 58.48 to 129.47 mg/kg for anthracite coals. PAHs in gaseous phases occupied 95% of the total of PAHs emission of coal combustion. In particulate phase, 3-ring and 4-ring PAHs were the main components, accounting for 80% of the total particulate PAHs. The total toxicity potency evaluated by benzo[a]pyrene-equivalent carcinogenic power, sum of 7 carcinogenic PAH components and 2,3,7,8-tetrachlorodibenzodioxin had a similar tendency. And as a result, the toxic potential of bituminous coal was higher than that of anthracite coal. Efficient emission control should be conducted to reduce PAH emissions in order to protect ecosystem and human health.

  19. Solvent effects on extraction of polycyclic aromatic hydrocarbons in ambient aerosol samples

    Directory of Open Access Journals (Sweden)

    Flasch Mira

    2016-01-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs in the ambient particulate matter pose one of the most important issues in the focus of environmental management. The concentration of their representative, Benzo(apyrene (BaP, undergoes limitations according to European Union directive. However, a successful control over the pollution levels and their sources is limited by the high uncertainty of analytical and statistical approaches used for their characterization. Here we compare differences in PAH concentrations related to the use of different solvents in the course of ultrasonic extraction of a certified reference material (PM10-like PAH mixture and filter samples of ambient particulate matter collected in Austria for the CG-MS PAH analysis. Using solvents of increasing polarity: Cyclohexane (0,006, Toluene (0,099, Dichloromethane (0,309, Acetone (0,43 and Acetonitrile (0,460, as well as mixtures of those, filters representing high and low concentrations of particulate matter were investigated. Although some scatter of the obtained concentrations was observed no trend related to the polarity of the solvent became visible. Regarding the reproducibility, which can be expected of PAH analysis no significant difference between the different solvents was determined. This result is valid for all compounds under investigation.

  20. Composition of airborne particulate matter in the industrial area versus mountain area

    Directory of Open Access Journals (Sweden)

    Barbora Sýkorová

    2016-03-01

    Full Text Available The paper deals with research of air pollution in two different locations on the Moravian-Silesian Region, Czech Republic. These are the sites Ostrava-Radvanice, which is located in the area affected by the industry and Ostravice in the mountains (without significant effect of the industry. The dust particles collected at these locations were subjected to a wide range of analyses. The mass concentration, the mass-size distribution, mineralogical composition, the concentration of PAHs (polycyclic aromatic hydrocarbons, and the concentrations of selected metals (Cd, Pb, Zn, Fe, Mn, As, Ni, Co, and Cr were observed at the particulate matter.

  1. Electrically heated particulate filter restart strategy

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-07-12

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a propagation module that estimates a propagation status of combustion of particulate matter in the particulate filter. A regeneration module controls current to the particulate filter to re-initiate regeneration based on the propagation status.

  2. Spacecraft Cabin Particulate Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  3. Spacecraft Cabin Particulate Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  4. Application of ICP-MS Method in Detecting Heavy Metals in Atmospheric Particulate Matter%ICP-MS在大气颗粒物重金属分析中的应用研究

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    This paper introduced the characteristics and advantages of Inductively Coupled Plasma Mass Spectrometry ( ICP-MS) technology in the analysis of heavy metals in atmospheric particles .In recent years, many scholars have applied in the analysis in heavy metal using the technique.The paper made the analysis and elaboration from five aspects, including valence state analysis, filter selection in sample collection , choosing digestion method , selecting the internal standard and removing the interference .%针对ICP-MS技术的使用特点及在大气颗粒物中重金属分析优势,对近年来中外学者在大气颗粒物重金属分析领域的应用进行了综述。主要从价态分析、样品采集过程中滤膜的选择、前处理时消解方式的选择、在ICP-MS的分析过程中,内标元素的选择及如何去除干扰的等五个方面作出了分析和阐述。

  5. Electrical diesel particulate filter (DPF) regeneration

    Science.gov (United States)

    Gonze, Eugene V; Ament, Frank

    2013-12-31

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  6. Influence of sampling filter type on the mutagenicity of diesel exhaust particulate extracts

    Science.gov (United States)

    Clark, Charles R.; Truex, Timothy J.; Lee, Frank S. C.; Salmeen, Irving T.

    The effects of filter types on the mutagenicity and chemical characteristics of organic extracts of diesel engine particulate exhaust were studied by collecting exhaust particles in a dilution tube simultaneously on three different types of filters: Teflon membrane (Zefluor), Teflon impregnated glass fiber (Pallflex T60A20), and a quartz fiber (Pallflex 2500QAO). The particles were extracted with dichloromethane and subsequently with acetonitrile. The dichloromethane extracts were evaluated in the Salmonella reversion (Ames) assay using strains TA 98, TA 100 and TA 1538 and analyzed by high performance liquid chromatography (HPLC) with fluorescence detection. The filter loadings ranged from 0.3 to 0.7 mg cm -2, typical of loadings in studies of diesel engine particulate exhaust. No major differences in relative concentrations were observed in the polycyclic aromatic hydrocarbon, oxygenated or transition fractions for the three filter types. Furthermore, no differences in the mutagenicity of the samples could be detected.

  7. Correlation of levels of volatile versus carcinogenic particulate polycyclic aromatic hydrocarbons in air samples from smokehouses

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Poulsen, O M; Christensen, J M

    1991-01-01

    correlation was observed for phenanthrene, anthracene, fluoranthene and pyrene. Calculations of the sensitivity, specificity, positive predictive value and negative predictive value of these potential markers revealed that naphthalene and phenanthrene exhibited the highest sensitivity as markers for total...

  8. Estimation of black carbon deposition from particulate data in the atmosphere at NCO-P site in Himalayas during pre-monsoon season and its implication to snow surface albedo reduction

    Science.gov (United States)

    Yasunari, T. J.; Bonasoni, P.; Laj, P.; Fujita, K.; Vuillermoz, E.; Marinoni, A.; Cristofanelli, P.; Calzolari, F.; Duchi, R.; Tartari, G.; Lau, W. K.

    2009-12-01

    The black carbon (BC) impact on snow surface may contribute to snow melting and acceleration of glacier retreat. The BC deposition amount onto snow surface in 2006 during pre-monsoon season (March-May) was estimated from the observed equivalent BC (eqBC) concentration (MAAP) and aerosol size distribution observation (SMPS and OPC) in the atmosphere at Nepal Climate Observatory at Pyramid (NCO-P) site in Himalayan region. We, first, carried out correlation analyses in time series data between the eqBC and aerosol size distribution and then determined main eqBC size range here as higher correlations coefficient of more than 0.8. The corresponding eqBC size at NCO-P site was determined predominantly in the 103.1-669.8 nm size range. Simply terminal velocity for each particle size bin was used for calculating deposition flux of BC onto surface. Our estimation of the deposition is considered to be minimal estimation because deposition velocity is in general faster if we include aerodynamic and other terms; moreover we didn’t take into account deposition processes other than gravitational deposition. We estimated the BC deposition of 209 µg m-2 for March-May. If we use snow density variations in surface snow of 192-512 kg m-3, as measured at Yala glacier in Himalayas, the BC concentrations in 2-cm surface snow of 20.4-53.6 µg kg-1 is estimated. This leads to a snow albedo reduction of 1.6-4.1% by using regression relationship between BC concentration in snow and snow albedo reductions by previous studies. If we used the values of the albedo reductions as continuous forcing for a sensitivity test of glacier melting by using a mass-balance model with the same initial settings in a previous study (pointed out for Dongkemadi Glaciers in Tibetan region), increase of total melt water runoff of 54-149 mm w.e. is expected. We are aware of the limitation of this preliminary estimate but it is important to consider that it clearly indicates that BC deposition during March

  9. Remote monitoring of environmental particulate pollution - A problem in inversion of first-kind integral equations

    Science.gov (United States)

    Fymat, A. L.

    1975-01-01

    The determination of the microstructure, chemical nature, and dynamical evolution of scattering particulates in the atmosphere is considered. A description is given of indirect sampling techniques which can circumvent most of the difficulties associated with direct sampling techniques, taking into account methods based on scattering, extinction, and diffraction of an incident light beam. Approaches for reconstructing the particulate size distribution from the direct and the scattered radiation are discussed. A new method is proposed for determining the chemical composition of the particulates and attention is given to the relevance of methods of solution involving first kind Fredholm integral equations.

  10. Seasonal and spatial variations of individual organic compounds of coarse particulate matter in the Los Angeles Basin

    Science.gov (United States)

    Cheung, Kalam; Olson, Michael R.; Shelton, Brandon; Schauer, James. J.; Sioutas, Constantinos

    2012-11-01

    To study the organic composition of ambient coarse particulate matter (CPM; 2.5-10 μm), coarse particles were collected one day a week from April 2008 to March 2009 at 10 sampling sites in the Los Angeles Basin. Samples were compiled into summer (June 2008 to September 2008) and winter (November 2008 to February 2009) composites, and were subsequently analyzed for individual organic constituents using gas chromatography-mass spectrometry. n-alkanoic acids and medium molecular weight (MW) n-alkanes (C25 to C35) - the major constituents in the coarse size fraction - showed good associations with crustal materials. Polycyclic aromatic hydrocarbons (PAHs) and hopanes (both in low concentrations), as well as high MW n-alkanes (C37 and C38), were associated with traffic-related emissions. In the summer, when prevailing onshore winds were strong, the downwind/rural sites had higher concentrations of PAHs, n-alkanes and n-alkanoic acids. An opposite trend was observed at the urban sites, where the levels of PAHs, n-alkanes and n-alkanoic acids were higher in the winter, when the low wind speed limited long-range atmospheric transport. In general, the contribution of organic compounds to CPM mass was higher during wintertime, due to a reduction in the fraction of other CPM components (sea salt, secondary ions, etc.) and/or the increase in source strengths of organic compounds. The latter is consistent with the traffic-induced re-suspension of mineral and road dust, as previously observed in this basin. Overall, our results suggest that emissions from natural sources (soil and associated biota) constitute the majority of the organic content in coarse particles, with a more pronounced influence in the semi-rural/rural areas in Riverside/Lancaster compared with urban Los Angeles in the summer.

  11. Polycyclic aromatic hydrocarbon formation under simulated coal seam pyrolysis conditions

    Institute of Scientific and Technical Information of China (English)

    Liu Shuqin; Wang Yuanyuan; Wang Caihong; Bao Pengcheng; Dang Jinli

    2011-01-01

    Coal seam pyrolysis occurs during coal seam fires and during underground coal gasification.This is an important source of polycyclic aromatic hydrocarbon (PAH) emission in China.Pyrolysis in a coal seam was simulated in a tubular furnace.The 16 US Environmental Protection Agency priority controlled PAHs were analyzed by HPLC.The effects of temperature,heating rate,pyrolysis atmosphere,and coal size were investigated.The results indicate that the 3-ring PAHs AcP and AcPy are the main species in the pyrolysis gas.The 2-ring NaP and the 4-ring Pyr are also of concern.Increasing temperature caused the total PAH yield to go through a minimum.The lowest value was obtained at the temperature of 600 ℃ Higher heating rates promote PAH formation,especially formation of the lower molecular weight PAHs.The typical heating rate in a coal seam,5 ℃/min,results in intermediate yields of PAHs.The total PAHs yield in an atmosphere of N2 is about 1.81 times that seen without added N2,which indicates that an air flow through the coal seam accelerates the formation of PAHs.An increase in coal particle size reduces the total PAHs emission but promotes the formation of 5- and 6-ring PAHs.

  12. Hydrocarbon-enhanced particulate filter regeneration via microwave ignition

    Science.gov (United States)

    Gonze, Eugene V.; Brown, David B.

    2010-02-02

    A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

  13. Dissolved and Suspended Polycyclic Aromatic Hydrocarbons (PAH in the North Aegean Sea

    Directory of Open Access Journals (Sweden)

    I. HATZIANESTIS

    2012-12-01

    Full Text Available The distribution and sources of polycyclic aromatic hydrocarbons (PAH were investigated in the seawater of the North Aegean Sea. The measured PAH concentrations in SPM are generally considered as elevated for open sea waters and were evenly distributed in the area. Their levels in the dissolved phase (1.6-33.0 ng/l were much higher than those encountered in the corresponding particulate phases (0.04-10.2 ng/l. The PAH patterns in both phases were dominated by the three ring aromatics and their alkylated derivatives, reflecting a predominant contribution of fossil hydrocarbons probably related to ship traffic, whereas no significant inputs from the rivers outfalling in the area were detected. In bottom waters PAH values were generally lower, whereas a higher depletion of the petroleum PAH in comparison with the pyrolytic ones according to depth was observed.

  14. Characterisation and Treatment of Nano-sized Particles, Colloids and Associated Polycyclic Aromatic Hydrocarbons in Stormwater

    DEFF Research Database (Denmark)

    Nielsen, Katrine

    facilities in Denmark. This is a consequence of climate changes, with increasing precipitation in Europe. The increased precipitation causes problems with hydraulic overloading of sewer systems and therefore stormwater is directed into stormwater drainage systems and to stormwater treatment facilities...... and size distribution of colloids and nano-sized particles in stormwater, as well as quantify the particle-enhanced transportation of polycyclic aromatic hydrocarbons (PAHs) in stormwater. Stormwater from five sites in Europe was collected to characterise the particulate matter, colloids and nano......-sized particles in the stormwater, in terms of particle size distribution (PSD) and zeta potential. In combination with the characterisation of the particles, concentrations of organic and inorganic compounds were quantified in the stormwater, with a focus on PAHs, together with physical and chemical parameters...

  15. Emissions of polycyclic aromatic hydrocarbons from coking industries in China

    Institute of Scientific and Technical Information of China (English)

    Ling Mu; Lin Peng; Junji Cao; Qiusheng He; Fan Li; Jianqiang Zhang; Xiaofeng Liu

    2013-01-01

    This study set out to assess the characteristics of polycyclic aromatic hydrocarbon (PAH) emission from coking industries,with field samplings conducted at four typical coke plants.For each selected plant,stack flue gas samples were collected during processes that included charging coal into the ovens (CC),pushing coke (PC) and the combustion of coke-oven gas (CG).Sixteen individual PAHs on the US EPA priority list were analyzed by gas chromatography/mass spectrometry (GC/MS).Results showed that the total PAH concentrations in the flue gas ranged from 45.776 to 414.874 μg/m3,with the highest emission level for CC (359.545 μg/m3).The concentration of PAH emitted from the CC process in CP1 (stamp charging) was lower than that from CP3 and CP4 (top charging).Low-molecular-weight PAHs (i.e.,two-to three-ring PAHs) were predominant contributors to the total PAH contents,and Nap,AcPy,Flu,PhA,and AnT were found to be the most abundant ones.Total BaPeq concentrations for CC (2.248 iμg/m3) were higher than those for PC (1.838 μg/m3) and CG (1.082 μg/m3),and DbA was an important contributor to carcinogenic risk as BaP in emissions from coking processes.Particulate PAH accounted for more than 20% of the total BaPeq concentrations,which were significantly higher than the corresponding contributions to the total PAH mass concentration (5%).Both particulate and gaseous PAH should be taken into consideration when the potential toxicity risk of PAH pollution during coking processes is assessed.The mean total-PAH emission factors were 346.132 and 93.173 μg/kg for CC and PC,respectively.

  16. Depletion of gaseous polycyclic aromatic hydrocarbons by a forest canopy

    Directory of Open Access Journals (Sweden)

    S.-D. Choi

    2008-07-01

    Full Text Available Rapid uptake of gaseous polycyclic aromatic hydrocarbons (PAHs by a forest canopy was observed at Borden in Southern Ontario, Canada during bud break in early spring 2003. High volume air samples were taken on 12 individual days at three different heights (44.4, 29.1, and 16.7 m on a scaffolding tower and on the forest floor below the canopy (1.5 m. Concentrations of PAHs were positively correlated to ambient temperature, resulting from relatively warm and polluted air masses passing over the Eastern United States and Toronto prior to arriving at the sampling site. An analysis of vertical profiles and gas/particle partitioning of the PAHs showed that gaseous PAHs established a concentration gradient with height, whereas levels of particulate PAHs were relatively uniform, implying that only the uptake of gaseous PAHs by the forest canopy was sufficiently rapid to be observed. Specifically, the gaseous concentrations of intermediate PAHs, such as phenanthrene, anthracene, and pyrene, during budburst and leaf emergence were reduced within and above the canopy. When a gradient was observed, the percentage of PAHs on particles increased at the elevations experiencing a decrease in gas phase concentrations. The uptake of intermediate PAHs by the canopy also led to significant differences in gaseous PAH composition with height. These results are the most direct evidence yet of the filter effect of forest canopies for gaseous PAHs in early spring. PAH deposition fluxes and dry gaseous deposition velocities to the forest canopy were estimated from the concentration gradients.

  17. Arcuate, annular, and polycyclic inflammatory and infectious lesions.

    Science.gov (United States)

    Sharma, Amit; Lambert, Phelps J; Maghari, Amin; Lambert, W Clark

    2011-01-01

    Common shapes encountered in dermatologic diseases include linear, nummular, annular, polycyclic, and arciform. The last three have a relatively restricted differential, which must be entirely explored. It is not uncommon for a single disease to present in annular, arciform or polycyclic configurations; moreover, the lesions may evolve from being arciform to annular and then become polycyclic. Regardless, recognizing the arrangement of the defect will undoubtedly help in making a diagnosis and guiding subsequent management. We explore diseases that often present in annular, arciform, and/or polycyclic forms.

  18. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Mendyk Łukasz

    2016-03-01

    Full Text Available The objective of the study was to determine role of soil sealing degree as the factor influencing soil contamination with polycyclic aromatic hydrocarbons (PAHs. The study area included four sampling sites located within the administrative boundaries of the Toruń city, Poland. Sampling procedure involved preparing soil pits representing three examples of soil sealing at each site: non-sealed soil as a control one (I and two degrees of soil sealing: semi-pervious surface (II and totally impervious surface (III. Together with basic properties defined with standard procedures (particle size distribution, pH, LOI, content of carbonates content of selected PAHs was determined by dichloromethane extraction using gas chromatography with mass spectrometric detection (GC-MS. Obtained results show that urban soils in the city of Toruń are contaminated with polycyclic aromatic hydrocarbons. Soil sealing degree has a strong influence on the soil contamination with polycyclic aromatic hydrocarbons. Totally sealed soils are better preserved from atmospheric pollution including PAHs. Combustion of grass/wood/coal was the main source of determined PAHs content in examined soils.

  19. Dispersion and dry and wet deposition of PAHs in an atmospheric environment.

    Science.gov (United States)

    Ozaki, N; Nitta, K; Fukushima, T

    2006-01-01

    The atmospheric concentration and dry and wet deposition were measured for particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) from August to December in Higashi-Hiroshima City, Japan. PM concentration of fine particles (0.6-7 microm) was 5.7-75.1 micro m(-3), and coarse particles (> 7 microm) was 2.2-22.3 microg m(-3). Total PAHs concentration of fine particles was 0.14-16.3 ng m(-3), and coarse particles was 0.01-0.77 ng m(-3). Their concentration increased on non-rainy days and decreased rapidly on rainy days. For seasonal fluctuations of PAHs, their concentrations decreased from summer to winter, and the rate of decrease was more distinct for fine particles. For total (dry + wet) depositions, the PM flux was 1.9-11.2 mg m(-2) d(-1), and the total PAHs flux was 1.9-97.2 ng m(-3) d(-1). From these measurements, the yearly total loading of PAHs was estimated for the particle phase. Total loading was 28 microg m(-2) y(-1) for the dry deposition and 52 mg m(-2) y(-1) for the wet deposition. The loading of the wet deposition was comparable to those of the dry deposition for all ring numbers.

  20. Estimation of gas-particle partitioning coefficients (Kp) of carcinogenic polycyclic aromatic hydrocarbons in carbonaceous aerosols collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand.

    Science.gov (United States)

    Pongpiachan, Siwatt; Ho, Kin Fai; Cao, Junji

    2013-01-01

    To assess environmental contamination with carcinogens, carbonaceous compounds, water-soluble ionic species and trace gaseous species were identified and quantified every three hours for three days at three different atmospheric layers at the heart of Chiang-Mai, Bangkok and Hat-Yai from December 2006 to February 2007. A DRI Model 2001 Thermal/Optical Carbon Analyzer with the IMPROVE thermal/optical reflectance (TOR) protocol was used to quantify the organic carbon (OC) and elemental carbon (EC) contents in PM10. Diurnal and vertical variability was also carefully investigated. In general, OC and EC mass concentration showed the highest values at the monitoring period of 21.00-00.00 as consequences of human activities at night bazaar coupled with reduction of mixing layer, decreased wind speed and termination of photolysis at nighttime. Morning peaks of carbonaceous compounds were observed during the sampling period of 06:00-09:00, emphasizing the main contribution of traffic emission in the three cities. The estimation of incremental lifetime particulate matter exposure (ILPE) raises concern of high risk of carbonaceous accumulation over workers and residents living close to the observatory sites. The average values of incremental lifetime particulate matter exposure (ILPE) of total carbon at Baiyoke Suit Hotel and Baiyoke Sky Hotel are approximately ten times higher than those air samples collected at Prince of Songkla University Hat-Yai campus corpse incinerator and fish-can manufacturing factory but only slightly higher than those of rice straw burning in Songkla province. This indicates a high risk of developing lung cancer and other respiratory diseases across workers and residents living in high buildings located in Pratunam area. Using knowledge of carbonaceous fractions in PM10, one can estimate the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Dachs-Eisenreich model highlights the crucial role of adsorption in gas

  1. Mineralogical characterization of airborne individual particulates in Beijing PM10

    Institute of Scientific and Technical Information of China (English)

    LU Sen-lin; SHAO Long-yi; WU Ming-hong; JIAO Zheng

    2006-01-01

    This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic microscopy coupled with energy dispersive X-ray(SEM/EDX) was used to investigate individual mineral particles in Beijing PM10. 1454 individual mineral particulates from 48 samples were analysed by SEM/EDX. The results revealed that mineral particulates were complex and heterogeneous. 38kinds of minerals in PM10 were identified. The clay minerals, of annual average percentage of 30.1% , were the main composition among the identified minerals, and illite/smectite was the main composition in clay minerals, reaching up to 35%. Annual average percentage of quartz, calcite, compound particulates, carbonates were 13.5%, 10.9%, 11.95%, 10.31%, respectively. Annual average percentage less than 10% were gypsum, feldspar, dolomite, and so on. Fluorite, apatite, halite, barite and chloridize zinc (ZnCl2) were firstly identified in Beijing PM10. Sulfurization was found on surface of mineral particles, suggested extensive atmospheric reaction in air during summer.

  2. [Characteristic of Particulate Emissions from Concrete Batching in Beijing].

    Science.gov (United States)

    Xue, Yi-feng; Zhou, Zhen; Zhong, Lian-hong; Yan, Jing; Qu, Song; Huang, Yu-hu; Tian, He- zhong; Pan, Tao

    2016-01-15

    With the economic development and population growth in Beijing, there is a strong need for construction and housing, which leads to the increase of the construction areas. Meanwhile, as a local provided material, the production of concrete has been raised. In the process of concrete production by concrete batching, there are numerous particulates emitted, which have large effect on the atmospheric environment, however, systematic study about the tempo-spatial characteristics of pollutant emission from concrete batching is still rare. In this study, we estimated the emission of particulates from concrete batching from 1991 to 2012 using emission factor method, analyzed the tempo-spatial characteristics of pollutant emission, established the uncertainty range by adopting Monte-Carlo method, and predicted the future emission in 2020 based on the relative environmental and economical policies. The results showed that: (1) the emissions of particulates from concrete batching showed a trend of "first increase and then decrease", reaching the maximum in 2005, and then decreased due to stricter emission standard and enhanced environmental management. (2) according to spatial distribution, the emission of particulates from concrete batch mainly concentrated in the urban area with more human activities, and the area between the fifth ring and the sixth ring contributed the most. (3) through scenarios analysis, for further reducing the emission from concrete batching in 2020, more stricter standard for green production as well as powerful supervision is needed.

  3. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  4. Physical-chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area

    Science.gov (United States)

    Brito, J.; Rizzo, L. V.; Herckes, P.; Vasconcellos, P. C.; Caumo, S. E. S.; Fornaro, A.; Ynoue, R. Y.; Artaxo, P.; Andrade, M. F.

    2013-12-01

    The notable increase in biofuel usage by the road transportation sector in Brazil during recent years has significantly altered the vehicular fuel composition. Consequently, many uncertainties are currently found in particulate matter vehicular emission profiles. In an effort to better characterise the emitted particulate matter, measurements of aerosol physical and chemical properties were undertaken inside two tunnels located in the São Paulo Metropolitan Area (SPMA). The tunnels show very distinct fleet profiles: in the Jânio Quadros (JQ) tunnel, the vast majority of the circulating fleet are light duty vehicles (LDVs), fuelled on average with the same amount of ethanol as gasoline. In the Rodoanel (RA) tunnel, the particulate emission is dominated by heavy duty vehicles (HDVs) fuelled with diesel (5% biodiesel). In the JQ tunnel, PM2.5 concentration was on average 52 μg m-3, with the largest contribution of organic mass (OM, 42%), followed by elemental carbon (EC, 17%) and crustal elements (13%). Sulphate accounted for 7% of PM2.5 and the sum of other trace elements was 10%. In the RA tunnel, PM2.5 was on average 233 μg m-3, mostly composed of EC (52%) and OM (39%). Sulphate, crustal and the trace elements showed a minor contribution with 5%, 1%, and 1%, respectively. The average OC : EC ratio in the JQ tunnel was 1.59 ± 0.09, indicating an important contribution of EC despite the high ethanol fraction in the fuel composition. In the RA tunnel, the OC : EC ratio was 0.49 ± 0.12, consistent with previous measurements of diesel-fuelled HDVs. Besides bulk carbonaceous aerosol measurement, polycyclic aromatic hydrocarbons (PAHs) were quantified. The sum of the PAHs concentration was 56 ± 5 ng m-3 and 45 ± 9 ng m-3 in the RA and JQ tunnel, respectively. In the JQ tunnel, benzo(a)pyrene (BaP) ranged from 0.9 to 6.7 ng m-3 (0.02-0.1‰ of PM2.5) whereas in the RA tunnel BaP ranged from 0.9 to 4.9 ng m-3 (0.004-0. 02‰ of PM2.5), indicating an important

  5. Physical-chemical characterization of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area

    Science.gov (United States)

    Brito, J.; Rizzo, L. V.; Herckes, P.; Vasconcellos, P. C.; Caumo, S. E. S.; Fornaro, A.; Ynoue, R. Y.; Artaxo, P.; Andrade, M. F.

    2013-08-01

    The notable increase in biofuel usage by the road transportation sector in Brazil during recent years has significantly altered the vehicular fuel composition. Consequently, many uncertainties are currently found in particulate matter vehicular emission profiles. In an effort to better characterize the emitted particulate matter, measurements of aerosol physical and chemical properties were undertaken inside two tunnels located in the São Paulo Metropolitan Area (SPMA). The tunnels show very distinct fleet profiles: in the Jânio Quadros (JQ) tunnel, the vast majority of the circulating fleet are Light Duty Vehicles (LDVs), fuelled on average with the same amount of ethanol as gasoline. In the Rodoanel (RA) tunnel, the particulate emission is dominated by Heavy Duty Vehicles (HDVs) fuelled with diesel (5% biodiesel). In the JQ tunnel, PM2.5 concentration was on average 52 μg m-3, with the largest contribution of Organic Mass (OM, 42%), followed by Elemental Carbon (EC, 17%) and Crustal elements (13%). Sulphate accounted for 7% of PM2.5 and the sum of other trace elements was 10%. In the RA tunnel, PM2.5 was on average 233 μg m-3, mostly composed of EC (52%) and OM (39%). Sulphate, crustal and the trace elements showed a minor contribution with 5%, 1% and 1%, respectively. The average OC:EC ratio in the JQ tunnel was 1.59 ± 0.09, indicating an important contribution of EC despite the high ethanol fraction in the fuel composition. In the RA tunnel, the OC:EC ratio was 0.49 ± 0.12, consistent with previous measurements of diesel fuelled HDVs. Besides bulk carbonaceous aerosol measurement, Polycyclic Aromatic Hydrocarbons (PAHs) were quantified. The sum of the PAHs concentration was 56 ± 5 ng m-3 and 45 ± 9 ng m-3 in the RA and JQ tunnel, respectively. In the JQ tunnel, Benzo(a)pyrene (BaP) ranged from 0.9 to 6.7 ng m-3 (0.02-0.1‰ of PM2.5) in the JQ tunnel whereas in the RA tunnel BaP ranged from 0.9 to 4.9 ng m-3 (0.004-0.02‰ of PM2.5), indicating an

  6. Physical-chemical characterization of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area

    Directory of Open Access Journals (Sweden)

    J. Brito

    2013-08-01

    Full Text Available The notable increase in biofuel usage by the road transportation sector in Brazil during recent years has significantly altered the vehicular fuel composition. Consequently, many uncertainties are currently found in particulate matter vehicular emission profiles. In an effort to better characterize the emitted particulate matter, measurements of aerosol physical and chemical properties were undertaken inside two tunnels located in the São Paulo Metropolitan Area (SPMA. The tunnels show very distinct fleet profiles: in the Jânio Quadros (JQ tunnel, the vast majority of the circulating fleet are Light Duty Vehicles (LDVs, fuelled on average with the same amount of ethanol as gasoline. In the Rodoanel (RA tunnel, the particulate emission is dominated by Heavy Duty Vehicles (HDVs fuelled with diesel (5% biodiesel. In the JQ tunnel, PM2.5 concentration was on average 52 μg m−3, with the largest contribution of Organic Mass (OM, 42%, followed by Elemental Carbon (EC, 17% and Crustal elements (13%. Sulphate accounted for 7% of PM2.5 and the sum of other trace elements was 10%. In the RA tunnel, PM2.5 was on average 233 μg m−3, mostly composed of EC (52% and OM (39%. Sulphate, crustal and the trace elements showed a minor contribution with 5%, 1% and 1%, respectively. The average OC:EC ratio in the JQ tunnel was 1.59 ± 0.09, indicating an important contribution of EC despite the high ethanol fraction in the fuel composition. In the RA tunnel, the OC:EC ratio was 0.49 ± 0.12, consistent with previous measurements of diesel fuelled HDVs. Besides bulk carbonaceous aerosol measurement, Polycyclic Aromatic Hydrocarbons (PAHs were quantified. The sum of the PAHs concentration was 56 ± 5 ng m−3 and 45 ± 9 ng m−3 in the RA and JQ tunnel, respectively. In the JQ tunnel, Benzo(apyrene (BaP ranged from 0.9 to 6.7 ng m−3 (0.02–0.1‰ of PM2.5 in the JQ tunnel whereas in the RA tunnel BaP ranged from 0.9 to 4.9 ng m−3 (0.004–0.02‰ of PM2

  7. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and

    Directory of Open Access Journals (Sweden)

    Hussein I. Abdel-Shafy

    2016-03-01

    The aim of this review is to discuss PAHs impact on the environmental and the magnitude of the human health risks posed by such substances. They also contain important information on concentrations, burdens and fate of polycyclic aromatic hydrocarbons (PAHs in the atmosphere. The main anthropogenic sources of PAHs and their effect on the concentrations of these compounds in air are discussed. The fate of PAHs in the air, their persistence and the main mechanisms of their losses are presented. Health hazards associated with PAH air pollution are stressed.

  8. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  9. Particulate Matter: a closer look

    NARCIS (Netherlands)

    Buijsman E; Beck JP; Bree L van; Cassee FR; Koelemeijer RBA; Matthijsen J; Thomas R; Wieringa K; LED; MGO

    2005-01-01

    The summary in booklet form 'Fijn stof nader bekeken' (Particulate Matter: a closer look) , published in Dutch by the Netherlands Environmental Assessment Agency (MNP) and the Environment and Safety Division of the National Institute for Public Health and the Environment (RIVM), has been designed to

  10. Particulate matter and preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...

  11. Temperature-induced volatility of molecular markers in ambient airborne particulate matter

    Directory of Open Access Journals (Sweden)

    C. R. Ruehl

    2011-01-01

    Full Text Available Molecular markers are organic compounds used to represent known sources of particulate matter (PM in statistical source apportionment studies. The utility of molecular markers depends on, among other things, their ability to represent PM volatility under realistic atmospheric conditions. We measured the particle-phase concentrations and temperature-induced volatility of commonly-used molecular markers in California's heavily polluted San Joaqin Valley. Concentrations of elemental carbon, organic carbon, levoglucosan, and polycyclic aromatic hydrocarbons were not reduced by mild (~10 K heating. In contrast, both hopane/sterane and n-alkane concentrations were reduced, especially during the summer sampling events at the urban site. These results suggest that hopanes and steranes have effective saturation concentrations ~1 μg m−3, and therefore can be considered semi-volatile. The volatility of an individual compound depends both on its inherent properties (primarily vapour pressure and the interactions between itself and any potential absorbing phase. The volatility behavior of n-alkanes during the urban summer is consistent with that predicted for absorption by suberic acid (a C8 diacid using a group contribution modelling method. Observations can also be matched by an absorbent whose composition is based on recently-obtained high-resolution aerosol mass spectrometer factors (approximately 33% "hydrocarbon-like" and 67% oxygenated organic aerosol. The reduced evaporation of the n-alkanes, hopanes, and steranes with mild heating during rural and/or winter experiments could be explained by a more oxygenated absorbing phase along with a non-absorptive partitioning mechanism, such as adsorption to soot. This suggests that the temperature-induced volatility of large hydrocarbons in PM is most important if a relatively non-polar absorbing organic phase exists. While the activity coefficients of most organic

  12. Characteristics of air particulate matter and their sources inurban and rural area of Beijing, China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    During October 1993 and March 1996, the samples of fine and coarse air particulate matter have been collected at representative urban and rural site of Beijing with the Gent Stacked Filter Unit Sampler. Instrumental neutron activation analysis (INAA) and proton induced X-ray emission (PIXE) method were used to determine the elemental composition of the particulate matter. Average elemental concentrations and enrichment factors were calculated for the fine and coarse size fractions. Based on the particulate matter data obtained at urban and rural site together with the chemical constituents of the aerosol from the different sources are discussed. The results show that the relative particulate mass and elemental concentrations of crustal and pollutant elements in the air particulate matter collected over the urban are higher than rural and winter heating period are higher than in ordinary season. Beijing atmosphere is polluted by aerosols from regional and faraway sources. It was noticed that the toxic or harmful elements such as As, Sb, Ph, Cu, Ni, S and Zn were mainly enriched in fine particles with diameter less than 2μm. A receptor model was used to assess the relative contribution of major air pollution sources at receptor sites in Beijing. Trace elements were used as the markers for the above assessment. Factor analysis method was used to identify possible emission sources of air particles. The major sources of dust-soil, coal burning, motor vehicle emission, industry emission and refuse incineration were identified.Key words: atmospheric particulate matter; urban; rural; source; aerosol

  13. Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in Sediments from the Bohai Sea, China

    Science.gov (United States)

    Liu, Jihua; Hu, Ningjing; Shi, Xuefa

    2015-04-01

    -related pollution were 39, 38 and 23%, respectively. Pyrogenic sources (coal combustion and traffic-related pollution) contributed 61% of anthropogenic PAHs to sediments, which indicates that energy consumption is a predominant factor in PAH pollution in the Bohai Sea. Acknowledgements: This work was jointly supported by National Science Fund, China (Grant No.40806025), the State Oceanic Administration, China (Grant No. 201105003, 908-02-02-05, and GY02-2009G19). References Fang MD, Chang WK, Lee CL, Liu JT (2009) The use of polycyclic aromatic hydrocarbons as a particulate tracer in the water column Kaoping submarine canyon. J Mar Syst 76: 457-467.

  14. Screening method for the analysis of polycyclic aromatic hydrocarbons by high performance thin layer chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Butler, H.T.

    1983-01-01

    Investigations were carried out to develop a routine analytical method for the determination of the polycyclic aromatic hydrocarbons (PAH) in environmental samples. The method used high performance thin layer chromatography (HPTLC) for the separation of the PAH's. Densitometric measurements using selective fluorescence detection was employed for the quantitative aspects of the method. High performance silica gel, cellulose, acetylated cellulose and reversed-phase plates as the separation media were evaluated. Reversed-phase plates with 60% silanization and solvent system of methanol:water using continuous multiple developments produced the best separation. The method was evaluated using shale oil, air particulate, diesel exhaust particulate and an in-house dust samples. During the course of the studies a characterization of the fluorescence and single wavelength double beam reflectance modes was performed. Based on observations made during the characterization studies, a calibration method employing a single standard solution was developed. The method had an operating range of approximately 0.5 to 20 ng and is suitable as a scouting technique to determine approximate concentrations of unknown samples in HPTLC. A method for expressing the relative fluorescence intensity of the PAH's at a given excitation wavelength was also developed. The emission response ratios (ERR) were useful in approximating interferences and determining optimal wavelength combinations.

  15. Identifying and dating buried micropodzols in Subatlantic polycyclic drift sands

    NARCIS (Netherlands)

    Wallinga, J.; van Mourik, J.M.; Schilder, M.L.M.

    2013-01-01

    Polycyclic soil sequences provide valuable archives of alternating unstable periods (sand drifting) and stable periods (soil formation) in NW-European coversand landscapes during the Subatlantic. Here we study six polycyclic soil sequences at the Weerterbergen (The Netherlands) to investigate how to

  16. Electrochemical Impedance Spectra of Particulate Matter and Smoke

    Energy Technology Data Exchange (ETDEWEB)

    Osite, A; Katkevich, J; Viksna, A; Vaivars, G, E-mail: agnese.osite@lu.lv [Department of Chemistry, University of Latvia, Riga, Valdemara Street 48, Latvia, LV-1013 (Latvia)

    2011-06-23

    Particularly aerosol particles of fine dimensions are recognized to have a strong impact on the climate change, on the atmospheric energy budget, on the environment and on human health. In this study coarse aerosol particles with different black carbon mass concentrations were investigated by electrochemical impedance spectroscopy. Present work describes preparation of particulate matter samples for impedance measurements, the principles of the structure of electrochemical cell and the relationship between parameters obtained from impedance spectra and black carbon mass concentration. Using complex electrode it is possible to obtain qualitative impedance spectra of particulate matter which were sampled on glass fibre filters. The values of equivalent circuit's elements (R, Q and n) are depending on sampled mass of black carbon and mass of other carbonaceous components which are not black as well as they depend on filter pore packing with solid particles.

  17. Effect of Diesel Sulfur on the Regeneration of Catalyst based Diesel Particulate Filters

    Directory of Open Access Journals (Sweden)

    Pruthviraj S Balekai

    2013-08-01

    Full Text Available Diesel particulate filters are used in diesel engines to clean the particulate matter, which is released into the atmosphere. These particulate filters have a mechanism, which is affected by diesel sulfur level. My study refers to the effect with which the sulfur in diesel affects the regeneration rate of the diesel particulate filters. Two filters with different coatings were taken. Diesel Sulfur with different concentrations was tested. It was observed that there was linear relation between sulfur level and balance point temperature. Also, it was observed that this was the cause for not using full-blend biodiesel, as the emission standards could not be met due to high sulfur levels in the biodiesel.

  18. Investigation of polycyclic aromatic hydrocarbons from coal gasification

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-cang; JIN Bao-sheng; ZHONG Zhao-ping; HUANG Ya-ji; XIAO Rui; LI Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  19. Investigation of polycyclic aromatic hydrocarbons from coal gasification.

    Science.gov (United States)

    Zhou, Hong-cang; Jin, Bao-sheng; Zhong, Zhao-ping; Huang, Ya-ji; Xiao, Rui; Li, Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  20. Current state of particulate matter research and management in Serbia (Introductory paper

    Directory of Open Access Journals (Sweden)

    Milena Jovašević-Stojanović

    2010-09-01

    Full Text Available Particulate matter is the air pollutant that currently receives most attention from the atmospheric research community, the legislative authorities and the general public. Limiting particulate matter in the atmosphere which will result in significant benefits for human health, with associated positive economic consequences. Successful management of particulate matter requires scientific knowledge about particulate matter “from cradle to grave”, covering sources of particles, processes that govern their formation, composition, dispersion and fate in the atmosphere, as well as knowledge about human exposure and associated health and well being. Such knowledge allows to design and perform effective and efficient abatement measures and monitoring. This paper provides an introduction to the research and monitoring regarding particulate matter in Serbia. The contributions were first partly presented at the 2nd international workshop of the WeBIOPATR “Outdoor concentration, size distribution and composition of respirable particles in WB urban area” project in September 2009. This information provides context to the contributions in this number, and was part of the rationale of the project WeBIOPATR.

  1. Receptor modelling study of polycyclic aromatic hydrocarbons in Jeddah, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Alam, Mohammed S., E-mail: m.s.alam@bham.ac.uk [Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Yin, Jianxin; Stark, Christopher; Jang, Eunhwa [Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Harrison, Roy M., E-mail: r.m.harrison@bham.ac.uk [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Shamy, Magdy; Khoder, Mamdouh I.; Shabbaj, Ibrahim I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia)

    2015-02-15

    Measurements of 14 polycyclic aromatic hydrocarbons (PAH) have been made in Jeddah, Saudi Arabia, with a view to establishing the concentrations in this major city, and quantifying the contributions of major sources. Particulate and vapour forms have been sampled and analysed separately. The concentrations are compared to measurements from other sites in the Middle Eastern region and are towards the lower end of the range, being far lower than concentrations reported from Riyadh (Saudi Arabia), Assiut (Egypt) and Tehran (Iran) but broadly similar to those measured in Damascus (Syria) and higher than those measured in Kuwait. The partitioning between vapour and particle phases is similar to that in data from Egypt and China, but with many compounds showing a higher particle-associated percentage than in Birmingham (UK) possibly reflecting a higher concentration of airborne particulate matter in the former countries. Concentrations in Jeddah were significantly higher at a site close to the oil refinery and a site close to a major ring road than at a suburban site to the north of the city. Application of positive matrix factorisation to the pooled data elicited three factors accounting respectively for 17%, 33% and 50% of the measured sum of PAH and these are interpreted as arising from gasoline vehicles, industrial sources, particularly the oil refinery, and to diesel/fuel oil combustion. - Highlights: • Measurements of 14 PAH compounds in vapour and particulate phases at three sites. • Comparison of concentrations across Jeddah and Middle Eastern regions. • Application of positive matrix factorisation to identify possible sources.

  2. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds.

    Science.gov (United States)

    Borrowman, Cuyler K; Zhou, Shouming; Burrow, Timothy E; Abbatt, Jonathan P D

    2016-01-01

    In the 1980s long-lived radical species were identified in cigarette tar. Since then, environmentally persistent free radicals (EPFRs) have been observed in ambient particulate matter, and have been generated in particulate matter generated from internal combustion engines. For the first time, we measure in situ the formation and decay of EPFRs through the heterogeneous reaction of ozone and several polycyclic aromatic compounds (PAC). Solid anthracene (ANT), pyrene (PY), benzo[a]pyrene (BAP), benzo[ghi]perylene (BGHIP), 1,4-naphthoquinone (1,4NQ), and 9,10-anthraquinone (AQ) were reacted with gas-phase ozone in a flow system placed in the active cavity of an electron paramagnetic resonance (EPR) spectrometer, and the formation of radicals was measured on the timescale of tens of minutes at ambient levels of ozone down to 30 ppb. For most substrates the net radical production is initially rapid, slows at intermediate times, and is followed by a slow decay. For oxidized solid BAP, radical signal persists for many days in the absence of ozone. To evaluate the effect of substrate phase, the solid PAHs were also dissolved in squalane, an organic oil inert to ozone, which yielded a much higher maximum radical concentration and faster radical decay when exposed to ozone. With higher mobility, reactants were apparently able to more easily diffuse and react with each other, yielding the higher radical concentrations. The EPR spectra exhibit three radicals types, two of which have been assigned to semiquinone species and one to a PAH-derived, carbon-centered radical. Although our system uses levels of PAC not typically found in the environment it is worth noting that the amounts of radical formed, on the order of 10(18) radicals per g, are comparable to those observed in ambient particulate matter.

  3. Protective coatings for commercial particulates

    DEFF Research Database (Denmark)

    Kindl, B.; Teng, Y.H.; Liu, Y.L.

    1994-01-01

    SiC/Al composites are in large-scale production with Al-Si alloy matrices. The same composites with pure Al or low Si matrices need diffusion barriers on the SiC reinforcement to control the interfacial reaction. The present paper describes various approaches taken to obtain protective coatings...... of alumina and zirconia on SiC particulates by sol-gel techniques. Aqueous and organic precursors have been used. The extent of the reaction, i.e., the Si and Al4C3 content in the matrix, was determined by differential thermal analysis and X-ray diffraction. The reaction rates of some coated particulates...... in liquid Al are decreased by as much as one order of magnitude during the first 15 min of immersion. Pretreatments of the SiC surface, the composition and thickness of the coating interphase and heat treatments of the coated materials have been studied, and are discussed in relation to their effect...

  4. Material Instabilities in Particulate Systems

    Science.gov (United States)

    Goddard, J. D.

    1999-01-01

    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.

  5. Large-eddy simulation and Lagrangian stochastic modelling of solid particle and droplet dispersion and mixing. Application to atmospheric pollution; Dispersion et melange turbulents de particules solides et de gouttelettes par une simulation des grandes echelles et une modelisation stochastique lagrangienne. Application a la pollution de l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinkovic, I.

    2005-07-15

    In order to study atmospheric pollution and the dispersion of industrial stack emissions, a large eddy simulation with the dynamic Smagorinsky-Germano sub-grid-scale model is coupled with Lagrangian tracking of fluid particles containing scalar, solid particles and droplets. The movement of fluid particles at a sub-grid level is given by a three-dimensional Langevin model. The stochastic model is written in terms of sub-grid-scale statistics at a mesh level. By introducing a diffusion model, the coupling between the large-eddy simulation and the modified three-dimensional Langevin model is applied to passive scalar dispersion. The results are validated by comparison with the wind-tunnel experiments of Fackrell and Robins (1982). The equation of motion of a small rigid sphere in a turbulent flow is introduced. Solid particles and droplets are tracked in a Lagrangian way. The velocity of solid particles and droplets is considered to have a large scale component (directly computed by the large-eddy simulation) and a sub-grid scale part. Because of inertia and gravity effects, solid particles and droplets, deviate from the trajectories of the surrounding fluid particles. Therefore, a modified Lagrangian correlation timescale is introduced into the Langevin model previously developed for the sub-grid velocity of fluid particles. Two-way coupling and collisions are taken into account. The results of the large-eddy simulation with solid particles are compared with the wind-tunnel experiments of Nalpanis et al. (1993) and of Taniere et al. (1997) on sand particles in saltation and in modified saltation, respectively. A model for droplet coalescence and breakup is implemented which allows to predict droplet interactions under turbulent flow conditions in the frame of the Euler/Lagrange approach. Coalescence and breakup are considered as a stochastic process with simple scaling symmetry assumption for the droplet radius, initially proposed by Kolmogorov (1941). At high

  6. Effects of urban particulate deposition on microbial communities living in bryophytes: an experimental study.

    Science.gov (United States)

    Meyer, C; Bernard, N; Moskura, M; Toussaint, M L; Denayer, F; Gilbert, D

    2010-10-01

    Our previous in situ study showed that bryophyte-microorganism complexes were affected by particulate atmospheric pollution. Here, the effect of urban particulate wet deposits on microbial communities living in bryophytes was studied under controlled conditions. An urban particulate solution was prepared with particles extracted from analyzer' filters and nebulized on bryophytes in treatments differing in frequency and quantity. The bryophytes did not accumulate metallic trace elements, which were present in very weak concentrations. However, in treated microcosms the total microbial biomass and the biomasses of cyanobacteria, active testate amoebae and fungi significantly decreased in response to the deposition of particles. These results confirm that microbial communities living in terrestrial bryophytes could be more sensitive indicators of atmospheric pollution than bryophytes. Moreover, they suggest that unicellular predators--such as testate amoebae--could be especially useful microbial indicators, since they seem to be both directly and indirectly affected by pollution.

  7. Instrumental neutron activation analysis data for cloud-water particulate samples, Mount Bamboo, Taiwan

    Science.gov (United States)

    Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.

    2013-01-01

    Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.

  8. Gas- and particle-phase distribution of polycyclic aromatic hydrocarbons in two-stroke, 50-cm 3 moped emissions

    Science.gov (United States)

    Spezzano, Pasquale; Picini, Paolo; Cataldi, Dario

    Gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) concentrations evaluated in the exhaust of 10 two-stroke, 50-cm 3 mopeds belonging to three different levels of emission legislation (EURO-0, EURO-1 and EURO-2) were used to assess the prevalent mechanism driving the gas/particle partitioning of PAHs in moped exhaust. Sampling was performed on a dynamometer bench both during the "cold-start" and the "hot" phases of the ECE-47 driving cycle. Gas and particulate phase PAHs were collected on polyurethane foam (PUF) plugs and 47-mm Pallflex T60A20 filters, respectively, under isokinetic conditions by using sampling probes inserted into the dilution tunnel of a Constant Volume Sampling - Critical Flow Venturi (CVS-CFV) system. The results show that semi-volatile PAHs were predominantly partitioned to the particle phase. The soluble organic fraction (SOF) of the collected particulates ranged between 72 and 98%. Measured total suspended particulate matter normalized partition coefficients ( Kp) were predicted within a factor of 3-5 by assuming absorption into the organic fraction according to a model developed by Harner and Bidleman [Harner, T., Bidleman, T.F., 1998. Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environmental Science & Technology 32, 1494-1502.]. This suggests that the gas/particle partitioning in moped exhaust is mainly driven by the high fraction of organic matter of the emitted particles and that absorption could be the main partitioning mechanism of PAHs.

  9. High atmosphere-ocean exchange of semivolatile aromatic hydrocarbons

    Science.gov (United States)

    González-Gaya, Belén; Fernández-Pinos, María-Carmen; Morales, Laura; Méjanelle, Laurence; Abad, Esteban; Piña, Benjamin; Duarte, Carlos M.; Jiménez, Begoña; Dachs, Jordi

    2016-06-01

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 102-103 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr-1, around 15% of the oceanic CO2 uptake.

  10. Analysis of trace elements in airborne particulate matters collected in Ankara, Turkey by TXRF

    OpenAIRE

    2013-01-01

    The main focus point of the presented study was the assessment of atmospheric burden of particulate matter and toxic trace metals in the atmosphere of Ankara, Turkey. For this purpose, outdoor samplings were accomplished in the capital city, Ankara. The types of filters, sample collection and sample preparation methods were investigated and optimized. Analyses were provided by the total reflection X-ray fluorescence (TXRF) spectroscopic technique in Germany. Spatial and temporal variations of...

  11. Comparison of continuous monitor (TEOM) and gravimetric sampler particulate matter concentrations

    Science.gov (United States)

    The Tapered Element Oscillating Microbalance (TEOM) sampler is an EPA designated equivalent method sampler for measuring PM10 concentrations. PM10 refers to the mass fraction of particulate matter suspended in the atmosphere having a nominal aerodynamic diameter less than or equal to 10 micrometers ...

  12. Compound Specific Radiocarbon Analysis (CSRA) Of Polycyclic Aromatic Hydrocarbons(PAHs) in Fine Organic Aerosols From Residential Area Of Suburb Tokyo

    Science.gov (United States)

    Kumata, H.; Uchida, M.; Sakuma, E.; Fujiwara, K.; Yoneda, M.; Shibata, Y.

    2005-12-01

    Atmospheric polycyclic aromatic hydrocarbons (PAHs) originate mostly from incomplete combustion of carbon-based fuels. Amongst atmospheric contaminants, PAHs account for most (35-82 percent) of the total mutagenic activity of ambient aerosols. Hence, reduction of air pollution by PAHs is essential for an effective air quality control, which requires reliable source apportionment. Recently developed preparative capillary GC system and microscale 14C analysis made CSRA applicable to environmental samples. The 5730 yr half-life of 14C makes it an ideal tracer for identifying combustion products derived from fossil fuels (14C-free) vs. those from modern biomass (contemporary 14C). In the present study we performed radiocarbon analysis of PAHs in fine particulate aerosols (PM10 and PM1.1) from a residential area in suburb Tokyo, to apportion their origin between fossil and biomass combustion. Acquisition of source information for size segregated aerosols (i.e., PM1.1) from 14C measurement was of special interest as particles with diameter of 1μm or less are known to be able to remain suspended in air for weeks and penetrate into the deepest part of the respiratory system. Total PAHs concentrations (sum of 38 compounds with 3-6 aromatic rings) ranged 0.94-3.25 ng/m3 for PM10 and 0.69-2.68 ng/m3 for PM1.1 samples. Observation of relatively small amount of retene (0.2-0.4 percent of total PAHs) indicates some contribution from wood (Gymnosperm) combustion. Diagnostic isomer pair ratios of PAHs (i.e., 1,7-/2,6-dimethylphenanthrene, fluoranthene/pyrene and indeno [1,2,3-cd]pyrene/benzo[ghi]perylene) indicated mixed contributions both from petroleum and wood/coal combustion sources. Also the ratios implied that the latter source become relatively important in winter than the rest of the year for both PM10 and PM1.1 samples, which coincides with seasonal trend of retene proportion. The source information obtained from 14C analyses will be compared and discussed against that

  13. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in street dust from the Tokyo Metropolitan area.

    Science.gov (United States)

    Takada, H; Onda, T; Harada, M; Ogura, N

    1991-09-01

    Molecular distributions of polycyclic aromatic hydrocarbons (PAHs) in street dust samples collected from the Tokyo Metropolitan area were determined by capillary gas chromatography following HPLC fractionation. Three- to six-ring PAHs and sulfur-heterocyclics were detected. PAHs in the dusts were dominated by three and four unsubstituted ring systems with significant amounts of their alkyl homologues. PAHs were widely distributed in the streets, with concentrations (sigma COMB) of a few microgram/g dust. Automobile exhaust, asphalt, gasoline fuel, diesel fuel, tyre particles, automobile crankcase oils, and atmospheric fallout were also analysed. The PAH profile, especially the relative abundance of alkyl-PAHs and sulfur-containing heterocyclics, indicated that PAHs in the street dusts from roads carrying heavy traffic are mainly derived from automobile exhausts; dusts from residential areas have a more significant contribution from atmospheric fallout.

  14. Correlation Study Between Suspended Particulate Matter and DOAS Data

    Institute of Scientific and Technical Information of China (English)

    SI Fuqi; LIU Jianguo; XIE Pinghua; ZHANG Yujun; LIU Wenqing; Hiroaki KUZE; Nofel LAGROSAS; Nobuo TAKEUCHI

    2006-01-01

    Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM).A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6-13.7 m2 g-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.

  15. Fe, Ni and Zn speciation, in airborne particulate matter

    Science.gov (United States)

    Thiodjio Sendja, Bridinette; Aquilanti, Giuliana; Vassura, Ivano; Giorgetti, Marco

    2016-05-01

    The study of elemental speciation in atmospheric particulate matter is important for the assessment of the source of the particle as well for the evaluation of its toxicity. XANES data at Fe, Ni, and Zn K-edges are recorded on a sample of urban dust (from the Rimini area of Emilia Romagna region, Italy) deposited on a filter and on the NIST standard reference material 1648. Using linear combination fitting we give an indication of the chemical species of the three metals present in the samples.

  16. Comparison of Particulate Mercury Measured with Manual and Automated Methods

    Directory of Open Access Journals (Sweden)

    Rachel Russo

    2011-01-01

    Full Text Available A study was conducted to compare measuring particulate mercury (HgP with the manual filter method and the automated Tekran system. Simultaneous measurements were conducted with the Tekran and Teflon filter methodologies in the marine and coastal continental atmospheres. Overall, the filter HgP values were on the average 21% higher than the Tekran HgP, and >85% of the data were outside of ±25% region surrounding the 1:1 line. In some cases the filter values were as much as 3-fold greater, with

  17. Evaluation of principal cannabinoids in airborne particulates

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, C., E-mail: balducci@iia.cnr.it [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy); Nervegna, G.; Cecinato, A. [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy)

    2009-05-08

    The determination of delta(9)-tetrahydrocannabinol ({Delta}{sup 9}-THC), cannabidiol (CND) and cannabinol (CNB), primary active components in cannabis preparation, was carried out on airborne particulates by applying a specific procedure consisting of soot extraction by ultrasonic bath, purification by solvent partitioning, derivatization with N-(t-butyldimethylsilyl)-N-methyl-trifluoroacetamide, and separation/detection through gas chromatography coupled with tandem mass spectrometry. The optimized procedure was found suitable for measuring the three psychotropic substances at concentrations ranging from ca. 0.001 to ca. 5.0 ng cm{sup -3} of air, with recoveries always higher than 82%, accuracy >7.3% and precision >90%. Application of the procedure performed on field in Rome and Bari, Italy, demonstrated that all three compounds contaminate the air in Italian cities whereas in Algiers, Algeria, only cannabinol, the most stable in the atmosphere, exceeded the limit of quantification of the method. The relative percentages of the three cannabinoids in general reproduced those typical of the Cannabis sativa plant and were very different from those found in human blood, urine and sweat.

  18. Characterisation and quantification of trace metal elements in atmospheric deposition and particularities in the Aspe valley (Pyrenees): implementation of road traffic air quality indicators; Caracterisation et quantification des elements traces metalliques dans les depots et les particules atmospheriques de la vallee d'Aspe (Pyrenees): Mise en place d'indicateurs de la qualite de l'air lies au trafic routier

    Energy Technology Data Exchange (ETDEWEB)

    Veschambre, S

    2006-04-15

    This study of inputs of trace metal elements (TME) in the Aspe valley (Pyrenees Atlantiques) has two objectives: (1) to define a reference state of metallic contaminants for the monitoring of road traffic emissions since the opening of the Somport tunnel and, (2) to evaluate sources and climatic conditions which contribute to TME inputs in the Aspe valley. To establish air quality indicators, TME (Al, Na, Mg, K, V, Mn, Cr, Zn, Cu, Rb, Cd, Sn, Sb, Ba, Ce, Pb and U) and lead isotopic ratios ({sup 208}Pb/{sup 206}Pb, {sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb) were determined in the atmospheric receptors (fresh snow, wet deposition, atmospheric particulates and lichen). Sampling and analyses with ultra clean procedures were employed for TME quantification. Variability of atmospheric receptors studied, allows integration on a daily and pluri-annual temporal scale and a spatial scale in the North-South axis of the valley and as a function of the altitude from the road. The Aspe valley presents a level of contamination characteristic of remote European areas and the metallic contaminants identified are Cd, Sb, Zn, Cu, Pb and Sn. In the low valley, air quality indicators indicate contaminant contributions (i) from local emissions of domestic heat sources, from agricultural burning practices and road traffic, and (ii) from regional anthropogenic sources of waste incinerators, metallurgic industries and urban centres. In altitude, the valley is significantly influenced by wind erosion and long range transport of TME in the Northern Hemisphere. Characterisation of TME and the isotopic ratios of Pb in the Somport tunnel indicate (i) a significant emission of Cu, Sb, Zn and Ba and (ii) an isotopic composition from a slightly radiogenic source even though Pb concentrations indicate low emissions from road traffic emissions. Nevertheless, the low traffic volume in the Aspe valley prevents conclusive evidence of significant contamination from road traffic. (author)

  19. Zone heated diesel particulate filter electrical connection

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-03-30

    An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

  20. Diesel particulate filter with zoned resistive heater

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  1. Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning

    Science.gov (United States)

    He, J.; Zielinska, B.; Balasubramanian, R.

    2010-12-01

    An intensive field study was conducted in the urban atmosphere of Singapore to investigate the composition of organic compounds in both gaseous and particulate phases during the period of August to early November 2006. 17 atmospheric samples were collected. These samples were subjected to accelerated solvent extraction with a mixture of dichloromethane and acetone and separated into functional group fractions for analyses by GC/MS. Over 180 organic compounds belonging to three major fractions (n-alkanes, polycyclic aromatic hydrocarbons - PAHs, and polar organic compounds - POCs) were identified and quantified. The characteristics and abundance of the n-alkanes, PAHs, mono and dicarboxylic acids, methoxylated phenols and other POCs were determined. The composition of these organic compounds fluctuated temporally with most of them being relatively higher in October than those in other months of the sampling period. 3-D backward air mass trajectory analyses together with the carbon preference index (CPI), molecular diagnostic ratios and molecular markers were used to investigate the origin of organic species measured in this study. Based on these diagnostic tools, the increased abundance of atmospheric organic species during October could be attributed to the occurrence of regional smoke haze episodes due to biomass burning in Indonesia. Among the POCs investigated, phthalic acid and cis-pinonic acid were abundant during October 2006. These two acids showed strong linear relationships with maximum daily ozone concentrations throughout the entire sampling period. This correlation with ozone suggested that the secondary aerosol constituents such as phthalic and cis-pinonic acids were probably formed through O3-induced photochemical transformation.

  2. Particulate organic carbon and particulate humic material in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Sarma, V.V.S.S.; DileepKumar, M.

    Variations in particulate organic carbon (POC) and particulate humic material (PHM) were studied in winter (February-March 1995) and intermonsoon (April-May 1994) seasons in the Arabian Sea. Higher levels of POC were found in the north than...

  3. Electrically heated particulate filter embedded heater design

    Science.gov (United States)

    Gonze, Eugene V.; Chapman, Mark R.

    2014-07-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  4. Formation of Secondary Particulate Matter by Reactions of Gas Phase Hexanal with Sulfate Aerosol Particles

    Science.gov (United States)

    Zhang, J.

    2003-12-01

    The formation of secondary particulate matter from the atmospheric oxidation of organic compounds can significantly contribute to the particulate burden, but the formation of organic secondary particulate matter is poorly understood. One way of producing organic secondary particulate matter is the oxidation of hydrocarbons with seven or more carbon atoms to get products with low vapor pressure. However, several recent reports suggest that relatively low molecular weight carbonyls can enter the particle phase by undergoing heterogeneous reactions. This may be a very important mechanism for the formation of organic secondary particulate matter. Atmospheric aldehydes are important carbonyls in the gas phase, which form via the oxidation of hydrocarbons emitted from anthropogenic and biogenic sources. In this poster, we report the results on particle growth by the heterogeneous reactions of hexanal. A 5 L Continuous Stirred Tank Reactor (CSTR) is set up to conduct the reactions in the presence of seed aerosol particles of deliquesced ammonia bisulfate. Hexanal is added into CSTR by syringe pump, meanwhile the concentrations of hexanal are monitored with High Pressure Liquid Chromatograph (HPLC 1050). A differential Mobility Analyzer (TSI 3071) set to an appropriate voltage is employed to obtain monodisperse aerosols, and another DMA associated with a Condensation Nuclear Counter (TSI 7610) is used to measure the secondary particle size distribution by the reaction in CSTR. This permits the sensitive determination of particle growth due to the heterogeneous reaction, very little growth occurs when hexanal added alone. Results for the simultaneous addition of hexanal and alcohols will also be presented.

  5. Structural Evolution of Interstellar Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Hammonds, Mark; Candian, Alessandra; Mori, Tamami; Usui, Fumihiko; Onaka, Takashi

    2015-08-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important reservoir for molecular carbon in the interstellar medium (ISM), and investigations into their chemistry and behaviour may be important to the understanding of how carbon is processed from simple forms into complex prebiotic molecules such as those detected in chondritic meteorites. In this study, infrared astronomical data from AKARI and other observatories are used together with laboratory and theoretical data to study variations in the structure of emitting PAHs in interstellar environments using spectroscopic decomposition techniques and bands arising from carbon-hydrogen bond vibrations at wavelengths from 3 - 14 microns. Results and inferences are discussed in terms of the processing of large carbonaceous molecules in astrophysical environments.

  6. Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest

    Science.gov (United States)

    Bateman, Adam P.; Gong, Zhaoheng; Liu, Pengfei; Sato, Bruno; Cirino, Glauber; Zhang, Yue; Artaxo, Paulo; Bertram, Allan K.; Manzi, Antonio O.; Rizzo, Luciana V.; Souza, Rodrigo A. F.; Zaveri, Rahul A.; Martin, Scot T.

    2016-01-01

    Atmospheric particulate matter influences the Earth’s energy balance directly, by altering or absorbing solar radiation, and indirectly by influencing cloud formation. Whether organic particulate matter exists in a liquid, semi-solid, or solid state can affect particle growth and reactivity, and hence particle number, size and composition. The properties and abundance of particles, in turn, influence their direct and indirect effects on energy balance. Non-liquid particulate matter was identified over a boreal forest of Northern Europe, but laboratory studies suggest that, at higher relative humidity levels, particles can be liquid. Here we measure the physical state of particulate matter with diameters smaller than 1 μm over the tropical rainforest of central Amazonia in 2013. A real-time particle rebound technique shows that the particulate matter was liquid for relative humidity greater than 80% for temperatures between 296 and 300 K during both the wet and dry seasons. Combining these findings with the distributions of relative humidity and temperature in Amazonia, we conclude that near-surface sub-micrometre particulate matter in Amazonia is liquid most of the time during both the wet and the dry seasons.

  7. Abundance and distribution of gaseous ammonia and particulate ammonium at Delhi (India)

    Science.gov (United States)

    Singh, S.; Kulshrestha, U. C.

    2012-01-01

    This study reports abundance and distribution of gaseous NH3 and particulate NH4+ at Delhi. Gaseous NH3 and particulate NH4+ concentrations were measured during pre monsoon, monsoon and postmonsoon seasons of the years 2010 and 2011. Average concentrations of gaseous NH3 during premonsoon, monsoon and post monsoon seasons were recorded as 26.4, 33.2 and 32.5 μg m-3, respectively. Gaseous NH3 concentrations were the highest during monsoon due to decay and decomposition of plants and other biogenic material under wet conditions which emit NH3. The results showed that particulate NH4+ was always lower than the gaseous NH3 during all the seasons. The concentrations of particulate NH4+ were recorded as 11.6, 22.9 and 8.5 μg m-3 during premonsoon, monsoon and postmonsoon seasons, respectively. The percent fraction of particulate NH4+ was noticed highest during monsoon season due to increased humidity levels. On anaverage, 33.3 % of total N-NHx was present as particulate NH4+. Higher concentrations of NH3 noticed during night time may be due to stable atmospheric conditions. Study highlighted that as compared to rural sites, urban sites showed higher concentrations of gaseous NH3 in India which may be due to higher population density, human activities and poor sanitation arrangements.

  8. Diastereoselective Pt catalyzed cycloisomerization of polyenes to polycycles.

    Science.gov (United States)

    Geier, Michael J; Gagné, Michel R

    2014-02-26

    Application of a tridentate NHC containing pincer ligand to Pt catalyzed cascade cyclization reactions has allowed for the catalytic, diastereoselective cycloisomerization of biogenic alkene terminated substrates to the their polycyclic counterparts.

  9. Dans le tourbillon des particules

    CERN Document Server

    Zito, Marco

    2015-01-01

    Accélérateurs géants, détecteurs complexes, particules énigmatiques... La physique subatomique peut sembler bien intimidante pour le novice. Et pourtant, qui n a jamais entendu parler du boson de Higgs et du CERN, le laboratoire européen où il a été découvert en 2012 ? Nul besoin d être un spécialiste pour comprendre de quoi il s agit. Aujourd hui, une théorie extraordinairement élégante, le Modèle Standard, décrit tous les résultats des expériences dans le domaine. Trente-sept particules élémentaires et quatre forces fondamentales : c est tout ce dont nous avons besoin pour expliquer la matière et l Univers ! Ce livre, destiné à un large public, raconte sans équations le long parcours qui a abouti au Modèle Standard. Ce parcours, parfois sinueux, a été entamé lorsque les Grecs anciens, et peut-être d autres avant eux, ont imaginé que la matière est composée de petites « billes ». Il faudra attendre plusieurs siècles pour qu on réalise que la matière, à l échelle micros...

  10. Southern Fine Particulate Monitoring Project

    Energy Technology Data Exchange (ETDEWEB)

    Ashley Williamson

    2003-05-31

    This final project report presents experimental details, results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the October, 2001-September, 2002 study period.The host site for these measurement activities is the North Birmingham PM monitoring station by the Jefferson County Health Department in Birmingham, AL.The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. During the course of the project, measurement intercomparison data were developed for these instruments and several complementary measurements at the site. The report details the instrument set and operating procedures and describes the resulting data. Report subsections present an overview summary of the data, followed by detailed description of the systematic time behavior of PM{sub 2.5} and other specific particulate size fractions. Specific subsections are included for particle size distribution, light scattering, and particle sulfate data. The final subsection addresses application of the measurements to the practical questions of fine PM generation and transport, source attribution, and PM{sub 2.5} management strategies.

  11. Polycyclic aromatic hydrocarbons in surface sediments of the East China Sea and their relationship with carbonaceous materials.

    Science.gov (United States)

    Hung, Chin-Chang; Gong, Gwo-Ching; Ko, Fung-Chi; Lee, Hung-Jen; Chen, Hung-Yu; Wu, Jian-Ming; Hsu, Min-Lan; Peng, Sen-Chueh; Nan, Fan-Hua; Santschi, Peter H

    2011-01-01

    This study measured concentrations of polycyclic aromatic hydrocarbons (PAHs) in surface sediments in the East China Sea (ECS) to investigate possible sources and fate of PAHs. Total concentration of PAHs in the sediments of the ECS ranged from 22 to 244 ng g(-1), with the highest levels in the coastal area and outer shelf. The observed PAH results showed elevated levels in both inner and outer shelf areas, a finding that is different from predictions by an ocean circulation model, suggesting that terrestrial sources are important for PAH contaminations in the ECS, while sediment resuspension, tidal changes and lateral transport may be important in affecting the distribution of PAHs in the outer shelf. The distribution of PAHs in the surface sediments of the ECS is similar to the distribution of carbonaceous materials (e.g., particulate organic carbon and black carbon), suggesting that carbonaceous materials may strongly affect the distribution of PAHs.

  12. Factors affecting the level and pattern of polycyclic aromatic hydrocarbons (PAHs) at Gosan, Korea during a dust period

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung-Deuk [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 100, Banyeon-ri, Eonyang-eup, Ulsan 689-798 (Korea, Republic of); Ghim, Young Sung, E-mail: ysghim@hufs.ac.kr [Department of Environmental Science, Hankuk University of Foreign Studies, Wangsan-ri, Mohyeon-myeon, Yongin 449-791 (Korea, Republic of); Lee, Ji Yi [Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Kim, Jin Young [Center for Environmental Technology Research, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Kim, Yong Pyo [Department of Environmental Science and Engineering, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750 (Korea, Republic of)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer We collected air samples at a remote site during an Asian dust period. Black-Right-Pointing-Pointer We analyzed levels, patterns, and gas/particle partitioning of PAHs. Black-Right-Pointing-Pointer Particulate PAHs were highly correlated with PM{sub 2.5}. Black-Right-Pointing-Pointer The fraction of particulate PAHs increased during the dust period. Black-Right-Pointing-Pointer Fine particles might be an important carrier of PAHs emitted from China. - Abstract: Polycyclic aromatic hydrocarbons (PAHs) in both gas and total suspended particles were measured at Gosan, Jeju Island in Korea, a remote background site, for 15 days (March 29-April 12, 2002). During the sampling period, a severe three-day Asian dust (AD) event originating from Mongolia and northern China was observed throughout the Korean Peninsula and Jeju Island. In addition, pollution (PO) and normal (NO) periods were also identified based on the levels of anthropogenic pollutants. Despite a large difference of PM{sub 10} concentrations between the AD and PO periods, the levels of particulate PAHs in both periods were comparable (2.7 {+-} 1.0 and 2.4 {+-} 0.5 ng m{sup -3}, respectively) since they were determined by the concentration of anthropogenic PM{sub 2.5} transported from industrial areas of China. In the AD period, the level of gaseous PAHs, which were mostly from local sources, was the lowest due to strong winds; the gas/particle partitioning was close to equilibrium as the effect of long-range transport was manifested. The results of backward air trajectories, correlation analysis, and diagnostic ratios show that long-range transport of particulate PAHs produced by coal/biomass burning in China could strongly affect the levels and patterns of PAHs at Gosan, Korea.

  13. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  14. Particulate Matter Assessment in the Air Based on the Heavy Metals Presence

    Directory of Open Access Journals (Sweden)

    Jandačka Dušan

    2014-05-01

    Full Text Available Particulate matters are the result of various processes in the atmosphere that are part of everyday life. The chemical composition of these particles is mainly influenced by their origin. Their behavior is also dependent on meteorological conditions and other factors as well. The aim of this paper was to identify sources of particulate matters by means of statistical methods due to the presence of 17 heavy metals. The problem solving assumes the knowledge of multivariate statistical data analysis methods as principal components analysis (PCA, factor analysis (FA and multivariate regression and vector algebra. For the application of methodology suitable software may prove appropriate.

  15. Notes on the Particulate Matter Standards in the European Union and the Netherlands

    Directory of Open Access Journals (Sweden)

    Hugo Priemus

    2009-03-01

    Full Text Available The distribution of Particulate Matter in the atmosphere, resulting from emissions produced by cars, trucks, ships, industrial estates and agricultural complexes, is a topical public health problem that has increased in recent decades due to environmental factors in advanced economies in particular. This contribution relates the health impact caused by concentrations of Particulate Matter (PM in ambient air to the PM standards, the size of the particles and spatial planning. Diverging impacts of PM standards in legal regulation are discussed. The authors present a review of the development of legal PM standards in the European Union, with a specific reference to The Netherlands.

  16. The contribution of biological particles to observed particulate organic carbon at a remote high altitude site

    Science.gov (United States)

    Wiedinmyer, Christine; Bowers, Robert M.; Fierer, Noah; Horanyi, Eszter; Hannigan, Michael; Hallar, A. Gannet; McCubbin, Ian; Baustian, Kelly

    Although a significant fraction of atmospheric particulate mass is organic carbon, the sources of particulate organic carbon (POC) are not always apparent. One potential source of atmospheric POC is biological particles, such as bacteria, pollen, and fungal spores. Measurements of POC and biological particles, including bacteria, fungal spores, and pollen, were made as part of the Storm Peak Aerosol and Cloud Characterization Study in Steamboat Springs, CO in March-April 2008. Biological particles were identified and characterized using several methods. The results suggest that biological particles could account for an average of 40% of the organic carbon mass in particles with aerodynamic diameters less than 10 μm. These estimates of POC mass from biological particles are highly uncertain; however, the results suggest that biological particles could be a significant source of organic aerosol in the background continental atmosphere and further observations are needed to better constrain these estimates.

  17. Particulate accumulations in the vital organs of wild Brevoortia patronus from the northern Gulf of Mexico after the Deepwater Horizon oil spill.

    Science.gov (United States)

    Millemann, Daniel R; Portier, Ralph J; Olson, Gregory; Bentivegna, Carolyn S; Cooper, Keith R

    2015-11-01

    Histopathologic lesions were observed in the commercially important filter-feeding fish, Brevoortia patronus (Gulf menhaden), along the Louisiana Gulf Coast. Menhaden collected from Louisiana waters in 2011 and 2012, 1 and 2 years following the Deepwater Horizon oil spill, showed varying severities of gill lesions as well as an unusual accumulation of black particulates visible at necropsy in the heart and stomach vasculature. The PAH derived particulates were typically 1-4 µm in diameter, but larger aggregates were observed in the coronary vessels on the ventricle surfaces and their location and size was confirmed by light microscopy. Composited particulate composition was consistent with weathered petrogenic polycyclic aromatic hydrocarbon (PAH) mixtures based on GC-MS analysis. Particulates were present in 63 and 80% of fish hearts and 70 and 89% of stomach muscularis collected in 2011 and 2012, respectively. Tissue embedded particulates can lead to localized cellular damage from bioavailable compounds, as well as chronic effects from occlusion of sensitive tissues' blood flow. The PAH derived particulates appeared to act as emboli in small capillaries, and could associated with localized inflammation, focal necrosis and inappropriate collagen and fibroblast tissue repair. We believe large volume filter feeding teleosts, such as menhaden (up to 3 million gallons per year/fish) with high lipid content, have a higher exposure risk and greater potential for toxicity from toxic particulates than other higher trophic level finfish. Suspended PAH derived particulates following an oil spill therefore, should be considered when assessing long-term ecological impacts and not be limited to physical contact (coating) or water soluble fractions for assessing toxicity (gill and neurologic).

  18. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  19. Atmospheric pollution in thermal power plants; Contaminacion atmosferica en centrales termicas convencionales

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre Diaz, A.

    1997-04-01

    The author presents the atmospheric pollution by fossil-fuel power plants. The state of the art is developed in 4 chapters: Legislation, Sulfur dioxide: reduction of SO{sub 2}, nitrogen oxides: reduction of emissions, particulates: reduction of particulates and new technologies. (Author)

  20. PRODUCT ENGINEERING OF PARTICULATE SOLIDS

    Institute of Scientific and Technical Information of China (English)

    Wolfgang Peukert

    2005-01-01

    An important development in Particle Technology is directed towards tailored product properties, i.e. product engineering. Product properties are strongly related to the disperse properties of the particles, i.e. their size, shape, morphology and surface. We discuss some general applicable principles in product engineering and give various examples. Strongly related to this approach are methods to characterize and to tailor product and particle properties. For systems which are controlled by the interfaces (e.g. particles in the micron size range and below) we apply a multi-scale approach from the particulate interfaces over particle interactions to the macroscopic properties. Thus, we tailor macroscopic product properties through microscopic control of the interfaces. This approach must be complemented by methods to characterize particle and product properties. It is shown that by careful consideration of the underlying physical processes considerable progress can be achieved.

  1. Methods for Coating Particulate Material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  2. Radiant zone heated particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  3. Firefighting instructors' exposures to polycyclic aromatic hydrocarbons during live fire training scenarios.

    Science.gov (United States)

    Kirk, Katherine M; Logan, Michael B

    2015-01-01

    Cumulative exposures of firefighting instructors to toxic contaminants generated from live-fire training potentially far exceed firefighter exposures arising from operational fires. This study measured the atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) outside and inside the structural firefighting ensembles worn by instructors during five live fire training evolutions. In addition, the contamination of ensembles by deposition of PAHs was characterized. Concentrations of polycyclic aromatic hydrocarbons outside the instructors' structural firefighting ensembles during the training evolutions ranged from 430 μg/m(3) to 2700 μg/m(3), and inside the structural firefighting ensembles from 32 μg/m(3) to 355 μg/m(3). Naphthalene, phenanthrene and acenaphthylene dominated the PAHs generated in the live fire evolutions, but benzo[a]pyrene was the greatest contributor to the toxicity of the PAH mixture both inside and outside the structural firefighting ensembles. Deposition of PAHs onto the structural firefighting ensembles was measured at between 69 and 290 ng/cm(2), with phenanthrene, fluoranthene, pyrene, and benzo[a]anthracene detected on all samples. These findings suggest that firefighting instructor exposures to PAHs during a single live-fire training evolution are comparable with exposures occurring in industrial settings over a full shift. Further research is required to investigate the importance of various potential routes of exposure to PAHs as a result of ingress and deposition of PAHs in/on structural firefighting ensembles.

  4. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects

    DEFF Research Database (Denmark)

    Nielsen, T.; Ejsing Jørgensen, Hans; Larsen, J.C.

    1996-01-01

    The presence of polycyclic aromatic hydrocarbons (PAH), mutagens and other air pollutants was investigated in a busy street in central Copenhagen and in a park area adjacent to the street. The winter concentration of benzo(a)pyrene was 4.4+/-1.2 ng/m(3) in the street air and 1.4+/-0.6 ng/m(3) in ...... was estimated to be 40%. Four different approaches to evaluate the health effects are discussed. The direct effect of PAH air pollution, and other mutagens, is considered to be a maximum of five lung cancer cases each year out of one million people.......The presence of polycyclic aromatic hydrocarbons (PAH), mutagens and other air pollutants was investigated in a busy street in central Copenhagen and in a park area adjacent to the street. The winter concentration of benzo(a)pyrene was 4.4+/-1.2 ng/m(3) in the street air and 1.4+/-0.6 ng/m(3......) in the city park. The atmospheric concentrations of PAH decreased in the order of: street > city background air similar to suburbs > village > open land. The traffic contribution of PAH to street air was estimated to be 90% on working days and 60% during weekends and its contribution to city background air...

  5. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives.

    Science.gov (United States)

    Misaki, Kentaro; Takamura-Enya, Takeji; Ogawa, Hideoki; Takamori, Kenji; Yanagida, Mitsuaki

    2016-03-01

    Various types of polycyclic aromatic compounds (PACs) in diesel exhaust particles are thought to contribute to carcinogenesis in mammals. Although the carcinogenicity, mutagenicity and tumour-initiating activity of these compounds have been evaluated, their tumour-promoting activity is unclear. In the present study, to determine the tumour-inducing activity of PACs, including previously known mutagenic compounds in atmospheric environments, a transformation assay for promoting activity mediated by the release of contact inhibition was conducted for six polycyclic aromatic hydrocarbons (PAHs), seven oxygenated PAHs (oxy-PAHs) and seven nitrated PAHs (nitro-PAHs) using mouse embryonic fibroblast cells transfected with the v-Ha-ras gene (Bhas 42 cells). Of these, two PAHs [benzo[k]fluoranthene (B[k]FA) and benzo[b]fluoranthene (B[b]FA)], one oxy-PAH [6H-benzo[cd]pyren-6-one (BPO)] and two nitro-PAHs (3-nitro-7H-benz[de]anthracen-7-one and 6-nitrochrysene) were found to exhibit particularly powerful tumour-promoting activity (≥10 foci following exposure to BPO). Further, an HO-1 antioxidant response activation was observed following exposure to B[k]FA, B[b]FA and BPO, suggesting that the induction of tumour-promoting activity in these compounds is correlated with the dysfunction of signal transduction via AhR-mediated responses and/or oxidative stress responses.

  6. Calibration and application of PUF disk passive air samplers for tracking polycyclic aromatic compounds (PACs)

    Science.gov (United States)

    Harner, Tom; Su, Ky; Genualdi, Susie; Karpowicz, Jessica; Ahrens, Lutz; Mihele, Cristian; Schuster, Jasmin; Charland, Jean-Pierre; Narayan, Julie

    2013-08-01

    Results are reported from a field calibration of the polyurethane foam (PUF) disk passive air sampler for measuring polycyclic aromatic compounds (PACs) in the atmosphere of the Alberta oil sands region of Canada. Passive samplers were co-deployed alongside conventional high volume samplers at three sites. The results demonstrate the ability of the PUF disk sampler to capture PACs, including polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs and parent and alkylated dibenzothiophenes. Both gas- and particle-phase PACs were captured with an average sampling rate of approximately 5 m3 day-1, similar to what has been previously observed for other semivolatile compounds. This is the first application of the PUF disk sampler for alkylated PAHs and dibenzothiophenes in air. The derived sampling rates are combined with estimates of the equilibrium partitioning of the PACs in the PUF disk samplers to estimate effective sample air volumes for all targeted PACs. This information is then applied to the passive sampling results from two deployments across 17 sites in the region to generate spatial maps of PACs. The successful calibration of the sampler and development of the methodology for deriving air concentrations lends support to the application of this cost-effective and simple sampler in longer term studies of PACs in the oil sands region.

  7. Halogens in the atmosphere

    Science.gov (United States)

    Cicerone, R. J.

    1981-01-01

    Atmospheric halogen measurement data are presented for: (1) inorganic and organic gaseous compounds of chlorine, fluorine, bromine and iodine; and (2) chloride, fluoride, bromide and iodine in particulate form and in precipitation. The roles that these data and other, unavailable data play in the determination of the global cycles of the halogens are discussed. It is found that the speciation of the halogen gases in the troposphere is uncertain, with the only inorganic species detected by species-specific methods being HC1 and SF6. It is shown that heterogeneous reactions, both gas-to-particle and particle-to-gas processes, precipitation removal, and sea-salt aerosol generation and fractionation processes, need quantitative investigation to allow progress in estimating halogen sources and sinks. Where practical, quantitative comparisons are made between measured and predicted concentrations.

  8. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine.

    Science.gov (United States)

    Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D

    2012-06-01

    We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene.

  9. Polycyclic aromatic hydrocarbons from rural household biomass burning in a typical Chinese village

    Institute of Scientific and Technical Information of China (English)

    NGUYEN; Thi; Kim; Oanh

    2008-01-01

    Biomass energy sources are still popular in the rural areas of developing countries for cooking and space heating. Since the incomplete combustion of agricultural residues in home-made ranges might lead to both outdoor and indoor air pollution and cause potential health threat to the rural population, we monitored the ambient levels of 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) at a typical rural site. Ambient particulate PAH samples (PM2.5 and PM10) were taken during both cooking and non-cooking periods. Source emission monitoring was also conducted for both improved and tra- ditional cooking stoves used in the area. Ambient PAHs had a significant increase during the cooking periods and varied from 72.1 to 554.4 ng/m3. The highest total PAH levels were found during the supper cooking time, in which five- and six-ring species accounted for a large proportion. The observed PAH levels during cooking periods at this rural site were even higher than those in urban areas. A good correlation was found between the benzo[a]pyrene level and the total PAH concentration (r=0.98), making benzo[a]pyrene a potential molecular marker for PAH pollution in the rural areas, where bio- mass burning is typical. The profiles of the particulate PAHs in both ambient air and source emissions showed a high proportion of high molecular-mass PAHs. In addition, emission factors of 16 PAHs from an improved household stove were found to be significantly lower than those from traditional stoves used in China and in other Asian countries.

  10. Study of the combustion of aluminium and magnesium particulates: influence of the composition of the gaseous mixture and of pressure; Etude de la combustion de particules d'aluminium et de magnesium: influence de la composition du melange gazeux et de la pression

    Energy Technology Data Exchange (ETDEWEB)

    Legrand, B.

    2000-07-01

    The combustion of metal particulates has a major interest in the domain of space propulsion. Aluminium is today used as doping material in the solid propellant of Ariane 5 rocket engines. Magnesium represents a possible fuel for propellers allowing a come back from Mars. An electrostatic levitation device has been used to study the combustion in controlled environment of particulates having a size representative of those encountered in propellers. The particulates are ignited with a laser and observed by fast cinematography. The inhibitive property of hydrogen chloride, an important constituent of the propellant atmosphere, on the combustion of aluminium particulates has been evidenced. These results have been compared with those obtained with a kinetic model in gaseous phase. The combustion of magnesium particulates in carbon dioxide has been studied for 53-63 {mu}m and 1-2 mm particulates. It is shown that the ignition of small particulates is controlled by the chemical kinetics and that the limit ignition pressure is reversely proportional to the particulates size. A study on big samples, performed in normal gravity but also in reduced gravity to get rid of the natural convection phenomena, has permitted to show a pulsed combustion regime linked with the presence of heterogenous reactions. The measurement of the combustion durations for the different sizes of particulates has permitted to propose a correlation between these two parameters for the particulate diameters comprised between 50 {mu}m and 2 mm. (J.S.)

  11. Evaluation of particulate filtration efficiency of retrofit particulate filters for light duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Van Asch, R.; Verbeek, R.

    2009-10-15

    In the light of the currently running subsidy programme for particulate filters in the Netherlands, the Dutch ministry of spatial planning and environment (VROM) asked TNO to execute a desk study to evaluate the particulates filtration efficiency of retrofit particulate filters for light duty vehicles (passenger cars and vans). The typical retrofit particulate filters for light duty vehicles are also called 'open' or 'half-open' filters, because a part of the exhaust gas can pass through the particulate filter unfiltered. From design point they are very different from the majority of the factory installed particulate filters, which are also called wall-flow or 'closed' particulate filters. Due to these differences there is a large difference in filtration efficiency. Whereas the 'dosed' particulate filters show a filtration efficiency of larger than 90%, the filtration efficiency of 'open' particulate filters is generally lower (type approval minimum 30%), and strongly dependent on the conditions of use. The objective of the current project was to assess the average filtration efficiency of retrofit (open) particulate fillters on light duty vehicles in real world day to day driving, based on available literature data. Also, the reasons of a possible deviation with the type approval test results (minimum filtration efficiency of 30%) was investigated.

  12. Initial microbial degradation of polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Milić Jelena

    2016-01-01

    Full Text Available The group of polycyclic aromatic hydrocarbons (PAHs are very hazardous environmental pollutants because of their mutagenic, carcinogenic and toxic effects on living systems. The aim of this study was to examine and compare the ability and efficiency of selected bacterial isolates obtained from oil-contaminated areas to biodegrade PAHs. The potential of the bacteria to biodegrade various aromatic hydrocarbons was assessed using the 2,6-dichlorophenol-indophenol assay. Further biodegradation of PAHs was monitored by gravimetric and gas-chromatographic analysis. Among the eight bacterial isolates, identified on the basis of 16S rDNA sequences, two isolates, Planomicrobium sp. RNP01 and Rhodococcus sp. RNP05, had the ability to grow on and utilize almost all examined hydrocarbons. Those isolates were further examined for biodegradation of phenanthrene and pyrene, as single substrates, and as a mixture, in vitro for ten days. After three days, both isolates degraded a significant amount phenanthrene, which has a simpler chemical structure than pyrene. Planomicrobium sp.RNP01 commenced biodegradation of pyrene in the PAH mixture only after it had almost completly degraded phenanthrene. The isolated and characterized bacteria, Planomicrobium sp. RNP01 and Rhodococcus sp. RNP05, have shown high bioremediation potential and are likely candidates to be used for degradation of highly toxic PAHs in contaminated areas. [Projekat Ministarstva nauke Republike Srbije, br. III43004

  13. Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons

    KAUST Repository

    Diev, Vyacheslav V.

    2012-01-06

    A systematic study of the preparation of porphyrins with extended conjugation by meso,β-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl 3, dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin β,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,β-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ max = 730 nm), coronenyl (λ max = 780 nm), pyrenyl (λ max = 815 nm), and perylenyl (λ max = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the β,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ max = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies. © 2011 American Chemical Society.

  14. Characteristics and distributions of atmospheric mercury emitted from anthropogenic sources in Guiyang, southwestern China

    Science.gov (United States)

    Continuous measurements of speciated atmospheric mercury (Hg), including gaseous elemental mercury (GEM), particulate mercury (PHg), and reactive gaseous mercury (RGM) were conducted in Guizhou Province, southwestern China. Guiyang Power Plant (GPP), Guiyang Wujiang Cement Plant,...

  15. An Important Supplement to NAA in Study on Atmosphere Pollution:Determination of Black Carbon

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Light absorption in the atmosphere is dominated by elemental carbon (EC), sometimes called black carbon (BC). Black carbon is an important indication of man-made pollution in airborne particulate matter

  16. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...... localities of tensions between matter and the immaterial, the practical and the ideal, and subject and object. In the colloquial language there can, moreover, often seem to be something authentic or genuine about atmosphere, juxtaposing it to staging, which is implied to be something simulated or artificial....... This introduction seeks to outline how a number of scholars have addressed the relationship between staged atmospheres and experience, and thus highlight both the philosophical, social and political aspects of atmospheres...

  17. PM 10-bound polycyclic aromatic hydrocarbons: Concentrations, source characterization and estimating their risk in urban, suburban and rural areas in Kandy, Sri Lanka

    Science.gov (United States)

    Wickramasinghe, A. P.; Karunaratne, D. G. G. P.; Sivakanesan, R.

    2011-05-01

    Kandy, a world heritage city, is a rapidly urbanized area in Sri Lanka, with a high population density of ˜6000 hab km -2. As it is centrally located in a small valley of 26 km 2 surrounded by high mountains, emissions from the daily flow of >100,000 vehicles, most are old and poorly maintained, get stagnant over the study area with an increased emphasis on the associated health impacts. Particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) are considered to be major pollutants in vehicular emissions; while PAHs account for the majority of mutagenic potency of PM. The purpose of the current study is to determine the 8 h average concentrations of ambient PM 10 PAHs at twenty sites distributed in the urban, suburban and rural Kandy. Samples on glass micro fibre filters were collected with a high volume air sampler from July/2008 to March/2009, prepared through standard procedures and analyzed for PAHs by high performance liquid chromatography with ultraviolet visible detection. Further, the type and strength of possible anthropogenic emission sources that cause major perturbations to the atmosphere were assessed by traffic volume (24 h) counts and firewood mass burnt/d at each sampling site, with the subsequent societal impact through quantitative cancer risk assessment. The results can serve as a base set to assess the PAH sources, pollution levels and human exposure. Mean total concentrations of 16 prioritized PAHs (∑PAHs) ranged from 57.43 to 1246.12 ng m -3 with 695.94 ng m -3 in urban heavy traffic locations (U/HT), 105.55 ng m -3 in urban light traffic locations, 337.45 ng m -3 in suburban heavy traffic stations, 154.36 ng m -3 in suburban light traffic stations, 192.48 ng m -3 in rural high firewood burning area and 100.31 ng m -3 in rural low firewood burning area. The mean PM 10 concentration was 129 μg m -3 (55-221 μg m -3); which is beyond the WHO air quality standards. Polycyclic aromatic hydrocarbon signature and the spatial variation

  18. Electrically heated particulate filter enhanced ignition strategy

    Science.gov (United States)

    Gonze, Eugene V; Paratore, Jr., Michael J

    2012-10-23

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

  19. Polycyclic aromatic hydrocarbons increase in Athabasca River Delta sediment: temporal trends and environmental correlates.

    Science.gov (United States)

    Timoney, Kevin P; Lee, Peter

    2011-05-15

    The Athabasca River in Alberta, Canada, flows north through an area undergoing extensive bitumen resource extraction and processing before discharging its water and sediments into the Athabasca Delta and Lake Athabasca. Polycyclic aromatic hydrocarbons (PAHs) have been identified as an environmental concern in the region. We analyzed environmental data collected by the Regional Aquatics Monitoring Program and government agencies to determine whether temporal trends exist in the concentration of sediment PAHs in the Athabasca River Delta. We then determined what environmental factors related to the trends in sediment PAH concentrations. Total PAH concentrations in the sediment of the Athabasca River Delta increased between 1999 and 2009 at a rate of 0.05 mg/kg/yr ± 0.02 s.e. Annual bitumen production and mined sand volume, extent of landscape disturbance, and particulate emissions were correlated with sediment PAH concentrations as were total organic carbon in sediment and discharge of the Clearwater River, a major tributary of the Athabasca River. Within four tributaries of the Athabasca River, only the Clearwater River showed a significant correlation between discharge and sediment PAH concentration at their river mouths. Carefully designed studies are required to further investigate which factors best explain variability in sediment PAH concentrations.

  20. Use of SPMDs to determine average water concentration of polycyclic aromatic hydrocarbons in urban stormwater runoff

    Energy Technology Data Exchange (ETDEWEB)

    DeVita, W.; Crunkilton, R. [Univ. of Wisconsin, Stevens Point, WI (United States)

    1995-12-31

    Semipermeable polymeric membrane devices (SPMDS) were deployed for 30 day periods to monitor polycyclic aromatic hydrocarbons (PAHs) in an urban stream which receives much of its flow from urban runoff. SPMDs are capable of effectively sampling several liters of water per day for some PAHs. Unlike conventional methods, SPMDs sample only those non-polar organic contaminants which are truly dissolved and available for bioconcentration. Also, SPMDs may concentrate contaminants from episodic events such as stormwater discharge. The State of Wisconsin has established surface water quality criteria based upon human lifetime cancer risk of 23 ppt for benzo(a)pyrene and 23 ppt as the sum of nine other potentially carcinogenic PAHs. Bulk water samples analyzed by conventional methodology were routinely well above this criteria, but contained particulate bound PAHs as well as PAHs bound by dissolved organic carbon (DOC) which are not available for bioconcentration. Average water concentrations of dissolved PAHs determined using SPMDs were also above this criteria. Variables used for determining water concentration included sampling rate at the exposure temperature, length of exposure and estimation of biofouling of SPMD surface.

  1. Evaluation of sampling devices for the determination of polycyclic aromatic hydrocarbons in surface microlayer coastal waters.

    Science.gov (United States)

    Guitart, C; García-Flor, N; Dachs, J; Bayona, J M; Albaigés, J

    2004-05-01

    The sea surface microlayer (SML) may play an important role on the transport and fate of persistent organic pollutants in the marine environment. In order to evaluate the appropriateness of a number of sampling devices for the analysis of 14 parent polycyclic aromatic hydrocarbons (3-5 aromatic rings), marine SML waters were sampled using a glass plate, a rotating drum/roller, a metal screen and a surface slick sampler. The underlying waters were also sampled for the determination of the corresponding enrichment factors (EF = [C](microlayer)/[C](underlying water)). The EFs were phase dependent, ranging from 1 to 3 for the dissolved phase and between 4 and 7 for the particulate phase. In order to better assess the performance of the different sampling methods, in terms of phase partitioning, the truly dissolved and colloidal phases were also estimated. Generally, no significant differences were found for the enrichment factors provided by the different methods, due to the observed large variability in concentrations that can be attributed to small-scale coastal processes. However, the metal screen is recommended as the most efficient sampling method for the study of PAHs taking into account the amount of water collected versus time.

  2. Quantitative Analysis of Polycyclic Aromatic Hydrocarbons (PAHs Cited by the United States Food and Drug Administration

    Directory of Open Access Journals (Sweden)

    Guthery W

    2014-12-01

    Full Text Available The yields of 16 polycyclic aromatic hydrocarbons (PAHs were determined from cigarette mainstream smoke condensate extracts using Gas Chromatography- Tandem Mass Spectrometry (GC-MS/MS. The method has been validated for ISO and Health Canada Intense (HCI smoking protocols. Quantifiable levels (ISO means 0.16 to 365 ng/cig; HCI means 0.33 to 1595 ng/cig; n = 30 of 15 PAHs were found in the Kentucky reference cigarette K3R4F. The coefficient of variance (CV was derived from ten determinations each run in triplicate. The CV range was 8.7% to 24.8% (ISO and 6.6% to 24.3% (HCI. The limit of detection (LOD based on empirical precision was ≤ 0.06 ng/cig (ISO and ≤ 0.20 ng/cig (HCI for all components except naphthalene (2.89 and 9.62 ng/cig, respectively. The yields from 5 unspecified branded cigarettes (Samples A-E and 2 other reference cigarettes, K1R5F and the CORESTA monitor CM7, were determined under ISO smoking conditions. The same 15 PAHs were detected as in the K3R4F; however, cigarettes with lower yields of total particulate matter (TPM were found to contain significantly less PAHs. One component was measured below the limit of quantification (LOQ in Sample E and 2 components were < LOQ in the K1R5F.

  3. Source apportionment of chlorinated polycyclic aromatic hydrocarbons associated with ambient particles in a Japanese megacity

    Science.gov (United States)

    Kamiya, Yuta; Iijima, Akihiro; Ikemori, Fumikazu; Okuda, Tomoaki; Ohura, Takeshi

    2016-12-01

    Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) are novel species of environmental contaminants whose possible sources remain unclear. The occurrence of ClPAHs within total suspended particles (TSP) is compared with weekly air samples at two sites of differing characteristics (industrial and residential) in the megacity of Nagoya, Japan. Samples were collected over 12 months during 2011–2012. All 24 species of targeted ClPAHs were detected at both industrial and residential sites, where mean concentrations of total ClPAHs in TSP were 20.7 and 14.1 pg/m3, respectively. High concentrations at the industrial site were frequently observed during winter, suggesting potent seasonal ClPAH sources there. Positive matrix factorization modeling of particulate ClPAH source identification and apportioning were conducted for datasets including ClPAHs, PAHs, elements and ions, plus elemental carbons in TSP. Eight factors were identified as possible ClPAH sources, with estimates that the dominant one was a specific source of ClPAH emission (31%), followed by traffic (23%), photodegradable and semi-volatile species (18%), long-range transport (11%), and industry and oil combustion (10%). Source contributions of ClPAHs differed substantially from those of PAHs. This suggests specific and/or potent ClPAH sources in the local area, and that the production mechanisms between ClPAHs and PAHs are substantially different.

  4. NATO Advanced Research and CNRS Workshop on Polycyclic Aromatic Hydrocarbons and Astrophysics

    CERN Document Server

    d’Hendecourt, L; Boccara, N

    1987-01-01

    The near Infra-Red emission of the Interstellar Medium is a very puzzling subject. In the brightest regions, where spectroscopic observa­ tions are possible from the ground, several bands (3.3 - 3.4 - 6.2 - 7.7 - 8.6 - 11.3 ~m) have been observed since 1973. The absence of satisfying explanation was so obvious that they were called "Unidenti­ fied IR Emission Bands". The puzzle still increased when were known the first results of the general IR sky survey made by the satellite IRAS. On a large scale, the near IR emission of the Interstellar medium was expected to be very small but it was observed to be about one third of the total IR emission for our own galaxy ..• The situation has moved in 1984 when it was suggested that a class of stable organic molecules, the Polycyclic Aromatic Hydrocarbons (PAH's) could be at the origin of this near IR emission. Initially based on the required refractory character of particules that should be heated to high temperature without subliming, this hypothesis leads to a s...

  5. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    Science.gov (United States)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  6. An unexpected restructuring of combustion soot aggregates by subnanometer coatings of polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Chen, Chao; Fan, Xiaolong; Shaltout, Tasneem; Qiu, Chong; Ma, Yan; Goldman, Andrew; Khalizov, Alexei F.

    2016-10-01

    We investigated the effect of thin polycyclic aromatic hydrocarbon (PAH) coatings on the structure of soot aggregates. Soot aerosol from an inverted diffusion burner was size classified, thermally denuded, coated with six different PAHs, and then characterized using scanning electron microscopy, light scattering, and mass-mobility measurements. Contrary to our expectation, significant restructuring was observed in the presence of subnanometer layers of pyrene, fluoranthene, and phenanthrene. These PAHs remained in subcooled liquid state in thin films, whereby the liquid layer acted as a lubricant, reducing the force required to initiate the restructuring. Thin layers of PAH of higher melting temperatures (perylene, anthracene, and triphenylene) presumably remained solid because these chemicals induced lesser structural changes. Our results suggest that some of the intrinsic PAH generated during incomplete combustion may induce significant restructuring of soot aggregates, even when present in small quantities, altering the properties and atmospheric impacts of combustion aerosols.

  7. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects.

    Science.gov (United States)

    Kim, Ki-Hyun; Jahan, Shamin Ara; Kabir, Ehsanul; Brown, Richard J C

    2013-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds comprised of two or more fused benzene rings arranged in various configurations. PAHs are widespread environmental contaminants formed as a result of incomplete combustion of organic materials such as fossil fuels. The occurrence of PAHs in ambient air is an increasing concern because of their carcinogenicity and mutagenicity. Although emissions and allowable concentrations of PAHs in air are now regulated, the health risk posed by PAH exposure suggests a continuing need for their control through air quality management. In light of the environmental significance of PAH exposure, this review offers an overview of PAH properties, fates, transformations, human exposure, and health effects (acute and chronic) associated with their emission to the atmosphere. Biomarkers of PAH exposure and their significance are also discussed.

  8. Toxicity assessment of polycyclic aromatic hydrocarbons in sediments from European high mountain lakes.

    Science.gov (United States)

    Quiroz, Roberto; Grimalt, Joan O; Fernández, Pilar

    2010-05-01

    Sediment quality guidelines and toxic equivalent factors have been used for assessment of the toxicity of sedimentary long-range atmospherically transported polycyclic aromatic hydrocarbons (PAHs) to the organisms living in high mountain European lakes. This method has provided indices that are consistent with experimental studies evaluating in situ sedimentary estrogenic activity or physiological response to AhR binding in fish from the same lakes. All examined lakes in north, central, west, northeast and southeast European mountains have shown sedimentary PAH concentrations that are above thresholds of no effect but only those situated in the southeast lakes district exhibited concentrations above the indices of probable effects. These mountains, Tatras, are also those having PAH concentrations of highest activity for AhR binding. Chrysene+triphenylene, dibenz[a]anthracene, benzo[k]fluoranthene and indeno[1,2,3-cd]pyrene are the main compounds responsible for the observed toxic effects.

  9. Polycyclic aromatic hydrocarbons alter the structure of oceanic and oligotrophic microbial food webs

    KAUST Repository

    Cerezo, Maria Isabel

    2015-11-01

    One way organic pollutants reach remote oceanic regions is by atmospheric transport. During the Malaspina-2010 expedition, across the Atlantic, Indian, and Pacific Oceans, we analyzed the polycyclic aromatic hydrocarbon (PAH) effects on oceanic microbial food webs. We performed perturbation experiments adding PAHs to classic dilution experiments. The phytoplankton growth rates were reduced by more than 5 times, being Prochlorococcus spp. the most affected. 62% of the experiments showed a reduction in the grazing rates due to the presence of PAHs. For the remaining experiments, grazing usually increased likely due to cascading effects. We identified changes in the slope of the relation between the growth rate and the dilution fraction induced by the pollutants, moving from no grazing to V-shape, or to negative slope, indicative of grazing increase by cascade effects and alterations of the grazers\\' activity structure. Our perturbation experiments indicate that PAHs could influence the structure oceanic food-webs structure.

  10. Polycyclic aromatic hydrocarbon-DNA adducts in beluga whales from the Arctic.

    Science.gov (United States)

    Mathieu, A; Payne, J F; Fancey, L L; Santella, R M; Young, T L

    1997-05-01

    The Arctic is still relatively pristine in nature, but it is also vulnerable to pollution because contaminants originating from midlatitudes are transported to the Arctic by atmospheric processes, ocean currents, and rivers (Muir et al., 1992). Recognition of this fact of Arctic vulnerability has resulted in a Declaration on the Protection of the Arctic Environment by eight Arctic countries. A manifest aim of this declaration is to develop an Arctic Monitoring and Assessment Program. We report here on the presence of measurable levels of polycyclic aromatic hydrocarbon-DNA adducts, including relatively high levels in Arctic beluga (Delphinapterus leucas). These results lend support to the value of developing biological assessment programs for Arctic wildlife.

  11. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    Science.gov (United States)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  12. Nitro-PAH compounds in the atmosphere of Sao Paulo, Brazil

    Science.gov (United States)

    Mabilia, R.; Cecinato, A.; Tomasi Scianò, M. C.; Vasconcellos, P.; Carvalho, L.; Mathos, L.; Franco, L.

    2003-04-01

    Nitrated polycyclic aromatic hydrocarbons (nitro-PAH) are the chemical class with potent mutagenic compounds. These species are emitted from a wide range of combustion sources. Some compounds can be formed photo chemically via reactions of their parents PAH with OH or NO_3 radicals (in the presence of NO_2) in the gas phase as well as N_2O_5 or HNO_3 when parent PAH is associated with aerosols. In the tropics, an important source of particulate PAH and nitro-PAH is biomass burning used for clearings in forest and for making easier the harvesting of sugar cane. Brazil owns 25% of global sugar cane and is the major producer in the world. This burning produces soot, which remains for along time in the air and can cause respiratory diseases. This study was conducted in 3 cities in São Paulo State during sugar cane burning episodes. Back trajectories were calculated by University of São Paulo Trajectory Model for determination of air parcel trajectories over the sites. Atmospheric samples were collected on quartz fiber filters for 24 hours in high-volume sampler during one week. A Soxhlet apparatus filled with methylene chloride was used for extracting the filters. This residue was submitted to HPLC separation and the 3 obtained fractions (n-alkanes, PAH and nitro-PAH) were analyzed by both gas chromatography/flame ionization and gas chromatography/mass spectrometry detection. The isomers 2-, 3-, 8-nitrofluoranthene and 2-nitropyrene were identified and results show large differences between the sites. 2-nitropyrene/2-nitrofluoranthene ratios were calculated indicating the daytime reactions promoted by OH radicals.

  13. Self-Cleaning Particulate Air Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires an innovative solution to the serious issue of particulate fouling on air revitalization component surfaces in order to address the potential for...

  14. Heat and mass transfer in particulate suspensions

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2013-01-01

    Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...

  15. PARTICULATE MATTER, OXIDATIVE STRESS AND NEUROTOXICITY

    Science.gov (United States)

    Particulate matter (PM), a component of air pollution has been epidemiologically associated with sudden deaths, cardiovascular and respiratory illnesses. The effects are more pronounced in patients with pre-existing conditions such as asthma, diabetes or obstructive pulmonary dis...

  16. Allegheny County Particulate Matter 2.5

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The U.S. Environmental Protection Agency provides information on the particulate matter concentration for Allegheny County that have a diameter greater or equal to...

  17. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  18. Particulate products tailoring properties for optimal performance

    CERN Document Server

    Merkus, Henk G

    2013-01-01

    In this book, experts in different product fields provide information on which particulate aspects are most relevant for behavior and performance of specified industrial products and how optimum results can be obtained.

  19. SOUTHERN FINE PARTICULATE MONITORING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-04-01

    This quarterly report presents results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the January-March, 2002 study period. The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. Some instrumental issues were noted with the upgrade of the APS model 3320 are described in the report, as well as preliminary performance indications for the upgraded instrument. During the quarter preliminary data analysis and modeling studies were conducted to test the potential of the North Birmingham site data for source attribution analyses. Our initial assessment has continued to be optimistic in this regard due to the location of the site relative to several important classes of local and midrange emission sources. We anticipate that these analyses will provide good separations of the effects of major source classes and spatial source clusters, and will provide useful information relevant to PM{sub 2.5} implementation strategies.

  20. MTCI acoustic agglomeration particulate control

    Energy Technology Data Exchange (ETDEWEB)

    Chandran, R.R.; Mansour, M.N. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States); Scaroni, A.W.; Koopmann, G.H. [Pennsylvania State Univ., University Park, PA (United States); Loth, J.L. [West Virginia Univ., Morgantown, WV (United States)

    1994-10-01

    The overall objective of this project is to demonstrate pulse combination induced acoustic enhancement of coal ash agglomeration and sulfur capture at conditions typical of direct coal-fired turbines and PFBC hot gas cleanup. MTCI has developed an advanced compact pulse combustor island for direct coal-firing in combustion gas turbines. This combustor island comprises a coal-fired pulse combustor, a combined ash agglomeration and sulfur capture chamber (CAASCC), and a hot cyclone. In the MTCI proprietary approach, the pulse combustion-induced high intensity sound waves improve sulfur capture efficiency and ash agglomeration. The resulting agglomerates allow the use of commercial cyclones and achieve very high particulate collection efficiency. In the MTCI proprietary approach, sorbent particles are injected into a gas stream subjected to an intense acoustic field. The acoustic field serves to improve sulfur capture efficiency by enhancing both gas film and intra-particle mass transfer rates. In addition, the sorbent particles act as dynamic filter foci, providing a high density of stagnant agglomerating centers for trapping the finer entrained (in the oscillating flow field) fly ash fractions. A team has been formed with MTCI as the prime contractor and Penn State University and West Virginia University as subcontractors to MTCI. MTCI is focusing on hardware development and system demonstration, PSU is investigating and modeling acoustic agglomeration and sulfur capture, and WVU is studying aerovalve fluid dynamics. Results are presented from all three studies.

  1. Partition of polycyclic aromatic hydrocarbons on organobentonites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of organobentonites synthesized by exchanging organiccation such as dodecyltri-methylammonium (DTMA),benzyldimethyltetradecylammonium (BDTDA), cetyltrimethyl-ammonium (CTMA), octodeyltrimethylammonium (OTMA) on bentonite. The optimal condition, properties and mechanisms for the organobentonites to sorb phenanthrene, anthracene, naphthalene, acenaphthene in water were investigated in detail. The partition behavior was determined for four polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, anthracene and acenaphthene, from water to a series of organobentonites. The interlayer spacings and organic carbon contents of organobentonites, removal rate and sorption capacities for organobentonites to treat phenanthrene,anthracene, naphthalene, acenaphthene were correlated to the length of alkyl chains and the amounts of cation surfactant exchanged on Foundation item: the bentonite. Phenanthrene, anthracene, naphthalene, and acenaphthene sorption to organobentonites were characterized by linear isotherms, indicating solute partition between water and the organic phase composed of the large alkyl functional groups of quaternary ammonium cations. PAHs distribution coefficients (Kd)between organobentonites and water were proportional to the organic carbon contents of organobentonites. However, the partition coefficients (Koc) were nearly constants for PAHs in the system of organobentonite-water. The Koc of phenanthrene, anthracene,naphthalene, acenaphthene were 2.621x105, 2.106x105, 2.247x104,5.085x104, respectively. The means Koc values on the organobentonites are about ten to twenty times larger than the values on the soils/sediments, what is significant prerequisite for organobentonite to apply to remediation of pollution soil and groundwater. The sorption mechanism was also evaluated from octanol-water partition coefficients and aqueous solubility of PAHs. The correlations between lgKoc and 1gkow, 1gKoc and 1gS for PAHs in the system of water

  2. Environmental Remediation: Removal of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nkansah, Marian Asantewah

    2012-11-15

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent semi-volatile organic compounds. They are contaminants that are resistant to degradation and can remain in the environment for long periods due to their high degree of conjugation, and aromaticity. PAHs are present in industrial effluents as products of incomplete combustion processes of organic compounds. Petroleum, coal and shale oil contain extremely complex mixtures of these PAHs, and their transport and refining process can also result in the release of PAHs. It is therefore prudent that such effluents are treated before discharge into the environment. In this project, different approaches to the treatment of PAHs have been investigated. Hydrous pyrolysis has been explored as a potential technique for degrading PAHs in water using anthracene as a model compound. The experiments were performed under different conditions of temperature, substrate, redox systems and durations. The conditions include oxidising systems comprising pure water, hydrogen peroxide and Nafion-SiO2 solid catalyst in water; and reducing systems of formic acid and formic acid / Nafion-SiO2 / Pd-C catalysts to assess a range of reactivities. Products observed in GCMS analysis of the extract from the water phase include anthrone, anthraquinone, xanthone and multiple hydro-anthracene derivatives (Paper I). In addition a modified version of the Nafion-SiO2 solid catalyst in water oxidising system was tested; and reducing systems of formic acid and formic acid / Nafion-SiO2 / Pd-C catalysts were adopted for the conversion of a mixture of anthracene, fluorene and fluoranthene. The rate of conversion in the mixture was high as compared to that of only anthracene (Paper II). Also the use of LECA (Lightweight expanded clay aggregates) as an adsorbent (Paper III) for PAHs (phenanthrene, fluoranthene and pyrene) removal from water has been.(Author)

  3. CERN: le Mondial de la particule

    CERN Multimedia

    Favier, R

    1998-01-01

    Avec le LEP (acc\\’{e}l\\’{e}rateur de particules), le CERN est devenu le v\\’{e}ritable phare de la science europ\\’{e}enne. Notamment pour la physique des particules. Riche de multiples exp\\’{e}riences r\\’{e}ussies, mais aussi de quelques prix Nobel, le CERN est en train de vivre une nouvelle aventure scientifique, en lan

  4. Exoplanet Atmospheres

    CERN Document Server

    Seager, S

    2010-01-01

    At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...

  5. Atmospheric Neutrinos

    OpenAIRE

    Takaaki Kajita

    1994-01-01

    Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses...

  6. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...... experience in space, presented as middle ground experience. In the field of HCI, middle ground experiences complete the unarticulated spectrum between designing for foreground of attention or background awareness. When “Articulating Atmospheres through Middle Ground Experiences in Interaction Design...

  7. Spectral variability of the particulate backscattering ratio

    Science.gov (United States)

    Whitmire, A. L.; Boss, E.; Cowles, T. J.; Pegau, W. S.

    2007-05-01

    The spectral dependency of the particulate backscattering ratio is relevant in the fields of ocean color inversion, light field modeling, and inferring particle properties from optical measurements. Aside from theoretical predictions for spherical, homogeneous particles, we have very limited knowledge of the actual in situ spectral variability of the particulate backscattering ratio. This work presents results from five research cruises that were conducted over a three-year period. Water column profiles of physical and optical properties were conducted across diverse aquatic environments that offered a wide range of particle populations. The main objective of this research was to examine the behavior of the spectral particulate backscattering ratio in situ, both in terms of its absolute magnitude and its variability across visible wavelengths, using over nine thousand 1-meter binned data points for each of five wavelengths of the spectral particulate backscattering ratio. Our analysis reveals no spectral dependence of the particulate backscattering ratio within our measurement certainty, and a geometric mean value of 0.013 for this dataset. This is lower than the commonly used value of 0.0183 from Petzold’s integrated volume scattering data. Within the first optical depth of the water column, the mean particulate backscattering ratio was 0.010.

  8. Coal tar pitch volatiles and polycyclic aromatic hydrocarbons exposures in expansion joint-making operations on a construction site: a case study.

    Science.gov (United States)

    Kurtz, Lawrence A; Verma, Dave K; Sahai, Dru

    2003-07-01

    This case study describes occupational exposures to coal tar pitch volatiles (CTPV) as benzene soluble fraction (BSF), polycyclic aromatic hydrocarbons (PAHs) and total particulates at a unique operation involving the use of coal tar in the making of expansion joints in construction of a multi-level airport parking garage. A task-based exposure assessment approach was used. A set of 32 samples was collected and analyzed for total particulate and CTPV-BSF. Twenty samples of this set were analyzed for PAHs. Current American Conference of Governmental Industrial Hygienists (ACGIH(R)) respective threshold limit value-time weighted average (TLV-TWA) for insoluble particulates not otherwise specified (PNOS) is 10 mg/m(3) as inhalable dust, which roughly corresponds to 4 mg/m(3) total particulate; for CTPV as BSF the TLV is 0.2 mg/m(3), and for specific PAHs such as benzo(a)-pyrene (B[a]P), ACGIH suggests keeping exposure as low as practicable. The recommended Swedish exposure limit for B(a)P is 2 microg/m(3). The highest exposure levels measured were 12.8 mg/m(3) for total particulate, 1.9 mg/m(3) for coal tar pitch volatiles as BSF, and 12.8 microg/m(3) for B(a)P. Several of the CTPV-BSF results were over the TLV of 0.2 mg/m(3). The data set is limited; therefore, caution should be used in its interpretation.

  9. Coal tar pitch volatiles and polycyclic aromatic hydrocarbons exposures in expansion joint-making operations on a construction site: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence A. Kurtz; Dave K. Verma; Dru Sahai [McMaster University, Hamilton, ON (Canada). Program in Occupational Health and Environmental Medicine

    2003-07-01

    This case study describes occupational exposures to coal tar pitch volatiles (CTPV) as benzene soluble fraction (BSF), polycyclic aromatic hydrocarbons (PAHs) and total particulates at a unique operation involving the use of coal tar in the making of expansion joints in construction of a multi-level airport parking garage. A task-based exposure assessment approach was used. A set of 32 samples was collected and analyzed for total particulate and CTPV-BSF. Twenty samples of this set were analyzed for PAHs. Current American Conference of Governmental Industrial Hygienists (ACGIH)(reg. sign) respective threshold limit value-time weighted average (TLV-TWA) for insoluble particulates not otherwise specified (PNOS) is 10 mg/m{sup 3} as inhalable dust, which roughly corresponds to 4 mg/m{sup 3} total particulate; for CTPV as BSF the TLV is 0.2 mg/m{sup 3}, and for specific PAHs such as benzo(a)-pyrene (B(a)P), ACGIH suggests keeping exposure as low as practicable. The recommended Swedish exposure limit for B(a)P is 2 mg/m{sup 3}. The highest exposure levels measured were 12.8 mg/m{sup 3} for total particulates, 1.9 mg/m{sup 3} for coal tar pitch volatiles as BSF, and 12.8 mg/m{sup 3} for B(a)P. Several of the CTPV-BSF results were over the TLV of 0.2 mg/m{sup 3}. The data set is limited; therefore, caution should be used in its interpretation.

  10. Exposure of iron foundry workers to polycyclic aromatic hydrocarbons

    DEFF Research Database (Denmark)

    Omland, Øyvind; Sherson, D; Hansen, Åse Marie

    1994-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in foundry workers has been evaluated by determination of benzo(a)pyrene-serum albumin adducts and urinary 1-hydroxypyrene. Benzo(a)pyrene binding to albumin and 1-hydroxypyrene were quantitatively measured by enzyme linked immunosorbent assay...... than in smoking and non-smoking controls (0 (0-0.022) and 0 (0-0.010) mumol/mol creatinine). Dose-response relations between total PAH, pyrene, carcinogenic PAHs, and 1-hydroxypyrene for smokers, and polycyclic aromatic hydrocarbons adsorbed to dust for non-smokers are suggested. Exposure to PAHs...

  11. Polycyclic aromatic hydrocarbons in air samples of meat smokehouses

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Olsen, I L; Poulsen, O M

    1992-01-01

    In a screening programme nine Danish meat smokehouses were randomly selected for measurements on concentration of airborne polycyclic aromatic hydrocarbons (PAH). A total of 23 stationary air samples were collected during the entire working period of the kiln either above the kiln doors or approx......In a screening programme nine Danish meat smokehouses were randomly selected for measurements on concentration of airborne polycyclic aromatic hydrocarbons (PAH). A total of 23 stationary air samples were collected during the entire working period of the kiln either above the kiln doors...

  12. Highly enantioselective proton-initiated polycyclization of polyenes.

    Science.gov (United States)

    Surendra, Karavadhi; Corey, E J

    2012-07-25

    This report describes the synthesis of a range of chiral polycyclic molecules (tricyclic to pentacyclic) from achiral polyene precursors by enantioselective proton-initiated polycyclization promoted by the 1:1 complex of o,o'-dichloro-BINOL and SbCl(5). Excellent yields (ca. 90% per ring formed) and enantioselectivety (20:1 to 50:1) were obtained. The process is practical as well as efficient, because the chiral ligand is both readily prepared from R,R-