WorldWideScience

Sample records for atmospheric non-thermal plasma

  1. Atmospheric Non-Thermal Plasma Sources

    OpenAIRE

    Ashok Kumar; H K Dwivedi; Vijay Nehra

    2008-01-01

    Atmospheric non-thermal plasmas (ANTPs) have received a great deal of attention in the last two decades because of their substantial breakthrough in diverse scientific areas and today technologies based on ANTP are witnessing an unprecedented growth in the scientific arena due to their ever-escalating industrial applications in several state-of-the-art industrial fields. ANTPs are generated by a diversity of electrical discharges such as corona discharges, dielectric barrier discharges (DBD),...

  2. Atmospheric Non-Thermal Plasma Sources

    Directory of Open Access Journals (Sweden)

    Ashok Kumar

    2008-02-01

    Full Text Available Atmospheric non-thermal plasmas (ANTPs have received a great deal of attention in the last two decades because of their substantial breakthrough in diverse scientific areas and today technologies based on ANTP are witnessing an unprecedented growth in the scientific arena due to their ever-escalating industrial applications in several state-of-the-art industrial fields. ANTPs are generated by a diversity of electrical discharges such as corona discharges, dielectric barrier discharges (DBD, atmospheric pressure plasma jet (APPJ and micro hollow cathode discharges (MHCD, all having their own characteristic properties and applications. This paper deals with some fundamental aspects of gas discharge plasmas (GDP and provides an overview of the various sources of ANTPs with an emphasis on dielectric barrier discharge.

  3. Non-Thermal Sanitation By Atmospheric Pressure Plasma Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC's Non-Thermal Sanitation by Atmospheric Pressure Plasma technology sanitizes fresh fruits and vegetables without the use of consumable chemicals and without...

  4. Non-Thermal Sanitation By Atmospheric Pressure Plasma Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a non-thermal technology based on atmospheric-pressure (AP) cold plasma to sanitize foods, food packaging materials, and other hardware...

  5. A dc non-thermal atmospheric-pressure plasma microjet

    International Nuclear Information System (INIS)

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ∼120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas. (paper)

  6. Prospects for non-thermal atmospheric plasmas for pollution abatement

    International Nuclear Information System (INIS)

    For approximately the past ten years, atmospheric pressure non-thermal plasmas have been increasingly promoted as a technology for a number of applications in the area of pollution abatement. In such plasmas, the electrons have a significantly higher temperature compared to the ions, atoms and molecules. This paper provides an overview of both the technologies involved and the diverse potential application areas. A general description of these atmospheric plasmas and the basic principles involved in the destruction or removal of gaseous phase pollutants, based on the nature of the processes taking place within these plasmas, are given. A number of examples of the different plasma technologies are described. The technologies described are pulsed corona, microwave and dielectric barrier plasmas. Their suitability and use in various application areas are also discussed including incinerator off gas treatment, industrial process off gas treatment and diesel exhaust aftertreatment. The use of modelling of the physical and chemical processes involved to predict system performance and as a tool for sizing systems to meet customer requirements is also discussed. (author)

  7. Syngas Production from Propane Using Atmospheric Non-thermal Plasma

    CERN Document Server

    Ouni, Fakhreddine; Cormier, Jean Marie; 10.1007/s11090-009-9166-2

    2009-01-01

    Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was formed as a main product (H2 concentration up to 50%). By-products (C2-hydrocarbons, methane, carbon dioxide) were measured with concentrations lower than 6%. The mean electrical power injected in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam reforming and cracking selectivity, as well as by-products production. Chemical processes modelling based on classical thermodynamic equilibrium reactor is also proposed. Calculated data fit quiet well experimental results and indicate that the improvement of C3H8 conversion and then H2 production can be achieved by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma has a potential for being an effective way for supplying hydrogen or synthesis gas.

  8. Removal of Pollutants by Atmospheric Non Thermal Plasmas

    CERN Document Server

    Khacef, Ahmed; Pouvesle, Jean Michel; Van, Tiep Le

    2008-01-01

    Results on the application of non thermal plasmas in two environmentally important fields: oxidative removal of VOC and NOx in excess of oxygen were presented. The synergetic application of a plasma-catalytic treatment of NOx in excess of oxygen is also described.

  9. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  10. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Science.gov (United States)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-12-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  11. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    International Nuclear Information System (INIS)

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established

  12. Effect of non-thermal atmospheric pressure plasma jet on human breast cancer cells

    Science.gov (United States)

    Mirpour, Shahriar; Nikkhah, Maryam; Pirouzmand, Somaye; Ghomi, Hamid Reza

    2012-10-01

    Nowadays, Non-thermal plasma enjoy a wide range of applications in biomedical fields such as Sterilization, Wound healing, Cancer treatment and etc. The aim of this paper is to study the effect of non-thermal atmospheric pressure plasma jet on breast cancer (MCF-7) cells. In this regard the effect of plasma on death of the cancer cells are explored experimentally. The plasma in this discharge is created by pulsed dc high voltage power supply with repetition rate of several tens of kilohertz which led to the inductively coupled plasma. The pure helium gas were used for formation of the plasma jet. MTT assay were used for quantification of death cells. The results showed that the cells death rate increase with plasma exposure time. This study confirm that plasma jet have significant effect on treatment of human breast cancer cells.

  13. Polysilicon Prepared from SIC14 by Atmospheric-Pressure Non-Thermal Plasma%Polysilicon Prepared from SIC14 by Atmospheric-Pressure Non-Thermal Plasma

    Institute of Scientific and Technical Information of China (English)

    李小松; 王楠; 杨晋华; 王友年; 朱爱民

    2011-01-01

    Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysilicon preparation. The samples prepared by using the 100 kHz power source were crystalline silicon. The effects of H2 and SiCl4 volume fractions were investigated. The optical emission spectra showed that silicon species played an important role in polysilicon deposition

  14. Treatment of fluorocarbon using atmospheric non-thermal plasma produced by streamer corona discharge

    International Nuclear Information System (INIS)

    The non-thermal plasma produced by the streamer corona discharge at atmospheric pressure was utilized for the vanishing of fluorocarbon. The effective treatment of fluorocarbon is attempted controlling discharge parameters of the plasma. The decomposition rate of fluorocarbon is investigated changing discharge modes and discharge characteristics i.e. applied voltage VA-K of a main discharge gap and its steepness dVA-K/dt. (author)

  15. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation

    OpenAIRE

    Jae Won Choi; Sung Un Kang; Yang Eun Kim; Ju Kyeong Park; Sang Sik Yang; Yeon Soo Kim; Yun Sang Lee; Yuijina Lee; Chul-Ho Kim

    2016-01-01

    Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscl...

  16. Disinfection of Staphylococcus Aureus by pulsed non-thermal atmospheric plasma jet

    Science.gov (United States)

    Mirpour, Shahriar; Ghoranneviss, Mahmood; Shahgoli, Farhad

    2011-10-01

    The aim of this paper was to study the effect of low-temperature atmospheric plasma jet on non-pathogenic bacteria's colonies. In this regard, Germicidal effect of time and distance of ICP He and He/N2 plasma jet on Staphylococcus Aureus were reported. The gas discharges were generated by a 40 KHz high voltage power supply which led to the inductively coupled plasma. The results showed that He/N2 enhance the sterilization time in comparison of He plasma. To the best of our knowledge this is the first study which has compared the effect of sterilization of ICP Helium and Helium-Nitrogen plasma in listed conditions. Also, the distance dependence showed that the germicidal effect was not linear the distance of electrode and sample. The protein leakage test and SEM of bacteria morphology confirmed the sterilization effect of non-thermal atmospheric pressure plasma jet.

  17. Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet

    International Nuclear Information System (INIS)

    An atmospheric non-thermal plasma jet was developed for sterilizing the Staphylococcus aureus (S. aureus). The plasma jet was generated by dielectric barrier discharge (DBD), which was characterized by electrical and optical diagnostics. The survival curves of the bacteria showed that the plasma jet could effectively inactivate 106 cells of S. aureus within 120 seconds and the sterilizing efficiency depended critically on the discharge parameter of the applied voltage. It was further confirmed by scanning electron microscopy (SEM) that the cell morphology was seriously damaged by the plasma treatment. The plasma sterilization mechanism of S. aureus was attributed to the active species of OH, N2+ and O, which were generated abundantly in the plasma jet and characterized by OES. Our findings suggest a convenient and low-cost way for sterilization and inactivation of bacteria. (plasma technology)

  18. Effects of atmospheric pressure non-thermal plasma treatments on aflatoxigenic fungi and its host

    Science.gov (United States)

    Chen, Bo-Chen

    2015-09-01

    This experiment tests the ability of atmospheric pressure non-thermal plasma treatments in the prevention of fungi infection. There are charged particles, electric field, radicals and UV light inside plasmas and these elements might trigger different physical or chemical effects during non-thermal plasma treatments. In this experiment, the experimental samples received indirect plasma treatments with different time duration and gas compositions which mean only the remote effects caused by plasma treatments could be seen. In this work, plasmas were produced by dielectric barrier discharge method. The operation gases were air and a mixed gas of 97% He and 3%O2. After plasma treatments, fungi growth rate was observed by taking pictures and the existence of aflatoxin was qualitatively detected by black light method. The final results show that the radicals in both He/O2 and air plasma might facilitate fungi growth rate which means peanuts received indirect plasma treatments grew fungi faster than control group. The outcomes of aflatoxin detection also shows that the fungi grown on all the sample are aflatoxigenic fungi.

  19. Non-thermal atmospheric plasma brush induces HEMA grafting onto dentin collagen

    Science.gov (United States)

    Chen, Mingsheng; Zhang, Ying; Dusevich, Vladimir; Liu, Yi; Yu, Qingsong; Wang, Yong

    2014-01-01

    Objective Non-thermal atmospheric plasma (NTAP) brush has been regarded as a promising technique to enhance dental interfacial bonding. However, the principal enhancement mechanisms have not been well identified. In this study, the effect of non-thermal plasmas on grafting of HEMA, a typical dental monomer, onto dentin collagen thin films was investigated. Methods Human dentin was sectioned into 10-um-thick films. After total demineralization in 0.5 M EDTA solution for 30 min, the dentin collagen films were water-rinsed, air-dried, treated with 35 wt% HEMA aqueous solution. The films were then subject to plasma-exposure under a NTAP brush with different time (1–8 min) / input power (5–15 w). For comparison, the dentin collagen films were also treated with the above HEMA solution containing photo-initiators, then subject to light-curing. After plasma-exposure or light-curing, the HEMA-collagen films were rinsed in deionized water, and then examined by FTIR spectroscopy and TEM. Results The FITR results indicated that plasma-exposure could induce significant HEMA grafting onto dentin collagen thin films. In contrast, light-curing led to no detectable interaction of HEMA with dentin collagen. Quantitative IR spectral analysis (i.e., 1720/3075 or 749/3075, HEMA/collagen ratios) further suggested that the grafting efficacy of HEMA onto the plasma-exposed collagen thin films strongly depended on the treatment time and input power of plasmas. TEM results indicated that plasma treatment did not alter collagen’s banding structure. Significance The current study provides deeper insight into the mechanism of dental adhesion enhancement induced by non-thermal plasmas treatment. The NTAP brush could be a promising method to create chemical bond between resin monomers and dentin collagen. PMID:25458523

  20. Effects of non-thermal atmospheric plasma on human periodontal ligament mesenchymal stem cells

    International Nuclear Information System (INIS)

    Here we investigate the influences of non-thermal atmospheric plasma on human mesenchymal stem cells isolated from periodontal ligament (hPDL-MSCs). A specially redesigned plasma needle was used as the source of low-temperature plasma and its effects on different hPDL-MSC functions were investigated. Cell cultures were obtained from extracted normal impacted third molars and characterized for their phenotype and multi-potential differentiation. The hPDL-MSCs possessed all the typical MSC properties, including clonogenic ability, high proliferation rate, specific phenotype and multilineage differentiation. The data regarding the interaction of plasma with hPDL-MSCs demonstrated that plasma treatment inhibited the migration of hPDL-MSCs and induced some detachment, while not affecting their viability. Additionally, plasma significantly attenuated hPDL-MSCs' proliferation, but promoted their osteogenic differentiation. The results of this study indicated that a non-thermal plasma offers specific activity with non-destructive properties that can be advantageous for future dental applications. (paper)

  1. Treatment of gastric cancer cells with non-thermal atmospheric plasma generated in water

    CERN Document Server

    Chen, Zhitong; Cheng, Xiaoqian; Gjika, Eda; Keidar, Michael

    2016-01-01

    Non-thermal atmospheric plasma (NTAP) can be applied to living tissues and cells as a novel technology for cancer therapy. Even though studies report on the successful use of NTAP to directly irradiate cancer cells, this technology can cause cell death only in the upper 3-5 cell layers. We report on a NTAP argon solution generated in DI water for treating human gastric cancer cells (NCl-N87). Our findings showed that the plasma generated in DI water during a 30-minute treatment had the strongest affect in inducing apoptosis in cultured human gastric cancer cells. This result can be attributed to presence of reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced in water during treatment. Furthermore, the data showed that elevated levels of RNS may play an even more significant role than ROS in the rate of apoptosis in gastric cancer cells.

  2. Atmospheric-Pressure Non-thermal Plasma-JET effects on PS and PE surfaces

    Science.gov (United States)

    Arrieta, J.; Asenjo, J.; Vargas, I.; Solis, Y.

    2015-03-01

    The Atmospheric-Pressure Non-Thermal Plasma (APNTP) has become a topic of a great interest for a wide spectrum of applications in different industry branches, including the surface of treatment processes. In this work we evaluate the effect of an argon APNTP exposure to determine changes suffered by a polystyrene (PS) and polyethylene (PE) polymer surface through RAMAN spectroscopy and SEM. It was determined that the hydrophilic change in energetic terms, i.e. surface activation in the PS and PE polymers is addition of oxygen by surface activation when the samples with jet plasma are exposed with the inert argon gas. It was possible to characterize the hydrophilic shift based on the change in intensity of the spectra.

  3. EDITORIAL: Atmospheric pressure non-thermal plasmas for processing and other applications

    Science.gov (United States)

    Massines, Françoise

    2005-02-01

    Interest has grown over the past few years in applying atmospheric pressure plasmas to plasma processing for the benefits this can offer to existing and potential new processes, because they do not require expensive vacuum systems and batch processing. There have been considerable efforts to efficiently generate large volumes of homogeneous atmospheric pressure non-thermal plasmas to develop environmentally friendly alternatives for surface treatment, thin film coating, sterilization, decontamination, etc. Many interesting questions have arisen that are related to both fundamental and applied research in this field. Many concern the generation of a large volume discharge which remains stable and uniform at atmospheric pressure. At this pressure, depending on the experimental conditions, either streamer or Townsend breakdown may occur. They respectively lead to micro-discharges or to one large radius discharge, Townsend or glow. However, the complexity arises from the formation of large radius streamers due to avalanche coupling and from the constriction of the glow discharge due to too low a current. Another difficulty is to visually distinguish many micro-discharges from one large radius discharge. Other questions relate to key chemical reactions in the plasma and at the surface. Experimental characterization and modelling also need to be developed to answer these questions. This cluster collects up-to-date research results related to the understanding of different discharges working at atmospheric pressure and the application to polymer surface activation and thin film coating. It presents different solutions for generating and sustaining diffuse discharges at atmospheric pressure. DC, low-frequency and radio-frequency excitations are considered in noble gases, nitrogen or air. Two specific methods developed to understand the transition from Townsend to streamer breakdown are also presented. They are based on the cross-correlation spectroscopy and an electrical

  4. Effects of Background Fluid on the Efficiency of Inactivating Yeast with Non-Thermal Atmospheric Pressure Plasma

    OpenAIRE

    Young-Hyo Ryu; Yong-Hee Kim; Jin-Young Lee; Gun-Bo Shim; Han-Sup Uhm; Gyungsoon Park; Eun Ha Choi

    2013-01-01

    Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media) on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilizatio...

  5. Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet

    Science.gov (United States)

    Chang, Zhengshi; Yao, Congwei; Zhang, Guanjun

    2016-01-01

    Non-thermal equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications, and the uniform APPJ is more favored. Glow discharge is one of the most effective methods to obtain the uniform discharge. Compared with the glow dielectric barrier discharge (DBD) in atmospheric pressure, pure helium APPJ shows partial characteristics of both the glow discharge and the streamer. In this paper, considering the influence of the Penning effect, the electrical and optical properties of He APPJ and Ar/NH3 APPJ were researched. A word “Glow-like APPJ” is used to characterize the uniformity of APPJ, and it was obtained that the basic characteristics of the glow-like APPJ are driven by the kHz AC high voltage. The results can provide a support for generating uniform APPJ, and lay a foundation for its applications. supported by National Natural Science Foundation of China (Nos. 51307133, 51125029, 51221005) and the Fundamental Research Funds for the Central Universities of China (Nos. xjj2012132, xkjc2013004)

  6. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    Science.gov (United States)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  7. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    International Nuclear Information System (INIS)

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  8. Eradication and phenotypic tolerance of Burkholderia cenocepacia biofilms exposed to atmospheric pressure non-thermal plasma.

    Science.gov (United States)

    Alshraiedeh, Nida H; Higginbotham, Sarah; Flynn, Padrig B; Alkawareek, Mahmoud Y; Tunney, Michael M; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-06-01

    Chronic lung infection with bacteria from the Burkholderia cepacia complex (BCC), and in particular B. cenocepacia, is associated with significant morbidity and mortality in patients with cystic fibrosis (CF). B. cenocepacia can spread from person to person and exhibits intrinsic broad-spectrum antibiotic resistance. Recently, atmospheric pressure non-thermal plasmas (APNTPs) have gained increasing attention as a novel approach to the prevention and treatment of a variety of hospital-acquired infections. In this study, we evaluated an in-house-designed kHz-driven plasma source for the treatment of biofilms of a number of clinical CF B. cenocepacia isolates. The results demonstrated that APNTP is an effective and efficient tool for the eradication of B. cenocepacia biofilms but that efficacy is highly variable across different isolates. Determination of phenotypic differences between isolates in an attempt to understand variability in plasma tolerance revealed that isolates which are highly tolerant to APNTP typically produce biofilms of greater biomass than their more sensitive counterparts. This indicates a potential role for biofilm matrix components in biofilm tolerance to APNTP exposure. Furthermore, significant isolate-dependent differences in catalase activity in planktonic bacteria positively correlated with phenotypic resistance to APNTP by isolates grown in biofilms. PMID:27179816

  9. Basic data for atmospheric pressure non-thermal plasma investigations in environmental and biomedical applications

    Science.gov (United States)

    Yousfi, M.; Bekstein, A.; Merbahi, N.; Eichwald, O.; Ducasse, O.; Benhenni, M.; Gardou, J. P.

    2010-06-01

    The aim of this paper is to discuss some aspects of the optimization of the active species generated by corona or DBD discharges at atmospheric pressure which are very useful in the field of plasma environmental and biomedical applications. For such an optimization, this paper targets, in particular, the use of discharge modeling tools and the problem of accuracy of the required basic data. First of all, an overview on the different experimental diagnostics used for the characterization of these non-thermal plasmas is given followed by a short description of the different models (streamer dynamics, gas dynamics and chemical kinetics coupled with models of basic data calculation) required for complementing such experimental investigations. Then, emphasis is placed on the basic data of charged particles (electrons and ions) needed for streamer dynamics modeling and particularly on the necessity to use accurate and validated basic data in order to have a quantitative (not only qualitative) description of the phenomena and processes occurring in such discharges. An overview is given on the calculations and the fitting methods of collision cross sections and swarm coefficients of the data of charged particles and their validation using, in particular, pulsed Townsend measurements for experimental comparisons. Swarm coefficients are calculated from a multi-term solution of the Boltzmann equation or from Monte Carlo simulation. Some illustrative results are given in the case of the simulations of a dc positive point-to-plane corona discharge in air at atmospheric pressure. The effect of consideration of some basic data, particularly those of polyatomic ions, is shown on the discharge development and the radical production.

  10. Basic data for atmospheric pressure non-thermal plasma investigations in environmental and biomedical applications

    International Nuclear Information System (INIS)

    The aim of this paper is to discuss some aspects of the optimization of the active species generated by corona or DBD discharges at atmospheric pressure which are very useful in the field of plasma environmental and biomedical applications. For such an optimization, this paper targets, in particular, the use of discharge modeling tools and the problem of accuracy of the required basic data. First of all, an overview on the different experimental diagnostics used for the characterization of these non-thermal plasmas is given followed by a short description of the different models (streamer dynamics, gas dynamics and chemical kinetics coupled with models of basic data calculation) required for complementing such experimental investigations. Then, emphasis is placed on the basic data of charged particles (electrons and ions) needed for streamer dynamics modeling and particularly on the necessity to use accurate and validated basic data in order to have a quantitative (not only qualitative) description of the phenomena and processes occurring in such discharges. An overview is given on the calculations and the fitting methods of collision cross sections and swarm coefficients of the data of charged particles and their validation using, in particular, pulsed Townsend measurements for experimental comparisons. Swarm coefficients are calculated from a multi-term solution of the Boltzmann equation or from Monte Carlo simulation. Some illustrative results are given in the case of the simulations of a dc positive point-to-plane corona discharge in air at atmospheric pressure. The effect of consideration of some basic data, particularly those of polyatomic ions, is shown on the discharge development and the radical production.

  11. Disinfection effect of non-thermal atmospheric pressure plasma for foodborne bacteria

    Science.gov (United States)

    Pervez, Mohammad Rasel; Inomata, Takanori; Ishijima, Tatsuo; Kakikawa, Makiko; Uesugi, Yoshihiko; Tanaka, Yasunori; Yano, Toshihiro; Miwa, Shoji; Noguchi, Akinori

    2015-09-01

    Non-thermal atmospheric pressure plasma (NAPP) exposure can be a suitable alternative for bacteria inactivation in food processing industry. Specimen placed in the enclosure are exposed to various reactive radicals produced within the discharge chamber. It is also exposed to the periodic variation of the electric field strength in the chamber. Dielectric barrier discharge is produced by high voltage pulse (Vpp = 18 kV, pulse width 20 μs, repetition frequency 10 kHz) in a polypropylene box (volume = 350 cm3) using helium as main feed gas. Inactivation efficiency of NAPP depends on the duration of NAPP exposure, applied voltage pulse strength and type, pulse duration, electrode separation and feed gas composition. In this study we have investigated inactivation of Bacillus lichenformis spore as an example of food borne bacteria. Keeping applied voltage, electrode configuration and total gas flow rate constant, spores are exposed to direct NAPP for different time duration while O2 concentration in the feed gas composition is varied. 10 minutes NAPP exposure resulted in ~ 3 log reduction of Bacillus lichenformis spores for 1% O2concentration (initial concentration ~ 106 / specimen). This work is supported by research and development promotion grant provided by the Hokuriku Industrial Advancement Center.

  12. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

    International Nuclear Information System (INIS)

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 ± 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 ± 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  13. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J.; Foest, R.; Reuter, S.; Weltmann, K.-D. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Kewitz, T. [Institute of Experimental and Applied Physics, University Kiel, 24098 Kiel (Germany); Sperka, J. [Department of Physical Electronics, Masaryk University, 61137 Brno (Czech Republic)

    2012-10-15

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 {+-} 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 {+-} 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  14. Modelling of plasma generation and thin film deposition by a non-thermal plasma jet at atmospheric pressure

    Science.gov (United States)

    Sigeneger, F.; Becker, M. M.; Foest, R.; Loffhagen, D.

    2016-09-01

    The gas flow and plasma in a miniaturized non-thermal atmospheric pressure plasma jet for plasma enhanced chemical vapour deposition has been investigated by means of hydrodynamic modelling. The investigation focuses on the interplay between the plasma generation in the active zone where the power is supplied by an rf voltage to the filaments, the transport of active plasma particles due to the gas flow into the effluent, their reactions with the thin film precursor molecules and the transport of precursor fragments towards the substrate. The main features of the spatially two-dimensional model used are given. The results of the numerical modelling show that most active particles of the argon plasma are mainly confined within the active volume in the outer capillary of the plasma jet, with the exception of molecular argon ions which are transported remarkably into the effluent together with slow electrons. A simplified model of the precursor kinetics yields radial profiles of precursor fragment fluxes onto the substrate, which agree qualitatively with the measured profiles of thin films obtained by static film deposition experiments.

  15. Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application.

    Science.gov (United States)

    Mirpour, Shahriar; Piroozmand, Somayeh; Soleimani, Neda; Jalali Faharani, Neda; Ghomi, Hamidreza; Fotovat Eskandari, Hoda; Sharifi, Ali Mohammad; Mirpour, Sahar; Eftekhari, Mohammad; Nikkhah, Maryam

    2016-01-01

    This study aimed to evaluate the effects of micron sized non-thermal atmospheric pressure plasma inside the animal body on breast cancer tumor. The μ-plasma jet consists of micron sized hollow tube in which pure helium gas is ionized by high voltage (4 kV) and high frequency (6 kHz). The efficiency of the plasma treatment in killing cancer cells was first investigated by cell viability measurements of treated 4T1 cells using flow cytometry and cell cycle analysis. For exploration of the in vivo effects of the plasma treatment, the BALB/c mice inoculated by 4T1 cell lines were exposed subcutaneously to plasma for 3 minutes. In addition, H&E staining, TUNEL and Western blotting assays were performed in order to observed the effects of the non-thermal plasma on the tumor cells. The results showed that the efficiency of the plasma in suppression of the tumor growth is comparable to that of a typical chemotherapy drug. Moreover, the results indicated that the plasma induces apoptosis in the tumor tissue and increases the ratio of the apoptotic to anti-apoptotic protein expression. We believe that these findings presented herein may extend our knowledge of the mechanisms by which the plasma exerts its promising anti-cancer effects. PMID:27383714

  16. Differential effect of non-thermal atmospheric-pressure plasma on angiogenesis

    Directory of Open Access Journals (Sweden)

    Beate Haertel

    2014-06-01

    Full Text Available Angiogenesis is a special feature in wound healing and carcinogenesis. For improving wound healing angiogenesis should be promoted, whereas in treating tumors it should be inhibited.Depending on several factors physical non-thermal plasmas can stimulate or inhibit cellular processes and can, thereby, influence angiogenesis. This study focused on effects of plasma on angiogenesis in the chick embryo chorioallantoic membrane (CAM assay and rat aortic ring (AOR test, in which plasma-treated PBS or medium was applied. ImageJ was used to analyze vessel area and branching of vessels of CAM’s. Aortic rings (LEW.1W, WOK.W rats embedded in Matrigel were analyzed by a newly-developed semi-quantitative method to quantify vessel sprouting from aortic rings. In both models spontaneous vessel formation was detected. Vessel area and branching in CAM’s were significantly enhanced by 120-s-plasma-treated PBS compared to untreated controls. This result was comparable with the effect of the growth factor VEGF. No effect of plasma on vessel sprouting from AOR prepared from LEW.1W rats was detected, while it was significantly inhibited in rings of WOK.W rats. Dexamethasone inhibited vessel sprouting from AOR of both rat strains. In conclusion, angiogenic response to plasma was found to be differentially influenced, depending on the models used and on the rat strain in the AOR test. It will now be of importance to learn how plasma has to be designed for either pro- or anti-angiogenic responses.

  17. Non-thermal Atmospheric Plasma Treatment for Deactivation of Oral Bacteria and Improvement of Dental Composite Restoration

    Science.gov (United States)

    Yu, Qing Song; Li, H.; Ritts, A. C.; Yang, B.; Chen, M.; Hong, L.; Xu, C.; Yao, X.; Wang, Y.

    This paper reviews our recent research results of using non-thermal ­atmospheric plasmas for oral bacterial deactivation and for composite restoration improvement. Oral bacteria of Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus) with an initial bacterial population density between 1.0 × 108 and 5.0 × 108 cfu/ml were seeded on various media and their survivability with plasma exposure was examined. The plasma exposure time for a 99.9999% cell reduction was less than 15 s for S. mutans and within 5 min for L. acidophilus. To evaluate the dentin/composite interfacial bonding, extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. After dental composite application and light curing, the teeth were then sectioned into micro-bars as the specimens for microtensile test. Student Newman Keuls (SNK) tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment of the dentin surfaces. These findings indicated that non-thermal atmospheric plasma technology is very promising for dental clinical applications.

  18. Solar Radio Astronomy and Plasma Non-thermal Proccsscs in Solar Atmosphere

    Institute of Scientific and Technical Information of China (English)

    YAN Yihua; TAN Baolin

    2011-01-01

    1. Introduction Solar radio astronomy is an important branch of solar physics, which deals with the radio emission from the solar atmosphere. In solar physics, one of the greatest challenges is to understand the energy storing in the hot atmospheric plasma above sunspots and its sudden releasing in eruptive processes, such as solar flares, eruptive filaments, and coronal mass ejections (CME). Intrinsically,

  19. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    International Nuclear Information System (INIS)

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering

  20. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Young-Hyo Ryu

    Full Text Available Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH· produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  1. Disinfection of Streptococcus mutans Biofilm by a Non-Thermal Atmospheric Plasma Brush

    Science.gov (United States)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Yu, Qingsong

    2015-09-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. S. mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using MTT assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% and 95% bacterial reduction in the biofilms was observed after 1 and 5 min plasma treatment, respectively. Scanning electron microscopy examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. CLSM showed that plasma treatment was effective as deep as 20 μm into the biofilms. When combined with 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment. These results indicate that plasma treatment is effective and promising in dental biofilm disinfection.

  2. Disinfection of Streptococcus mutans biofilm by a non-thermal atmospheric plasma brush

    Science.gov (United States)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Wang, Yong; Yu, Qingsong

    2016-07-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. Streptococcus mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite (HA) discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using 3-(4,5-dimethylazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% bacterial reduction in the biofilms was observed after 1 min plasma treatment. Scanning electron microscopy (SEM) examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. Confocal laser scanning microscopy (CLSM) showed that plasma treatment was effective as deep as 20 µm into the biofilms. When combined with antibiotic treatment using 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment.

  3. Application to cleaning of waste plastic surfaces using atmospheric non-thermal plasma jets

    International Nuclear Information System (INIS)

    The removal of paint on the surface of waste plastics is difficult by the conventional process; in this research, a new cleaning mechanism using atmospheric plasmas was examined through optical emission spectroscopy, electron spectroscopy for chemical analysis, and scanning electron microscopy. Results indicate that an increase of pulse frequency enables for a short processing time for the removal of the paint film, signifying that the production of radicals in plasma, especially oxygen radicals, can be controlled by pulse frequency. Plasma jets were generated under the experimental conditions of an input power of 250 W to 400 W, a pulse frequency of 2 kHz to 12 kHz, and a plasma gas flow rate of 30 L/min. Examination of the intensity ratio of the reactive species, as measured by emission spectroscopy, showed that the O/N value increased with an increase in pulse frequency. Results of analysis with electron spectroscopy for chemical analysis show that nitrogen atoms and molybdenum in only the paint film decreased through plasma processing

  4. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air%Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    Institute of Scientific and Technical Information of China (English)

    杨国清; 张冠军; 张文元

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  5. Self-cleaning, maintenance-free aerosol filter by non-thermal plasma at atmospheric pressure.

    Science.gov (United States)

    Jidenko, N; Borra, J P

    2012-10-15

    Two lab-scale self-cleaning filters based on dielectric barrier discharges in air at atmospheric pressure have been developed and tested. Experimental results on aerosol removal by charging and electro-collection are presented versus plasma and hydrodynamic parameters for monodisperse aerosol from 20 nm to 1.2 μm. For classical atmospheric aerosol, the average mass and number filtration efficiencies exceed 95% and 87%, respectively in the most penetrating size range (100-700 nm). The frequency of the applied voltage controls the amplitude of the oscillation of charged particle and can be adjusted to favour either filtration or cleaning. Low frequency (1 kHz) is suitable for electro-collection, while high frequency (60 kHz) is favourable for filter cleaning. Electrical characterization and filter efficiency are two indicators of the filter loading. The durations of both filtration step at maximal efficiency and cleaning step depends on the deposited mass, the surface input power and subsequent dielectric surface temperature. PMID:22951224

  6. Non-thermal Plasma and Oxidative Stress

    Science.gov (United States)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  7. Non-Thermal Atmospheric Plasma: Can it Be Taken as a Common Solution for the Surface Treatment of Dental Materials?

    Science.gov (United States)

    Emre, Seker; Mehmet, Ali Kilicarslan; Serdar, Polat; Emre, Ozkir; Suat, Pat

    2016-04-01

    This study aimed to evaluate the surface roughness and wetting properties of various dental prosthetic materials after different durations of non-thermal atmospheric plasma (NTAP) treatment. One hundred and sixty discs of titanium (Ti) (n:40), cobalt chromium (Co-Cr) (n:40), yttrium stabilized tetragonal zirconia polycrystals (Y-TZP) (n:40) and polymethylmethacrylate (PMMA) (n:40) materials were machined and smoothed with silicon carbide papers. The surface roughness was evaluated in a control group and in groups with different plasma exposure times [1-3-5 s]. The average surface roughness (Ra) and contact angle (CA) measurements were recorded via an atomic force microscope (AFM) and tensiometer, respectively. Surface changes were examined with a scanning electron microscope (SEM). Data were analyzed with two-way analysis of variance (ANOVA) and the Tukey HSD test α=0.05). According to the results, the NTAP surface treatment significantly affected the roughness and wettability properties (P dental materials. supported by the Department of Scientific Research, Eskisehir Osmangazi University, Turkey (No. 201441045)

  8. Therapeutic Non Thermal Plasma, Significance and Challenges

    Directory of Open Access Journals (Sweden)

    Wameath Sh. Abdul-Majeed

    2014-06-01

    Full Text Available Plasma is an electrically neutral, highly ionized gas that consists of several species (electrons, ions, reactive species, and UV light and classified into localized thermal equilibrium (LTE plasmas and non-localized thermal equilibrium (n-LTE plasmas. In LTE plasmas, the electron temperature exists in equilibrium with the gas temperature. In contrast, the electron temperature in (n- LTE plasmas can reach temperatures of 1-10 (eV while the gas temperature is kept as low as room temperature, which makes it useful for a wide range of industrial applications (e.g. ozone generation, surface treatment, .., etc. In the past decade, non thermal (cold atmospheric pressure plasmas were developed and emerged as a promising new tool for medical applications as it’s proved to be more selective in its application (e.g. selective killing of microbes. Accordingly, developments of cold atmospheric plasma devices led to the possibility to apply plasma species to heat-sensitive surfaces (e.g. human skin with precise tuning, controllability and without damage of surrounding tissue. On this basis, medical plasma proved effective for skin sterilization, wound healing and tissue regeneration, cancer treatment, malignant cell apoptosis and blood coagulation. Moreover, cold plasma is known to inactivate a wide range of pathogens such as bacteria, viruses, fungi, spores and biofilms. Therefore it has been considered a very efficient alternative to superficially applied antibiotics or disinfectants. It’s worth noting that histological evaluation for the skin treated with atmospheric cold plasma showed that no morphological changes and no significant degree of necrosis or apoptosis were detectable after plasma treatment. Other studies denoted that a limited increase in the number of DNA double-strand breaks was observed in plasma-treated excised human skin. However, varieties of a new generation handheld and battery-operated devices makes it difficult to interpret the

  9. Development of hydrophilic dental wax without surfactant using a non-thermal air atmospheric pressure plasma jet

    Science.gov (United States)

    Lee, Jung-Hwan; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-06-01

    Dental wax (DW), a low-melting and high-molecular-weight organic mixture, is widely used in dentistry for forming moulds of teeth. Hydrophilicity is an important property for DW, as a wet dental investment is used to surround the wax before wax burnout is performed. However, recent attempts to improve the hydrophilicity of DW using a surfactant have resulted in the reduced mechanical properties of the dental investment, leading to the failure of the dental restoration. This study applied a non-thermal air atmospheric pressure plasma jet (AAPPJ) for DW surface treatment and investigated its effect on both DW hydrophilicity and the dental investment's mechanical properties. The results showed that the application of the AAPPJ significantly improved the hydrophilicity of the DW, and that the results were similar to that of cleaner-treated DW using commercially available products with surfactant. A surface chemical analysis indicated that the improvement of hydrophilicity was related to an increase in the number of oxygen-related bonds on the DW surface following the removal of carbon hydrate in both AAPPJ and cleaner-treated DW. However, cleaner treatment compromised the mechanical property of the dental investment when the dental investment was in contact with the treated DW, while the AAPPJ treatment did not. Therefore, the use of AAPPJ to treat DW is a promising method for accurate dental restoration, as it induces an improvement in hydrophilicity without harming the dental investment.

  10. Development of hydrophilic dental wax without surfactant using a non-thermal air atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Dental wax (DW), a low-melting and high-molecular-weight organic mixture, is widely used in dentistry for forming moulds of teeth. Hydrophilicity is an important property for DW, as a wet dental investment is used to surround the wax before wax burnout is performed. However, recent attempts to improve the hydrophilicity of DW using a surfactant have resulted in the reduced mechanical properties of the dental investment, leading to the failure of the dental restoration. This study applied a non-thermal air atmospheric pressure plasma jet (AAPPJ) for DW surface treatment and investigated its effect on both DW hydrophilicity and the dental investment's mechanical properties. The results showed that the application of the AAPPJ significantly improved the hydrophilicity of the DW, and that the results were similar to that of cleaner-treated DW using commercially available products with surfactant. A surface chemical analysis indicated that the improvement of hydrophilicity was related to an increase in the number of oxygen-related bonds on the DW surface following the removal of carbon hydrate in both AAPPJ and cleaner-treated DW. However, cleaner treatment compromised the mechanical property of the dental investment when the dental investment was in contact with the treated DW, while the AAPPJ treatment did not. Therefore, the use of AAPPJ to treat DW is a promising method for accurate dental restoration, as it induces an improvement in hydrophilicity without harming the dental investment. (paper)

  11. Characterization of Dust-Plasma Interactions In Non-Thermal Plasmas Under Low Pressure and the Atmospheric Pressure

    Science.gov (United States)

    Bilik, Narula

    This dissertation research focuses on the experimental characterization of dust-plasma interactions at both low and atmospheric pressure. Its goal is to fill the knowledge gaps in (1) the fundamental research of low pressure dusty plasma electrons, which mainly relied on models with few experimental results; and (2) the nanoparticle synthesis process in atmospheric pressure uniform glow plasmas (APGDs), which is largely unexplored in spite of the economical advantage of APGDs in nanotechnology. The low pressure part of the dissertation research involves the development of a complete diagnostic process for an argon-siline capacitively-coupled RF plasma. The central part of the diagnostic process is the Langmuir probe measurement of the electron energy probability function (EEPF) in a dusty plasma, which has never been measured before. This is because the dust particles in the plasma cause severe probe surface contamination and consequently distort the measurement. This problem is solved by adding a solenoid-actuated shield structure to the Langmuir probe, which physically protects the Langmuir probe from the dust particle deposition to ensure reliable EEPF measurements. The dusty plasma EEPFs are characterized by lower electron density and higher electron temperature accompanied by a drop in the low energy electron population. The Langmuir probe measurement is complemented with other characterizations including the capacitive probe measurement, power measurement, and dust particle collection. The complete diagnostic process then gives a set of local plasma parameters as well as the details of the dust-electron interactions reflected in the EEPFs. This set of data serves as input for an analytical model of nanoparticle charging to yield the time evolution of nanoparticle size and charge in the dusty plasma. The atmospheric pressure part of the dissertation focuses on the design and development of an APGD for zinc oxide nanocrystal synthesis. One of the main

  12. High-efficiency tooth bleaching using non-thermal atmospheric pressure plasma with low concentration of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Seoul Hee NAM

    2013-06-01

    Full Text Available Light-activated tooth bleaching with a high hydrogen peroxide (HP; H2O2 concentration has risks and the actual role of the light source is doubtful. The use of conventional light might result in an increase in the temperature and cause thermal damage to the health of the tooth tissue. Objective This study investigated the efficacy of tooth bleaching using non-thermal atmospheric pressure plasma (NAPP with 15% carbamide peroxide (CP; CH6N2O3 including 5.4% HP, as compared with conventional light sources. Material and Methods Forty human teeth were randomly divided into four groups: Group I (CP+NAPP, Group II (CP+plasma arc lamp; PAC, Group III (CP+diode laser, and Group IV (CP alone. Color changes (∆E of the tooth and tooth surface temperatures were measured. Data were evaluated by one-way analysis of variance (ANOVA and post-hoc Tukey's tests. Results Group I showed the highest bleaching efficacy, with a ∆E value of 1.92-, 2.61 and 2.97-fold greater than those of Groups II, III and IV, respectively (P<0.05. The tooth surface temperature was maintained around 37°C in Group I, but it reached 43°C in Groups II and III. Conclusions The NAPP has a greater capability for effective tooth bleaching than conventional light sources with a low concentration of HP without causing thermal damage. Tooth bleaching using NAPP can become a major technique for in-office bleaching in the near future.

  13. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Hye Yeon Seo

    Full Text Available The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ, elicited from one of two different gas sources (nitrogen and air, to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in

  14. Induced apoptosis in melanocytes cancer cell and oxidation in biomolecules through deuterium oxide generated from atmospheric pressure non-thermal plasma jet

    OpenAIRE

    Kumar, Naresh; Attri, Pankaj; Yadav, Dharmendra Kumar; Choi, Jinsung; Choi, Eun Ha; Uhm, Han Sup

    2014-01-01

    Recently, atmospheric-pressure non-thermal plasma-jets (APPJ) are being for the cancer treatment. However, APPJ still has drawbacks such as efficiency and rise in temperature after treatment. So, in this work, a synergetic agent D2O vapour is attached to APPJ which not only increase the efficiency of plasma source against cancer treatment, but also controlled the temperature during the treatment. OD generated by the combination of D2O + N2 plasma helped in enhancing the efficiency of APPJ. We...

  15. Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, Magesh; Sarani, Abdollah; Nicula, Cosmina [Plasma Engineering Research Laboratory (PERL), College of Science and Engineering, Texas A and M University-Corpus Christi, Texas 78412 (United States)

    2013-06-21

    In this work, we have applied optical emission spectroscopy diagnostics to investigate the characteristics of a non-thermal atmospheric pressure helium plasma jet. The discharge characteristics in the active and afterglow region of the plasma jet, that are critical for biomedical applications, have been investigated. The voltage-current characteristics of the plasma discharge were analyzed and the average plasma power was measured to be around 18 W. The effect of addition of small fractions of oxygen at 0.1%-0.5% on the plasma jet characteristics was studied. The addition of oxygen resulted in a decrease in plasma plume length due to the electronegativity property of oxygen. Atomic and molecular lines of selected reactive plasma species that are considered to be useful to induce biochemical reactions such as OH transitions A{sup 2}{Sigma}{sup +}({nu}=0,1){yields}X{sup 2}{Pi}({Delta}{nu}=0) at 308 nm and A{sup 2}{Sigma}{sup +}({nu}=0,1){yields}X{sup 2}{Pi}({Delta}{nu}=1) at 287 nm, O I transitions 3p{sup 5}P{yields}3s{sup 5}S{sup 0} at 777.41 nm, and 3p{sup 3}P{yields}3s{sup 3}S{sup 0} at 844.6 nm, N{sub 2}(C-B) second positive system with electronic transition C{sup 3}{Pi}{sub u}{sup {yields}}B{sup 3}{Pi}{sub g}'' in the range of 300-450 nm and N{sub 2}{sup +}(B-X) first negative system with electronic transition B{sup 2}{Sigma}{sub u}{sup +}{yields}X{sup 2}{Sigma}{sub g}{sup +}({Delta}{nu}=0) at 391.4 nm have been studied. The atomic emission lines of helium were identified, including the He I transitions 3p{sup 3}P{sup 0}{yields}2s{sup 3}S at 388.8 nm, 3p{sup 1}P{sup 0}{yields} 2s{sup 1}S at 501.6 nm, 3d{sup 3}D{yields}2p{sup 3}P{sup 0} at 587.6 nm, 3d{sup 1}D{yields}2p{sup 1}P{sup 0} at 667.8 nm, 3s{sup 3}S{sup 1}{yields}2p{sup 3}P{sup 0} at 706.5 nm, 3s{sup 1}S{sup 0}{yields}2p{sup 1}P{sup 0} at 728.1 nm, and H{sub {alpha}} transition 2p-3d at 656.3 nm. Using a spectral fitting method, the OH radicals at 306-312 nm, the rotational and vibrational

  16. The Gas Nucleation Process Study of Anatase TiO2 in Atmospheric Non-Thermal Plasma Enhanced Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    The gas phase nucleation process of anatase TiO2 in atmospheric non-thermal plasma enhanced chemical vapor deposition is studied. The particles synthesized in the plasma gas phase at different power density were collected outside of the reactor. The structure of the collected particles has been investigated by field scanning electron microscope (FESEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The analysis shows that uniform crystalline nuclei with average size of several nanometers have been formed in the scale of micro second through this reactive atmospheric plasma gas process. The crystallinity of the nanoparticles increases with power density. The high density of crystalline nanonuclei in the plasma gas phase and the low gas temperature are beneficial to the fast deposition of the 3D porous anatase TiO2 film. (plasma technology)

  17. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S; Gesche, R [Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Bibinov, N; Awakowicz, P [Institute for Electrical Engineering and Plasma Technology, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)], E-mail: Silvio.Kuehn@fbh-berlin.de, E-mail: Nikita.Bibinov@rub.de

    2010-01-15

    A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O{sub 3}, correspondingly, are generated.

  18. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications

    International Nuclear Information System (INIS)

    A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.

  19. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications

    Science.gov (United States)

    Kühn, S.; Bibinov, N.; Gesche, R.; Awakowicz, P.

    2010-01-01

    A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.

  20. Non-Thermal Plasmas for NOx Treatment

    OpenAIRE

    Jaffré, Yoann-Nicolas; Aka-Ngnui, Thomas; Beroual, Abderrahmane

    2009-01-01

    This work is devoted to the determination of corona ignition threshold for non-thermal plasma generation and to the optimization of various kinds of plasma reactor geometries for exhaust gas treatment applications. The tested plasma reactor geometries were cylindrical. Some reactors have dielectric barrier made of glass or quartz in order to observe the discharges. First, the distributions of electric field and energy in reactors have been simulated. Then, current and voltage waveforms have b...

  1. Detection of reactive oxygen species supplied into the water bottom by atmospheric non-thermal plasma jet using iodine-starch reaction

    Science.gov (United States)

    Kawasaki, Toshiyuki; Eto, Wataru; Hamada, Masaki; Wakabayashi, Yasutaka; Abe, Yasufumi; Kihara, Keisuke

    2015-08-01

    The supply of reactive oxygen species (ROS) to a target through liquid by plasma jet should be clarified. In this study, a non-thermal plasma jet was irradiated onto the water surface in atmospheric air, and the ROS reaching the water bottom were detected using a gel reagent with iodine-starch reactions. As a result, two-dimensional ROS distributions were visually obtained at the bottom, and the relative ROS concentration was obtained by absorbance measurement. Oxygen addition to helium led to a higher ROS supply into the bottom than helium plasma jet and ozone exposure. A doughnut-shaped ROS distribution was clearly observed at the bottom under certain conditions. The ROS concentration at the bottom significantly depended on irradiation distance and water layer thickness. It is observed from the results obtained using a liquid reagent that the plasma-jet-induced flow and the mixing effect play an important role in ROS supply into the bottom.

  2. Non-Thermal Plasma Ozone Generation

    Directory of Open Access Journals (Sweden)

    S. Pekárek

    2003-01-01

    Full Text Available This paper reviews ozone properties, ozone applications and the mechanism of ozone production in non-thermal plasma. An analysis is made of the influence of a reduced electric field and discharge space temperature on ozone production. The phenomenon of discharge poisoning is also explained. Finally, a modern ozone production system based on dielectric barrier electrical discharge is described.

  3. Non-Thermal Plasma Ozone Generation

    OpenAIRE

    S. Pekárek

    2003-01-01

    This paper reviews ozone properties, ozone applications and the mechanism of ozone production in non-thermal plasma. An analysis is made of the influence of a reduced electric field and discharge space temperature on ozone production. The phenomenon of discharge poisoning is also explained. Finally, a modern ozone production system based on dielectric barrier electrical discharge is described.

  4. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    International Nuclear Information System (INIS)

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy

  5. Induced apoptosis in melanocytes cancer cell and oxidation in biomolecules through deuterium oxide generated from atmospheric pressure non-thermal plasma jet

    Science.gov (United States)

    Kumar, Naresh; Attri, Pankaj; Yadav, Dharmendra Kumar; Choi, Jinsung; Choi, Eun Ha; Uhm, Han Sup

    2014-12-01

    Recently, atmospheric-pressure non-thermal plasma-jets (APPJ) are being for the cancer treatment. However, APPJ still has drawbacks such as efficiency and rise in temperature after treatment. So, in this work, a synergetic agent D2O vapour is attached to APPJ which not only increase the efficiency of plasma source against cancer treatment, but also controlled the temperature during the treatment. OD generated by the combination of D2O + N2 plasma helped in enhancing the efficiency of APPJ. We observed OD induced apoptosis on melanocytes G361 cancer cells through DNA damage signalling cascade. Additionally, we observed that plasma induces ROS, which activated MAPK p38 and inhibits p42/p44 MAPK, leading to cancer cell death. We have also studied DNA oxidation by extracting DNA from treated cancer cell and then analysed the effects of OD/OH/D2O2/H2O2 on protein modification and oxidation. Additionally, we attempted molecular docking approaches to check the action of D2O2 on the apoptosis related genes. Further, we confirmed the formation of OD/OH simultaneously in the solution using optical emission spectroscopy. Moreover, the simultaneous generation of D2O2/H2O2 was detected by the use of confocal Raman spectroscopy and density measurements.

  6. Evaluation of extra- and intracellular OH radical generation, cancer cell injury, and apoptosis induced by a non-thermal atmospheric-pressure plasma jet

    Science.gov (United States)

    Ninomiya, Kazuaki; Ishijima, Tatsuo; Imamura, Masatoshi; Yamahara, Takayuki; Enomoto, Hiroshi; Takahashi, Kenji; Tanaka, Yasunori; Uesugi, Yoshihiko; Shimizu, Nobuaki

    2013-10-01

    In this study, we investigated the effects of a non-thermal atmospheric-pressure plasma jet inducing extracellular and intracellular OH radical generation as well as cell injury and apoptosis for the cultured human breast cancer cells. Increased OH radical generation in the extracellular culture medium (liquid phase) was observed with increased irradiation time, distance to the liquid surface, and voltage. From the voltage-response relationships for two breast cancer cell lines (invasive MDA-MB-231 cells and non-invasive MCF-7 cells) and normal breast cells (HMEC), the half-maximal effective peak-to-peak voltage (EV50) values were 16.7 ± 0.3 kV, 15.0 ± 0.4 kV and 11.2 ± 0.7 kV for MDA-MB-231, MCF-7 and HMEC cells, respectively. This indicated that there was almost no selective cancer cell injury induced by plasma jet irradiation under these conditions. Compared with control condition without a plasma jet, intracellular OH radical accumulation and apoptotic cells were observed with a plasma jet using conditions that induced injury to 50% of cells irrespective of the cancer cell line.

  7. Degradation of reactive blue 19 by needle-plate non-thermal plasma in different gas atmospheres: Kinetics and responsible active species study assisted by CFD calculations.

    Science.gov (United States)

    Sun, Yu; Liu, Yanan; Li, Rui; Xue, Gang; Ognier, Stéphanie

    2016-07-01

    This study investigated the degradation of a model organic compound, reactive blue (RB-19), in aqueous solution using a needle-plate non-thermal plasma (NTP) reactor, which was operated using three gas atmospheres (Ar, air, O2) at room temperature and atmospheric pressure. The relative discharge and degradation parameters, including the peak to peak applied voltage, power, ozone generation, pH, decolorization rates, energy density and the total organic carbon (TOC) reduction were analyzed to determine the various dye removal efficiencies. The decolorization rate for Ar, air and O2 were 59.9%, 49.6% and 89.8% respectively at the energy density of 100 kJ/L. The best TOC reduction was displayed by Ar with about 8.8% decrease, and 0% with O2 and air atmospheres. This phenomenon could be explained by the formation of OH• and O3 in the Ar and O2 atmospheres, which are responsible for increased mineralization and efficient decolorization. A one-dimension model was developed using software COMSOL to simulate the RB-19-ozone reaction and verify the experiments by comparing the simulated and experimental results. It was determined that ozone plays the most important role in the dye removal process, and the ozone contribution rate ranged from 0.67 to 0.82. PMID:27124311

  8. Development of ultra-hydrophilic and non-cytotoxic dental vinyl polysiloxane impression materials using a non-thermal atmospheric-pressure plasma jet

    International Nuclear Information System (INIS)

    Dental vinyl polysiloxane (VPS) impression materials are widely used for the replication of intraoral tissue where hydrophilicity is important as the oral tissues are surrounded by wet saliva. Recent attempts to improve the wettability of VPS using a ‘surfactant’, however, have resulted in a high level of cytotoxicity. Hence, in this study, application of a non-thermal atmospheric-pressure plasma jet (NTAPPJ) on VPS and its effects in terms of both hydrophilicity and cytotoxicity were investigated. The results showed that the application of the plasma jet resulted in significant improvement of hydrophilicity of VPS that had no surfactant, whereby the results were similar to commercially available products with the surfactant. The surface chemical analysis results indicated that this was due to the oxidation and decreased amount of hydrocarbon on the surface following NTAPPJ exposure. Meanwhile, an NTAPPJ-treated sample was shown to be non-cytotoxic. Therefore, the use of dental VPS impression materials without any surfactant, in conjunction with an NTAPPJ treatment, is a promising method for ultra-hydrophilic but yet non-cytotoxic materials. (paper)

  9. Non-thermal atmospheric pressure discharges for surface modification

    International Nuclear Information System (INIS)

    Throughout the last decades, plasma technology has been established in a series of surface treatment applications, e.g. for semiconductor processing or optical coatings. The majority of plasma assisted technologies is based on low pressure processes. In recent years, however, non-thermal atmospheric pressure discharges have attracted considerable interest because of their simplified technical devices for industrial applications as compared to low pressure processes which require vacuum equipment. Hence, batch processing can be avoided, thus facilitating the implementation of plasma process steps into production lines. Investment costs are cut down significantly. The use of atmospheric pressure plasmas for technical applications dates back to the ozone production with dielectric barrier discharges (DBD) by Siemens in 1857. Lately, the application of atmospheric pressure plasmas for surface treatment has been reported, e.g. for the treatment of foils to improve printability, for surface cleaning and protective coatings. The DBD is known as a strongly inhomogeneous, filamentary discharge. A non filamentary, homogeneous DBD was observed in He, N2, other gases, and mixtures. An example of this discharge type and its application for the deposition of thin films by plasma polymerization is discussed in more detail. The standard planar electrode geometry of the DBD is characterized by a narrow inter-electrode gap in the mm-Region. Hence, surface treatment has been restricted to thin, flat substrates. Attempts to overcome these limitations involve micro discharge arrays and jet geometries, which are evoked by an enhanced gas flow, partly in combination with the electric field. Jets are created out of several plasma types, among them corona discharge, DBD, microwave discharge and RF discharge. With these plasma sources, substrate geometries displaying 3-dimensional features can be treated, too. Critical parameters for the comparison of atmospheric pressure surface

  10. Nitrogen oxides and methane treatment by non-thermal plasma

    Science.gov (United States)

    Alva, E.; Pacheco, M.; Colín, A.; Sánchez, V.; Pacheco, J.; Valdivia, R.; Soria, G.

    2015-03-01

    Non thermal plasma was used to treat nitrogen oxides (NOx) and methane (CH4), since they are important constituents of hydrocarbon combustion emissions processes and, both gases, play a key role in the formation of tropospheric ozone. These gases are involved in environmental problems like acid rain and some diseases such as bronchitis and pneumonia. In the case of methane is widely known its importance in the global climate change, and currently accounts for 30% of global warming. There is a growing concern for methane leaks, associated with a rapid expansion of unconventional oil and gas extraction techniques as well as a large-scale methane release from Arctic because of ice melting and the subsequent methane production of decaying organic matter. Therefore, methane mitigation is a key to avoid dangerous levels of global warming. The research, here reported, deals about the generation of non-thermal plasma with a double dielectric barrier (2DBD) at atmospheric pressure with alternating current (AC) for NOx and CH4 treatment. The degradation efficiencies and their respective power consumption for different reactor configurations (cylindrical and planar) are also reported. Qualitative and quantitative analysis of gases degradation are reported before and after treatment with cold plasma. Experimental and theoretical results are compared obtaining good removal efficiencies, superior to 90% and to 20% respectively for NOx and CH4.

  11. Therapeutic Non Thermal Plasma, Significance and Challenges

    OpenAIRE

    Wameath Sh. Abdul-Majeed

    2014-01-01

    Plasma is an electrically neutral, highly ionized gas that consists of several species (electrons, ions, reactive species, and UV light) and classified into localized thermal equilibrium (LTE) plasmas and non-localized thermal equilibrium (n-LTE) plasmas. In LTE plasmas, the electron temperature exists in equilibrium with the gas temperature. In contrast, the electron temperature in (n- LTE) plasmas can reach temperatures of 1-10 (eV) while the gas temperature is kept as low as room temperatu...

  12. Non-thermal plasma for exhaust gases treatment

    Science.gov (United States)

    Alva R., Elvia; Pacheco P., Marquidia; Gómez B., Fernando; Pacheco P., Joel; Colín C., Arturo; Sánchez-Mendieta, Víctor; Valdivia B., Ricardo; Santana D., Alfredo; Huertas C., José; Frías P., Hilda

    2015-09-01

    This article describes a study on a non-thermal plasma device to treat exhaust gases in an internal combustion engine. Several tests using a plasma device to treat exhaust gases are conducted on a Honda GX200-196 cm3 engine at different rotational speeds. A plasma reactor could be efficient in degrading nitrogen oxides and particulate matter. Monoxide and carbon dioxide treatment is minimal. However, achieving 1%-3% degradation may be interesting to reduce the emission of greenhouse gases.

  13. Four component magnetized dusty plasma containing non-thermal electrons

    International Nuclear Information System (INIS)

    Multicomponent plasmas are of great attraction for research in dusty plasmas. In the present research paper, dusty plasma consisting of non-thermal electrons, Maxwellian ions, negatively and positively charged warm adiabatic dust particles, is considered. The Korteweg-de Vries (KdV) equation which describes the basic features of the electrostatic solitary structures is derived by use of reductive perturbation method and solved for solitary wave solution. The effect of externally applied magnetic field and non-thermal electrons is found to modify the properties of the dust acoustic solitary potential significantly. The implications of these results for some space and astrophysical dusty plasma systems especially in planetary ring and cometary tails, are briefly mentioned.

  14. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H2S), (2) removal of trichloroethylene (TCE), and (3) removal of nitric oxides (NOx) Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. We discuss in detail our work at LLNL on pulsed plasma processing for the treatment of NOx in diesel engine exhaust. Our results suggest that our plasma reactor can remove up to 70% of NOx with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kill and an exhaust gas flow rate of 1200 liters per minute

  15. Response of Human Glioma U87 Xenografted on Mice to Non Thermal Plasma Treatment

    OpenAIRE

    Vandamme, Marc; Robert, Eric; Dozias, Sébastien; Sobilo, Julien; Lerondel, Stéphanie; Le Pape, Alain; Pouvesle, Jean Michel

    2011-01-01

    International audience Non thermal atmospheric plasma is a new promising candidate in anticancer therapy. We have already reported the absence of skin damage induced by our plasma treatment. Preliminary results suggested that this treatment could also induce an antitumor effect on U87 malignant glioma xenografts, and we conducted this work to evaluate the antitumor efficacy of plasma in this model. Antitumor effects were assessed by tumor volume measurement and bioluminescence imaging (BLI...

  16. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    OpenAIRE

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in...

  17. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    Science.gov (United States)

    Flynn, Padrig B; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P; Elliott, Christopher T; Laverty, Garry; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  18. The effects of non-thermal plasmas on selected mammalian cells

    Science.gov (United States)

    Leduc, Mathieu

    Non-thermal plasma surface modifications have become indispensable processing steps in various industry and research sectors. Applications range from semiconductor processing to biotechnology and recently, plasma medicine. Non-thermal plasma sources have the advantage that a number of electron-driven chemical reactions can be produced while maintaining the gas (heavy species) temperature low, thus enabling the treatment of temperature-sensitive surfaces such as polymers, tissues and live cells. In the fields of biology and medicine, non-thermal plasmas have been primarily used for the deposition or modification of biocompatible polymers and for sterilization. Recently, non-thermal plasmas have been used to treat tissues and cells. A new field of research has emerged, Plasma Medicine, which studies the effects of non-thermal plasmas on cells and tissues for clinical applications. The Atmospheric Pressure Glow Discharge torch (APGD-t), a non-thermal plasma source, built in our laboratory was used to study the effects of non-thermal plasmas on mammalian cells. In its first application, we indirectly used the APGD-t to deposit a plasma-polymer on a glass surface and studied its effects on cultured cells. It was shown that the cells grew preferentially on the plasma-polymer, and their proliferation rate increased. The second application of the APGD-t was to further investigate previous observations of cell permeabilization obtained by plasma treatments and to apply non-thermal plasmas to cell transfection. It was demonstrated that the APGD-t is able to locally transfect adherent cells. We estimated the diameter of the pores created to be below 10 nm and that the pores remain open for less than 5 seconds. However, while investigating the mechanisms involved in cell transfection we observed that the use of higher gas flows in the negative controls (using the APGD-t but with the plasma turned off) also resulted in cell transfection. To further study this phenomena, we

  19. Non-thermal plasma mills bacteria: scanning electron microscopy observations

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Churpita, Olexandr; Zablotskyy, Vitaliy A.; Deyneka, I.G.; Meshkovskii, I.K.; Jäger, Aleš; Syková, Eva; Kubinová, Šárka; Dejneka, Alexandr

    2015-01-01

    Roč. 106, č. 5 (2015), "053703-1"-"053703-5". ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LM2011029; GA MŠk(CZ) LM2011026; GA MŠk LO1309 Grant ostatní: AV ČR(CZ) M100101219; SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : non-thermal plasma * plasma medicine * bacteria * cells Subject RIV: BO - Biophysics Impact factor: 3.302, year: 2014

  20. STUDY ON VIRUS INACTIVATION EFFICACY OF NON -THERMAL ATMOSPHERIC -PRESSURE PLASMA DISINFECTOR%常温常压下等离子体灭活病毒效果的研究

    Institute of Scientific and Technical Information of China (English)

    朱兆奎; 张曦; 王嘉瑜; 滕峥; 俞雪莲; 高烨; 匡小舟

    2011-01-01

    Objective To observe the inactivation efficiency on influenza and poliomyelitis virus by non - thermal atmospheric - pressure plasma disinfector. Methods Cell cultural and real - time PCR techniques were used to detect the inactivation efficiency of non - thermal atmospheric - pressure plasma disinfector. Results The titer of influenza virus H3 N2 decreased of 2.71 in plasma boxes with running for 4 hours. Poliomyelitis virus type I titer dropped about 1. 20 in similar conditions. The nucleic acid load of both viruses did not change in plasma boxes for 4 hours. Conclusion The plasma device can inactivate influenza and poliomyelitis viruses, but can not damage the virus nucleic acid.%目的 观察常温常压下等离子体对流感病毒和脊髓灰质炎病毒的灭活效果.方法采用细胞培养法和基因扩增法,对常温常压下等离子体灭活悬液内病毒的效果进行了检测.结果该等离子体发生器置于本试验柜内启动运行4h,对悬液内H3 N2流感病毒灭活对数值为2.71;对悬液内脊髓灰质炎病毒Ⅰ型疫苗株灭活对数值为1.2.流感病毒和脊髓灰质炎病毒经等离子体作用至最长时间为4h后,其核酸浓度均无明显变化.结论常温常压下等离子体对流感病毒和脊髓灰质炎病毒具不同程度的灭活效果,但其对两种病毒的核酸无破坏作用.

  1. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H2S), (2) removal of trichloroethylene (TCE), and (3) removal of nitrogen oxides (NOx). Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. The authors discuss in detail their work at LLNL on pulsed plasma processing for the treatment of NOx in diesel engine exhaust. The results suggest that their plasma reactor can remove up to 70% of NO with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kW and an exhaust gas flow rate of 1,200 liters per minute

  2. Mechanism of NO reduction with non-thermal plasma

    Institute of Scientific and Technical Information of China (English)

    YU Gang; YU Qi; JIANG Yan-long; ZENG Ke-si; GU Fan

    2005-01-01

    Non-thermal plasma has been proved to be an effective and competitive technology for removing NO in flue gas since 1970. In this paper, the NO reduction mechanism of the non-thermal plasma reaction in NO/N2/O2 system was investigated using the method of spectral analysis and quantum chemistry. By the establishment of NO reduction and gas discharge plasma emission spectrum measuring system, the NO reduction results, gas discharge emission spectra of NO/N2O2 and pure N2 were obtained, and then the model of molecular orbit of N2 either in ground state or its excited state was worked out using the method of molecular orbit Ab initio in SelfConsistent Field(SCF). It was found that NO reduction in NO/N2 gas discharge plasma was achieved mainly through a series of fast elementary reactions and the N(E6) at excited state was the base for NO reduction.

  3. MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    V.K. Mathur

    2003-02-01

    In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

  4. Review of mercury removal from flue gas using non-thermal plasma technology

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    2014-06-01

    Full Text Available Mercury with various constituents in flue gas produced by burning coal could be an attractive alternative to non-thermal plasma process for mercury control. The mechanism of removal for pollutants using non-thermal plasma technology and the electric discharge form of non-thermal plasma are introduced. Then, we summary the research progress of mercury removal by non-thermal plasma in recent years, especially focus on how to oxide the elemental mercury from flue gas. We hope the non-thermal plasma technology can be improved to apply in the industry in the near future.

  5. Nano-droplet ejection and nucleation of materials submitted to non-thermal plasma filaments

    OpenAIRE

    Borra, J.-P.; Jidenko, N; Dutouquet, C.; Aguerre, O.; Hou, J.; Weber, A

    2011-01-01

    Abstract Methods to induce non-thermal atmospheric pressure plasma filaments are presented with related properties for micro, streamer and prevented spark discharges, respectively, induced in planar Dielectric Barrier Discharges with one electrode covered by dielectric material (mono-DBD) or point-to-plane Corona. Two mechanisms of nano-particles formation are depicted from aerosol size distributions and TEM analysis. 0.1?10 mJ prevented spark discharges produce 10?100 nm droplets ...

  6. Review of mercury removal from flue gas using non-thermal plasma technology

    OpenAIRE

    Tao Zhu; Jinlan Zhou; Rui Chen; Fang Wang

    2014-01-01

    Mercury with various constituents in flue gas produced by burning coal could be an attractive alternative to non-thermal plasma process for mercury control. The mechanism of removal for pollutants using non-thermal plasma technology and the electric discharge form of non-thermal plasma are introduced. Then, we summary the research progress of mercury removal by non-thermal plasma in recent years, especially focus on how to oxide the elemental mercury from flue gas. We hope the non-thermal pla...

  7. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    Science.gov (United States)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  8. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    International Nuclear Information System (INIS)

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation

  9. Solar flare soft-X-ray spectra from Very Low Frequency observations of ionospheric modulations: Possibility of uninterrupted observation of non-thermal electron-plasma interaction in solar atmosphere.

    Science.gov (United States)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Ray, Suman

    2016-07-01

    The hard and soft X-ray regions of a solar flare spectrum are the manifestation of interaction, namely of bremsstrahlung radiation of the non-thermal electrons moving inward in the denser part of the solar atmosphere with the plasma heated by those energetic electrons. The continuous and uninterrupted knowledge of X-ray photon spectra of flares are of great importance to derive information on the electron acceleration and hence time-evolution of energy transport and physics during solar flares. Satellite observations of solar X-ray spectrum are often limited by the restricted windows in each duty cycle to avoid the interaction of detectors and instruments with harmful energetic charge particles. In this work we have tried to tackle the problem by examining the possibility of using Earth's ionosphere and atmosphere as the detector of such transient events. Earth's lower ionosphere and upper atmosphere are the places where the X-rays and gamma-rays from such astronomical sources are absorbed. The electron-ion production rates due to the ionization of such energetic photons at different heights depend on the intensity and wavelength of the injected spectra and hence vary from one source to another. Obviously the electron and ion density vs. altitude profile has the imprint of the incident photon spectrum. As a preliminary exercise we developed a novel deconvolution method to extract the soft X-ray part of spectra of some solar flares of different classes from the electron density profiles obtained from Very Low Frequency (VLF) observation of lower ionosphere during those events. The method presented here is useful to carry out a similar exercise to infer the higher energy part of solar flare spectra and spectra of more energetic events such as the GRBs, SGRs etc. with the possibilities of probing even lower parts of the atmosphere.

  10. Hydrogenated liquids and hydrogen production by non-thermal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J.M. [Orleans Univ., Orleans Cedex (France). Centre national de la recherche scientifique, Polytech d' Orleans, Group for Research and Studies on Mediators of Inflamation

    2010-07-01

    In recent years, hydrogen (H{sub 2}) has been considered as a fuel for electricity generation and transportation purposes. H{sub 2} is a renewable energy source that does not contribute to the greenhouse effect. This paper reported on a comparative study of syngas production from alcohol, with particular reference to the plasma steam-reforming of ethanol, methanol, ammonia and vegetable oil. The H{sub 2} yields and energetic cost in function of hydrogen sources were presented. The non thermal plasma used in this study was a laboratory scale experimental device static discharge. An arc formed between two electrodes made of graphite. The efficiency of the process was determined through chemical diagnostics. Gas chromatography and Fourier transform infrared (FTIR) techniques were used to determine concentrations of H{sub 2}, carbon monoxide, carbon dioxide and carbon as functions of flow and inlet liquid mixture concentration parameters. This paper also presented the values of H{sub 2}/CO ratio and the composition of synthesis gas according to various operating conditions. 18 refs., 2 tabs., 8 figs.

  11. Ignition phase and steady-state structures of a non-thermal air plasma

    International Nuclear Information System (INIS)

    An AC-driven, non-thermal, atmospheric pressure air plasma is generated within the gap separating a disc-shaped metal electrode and a water electrode. The ignition phase and the steady-state are studied by a high-speed CCD camera. It is found that the plasma always initiates at the surface of the water electrode. The plasma exhibits different structures depending on the polarity of the water electrode: when the water electrode plays the role of cathode, a relatively wide but visibly dim plasma column is generated. At the maximum driving voltage, the gas temperature is between 800 and 900 K, and the peak current is 67 mA; when the water electrode is anode, the plasma column narrows but increases its light emission. The gas temperature in this case is measured to be in the 1400-1500 K range, and the peak current is 81 mA

  12. Non-thermal plasma for air and water remediation.

    Science.gov (United States)

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater. PMID:27056469

  13. Non-thermal shielding effects on the Compton scattering power in astrophysical plasmas

    Science.gov (United States)

    Shin, Dong-Soo; Jung, Young-Dae

    2015-10-01

    The non-thermal shielding effects on the inverse Compton scattering are investigated in astrophysical non-thermal Lorentzian plasmas. The inverse Compton power is obtained by the modified Compton scattering cross section in Lorentzian plasmas with the blackbody photon distribution. The total Compton power is also obtained by the Lorentzan distribution of plasmas. It is found that the influence of non-thermal character of the plasma suppresses the inverse Compton power in astrophysical Lorentzian plasmas. It is also found that the non-thermal effect on the inverse Compton power decreases with an increase of the temperature. In addition, the non-thermal effect on the total Compton power with Lorentzan plasmas increases in low-temperature photons and, however, decreases in intermediate-temperature photons with increasing Debye length. The variation of the total Compton power is also discussed.

  14. Surface modification of Raw and Frit glazes by non-thermal helium plasma jet

    Science.gov (United States)

    Ghasemi, M.; Sohbatzadeh, F.; Mirzanejhad, S.

    2015-06-01

    In this study, non-thermal atmospheric pressure plasma jet (APPJ) was utilized to improve the adhesion of Raw and Frit glazes. These glazes are widely used in industry to make chinaware, decorative dishes and tiles applied at wall and floor. As they should be painted before use, increasing their adhesive properties leads to a better paint durability. Electrical and optical characteristics of the plasma jet are investigated to optimize for efficient treatment. Contact angle measurement and surface energy calculation demonstrate a drastic increase after the plasma treatment indicating wettability and paintability enhancement. Moreover, atomic force microscopy and X-ray photoelectron spectroscopy analyses were performed on the specimens to explore the influence of helium plasma jet on the physical and chemical properties of the glazes, microscopically. AFM analysis reveals surface etching resulted from the bombardment of the solid surfaces by the APPJ using helium fed gas. The process aims to enhance adhesive properties of glaze surfaces.

  15. Variable susceptibility of ovarian cancer cells to non-thermal plasma-activated medium.

    Science.gov (United States)

    Utsumi, Fumi; Kajiyama, Hiroaki; Nakamura, Kae; Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinnya; Hori, Masaru; Kikkawa, Fumitaka

    2016-06-01

    Non-thermal atmospheric pressure plasma has been widely studied in recent years in many fields, including cancer treatment. However, its efficiency for inducing apoptosis sometimes varies depending on the cell species and experimental conditions. The aim of this study was to elucidate what causes these differences in responses to plasma treatment. Using four ovarian cancer cell lines, the cell density had a markedly negative impact on the proliferation inhibition rate (PIR) and it was more obvious in OVCAR-3 and NOS2 cells. Furthermore, TOV21G and ES-2 cells were drastically sensitive to plasma‑activated medium (PAM) compared with the other two cell lines. We demonstrated that the proportion of reactive oxygen species and cell number had a marked impact on the effect of PAM against ovarian cancer cells. Additionally it was suggested that the morphological features of cells were also closely related to the sensitivity of cancer cells to the plasma treatment. PMID:27035127

  16. Non-thermal plasma technology for the development of antimicrobial surfaces: a review

    Science.gov (United States)

    Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe

    2016-05-01

    Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.

  17. Non-thermal plasmas for non-catalytic and catalytic VOC abatement

    International Nuclear Information System (INIS)

    Highlights: → We review the current status of catalytic and non-catalytic VOC abatement based on a vast number of research papers. → The underlying mechanisms of plasma-catalysis for VOC abatement are discussed. → Critical process parameters that determine the influent are discussed and compared. - Abstract: This paper reviews recent achievements and the current status of non-thermal plasma (NTP) technology for the abatement of volatile organic compounds (VOCs). Many reactor configurations have been developed to generate a NTP at atmospheric pressure. Therefore in this review article, the principles of generating NTPs are outlined. Further on, this paper is divided in two equally important parts: plasma-alone and plasma-catalytic systems. Combination of NTP with heterogeneous catalysis has attracted increased attention in order to overcome the weaknesses of plasma-alone systems. An overview is given of the present understanding of the mechanisms involved in plasma-catalytic processes. In both parts (plasma-alone systems and plasma-catalysis), literature on the abatement of VOCs is reviewed in close detail. Special attention is given to the influence of critical process parameters on the removal process.

  18. Optimization of Non-Thermal Plasma Treatment in an In Vivo Model Organism

    Science.gov (United States)

    Lee, Amanda; Lin, Abraham; Shah, Kajol; Singh, Harpreet; Miller, Vandana; Gururaja Rao, Shubha

    2016-01-01

    Non-thermal plasma is increasingly being recognized for a wide range of medical and biological applications. However, the effect of non-thermal plasma on physiological functions is not well characterized in in vivo model systems. Here we use a genetically amenable, widely used model system, Drosophila melanogaster, to develop an in vivo system, and investigate the role of non-thermal plasma in blood cell differentiation. Although the blood system in Drosophila is primitive, it is an efficient system with three types of hemocytes, functioning during different developmental stages and environmental stimuli. Blood cell differentiation in Drosophila plays an essential role in tissue modeling during embryogenesis, morphogenesis and also in innate immunity. In this study, we optimized distance and frequency for a direct non-thermal plasma application, and standardized doses to treat larvae and adult flies so that there is no effect on the viability, fertility or locomotion of the organism. We discovered that at optimal distance, time and frequency, application of plasma induced blood cell differentiation in the Drosophila larval lymph gland. We articulate that the augmented differentiation could be due to an increase in the levels of reactive oxygen species (ROS) upon non-thermal plasma application. Our studies open avenues to use Drosophila as a model system in plasma medicine to study various genetic disorders and biological processes where non-thermal plasma has a possible therapeutic application. PMID:27505063

  19. Compressive and Rarefactive Waves in Dust Plasma with Non-thermal Ions

    Institute of Scientific and Technical Information of China (English)

    DUAN Wen-Shan; WANG Hong-Yan; John Parkes

    2006-01-01

    The governing equation of the dust fluid with non-thermal ions and variable dust charge on dust particles in hot dust plasmas is obtained. Both the compressive and rarefactive waves in this system are investigated. They can be determined by plasma parameters including the temperatures of dust fluid, ions and electrons, as well as the non-thermal parameter of ions, and the number densities of the dust particles, the ions and the electrons, etc.

  20. Reactive oxygen species controllable non-thermal helium plasmas for evaluation of plasmid DNA strand breaks

    Science.gov (United States)

    Young Kim, Jae; Lee, Dong-Hoon; Ballato, John; Cao, Weiguo; Kim, Sung-O.

    2012-11-01

    Non-thermal, oxygen-rich helium plasmas were investigated to achieve an enhanced reactive oxygen species concentration at low voltage driving conditions. A non-thermal plasma device was fabricated based on a theta-shaped tube, and its potential was investigated for use in topological alteration of plasmid DNA. The optical emission spectra of the plasma showed that the oxygen flow affected the plasma properties, even though an oxygen plasma was not produced. The plasmid DNA strand breaks became more significant with the addition of oxygen flow to the helium in a single hollow, theta-shaped tube with other experimental conditions being unchanged.

  1. Analysis of the biological effects of a non-thermal plasma on saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyung S.; Baik, Ku Y.; Kim, Jung G.; Kim, Yun J.; Lee, Kyung A.; Jung, Ran J.; Cho, Guang S. [Kwangwoon University, Seoul (Korea, Republic of)

    2012-03-15

    The cellular and the molecular responses of eukaryotic yeast (Saccharomyces cerevisiae) to a non-thermal plasma at atmospheric pressure are analyzed. A plasma device with a dielectric barrier discharge is used in order to understand the mechanisms of the plasma action on eukaryotic microbes. When the yeast cells are exposed to a plasma (at a 2-mm distance) and then cultured on a YPD (yeast extract, peptone, and dextrose) - agar plate, the number of surviving cells is reduced over exposure time. More than a 50% reduction in number is observed after two exposures of 5 minutes' duration. In addition, very small whitish colonies appear after the two exposures. The microscopic analysis indicates that the yeast cells treated with this plasma exposure have rough and shrunken shapes in comparison to the oval shapes with smooth surfaces of the control cells. The profile of proteins analyzed by using 2-dimentional electrophoresis demonstrates that the level of proteins with high molecular weights is increased in plasma-treated cells.

  2. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    OpenAIRE

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect path...

  3. Plasma motions and non-thermal line broadening in flaring twisted coronal loops

    Science.gov (United States)

    Gordovskyy, M.; Kontar, E. P.; Browning, P. K.

    2016-05-01

    Context. Observation of coronal extreme ultra-violet (EUV) spectral lines sensitive to different temperatures offers an opportunity to evaluate the thermal structure and flows in flaring atmospheres. This, in turn, can be used to estimate the partitioning between the thermal and kinetic energies released in flares. Aims: Our aim is to forward-model large-scale (50-10 000 km) velocity distributions to interpret non-thermal broadening of different spectral EUV lines observed in flares. The developed models allow us to understand the origin of the observed spectral line shifts and broadening, and link these features to particular physical phenomena in flaring atmospheres. Methods: We use ideal magnetohydrodynamics (MHD) to derive unstable twisted magnetic fluxtube configurations in a gravitationally stratified atmosphere. The evolution of these twisted fluxtubes is followed using resistive MHD with anomalous resistivity depending on the local density and temperature. The model also takes thermal conduction and radiative losses in the continuum into account. The model allows us to evaluate average velocities and velocity dispersions, which would be interpreted as non-thermal velocities in observations, at different temperatures for different parts of the models. Results: Our models show qualitative and quantitative agreement with observations. Thus, the line-of-sight (LOS) velocity dispersions demonstrate substantial correlation with the temperature, increasing from about 20-30 km s-1 around 1 MK to about 200-400 km s-1 near 10-20 MK. The average LOS velocities also correlate with velocity dispersions, although they demonstrate a very strong scattering compared to the observations. We also note that near footpoints the velocity dispersions across the magnetic field are systematically lower than those along the field. We conclude that the correlation between the flow velocities, velocity dispersions, and temperatures are likely to indicate that the same heating

  4. Mechanisms of interaction of non-thermal plasma with living cells

    Science.gov (United States)

    Kalghatgi, Sameer Ulhas

    Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces various highly active molecules and atoms without heat. As a result, its effects on living cells and tissues could be selective and tunable. This makes non-thermal plasma very attractive for medical applications. However, despite several interesting demonstrations of non-thermal plasma in blood coagulation and tissue sterilization, the biological and physical mechanisms of its interaction with living cells are still poorly understood impeding further development of non-thermal plasma as a clinical tool. Although several possible mechanisms of interaction have been suggested, no systematic experimental work has been performed to verify these hypotheses. Using cells in culture, it is shown in this work that non-thermal plasma created by dielectric barrier discharge (DBD) has dose-dependent effects ranging from increasing cell proliferation to inducing apoptosis which are consistent with the effects of oxidative stress. DNA damage is chosen as a marker to assess the effects of oxidative stress in a quantitative manner. It is demonstrated here that plasma induced DNA damage as well as other effects ranging from cell proliferation to apoptosis are indeed due to production of intracellular reactive oxygen species (ROS). We found that DNA damage is initiated primarily by plasma generated active neutral species which cannot be attributed to ozone alone. Moreover, it is found that extracellular media and its components play a critical role in the transfer of the non-thermal plasma initiated oxidative stress into cells. Specifically, it is found that the peroxidation efficiency of amino acids is the sole predictor of the ability of the medium to transfer the oxidative stress induced by non-thermal plasma. Phosphorylation of H2AX, a DNA damage marker, following plasma treatment is found to be ATR dependent and ATM

  5. EDITORIAL: Non-thermal plasma-assisted fuel conversion for green chemistry Non-thermal plasma-assisted fuel conversion for green chemistry

    Science.gov (United States)

    Nozaki, Tomohiro; Gutsol, Alexander

    2011-07-01

    This special issue is based on the symposium on Non-thermal Plasma Assisted Fuel Conversion for Green Chemistry, a part of the 240th ACS National Meeting & Exposition held in Boston, MA, USA, 22-26 August 2010. Historically, the Division of Fuel Chemistry of the American Chemical Society (ACS) has featured three plasma-related symposia since 2000, and has launched special issues in Catalysis Today on three occasions: 'Catalyst Preparation using Plasma Technologies', Fall Meeting, Washington DC, USA, 2000. Special issue in Catalysis Today 72 (3-4) with 12 peer-reviewed articles. 'Plasma Technology and Catalysis', Spring Meeting, New Orleans, LA, USA, 2003. Special issue in Catalysis Today 89 (1-2) with more than 30 peer-reviewed articles. 'Utilization of Greenhouse Gases II' (partly focused on plasma-related technologies), Spring Meeting, Anaheim, CA, USA, 2004. Special issue in Catalysis Today 98 (4) with 25 peer-reviewed articles. This time, selected presentations are published in this Journal of Physics D: Applied Physics special issue. An industrial material and energy conversion technology platform is established on thermochemical processes including various catalytic reactions. Existing industry-scale technology is already well established; nevertheless, further improvement in energy efficiency and material saving has been continuously demanded. Drastic reduction of CO2 emission is also drawing keen attention with increasing recognition of energy and environmental issues. Green chemistry is a rapidly growing research field, and frequently highlights renewable bioenergy, bioprocesses, solar photocatalysis of water splitting, and regeneration of CO2 into useful chemicals. We would also like to emphasize 'plasma catalysis' of hydrocarbon resources as an important part of the innovative next-generation green technologies. The peculiarity of non-thermal plasma is that it can generate reactive species almost independently of reaction temperature. Plasma

  6. Non-thermal Dupree diffusivity and shielding effects on atomic collisions in Lorentzian turbulent plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-05-01

    The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed. This research was supported by Nuclear Fusion Research Program through NRF funded by the Ministry of Science, ICT & Future Planning (Grant No. 2015M1A7A1A01002786).

  7. Ion streaming instabilities in pair ion plasma and localized structure with non-thermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, M. Nasir; Qamar, A., E-mail: mnnasirphysics@gmail.com [Department of Physics, University of Peshawar (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University Mardan, National Center for Physics, Mardan (Pakistan)

    2015-12-15

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A quasi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted. (author)

  8. Ion streaming instabilities in pair ion plasma and localized structure with non-thermal electrons

    International Nuclear Information System (INIS)

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A quasi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted. (author)

  9. Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst

    International Nuclear Information System (INIS)

    Synergistic effect of atmospheric non-thermal plasma generated by dielectric barrier discharge and nano titania photo catalyst for benzene decomposition was tested. The paper indicated the effect of photo catalyst on removal efficiency of benzene, the compare of photo catalyst characteristic in different high temperatures by heat treatment, analysis of by-products. The results showed that the effect of degradation was visible by added photo catalyst in the plasma reactor. When concentration of benzene was 600 mg/m3 and electric field strength was 10 kV/cm, the removal efficiency of benzene was increased up to 81 % without photo catalyst. At the same condition, the removal efficiency was increased to 15 % higher with photo catalyst. Nano titania crystal was anatase crystal in 450 degC heat treatment which is best for benzene removal. The plasma reactor packed with photo catalyst shows a better selectivity of carbon dioxide than that without photo catalyst. By-products are mostly carbon dioxide, water and a small quantity of carbon monoxide

  10. Characteristics of NO reduction with non-thermal plasma

    Institute of Scientific and Technical Information of China (English)

    YU Gang; YU Qi; JIANG Yan-long; ZENG Ke-si

    2005-01-01

    As a new type of NO removal system, NO reduction in N2-NO plasma was applied to solve the difficulties in the traditional methods, such as higher energy-consumption, larger equipment size and high cost, and so on. Using the experimental NO reduction system with single-pair electrode tip discharge structure, the NO reduction characteristics of N2-NO system were revealed to guide the engineering practice; the results of NO reduction with single-pair electrode tip discharge plasma also have the same instructive meaning to the NO reduction with multi-pair electrode tip discharge plasma. The amount of both active N atom and NO removal rate increased with the distance /g increasing between the two electrode tips and then dropped when the distance exceeded a certain value. The NO removal rate increased while the voltage between two electrode tips or the resident time of gas flow increased. The distance is a key geometrical variable factor that can determine the intensity of electric field between two electrode tips and the resident time of gas. In this paper, the effects of the dielectric features on NO reduction using dielectric-barrier discharge plasma system were also studied. The results of NO removal rate with different dielectrics such as Al2 O3, CaO, MgO and glass showed that the electric field intensity is different with different dielectric, because it brings different energy to particles in discharge room and thus it causes different NO removal rate.

  11. Non-thermal plasma reactor with back corona discharge electrode

    Energy Technology Data Exchange (ETDEWEB)

    Czapka, T; Kacprzyk, R, E-mail: tomasz.czapka@pwr.wroc.pl [Institute of electrical Engineering Fundamentals, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50370 Wroclaw (Poland)

    2011-06-23

    The new design of plasma reactor with back discharge electrode is presented and characterized. The laboratory scale plasma reactor was constructed in a plane parallel geometry with a gas permeable low-field electrode system. The low-field electrode was covered with a dielectric layer enabling the appearance of back corona discharges. The total volume of the reactor is equal to 2 dm{sup 3}.The discharge properties of the reactor operating at dc voltage in air under normal conditions are given. The results of optimizing the electrical properties are also presented. The influence of back discharges on the discharge current is discussed. The maximum discharge current density obtained during the experiment was equal to about 25 {mu}A/cm{sup 2}.

  12. Non-thermal plasma reactor with back corona discharge electrode

    International Nuclear Information System (INIS)

    The new design of plasma reactor with back discharge electrode is presented and characterized. The laboratory scale plasma reactor was constructed in a plane parallel geometry with a gas permeable low-field electrode system. The low-field electrode was covered with a dielectric layer enabling the appearance of back corona discharges. The total volume of the reactor is equal to 2 dm3.The discharge properties of the reactor operating at dc voltage in air under normal conditions are given. The results of optimizing the electrical properties are also presented. The influence of back discharges on the discharge current is discussed. The maximum discharge current density obtained during the experiment was equal to about 25 μA/cm2.

  13. Non-thermal plasma application to the abatement of noxious emissions in automotive exhaust gases

    International Nuclear Information System (INIS)

    Experiments and numerical model calculations on non-thermal plasma treatment of lean combustion exhaust gases were reviewed. It was found that because of the oxygen concentration of several per cent, oxidation of noxious compounds is the prevailing non-thermal plasma-induced process. Therefore nitric oxides cannot be reduced directly, but hybrid processes combining non-thermal plasma pre-treatment with catalytic reduction using either hydrocarbons or ammonia-based reducing agents have to be applied. Plasma-enhanced selective catalytic reduction (PE-SCR) of the nitric oxides emitted from a modern car's diesel engine for values of more than 60% was demonstrated in test bench experiments. For these experiments, a compact dielectric barrier discharge reactor with a flow cross section of 15 cm2 excited by a semiconductor switched pulse voltage source and a urea-based selective catalytic reduction system were applied. The average fuel penalty for this process under urban driving conditions was estimated to be around 2%. Thus PE-SCR has the potential to reduce the NOx emission of diesel cars to values well below future emission standards to be set in force in 2007. A number of investigations on the non-thermal plasma-induced oxidation of diesel soot showed very encouraging results

  14. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  15. Cold plasma - a non-thermal processing technology to inactivate human pathogens on foods

    Science.gov (United States)

    Cold plasma is a novel non-thermal food processing technology, suitable for application to fresh and fresh-cut fruits and vegetables. Reductions of 3-5 logs have been achieved against human pathogens such as Salmonella and E. coli O157:H7 on fresh produce and against phytopathogens and spoilage orga...

  16. Precipitation of energetic neutral atoms and induced non-thermal escape fluxes from the Martian atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lewkow, N. R.; Kharchenko, V. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2014-08-01

    The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of the energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.

  17. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NOx control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NOx removal mechanisms, and by product formation. Can non-thermal deNOx operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  18. Electrostatic envelope modes in multi-component non-thermal plasmas

    Science.gov (United States)

    Saiful Islam, Md; Sultana, Sharmin; Mamun, A. A.

    2016-07-01

    A theoretical study of envelope type solitary structures and their modulational instability has been made in a multi-component unmagnetized non-thermal plasma (consisting of negatively charged immobile heavy ions, inertial light ions and non-thermal electrons of two distinct temperatures). The cubic nonlinear Schrödinger equation (which describes the evolution of a slowly varying wave envelope with space and time) is derived by adopting the multiple scale (in space and time) perturbation technique. It is found that the plasma system under consideration supports two types (bright and dark) envelope solitons. It is also seen that the dark (bright) envelope solitons are modulationally stable (unstable). The variation of the growth rate of the unstable bright envelope solitons with various plasma parameters (e.g. wave number, temperature of plasma non-thermality, etc.) are found to be significant. The modulational instability criterions of the envelope modes are also seen to be influenced due to the variation of the intrinsic plasma parameters. This theoretical study may be useful in understanding the basic features of localized electrostatic structures in some space plasma systems (viz. Saturn's magnetosphere) where high energetic particles are available.

  19. Effects of gap and elevated pressure on ethanol reforming in a non-thermal plasma reactor

    Science.gov (United States)

    Hoang, Trung Q.; Zhu, Xinli; Lobban, Lance L.; Mallinson, Richard G.

    2011-07-01

    Production of hydrogen for fuel cell vehicles, mobile power generators and for hydrogen-enhanced combustion from ethanol is demonstrated using energy-efficient non-thermal plasma reforming. A tubular reactor with a multipoint electrode system operated in pulsed mode was used. Complete conversion can be achieved with high selectivity (based on ethanol) of H2 and CO of 111% and 78%, respectively, at atmospheric pressure. An elevated pressure of 15 psig shows improvement of selectivity of H2 and CO to 120% and 87%, with a significant reduction of C2Hx side products. H2 selectivity increased to 127% when a high ratio (29.2) of water-to-ethanol feed was used. Increasing CO2 selectivity is observed at higher water-to-ethanol ratios indicating that the water gas shift reaction occurs. A higher productivity and lower C2Hx products were observed at larger gas gaps. The highest overall energy efficiency achieved, including electrical power consumption, was 82% for all products or 66% for H2 only.

  20. Precipitation of Energetic Neutral Atoms and Induced Non-Thermal Escape Fluxes from the Martian Atmosphere

    CERN Document Server

    Lewkow, Nicholas

    2014-01-01

    The precipitation of energetic neutral atoms (ENAs), produced through charge exchange (CX) collisions between solar wind (SW) ions and thermal atmospheric gases, is investigated. Subsequent induced non-thermal escape fluxes have been carried out for the Martian atmosphere. Detailed modeling of the ENA energy input and determination of connections between parameters of precipitating ENAs and resulting escape fluxes, reflection coefficients of fast atoms from the Mars atmosphere, and altitude dependent ENA energy distributions are established using Monte Carlo (MC) simulations of the precipitation process with accurate quantum mechanical (QM) cross sections. Detailed descriptions of secondary hot (SH) atoms and molecules induced by ENAs have been obtained for a better understanding of the mechanisms responsible for atmospheric escape and evolution. The effects of using isotropic hard sphere (HS) cross sections as compared to realistic, anisotropic quantum cross sections are examined for energy-deposition profil...

  1. Modulational instability of ion-acoustic waves in a plasma consisting of warm ions and non-thermal electrons

    International Nuclear Information System (INIS)

    Using the standard reductive perturbation technique, a nonlinear Schroedinger equation is derived to study the modulational instability of finite amplitude ion-acoustic waves (IAW) in an unmagnetized plasma consisting of warm adiabatic ions and non-thermal electrons. It is found that the presence of non-thermal electrons modifies the nature of IAW instability and the solitary structures. The effects of non-thermally distributed electrons on the modulational instability and IAW structures are investigated in detail

  2. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Chánová, Eliška; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2014-01-01

    Roč. 4, NOV (2014), "7129-1"-"7129-11". ISSN 2045-2322 R&D Projects: GA MŠk LO1309 Grant ostatní: AV ČR(CZ) M100101219 Institutional support: RVO:68378271 ; RVO:61389013 ; RVO:68378041 Keywords : cell death * non-thermal plasma * therapeutic perspectives Subject RIV: BO - Biophysics; FH - Neurology (UEM-P); CD - Macromolecular Chemistry (UMCH-V) Impact factor: 5.578, year: 2014

  3. Field-enhanced electrodes for additive-injection non-thermal plasma (NTP) processor

    Science.gov (United States)

    Rosocha, Louis A.; Ferreri, Vincent; Kim, Yongho

    2009-04-21

    The present invention comprises a field enhanced electrode package for use in a non-thermal plasma processor. The field enhanced electrode package includes a high voltage electrode and a field-enhancing electrode with a dielectric material layer disposed in-between the high voltage electrode and the field-enhancing electrode. The field-enhancing electrode features at least one raised section that includes at least one injection hole that allows plasma discharge streamers to occur primarily within an injected additive gas.

  4. Effective group index of refraction in non-thermal plasma photonic crystals

    International Nuclear Information System (INIS)

    Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity vg, and effective group index of refraction neff(g) of such NPPC structure with TeO2 as the material of dielectric layers have been studied. The concept of negative group velocity and negative neff(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, neff(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 103c (c is the speed of light in vacuum)

  5. A parametric study of non-thermal plasma synthesis of silicon nanoparticles from a chlorinated precursor

    Science.gov (United States)

    Ding, Yi; Yamada, Riku; Gresback, Ryan; Zhou, Shu; Pi, Xiaodong; Nozaki, Tomohiro

    2014-12-01

    Silicon nanoparticles (Si NPs) synthesized in non-thermal plasma with silicon tetrachloride (SiCl4) are anticipated as a non-toxic and inexpensive Si source for important applications. This study examines the crystallinity, yield, and size distribution of Si NPs in terms of specific energy input (SEI) for 2.5-65 J cm‒3 and the H2/SiCl4 ratio (1-10). The particle growth mechanism is discussed comprehensively. Atomic hydrogen (H) production using non-thermal plasma is the primary important step for SiCl4 dechlorination at low temperatures. The Si NP yield increases with SEI (plasma power divided by total gas flow) because SiCl4 conversion increases with energy fed into the unit volume of the feed gas. At low SEI, Si NPs were mostly in amorphous material because of insufficient plasma heating. A maximum yield of 50 wt% was obtained when SEI = 10 J cm‒3 (H2/SiCl4 = 10) with a crystal fraction of about 1%. Increased SEI is necessary to improve crystal fraction, but excessive SEI decreases the NP yield remarkably. The NP yield losses correspond to increasing NP-free thin film growth on the reactor wall. Mass spectrometry shows that SiCl4 is highly decomposed with greater SEI. Hydrogen chloride (HCl) increases as a by-product. At higher SEI, particle nucleation and subsequent growth are suppressed.

  6. A parametric study of non-thermal plasma synthesis of silicon nanoparticles from a chlorinated precursor

    International Nuclear Information System (INIS)

    Silicon nanoparticles (Si NPs) synthesized in non-thermal plasma with silicon tetrachloride (SiCl4) are anticipated as a non-toxic and inexpensive Si source for important applications. This study examines the crystallinity, yield, and size distribution of Si NPs in terms of specific energy input (SEI) for 2.5–65 J cm‒3 and the H2/SiCl4 ratio (1–10). The particle growth mechanism is discussed comprehensively. Atomic hydrogen (H) production using non-thermal plasma is the primary important step for SiCl4 dechlorination at low temperatures. The Si NP yield increases with SEI (plasma power divided by total gas flow) because SiCl4 conversion increases with energy fed into the unit volume of the feed gas. At low SEI, Si NPs were mostly in amorphous material because of insufficient plasma heating. A maximum yield of 50 wt% was obtained when SEI = 10 J cm‒3 (H2/SiCl4 = 10) with a crystal fraction of about 1%. Increased SEI is necessary to improve crystal fraction, but excessive SEI decreases the NP yield remarkably. The NP yield losses correspond to increasing NP-free thin film growth on the reactor wall. Mass spectrometry shows that SiCl4 is highly decomposed with greater SEI. Hydrogen chloride (HCl) increases as a by-product. At higher SEI, particle nucleation and subsequent growth are suppressed. (paper)

  7. The Technology of Non-thermal Plasma Assisted NH3-SCR Reduce Marine Diesel Emission and Aldehydes Byproducts Formation

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2013-12-01

    Full Text Available This study describes briefly various after-treatment technologies in marine diesel engines and application difficulties of DPF and SCR are included. An experiment has been conducted using non-thermal plasma generated by Dielectric Barrier Discharge (DBD process assisted NH3-SCR catalyst to reduce the nitrogen oxides (NOx from diesel engine exhaust. The formation mechanism of byproducts-type such as HCHO and CH3CHO in the non-thermal plasma assisted NH3-SCR hybrid system.

  8. Modeling and experimental validation of TCE abatement and ozone formation with non thermal plasma

    OpenAIRE

    Vandenbroucke, Arne; Aerts, Robby; Morent, Rino; De Geyter, Nathalie; Bogaerts, Annemie; Leys, Christophe

    2012-01-01

    In this study, the formation of ozone and the abatement of trichloroethylene (TCE) with non thermal plasma was experimentally and theoretically investigated. The model predicts that the ozone formation increases with the energy deposition and decreases with the relative humidity (RH) of the air, which is qualitatively in agreement with experimental data. For an energy deposition of 0.136 J/cm³, the abatement of 1000 ppm TCE in air with 5 % RH is dominated by atomic oxygen and to a lesser exte...

  9. Electrohydrodynamic transport of ozone in a corona radical shower non-thermal plasma reactor

    International Nuclear Information System (INIS)

    In this paper results of the experimental investigation of ozone molecule transport along a corona discharge radical shower (CDRS) non-thermal plasma reactor are presented. The measured axial ozone concentration distributions along the CDRS reactor show that the ozone molecules produced in the discharge region were transported from their origin both in the upstream and downstream regions of the CDRS reactor, i.e. also against the main gas flow. The images of the flow structures in the CDRS reactor suggests that the electrohydrodynamic (EHD) flow is responsible for the ozone transport upstream. (author)

  10. Plasma motions and non-thermal line broadening in flaring twisted coronal loops

    CERN Document Server

    Gordovskyy, Mykola; Browning, Philippa

    2015-01-01

    Observation of coronal EUV spectral lines offers an opportunity to evaluate the thermal structure and flows in flaring atmospheres. This, in turn, can be used to estimate the partitioning between the thermal and kinetic energies released in flares. Our aim is to forward-model large-scale (50-10000 km) velocity distributions in order to interpret non-thermal broadening of different spectral EUV lines observed in flares. The developed models allow us to understand the origin of the observed spectral line shifts and broadening, and link these features to particular physical phenomena in flaring atmospheres. We use ideal MHD to derive unstable twisted magnetic fluxtube configurations in a gravitationally-stratified atmosphere. The evolution of these twisted fluxtubes is followed using resistive MHD, with anomalous resistivity depending on the local density and temperature. The model also takes into account the thermal conduction and radiative losses. The model allows us to evaluate average velocities and velocity...

  11. Application of pulsed power and power modulation to the non-thermal plasma treatment of hazardous gaseous wastes

    International Nuclear Information System (INIS)

    Acid rain, global warming, ozone depletion, and smog are preeminent environmental problems facing the world today. Non-thermal plasma techniques offer an innovative approach to the cost-effective solution of these problems. Many potential applications of non-thermal plasmas to air pollution control have already been demonstrated. The use of pulsed power and power modulation is essential to the successful implementation of non-thermal plasma techniques. This paper provides an overview of the most recent developments in non-thermal plasma systems that have been applied to gaseous waste treatment. In the non-thermal plasma approach, the nonequilibrium properties of the plasma are fully exploited. These plasmas are characterized by high electron temperatures, while the gas remains at near ambient temperature and pressure. The energy is directed preferentially to the undesirable components, which are often present in very small concentrations. These techniques utilize the dissociation and ionization of the background gas to produce radicals which, in turn, decompose the toxic compounds. The key to success in the non-thermal plasma approach is to produce a discharge in which the majority of the electrical energy goes into the production of energetic electrons, rather than into gas heating. For example, in a typical application to flue gas cleanup, these electrons produce radicals, such as O and OH, through the dissociation or ionization of molecules such as H2O or O2. The radicals diffuse through the gas and preferentially oxidize the nitrogen oxides and sulfur oxides to form acids that can then be easily neutralized to form non-toxic, easily-collectible (and commercially salable) compounds. Non-thermal plasmas can be created in essentially two different ways: by electron-beam irradiation, and by electrical discharges

  12. Non-thermal production and escape of OH from the upper atmosphere of Mars

    CERN Document Server

    Gacesa, Marko; Kharchenko, Vasili

    2016-01-01

    We present a theoretical analysis of formation and kinetics of hot OH molecules in the upper atmosphere of Mars produced in reactions of thermal molecular hydrogen and energetic oxygen atoms. Two major sources of energetic O considered are the photochemical production, via dissociative recombination of O$_{2}^{+}$ ions, and energizing collisions with fast atoms produced by the precipitating Solar Wind (SW) ions, mostly H$^+$ and He$^{2+}$, and energetic neutral atoms (ENAs) originating in the charge-exchange collisions between the SW ions and atmospheric gases. Energizing collisions of O with atmospheric secondary hot atoms, induced by precipitating SW ions and ENAs, are also included in our consideration. The non-thermal reaction O + H$_2(v,j) \\rightarrow$ H + OH$(v',j')$ is described using recent quantum-mechanical state-to-state cross sections, which allow us to predict non-equilibrium distributions of excited rotational and vibrational states $(v',j')$ of OH and expected emission spectra. A fraction of pr...

  13. Non-thermal plasma as preparative technique to evaluate olive oil adulteration.

    Science.gov (United States)

    Van Durme, Jim; Vandamme, Jeroen

    2016-10-01

    In recent years adulteration of pure extra virgin olive oil (EVOO) with other types of vegetable oils has become an important issue. In this study, non-thermal plasma (NTP) is investigated as an innovative preparative analytical technique enabling classification of adulterated olive oil from an ascertained authentic batch of olive oil in a more sensitive manner. Non-thermal plasma discharges are a source of highly oxidative species such as singlet oxygen, and atomic oxygen. It was assumed that NTP-induced oxidation triggers unique lipid oxidation mechanisms depending on the specific composition of the oil matrix and minor constituents. In this work EVOO samples were adulterated with sunflower oil (1-3%) and submitted to NTP treatment. Results showed that while untreated samples could not be classified from the authentic olive oil reference, NTP treatments of 60min (Ar/O2 0.1%) on the oil batches resulted in the formation of a unique set of secondary volatile lipid oxidation products enabling classification of adulterated oil samples. PMID:27132839

  14. Non-thermal plasma technology for the abatement of NOx and SOx from the exhaust of marine diesel engine

    OpenAIRE

    Manivannan, N; W. Balachandran; Beleca, R; Abbod, M

    2014-01-01

    Non-thermal plasma based technology is proposed to the abatement of NOx and SOx of the exhaust gas from marine diesel engine. Proposed technology uses electron gun and microwave energy to generate the plasma. Fundamentals of non-thermal plasma and chemistry are presented with a set of simulation results of the reduction of NOx and SO2 for a typical two stoke marine diesel exhaust engine which is supported by an experimental results obtained with microwave plasma. A new scheme is also propo...

  15. Pulse-based non-thermal plasma (NTP) disrupts the structural characteristics of bacterial biofilms.

    Science.gov (United States)

    Ferrell, James R; Shen, Fan; Grey, Scott F; Woolverton, Christopher J

    2013-01-01

    Bacterial biofilms were constructed in vitro with two pathogenic strains of Pseudomonas aeruginosa and Staphylococcus aureus using a modified, novel sequential bioreactor system. The structure and stability of bacterial biofilms were evaluated following exposure to non-thermal plasma (NTP) discharge. Mathematical software was used to determine structural changes as biofilms grew over the course of 7 days. Statistical modeling was also performed to assess the ability of NTP to affect the development of the biofilms over different periods of time. Several structural characteristics were significantly affected by NTP discharge whereas others were unaffected. Changes in the three-dimensional structure of the biofilm following introduction of NTP was not limited to one period of development. The mechanism for this phenomenon is not understood but is likely to be a dual, synergistic effect due to the composition of the reactive species and other plasma-associated molecules isolated previously in the NTP discharge used in this study. PMID:23682750

  16. Effects of non-thermal plasma on the electrical properties of an erythrocyte membrane

    Science.gov (United States)

    Lee, Jin Young; Baik, Ku Youn; Kim, Tae Soo; Lim, Jaekwan; Uhm, Han S.; Choi, Eun Ha

    2015-09-01

    Non-thermal plasma is used here for membrane oxidation and permeabilization in which the electrical properties of an erythrocyte membrane are investigated after treatments. The zeta potential as measured by electrophoresis shows the increased negativity of the membrane surface potential (Ψs). The secondary electron emission coefficient ( γ) measured by a focused ion beam shows a decrease in the dipole potential (Ψd) of lipid molecules. The voltage-sensitive fluorescent intensity as measured by flow cytometry shows a decrease in the trans-membrane potential (ΔΨ) through the lipid bilayer membrane. These results allow us to take a step forward to unveil the complex events occurring in plasma-treated cells.

  17. Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor

    Institute of Scientific and Technical Information of China (English)

    M. Sanjeeva Gandhi; Y. S. Mok

    2012-01-01

    The decomposition of trifluoromethane (CFF3) was carried out using non-thermal plasma generated in a dielectric barrier discharge (DBD) reactor.The effects of reactor temperature,electric power,initial concentration and oxygen content were examined.The DBD reactor was able to completely destroy CHF3 with alumina beads as a packing material.The decomposition efficiency increased with increasing electric power and reactor temperature.The destruction of CHF3 gradually increased with the addition of O2 up to 2%,but further increase in the oxygen content led to a decrease in the decomposition efficiency.The degradation pathways were explained with the identified by-products.The main by-products from CHF3 were found to be COF2,CF4,CO2 and CO although the COF2 and CF4 disappeared when the plasma were combined with alumina catalyst.

  18. Effective group index of refraction in non-thermal plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, A.; Sadegzadeh, S., E-mail: sadegzadeh@azaruniv.edu [Physics Department, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2015-11-15

    Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity v{sub g}, and effective group index of refraction n{sub eff}(g) of such NPPC structure with TeO{sub 2} as the material of dielectric layers have been studied. The concept of negative group velocity and negative n{sub eff}(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, n{sub eff}(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 10{sup 3}c (c is the speed of light in vacuum)

  19. A new concept of high flow rate non-thermal plasma reactor for air treatment

    Energy Technology Data Exchange (ETDEWEB)

    Goujard, V.; Tatibouet, J.M. [Univ. de Poitiers, Poitiers (France). Centre national de la recherche scientifique, Laboratoire de Catalyse en Chimie Organique

    2010-07-01

    Although several non-thermal plasma reactors have been tested for air treatment at the laboratory scale, up-scaling to pilot or industrial scale remains a challenge because several parameters must be considered, such as hydrodynamic behaviour, maximum voltage in an industrial environment, and maintenance of the system. This paper presented a newly developed reactor which consists to a DBD plasma generated on individual supports that could be directly inserted in gas pipes where air flow must be treated. Elimination of 40 percent of 15 ppm of propene was obtained with a energy density as low as 10 J/L. The propene conversion increased when a manganese oxide based catalyst was used because the ozone produced by the plasma was used as an as an oxidant. A simple model of the plasma-catalyst reactor behaviour showed that more than 90 percent of propene conversion can be expected for an input energy density of 10 J/L and residual ozone concentration less than 100 ppb.

  20. Non-thermal plasma treatment of Radix aconiti wastewater generated by traditional Chinese medicine processing.

    Science.gov (United States)

    Wen, Yiyong; Yi, Jianping; Zhao, Shen; Jiang, Song; Chi, Yuming; Liu, Kefu

    2016-06-01

    The wastewater effluent from Radix aconiti processing, an important step in the production processes of traditional Chinese medicine (TCM), is a type of toxic wastewater and difficult to treat. Plasma oxidation methods have emerged as feasible techniques for effective decomposition of toxic organic pollutants. This study examined the performance of a plasma reactor operated in a dielectric barrier discharge (DBD) to degrade the effluent from R. aconiti processing. The effects of treatment time, discharge voltage, initial pH value and the feeding gas for the reactor on the degradation of this TCM wastewater were investigated. A bacterium bioluminescence assay was adopted in this study to test the toxicity of the TCM wastewater after non-thermal plasma treatment. The degradation ratio of the main toxic component was 87.77% after 60min treatment with oxygen used as feed gas and it was 99.59% when the initial pH value was 8.0. High discharge voltage and alkaline solution environment were beneficial for improving the degradation ratio. The treatment process was found to be capable of reducing the toxicity of the wastewater to a low level or even render it non-toxic. These experimental results suggested that the DBD plasma method may be a competitive technology for primary decomposition of biologically undegradable toxic organic pollutants in TCM wastewater. PMID:27266306

  1. Catalytic non-thermal plasma reactor for the decomposition of a mixture of volatile organic compounds

    Indian Academy of Sciences (India)

    B Rama Raju; E Linga Reddy; J Karuppiah; P Manoj Kumar Reddy; Ch Subrahmanyam

    2013-05-01

    The decomposition of mixture of selected volatile organic compounds (VOCs) has been studied in a catalytic non-thermal plasma dielectric barrier discharge reactor. The VOCs mixture consisting n-hexane, cyclo-hexane and -xylene was chosen for the present study. The decomposition characteristics of mixture of VOCs by the DBD reactor with inner electrode modified with metal oxides of Mn and Co was studied. The results indicated that the order of the removal efficiency of VOCs followed as -xylene > cyclo-hexane > -hexane. Among the catalytic study, MnOx/SMF (manganese oxide on sintered metal fibres electrode) shows better performance, probably due to the formation of active oxygen species by in situ decomposition of ozone on the catalyst surface. Water vapour further enhanced the performance due to the in situ formation of OH radicals.

  2. Non-thermal enhancement of electron-positron pair creation in burning thermonuclear laboratory plasmas

    Science.gov (United States)

    Hill, E. G.; Rose, S. J.

    2014-12-01

    We estimate the number of electron-positron pairs which will be produced during the burning of a Deuterium-Tritium (DT) plasma in conditions that are anticipated will be achieved at the National Ignition Facility. In particular we consider, for the first time, the effect of including the gamma photons produced in a low probability channel of the DT reaction. It is found that non-thermal effects driven by the fusion products are the dominant method of pair production, and lead to a number density of positrons within the capsule in excess of 3 × 1017 cm-3. The positrons are predominately produced by the Bethe-Heitler process and destroyed by two photon annihilation.

  3. Silicon nanocrystals synthesized using very high frequency non-thermal plasma and their application in photovoltaics

    International Nuclear Information System (INIS)

    Silicon nanocrystals (Si NCs) with average size of 6 nm were synthesized using very high frequency non-thermal plasma. After surface chemical treatment, they were applied in Si NC/PTB7 hybrid solar cells as the acceptor material. According to the performance of devices with different Si NC/PTB7 weight ratios, results show that surface-treated Si NCs have good electrical properties with few trapping centres. Furthermore, Si NCs promote exciton dissociation, carrier transport processes and contribute to light absorption, especially in the near-UV region. Finally, devices with efficiency as high as 3.0% have been achieved with optimized Si NC/PTB7 weight ratio, which is competitive in same type devices using different nanocrystals. (paper)

  4. Non-thermal plasma induced decomposition of 2-chlorophenol in water

    International Nuclear Information System (INIS)

    Application of non-thermal plasma produced by pulsed corona discharge in water for degradation of 2-chlorophenol has been investigated in reactor with the needle-plate geometry of electrodes. It was shown that decomposition of 2-chlorophenol by the discharge can be referred essentially to the oxidation by hydroxyl radical and it can be described by the first order kinetics. The complete removal of 500 μmol.l-1 2-chlorophenol by the discharge was attained in the presence of ferrous ions with the energy efficiency of 3.5 x 10 -3 μmol.J-1. Chlorohydroquinone, chlorobenzoquinone, 3-chlorocatechol and catechol were detected as the primary decomposition products (Authors)

  5. Quasilinear evolution of non-thermal distributions in ion cyclotron resonance heating of tokamak plasmas

    International Nuclear Information System (INIS)

    The AORSA global-wave solver is combined with the CQL3D bounce-averaged Fokker-Planck code to simulate the quasilinear evolution of non-thermal distributions in ion cyclotron resonance heating of tokamak plasmas. A novel re-formulation of the quasilinear operator enables calculation of the velocity space diffusion coefficients directly from the global wave fields. To obtain self-consistency between the wave fields and particle distribution function, AORSA and CQL3D have been iteratively coupled using Python. The combined selfconsistent model is applied to minority ion heating in the Alcator C-Mod tokamak. Results show the formation of a 70 keV ion tail near the minority ion cyclotron resonance layer in approximate agreement with measurements from charge exchange neutral particle analyzers

  6. Single-step non-thermal plasma synthesis of 3C-SiC nanoparticles

    International Nuclear Information System (INIS)

    We present a scalable, single-step, non-thermal plasma synthesis technique for the growth of sub-5 nm, hydrogenated amorphous carbon (a-C:H) coated 3C-SiC nanoparticles (NPs). In a tubular flow reactor, we first nucleate and grow c-Si NPs upstream in a SiH4/Ar plasma. These c-Si NPs are then transported by gas flow to a downstream C2H2/Ar plasma, and carburized in-flight by carbon-containing radicals and ions to 3C-SiC NPs. X-ray diffraction and transmission electron microscopy indicate an NP size of ∼4 nm. X-ray photoelectron spectroscopy analysis confirms that the c-Si NPs are completely carburized to 3C-SiC. Fourier transform infrared spectroscopy shows that the surface of the 3C-SiC NPs is coated with a-C:H with some alkenyl termination, which can facilitate further solution-based surface functionalization for biomedical applications. (paper)

  7. Analysis of non-thermal plasma-induced cell injury in human lung cancer cell lines

    Science.gov (United States)

    Kurita, Hirofumi; Sano, Kaori; Wada, Motoi; Mizuno, Kazue; Ono, Ryo; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2015-09-01

    Recent progress of biomedical application of atmospheric pressure plasma shows that the biological effects are mainly due to reactive oxygen and nitrogen species (RONS) in liquid produced by the plasma exposure. To elucidate the cellular responses induced by exposure to the plasma, we focused on identification and quantification of reactive chemical species in plasma-exposed cell culture medium, and cell injury in mammalian cells after treatment of the plasma-exposed medium. In this study, we examined human lung cancer cell lines. The contribution of H2O2 to the cellular responses was considered. Here, an atmospheric pressure plasma jet (APPJ) sustained by a pulsed power supply in argon was used. After APPJ exposure to cell culture medium, RONS detection in liquid was conducted. It showed that OH radical, ONOO-, NO2-, NO3-, and H2O2 were produced in the plasma-exposed medium. Cellular responses of human lung cancer cell lines to the plasma-exposed medium in a concentration-dependence manner were also studied. It showed that the plasma-exposed medium and the H2O2 treatment gave similar reduction in viability and induction of apoptosis. This work was partly supported by MEXT KAKENHI Grant Number 24108005 and JSPS KAKENHI Grant Number 26390096.

  8. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor.

    Directory of Open Access Journals (Sweden)

    Pouyan Talebizadeh

    Full Text Available Non-thermal plasma (NTP has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.

  9. Investigation on elemental mercury oxidation mechanism by non-thermal plasma treatment

    International Nuclear Information System (INIS)

    Converting elemental mercury into divalent compound is one of the most important steps for mercury abatement from coal fired flue gas. The oxidation of elemental mercury was investigated in this paper using dielectric barrier discharge (DBD) non-thermal plasma (NTP) technology at room temperature. Effects of different flue gas components like oxygen, moisture, HCl, NO and SO2 were investigated. Results indicate that active radicals including O, O3 and OH all contribute to the oxidation of elemental mercury. Under the conditions of 5% O2 in the simulated flue gas, about 90.2% of Hg0 was observed to be oxidized at 3.68 kV discharge voltage. The increase of discharge voltage, O2 level and H2O content can all improve the oxidation rate, individually. With O2 and H2O both existed, there is an optimal moisture level for the mercury oxidation during the NTP treatment. In this test, the observed optimal moisture level was around 0.74% by volume. Hydrogen chloride can promote the oxidation of mercury due to chlorine atoms produced in the plasma process. Both NO and SO2 have inhibitory effects on mercury oxidation, which can be attributed to their competitive consumption of O3 and O. (author)

  10. Effect of Non Thermal Plasma on Alfalfa (Medicago sativa L.) Forage Production

    International Nuclear Information System (INIS)

    Field experiments were conducted at Atomic Energy Authority (AEA) Farm, at Inshas, Egypt during 2011–2012 on alfalfa. The aim of this investigation to caused mutation in alfalfa to obtain new variation. Seeds of the alfalfa were subjected to six doses of non-thermal plasma pulse. The plasma (consisting of ozone, UV and visible light) was injected into the seed samples for different durations or number of pulses. The doses used treatments were 2, 4, 6, 8, and 10 pulses (P) and non-treated control. The results showed difference seeds in both level field performances from cut 1st to cut 10th in the forage production. The results showed differences between the Control and treatment (number of pulses (P)) in each of all cuts for the productivity. The results showed the impact of plant height, Number of leaves/plant and number of branches/leaf and stem diameter as well as fresh weight of plant, fresh/weight (t/fed), dry yield (t/fed) in some cuts for Pulses 2, 4 and 10, and the ten pulses were the best for the majority of the qualities and cuts.

  11. Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction

    DEFF Research Database (Denmark)

    Babaie, Meisam; Davari, Pooya; Talebizadeh, Poyan;

    2015-01-01

    This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO...

  12. Conversion of carbon disulfide in air by non-thermal plasma

    International Nuclear Information System (INIS)

    Highlights: • The behavior of NTP for CS2 conversion in air was investigated. • CS2 conversion increase with the increase of specific input energy. • Short-living species are more important in CS2 conversion than long-living species. • The main gaseous products of CS2 conversion are CO, CO2, OCS, SO2, SO3 and H2SO4. • YCO2 and YCO increase, YSO3+H2SO4 remains constant, and YSO2 and YOCS follow bell curves as SIE increases. -- Abstract: Carbon disulfide (CS2), a typical odorous organic sulfur compound, has adverse effects on human health and is a potential threat to the environment. In the present study, CS2 conversion in air by non-thermal plasma (NTP) was systematically investigated using a link tooth wheel-cylinder plasma reactor energized by a DC power supply. The results show that corona discharge is effective in removing CS2. The CS2 conversion increases with the increase of specific input energy (SIE). Both short-living (e.g. ·O, ·OH radicals) and long-living species contribute to the CS2 conversion, but the short-living species play a more important role. Both gaseous and solid products are formed during the conversion of CS2. Gaseous products mainly include CO, CO2, OCS, SO2, SO3 and H2SO4. The yields of CO and CO2 increase, the yields of OCS and SO2 follow bell curves while the sum yield of SO3 and H2SO4 remains constant as SIE increases. The solid products, consisting of CO32−, SO42− and possible polymeric sulfur, deposit on the inner wall and electrodes of the plasma reactor

  13. The effect of non-thermal electrons on obliquely propagating electron acoustic waves in a magnetized plasma

    Science.gov (United States)

    Singh, Satyavir; Bharuthram, Ramashwar

    2016-07-01

    Small amplitude electron acoustic solitary waves are studied in a magnetized plasma consisting of hot electrons following Cairn's type non-thermal distribution function and fluid cool electrons, cool ions and an electron beam. Using reductive perturbation technique, the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation is derived to describe the nonlinear evolution of electron acoustic waves. It is observed that the presence of non-thermal electrons plays an important role in determining the existence region of solitary wave structures. Theoretical results of this work is used to model the electrostatic solitary structures observed by Viking satellite. Detailed investigation of physical parameters such as non-thermality of hot electrons, beam electron velocity and temperature, obliquity on the existence regime of solitons will be discussed.

  14. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications. PMID:27226277

  15. Non-thermal plasma exhaust aftertreatment: Are all plasmas the same?

    Energy Technology Data Exchange (ETDEWEB)

    Whealton, J.H.; Hanson, G.R.; Storey, J.M.; Raridon, R.J.; Armfield, J.S.; Bigelow, T.S.; Graves, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    The authors describe initial experiments employing 5.5 GHz pulsed microwave power, which should result in enhanced chemistry compared to present state-of-the-art plasma aftertreatments by; reducing plasma electric field shielding, increasing availability of atomic nitrogen, exploiting surface charging of dielectrics, avoiding (low field) threshold initiated discharges, and achieving a higher high energy tail on the electron distribution function. As an example, the authors decided to test for NO reduction in N{sub 2}. While this reaction is not a complete description of the exhaust issues by any means, they thought it would demonstrate the technology proposed.

  16. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Marković, Marijana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Jović, Milica; Stanković, Dalibor [Innovation Center, Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Kovačević, Vesna [Faculty of Physics, University of Belgrade, P.O. Box 44, 11000 Belgrade (Serbia); Roglić, Goran [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Gojgić-Cvijović, Gordana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Manojlović, Dragan, E-mail: manojlo@chem.bg.ac.rs [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia)

    2015-02-01

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe{sup 2+}). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC–MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. - Highlights: • Twelve ibuprofen degradation products were identified in total. • The degradation percentage differed between treatments (DBD/Fe{sup 2+} was 99%). • In DBD/Fe{sup 2+} only aliphatic degradation products were identified. • V. fischeri was sensitive to ibuprofen solution after the Fenton treatment. • A. salina showed no toxic effect when exposed to all post treatment solutions.

  17. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen

    International Nuclear Information System (INIS)

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe2+). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC–MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. - Highlights: • Twelve ibuprofen degradation products were identified in total. • The degradation percentage differed between treatments (DBD/Fe2+ was 99%). • In DBD/Fe2+ only aliphatic degradation products were identified. • V. fischeri was sensitive to ibuprofen solution after the Fenton treatment. • A. salina showed no toxic effect when exposed to all post treatment solutions

  18. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma

    Science.gov (United States)

    Ki, S. H.; Park, J. K.; Sung, C.; Lee, C. B.; Uhm, H.; Choi, E. H.; Baik, K. Y.

    2016-03-01

    Artificial cell-like model systems can provide information which is hard to obtain with real biological cells. Giant unilamellar vesicles (GUV) containing intra-membrane DNA or OH radical-binding molecules are used to visualize the cytolytic activity of OH radicals. Changes in the GUV membrane are observed by microscopy or flow cytometry as performed for animal cells after non-thermal plasma treatment. The experimental data shows that OH radicals can be detected inside the membrane, although the biological effects are not as significant as for H2O2. This artificial model system can provide a systemic means to elucidate the complex interactions between biological materials and non-thermal plasma.

  19. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma

    International Nuclear Information System (INIS)

    Artificial cell-like model systems can provide information which is hard to obtain with real biological cells. Giant unilamellar vesicles (GUV) containing intra-membrane DNA or OH radical-binding molecules are used to visualize the cytolytic activity of OH radicals. Changes in the GUV membrane are observed by microscopy or flow cytometry as performed for animal cells after non-thermal plasma treatment. The experimental data shows that OH radicals can be detected inside the membrane, although the biological effects are not as significant as for H2O2. This artificial model system can provide a systemic means to elucidate the complex interactions between biological materials and non-thermal plasma. (paper)

  20. Heating and Non-thermal Particle Acceleration in Relativistic, Transverse Magnetosonic Shock Waves in Proton-Electron-Positron Plasmas

    CERN Document Server

    Amato, E; Amato, Elena; Arons, Jonathan

    2006-01-01

    We report the results of 1D particle-in-cell simulations of ultrarelativistic shock waves in proton-electron-positron plasmas. We consider magnetized shock waves, in which the upstream medium carries a large scale magnetic field, directed transverse to the flow. Relativistic cyclotron instability of each species as the incoming particles encounter the increasing magnetic field within the shock front provides the basic plasma heating mechanism. The most significant new results come from simulations with mass ratio $m_p/m_\\pm = 100$. We show that if the protons provide a sufficiently large fraction of the upstream flow energy density (including particle kinetic energy and Poynting flux), a substantial fraction of the shock heating goes into the formation of suprathermal power-law spectra of pairs. Cyclotron absorption by the pairs of the high harmonic ion cyclotron waves, emitted by the protons, provides the non-thermal acceleration mechanism. As the proton fraction increases, the non-thermal efficiency increas...

  1. Investigations on the mechanisms of sterilization by non-thermal low-pressure nitrogen-oxygen plasmas

    OpenAIRE

    Roth, Stefan

    2011-01-01

    Plastic based materials are increasingly used for packaging of pharmaceuticals (especially biologicals), food or beverages and production of medical devices. Their heat sensitivity requires safe and efficient non-thermal methods for decontamination. Plasma technology has the potential to provide a suitable means since it works at low temperatures and ? in contrast to conventional methods like application of ionizing radiation or ethylene oxide exposure ? is safe to operate, is free of residue...

  2. Surface Modification of Polyester Fabric by Non-Thermal Plasma Treatment

    International Nuclear Information System (INIS)

    In the present study it was carried out a surface modification of polyester fabric by plasma treatment with aim of providing hidrophilicity to fabric. In the process it were used three different gaseous atmosphere with mixtures of argon, nitrogen and/or oxygen [(1) Ar + N2 (4:2), (2) Ar + N2 + O2 (4:2:2) and N2 + O2 (2:0.6)] and maintained others parameters such as pressure, current and time of treatment fixed at 1.35 mBar, 0.08 A and 30 minutes, respectively. The plasma treatment was monitored by optical emission spectroscopy (OES) to identify the species presents in the plasma reactor. Chemical changes in the fabric surface after plasma treatments were determined by Fourier Transform Infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Wicking properties were used to evaluate hydrophilicity of the fabric. Wicking measurement showed that the hydrophilicity of polyester fabric was remarkably improved after treatment and was explained by XPS analysis indicating higher presence of functional groups containing nitrogen and oxygen.

  3. Shock tube experiments on nitromethane and Promotion of chemical reactions by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Seljeskog, Morten

    2002-06-01

    This dissertation was undertaken to study two different subjects both related to molecular decomposition by applying a shock tube and non-thermal plasma to decompose selected hydrocarbons. The first approach to molecular decomposition concerned thermal decomposition and oxidation of highly diluted nitromethane (NM) in a shock tube. Reflected shock tube experiments on NM decomposition, using mixtures of 0.2 to 1.5 vol% NM in nitrogen or argon were performed over the temperature range 850-1550 K and pressure range 190-900 kPa, with 46 experiments diluted in nitrogen and 44 diluted in argon. By residual error analysis of the measured decomposition profiles it was found that NM decomposition (CH{sub 3}NO{sub 2} + M {yields} CH{sub 3} + NO{sub 2} + M, where M = N{sub 2} /Ar) corresponds well to a law of first order. Arrhenius expressions corresponding to NM diluted either in N{sub 2} or in Ar were found as k{sub N2} = 10{sup 17.011} * exp(- 182.6 kJ/mole / R*T) and k{sub Ar} = 10{sup 17.574}*exp(-207 kJ/mole / R*T ) , respectively. A new reaction mechanism was then proposed, based on new experimental data for NM decomposition both in Ar and N{sub 2} and on three previously developed mechanisms. The new mechanism predicts well the decomposition of NM diluted in both N{sub 2} and Ar within the pressure and temperature range covered by the experiments. In parallel to, and following the decomposition experiments, oxidative experiments on the ignition delay times of NM/O{sub 2}/Ar mixtures were investigated over high temperature and low to high pressure ranges. These experiments were carried out with eight different mixtures of gaseous NM and oxygen diluted in argon, with pressures ranging between 44.3-600 kPa, and temperatures ranging between 842-1378 K. The oxidation experiments were divided into different categories according to the type of decomposition signals achieved. For signals with and without emission, the apparent quasi

  4. Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma.

    Directory of Open Access Journals (Sweden)

    Arnaud Duval

    Full Text Available Non-thermal plasmas are gaseous mixtures of molecules, radicals, and excited species with a small proportion of ions and energetic electrons. Non-thermal plasmas can be generated with any high electro-magnetic field. We studied here the pathological effects, and in particular cell death, induced by nanosecond-pulsed high voltage generated plasmas homogeneously applied on cell cultures and nude mouse skin. In vitro, Jurkat cells and HMEC exhibited apoptosis and necrosis, in dose-dependent manner. In vivo, on nude mouse skin, cell death occurred for doses above 113 J/cm(2 for the epidermis, 281 J/cm(2 for the dermis, and 394 J/cm(2 for the hypodermis. Using electron microscopy, we characterized apoptosis for low doses and necrosis for high doses. We demonstrated that these effects were not related to thermal, photonic or pH variations, and were due to the production of free radicals. The ability of cold plasmas to generate apoptosis on cells in suspension and, without any sensitizer, on precise skin areas, opens new fields of application in dermatology for extracorporeal blood cell treatment and the eradication of superficial skin lesions.

  5. Atmospheric pressure plasma jet applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S. [Los Alamos National Lab., NM (United States)

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  6. Polarization of the Sunyaev-Zel'dovich effect: relativistic imprint of thermal and non-thermal plasma

    CERN Document Server

    Emritte, M S; Marchegiani, P

    2016-01-01

    [Abridged] Inverse Compton scattering of CMB fluctuations off cosmic electron plasma generates a polarization of the associated Sunyaev-Zel'dovich (SZ) effect. This signal has been studied so far mostly in the non-relativistic regime and for a thermal electron population and, as such, has limited astrophysical applications. Partial attempts to extend this calculation for a thermal electron plasma in the relativistic regime have been done but cannot be applied to a general relativistic electron distribution. Here we derive a general form of the SZ effect polarization valid in the full relativistic approach for both thermal and non-thermal electron plasmas, as well as for a generic combination of various electron population co-spatially distributed in the environments of galaxy clusters or radiogalaxy lobes. We derive the spectral shape of the Stokes parameters induced by the IC scattering of every CMB multipole, focusing on the CMB quadrupole and octupole that provide the largest detectable signals in galaxy c...

  7. Synergistic removal of nitrogen monoxide by non-thermal plasma and catalyst simultaneously

    Institute of Scientific and Technical Information of China (English)

    YU Gang; YU Qi; ZENG Ke-si; ZHAI Xiao-dong

    2005-01-01

    An experimental system of De-NO with plasma-catalyst(Cu zeolite) was established to investigate the differences between DeNO with plasma-catalyst and De-NO only with plasma, to provide the instruction for selecting appropriate catalyst and operating condition.The characteristics of De-NO with plasma and De-NO with plasma-catalyst were investigated comparatively by experiments. The experimental results show that De-NO with plasma-catalyst has high NO removal rate; Cu zeolite is an effective catalyst which can promote NO removal rate in plasma remarkably; De-NO with plasma-catalyst should be operated at low temperature and the temperature has opposite effects on the function of catalyst and plasma; water vapor and O2 can increase the NO removal rate.

  8. Acidity control of the oxidation reactions induced by non-thermal plasma treatment of aqueous effluents in pollutant abatement processes

    International Nuclear Information System (INIS)

    The acid properties of a non-thermal plasma in humid air (e.g., a gliding arc device) induced in an aqueous solution may deeply affect the efficiency of the matching oxidising properties, especially when the aqueous targets involve organic solutes. Hence, their oxidation rate may be strongly modified. A series of buffers is proposed to control the pH of aqueous target for at least one-hour treatments. The selected acid-base systems were selected for their inertia towards oxidation reaction, to cover a very large range of acidity. The reported results are essential from both fundamental and applied points of view. They first allow the acute controlling of the degradation rate of organic compounds. They also enable estimating the efficiency of the gliding arc treatments in environmental applications. Besides, they allow getting reliable data on the bactericidal effect on the plasma treatments, which are a merging application of the electric discharges. (author)

  9. Non-Thermal Plasma (NTP) session overview: Second International Symposium on Environmental Applications of Advanced Oxidation Technologies (AOTs)

    International Nuclear Information System (INIS)

    Advanced Oxidation Technologies (used in pollution control and treating hazardous wastes) has expanded from using hydroxyl radicals to treat organic compounds in water, to using reductive free radicals as well, and to application to pollutants in both gases and aqueous media. Non-Thermal Plasma (NTP) is created in a gas by an electrical discharge or energetic electron injection. Highly reactive species (O atoms, OH, N radicals, plasma electrons) react with entrained hazardous organic chemicals in the gas, converting them to CO2, H2O, etc. NTP can be used to simultaneously remove different kinds of pollutants (eg, VOCs, SOx, NOx in flue gases). This paper presents an overview of NTP technology for pollution control and hazardous waste treatment; it is intended as an introduction to the NTP session of the symposium

  10. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The use of non-thermal plasma injection approach to oxidize Hg0 in simulated flue gas at 110 °C was studied. • A high Hg0 oxidation efficiency was observed in the mixed flue gas that included O2, H2O, SO2, NO and HCl. • Chemical and physical processes (e.g., ozone, N2 metastable states and UV-light) contributed to Hg0 oxidation. • Mercury species mainly existed in the form of HgO(s) adhering to the suspended aerosols in the gas-phase. - Abstract: The use of non-thermal plasma (NTP) injection approach to oxidize elemental mercury (Hg0) in simulated flue gas at 110 °C was studied, where a surface discharge plasma reactor (SDPR) inserted in the simulated flue duct was used to generate and inject active species into the flue gas. Approximately 81% of the Hg0 was oxidized and 20.5 μg kJ−1 of energy yield was obtained at a rate of 3.9 J L−1. A maximal Hg0 oxidation efficiency was found with a change in the NTP injection air flow rate. A high Hg0 oxidation efficiency was observed in the mixed flue gas that included O2, H2O, SO2, NO and HCl. Chemical and physical processes (e.g., ozone, N2 metastable states and UV-light) were found to contribute to Hg0 oxidation, with ozone playing a dominant role. The deposited mercury species on the internal surface of the flue duct was analyzed using X-ray photoelectron spectroscopy (XPS) and electronic probe microanalysis (EPMA), and the deposit was identified as HgO. The mercury species is thought to primarily exist in the form of HgO(s) by adhering to the suspended aerosols in the gas-phase

  11. Non-Thermal Plasma Recovery of Hydrogen from Sabatier Waste Methane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Effective methods for recovery and regeneration of cabin atmosphere to supply oxygen are critical to facilitate extended duration manned missions including...

  12. Surface modification of gutta-percha cones by non-thermal plasma.

    Science.gov (United States)

    Prado, Maíra; Menezes, Marilia Santana de Oliveira; Gomes, Brenda Paula Figueiredo de Almeida; Barbosa, Carlos Augusto de Melo; Athias, Leonardo; Simão, Renata Antoun

    2016-11-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1min; Argon: treatment with Argon plasma for 1min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. PMID:27524029

  13. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress.

    Science.gov (United States)

    Kim, Ki Cheon; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Han, Xia; Kang, Kyoung Ah; Jo, Jin Oh; Mok, Young Sun; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Hyun, Jin Won

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  14. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress

    OpenAIRE

    Kim, Ki Cheon; Piao, Mei Jing; Hewage, Susara Ruwan Kumara Madduma; Han, Xia; Kang, Kyoung Ah; JO, JIN OH; Mok, Young Sun; Shin, Jennifer H.; Park, Yeunsoo; Yoo, Suk Jae; Hyun, Jin Won

    2015-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay....

  15. Non Thermal Plasma Assisted Catalytic Reactor for CO2 Methanation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In situ production of methane as propellant and oxygen as life support consumables from the atmospheric CO2 and water on Mars is a key enabling technology required...

  16. Application of Non-Thermal Plasma to the Treatment of Effluent Discharged Into River Choumlou in Bafoussam, West Cameroon

    Directory of Open Access Journals (Sweden)

    Estella T. Njoyim

    2016-07-01

    Full Text Available Most rivers in urban areas of developing countries are the of effluents discharged from industries. This is the case of River Choumlou (in Bafoussam-West Region, Cameroon which receives all discharges from “Brasseries du Cameroun”, Bafoussam branch. The objective of this work was to determine the level of organic contaminants in water samples and to treat the polluted samples using the non-thermal gliding arc plasma. Nonthermal plasma consists of charged particles, radicals and excited molecules. The aim was to show the interest of such a process for cleaning up of surface waters (real effluent and to cope with the protection of our environment. Due to the fact that pollution of streams and rivers from the discharge of sewage and industrial wastes poses a major problem to the environment, the researchers were particularly interested in investigating the oxidizing and acidifying properties of non-thermal plasma on polluted surface water. Samples were collected upstream and downstream from the brewery’s effluent outlet. Samples taken at the point R1 (downstream were first analyzed by volumetric and instrumental methods in order to determine the organoleptic, physico-chemical and organic parameters. These samples were then exposed to the gliding discharge in humid air for a time period of between 3-30 minutes. After 30 minutes of exposure, a decrease in turbidity (24.09%, BOD5 (44.93% and COD (48.92% were observed resulting in transparency apparition; with a decrease in pH (7.9 to 3 due to the formation of acidifying species in solution. These results reflect a considerable reduction in the pollution load of the water collected at R1. This work shows that the effectiveness of the Gliding Arc in wastewater treatment is attributed to the oxidizing power of the hydroxyl radical and acidifying power of the nitrogen monoxide radical formed in the plasma. Despite the low rate of reduction of COD and BOD5 in 30 min, it can be said that the plasma

  17. Non-thermal plasma induced decomposition of 2-chlorophenol in water

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Šunka, Pavel; Winterová, G.; Janda, V.

    Liptovský Mikuláš : Military Academy, 2003 - (Šutta, P.; Muellerová, J.; Bruner, R.), s. 64-65 ISBN 80-8040-195-0. [Symposium on Application of Plasma Processes/14th./. Liptovský Mikuláš (SK), 13.01.2003-18.01.2003] R&D Projects: GA ČR GA202/02/1026; GA MŠk ME 541 Institutional research plan: CEZ:AV0Z2043910 Keywords : corona discharge, water treatment, chlorophenol Subject RIV: BL - Plasma and Gas Discharge Physics

  18. Perspectives on atmospheric-pressure plasmas for nanofabrication

    International Nuclear Information System (INIS)

    Low-pressure, low-temperature plasmas are widely used for materials applications in industries ranging from electronics to medicine. To avoid the high costs associated with vacuum equipment, there has always been a strong motivation to operate plasmas at higher pressures, up to atmospheric. However, high-pressure operation of plasmas often leads to instabilities and gas heating, conditions that are unsuitable for materials applications. The recent development of microscale plasmas (i.e. microplasmas) has helped realize the sustainment of stable, non-thermal plasmas at atmospheric pressure and enable low-cost materials applications. There has also been an unexpected benefit of atmospheric-pressure operation: the potential to fabricate nanoscale materials which is not possible by more conventional, low-pressure plasmas. For example, in a high-pressure environment, nanoparticles can be nucleated in the gas phase from vapour (or solid metal) precursors. Alternatively, non-thermal, atmospheric-pressure plasmas can be coupled with liquids such as water or ethanol to nucleate and modify solution-phase nanoparticles. In this perspective paper, we review some of these recent efforts and provide an outlook for the rapidly emerging field of atmospheric-pressure plasmas for nanofabrication.

  19. X-ray spectroscopy of non-thermal equilibrium laboratory photo-ionized plasma

    International Nuclear Information System (INIS)

    Photo-ionized silicon plasma was studied using 500-eV Planckian radiation from implosion core plasma generated with Gekko-XII laser to simulate a astrophysical photo-ionized plasma. Three major features were observed in an energy range from 1.80 to 1.88 keV and origins of the features were replicated with a time-dependent collisional-radiative model including photo-ionization processes: The line at 1.865 keV is the resonance line by inner-shell photo-ionization of Li-like Si ions and that at 1.840 keV is the sum of satellite lines attributed to the inner-shell photo-ionization of Be-like ions. Emission lines in the soft x-ray/extreme ultra-violet (EUV) region (i.e., 140 to 300 eV) from the low-temperature Si plasma in prior to the photo-ionization were also identified to extract the initial temperature and density of the pre-formed Si.

  20. Catalyst-Packed Non-Thermal Plasma Reactor for Removal of Nitrogen Oxides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A single-stage plasma-catalytic reactor in which catalytic materials were packedwas used to remove nitrogen oxides. The packing material was scoria being made of various metaloxides including A12O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pelletsbut also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Withoutplasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °Cto 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside thereactor, the NOx removal efficiency could be increased to 60% in this temperature range.

  1. Observations of long-lived H-2 and D-2 ions from non-thermal plasmas

    International Nuclear Information System (INIS)

    Strong mass signals of H-2 and D-2 ions have been observed from low-pressure dielectric barrier discharge hydrogen and deuterium plasmas via molecular beam mass spectrometry. The observed H-2/H- and D-2/D- ratios (∼0.35-0.4) are over five orders of magnitude higher than those observed by other techniques. The kinetic energy of H-2 and D-2 ions sampled from the plasmas was determined to be widely distributed, from a few eV to >100 eV, giving lifetimes greater than ∼40 μs for H-2 and ∼55 μs for D-2. The highest vib-rotational excitation of neutral H2 species in the plasma was determined to be about J = 0, v = 5 or J = 19, v = 0 via threshold ionization mass spectrometry. The possible pumping mechanisms for generating H-2 with further high J, required by the current high-rotation model, have been proposed. Similar to the lifetime of D-2 determined recently by another group, the H-2 lifetime observed in this work is about two orders of magnitude longer than that predicted by the current theoretical model. To explain these experimental observations regarding the meta-stability of long-lived H-2 and D-2 ions, the improved current high-rotation model or other new models, including the possible existence of some long-lived electronically excited states of H-2/D-2, need to be developed

  2. The energy partitioning of non-thermal particles in a plasma: or the Coulomb logarithm revisited

    CERN Document Server

    Singleton, Robert L

    2008-01-01

    The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated to leading and next-to-leading order by Brown, Preston, and Singleton (BPS). After reviewing the main ideas behind this calculation, we use a Fokker-Planck equation derived by BPS to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion -- more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible, as this could have implications for the Laser Megajoule (LMJ) facility in France and the National Ignition Facility (NIF) in the United States. The traditional method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows d...

  3. Heterogeneous sono-Fenton process using pyrite nanorods prepared by non-thermal plasma for degradation of an anthraquinone dye.

    Science.gov (United States)

    Khataee, Alireza; Gholami, Peyman; Vahid, Behrouz; Joo, Sang Woo

    2016-09-01

    Natural pyrite (NP) was treated using oxygen and nitrogen non-thermal plasmas to form modified catalysts. Cleaning effect of the O2 plasma by chemical etching leads to removal of impurities from catalyst surface and sputtering effect of the N2 plasma results in formation of pyrite nanorods. The mentioned plasmas were applied separately or in the order of first O2 and then N2, respectively. The catalytic performance of the plasma-modified pyrites (PMPs) is better than the NP for treatment of Reactive Blue 69 (RB69) in heterogeneous sono-Fenton process (US/H2O2/PMP). The NP and the most effective modified pyrite (PMP4) samples were characterized by XRD, FT-IR, SEM, EDX, XPS and BET analyses. The desired amounts were chosen for operational parameters including initial pH (5), H2O2 concentration (1mM), PMP4 dosage (0.6g/L), dye concentration (20mg/L), and ultrasonic power (300W). Moreover, the effects of peroxydisulfate and inorganic salts on the degradation efficiency were investigated. Gas chromatography-mass spectrometry (GC-MS) method was applied to identify the generated intermediates and a plausible pathway was proposed for RB69 degradation. Environmentally-friendly modification of the NP, low amount of leached iron and repeated reusability at milder pH are the significant privileges of the PMP4. The phytotoxicity test using Spirodela polyrrhiza verified the remarkable toxicity removal of the RB69 solution after the treatment process. PMID:27150782

  4. Effects of a Non Thermal Plasma Treatment Alone or in Combination with Gemcitabine in a MIA PaCa2-luc Orthotopic Pancreatic Carcinoma Model

    OpenAIRE

    Laura Brullé; Marc Vandamme; Delphine Riès; Eric Martel; Eric Robert; Stéphanie Lerondel; Valérie Trichet; Serge Richard; Jean-Michel Pouvesle; Alain Le Pape

    2012-01-01

    Pancreatic tumors are the gastrointestinal cancer with the worst prognosis in humans and with a survival rate of 5% at 5 years. Nowadays, no chemotherapy has demonstrated efficacy in terms of survival for this cancer. Previous study focused on the development of a new therapy by non thermal plasma showed significant effects on tumor growth for colorectal carcinoma and glioblastoma. To allow targeted treatment, a fibered plasma (Plasma Gun) was developed and its evaluation was performed on an ...

  5. Measurement of the non-thermal properties of a low pressure spraying plasma by electric and spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Ho

    2003-02-15

    For the case of an atmospheric plasma, the local thermodynamic equilibrium (LTE) model can be applied to plasmas at a nozzle entrance and to those on the axis of the plasma flame, but it is not easy to justify applying the LTE model to off-center plasma and to a low-pressure spraying plasma. Although the energy distribution of the electrons is assumed to be Maxwellian for the most of spraying plasmas, the non-Maxwellian distribution is possible for the case of low-pressure spaying plasma and edge plasma of atmospheric spraying plasma. In this work, the non-Maxwellian distribution of electrons was measured by using an electric probe installed on the fast scanning probe system, and non-LTE effects were measured by using the optical emission spectroscopy system. Distribution of the electrons of a low-pressure spraying plasma is observed not as Maxwellian but as bi-Maxwellian by the measurement of the single probe. Bi-Maxwellian distribution appears in the edge of a low pressure spraying plasma and seems to be due to the reduction of the collisonality by the drastic variation of the plasma density. Non-LTE characteristics of a low-pressure spraying plasma can be deuced from the measured results of the optical emission spectroscopy and is analyzed by the collisional radiative equilibrium (CRE) model, where the Maxwellian and the non-Maxwellian distributions are assumed for comparison. For the electron temperature, the results from optical emission spectroscopy were similar to the results from the single probe (3{approx}5 % in error)

  6. Determination of atomic hydrogen density in non-thermal hydrogen plasmas via emission actinometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang Weiguo [Laboratory of Plasmas Physical Chemistry, PO Box 288, Dalian University of Technology, Dalian 116024 (China); Xu Yong [Laboratory of Plasmas Physical Chemistry, PO Box 288, Dalian University of Technology, Dalian 116024 (China); Geng Zicai [Laboratory of Plasmas Physical Chemistry, PO Box 288, Dalian University of Technology, Dalian 116024 (China); Liu Zhongwei [Laboratory of Plasmas Physical Chemistry, PO Box 288, Dalian University of Technology, Dalian 116024 (China); Zhu Aimin [Laboratory of Plasmas Physical Chemistry, PO Box 288, Dalian University of Technology, Dalian 116024 (China)

    2007-07-21

    Atomic hydrogen plays an important role in the chemical vapour deposition of diamond and other functional materials. This paper reports the experimental determinations of atomic hydrogen density in dielectric barrier discharge hydrogen plasmas via optical emission spectrometry using Ar as an actinometer. At certain discharge conditions (ac 24 kHz, 28 kV of peak-to-peak voltage), the approximate hydrogen dissociation fractions calculated from the emission intensities with respect to electron temperatures obtained with the Langmuir probe, are decreased from 0.099 to 0.01 as the gas pressure increases from 2 to 4 Torr. The relative H atom mole fractions as a function of discharge parameters (spatial position and gas flow rate) have been investigated. It is shown that the discharge characteristics strongly depend on the spatial position but not on the gas flow rate. The influences of the above operating parameters on the emission intensities have been discussed.

  7. Determination of atomic hydrogen density in non-thermal hydrogen plasmas via emission actinometry

    International Nuclear Information System (INIS)

    Atomic hydrogen plays an important role in the chemical vapour deposition of diamond and other functional materials. This paper reports the experimental determinations of atomic hydrogen density in dielectric barrier discharge hydrogen plasmas via optical emission spectrometry using Ar as an actinometer. At certain discharge conditions (ac 24 kHz, 28 kV of peak-to-peak voltage), the approximate hydrogen dissociation fractions calculated from the emission intensities with respect to electron temperatures obtained with the Langmuir probe, are decreased from 0.099 to 0.01 as the gas pressure increases from 2 to 4 Torr. The relative H atom mole fractions as a function of discharge parameters (spatial position and gas flow rate) have been investigated. It is shown that the discharge characteristics strongly depend on the spatial position but not on the gas flow rate. The influences of the above operating parameters on the emission intensities have been discussed

  8. Traces of isotopic reactive species produced from a non-thermal plasma jet in bio-molecules

    Science.gov (United States)

    Lee, C. B.; Kwak, H. S.; Choi, E. H.; Hong, T. E.; Yoon, H.; Lee, Y.; Baik, K. Y.; Uhm, H. S.

    2015-11-01

    Heavy water (D2O) is introduced into a non-thermal plasma jet (NTPJ) device to generate deuterium monoxide (OD) radicals instead of hydroxyl (OH) radicals. An NTPJ generated from a vapor mixture of N2/H2O and N2/D2O is applied to a cell membrane component and its effects are analyzed by means of 1H NMR, GC-FID and TOF-SIMS spectroscopies. The results show that OH and OD radical species induce similar levels of oxidative breakage of lipid molecules. In addition, the 2H NMR spectra show that deuteriums are incorporated into the lipid oxidative products. In order to trace these effects in vivo, E. coli bacteria are treated with an NTPJ and analyzed using NanoSIMS. Deuterium is observed in both the cytoplasm and membrane, which are colocalized well with nitrogen and phosphorus atoms. The high colocalization of D atoms inside E. coli provides the first direct and visual evidence of the role of OD radicals, which may be utilized to visualize OH radical interactions inside cells.

  9. Direct hydrocarbons formation from CH{sub 4} and CO{sub 2} by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pham, M.H.; Tatibouet, J.M.; Batiot-Dupeyrat, C. [Univ. de Poitiers, Poitiers (France). Centre national de la recherche scientifique, Laboratoire de Catalyse en Chimie Organique

    2010-07-01

    Methane (CH{sub 4}) is typically burned to produce heat, the most degraded form of energy. This paper presented a possible way to conserve fossil carbon resources and limit carbon dioxide (CO{sub 2}) emissions by transforming methane into a chemical feedstock. The Fischer-Tropsch process is one of the possible ways of producing hydrocarbons by reforming CH{sub 4} by CO{sub 2} to obtain a mixture of carbon monoxide (CO) and hydrogen (H{sub 2}). However, previous studies have shown that hydrocarbons can by produced directly from a CH{sub 4} and CO{sub 2} mixture by non-thermal plasma, thereby avoiding the Fischer-Tropsch synthesis. This paper presented the results obtained in a coaxial dielectric discharge barrier (DBD) reactor for hydrocarbon formation by varying either the CH{sub 4}/CO{sub 2} ratio or the input energy. The main products were C{sub 2} to C{sub 4} alkanes. The increasing hydrocarbons to CO ratio with the CH{sub 4}/CO{sub 2} initial ratio suggests a radical type mechanism. It was concluded that a 15 percent hydrocarbon yield can be obtained in a single pass with only a short loss of initial carbon. 1 ref.

  10. Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon

    International Nuclear Information System (INIS)

    A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-like discharge was achieved. Two kinds of typical bacteria, i.e., the Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil), were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma. The killing log value (KLV) of S. aureus reached up to 5.38 with a treatment time of 90 s and that of E. coil up to 5.36 with 60 s, respectively. According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment, it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation, while the heat, electric field and UV photons had little effect. (plasma technology)

  11. Biphasic effects of l-ascorbate on the tumoricidal activity of non-thermal plasma against malignant mesothelioma cells.

    Science.gov (United States)

    Shi, Lei; Wang, Yue; Ito, Fumiya; Okazaki, Yasumasa; Tanaka, Hiromasa; Mizuno, Masaaki; Hori, Masaru; Richardson, Des R; Toyokuni, Shinya

    2016-09-01

    Non-thermal plasma (NTP) is a recently developed technology that elicits a variety of biological effects. This includes cancer cell-specific cytotoxicity, which is mainly attributed to the regional generation of reactive oxygen species (ROS). We studied the effects of NTP on malignant mesothelioma (MM) and its modulation by l-ascorbate. l-ascorbate is a major water-soluble anti-oxidant in vivo, but its pro-oxidant activity in vitro has been well recognized. Thus, the effects of ascorbate on the efficacy of NTP is important to examine. NTP exposure dose-dependently killed MM cells, whereas MM cells tolerated 1 mM l-ascorbate. However, brief pre-treatment with a pharmacological dose (250-750 μM) of l-ascorbate immediately prior to NTP exposure significantly increased its cytotoxicity in a dose-dependent manner, which was inhibited by the iron chelator, deferoxamine. However, paradoxically, this potentiating effect of l-ascorbate was completely abolished by a prolonged 4 h pre-incubation with l-ascorbate (500 μM). MM cytotoxicity induced by NTP was associated with immediate oxidative stress evaluated by 2',7'-dichlorodihydrofluorecein diacetate, which was followed by an increase in the expression of the autophagosome marker, LC3B-II. In conclusion, MM can be a target for NTP treatment and l-ascorbate can increase or decrease its efficacy depending on the length of the pre-incubation period. PMID:27235332

  12. Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma

    International Nuclear Information System (INIS)

    Increased expression of integrins and focal adhesion kinase (FAK) is important for the survival, growth and metastasis of melanoma cells. Based on this well-established observation in oncology, we propose to use degradation of integrin and FAK proteins as a potential strategy for melanoma cancer therapy. A low-temperature radio-frequency atmospheric microplasma jet is used to study their effects on the adhesion molecules of G361 melanoma cells. Microplasma treatment is shown to (1) cause significant cell detachment from the bottom of microtiter plates coated with collagen, (2) induce the death of human melanoma cells, (3) inhibit the expression of integrin α2, integrin α4 and FAK on the cell surface and finally (4) change well-stretched actin filaments to a diffuse pattern. These results suggest that cold atmospheric pressure plasmas can strongly inhibit the adhesion of melanoma cells by reducing the activities of adhesion proteins such as integrins and FAK, key biomolecules that are known to be important in malignant transformation and acquisition of metastatic phenotypes.

  13. Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H J [Department of Electrical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Shon, C H [Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of); Kim, Y S; Kim, S [Department of Pediatric Dentistry, Pusan National University, Busan 602-739 (Korea, Republic of); Kim, G C [Department of Oral Anatomy, Pusan National University, Busan 602-739 (Korea, Republic of); Kong, M G [Department of Electronics and Electrical Engineering, Loughborough University, Leics LE11 3TU (United Kingdom)], E-mail: ki9100m@pusan.ac.kr, E-mail: m.g.kong@lboro.ac.uk

    2009-11-15

    Increased expression of integrins and focal adhesion kinase (FAK) is important for the survival, growth and metastasis of melanoma cells. Based on this well-established observation in oncology, we propose to use degradation of integrin and FAK proteins as a potential strategy for melanoma cancer therapy. A low-temperature radio-frequency atmospheric microplasma jet is used to study their effects on the adhesion molecules of G361 melanoma cells. Microplasma treatment is shown to (1) cause significant cell detachment from the bottom of microtiter plates coated with collagen, (2) induce the death of human melanoma cells, (3) inhibit the expression of integrin {alpha}{sub 2}, integrin {alpha}{sub 4} and FAK on the cell surface and finally (4) change well-stretched actin filaments to a diffuse pattern. These results suggest that cold atmospheric pressure plasmas can strongly inhibit the adhesion of melanoma cells by reducing the activities of adhesion proteins such as integrins and FAK, key biomolecules that are known to be important in malignant transformation and acquisition of metastatic phenotypes.

  14. Atmospheric-pressure plasma sources for biomedical applications

    International Nuclear Information System (INIS)

    Atmospheric-pressure plasmas (APPs) have attracted great interest and have been widely applied in biomedical applications, as due to their non-thermal and reactive properties, they interact with living tissues, cells and bacteria. Various types of plasma sources generated at atmospheric pressure have been developed to achieve better performance in specific applications. This article presents an overview of the general characteristics of APPs and a brief summary of their biomedical applications, and reviews a wide range of these sources developed for biomedical applications. The plasma sources are classified according to their power sources and cover a wide frequency spectrum from dc to microwaves. The configurations and characteristics of plasma sources are outlined and their biomedical applications are presented. (invited review)

  15. Polymer films with surfaces unmodified and modified by non-thermal plasma as new substrates for cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Borges, A.M.G.; Benetoli, L.O. [Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Licínio, M.A. [Department of Clinical Analysis, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Zoldan, V.C. [Department of Physical, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Santos-Silva, M.C. [Department of Clinical Analysis, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Assreuy, J. [Department of Pharmacology, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Pasa, A.A. [Department of Physical, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Debacher, N.A. [Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Soldi, V., E-mail: vsoldi@pq.cnpq.br [Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil)

    2013-04-01

    The surface properties of biomaterials, such as wettability, polar group distribution, and topography, play important roles in the behavior of cell adhesion and proliferation. Gaseous plasma discharges are among the most common means to modify the surface of a polymer without affecting its properties. Herein, we describe the surface modification of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) films using atmospheric pressure plasma processing through exposure to a dielectric barrier discharge (DBD). After treatment the film surface showed significant changes from hydrophobic to hydrophilic as the water contact angle decreasing from 95° to 37°. All plasma-treated films developed more hydrophilic surfaces compared to untreated films, although the reasons for the change in the surface properties of PS and PMMA differed, that is, the PS showed chemical changes and in the case of PMMA they were topographical. Excellent adhesion and cell proliferation were observed in all films. In vitro studies employing flow cytometry showed that the proliferation of L929 cells was higher in the film formed by a 1:1 mixture of PS/PMMA, which is consistent with the results of a previous study. These findings suggest better adhesion of L929 onto the 1:1 PS/PMMA modified film, indicating that this system is a new candidate biomaterial for tissue engineering. Highlights: ► The PS/PMMA films showed hydrophilic surface after DBD-treatment. ► The 1:1 PS/PMMA modified film is a new substrate for L929 cell proliferation. ► The 1:1 PS/PMMA blend film showed additional 170 × 10{sup 3} cells after treatment. ► The proliferation of cells in the blend film triplicated when compared to control. ► Synergistic effect improves cell proliferation in the blend film.

  16. Polymer films with surfaces unmodified and modified by non-thermal plasma as new substrates for cell adhesion

    International Nuclear Information System (INIS)

    The surface properties of biomaterials, such as wettability, polar group distribution, and topography, play important roles in the behavior of cell adhesion and proliferation. Gaseous plasma discharges are among the most common means to modify the surface of a polymer without affecting its properties. Herein, we describe the surface modification of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) films using atmospheric pressure plasma processing through exposure to a dielectric barrier discharge (DBD). After treatment the film surface showed significant changes from hydrophobic to hydrophilic as the water contact angle decreasing from 95° to 37°. All plasma-treated films developed more hydrophilic surfaces compared to untreated films, although the reasons for the change in the surface properties of PS and PMMA differed, that is, the PS showed chemical changes and in the case of PMMA they were topographical. Excellent adhesion and cell proliferation were observed in all films. In vitro studies employing flow cytometry showed that the proliferation of L929 cells was higher in the film formed by a 1:1 mixture of PS/PMMA, which is consistent with the results of a previous study. These findings suggest better adhesion of L929 onto the 1:1 PS/PMMA modified film, indicating that this system is a new candidate biomaterial for tissue engineering. Highlights: ► The PS/PMMA films showed hydrophilic surface after DBD-treatment. ► The 1:1 PS/PMMA modified film is a new substrate for L929 cell proliferation. ► The 1:1 PS/PMMA blend film showed additional 170 × 103 cells after treatment. ► The proliferation of cells in the blend film triplicated when compared to control. ► Synergistic effect improves cell proliferation in the blend film

  17. Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching

    Science.gov (United States)

    Lee, Jae Koo; Kim, Myoung Soo; Byun, June Ho; Kim, Kyong Tai; Kim, Gyoo Cheon; Park, Gan Young

    2011-08-01

    Low temperature atmospheric pressure plasmas have attracted great interests and they have been widely applied to biomedical applications to interact with living tissues, cells, and bacteria due to their non-thermal property. This paper reviews the biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Gold nanoparticles conjugated with cancer-specific antibodies have been introduced to cancerous cells to enhance selective killing of cells, and the mechanism of cell apoptosis induced by plasma has been investigated. Tooth exposed to helium plasma jet with hydrogen peroxide has become brighter and the productions of hydroxyl radicals from hydrogen peroxide have been enhanced by plasma exposure.

  18. Propagation of arbitrary amplitude dust-ion acoustic waves in the collisional magnetized dusty plasma in the presence of non-thermal electrons

    Science.gov (United States)

    Sayyar, M.; Zahed, H.; Pestehe, S. J.; Sobhanian, S.

    2016-07-01

    Using the Sagdeev pseudo-potential method, the oblique propagation of dust-ion acoustic solitary waves is studied in a magnetized dusty plasma. By considering non-thermal distribution of electrons, the related pseudo-potential is obtained using the Poisson equation. The behavior of the wave is investigated for some ranges of parameters. It is demonstrated that the increase in ion density, lz, β, and also δ1 can lead to the increases in the width and amplitude of the pseudo-potential, while any increase of a2, the coefficient that describes the first nonlinear term in the G ( ϕ ) , increases the amplitude of the V ( ϕ ) .

  19. Diagnostics of atmospheric pressure capillary DBD oxygen plasma jet

    CERN Document Server

    Roy, N C; Pramanik, B K

    2015-01-01

    Atmospheric pressure capillary dielectric barrier oxygen discharge plasma jet is developed to generate non-thermal plasma using unipolar positive pulse power supply. Both optical and electrical techniques are used to investigate the characteristics of the produced plasma as function of applied voltage and gas flow rate. Analytical results obtained from the optical emission spectroscopic data reveal the gas temperature, rotational temperature, excitation temperature and electron density. Gas temperature and rotational temperature are found to decrease with increasing oxygen flow rate but increase linearly with applied voltage. It is exposed that the electron density is boosting up with enhanced applied voltage and oxygen flow rate, while the electron excitation temperature is reducing with rising oxygen flow rate. Electrical characterization demonstrates that the discharge frequency is falling with flow rate but increasing with voltage. The produced plasma is applied preliminarily to study the inactivation yie...

  20. Method and system for the combination of non-thermal plasma and metal/metal oxide doped .gamma.-alumina catalysts for diesel engine exhaust aftertreatment system

    Science.gov (United States)

    Aardahl, Christopher L.; Balmer-Miller, Mari Lou; Chanda, Ashok; Habeger, Craig F.; Koshkarian, Kent A.; Park, Paul W.

    2006-07-25

    The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.

  1. Interaction of Atmospheric Plasma Vortices

    Science.gov (United States)

    Izhovkina, N. I.; Artekha, S. N.; Erokhin, N. S.; Mikhailovskaya, L. A.

    2016-06-01

    Atmospheric electric fields, connected with the ionization of particles and plasma processes, occur in the fields of pressure gradients of mosaic mesh topology. Atmospheric aerosol particles play a significant role in the vortex generation. The Coriolis force and the motion of charged particles in the geomagnetic field lead to gyrotropy of the atmosphere and ionosphere. Occurrence of plasma vortices is stochastically determined for such an inhomogeneous gyrotropic medium. The geomagnetic field influences the change of structures of inhomogeneous media in the process of excitation of plasma vortices and their interaction. If colliding vortices are centered on the one geomagnetic line, the merge of vortices and the generation of a joint powerful vortex are possible. If a collision of vortices with centers at different geomagnetic field lines occurs, then the emergence of areas of heating and jet streams and the generation of new vortices are possible.

  2. Interaction of Atmospheric Plasma Vortices

    Science.gov (United States)

    Izhovkina, N. I.; Artekha, S. N.; Erokhin, N. S.; Mikhailovskaya, L. A.

    2016-08-01

    Atmospheric electric fields, connected with the ionization of particles and plasma processes, occur in the fields of pressure gradients of mosaic mesh topology. Atmospheric aerosol particles play a significant role in the vortex generation. The Coriolis force and the motion of charged particles in the geomagnetic field lead to gyrotropy of the atmosphere and ionosphere. Occurrence of plasma vortices is stochastically determined for such an inhomogeneous gyrotropic medium. The geomagnetic field influences the change of structures of inhomogeneous media in the process of excitation of plasma vortices and their interaction. If colliding vortices are centered on the one geomagnetic line, the merge of vortices and the generation of a joint powerful vortex are possible. If a collision of vortices with centers at different geomagnetic field lines occurs, then the emergence of areas of heating and jet streams and the generation of new vortices are possible.

  3. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    International Nuclear Information System (INIS)

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107–108 cm s−1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications. (paper)

  4. Efficacy of Atmospheric Pressure Plasma as an Antibacterial Agent Against Enterococcus Faecalis in Vitro

    International Nuclear Information System (INIS)

    Enterococcus faecalis (E. faecalis) is a microorganism that can survive extreme challenges in obturated root canals. The aim of this study was to evaluate the efficacy of a non-thermal atmospheric pressure plasma plume against E. faecalis in vitro. A non-thermal atmospheric pressure plasma jet device which could generate a cold plasma plume carrying a peak current of 300 mA was used. The antibacterial efficacy of this device against E. faecalis and its biofilm under different conditions was detected. The antibacterial efficacy of the plasma against E. faecalis and Staphylococcus aureus (S. aureus) was also evaluated. After plasma treatment, the average diameter of inhibition zone on S. aureus and E. faecalis was 2.62±0.26 cm and 1.06±0.30 cm, respectively (P < 0.05). The diameter was increased with prolongation of the treatment duration. The diameters of inhibition zone of the sealed Petri dishes were larger than those of the uncovered Petri dishes. There was significant difference in colony-forming units between plasma group and control group on E. faecalis biofilm (P < 0.01). The transmission electron microscopy revealed that the ultrastructural changes cytoderm of E. faecalis were observed after treatment for 2 min. It is concluded that the non-thermal atmospheric pressure plasma could serve as an effective adjunct to standard endodontic microbial treatment.

  5. Martian Atmospheric and Ionospheric plasma Escape

    Science.gov (United States)

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now

  6. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model.

    Science.gov (United States)

    Brullé, Laura; Vandamme, Marc; Riès, Delphine; Martel, Eric; Robert, Eric; Lerondel, Stéphanie; Trichet, Valérie; Richard, Serge; Pouvesle, Jean-Michel; Le Pape, Alain

    2012-01-01

    Pancreatic tumors are the gastrointestinal cancer with the worst prognosis in humans and with a survival rate of 5% at 5 years. Nowadays, no chemotherapy has demonstrated efficacy in terms of survival for this cancer. Previous study focused on the development of a new therapy by non thermal plasma showed significant effects on tumor growth for colorectal carcinoma and glioblastoma. To allow targeted treatment, a fibered plasma (Plasma Gun) was developed and its evaluation was performed on an orthotopic mouse model of human pancreatic carcinoma using a MIA PaCa2-luc bioluminescent cell line. The aim of this study was to characterize this pancreatic carcinoma model and to determine the effects of Plasma Gun alone or in combination with gemcitabine. During a 36 days period, quantitative BLI could be used to follow the tumor progression and we demonstrated that plasma gun induced an inhibition of MIA PaCa2-luc cells proliferation in vitro and in vivo and that this effect could be improved by association with gemcitabine possibly thanks to its radiosensitizing properties. PMID:23300736

  7. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model.

    Directory of Open Access Journals (Sweden)

    Laura Brullé

    Full Text Available Pancreatic tumors are the gastrointestinal cancer with the worst prognosis in humans and with a survival rate of 5% at 5 years. Nowadays, no chemotherapy has demonstrated efficacy in terms of survival for this cancer. Previous study focused on the development of a new therapy by non thermal plasma showed significant effects on tumor growth for colorectal carcinoma and glioblastoma. To allow targeted treatment, a fibered plasma (Plasma Gun was developed and its evaluation was performed on an orthotopic mouse model of human pancreatic carcinoma using a MIA PaCa2-luc bioluminescent cell line. The aim of this study was to characterize this pancreatic carcinoma model and to determine the effects of Plasma Gun alone or in combination with gemcitabine. During a 36 days period, quantitative BLI could be used to follow the tumor progression and we demonstrated that plasma gun induced an inhibition of MIA PaCa2-luc cells proliferation in vitro and in vivo and that this effect could be improved by association with gemcitabine possibly thanks to its radiosensitizing properties.

  8. Stability of ion acoustic solitary waves in a magnetized plasma consisting of warm adiabatic ions and non-thermal electrons having vortex-like velocity distribution

    Science.gov (United States)

    Das, Jayasree; Bandyopadhyay, Anup; Das, K. P.; Das

    2014-02-01

    Schamel's modified Korteweg-de Vries-Zakharov-Kuznetsov (S-ZK) equation, governing the behavior of long wavelength, weak nonlinear ion acoustic waves propagating obliquely to an external uniform static magnetic field in a plasma consisting of warm adiabatic ions and non-thermal electrons (due to the presence of fast energetic electrons) having vortex-like velocity distribution function (due to the presence of trapped electrons), immersed in a uniform (space-independent) and static (time-independent) magnetic field, admits solitary wave solutions having a sech 4 profile. The higher order stability of this solitary wave solution of the S-ZK equation has been analyzed with the help of multiple-scale perturbation expansion method of Allen and Rowlands (Allen, M. A. and Rowlands, G. 1993 J. Plasma Phys. 50, 413; 1995 J. Plasma Phys. 53, 63). The growth rate of instability is obtained correct to the order k 2, where k is the wave number of a long wavelength plane wave perturbation. It is found that the lowest order (at the order k) instability condition is strongly sensitive to the angle of propagation (δ) of the solitary wave with the external uniform static magnetic field, whereas at the next order (at the order k 2) the solitary wave solutions of the S-ZK equation are unstable irrespective of δ. It is also found that the growth rate of instability up to the order k 2 for the electrons having Boltzmann distribution is higher than that of the non-thermal electrons having vortex-like distribution for any fixed δ.

  9. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.

    Science.gov (United States)

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi

    2016-09-01

    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed. PMID:27085689

  10. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE)

    International Nuclear Information System (INIS)

    Owing to the superior physico-chemical properties, the low density polyethylene (LDPE) has been widely used in the various industrial applications; especially in biomedical field for artificial organs, medical devices and disposable clinical apparatus. However, the poor anticoagulation property is one of the main drawbacks of the LDPE due to its poor surface properties. Therefore, in this paper we present the effect of plasma forming gases such as argon (Ar), oxygen (O2), air and argon-oxygen (Ar + O2) mixture on improvement of the surfaces properties of LDPE film using direct current (dc) excited glow discharge plasma. Contact angle with evaluation of surface energy, X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM) techniques were used to examine the change in surface properties such as hydrophilicity, chemical composition and surface topography, respectively. Furthermore, the hydrophobic recovery of the plasma treated LDPE was analyzed using ageing effect under different storage condition i.e. in air and water. The adhesive strength of the LDPE films was determined using T-peel test. In vitro tests were used to examine the blood compatibility of the surface modified LDPE films. It has been found that the hydrophilicity of the various plasma treated LDPE films was improved significantly due to the formation of oxygen containing polar groups such as OH, COO, C-O, C=O as confirmed by contact angle and XPS analysis. AFM revealed the changes in surface topography of plasma processed films. The gas mixture Ar + O2 plasma influenced the remarkable improvement on the surface properties of a LDPE film compared with other gaseous plasmas. These physiochemical changes induced by the plasma on the surface facilitate to improve the adhesive strength and blood compatibility.

  11. Polarization of the Sunyaev-Zel'dovich effect: relativistic imprint of thermal and non-thermal plasma

    OpenAIRE

    Emritte, M. S.; Colafrancesco, S.; Marchegiani, P.

    2016-01-01

    [Abridged] Inverse Compton scattering of CMB fluctuations off cosmic electron plasma generates a polarization of the associated Sunyaev-Zel'dovich (SZ) effect. This signal has been studied so far mostly in the non-relativistic regime and for a thermal electron population and, as such, has limited astrophysical applications. Partial attempts to extend this calculation for a thermal electron plasma in the relativistic regime have been done but cannot be applied to a general relativistic electro...

  12. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Ruzybayev, Inci; Shah, S. Ismat [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark, NJ (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, Jr. mercy; Halim, Ahmad Sukari [School of Medical Sciences, Health Campus Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2014-07-01

    Owing to the superior physico-chemical properties, the low density polyethylene (LDPE) has been widely used in the various industrial applications; especially in biomedical field for artificial organs, medical devices and disposable clinical apparatus. However, the poor anticoagulation property is one of the main drawbacks of the LDPE due to its poor surface properties. Therefore, in this paper we present the effect of plasma forming gases such as argon (Ar), oxygen (O{sub 2}), air and argon-oxygen (Ar + O{sub 2}) mixture on improvement of the surfaces properties of LDPE film using direct current (dc) excited glow discharge plasma. Contact angle with evaluation of surface energy, X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM) techniques were used to examine the change in surface properties such as hydrophilicity, chemical composition and surface topography, respectively. Furthermore, the hydrophobic recovery of the plasma treated LDPE was analyzed using ageing effect under different storage condition i.e. in air and water. The adhesive strength of the LDPE films was determined using T-peel test. In vitro tests were used to examine the blood compatibility of the surface modified LDPE films. It has been found that the hydrophilicity of the various plasma treated LDPE films was improved significantly due to the formation of oxygen containing polar groups such as OH, COO, C-O, C=O as confirmed by contact angle and XPS analysis. AFM revealed the changes in surface topography of plasma processed films. The gas mixture Ar + O{sub 2} plasma influenced the remarkable improvement on the surface properties of a LDPE film compared with other gaseous plasmas. These physiochemical changes induced by the plasma on the surface facilitate to improve the adhesive strength and blood compatibility.

  13. Alternative ion-acoustic solitary waves in magnetized plasma consisting of warm adiabatic ions and non-thermal electrons having vortex-like velocity distribution: existence and stability

    Science.gov (United States)

    Das, Jayasree; Bandyopadhyay, Anup; Das, K. P.

    2007-12-01

    The solitary structures of the ion-acoustic waves have been considered in a plasma consisting of warm adiabatic ions and non-thermal electrons (due to the presence of fast energetic electrons) having a vortex-like velocity distribution function (due to the presence of trapped electrons), immersed in a uniform (space-independent) and static (time-independent) magnetic field. The nonlinear dynamics of ion-acoustic waves in such a plasma is governed by the Schamel's modified Korteweg-de Vries-Zakharov-Kuznetsov (S-ZK) equation. This equation admits solitary wave solutions having a profile sech4. When the coefficient of the nonlinear term of this equation vanishes, the vortex-like velocity distribution function of electrons simply becomes the non-thermal velocity distribution function of electrons and the nonlinear behaviour of the same ion-acoustic wave is described by a Korteweg-de Vries-Zakharov-Kuznetsov (KdV-ZK) equation. This equation admits solitary wave solutions having a profile sech2. A combined S-KdV-ZK equation more efficiently describes the nonlinear behaviour of an ion-acoustic wave when the vortex-like velocity distribution function of electrons approaches the non-thermal velocity distribution function of electrons, i.e. when the contribution of trapped electrons tends to zero. This combined S-KdV-ZK equation admits an alternative solitary wave solution having a profile different from either sech4 or sech2. The condition for the existence of this alternative solitary wave solution has been derived. It is found that this alternative solitary wave solution approaches the solitary wave solution (the sech2 profile) of the KdV-ZK equation when the contribution of trapped electrons tends to zero. The three-dimensional stability of these solitary waves propagating obliquely to the external uniform and static magnetic field has been investigated by the multiple-scale perturbation expansion method of Allen and Rowlands. The instability condition and the growth

  14. A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage

    International Nuclear Information System (INIS)

    Ar/O2 (2%) cold plasma microjet was used to create plasma-activated water (PAW). The disinfection efficacy of PAW against Staphylococcus aureus showed that PAW can effectively disinfect bacteria. Optical emission spectra and oxidation reduction potential results demonstrated the inactivation is attributed to oxidative stress induced by reactive oxygen species in PAW. Moreover, the results of X-ray photoelectron spectroscopy, atomic absorption spectrometry, and transmission electron microscopy suggested that the chemical state of cell surface, the integrity of cell membrane, as well as the cell internal components and structure were damaged by the oxidative stress.

  15. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    International Nuclear Information System (INIS)

    Highlights: • Investigated the mechanism of effect of various gaseous plasma treatments on the surface properties of Polypropylene (PP) films. • The improvement in surface energy is basically due to the incorporation of polar functional groups onto the PP films. • The extent of surface modification and hydrophobic recovery depends upon the type of plasma forming gas. • Due to the significant morphological and chemical changes induced by the gaseous plasma treatment, improved the blood compatibility as well as adhesive strength of the PP films. - Abstract: The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O2, air and Ar + O2 for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility as well as

  16. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400 019 (India); Arunkumar, A.; Ramkumar, M.C. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Ruzybayev, I.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Periayah, Mercy Halleluyah; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-08-30

    Highlights: • Investigated the mechanism of effect of various gaseous plasma treatments on the surface properties of Polypropylene (PP) films. • The improvement in surface energy is basically due to the incorporation of polar functional groups onto the PP films. • The extent of surface modification and hydrophobic recovery depends upon the type of plasma forming gas. • Due to the significant morphological and chemical changes induced by the gaseous plasma treatment, improved the blood compatibility as well as adhesive strength of the PP films. - Abstract: The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O{sub 2}, air and Ar + O{sub 2} for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility

  17. Microwave diagnostics of atmospheric plasmas

    Science.gov (United States)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon

  18. Plasma Processing with a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP)

    Science.gov (United States)

    Reece Roth, J.

    2000-10-01

    The vast majority of all industrial plasma processing is conducted with glow discharges at pressures below 10 torr. This has limited applications to high value workpieces as a result of the large capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be operated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been developed at the University of Tennessee Plasma Sciences Laboratory. The OAUGDP is non-thermal RF plasma with the time-resolved characteristics of a classical low pressure DC normal glow discharge. An interdisciplinary team was formed to conduct exploratory investigations of the physics and applications of the OAUGDP. This team includes collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC) and the Departments of Electrical and Computer Engineering, Microbiology, Food Science and Technology, and Mechanical and Aerospace Engineering and Engineering Science. Exploratory tests were conducted on a variety of potential plasma processing and other applications. These include the use of OAUGDP to sterilize medical and dental equipment and air filters; diesel soot removal; plasma aerodynamic effects; electrohydrodynamic (EDH) flow control of the neutral working gas; increasing the surface energy of materials; increasing the wettability and wickability of fabrics; and plasma deposition and directional etching. A general overview of these topics will be presented.

  19. ECONOMIC ASSESSMENT OF PROPOSED ELECTRIC-DISCHARGE NON-THERMAL PLASMA FIELD-PILOT DEMONSTRATION UNITS FOR NOX REMOVAL IN JET-ENGINE EXHAUST: WHITE PAPER FOR SERDP PROJECT CP-1038

    Science.gov (United States)

    This project is currently evaluating non-thermal plasma (NTP) technologies for treating jet-engine exhaust arising from DoD test facilities. In the past, some economic analyses for NTP de-NOx have shown that it is not economical, compared to other techniques. The main reasons fo...

  20. DEVELOPMENT OF SCALING ALGORITHMS AND ECONOMIC EVALUATION FOR NON-THERMAL PLASMA REACTORS - ADSORBANT/CATALYZER HYBRID SYSTEM FOR CONTROL OF NOX RELEASED DURING ARMY AND RELATED U.S. DEPARTMENT OF DEF

    Science.gov (United States)

    Computer code (SUENTP-J) to predict scale-up and economic evaluation of several eligible non-thermal plasma processes for air pollution control - electron beam process, pulsed corona process, and corona radical shower process - was developed for a commercial power plant. This cod...

  1. High field side measurements of non-thermal electron cyclotron emission on TCV plasmas with ECH and ECCD

    International Nuclear Information System (INIS)

    Measurements of electron cyclotron emission from the high field side of the TCV tokamak have been made on plasmas heated by second and third harmonic X-mode Electron Cyclotron Heating (ECH) and Electron Cyclotron Current Drive (ECCD). Suprathermal Electron Cyclotron Emission (ECE), up to a factor of 6 in excess of thermal emission, is detected in the presence of second harmonic X-mode (X2) ECCD and of third harmonic X-mode (X3) ECH. The measured ECE spectra are modelled using a bi-Maxwellian describing the bulk and the suprathermal electron populations. Suprathermal temperatures between 10-50keV and densities in the range 1. 1017 -6. 1018m-3 are obtained, and correspond to 3 -15 bulk temperatures and 1% -20% bulk densities. Good agreement between ECE suprathermal temperatures and energetic photon temperatures, measured by a hard X-ray camera, is found. For optically thin X3 Low Field Side (LFS) injection in presence of X2 CO-ECCD, the suprathermal population partly explains the discrepancy between global and first pass absorption measurements. (author)

  2. High field side measurements of non-thermal electron cyclotron emission on TCV plasmas with ECH and ECCD

    International Nuclear Information System (INIS)

    Measurements of electron cyclotron emission (ECE) from the high field side of the TCV tokamak have been made on plasmas heated by second and third harmonic X-mode electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD). Suprathermal ECE, up to a factor of six in excess of thermal emission, is detected in the presence of second harmonic X-mode (X2) ECCD and of third harmonic X-mode (X3) ECH. The measured ECE spectra are modelled using a bi-Maxwellian describing the bulk and the suprathermal electron populations. Suprathermal temperatures between 10 and 50 keV and densities in the range 1x1017-6x1018 m-3 are obtained, and correspond to 3-15 bulk temperatures and 1-20% bulk densities. Good agreement between ECE suprathermal temperatures and energetic photon temperatures, measured by a hard x-ray camera, is found. For optically thin X3 low field side injection in the presence of X2 CO-ECCD, the suprathermal population partly explains the discrepancy between global and first pass absorption measurements. (author)

  3. Decomposition of ammonia and hydrogen sulfide in simulated sludge drying waste gas by a novel non-thermal plasma.

    Science.gov (United States)

    Lu, Shengyong; Chen, Lu; Huang, Qunxing; Yang, Liqin; Du, Changming; Li, Xiaodong; Yan, Jianhua

    2014-12-01

    To efficiently clean NH3 and H2S contained in municipal sewage sludge drying waste gas, experiments were conducted with a novel gliding arc discharge plasma reactor. Important parameters including applied voltage and gas velocity which can strongly influence the removal efficiency, energy cost and by-products yields were investigated. Maximum removal efficiencies were all obtained at the applied voltage of 11 kV and gas velocity of 4.72 m s−1. When NH3 and H2S were treated together, the total energy cost decreased by 38%. NO and SO2 were observed as main decomposition by-products, and the presence of NH3 may inhibit the production of SO2 whose yield decreased from 223.8 to 27.8 mg m−3. Tests performed on lab scale reactor showed that gliding arc discharge is efficient in decreasing the NH3 and H2S concentrations, and experiments will also be conducted on a larger scale reactor in the future. PMID:25461948

  4. High field side measurements of non-thermal electron cyclotron emission on TCV plasmas with ECH and ECCD

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P.; Alberti, S.; Coda, S.; Weisen, H.; Nikkola, P.; Klimanov, I

    2002-07-01

    Measurements of electron cyclotron emission from the high field side of the TCV tokamak have been made on plasmas heated by second and third harmonic X-mode Electron Cyclotron Heating (ECH) and Electron Cyclotron Current Drive (ECCD). Suprathermal Electron Cyclotron Emission (ECE), up to a factor of 6 in excess of thermal emission, is detected in the presence of second harmonic X-mode (X2) ECCD and of third harmonic X-mode (X3) ECH. The measured ECE spectra are modelled using a bi-Maxwellian describing the bulk and the suprathermal electron populations. Suprathermal temperatures between 10-50keV and densities in the range 1. 10{sup 1}7 -6. 10{sup 1}8m{sup -3} are obtained, and correspond to 3 -15 bulk temperatures and 1% -20% bulk densities. Good agreement between ECE suprathermal temperatures and energetic photon temperatures, measured by a hard X-ray camera, is found. For optically thin X3 Low Field Side (LFS) injection in presence of X2 CO-ECCD, the suprathermal population partly explains the discrepancy between global and first pass absorption measurements. (author)

  5. Study on Decomposition Mechanism of Toluene by Non-Thermal Plasma Coupled with Catalysis%低温等离子体-催化耦合降解甲苯的研究及机理探讨

    Institute of Scientific and Technical Information of China (English)

    竹涛; 万艳东; 李坚; 徐东耀; 舒新前; 何绪文; 梁文俊; 金毓峑; 方岩

    2011-01-01

    The non-thermal plasma hybrid technology attracts more and more attention in the field of air pollution control because of its better VOCs(Volatile Organic Compounds) decomposition efficiency and higher energy efficiency. However, the ozone, NOx, halide, etc. are possibly to be formed during the plasma process,and the further decomposition mechanism of the VOCs is lacking by now. In order to find out a suitable technique to remove the gas pollutants with lower energy consumption and higher selectivity, in this study the self-made composite catalysts associated with non-thermal plasma engendered by DBD (Dielectric Barrier Discharge) were used to dispose the flowing polluted air containing toluene vapor at atmosphere pressure. The synergistic effect for toluene removal was evaluated by the removal efficiency, ozone concentration, reactor input energy density and energy efficiency. Based on the GC-MS and FT-IR spectra analysis, the decomposition mechanism and reaction process of toluene decomposition were discussed. The results show that the synergistic technology results in greater enhancements of toluene removal efficiency (about 99%) and energy efficiency (which is 2.3 times higher than that of only using non-thermal plasma technology without catalysts associating).Besides, the synergistic technology inhibits effectively the formation of ozone and other byproducts during the plasma process. Therefore it shows that the technology proposed has a wide application prospect.%目前对挥发性有机化合物VOCs废气的等离子体联合处理技术的研究已成为国内外研究的热点,但在等离子体联合技术降解VOCs的反应过程中会产生臭氧、NOx及其他卤化物等二次污染物,且对VOCs降解反应过程缺乏较为深入的理论分析及相应的动力学模型研究.为了实现低能耗去除污染物,并使反应具有选择性,本研究采用了自制的复合型催化剂,利用低温等离子体-催化

  6. Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats

    OpenAIRE

    Sara Fathollah; Shahriar Mirpour; Parvin Mansouri; Ahmad Reza Dehpour; Mahmood Ghoranneviss; Nastaran Rahimi; Zahra Safaie Naraghi; Reza Chalangari; Katalin Martits Chalangari

    2016-01-01

    It is estimated that 15 percent of individuals with diabetes mellitus suffer from diabetic ulcers worldwide. The aim of this study is to present a non-thermal atmospheric plasma treatment as a novel therapy for diabetic wounds. The plasma consists of ionized helium gas that is produced by a high-voltage (8 kV) and high-frequency (6 kHz) power supply. Diabetes was induced in rats via an intravascular injection of streptozotocin. The plasma was then introduced to artificial xerograph wounds in ...

  7. Inhibition of inflammatory reactions in 2,4-Dinitrochlorobenzene induced Nc/Nga atopic dermatitis mice by non-thermal plasma

    Science.gov (United States)

    Choi, Jeong-Hae; Song, Yeon-Suk; Lee, Hae-June; Hong, Jin-Woo; Kim, Gyoo-Cheon

    2016-06-01

    Non-thermal plasma (NTP) has recently been introduced and reported as a novel tool with a range of medicinal and biological roles. Although many studies using NTP have been performed, none has investigated the direct relationship between NTP and immune responses yet. Especially, the effects of NTP on atopic dermatitis (AD) were not been explored. Here, NTP was tested whether it controls immune reactions of AD. NTP treatment was administered to pro-inflammatory cytokine-stimulated keratinocytes and DNCB (2,4-Dinitrochlorobenzene)-induced atopic dermatitis mice, then the immune reactions of cells and skin tissues were monitored. Cells treated with NTP showed decreased expression levels of CCL11, CCL13, and CCL17 along with down-regulation of NF-κB activity. Repeated administration of NTP to AD-induced mice reduced the numbers of mast cells and eosinophils, IgE, CCL17, IFNγ levels, and inhibited NF-κB activity in the skin lesion. Furthermore, combined treatment with NTP and 1% hydrocortisone cream significantly decreased the immune responses of AD than that with either of these two treatments individually. Overall, this study revealed that NTP significantly inhibits several immune reactions of AD by regulating NF-κB activity. Therefore, NTP could be useful to suppress the exaggerated immune reactions in severe skin inflammatory diseases such as AD.

  8. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    Science.gov (United States)

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.

  9. Low Temperature Atmospheric Pressure Plasma Sterilization Shower

    Science.gov (United States)

    Gandhiraman, R. P.; Beeler, D.; Meyyappan, M.; Khare, B. N.

    2012-10-01

    Low-temperature atmospheric pressure plasma sterilization shower to address both forward and backward biological contamination issues is presented. The molecular effects of plasma exposure required to sterilize microorganisms is also analysed.

  10. Atmospheric pressure plasma for surface modification

    CERN Document Server

    Wolf, Rory A

    2012-01-01

    This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma process

  11. Effects of cold atmospheric plasma on mucosal tissue culture

    Science.gov (United States)

    Welz, Christian; Becker, Sven; Li, Yang-Fang; Shimizu, Tetsuji; Jeon, Jin; Schwenk-Zieger, Sabina; Thomas, Hubertus M.; Isbary, Georg; Morfill, Gregor E.; Harréus, Ulrich; Zimmermann, Julia L.

    2013-01-01

    Thermal plasmas have been commonly used in medical applications such as plasma ablation and blood coagulation. Newer developments show that plasmas can be generated with ion temperatures close to room temperature: these non-thermal or so-called cold atmospheric plasmas (CAPs) therefore open up a wide range of further biomedical applications. Based on the understanding of the bactericidal, virucidal and fungicidal properties of CAPs, information about the effects of CAP on mucosal cells and tissue is still lacking. Therefore this study focuses on the interaction of CAP with healthy head and neck mucosal cells on a molecular level. To analyse this interaction in detail, fresh tissue samples from healthy nasal and pharyngeal mucosa were harvested during surgery, assembled to a three-dimensional tissue culture model (mini organ cultures) and treated with CAP for different treatment times. Effects on the viability, necrosis induction and mutagenic activity were evaluated with the trypan blue exclusion test, Annexin-V/PI staining and alkaline microgel electrophoresis (comet assay). Trypan blue exclusion test revealed that the CAP treatment significantly decreases the cell viability for all tested treatment times (5, 10, 30, 60 and 120 s p Comet assay analysis showed no mutagenic effects after exposure to CAP.

  12. State-of-the-art non-thermal plasma disinfection and medicine%低温等离子体灭菌及生物医药技术研究进展

    Institute of Scientific and Technical Information of China (English)

    郑超; 徐羽贞; 黄逸凡; 刘振; 闫克平

    2013-01-01

    低温等离子体的生物学效应包括对微生物的致死作用和对动物细胞的刺激作用,分别造就了一批灭菌技术和临床医药技术。本文介绍了等离子体灭菌技术在医疗器械、水和空气净化、食品和包装材料处理等方面的应用。其中已商业化的医疗器械灭菌器主要分低气压和常压两种,低气压等离子体灭菌器的灭菌体积较大,常压等离子体灭菌器的优点则是结构简单和便于操作。等离子体灭菌技术用于水、空气、食品等领域由于能耗、效率、化学残留等问题尚未商业化。在医药技术方面,近十年来开发的等离子体技术和装备成功运用于龋齿、皮肤、伤口、癌症等的处理,部分已进入临床应用。将来的研究重点在于明确等离子体与细胞之间的相互作用机理,并开发出更高效、实用的用于各相关行业的等离子体技术和装备。%Bio-effects of non-thermal plasma include lethality of microorganisms and stimulation of mammalian cells,which brings up a series of techniques in disinfection and clinical medicine. In this paper,the applications of non-thermal plasma in medical device sterilization,water and air cleaning, as well as food and package treatment are reviewed. Commercialized plasma sterilizer for medical devices can be classified into vacuum and atmospheric pressure,the volume of the former is much larger while the latter is more simple and easy to operate. For disinfection of water,air and food,it is not yet commercialized due to its energy consumption,efficiency or chemical residues. In the last decade , the developed plasma sources and techniques for medicine are successfully applied to treatment of decayed tooth,skin,wound,and cancer,with some of them approved for clinical practice. In the future,the research focus will be identifying the interactions between plasmas and cells,and developing more effective and practical equipment for different

  13. Advance on non-thermal plasma-photocatalysis technology for air polullant control%低温等离子体-光催化联合技术处理空气污染物的研究进展

    Institute of Scientific and Technical Information of China (English)

    梁文俊; 马琳; 李坚

    2011-01-01

    Non-thermal plasma-photocatalysis technology is a new technology in recent years,which effectively make up for the defects of non-thermal plasma and photocatalysis. The recent research results indicated that the technology was effective for the removal of air pollutants. The basic principles of and advance on non-thermal plasma-photocatalysis technology were introduced and its application prospects were also outlined.%低温等离子体-光催化联合技术是近年来兴起的一项新型技术,它有效弥补了低温等离子体和光催化的缺陷,该技术对空气污染物有较好的去除效果.介绍了低温等离子体-光催化联合技术的基本原理和国内外研究进展,并对该技术的应用前景进行了展望.

  14. Atmospheric plasma processes for environmental applications

    OpenAIRE

    Shapoval, Volodymyr

    2012-01-01

    Plasma chemistry is a rapidly growing field which covers applications ranging from technological processing of materials, including biological tissues, to environmental remediation and energy production. The so called atmospheric plasma, produced by electric corona or dielectric barrier discharges in a gas at atmospheric pressure, is particularly attractive for the low costs and ease of operation and maintenance involved. The high concentrations of energetic and chemically active species (e.g...

  15. Nippon paint atmospheric plasma system

    International Nuclear Information System (INIS)

    An invitational plasma systems which are able to generate the wide and stable plasma (discharge distance 30 cm length, discharge electrode length max. 16 m) under normal air and pressure by using and narrow wave-form of pulse voltage has been developed. Its technical outline and some applied examples are reported

  16. Multijet atmospheric plasma device for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Zablotskyy, Vitaliy A.; Churpita, Olexandr; Hubička, Zdeněk; Jastrabík, Lubomír; Dejneka, Alexandr

    2011-01-01

    Roč. 1, č. 2 (2011), s. 135-141. ISSN 1947-5764 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : atmospheric plasma * plasma sources * biomedical applications Subject RIV: BL - Plasma and Gas Discharge Physics

  17. Atmospheric pressure plasma research activity in korea

    International Nuclear Information System (INIS)

    Plasma is generated by electrical discharge. Most plasma generation has been carried out at low-pressure gas typically less than one millionth of atmospheric pressure. Plasmas are in general generated from impact ionizations of neutral gas molecules by accelerated electrons. The energy gain of electrons accelerated in an electrical field is proportional to the mean free path. Electrons gain more energy at low-pressure gas and generate plasma easily by the ionization of neutrals, because the mean free path is longer. For this reason conventional plasma generation is carried out at low pressures. However, many practical applications require plasmas at high-pressure. In order to avoid the requirement for vacuum pump, researchers in Korea start to develop plasmas in high-pressure chambers where the pressure is 1 atmosphere or greater. Material processing, environmental protection/restoration and improved energy production efficiency using plasma are only possible for inexpensive bulk plasmas. We thus generate plasmas by new methods and plan to set foundations for new plasma technologies for 21st century industries. This technological research will play a central role in material processing, environmental and energy production industries

  18. Atmospheric pressure plasma jet treatment evokes transient oxidative stress in HaCaT keratinocytes and influences cell physiology.

    Science.gov (United States)

    Wende, Kristian; Straßenburg, Susanne; Haertel, Beate; Harms, Manuela; Holtz, Sarah; Barton, Annemarie; Masur, Kai; von Woedtke, Thomas; Lindequist, Ulrike

    2014-04-01

    Modern non-thermal atmospheric pressure plasma sources enable controllable interaction with biological systems. Their future applications - e.g. wound management - are based on their unique mixture of reactive components sparking both stimulatory as well as inhibitory processes. To gain detailed understanding of plasma-cell interaction and with respect to risk awareness, key mechanisms need to be identified. This study focuses on the impact of an argon non-thermal atmospheric pressure plasma jet (kINPen 09) on human HaCaT keratinocytes. With increasing duration, cell viability decreased. In accordance, cells accumulated in G2/M phase within the following 24 h. DNA single-strand breaks were detected immediately after treatment and receded in the aftermath, returning to control levels after 24 h. No directly plasma-related DNA double-strand breaks were detected over the same time. Concurrently, DNA synthesis decreased. Coincident with treatment time, an increase in intracellular 2',7'-dichlorodihydrofluorescein diacetate (H(2)DCFDA) conversion increased reactive oxygen species (ROS) levels. The radical scavenging activity of culture medium crucially influenced these effects. Thus, ROS changed DNA integrity, and the effectiveness of cellular defence mechanisms characterises the interaction of non-thermal plasma and eukaryotic cells. Effects were time-dependent, indicating an active response of the eukaryotic cells. Hence, a stimulation of eukaryotic cells using short-term non-thermal plasma treatment seems possible, eg in the context of chronic wound care. Long-term plasma treatments stopped in cell proliferation and apoptosis, which might be relevant in controlling neoplastic conditions. PMID:24155089

  19. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    Science.gov (United States)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  20. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth

    OpenAIRE

    Wei Zhu; Se-Jun Lee; Castro, Nathan J.; Dayun Yan; Michael Keidar; Lijie Grace Zhang

    2016-01-01

    Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and nove...

  1. Plasma Air Decontamination System (PADS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Plasma Air Decontamination System (PADS) is a trace contaminant control device based on non-thermal atmospheric pressure plasma technology that...

  2. Plasma Air Decontamination System (PADS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Plasma Air Decontamination System (PADS) is a trace contaminant control device based on non-thermal atmospheric-pressure plasma technology. Compared to...

  3. Research on atmospheric pressure plasma processing sewage

    Science.gov (United States)

    Song, Gui-cai; Na, Yan-xiang; Dong, Xiao-long; Sun, Xiao-liang

    2013-08-01

    The water pollution has become more and more serious with the industrial progress and social development, so it become a worldwide leading environmental management problem to human survival and personal health, therefore, countries are looking for the best solution. Generally speaking, in this paper the work has the following main achievements and innovation: (1) Developed a new plasma device--Plasma Water Bed. (2) At atmospheric pressure condition, use oxygen, nitrogen, argon and helium as work gas respectively, use fiber spectrometer to atmospheric pressure plasma discharge the emission spectrum of measurement, due to the different work gas producing active particle is different, so can understand discharge, different particle activity, in the treatment of wastewater, has the different degradation effects. (3) Methyl violet solution treatment by plasma water bed. Using plasma drafting make active particles and waste leachate role, observe the decolorization, measurement of ammonia nitrogen removal.

  4. Effects of cold atmospheric plasma on mucosal tissue culture

    International Nuclear Information System (INIS)

    Thermal plasmas have been commonly used in medical applications such as plasma ablation and blood coagulation. Newer developments show that plasmas can be generated with ion temperatures close to room temperature: these non-thermal or so-called cold atmospheric plasmas (CAPs) therefore open up a wide range of further biomedical applications. Based on the understanding of the bactericidal, virucidal and fungicidal properties of CAPs, information about the effects of CAP on mucosal cells and tissue is still lacking. Therefore this study focuses on the interaction of CAP with healthy head and neck mucosal cells on a molecular level. To analyse this interaction in detail, fresh tissue samples from healthy nasal and pharyngeal mucosa were harvested during surgery, assembled to a three-dimensional tissue culture model (mini organ cultures) and treated with CAP for different treatment times. Effects on the viability, necrosis induction and mutagenic activity were evaluated with the trypan blue exclusion test, Annexin-V/PI staining and alkaline microgel electrophoresis (comet assay). Trypan blue exclusion test revealed that the CAP treatment significantly decreases the cell viability for all tested treatment times (5, 10, 30, 60 and 120 s; p < 0.05), but only a treatment time of 120 s showed a cytotoxic effect as the viability dropped below 90%. Annexin-V/PI staining revealed a significant increase in necrosis in CAP treated pharyngeal tissue cultures for treatment times of 60 and 120 s (p < 0.05). For nasal tissue this effect was already detected for a 30 s treatment (p < 0.05). Comet assay analysis showed no mutagenic effects after exposure to CAP.

  5. Sterilization effects of atmospheric cold plasma brush

    International Nuclear Information System (INIS)

    This study investigated the sterilization effects of a brush-shaped plasma created at one atmospheric pressure. A population of 1.0x104-1.0x105 Escherichia coli or Micrococcus luteus bacteria was seeded in filter paper media and then subjected to Ar and/or Ar+O2 plasmas. A complete kill of the Micrococcus luteus required about 3 min argon plasma exposures. With oxygen addition into the argon plasma gas streams, a complete kill of the bacteria needed only less than 1 min plasma exposure for Micrococcus luteus and about 2 min exposure for Escherichia coli. The plasma treatment effects on the different bacteria cell structures were examined using scanning electron microscopy

  6. Diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Atmospheric pressure air plasmas are often thought to be in Local Thermodynamics Equilibrium (LTE) owing to fast interspecies collisional exchanges at high pressure. As will be seen here, this assumption cannot be relied upon, particularly with respect to optical diagnostics. Large velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. Diagnostic techniques based on optical emission spectroscopy (OES) and Cavity Ring-Down Spectroscopy (CRDS) have been developed and applied at Stanford University to the investigation of atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium. This article presents a review of selected temperature and species concentration measurement techniques useful for the study of air and nitrogen plasmas

  7. Formation Mechanism of Atmospheric Pressure Plasma Jet

    CERN Document Server

    Jiang, Nan; Cao, Zexian

    2008-01-01

    Atmospheric pressure plasma jet can protrude some 5.0 cm into air. It holds promise for multivarious innovative applications, but its formation mechanism remains unsettled. We show that the plasma jet is essentially a streamer corona totally independent of, but obscured by, dielectric barrier discharge. Consequently, the jets can be equally successfully generated even with one single bare metal electrode attached to the tube orifice, both downstream and upstream simultaneously, and at a significantly reduced voltage. These results will help understand the underlying physics and facilitate a safer and more flexible implementation of this marvelous plasma source.

  8. Cold atmospheric plasma in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Keidar, Michael; Shashurin, Alex; Volotskova, Olga [Mechanical and Aerospace Engineering, George Washington University, Washington DC 20052 (United States); Ann Stepp, Mary [Medical School, George Washington University, Washington DC 20052 (United States); Srinivasan, Priya; Sandler, Anthony [Childrens National Medical Center, Washington DC 20010 (United States); Trink, Barry [Head and Neck Cancer Research Division, Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2013-05-15

    Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. This paper outlines recent progress in understanding of cold plasma physics as well as application of cold atmospheric plasma (CAP) in cancer therapy. Varieties of novel plasma diagnostic techniques were developed recently in a quest to understand physics of CAP. It was established that the streamer head charge is about 10{sup 8} electrons, the electrical field in the head vicinity is about 10{sup 7} V/m, and the electron density of the streamer column is about 10{sup 19} m{sup −3}. Both in-vitro and in-vivo studies of CAP action on cancer were performed. It was shown that the cold plasma application selectively eradicates cancer cells in-vitro without damaging normal cells and significantly reduces tumor size in-vivo. Studies indicate that the mechanism of action of cold plasma on cancer cells is related to generation of reactive oxygen species with possible induction of the apoptosis pathway. It is also shown that the cancer cells are more susceptible to the effects of CAP because a greater percentage of cells are in the S phase of the cell cycle.

  9. Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials

    International Nuclear Information System (INIS)

    A non-thermal plasma source ('plasma needle') generated under atmospheric pressure by means of radio-frequency excitation has been characterized. Plasma appears as a small (sub-mm) glow at the tip of a metal pin. It operates in helium, argon, nitrogen and mixtures of He with air. Electrical measurements show that plasma needle operates at relatively low voltages (200-500 V peak-to-peak) and the power consumption ranges from tens of milliwatts to at most a few watts. Electron-excitation, vibrational and rotational temperatures have been determined using optical emission spectroscopy. Excitation and vibration temperatures are close to each other, in the range 0.2-0.3 eV, rotational gas temperature is at most a few hundred K. At lowest power input the source has the highest excitation temperature while the gas remains at room temperature. We have demonstrated the non-aggressive nature of the plasma: it can be applied on organic materials, also in watery environment, without causing thermal/electric damage to the surface. Plasma needle will be used in the study of plasma interactions with living cells and tissues. At later stages, this research aims at performing fine, high-precision plasma surgery, like removal of (cancer) cells or cleaning of dental cavities

  10. Influence of Non- thermal Equilibrium Plasma on Combustion Characteristics of Methane/Air%非平衡等离子体对CH4/空气混合物燃烧的影响

    Institute of Scientific and Technical Information of China (English)

    杜宏亮; 何立明; 兰宇丹; 王峰

    2011-01-01

    为了研究非平衡等离子体的助燃作用,以CH4/空气混合气为燃料,对单管燃烧器中的燃烧过程进行了数值研究.在3种电离度条件下,分析了非平衡等离子体中起主要作用的活性粒子(O,H)和活性基(OH)对CH4/空气混合气燃烧的影响.计算结果发现,与传统燃烧技术相比,等离子体可以提供燃烧开始的自由基,加快连锁反应的进行,从而提高燃烧温度、降低污染物排放,等离子体助燃技术还可以改善燃烧室出口流场(包括温度场和速度场)的分布.%The new intensified combustion technology by using non -thermal equilibrium plasma in aero propulsion field causes more and more attention. Aimed at the study of the effect of plasma assisted combustion, the combustion characteristics of methane/air with active particle (O and H) and active group (OH) in non -thermal equilibrium plasma in firebox is investigated by numerical analysis. The result shows that plasma assisted combustion can greatly enhance flaming temperature by providing more free radicals and accelerating chain reaction, meliorate the temperature distributions and velocity distributions of the surface of outlet. By this plasma assisted combustion technique, the combustion efficiency can be increased and the discharge of pollutant decreased.

  11. Non Thermal Plasma Technology for Purification of Automobile Exhaust Based on Stirling Engine%基于斯特林发动机的低温等离子体净化汽车尾气技术

    Institute of Scientific and Technical Information of China (English)

    陶杰; 任连城; 赵成利

    2012-01-01

    With the popularization of automobile, the exhaust becomes a problem that should be solved. Stirling Engine Technology and Non Thermal Plasma Technology have their own irreplaceable advantages in their respective fields. And the combination of the two technologies can have wide applications. Non thermal plasma technology for purification of automobile exhaust based on Stirling engine utilizes waste heat to purify the pollution of automobile exhaust. This technology has the advantages of energy conservation, high efficiency and low-cost.%随着汽车的大量普及,汽车尾气已成为亟待解决的问题。斯特林发动机技术和低温等离子体技术在各自领域均有无可替代的优势,将两种技术结合可以产生广泛的应用。基于斯特林发动机的低温等离子体净化汽车尾气技术可以利用汽车尾气余热处理汽车尾气中污染物,具有节能、高效、低成本的显著优势。

  12. Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats

    Science.gov (United States)

    Fathollah, Sara; Mirpour, Shahriar; Mansouri, Parvin; Dehpour, Ahmad Reza; Ghoranneviss, Mahmood; Rahimi, Nastaran; Safaie Naraghi, Zahra; Chalangari, Reza; Chalangari, Katalin Martits

    2016-02-01

    It is estimated that 15 percent of individuals with diabetes mellitus suffer from diabetic ulcers worldwide. The aim of this study is to present a non-thermal atmospheric plasma treatment as a novel therapy for diabetic wounds. The plasma consists of ionized helium gas that is produced by a high-voltage (8 kV) and high-frequency (6 kHz) power supply. Diabetes was induced in rats via an intravascular injection of streptozotocin. The plasma was then introduced to artificial xerograph wounds in the rats for 10 minutes. Immunohistochemistry assays was performed to determine the level of transforming growth factor (TGF-β1) cytokine. The results showed a low healing rate in the diabetic wounds compared with the wound-healing rate in non-diabetic animals (P diabetic rats (P diabetic wounds (P diabetic rats.

  13. Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats

    Science.gov (United States)

    Fathollah, Sara; Mirpour, Shahriar; Mansouri, Parvin; Dehpour, Ahmad Reza; Ghoranneviss, Mahmood; Rahimi, Nastaran; Safaie Naraghi, Zahra; Chalangari, Reza; Chalangari, Katalin Martits

    2016-02-01

    It is estimated that 15 percent of individuals with diabetes mellitus suffer from diabetic ulcers worldwide. The aim of this study is to present a non-thermal atmospheric plasma treatment as a novel therapy for diabetic wounds. The plasma consists of ionized helium gas that is produced by a high-voltage (8 kV) and high-frequency (6 kHz) power supply. Diabetes was induced in rats via an intravascular injection of streptozotocin. The plasma was then introduced to artificial xerograph wounds in the rats for 10 minutes. Immunohistochemistry assays was performed to determine the level of transforming growth factor (TGF-β1) cytokine. The results showed a low healing rate in the diabetic wounds compared with the wound-healing rate in non-diabetic animals (P healing rate in the non-diabetic rats (P diabetic wounds (P healing in diabetic rats.

  14. Cold Atmosphere Plasma in Cancer Therapy

    Science.gov (United States)

    Keidar, Michael

    2012-10-01

    Plasma is an ionized gas that is typically generated in high-temperature laboratory conditions. Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Areas of potential application of cold atmospheric plasmas (CAP) include dentistry, drug delivery, dermatology, cosmetics, wound healing, cellular modifications, and cancer treatment. Various diagnostic tools have been developed for characterization of CAP including intensified charge-coupled device cameras, optical emission spectroscopy and electrical measurements of the discharge propertied. Recently a new method for temporally resolved measurements of absolute values of plasma density in the plasma column of small-size atmospheric plasma jet utilizing Rayleigh microwave scattering was proposed [1,2]. In this talk we overview state of the art of CAP diagnostics and understanding of the mechanism of plasma action of biological objects. The efficacy of cold plasma in a pre-clinical model of various cancer types (long, bladder, and skin) was recently demonstrated [3]. Both in-vitro and in-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. For instance a strong selective effect was observed; the resulting 60--70% of lung cancer cells were detached from the plate in the zone treated with plasma, whereas no detachment was observed in the treated zone for the normal lung cells under the same treatment conditions. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration

  15. Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.)

    OpenAIRE

    Pasquali, Frederique; Stratakos, Alexandros Ch; Koidis, Anastasios; Berardinelli, Annachiara; Cevoli, Chiara; Ragni, Luigi; Mancusi, Rocco; Manfreda, Gerardo; Trevisani, Marcello

    2016-01-01

    Cold plasma is an emerging non-thermal processing technology that could be used for large scale leaf decontamination as an alternative to chlorine washing. In this study the effect of an atmospheric cold plasma apparatus (air DBD, 15 kV) on the safety, antioxidant activity and quality of radicchio (red chicory, Cichorium intybus L.) was investigated after 15 and 30 min of treatment (in afterglow at 70 mm from the discharge, at 22 °C and 60% of RH) and during storage. Escherichia coli O157:H7 ...

  16. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant de...

  17. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    Science.gov (United States)

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-05-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  18. Cold atmospheric plasma decontamination against nosocomial bacteria

    OpenAIRE

    Klämpfl , Tobias Gabriel

    2014-01-01

    Nosocomial pathogens are a considerable public threat. In order to limit their spread, cold atmospheric plasma (CAP) was investigated as new alternative to common decontamination strategies. During my work I developed a Surface micro-discharge (SMD) electrode system, characterized the CAP generated at ambient air conditions, studied its decontaminating behavior against nosocomial bacteria such as Clostridium difficile endospores and revealed factors influencing the decontamination. All in all...

  19. Generation and characterization of OH and O radicals by atmospheric pressure steam/oxygen plasma

    CERN Document Server

    Roy, N C; Alam, M K; Talukder, M R

    2016-01-01

    Atmospheric pressure steam/oxygen plasma is generated by a 88 Hz, 6kV AC power supply. The properties of the produced plasma are investigated by optical emission spectroscopy (OES). The relative intensity, rotational, vibrational, excitation temperatures and electron density are studied as function of applied voltage, electrode spacing and oxygen flow rate. The rotational and vibrational temperatures are determined simulating the bands with the aid of LIFBASE simulation software. The excitation temperature is obtained from the CuI transition taking non-thermal equilibrium condition into account employing intensity ratio method. The electron density is approximated from the H_{\\alpha} Stark broadening using the Voigt profile fitting method. It is observed that the rotational and vibrational temperatures are decreased with increasing electrode spacing and O2 flow rate, but increased with the applied voltage. The excitation temperature is found to increase with increasing applied voltage and O2 flow rate, but de...

  20. Sub-60 deg. C atmospheric helium-water plasma jets: modes, electron heating and downstream reaction chemistry

    International Nuclear Information System (INIS)

    For plasma treatment of many heat-labile materials (e.g. living tissues) that either are moist or contain a surface layer of liquid, it is desirable that the gas plasma is generated at atmospheric pressure for process convenience and with a gas temperature ideally no more than 60 deg. C for mitigating permanent damage to the integrity of the test material. This implies that the liquid-containing plasma needs to be of low dissipated electrical energy and that plasma treatment should be based largely on non-equilibrium reaction chemistry. In this paper, a class of sub-60 deg. C atmospheric helium-water plasma jets is studied in terms of their main physiochemical properties. It is shown that there are five distinct modes appearing in the sequence of, with increasing voltage, the first chaotic mode, the plasma bullet mode, the second chaotic mode, the abnormal glow mode and the non-thermal arc mode. Its chaotic modes may be sustained over a wide range of water vapour concentrations (0-2500 ppm). Compared with other liquid-containing plasmas, the He-H2O plasma jet operated below its non-thermal arc mode has several distinct advantages, namely very low energy consumption (2-10 μJ per pulse), sub-60 deg. C gas temperature, electron-modulated production of He, N2, N2+, O*, H and OH(A-X), and low ozone production (0.1-0.4 ppm). These results provide a first attempt at the landscape of the physiochemical characteristics in atmospheric He-H2O plasma jets.

  1. 催化型低温等离子体反应器净化废气研究进展%Advances in catalysis non-thermal plasma reactor for air pollution control

    Institute of Scientific and Technical Information of China (English)

    刘跃旭; 王少波; 原培胜; 赵瀛

    2009-01-01

    催化型低温等离子体反应器可有效地提高废气治理的能量效率和净化效果.现有数据表明,在一定能量密度下,催化型低温等离子体反应器比传统低温等离子体反应器能量效率有1.1~12倍的提高,这和污染物种类,反应器构型及催化剂参数有关.本文介绍了反应机理、反应器构型及催化剂参数选择等对反应器性能的影响,并指出今后研究的发展方向.%Catalysis non-thermal plasma reactor has been demonstrated to be effective in improving the energy efficiency and purification for air pollution control. According to the available experimental data, for a given specific energy density, the energy efficiency for gaseous pollutant abatement obtained with catalysis non-thermal plasma reactor could be improved with 1.1-12 times as compared to that of conventional reactors depending on the type of pollutants, reactor geometry and catalyst used. The influences of reaction mechanism, reactor geometry and catalyst parameters on the performance for gaseous pollutant removal are comprehensively discussed, and the further development trend of this technology is proposed.

  2. TOPICAL REVIEW: Numerical modelling of atmospheric pressure gas discharges leading to plasma production

    Science.gov (United States)

    Georghiou, G. E.; Papadakis, A. P.; Morrow, R.; Metaxas, A. C.

    2005-10-01

    In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of charge densities. The model consists of the continuity equations for electrons, positive and negative ions coupled to Poisson's equation for the electric field. We then describe features of the finite element flux corrected transport algorithm, which has been developed to specifically aim for accuracy (no spurious diffusion or oscillations), efficiency (through the use of unstructured grids) and ease of extension to complex 3D geometries in the framework of the hydrodynamic model in gas discharges. We summarize the numerical work done by other authors who have applied different methods to various models and then we present highlights of our own work, which includes code validation, comparisons with existing results and modelling of radio frequency systems, dc discharges, secondary effects such as photoionization and plasma production in the presence of dielectrics. The extension of the code to 3D for more realistic simulations is demonstrated together with the adaptive meshing technique, which serves to achieve higher efficiency. Finally, we illustrate the versatility of our scheme by using it to simulate the transition from non-thermal to thermal discharges. We conclude that numerical modelling and, in particular, the extension to 3D can be used to shed new light on the processes involved with the production and control of atmospheric plasma, which plays an important role in a host of emerging technologies.

  3. Numerical modelling of atmospheric pressure gas discharges leading to plasma production

    Energy Technology Data Exchange (ETDEWEB)

    Georghiou, G E [Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Papadakis, A P [Electricity Utilization Group (EUG), Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ (United Kingdom); Morrow, R [Applied and Plasma Physics, School of Physics, University of Sydney, Sydney, NSW (Australia); Metaxas, A C [St John' s College, University of Cambridge, Cambridge, CB2 1TP (United Kingdom)

    2005-10-21

    In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of charge densities. The model consists of the continuity equations for electrons, positive and negative ions coupled to Poisson's equation for the electric field. We then describe features of the finite element flux corrected transport algorithm, which has been developed to specifically aim for accuracy (no spurious diffusion or oscillations), efficiency (through the use of unstructured grids) and ease of extension to complex 3D geometries in the framework of the hydrodynamic model in gas discharges. We summarize the numerical work done by other authors who have applied different methods to various models and then we present highlights of our own work, which includes code validation, comparisons with existing results and modelling of radio frequency systems, dc discharges, secondary effects such as photoionization and plasma production in the presence of dielectrics. The extension of the code to 3D for more realistic simulations is demonstrated together with the adaptive meshing technique, which serves to achieve higher efficiency. Finally, we illustrate the versatility of our scheme by using it to simulate the transition from non-thermal to thermal discharges. We conclude that numerical modelling and, in particular, the extension to 3D can be used to shed new light on the processes involved with the production and control of atmospheric plasma, which plays an important role in a host of emerging technologies. (topical review)

  4. Surface interactions in a cold plasma atmosphere

    International Nuclear Information System (INIS)

    The formation of pyrocoating on conmercial grade graphite in a cold plasma atmosphere of argon and propylene mixtures was investigated. The experiments were performed in an evacuated glass tube at low pressure (6 Hz), and in some experiments by micro-wave frequency irradiation (2.45x106 Hz) through an external antenna that was located around the middle of the tube. The research was performed in four complementary directions: (a) Characterization of the plasma. The effect of various experimental parameters on the composition of the plasma was investigated; the density of the positive ions; the temperature of the electrons. The following parameters were investigated: the concentration of the hydrocarbon in the feed mixture; the total gas pressure in the tube; the induced power; the location of the sampling position in relation to the location of the antenna and the direction of the gas flow. (b) Measurements of the deposition rate as a function of the concentration of the propylene in the feed mixture and of the total gas pressure in the tube. (c) Characterization of the coating. The characterization included structure and morphology analysis, and measurements of microporosity, composition, optical anisotropy and density. (d) Development of a theoretical model of the deposition process which is based on the plasma-surface interactions, and relates the characteristics of the plasma to those of the deposited coating. The values for the composition of the coating and its rate of deposition that were calculated using the model agree well with those that were measured experimentally

  5. Compact High-Velocity Atmospheric Pressure Dielectric Barrier Plasma Jet in Ambient Air

    International Nuclear Information System (INIS)

    In this paper, a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted. In the present technological approach, the employment of air poses a significant challenge. The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime. The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient. In this way, the electron density and in turn the density of reactive species is increased. In addition, the plasma jet assembly is equipped with a short electrode. This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species. The plasma jet is formed within and emitted by a small conical nozzle. A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle. In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma. The range of short-lived active plasma species is in turn considerably enhanced. The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment. Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume. (low temperature plasma)

  6. Multi-electrodes Atmospheric Pressure Plasma Jet Aiming Bio-applications

    Science.gov (United States)

    Han, Jeon G.; Sahu, B. B.; Shin, K. S.; Lee, J. S.; Hori, M.

    2015-09-01

    For the recent advancement in the field of plasma medicine, there is growing demand for the atmospheric-pressure plasma (APP) jet sources with desired plasma characteristics. In this study, a stable non-thermal low-voltage APP jet device was designed and developed for optical and electrical characterizations. The jet was operated at very low frequency in the range 10-40 KHz, which enabled the generation of low power (~ 7W) plasma with a plasma column diameter of about 5 mm. The jet has a visible radial diameter of approximately 10 mm. Optical emission spectroscopy was used as a diagnostic tool to investigate the generation of plasmas and radical species. Discharge parameters are also measured to evaluate the different operating conditions. The gas temperature measured at the substrate location varies from 300 to 315 K for different gases where the electrical input power ranged from 1 to 7 W. The highly reactive species like OH, O, N2, N2 + and along with the trace of NO are characterized with respect to the different gas flow rate of Ar/He/O2/N2, applied voltages, duty cycles and frequencies to evaluate the capability of the APP jet for future bio-applications.

  7. Observations of long-lived H{sup -}{sub 2} and D{sup -}{sub 2} ions from non-thermal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Wang Weiguo [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Box 288, Dalian 116024 (China); Xu Yong [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Box 288, Dalian 116024 (China); Zhu Aimin [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Box 288, Dalian 116024 (China); Liu Zhongwei [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Box 288, Dalian 116024 (China); Liu Xin [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Box 288, Dalian 116024 (China); Yang Xuefeng [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Box 288, Dalian 116024 (China)

    2007-03-14

    Strong mass signals of H{sup -}{sub 2} and D{sup -}{sub 2} ions have been observed from low-pressure dielectric barrier discharge hydrogen and deuterium plasmas via molecular beam mass spectrometry. The observed H{sup -}{sub 2}/H{sup -} and D{sup -}{sub 2}/D{sup -} ratios ({approx}0.35-0.4) are over five orders of magnitude higher than those observed by other techniques. The kinetic energy of H{sup -}{sub 2} and D{sup -}{sub 2} ions sampled from the plasmas was determined to be widely distributed, from a few eV to >100 eV, giving lifetimes greater than {approx}40 {mu}s for H{sup -}{sub 2} and {approx}55 {mu}s for D{sup -}{sub 2}. The highest vib-rotational excitation of neutral H{sub 2} species in the plasma was determined to be about J = 0, v = 5 or J = 19, v = 0 via threshold ionization mass spectrometry. The possible pumping mechanisms for generating H{sup -}{sub 2} with further high J, required by the current high-rotation model, have been proposed. Similar to the lifetime of D{sup -}{sub 2} determined recently by another group, the H{sup -}{sub 2} lifetime observed in this work is about two orders of magnitude longer than that predicted by the current theoretical model. To explain these experimental observations regarding the meta-stability of long-lived H{sup -}{sub 2} and D{sup -}{sub 2} ions, the improved current high-rotation model or other new models, including the possible existence of some long-lived electronically excited states of H{sup -}{sub 2}/D{sup -}{sub 2}, need to be developed.

  8. Difficult issues for popularization of non-thermal plasma catalytic technology%低温等离子体催化技术推广方面的难点问题

    Institute of Scientific and Technical Information of China (English)

    黄智; 郭玉芳

    2015-01-01

    Non-thermal plasma catalytic technology is a way to reduce exhaust gas in recent years. Com-pared with the traditional method and technology,it has the advantages of low cost in investment and oper-ation,high energy efficiency,short processing time and easy control. Numerous studies at home and abroad showed that the treatment of air pollution with plasma technology had broad growth space. But the selection,matching and optimization of the reactor,the choice of the catalysts and their combination with the reactor,and the reaction mechanisms needed to be further researched. Non-thermal plasma catalytic technology had the disadvantages of low efficiency,high energy consumption and low selectivity to target products,but the addition of the catalysts could reduce energy consumption,decrease secondary pollution and enhance the selectivity to the products. To improve the reactors and their energy efficiency,enhance the stability of the catalysts and further research on the reaction mechanism are the development directions in the future.%低温等离子体催化技术是近年来兴起的一种治理废气的可行方法,与传统方法和工艺相比,具有投资和运行费用较低、处理效率较高、处理时间较短和易于控制等优点。研究表明,利用等离子体技术处理大气污染的应用前景广阔。但低温等离子体技术反应器的选择、匹配和优化、相关催化剂的选择以及与反应器的结合、反应机理等方面还需要进一步深入研究。低温等离子体效率低、能耗高、目标产物选择性低,但加入催化剂可降低能耗,减少二次污染,提高产物选择性,两者取长补短,优势互补。不断改进反应器并提高反应器的能量效率,提升催化剂的稳定性和契合度以及对反应机理的深入研究是今后的发展方向。

  9. Treatment of oral cancer cells with nonthermal atmospheric pressure plasma jet

    Science.gov (United States)

    Yurkovich, James; Han, Xu; Coffey, Benjamin; Klas, Matej; Ptasinska, Sylwia

    2012-10-01

    Non-thermal atmospheric pressure plasmas are specialized types of plasma that are proposed as a new agent to induce death in cancer cells. The experimental phase of this study will test the application of such plasma to SCC-25 oral cancer cells to determine if it is possible to induce apoptosis or necrosis. Different sources are used on the cells to find a configuration which kills cancer cells but has no effect on normal cells. The sources have been developed based on the dielectric barrier discharge between two external electrodes surrounding a dielectric tube; such a configuration has been shown to induce breaks in DNA strands. Each configuration is characterized using an optical emission spectrophotometer and iCCD camera to determine the optimal conditions for inducing cell death. The cells are incubated after irradiation with plasma, and cell death is determined using microscopy imaging to identify antibody interaction within the cells. These studies are important for better understanding of plasma species interactions with cancer cells and mechanisms of DNA damage and at latter stage they will be useful for the development of advanced cancer therapy.

  10. Suppression of Parallel Transport in Turbulent Magnetized Plasmas and Its Impact on the Non-thermal and Thermal Aspects of Solar Flares

    Science.gov (United States)

    Bian, Nicolas H.; Kontar, Eduard P.; Emslie, A. Gordon

    2016-06-01

    The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on the flare coronal temperature that can be attained, on the post-impulsive-phase cooling of heated coronal plasma, and on the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the possible ways in which anomalous transport processes have an impact on the required overall energy associated with accelerated electrons in solar flares.

  11. Suppression of Parallel Transport in Turbulent Magnetized Plasmas and Its Impact on Non-Thermal and Thermal Aspects of Solar Flares

    Science.gov (United States)

    Emslie, A. Gordon; Bian, Nicolas H.; Kontar, Eduard

    2016-05-01

    Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on several items of interest to the modeling of flares, including: the peak flare coronal temperature that can be attained, the post-impulsive-phase cooling time of heated coronal plasma, and the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the ways in which anomalous transport processes have an impact on the required overall energy content of accelerated electrons in solar flares.

  12. Controlling Microbial Safety Challenges of Meat Using High Voltage Atmospheric Cold Plasma

    Science.gov (United States)

    Han, Lu; Ziuzina, Dana; Heslin, Caitlin; Boehm, Daniela; Patange, Apurva; Sango, David M.; Valdramidis, Vasilis P.; Cullen, Patrick J.; Bourke, Paula

    2016-01-01

    Atmospheric cold plasma (ACP) is a non-thermal technology, effective against a wide range of pathogenic microorganisms. Inactivation efficacy results from plasma generated reactive species. These may interact with any organic components in a test matrix including the target microorganism, thus food components may exert a protective effect against the antimicrobial mode of action. The effect of an in-package high voltage ACP process applied in conjunction with common meat processing MAP gas compositions as well as bacteria type and meat model media composition have been investigated to determine the applicability of this technology for decontamination of safety challenges associated with meat products. E. coli, L. monocytogenes, and S. aureus in PBS were undetectable after 60 s of treatment at 80 kVRMS in air, while ACP treatment of the contaminated meat model required post-treatment refrigeration to retain antimicrobial effect. The nutritive components in the meat model exerted a protective effect during treatment, where 300 s ACP exposure yielded a maximum reduction of 1.5 log using a high oxygen atmosphere, whilst using air and high nitrogen atmospheres yielded lower antimicrobial efficacy. Furthermore, an ROS assay was performed to understand the protective effects observed using the meat model. This revealed that nutritive components inhibited penetration of ROS into bacterial cells. This knowledge can assist the optimization of meat decontamination using ACP technology where interactions with all components of the food matrix require evaluation. PMID:27446018

  13. Stability of an alternative solitary-wave solution of an ion-acoustic wave obtained from the MKdV KdV ZK equation in magnetized non-thermal plasma consisting of warm adiabatic ions

    Science.gov (United States)

    Das, Jayasree; Bandyopadhyay, Anup; Das, K. P.

    The Korteweg de Varies Zakharov Kuznetsov (KdV ZK) equation describes the behaviour of long-wavelength weakly nonlinear ion-acoustic waves propagating obliquely to an external magnetic field in a non-thermal plasma consisting of warm adiabatic ions. When the coefficient of the nonlinear term of this equation vanishes, the nonlinear behaviour of ion-acoustic wave is described by a modified KdV ZK (MKdV ZK) equation. A combined MKdV KdV ZK equation more efficiently describes the nonlinear behaviour of ion-acoustic waves at points in the neighbourhood of the curve in the parametric plane along which the coefficient of the nonlinear term of the KdV ZK equation vanishes. This combined MKdV KdV ZK equation admits both double-layer and alternative solitary-wave solutions having profile different from sech(2) or sech. In this paper the three-dimensional stability of the alternative solitary-wave solution having profile different from sech(2) or sech has been investigated by the recently developed multiple-scale perturbation expansion method of Allen and Rowlands. The instability condition and the growth rate of instability have been derived at the lowest order. The correct expression of the growth rate of instability at the lowest order has been obtained for a limiting case and the stability analysis has been carried out numerically from our model as presented in this paper for arbitrary values of the parameters involved in the system.

  14. Use of molecular beacons for the rapid analysis of DNA damage induced by exposure to an atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Hirofumi, E-mail: kurita@ens.tut.ac.jp, E-mail: mizuno@ens.tut.ac.jp; Miyachika, Saki; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira, E-mail: kurita@ens.tut.ac.jp, E-mail: mizuno@ens.tut.ac.jp [Department of Environmental and Life Sciences, Toyohashi University of Technology, Aichi 441-8580 (Japan)

    2015-12-28

    A rapid method for evaluating the damage caused to DNA molecules upon exposure to plasma is demonstrated. Here, we propose the use of a molecular beacon for rapid detection of DNA strand breaks induced by atmospheric pressure plasma jet (APPJ) irradiation. Scission of the molecular beacon by APPJ irradiation leads to separation of the fluorophore-quencher pair, resulting in an increase in fluorescence that directly correlates with the DNA strand breaks. The results show that the increase in fluorescence intensity is proportional to the exposure time and the rate of fluorescence increase is proportional to the discharge power. This simple and rapid method allows the estimation of DNA damage induced by exposure to a non-thermal plasma.

  15. Use of molecular beacons for the rapid analysis of DNA damage induced by exposure to an atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    A rapid method for evaluating the damage caused to DNA molecules upon exposure to plasma is demonstrated. Here, we propose the use of a molecular beacon for rapid detection of DNA strand breaks induced by atmospheric pressure plasma jet (APPJ) irradiation. Scission of the molecular beacon by APPJ irradiation leads to separation of the fluorophore-quencher pair, resulting in an increase in fluorescence that directly correlates with the DNA strand breaks. The results show that the increase in fluorescence intensity is proportional to the exposure time and the rate of fluorescence increase is proportional to the discharge power. This simple and rapid method allows the estimation of DNA damage induced by exposure to a non-thermal plasma

  16. Use of molecular beacons for the rapid analysis of DNA damage induced by exposure to an atmospheric pressure plasma jet

    Science.gov (United States)

    Kurita, Hirofumi; Miyachika, Saki; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2015-12-01

    A rapid method for evaluating the damage caused to DNA molecules upon exposure to plasma is demonstrated. Here, we propose the use of a molecular beacon for rapid detection of DNA strand breaks induced by atmospheric pressure plasma jet (APPJ) irradiation. Scission of the molecular beacon by APPJ irradiation leads to separation of the fluorophore-quencher pair, resulting in an increase in fluorescence that directly correlates with the DNA strand breaks. The results show that the increase in fluorescence intensity is proportional to the exposure time and the rate of fluorescence increase is proportional to the discharge power. This simple and rapid method allows the estimation of DNA damage induced by exposure to a non-thermal plasma.

  17. Non-thermal AGN models

    International Nuclear Information System (INIS)

    The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (α ≅ .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig

  18. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    Science.gov (United States)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering

  19. Numerical analysis of flow characteristics of an atmospheric plasma torch

    CERN Document Server

    Kim, Y J; Han, J G; Kim, Youn J.; Kim, You-Jae

    2004-01-01

    The atmospheric plasma is regarded as an effective method for surface treatments because it can reduce the period of process and does not need expensive vacuum apparatus. The performance of non-transferred plasma torches is significantly depended on jet flow characteristics out of the nozzle. In order to produce the high performance of a torch, the maximum discharge velocity near an annular gap in the torch should be maintained. Also, the compulsory swirl is being produced to gain the shape that can concentrate the plasma at the center of gas flow. Numerical analysis of two different mathematical models used for simulating plasma characteristics inside an atmospheric plasma torch is carried out. A qualitative comparison is made in this study to test the accuracy of these two different model predictions of an atmospheric plasma torch. Numerical investigations are carried out to examine the influence of different model assumptions on the resulting plasma characteristics. Significant variations in the results in...

  20. Nonthermal Atmospheric Plasmas in Dental Restoration.

    Science.gov (United States)

    Liu, Y; Liu, Q; Yu, Q S; Wang, Y

    2016-05-01

    It is well known that the service life of contemporary composite restoration is unsatisfactory, and longevity of dentin bonding is one of the major culprits. Bonding is essentially a hybridization process in which dental substrate and adhesive resin interact with each other through an exchange process. Thus, the longevity of dentin bonding can only be improved with enhanced qualities in substrate, adhesive resin, and their interaction within the hybridization zone. This review aims to collect and summarize recent advances in utilizing nonthermal atmospheric plasmas (NTAPs)-a novel technology that delivers highly reactive species in a gaseous medium at or below physiologic temperature-to improve the durability of dentin bonding by addressing these 3 issues simultaneously. Overall, NTAP has demonstrated efficacies in improving a number of critical properties for dentin bonding, including deactivation of oral pathogens, modification of surface chemistry/properties, resin polymerization, improvement in adhesive-dentin interactions, and establishment of auxiliary bonding mechanism. While a few preliminary studies have indicated the benefit of NTAP to bond strength and stability, additional researches are warranted to employ knowledge acquired so far and to evaluate these properties in a systematic way. PMID:26848068

  1. Charge dependence of the plasma travel length in atmospheric-pressure plasma

    Science.gov (United States)

    Yambe, Kiyoyuki; Konda, Kohmei; Masuda, Seiya

    2016-06-01

    Plasma plume is generated using a quartz tube, helium gas, and foil electrode by applying AC high voltage under the atmosphere. The plasma plume is released into the atmosphere from inside of the quartz tube and is seen as the continuous movement of the plasma bullet. The travel length of plasma bullet is defined from plasma energy and force due to electric field. The drift velocity of plasma bullet has the upper limit under atmospheric-pressure because the drift velocity is determined from the balance between electric field and resistive force due to collisions between plasma and air. The plasma plume charge depends on the drift velocity. Consequently, in the laminar flow of helium gas flow state, the travel length of the plasma plume logarithmically depends on the plasma plume charge which changes with both the electric field and the resistive force.

  2. Atmospheric pressure plasma jet for liquid spray treatment

    Science.gov (United States)

    Mitić, S.; Philipps, J.; Hofmann, D.

    2016-05-01

    Atmospheric pressure plasma jets have been intensively studied in recent years due to growing interest in their use for biomedical applications and surface treatments. Either surfaces can be treated by a plasma jet afterglow for cleaning or activation or a material can be deposited by a reactive gas component activated by plasma. Effects of plasma on liquid have been reported several times where the electron spin trapping method was used for radical detection. Here we propose another method of liquid treatment using the atmospheric pressure plasma jet. In the device presented here, liquid was sprayed in droplets from an inner electrode directly into a plasma jet where it was treated and sprayed out by gas flow. Optical end electrical measurements were done for diagnostics of the plasma while electron paramagnetic resonance measurements were used for detection of radicals (\\text{OH},\\text{OOH},\\text{CH} ) produced by plasma treatment of liquids.

  3. Characterization of a steam plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    An atmospheric steam plasma jet generated by an original dc water plasma torch is investigated using electrical and spectroscopic techniques. Because it directly uses the water used for cooling electrodes as the plasma-forming gas, the water plasma torch has high thermal efficiency and a compact structure. The operational features of the water plasma torch and the generation of the steam plasma jet are analyzed based on the temporal evolution of voltage, current and steam pressure in the arc chamber. The influence of the output characteristics of the power source, the fluctuation of the arc and current intensity on the unsteadiness of the steam plasma jet is studied. The restrike mode is identified as the fluctuation characteristic of the steam arc, which contributes significantly to the instabilities of the steam plasma jet. In addition, the emission spectroscopic technique is employed to diagnose the steam plasma. The axial distributions of plasma parameters in the steam plasma jet, such as gas temperature, excitation temperature and electron number density, are determined by the diatomic molecule OH fitting method, Boltzmann slope method and Hβ Stark broadening, respectively. The steam plasma jet at atmospheric pressure is found to be close to the local thermodynamic equilibrium (LTE) state by comparing the measured electron density with the threshold value of electron density for the LTE state. Moreover, based on the assumption of LTE, the axial distributions of reactive species in the steam plasma jet are estimated, which indicates that the steam plasma has high chemical activity.

  4. Etude d’un micro-jet de plasma à pression atmosphérique

    OpenAIRE

    Douat, Claire

    2014-01-01

    Micro plasma jets operating at atmospheric pressure in free atmosphere have recently attracted great attention because of their numerous advantages. In fact, micro plasma jets can be operated stably at atmospheric pressure and propagated over some centimeters in a free atmosphere. Moreover, these jets are non-thermal plasmas and create numerous reactive species. These properties allow to use this kind of plasma in many applications, such as surface treatment, decontamination, and plasma medic...

  5. Requirements for plasma synthesis of nanocrystals at atmospheric pressures

    International Nuclear Information System (INIS)

    While well-defined high quality semiconductor nanocrystals have been synthesized successfully in low pressure nonthermal plasmas, moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for some industrial applications. Here we present a heating and charging model for silicon nanoparticles during their synthesis in plasmas maintained over a wide range of pressures (10 − 105 Pa). We consider three collisionality regimes and determine the dominant contribution of each regime to heating and charging of nanoparticles under various plasma conditions. For plasmas maintained at atmospheric pressures we find that the ion current is mainly due to the collisional hydrodynamic contribution. Based on the model, we predict that the formation of nanocrystals at atmospheric pressure requires significantly higher plasma densities than those at low pressures. Strong nanoparticle cooling at atmospheric pressures necessitates high ion densities to reach temperatures required for crystallization of nanoparticles. Using experimentally determined plasma properties from the literature we estimate the nanoparticle temperature that can be achieved during synthesis at atmospheric pressures and predict that temperatures well above those required for crystallization can be achieved. Based on these results we suggest design principles for nanocrystal synthesis at atmospheric pressures. (paper)

  6. Non-thermal Aftertreatment of Particulates

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.E.

    2000-08-20

    Modern diesel passenger vehicles employing common rail, high speed direct injection engines are capable of matching the drivability of gasoline powered vehicles with the additional benefit of providing high torque at low engine speed [1]. The diesel engine also offers considerable fuel economy and CO2 emissions advantages. However, future emissions standards [2,3] present a significant challenge for the diesel engine, as its lean exhaust precludes the use of aftertreatment strategies employing 3- way catalytic converters, which operate under stoichiometric conditions. In recent years significant developments by diesel engine manufacturers have greatly reduced emissions of both particulates (PM) and oxides of nitrogen (NOx) [4,5]. However to achieve compliance with future legislative limits it has been suggested that an integrated approach involving a combination of engine modifications and aftertreatment technology [1] will be required. A relatively new approach to exhaust aftertreatment is the application of non-thermal plasma (NTP) or plasma catalyst hybrid systems. These have the potential for treatment of both NOx and PM emissions [6- 8]. The primary focus of recent plasma aftertreatment studies [9-12] has concentrated on the removal of NOx. It has been shown that by combining plasmas with catalysts it is possible to chemically reduce NOx. The most common approach is to use a 2- stage system relying upon the plasma oxidation of hydrocarbons to promote NO to NO2 conversion as a precursor to NO2 reduction over a catalyst. However, relatively little work has yet been published on the oxidation of PM by plasma [ 8,13]. Previous investigations [8] have reported that a suitably designed NTP reactor containing a packing material designed to filter and retain PM can effect the oxidation of PM in diesel exhausts at low temperatures. It has been suggested that the retained PM competes with hydrocarbons for O, and possibly OH, radicals. This is an important consideration

  7. Plasma Extraction of Oxygen from Martian Atmosphere Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Plasma techniques are proposed for the extraction of oxygen from the abundant carbon dioxide contained in the Martian atmosphere (96 % CO2). In this process, CO2 is...

  8. Plasma Catalytic Extraction of Oxygen from the Martian Atmosphere Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Plasma catalytic techniques are proposed for the extraction of oxygen from the abundant carbon dioxide contained in the Martian atmosphere (95% CO2).. The Phase I...

  9. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    International Nuclear Information System (INIS)

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture. In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery

  10. Non-equilibrium in flowing atmospheric plasmas

    International Nuclear Information System (INIS)

    This thesis deals with the fundamental aspects of two different plasmas applied in technological processes. The first one is the cesium seeded argon plasma in a closed cycle Magnetohydrodynamic (MHD) generator, the second is the thermal argon plasma in a cascade arc with an imposed flow. In Chapter 2 the influence of non-equilibrium on the mass and energy balances of a plasma is worked out. The general theory presented there can be applied to both the plasma in an MHD generator and to the cascade arc with imposed flow. Introductions to these plasmas are given in the Chapters 3 and 6 respectively. These chapters are both followed by two chapters which treat the theoretical and the experimental investigations. The results are summarized in Chapter 9. (Auth.)

  11. Cellular membrane collapse by atmospheric-pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jun Ahn, Hak; Lee, Jong-Soo, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); Lee, Jae-Hyeok; Kim, Jae-Ho [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  12. Cellular membrane collapse by atmospheric-pressure plasma jet

    International Nuclear Information System (INIS)

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells

  13. Cellular membrane collapse by atmospheric-pressure plasma jet

    Science.gov (United States)

    Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo

    2014-01-01

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  14. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    Science.gov (United States)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  15. Bacterial Inactivation by Atmospheric Pressure Dielectric Barrier Discharge Plasma Jet

    Science.gov (United States)

    Deng, Sanxi; Cheng, Cheng; Ni, Guohua; Meng, Yuedong; Chen, Hua

    2008-08-01

    Bacillus subtilis and Escherichia coli seeded in two media (agar and filter papers) were exposed to after-glow plasma emitted from a atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator in open air with a temperature of about 30-80 °C. In order to estimate the inactivation of microorganism using DBD plasma jet, various plasma conditions (such as treatment time and feed-gas composition of plasma jet) were changed. The results shown that the effective area of inactivation increased with the plasma treatment time as the bacteria seeded in Agar medium. The effective area of inactivation was much bigger than plasma jet treatment area after 5 min treatment. With the use of filter papers as the supporting media, the addition of reactive gases (oxygen, hydrogen peroxide vapor) into the plasma jet system, compared with only pure noble gas, led to a significant improvement in the bacterial Inactivation efficacy.

  16. Plasma deposition of thiophene derivatives under atmospheric pressure

    OpenAIRE

    DAMS, Roel; VANGENEUGDEN, Dirk; Vanderzande, Dirk

    2006-01-01

    Plasma deposition of conjugated polymer films under atmospheric pressure is described. Three thiophene derivatives (thiophene, 3-methylthiophene, and 3,4-ethylenedioxythiophene) are used as monomers. The plasma depositions with the various precursors are compared using analytical techniques such as X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, and resistance measurements. Good results are obtained with pulsed plasma depositions of...

  17. Plasma-ion Induced Sputtering and Heating of Titan's Atmosphere

    Science.gov (United States)

    Johnson, R. E.; Tucker, O. J.

    2007-05-01

    Titan is unique among the outer solar system icy satellites in having an atmosphere with a column density about ten times that of the Earth's atmosphere and an atmospheric mass to solid mass ratio comparable to that of Venus. Atmospheres equivalent in size to that at Titan would have been removed from the icy Galilean satellites by the plasma trapped in the Jovian magnetosphere (Johnson 2004). Therefore, the use of Cassini data to determine the present erosion rate of Titan's atmosphere provides an important end point for studying the erosion and heating of planetary and satellite atmospheres by an ambient plasma. In this paper we describe the deposition of energy, the erosion and the expansion of the upper atmosphere of Titan using Direct Simulation Monte Carlo models (Shematovich et al. 2003; Michael et al. 2005; Michael and Johnson 2005). These calculations are used to calibrate semi-empirical models of atmospheric sputtering (Johnson 1994) that are used to interpret Cassini data at Titan. Using a number of plasma conditions, the temperature and density vs. altitude above the exobase and the rate of escape are calculated. References: Johnson, R.E. "Plasma-induced Sputtering of an Atmosphere" in Space Science Reviews 69 215-253 (1994). Johnson. R.E., " The magnetospheric plasmadriven evolution of satellite atmospheres" Astrophys. J. 609, L99-L102 (2004). Michael, M. and R.E. Johnson, "Energy deposition of pickup ions and heating of Titan's atmosphere", Planetary & Space Sci.53, 1510-1514 (2005). Michael M., R.E. Johnson, F. Leblanc, M. Liu, J.G. Luhmann, and V.I. Shematovich, "Ejection of nitrogen from Titan's atmosphere by magnetospheric ions and pick-up ions", Icarus 175, 263-267 (2005). Shematovich, V.I., R.E. Johnson, M. Michael, and J.G. Luhmann, "Nitrogen loss from Titan", JGR 108, No. E8, 5087, doi:10.1029/2003JE002094 (2003).

  18. Experimental approaches for studying non-equilibrium atmospheric plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Shashurin, A., E-mail: ashashur@purdue.edu [School of Aeronautics & Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Keidar, M. [Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052 (United States)

    2015-12-15

    This work reviews recent research efforts undertaken in the area non-equilibrium atmospheric plasma jets with special focus on experimental approaches. Physics of small non-equilibrium atmospheric plasma jets operating in kHz frequency range at powers around few Watts will be analyzed, including mechanism of breakdown, process of ionization front propagation, electrical coupling of the ionization front with the discharge electrodes, distributions of excited and ionized species, discharge current spreading, transient dynamics of various plasma parameters, etc. Experimental diagnostic approaches utilized in the field will be considered, including Rayleigh microwave scattering, Thomson laser scattering, electrostatic streamer scatterers, optical emission spectroscopy, fast photographing, etc.

  19. Status and potential of atmospheric plasma processing of materials

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, Daphne [United States Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2011-03-15

    This paper is a review of the current status and potential of atmospheric plasma technology for materials processing. The main focus is the recent developments in the area of dielectric barrier discharges with emphasis in the functionalization of polymers, deposition of organic and inorganic coatings, and plasma processing of biomaterials. A brief overview of both the equipment being used and the physicochemical reactions occurring in the gas phase is also presented. Atmospheric plasma technology offers major industrial, economic, and environmental advantages over other conventional processing methods. At the same time there is also tremendous potential for future research and applications involving both the industrial and academic world.

  20. Non thermal emission in clusters of galaxies

    CERN Document Server

    Arnaud, M

    2008-01-01

    I briefly review our current knowledge of the non thermal emission from galaxy clusters and discuss future prospect with Simbol-X. Simbol-X will map the hard X-ray emission in clusters, determine its origin and disentangle the thermal and non-thermal components. Correlated with radio observations, the observation of the non-thermal X-ray emission, when confirmed, will allow to map both the magnetic field and the relativistic electron properties, key information to understand the origin and acceleration of relativistic particles in clusters and its impact on cluster evolution.

  1. Three electrode atmospheric pressure plasma jet in helium flow

    Science.gov (United States)

    Maletic, Dejan; Puac, Nevena; Malovic, Gordana; Petrovic, Zoran Lj.

    2015-09-01

    Plasma jets are widely used in various types of applications and lately more and more in the field of plasma medicine. However, it is not only their applicability that distinguishes them from other atmospheric plasma sources, but also the behavior of the plasma. It was shown that plasma plume is not continuous, but discrete set of plasma packages. Here we present iCCD images and current voltage characteristics of a three electrode plasma jet. Our plasma jet has a simple design with body made of glass tube and two transparent electrodes wrapped around it. The additional third metal tip electrode was positioned at 10 and 25 mm in front of the jet nozzle and connected to the same potential as the powered electrode. Power transmitted to the plasma was from 0.5 W to 4.0 W and the helium flow rate was kept constant at 4 slm. For the 10 mm configuration plasma is ignited on the metal tip in the whole period of the excitation signal and in the positive half cycle plasma ``bullet'' is propagating beyond the metal tip. In contrast to that, for the 25 mm configuration at the tip electrode plasma can be seen only in the minimum and maximum of the excitation signal, and there is no plasma ``bullet'' formation. This research has been supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, under projects ON171037 and III41011.

  2. Development and Characterization of a Hybrid Atmospheric Pressure Plasma Electrospinning System for Nanofiber Enhancement

    Science.gov (United States)

    Nowak, Joshua Michael

    A hybrid atmospheric pressure-electrospinning plasma system was developed to be used for the production of nanofibers and enhance their performance for various applications. Electrospun nanofibers are excellent candidates for protective clothing in the field of chemical and biological warfare defense; however, nanofibers are structurally weak and easily abrade and tear. They can be strengthened through the support of a substrate fabric, but they do not adhere well to substrates. Through the use of the developed hybrid system with either pure He or He/O2 (99/1) feed gas, adherence to the substrate along with abrasion and flex resistance were improved. The plasma source was diagnosed electrically, thermally, and optically. An equivalent circuit model was developed for non-thermal, highly collisional plasmas that can solve for average electron temperature and electron number density. The obtained temperatures (~ 3eV) correlate very well with the results of a neutral Bremsstrahlung continuum matching technique that was also employed. Using the temperatures and number densities obtained from the circuit model and the optical spectroscopy, a global chemical kinetics code was written in order to solve for radical and ion concentrations. This code shows that there are significant concentrations of oxygen radicals present. The XPS analysis confirmed that there was an increase of surface oxygen from 11.1% up to 16.6% for the He/O2 plasma and that the C-O bonding, which was not present in the control samples, has increased to 45.4%. The adhesive strength to the substrate has a significant increase of 81% for helium plasma and 144% for He/O2 plasma; however, these values remain below the desired values for protective clothing applications. The hybrid system displayed the ability to oxygenate nanofibers as they are being electrospun and shows the feasibility of making other surface modifications. The developed circuit model and chemical kinetics code both show promise as tools

  3. New Freeform Manufacturing Chains Based on Atmospheric Plasma Jet Machining

    Science.gov (United States)

    Arnold, T.; Boehm, G.; Paetzelt, H.

    2016-01-01

    New manufacturing chains for precise fabrication of asphere and freeform optical surfaces including atmospheric Plasma Jet Machining (PJM) technology will be presented. PJM is based on deterministic plasma-assisted material removal. It has the potential for flexible and cost-efficient shape generation and correction of small and medium-sized optical freeform elements. The paper discusses the interactions between the plasma tools and optical fused silica samples in the context of the pre-machined and intermediate surface states and identifies several plasma jet machining methods for freeform generation, surface correction, and finishing as well as suitable auxiliary polishing methods. The successful application of either processing chain is demonstrated.

  4. Parameters of atmospheric plasmas produced by electrosurgical devices

    Science.gov (United States)

    Keidar, Michael; Shashurin, Alexey; Canady, Jerome

    2013-10-01

    Electrosurgical systems are extensively utilized in general surgery, surgical oncology, plastic and reconstructive surgery etc. In this work we study plasma parameters created by electrosurgical system SS-200E/Argon 2 of US Medical Innovations. The maximal length of the discharge plasma column at which the discharge can be sustained was determined as function of discharge power and argon flow rate. Electrical parameters including discharge current and voltage were measured. Recently proposed Rayleigh microwave scattering method for temporally resolved density measurements of small-size atmospheric plasmas was utilized. Simultaneously, evolution of plasma column was observed using intensified charge-coupled device (ICCD) camera.

  5. Atmospheric pressure cold plasma as an antifungal therapy

    International Nuclear Information System (INIS)

    A microhollow cathode based, direct-current, atmospheric pressure, He/O2 (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  6. Non-Thermal Soot Denuder Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a non-thermal soot denuder for measuring chemical components of the nucleation mode particulate matter emissions from gas turbine engines, in...

  7. Non-thermal escape of molecular hydrogen from Mars

    CERN Document Server

    Gacesa, Marko; Kharchenko, Vasili

    2012-01-01

    We present a detailed theoretical analysis of a non-thermal escape of molecular hydrogen from Mars induced by collisions with hot atomic oxygen from martian corona. To accurately describe the energy transfer in O + H$_2(v,j)$ collisions, we performed extensive quantum-mechanical calculations of state-to-state elastic, inelastic, and reactive cross sections. The escape flux of H$_2$ molecules was evaluated using a simplified 1D column model of the martian atmosphere with realistic densities of atmospheric gases and hot oxygen production rates for the low solar activity conditions. An average density of the non-thermal escape flux of H$_2$ of $1.9\\times10^5$ cm$^{-2}$s$^{-1}$ was obtained considering energetic O atoms produced in dissociative recombinations of O$_{2}^{+}$ ions. Predicted rovibrational distribution of the escaping H$_2$ was found to contain a significant fraction of higher rotational states. While the non-thermal escape rate was found to be lower than Jeans flux for H$_2$ molecules, the non-ther...

  8. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe [Faculty of Physics, Alexandru Ioan Cuza University, Bd. Carol No. 11, 700506, Iasi (Romania); Grigoras, Constantin, E-mail: andrei.nastuta@uaic.ro [Physiopathology Department, Grigore T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania)

    2011-03-16

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  9. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    International Nuclear Information System (INIS)

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  10. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Science.gov (United States)

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  11. Comparative analysis on characteristics in non-thermal plasma reactor with oxygen and air%氧气/空气源低温等离子体发生器的性能对比分析

    Institute of Scientific and Technical Information of China (English)

    李小华; 李伟俊; 蔡忆昔; 施蕴曦; 徐辉; 顾林波; 濮晓宇

    2016-01-01

    . As a solution, diesel particular filter (DPF) has become a mainstay in PM control. However, there are some problems with DPF regeneration technologies, such as thermal damage, sulfur poisoning of the catalyst and low regeneration efficiency. So it is meaningful to find out a new regeneration method. Recently, non-thermal plasma (NTP) has become a research focus in the field of diesel emission control with its high efficiency, safety, no secondary pollution and a wide range of application. The active materials, mainly including O3,NO2,OH and O, can start complex chemical reactions, which is impossible in a conventional condition. So, it can be used to remove PM deposits in DPF and realize DPF regeneration. In term of NTP reactor, dielectric barrier discharge is widely used in the laboratory and industry for its simple type, safety and reliability. There are many influence factors concerning discharge, such as discharge voltage and frequency, gas type and flow, materials of barrier and electrode type. In this paper, a coaxial type NTP reactor was designed. In order to have a detailed recognition of NTP reactor, comparative analysis on oxygen and air dielectric discharge were investigated, with the studies on the influence of discharge electrode area (SE), peak-peak voltage (Up-p) and volume flow rate (qv) on discharge power (P), charge flux (Q), ozone concentration, ozone output and ozone output efficiency.SEwas changed by the length of wire tightly wrapped around the barrier,Up-pwas adjusted by a plasma source andqv was controlled by gas valves and flow meters. The results indicated thatSEhad a similar effect both on oxygen and air dielectric discharge. With the increase ofSE,P andQhad a linear growth but there were lower values and growth rate in air discharge. Ozone concentration increased asSE increased while its output efficiency decreased both in oxygen and air discharge.Up-phad remarkably positive impacts onP and Q, both of which had a rising growth rate. Ozone

  12. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment

  13. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  14. Time Evolution of Artificial Plasma Cloud in Atmospheric Environment

    Institute of Scientific and Technical Information of China (English)

    陆启明; 杨维纮; 刘万东

    2004-01-01

    By analyzing the time evolution of artificial plasma cloud in the high altitude of atmospheric environment, we found that there are two zones, an exponential attenuation zone and a linearly attenuating zone, existing in the spatial distribution of electron density of the artificial plasma clouds. The plasma generator's particle flux density only contributes to the exponential attenuation zone, and has no effect on the linear attenuation zone. The average electron density in the linear attenuation zone is about 10-5 of neutral particle density, and can diffuse over a wider area. The conclusion will supply some valuable references to the research of electromagnetic wave and artificial plasma interaction, the plasma invisibleness research of missile and special aerocraft,and the design of artificial plasma source.

  15. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion;

    Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... air are separated using a polyethylene film. The gliding arc was extended by a high speed air flow into ambient air, directed the polyester surface at an angle of approximately 30o. The ultrasonic waves were introduced vertically to the surface. After the plasma treatment using each plasma source...... without ultrasonic irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma...

  16. Generation of nano roughness on fibrous materials by atmospheric plasma

    International Nuclear Information System (INIS)

    Atmospheric plasma technology finds novel applications in textile industry. It eliminates the usage of water and of hazard liquid chemicals, making production much more eco-friendly and economically convenient. Due to chemical effects of atmospheric plasma, it permits to optimize dyeing and laminating affinity of fabrics, as well as anti-microbial treatments. Other important applications such as increase of mechanical resistance of fiber sleeves and of yarns, anti-pilling properties of fabrics and anti-shrinking property of wool fabrics were studied in this work. These results could be attributed to the generation of nano roughness on fibers surface by atmospheric plasma. Nano roughness generation is extensively studied at different conditions. Alternative explanations for the important practical results on textile materials and discussed.

  17. Microwave-assisted atmospheric pressure plasma polymerization of hexamethyldisiloxane

    Science.gov (United States)

    Matsubayashi, Toshiki; Hidaka, Hiroki; Muguruma, Hitoshi

    2016-07-01

    Microwave-assisted atmospheric pressure plasma polymerization is presented. A system with a re-entrant microwave cavity realizes simple matching, stable plasma, and free space under the orifice of plasma steam. Hexamethyldisiloxane is employed as a monomer, while argon is used as a carrier gas. The effective area of the hydrophobic coating film used corresponds to a circle of 20 mm diameter and the deposition rate considered is 5 nm/min. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy shows that the coating film has a large molecular weight (>200 kDa), suggesting that a high-crosslinking and three-dimensional polymer matrix is formed and microwave-assisted atmospheric pressure plasma polymerization is fulfilled.

  18. Characteristics of RF Cold Plasma at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    QIU Liang; MENG Yuedong; SHU Xingsheng

    2007-01-01

    The characteristics of a stable discharge at atmospheric pressure is investigated.The plasma source consisted of two closely spaced parallel-plated perforated electrodes,driven by a radio frequency power to generate a uniform cold plasma in Helium at atmospheric pressure.Both alpha and gamma modes were clearly observed.The hollow cathode effects were found in the discharge.The influence of the dielectric barrier on the discharge was also investigated by utilizing a surface-anodized aluminium electrode as the anode.

  19. Atmospheric pressure plasmas for aerosols processes in materials and environment

    OpenAIRE

    Borra, J.P.; Jidenko, N; Bourgeois, E

    2009-01-01

    Abstract The paper highlights applications of some atmospheric pressure plasmas (dc-corona, streamer and spark and ac-Dielectric Barrier Discharges) to aerosol processes for Materials and Environment (filtration, diagnostics). The production of vapor i.e. condensable gaseous species, leads to nano-sized particles by physical and chemical routes of nucleation in these AP plasmas: (i) when dc streamer and spark filamentary discharges as well as ac filamenta...

  20. Bluff body flow control with atmospheric plasma actuators

    OpenAIRE

    Huang, X.; Zhang, X.; Gabriel, S

    2008-01-01

    Plasma actuators operating in atmospheric air were employed to modify aerodynamic flow over a bluff body. The model consisted of a cylinder and a strut that was installed on the trailing half side of the cylinder. The objective was to reduce the broadband noise that is mainly generated by the impingment of the cylinder wake on the strut. The plasma actuators were configured to produce dielectric barrier discharges, through which the flow separation from the cylinder was enhanced. As a result ...

  1. Application of Atmospheric Pressure Plasma in Polymer and Composite Adhesion

    OpenAIRE

    Yu, Hang

    2015-01-01

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The...

  2. Effects of cold atmospheric plasmas on adenoviruses in solution

    International Nuclear Information System (INIS)

    Experiments were performed with cold atmospheric plasma (CAP) to inactivate adenovirus, a non-enveloped double stranded DNA virus, in solution. The plasma source used was a surface micro-discharge technology operating in air. Various plasma diagnostic measurements and tests were performed in order to determine the efficacy of CAPs and to understand the inactivation mechanism(s). Different stages of the adenovirus ‘life cycle’ were investigated—infectivity and gene expression as well as viral replication and spread. Within 240 s of CAP treatment, inactivation of up to 6 decimal log levels can be achieved. (paper)

  3. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, He...... temperature for a month the O/C ratio at the plasma treated surfaces decreased to 0.151, which is close to that of the untreated ones. It can be attributed to the adsorption of hydrocarbon contamination at the plasma treated surfaces....

  4. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    Science.gov (United States)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  5. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion;

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma....... The ultrasonic irradiation during the plasma treatment consistently enhanced the treatment efficiency. The principal effect of ultrasonic irradiation can be attributed to enhancing surface oxidation during plasma treatment. In addition, ultrasonic irradiation can suppress arcing, and the uniformity of...... and the material surface, and thus, many reactive species generated in the plasma can reach the surface before they are inactivated and can be efficiently utilised for surface modification. In the present work, glass fibre reinforced polyester plates were treated using a dielectric barrier discharge...

  6. Physics and medical applications of cold atmospheric plasma

    Science.gov (United States)

    Keidar, Michael

    2013-09-01

    Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Varieties of novel plasma diagnostic techniques were applied in a quest to understand physics of cold plasmas. In particular it was established that the streamer head charge is about 108 electrons, the electrical field in the head vicinity is about 107 V/m, and the electron density of the streamer column is about 1019 m3. We have demonstrated the efficacy of cold plasma in a pre-clinical model of various cancer types (lung, bladder, breast, head, neck, brain and skin). Both in-vitro andin-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration velocity can have important implications in cancer treatment by localizing the affected area of the tissue and by decreasing metastasic development. In addition, cold plasma treatment has affected the cell cycle of cancer cells. In particular, cold plasmainduces a 2-fold increase in cells at the G2/M-checkpoint in both papilloma and carcinoma cells at ~24 hours after treatment, while normal epithelial cells (WTK) did not show significant differences. It was shown that reactive oxygen species metabolism and oxidative stress responsive genes are deregulated. We investigated the production of reactive oxygen species (ROS) with cold plasma treatment as a potential mechanism for the tumor ablation observed.

  7. Cold atmospheric plasma sterilization: from bacteria to biomolecules

    Science.gov (United States)

    Kong, Michael

    2009-10-01

    Although ionized gases have been known to have biological effects for more than 100 years, their impact on the practice in healthcare service became very significant only recently. Today, plasma-based surgical tools are used for tissue reduction and blood coagulation as surgical procedures. Most significant however is the speed at which low-temperature gas plasmas are finding new applications in medicine and biology, including plasma sterilization, wound healing, and cancer therapies just to name a few. In the terminology of biotechnology, the ``pipeline'' is long and exciting. This presentation reviews the current status of the field with a particular emphasis on plasma inactivation of microorganisms and biomolecules, for which comprehensive scientific evidence has been obtained. Some of the early speculations of biocidal plasma species are now being confirmed through a combination of optical emission spectroscopy, laser-induced fluorescence, mass spectrometry, fluid simulation and biological sensing with mutated bacteria. Similarly, fundamental studies are being performed to examine cell components targeted by gas plasmas, from membrane, through lipid and membrane proteins, to DNA. Scientific challenge is significant, as the usual complexity of plasma dynamics and plasma chemistry is compounded by the added complication that cells are live and constantly evolving. Nevertheless, the current understanding of plasma inactivation currently provides strong momentum for plasma decontamination technologies to be realized in healthcare. We will discuss the issue of protein and tissue contaminations of surgical instruments and how cold atmospheric plasmas may be used to degrade and reduce their surface load. In the context of plasma interaction with biomolecules, we will consider recent data of plasma degradation of adhesion proteins of melanoma cells. These adhesion proteins are important for cancer cell migration and spread. If low-temperature plasmas could be used to

  8. Surface analysis of polymers treated by remote atmospheric pressure plasma.

    Science.gov (United States)

    Gonzalez, Eleazar; Hicks, Robert F

    2010-03-01

    The surfaces of high-density polyethylene (HDPE), poly(methyl methacrylate) (PMMA), and polyethersulfone (PES) were treated with a low-temperature, atmospheric pressure oxygen and helium plasma. The polymers were exposed to the downstream afterglow of the plasma, which contained primarily oxygen atoms and metastable oxygen molecules ((1)Delta(g) O(2)), and no ions or electrons. X-ray photoelectron spectroscopy (XPS) of HDPE revealed that 20% of the carbon atoms were converted into oxidized functional groups, with about half of these being carboxylic acids. Attenuated total reflection infrared spectroscopy of all three polymers was obtained in order to determine the types of functional groups formed by atmospheric plasma exposure. It was found that the polymers were rapidly oxidized with addition of alcohols, ketones, and carboxylic acids to the carbon backbone. Chain scission occurred on HDPE and PMMA, while on PES the aromatic groups underwent ring-opening and insertion of carboxylic acid. PMID:19950952

  9. Application of atmospheric pressure plasma in polymer and composite adhesion

    Science.gov (United States)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  10. Plasma-ion-induced Sputtering And Heating Of Titan'S Atmosphere

    Science.gov (United States)

    Tucker, Orenthal J.

    2006-09-01

    Plasma-ion-induced sputtering and heating of Titan's atmosphere O.J. Tucker (1), R.E. Johnson (1), M. Michael (1), V.I. Shematovich (1,2) J.H. Luhmann (3), S.A. Ledvina (3) (1) University of Virginia, Charlottesville, VA 22904, USA (2) Institute of Astronomy RAS, Moscow 109017, Russia, (3) University of California, Berkeley, CA 94720, USA Titan is unique among the outer solar system icy satellites in having an atmosphere with a column density about ten times that of the Earth's atmosphere. Atmospheres equivalent in size similar to that at Titan would have been removed from the icy Galilean satellites by the plasma trapped in the Jovian magnetosphere (Johnson 2004). In this paper we describe the deposition of energy, the erosion and the expansion of the upper atmosphere of Titan using Direct Simulation Monte Carlo models (Shematovich et al. 2003; Michael et al. 2005). These calculations are used to calibrate semi-empirical models of atmospheric sputtering (Johnson 1994) that can be employed in interpreting Cassini data at Titan. It is shown that the globally averaged flux of magnetospheric and pickup ions deposit more energy in Titan's upper atmosphere than solar radiation. Using a number of plasma conditions, the temperature and density vs. altitude above the exobase and the rate of escape are calculated and compared to available Cassini data. References: Johnson, R.E. "Plasma-induced Sputtering of an Atmosphere" in Space Science Reviews 69 215-253 (1994). Johnson. R.E., “ The magnetospheric plasma-driven evolution of satellite atmospheres” Astrophys. J. 609, L99-L102 (2004). Michael M., R.E. Johnson, F. Leblanc, M. Liu, J.G. Luhmann, and V.I. Shematovich, "Ejection of nitrogen from Titan's atmosphere by magnetospheric ions and pick-up ions", Icarus 175, 263-267 (2005). Shematovich, V.I., R.E. Johnson, M. Michael, and J.G. Luhmann,"Nitrogen loss from Titan", JGR 108, No. E8, 5087, doi:10.1029/2003JE002094 (2003). 1

  11. Etching of silicon surfaces using atmospheric plasma jets

    Science.gov (United States)

    Paetzelt, H.; Böhm, G.; Arnold, Th

    2015-04-01

    Local plasma-assisted etching of crystalline silicon by fine focused plasma jets provides a method for high accuracy computer controlled surface waviness and figure error correction as well as free form processing and manufacturing. We investigate a radio-frequency powered atmospheric pressure He/N2/CF4 plasma jet for the local chemical etching of silicon using fluorine as reactive plasma gas component. This plasma jet tool has a typical tool function width of about 0.5 to 1.8 mm and a material removal rate up to 0.068 mm3 min-1. The relationship between etching rate and plasma jet parameters is discussed in detail regarding gas composition, working distance, scan velocity and RF power. Surface roughness after etching was characterized using atomic force microscopy and white light interferometry. A strong smoothing effect was observed for etching rough silicon surfaces like wet chemically-etched silicon wafer backsides. Using the dwell-time algorithm for a deterministic surface machining by superposition of the local removal function of the plasma tool we show a fast and efficient way for manufacturing complex silicon structures. In this article we present two examples of surface processing using small local plasma jets.

  12. Etching of silicon surfaces using atmospheric plasma jets

    International Nuclear Information System (INIS)

    Local plasma-assisted etching of crystalline silicon by fine focused plasma jets provides a method for high accuracy computer controlled surface waviness and figure error correction as well as free form processing and manufacturing. We investigate a radio-frequency powered atmospheric pressure He/N2/CF4 plasma jet for the local chemical etching of silicon using fluorine as reactive plasma gas component. This plasma jet tool has a typical tool function width of about 0.5 to 1.8 mm and a material removal rate up to 0.068 mm3 min−1. The relationship between etching rate and plasma jet parameters is discussed in detail regarding gas composition, working distance, scan velocity and RF power. Surface roughness after etching was characterized using atomic force microscopy and white light interferometry. A strong smoothing effect was observed for etching rough silicon surfaces like wet chemically-etched silicon wafer backsides. Using the dwell-time algorithm for a deterministic surface machining by superposition of the local removal function of the plasma tool we show a fast and efficient way for manufacturing complex silicon structures. In this article we present two examples of surface processing using small local plasma jets. (paper)

  13. Using atmospheric pressure plasma treatment for treating grey cotton fabric.

    Science.gov (United States)

    Kan, Chi-Wai; Lam, Chui-Fung; Chan, Chee-Kooi; Ng, Sun-Pui

    2014-02-15

    Conventional wet treatment, desizing, scouring and bleaching, for grey cotton fabric involves the use of high water, chemical and energy consumption which may not be considered as a clean process. This study aims to investigate the efficiency of the atmospheric pressure plasma (APP) treatment on treating grey cotton fabric when compared with the conventional wet treatment. Grey cotton fabrics were treated with different combinations of plasma parameters with helium and oxygen gases and also through conventional desizing, scouring and bleaching processes in order to obtain comparable results. The results obtained from wicking and water drop tests showed that wettability of grey cotton fabrics was greatly improved after plasma treatment and yielded better results than conventional desizing and scouring. The weight reduction of plasma treated grey cotton fabrics revealed that plasma treatment can help remove sizing materials and impurities. Chemical and morphological changes in plasma treated samples were analysed by FTIR and SEM, respectively. Finally, dyeability of the plasma treated and conventional wet treated grey cotton fabrics was compared and the results showed that similar dyeing results were obtained. This can prove that plasma treatment would be another choice for treating grey cotton fabrics. PMID:24507269

  14. Surface modification of polymeric materials by cold atmospheric plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, K.G., E-mail: kostov@feg.unesp.br [Faculty of Engineering in Guaratinguetá–FEG, Universidade Estadual Paulista–UNESP Guaratiguetá, 12516-410, SP (Brazil); Nishime, T.M.C.; Castro, A.H.R. [Faculty of Engineering in Guaratinguetá–FEG, Universidade Estadual Paulista–UNESP Guaratiguetá, 12516-410, SP (Brazil); Toth, A. [Institute of Material and Environmental Chemistry, Hungarian Academy of Science P.O. Box 17, H-1525, Budapest (Hungary); Hein, L.R.O. [Faculty of Engineering in Guaratinguetá–FEG, Universidade Estadual Paulista–UNESP Guaratiguetá, 12516-410, SP (Brazil)

    2014-09-30

    Highlights: • We investigate polymer surface modification by atmospheric pressure plasma jet APPJ. • Jet operation conditions for uniform surface modification were determined. • The APPJ added O atoms to the polymer surface and also enhanced the roughness. • The degree of polymer surface modification by APPJ and DBD were compared. • The APPJ is more efficient in attaching O atoms and produces less polymer fragments. - Abstract: In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source – the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

  15. Oxygen Plasma Treatment of Rubber Surface by the Atmospheric Pressure Cold Plasma Torch

    DEFF Research Database (Denmark)

    Lee, Bong-ju; Kusano, Yukihiro; Kato, Nobuko;

    1997-01-01

    A new application of the atmospheric cold plasma torch has been investigated. Namely, the surface treatment of an air-exposed vulcanized rubber compound. The effect of plasma treatment was evaluated by the bondability of the treated rubber compound with another rubber compound using a polyurethane...... adhesive. The adhesion property was improved by treatment of the rubber compound with plasma containing oxygen radicals. Physical and chemical changes of the rubber surface as a result of the plasma treatment were analyzed by field emission scanning electron microscopy (FE-SEM) and fourier transform...

  16. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Science.gov (United States)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10–20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  17. Cold Atmospheric Plasma Technology for Decontamination of Space Equipment

    Science.gov (United States)

    Thomas, Hubertus; Rettberg, Petra; Shimizu, Tetsuji; Thoma, Markus; Morfill, Gregor; Zimmermann, Julia; Müller, Meike; Semenov, Igor

    2016-07-01

    Cold atmospheric plasma (CAP) technology is very fast and effective in inactivation of all kinds of pathogens. It is used in hygiene and especially in medicine, since the plasma treatment can be applied to sensitive surfaces, like skin, too. In a first study to use CAP for the decontamination of space equipment we could show its potential as a quite promising alternative to the standard "dry heat" and H2O2 methods [Shimizu et al. Planetary and Space Science, 90, 60-71. (2014)]. In a follow-on study we continue the investigations to reach high application level of the technology. First, we redesign the actual setup to a plasma-gas circulation system, increasing the effectivity of inactivation and the sustainability. Additionally, we want to learn more about the plasma chemistry processes involved in the inactivation. Therefore, we perform detailed plasma and gas measurements and compare them to numerical simulations. The latter will finally be used to scale the decontamination system to sizes useful also for larger space equipment. Typical materials relevant for space equipment will be tested and investigated on surface material changes due to the plasma treatment. Additionally, it is planned to use electronic boards and compare their functionality before and after the CAP expose. We will give an overview on the status of the plasma decontamination project funded by the Bavarian Ministry of Economics.

  18. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; ZHU Fengsen; TU Xin; BO Zheng; CEN Kefa; LI Xiaodong

    2016-01-01

    In this work,a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions.The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals,high speed photography,and optical emission spectroscopic diagnostics.Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g.,10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone,in this RGA system,a lower gas flow rate (e.g.,2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions.Two different motion patterns can be clearly observed in the N2 and air RGA plasmas.The time-resolved arc voltage signals show that three different arc dynamic modes,the arc restrike mode,takeover mode,and combined modes,can be clearly identified in the RGA plasmas.The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.

  19. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  20. Atmospheric pressure plasma treatment of flat aluminum surface

    International Nuclear Information System (INIS)

    Highlights: • DCSBD plasma is applicable for activation and cleaning of flat aluminum surfaces. • Decrease in the value of the contact angle after 1 s plasma treatment was 93%. • EDX measurements confirmed removal of oil contamination by 50% decreasing of carbon. • XPS analyze shown decrease of carbon content and increase of aluminum hydroxide and oxyhydroxide. - Abstract: The atmospheric pressure ambient air and oxygen plasma treatment of flat aluminum sheets using the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD) were investigated. The main objective of this study is to show the possibility of using DCSBD plasma source to activate and clean aluminum surface. Surface free energy measurements, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM/EDX) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) were used for the characterization of the aluminum surface chemistry and changes induced by plasma treatment. Short plasma exposure times (several seconds) led to a significant increase in the surface free energy due to changes of its polar components. Various ageing effects, depending on the storage conditions were observed and discussed. Effects of air and oxygen plasmas on the removal of varying degrees of artificial hydrocarbon contamination of aluminum surfaces were investigated by the means of EDX, ATR-FTIR and XPS methods. A significant decrease in the carbon surface content after the plasma treatment indicates a strong plasma cleaning effect, which together with high energy efficiency of the DCSBD plasma source points to potential benefits of DCSBD application in processing of the flat aluminum surfaces

  1. Compact atmospheric pressure plasma self-resonant drive circuits

    Science.gov (United States)

    Law, V. J.; Anghel, S. D.

    2012-02-01

    This paper reports on compact solid-state self-resonant drive circuits that are specifically designed to drive an atmospheric pressure plasma jet and a parallel-plate dielectric barrier discharge of small volume (0.5 cm3). The atmospheric pressure plasma (APP) device can be operated with helium, argon or a mixture of both. Equivalent electrical models of the self-resonant drive circuits and discharge are developed and used to estimate the plasma impedance, plasma power density, current density or electron number density of three APP devices. These parameters and the kinetic gas temperature are dependent on the self-resonant frequency of the APP device. For a fixed switching frequency and APP device geometry, the plasma parameters are controlled by adjusting the dc voltage at the primary coil and the gas flow rate. The resonant frequency is controlled by the selection of the switching power transistor and means of step-up voltage transformation (ferrite core, flyback transformer, or Tesla coil). The flyback transformer operates in the tens of kHz, the ferrite core in the hundreds of kHz and Tesla coil in the MHz range. Embedded within this work is the principle of frequency pulling which is exemplified in the flyback transformer circuit that utilizes a pickup coil for feedback control of the switching frequency.

  2. Compact atmospheric pressure plasma self-resonant drive circuits

    International Nuclear Information System (INIS)

    This paper reports on compact solid-state self-resonant drive circuits that are specifically designed to drive an atmospheric pressure plasma jet and a parallel-plate dielectric barrier discharge of small volume (0.5 cm3). The atmospheric pressure plasma (APP) device can be operated with helium, argon or a mixture of both. Equivalent electrical models of the self-resonant drive circuits and discharge are developed and used to estimate the plasma impedance, plasma power density, current density or electron number density of three APP devices. These parameters and the kinetic gas temperature are dependent on the self-resonant frequency of the APP device. For a fixed switching frequency and APP device geometry, the plasma parameters are controlled by adjusting the dc voltage at the primary coil and the gas flow rate. The resonant frequency is controlled by the selection of the switching power transistor and means of step-up voltage transformation (ferrite core, flyback transformer, or Tesla coil). The flyback transformer operates in the tens of kHz, the ferrite core in the hundreds of kHz and Tesla coil in the MHz range. Embedded within this work is the principle of frequency pulling which is exemplified in the flyback transformer circuit that utilizes a pickup coil for feedback control of the switching frequency. (paper)

  3. Numerical simulation of chemical processes in atmospheric plasmas

    Institute of Scientific and Technical Information of China (English)

    Ouyang Jian-Ming; Guo Wei; Wang Long; Shao Fu-Qiu

    2004-01-01

    A model is built to study chemical processes in atmospheric plasmas at low altitude (high pressure) and at high altitude (low pressure). The plasma lifetime and the temporal evolution of the main charged species are presented.The electron number density does not strictly obey the exponential damping law in a long period. The heavy charged species are dominant at low altitude in comparison with the light species at high altitude. Some species of small amount in natural air play an important role in the processes.

  4. The main properties of microwave argon plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  5. The main properties of microwave argon plasma at atmospheric pressure

    Science.gov (United States)

    Benova, E.; Pencheva, M.

    2010-01-01

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  6. The main properties of microwave argon plasma at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Benova, E; Pencheva, M, E-mail: benova_phys@deo.uni-sofia.b [Department for Language Teaching and International Students, University of Sofia, 27 Kosta Loulchev Street, BG-1111 Sofia (Bulgaria)

    2010-01-01

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  7. Degradation of polyethylene induced by plasma in oxidizing atmospheres

    International Nuclear Information System (INIS)

    The garbage of polyethylene is not easily degradable in normal environmental conditions . The indiscriminate use of this polymer and the enormous quantity of garbage which is generated carries a damage to the environment due to its long life as waste. The objective of this work is to study the conditions in which can be carried out the degradation of polyethylene. A form of accelerating the degradation is exposing it to plasma with reactive atmospheres. In this work a study of surface modification of polyethylene by plasmas with discharges of direct current of oxygen and nitrogen is presented. (Author)

  8. Atmospheric Pressure Plasma: A High-Performance Tool for the Efficient Removal of Biofilms

    OpenAIRE

    Fricke, Katja; Koban, Ina; Tresp, Helena; Jablonowski, Lukasz; Schröder, Karsten; Kramer, Axel; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Kocher, Thomas

    2012-01-01

    Introduction The medical use of non-thermal physical plasmas is intensively investigated for sterilization and surface modification of biomedical materials. A further promising application is the removal or etching of organic substances, e.g., biofilms, from surfaces, because remnants of biofilms after conventional cleaning procedures are capable to entertain inflammatory processes in the adjacent tissues. In general, contamination of surfaces by micro-organisms is a major source of problems ...

  9. Non-thermal x-ray emission from wire array z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Ampleford, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Stephanie B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jennings, Christopher Ashley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Webb, Timothy Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harper-Slaboszewicz, V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Loisel, Guillaume Pascal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flanagan, Timothy McGuire [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bell, Kate Suzanne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Brent M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McPherson, Leroy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gregory A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chittenden, Jeremy P. [Imperial College, London (United Kingdom); Sherlock, Mark [Imperial College, London (United Kingdom); Appelbe, Brian [Imperial College, London (United Kingdom); Giuliani, John [Naval Research Lab. (NRL), Washington, DC (United States); Ouart, Nicholas [Naval Research Lab. (NRL), Washington, DC (United States); Seely, John [Artep Inc., Ellicott City, MD (United States)

    2015-12-01

    We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.

  10. Plasma-induced Escape and Alterations of Planetary Atmospheres

    Science.gov (United States)

    Johnson, R. E.; Tucker, O. J.; Ewrin, J.; Cassidy, T. A.; Leblanc, F.

    2009-12-01

    The atmospheres of planets and planetary satellites are typically imbedded in space plasmas. Depending on the interaction with the induced or intrinsic fields energetic ions can have access to the thermosphere and the corona affecting their composition and thermal structure and causing loss to space. These processes are often lumped together as ‘atmospheric sputtering’ (Johnson 1994). In this talk I will review the results of simulations of the plasma bombardment at a number of solar system bodies and use those data to describe the effect on the upper atmosphere and on escape. Of considerable recent interest is the modeling of escape from Titan. Prior to Cassini’s tour of the Saturnian system, plasma-induced escape was suggested to be the dominant loss process, but recent models of enhanced thermal escape, often referred to as ‘slow hydrodynamic’ escape, have been suggested to lead to much larger Titan atmospheric loss rates (Strobel 2008; Cui et al. 2008). Such a process has been suggested to be active at some point in time on a number of solar system bodies. I will present hybrid fluid/ kinetic models of the upper atmosphere of certain bodies in order to test both the plasma-induced and thermal escape processes. Preliminary results suggest that the loss rates estimated using the ‘slow hydrodynamic’ escape process can be orders of magnitude too large. The implications for Mars, Titan and Pluto will be discussed. Background for this talk is contained in the following papers (Johnson 2004; 2009; Chaufray et al. 2007; Johnson et al. 2008; 2009; Tucker and Johnson 2009). References: Chaufray, J.Y., R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, and J.G. Luhmann, Mars Solar Wind interaction: formation of the Martian corona and atmosphric loss to space, JGR 112, E09009, doi:10.1029/2007JE002915 (2007) Cui, J., Yelle, R. V., Volk, K. Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere. J. Geophys. Res. 113, doi:10

  11. Assessment of Atmospheric Pressure Plasma Treatment for Implant Osseointegration

    OpenAIRE

    Danna, Natalie R.; Beutel, Bryan G.; Nick Tovar; Lukasz Witek; Charles Marin; Bonfante, Estevam A.; Rodrigo Granato; Marcelo Suzuki; Coelho, Paulo G

    2015-01-01

    This study assessed the osseointegrative effects of atmospheric pressure plasma (APP) surface treatment for implants in a canine model. Control surfaces were untreated textured titanium (Ti) and calcium phosphate (CaP). Experimental surfaces were their 80-second air-based APP-treated counterparts. Physicochemical characterization was performed to assess topography, surface energy, and chemical composition. One implant from each control and experimental group (four in total) was placed in one ...

  12. Study of organic pollutants oxidation by atmospheric plasma discharge

    Science.gov (United States)

    Gumuchian, Diane; Cavadias, Simeon; Duten, Xavier; Tatoulian, Michael; da Costa, Patrick; Ognier, Stephanie

    2013-09-01

    Ozonation is one of the usual steps in water treatment processes. However, some organic molecules (acetic acid) cannot be decomposed during ozonation. In that context, we are developing an Advanced Oxidation Process based on the use of a needle plate discharge at atmospheric pressure. The process is a reactor with a plasma discharge between a high voltage electrode and the solution in controlled atmosphere. Characterizations of the plasma obtained in different atmospheres were carried out (Optical Emission Spectroscopy, iCCD camera observations, etc). The efficiency of the process was evaluated by the percentage of degradation of the model-pollutant, measured by liquid chromatography analysis. Treatments in nitrogen lead to the formation of NOx species that decrease the efficiency of the process. Indeed, NOx lead to the consumption of actives species created. Treatments in argon are the most efficient. Two hypotheses are considered: (i) metastable argon participates to the degradation of acetic acid or to the formation of radicals (ii) discharges in argon lead to the formation of many streamers of low energy that increase the interface plasma/solution.

  13. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  14. Surface wave propagation characteristics in atmospheric pressure plasma column

    International Nuclear Information System (INIS)

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance

  15. Surface wave propagation characteristics in atmospheric pressure plasma column

    Science.gov (United States)

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2007-04-01

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance.

  16. Surface wave propagation characteristics in atmospheric pressure plasma column

    Energy Technology Data Exchange (ETDEWEB)

    Pencheva, M [Faculty of Physics, Sofia University, 5 James Bourchier Blvd., BG-1164 Sofia (Bulgaria); Benova, E [Department for Language Teaching and International Students, Sofia University, 27 Kosta Loulchev Street, BG-1111 Sofia (Bulgaria); Zhelyazkov, I [Faculty of Physics, Sofia University, 5 James Bourchier Blvd., BG-1164 Sofia (Bulgaria)

    2007-04-15

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency ({nu}/{omega}) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption {nu}/{omega} = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary {nu}/{omega}. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance.

  17. Temporal modulation of plasma species in atmospheric dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aijun; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn; Liu, Dingxin; Rong, Mingzhe, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Kong, Michael G. [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Frank Reidy Research Center for Bioelectrics, Department of Electrical and Computer Engineering, Old Dominion University, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2014-07-15

    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N{sub 2} dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N{sub 2} level in the plasma-forming gas. Besides, significant electron wall losses lead to the DBD being more positively charged and, with a distinct temporal separation in the peak electron and cation densities, the plasma is characterized with repetitive bursts of net positive charges. The temporal details of ionic and reactive plasma species may provide a new idea for some biological processes.

  18. Atmospheric pressure plasma jet for treatment of polymers

    Directory of Open Access Journals (Sweden)

    M. Wolter

    2009-12-01

    Full Text Available Purpose: Polymers are commonly used as packing materials as well as for optical and microelectronic applications. For these purposes different requirements like impermeability for different gases, scratching firmness and electrical conductivity are demanded. Since, polymers usually do not exhibit these attributes a surface modification is necessary.Design/methodology/approach: This paper describes possibilities for coating of polymers with a cold atmospheric pressure plasma jet (APPJ. Due to the rather low temperature of the process the plasma jet is suitable for the treatment of temperature-sensitive materials with melting points below 150°C. For coating of polymers the organic precursor Hexamethyldisiloxane (HMDSO has been used to deposit silicon oxide layers on surface.Findings: Spatial distributions of reactive species have been measured by optical emission spectroscopy (OES in the range between 280 and 1100 nm during the plasma process. The energy influx to the substrate was determined by thermal probe measurements. For the affirmation of the chemical composition of the surface X-ray photon spectroscopy (XPS has been performed.Practical implications: It could be confirmed that SiOx thin film deposition on polymeric substrate using commercially available APPJ with no internal precursor feeding is possible.Originality/value: The examinations of atmospheric pressure plasma jet for treatment of polymers.

  19. Non-thermal Emission in Sagittarius B?

    CERN Document Server

    Lang, Cornelia C; Goss, W M

    2008-01-01

    In this paper, we summarize three recent papers which point out possible non-thermal radio emission arising from the Sgr B region in the Galactic Center. We also present a high-resolution and sensitive image of the Sgr B region at 1.4 GHz made with the VLA. Using this image and a matched-array 327 MHz VLA image, we derive a thermal spectrum for the Sgr B complex and suggest that the radio emission is a mixture of optically thin and optically thick emission over the frequency range discussed here (255 MHz to 1.4 GHz). In addition, we show that the the apparent non-thermal power law slope for the Sgr B2 continuum temperature observed by the GBT is likely determined by source structure and provides limited information about the physical processes in the Sgr B region. While the structure Sgr B region is complex and furthermore confused by the Galactic background, there does not appear to be substantial evidence for a non-thermal component in Sgr B.

  20. Io's neutral clouds: From the atmosphere to the plasma torus

    Science.gov (United States)

    Burger, Matthew Howard

    2003-10-01

    Since the discovery of sodium thirty years ago, observations of Io's neutral features have provided essential insight into understanding the relationship between the Io's atmosphere and the Io torus, a ring of plasma encircling Jupiter. In this thesis I use observations and models of lo's corona, extended neutral clouds, and fast sodium jet to probe the interactions between the atmosphere, torus, and neutral clouds. A corona and neutral cloud model, based on the model of Wilson and Schneider (1999), has been developed to study neutral loss from Io. Neutrals are ejected from Io's exobase and their trajectories followed under the influence of gravity until lost into the plasma torus. I also developed description of the plasma torus based on Voyager and ground-based observations to accurately determine neutral lifetimes. Mutual eclipsing events between Galilean satellites were used to measure the shape of lo's sodium corona, revealing a corona that is only approximately spherically symmetric around Io. I discovered a previously undetected asymmetry: the sub-Jupiter corona is denser than the anti-Jupiter corona. Modeling implies that sodium source from the sub-Jupiter hemisphere must be twice as large as from the anti-Jupiter hemisphere. The Galileo spacecraft has imaged a remarkable atmospheric escape process occurring in Io's ionosphere. Electrodynamic consequences of Io's motion through Jupiter's magnetosphere drive mega-amp currents through lo's ionosphere; some sodium ions carrying this current are neutralized as they leave the atmosphere. The Galileo images show that the resulting fast sodium jet removes ˜5 × 1025 atoms sec-1 from Io's atmosphere. The source region of the jet is much smaller than Io itself implying that the ionosphere is densest near Io's equator. A model-based comparison of the neutral oxygen and sodium clouds details differences in the morphologies and spatial extent of each: sodium extends only 1/4 the way around Jupiter while oxygen forms a

  1. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets

    International Nuclear Information System (INIS)

    Atmospheric-pressure non-equilibrium plasma jets (APNP-Js), which generate plasma in open space rather than in a confined discharge gap, have recently been a topic of great interest. In this paper, the development of APNP-Js will be reviewed. Firstly, the APNP-Js are grouped based on the type of gas used to ignite them and their characteristics are discussed in detail. Secondly, one of the most interesting phenomena of APNP-Js, the ‘plasma bullet’, is discussed and its behavior described. Thirdly, the very recent developments on the behavior of plasma jets when launched in a controlled environment and pressure are also introduced. This is followed by a discussion on the interaction between plasma jets. Finally, perspectives on APNP-J research are presented. (paper)

  2. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    Science.gov (United States)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  3. A global mechanism creating low atmospheric luminous cold plasmas

    Science.gov (United States)

    Gitle Hauge, Bjørn; Petter Strand, Erling

    2014-05-01

    Red, white/yellow and blue balls of light have been observed in the low atmosphere over the Hessdalen valley , Norway, standing still and moving horizontally with random speed. Characteristics of these transient luminous phenomena in Hessdalen, and data from America, suggest that the process which creates these low atmospheric plasmas is a global mechanism, not only localized to the remote and desolated Hessdalen valley in Norway (62Deg.N - 11Deg.E). Transient luminous phenomena's has been observed in the low atmosphere over the Hessdalen valley for over 200 years. The first written documentation goes back to 1811 when the priest Jakob Tode Krogh wrote about it in his diary. Since 1982, inhabitants, tourists, journalists and scientists have done recurrent observations. E.P.Strand conducted the first scientific campaign in 1984, documenting over 50 observations in one month. 15 years later, Norwegian and Italian scientists installed the first permanent automated research base here. In 2010 French researchers joined this collaboration and installed two additional research bases. This transient luminous phenomenon, TLP, has been detected simultaneously on optical and radar devices, but electromagnetic radiation from this phenomenon has until now eluded detection. Smirnov (1994) and Zou(1994) was among the first scientist who used plasma physics trying to explain this phenomenon. Work done by Pavia & Taft (2010 and 2012) suggests that the TLP in Hessdalen probably is dusty or cold plasma, arranged as a cluster of Coulomb crystals. Optical spectrum data obtained by Strand (1984), Teodorani (2004) and Hauge (2007) showing a continuous optical spectrum support this hypothesis. Pictures of spiraling light rays obtained by Strand in 1984, and Hauge in 2004 and 2010 suggests that this plasma is moving in a strong magnetic field, and might be created by it. Radar reflections from the TLP in Hessdalen obtained by Strand in 1984 and Montebugnoli and Monari in 2007 points

  4. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Hicks; Hans W. Herrmann

    2003-12-15

    The purpose of this project was to demonstrate a practical, environmentally benigh technology for the surface decontamination and decommissioning of radioactive waste. A low temperature, atmospheric pressure plasma has been developed with initial support from the DOE, Environmental Management Sciences Program. This devise selectively etches radioactive metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. The technology shows a great potential for accelerating the clean-up effort for the equipment and structures contaminated with radioactive materials within the DOE complex. The viability of this technology has been demonstrated by selectively and rapidly stripping uranium from stainless steel surfaces at low temperature. Studies on uranium oxide have shown that etch rates of 4.0 microns per minute can be achieved at temperature below 473 K. Over the past three years, we have made numerous improvements in the design of the atmospheric pressure plasma source. We are now able to scale up the plasma source to treat large surface areas.

  5. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    International Nuclear Information System (INIS)

    The purpose of this project was to demonstrate a practical, environmentally benigh technology for the surface decontamination and decommissioning of radioactive waste. A low temperature, atmospheric pressure plasma has been developed with initial support from the DOE, Environmental Management Sciences Program. This devise selectively etches radioactive metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. The technology shows a great potential for accelerating the clean-up effort for the equipment and structures contaminated with radioactive materials within the DOE complex. The viability of this technology has been demonstrated by selectively and rapidly stripping uranium from stainless steel surfaces at low temperature. Studies on uranium oxide have shown that etch rates of 4.0 microns per minute can be achieved at temperature below 473 K. Over the past three years, we have made numerous improvements in the design of the atmospheric pressure plasma source. We are now able to scale up the plasma source to treat large surface areas

  6. Etching process of silicon dioxide with nonequilibrium atmospheric pressure plasma

    International Nuclear Information System (INIS)

    An ultrahigh etch rate (14 μm/min) of SiO2 and a high selectivity of SiO2/Si over 200 were achieved using a microwave-excited nonequilibrium atmospheric pressure plasma source employing He, NF3, and H2O gases, which have been developed for application to microelectromechanical systems and other bionanotechnology fields. In order to clarify the etching mechanism, two diagnostic methods have been performed: (1) imaging of plasma emission with an intensified charge-coupled device camera, and (2) absorption measurements using Fourier transform infrared spectroscopy. The etching characteristics are discussed in relation to the spatial distributions of the species involved. The etch rate depended considerably on the distance between the plasma and the substrate. Some radicals generated from the feed gases reached the substrate directly, while other radicals recombined into different species, which reached the substrate. An abundance of HF molecules were produced through a reaction between radicals generated by the atmospheric pressure discharge of NF3 and H2O. From these measurements, it has been found that the HF molecules generated played a role in producing the high etch rate of SiO2 and high etch selectivity of SiO2/Si

  7. Tailoring non-equilibrium atmospheric pressure plasmas for healthcare technologies

    Science.gov (United States)

    Gans, Timo

    2012-10-01

    Non-equilibrium plasmas operated at ambient atmospheric pressure are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. This includes the unique opportunity to deliver short-lived highly reactive species such as atomic oxygen and atomic nitrogen. Reactive oxygen and nitrogen species can initiate a wide range of reactions in biochemical systems, both therapeutic and toxic. The toxicological implications are not clear, e.g. potential risks through DNA damage. It is anticipated that interactions with biological systems will be governed through synergies between two or more species. Suitable optimized plasma sources are improbable through empirical investigations. Quantifying the power dissipation and energy transport mechanisms through the different interfaces from the plasma regime to ambient air, towards the liquid interface and associated impact on the biological system through a new regime of liquid chemistry initiated by the synergy of delivering multiple energy carrying species, is crucial. The major challenge to overcome the obstacles of quantifying energy transport and controlling power dissipation has been the severe lack of suitable plasma sources and diagnostic techniques. Diagnostics and simulations of this plasma regime are very challenging; the highly pronounced collision dominated plasma dynamics at very small dimensions requires extraordinary high resolution - simultaneously in space (microns) and time (picoseconds). Numerical simulations are equally challenging due to the inherent multi-scale character with very rapid electron collisions on the one extreme and the transport of chemically stable species characterizing completely different domains. This presentation will discuss our recent progress actively combining both advance optical diagnostics and multi-scale computer simulations.

  8. Nanostructured Sulfide Composite Coating Prepared by Atmospheric Plasma Spraying

    Institute of Scientific and Technical Information of China (English)

    关耀辉

    2006-01-01

    Nanostructured FeS-SiC coating was deposited by atmospheric plasma spraying (APS). The microstructure and phase composition of the coating were characterized with SEM and XRD, respectively. In addition, the size distribution of the reconstituted powders and the porosity of the coating have been measured. It was found that the reconstitiuted powers with sizes in the range of 20 to 80 μm had excellent flowability and were suitable for plasma spraying process. The assprayed FeS-SiC composite coating exhibited a bimodal distribution with small grains (30~80nm) and large grains (100~200nm). The coating was mainly composed of FeS and SiC, a small quantity of Fe1-x S and oxide were also found. The porosity of the coating was approximately 19 %.

  9. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Hicks; Gary S. Selwyn

    2001-01-09

    Project was to develop a low-cost, environmentally benign technology for the decontamination and decommissioning of transuranic waste. With the invention of the atmospheric-pressure plasma jet the goal was achieved. This device selectively etches heavy metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. Studies on tantalum, a surrogate material for plutonium, have shown that etch rate of 6.0 microns per minute can be achieved under mild conditions. Over the past three years, we have made numerous improvements in the design of the plasma jet. It may now be operated for hundreds of hours and not undergo any degradation in performance. Furthermore, small compact units have been developed, which are easily deployed in the field.

  10. Controlling the NO production of an atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    The production of NO radicals by an atmospheric pressure plasma jet has been investigated by means of absorption spectroscopy in the mid-infrared region (IR) and optical emission spectroscopy (OES) in the ultraviolet (UV) part of the spectrum. The plasma jet investigated here operates in argon with air admixtures up to 1%. The study shows that OES can be used to characterize the relative NO production at small air admixtures. The Production of NO radicals can be controlled by variation of air admixture. Important to note—especially for operation in ambient conditions—is that a small addition of water vapour strongly affects the production of NO radicals especially at higher air admixtures (greater than 0.2%). (paper)

  11. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    International Nuclear Information System (INIS)

    Project was to develop a low-cost, environmentally benign technology for the decontamination and decommissioning of transuranic waste. With the invention of the atmospheric-pressure plasma jet the goal was achieved. This device selectively etches heavy metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. Studies on tantalum, a surrogate material for plutonium, have shown that etch rate of 6.0 microns per minute can be achieved under mild conditions. Over the past three years, we have made numerous improvements in the design of the plasma jet. It may now be operated for hundreds of hours and not undergo any degradation in performance. Furthermore, small compact units have been developed, which are easily deployed in the field

  12. Non-thermal WIMPs as dark radiation

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Farinaldo S. [Department of Physics and Santa Cruz Institute for Particle Physics University of California, Santa Cruz, CA 95064 (United States)

    2014-06-24

    It has been thought that only light species could behave as radiation and account for the dark radiation observed recently by Planck, WMAP9, South Pole and ATACAMA telescopes. In this work we will show GeV scale WIMPs can plausibly account for the dark radiation as well. Heavy WIMPs might mimic the effect of a half neutrino species if some fraction of them are produced non-thermally after their thermal freeze-out. In addition, we will show how BBN, CMB and Structure Formation bounds might be circumvented.

  13. Non-thermal WIMPs as Dark Radiation

    OpenAIRE

    Queiroz, Farinaldo S.

    2013-01-01

    It has been thought that only light species could behave as radiation and account for the dark radiation observed recently by Planck, WMAP9, South Pole and ATACAMA telescopes. In this work we will show that GeV scale WIMPs can plausibly account for the dark radiation as well. Heavy WIMPs might mimic the effect of a half neutrino species if some of their fraction were produced non-thermally after the thermal freeze-out. In addition, we will show how BBN, CMB and Structure Formation bounds migh...

  14. Apoptosis in vascular cells induced by cold atmospheric plasma treatment

    Science.gov (United States)

    Sladek, Raymond; Stoffels, Eva

    2006-10-01

    Apoptosis is a natural mechanism of cellular self-destruction. It can be triggered by moderate, yet irreversible damage. Apoptosis plays a major role in tissue renewal. Artificial apoptosis induction will become a novel therapy that meets all requirements for tissue-saving surgery. Diseased tissues can disappear without inflammation and scarring. This is particularly important in treatment of blockages in body tracts (e.g. cardiovascular diseases). Artificial induction of apoptosis can be achieved by means of cold plasma treatment. In this work an atmospheric micro-plasma operated in helium/air has been used to induce apoptosis in vascular cells. Parametric studies of apoptosis induction have been conducted; the efficiency is almost 100%. The apoptotic factors are ROS/RNS (reactive oxygen and nitrogen species). Their densities in the plasma have been measured by mass spectrometry. For apoptosis induction, RNS seem to be more important than ROS, because of their relative abundance. Moreover, addition of a ROS scavenger (ascorbic acid) to the cell culture medium does not reduce the occurrence of apoptosis. Cold plasma is a very efficient tool for fundamental studies of apoptosis, and later, for controlled tissue removal in vivo.

  15. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Science.gov (United States)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  16. Characteristics of dielectric barrier discharge plasmas in atmospheric humid air

    Science.gov (United States)

    Fukuda, Y.; Fukui, K.; Iwami, R.; Matsuoka, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    Atmospheric pressure plasmas have a great advantage for industrial applications such as surface modifications, sterilization and film preparation. In particular, reactive plasmas including OH radicals can be generated in humid air. On the other hand, it is known that dielectric barrier discharge (DBD) plasmas in air are strongly affected by humidity. In this study, a twisted pair sample is used as a DBD electrode. The twisted pair consists of two enameled wires, and it is installed in a climate chamber to control ambient temperature and humidity. Repetitive impulse voltage pulses were applied to the twisted pair to produce DBD plasmas. Light emission, electromagnetic wave and current pulses were used to detect discharge activities. The discharge inception voltage (DIV) is basically determined by Paschen curve in air, however, the DIV was decreased by increasing the humidity. In addition, it was found that there were largely scattered data of DIV at the low humidity condition. After the pre-discharges, the DIV reached to the steady state value. On the other hand, there was no scattering of the observed DIV at the high humidity condition. Measurements of surface potential of the sample after the discharge show these behaviors could be explained by surface charge accumulation on the enameled wire. It is noted that there was no fluctuation in the DIV data in the case of unipolar voltage pulse.

  17. Excitation dynamics of micro-structured atmospheric pressure plasma arrays

    OpenAIRE

    Boettner, H; Waskoenig, J.; Connell, D O '; Winter, J; Schulz-von der Gathen, V

    2010-01-01

    Abstract The spatial dynamics of the optical emission from an array of 50 times 50 individual micro cavity plasma devices are investigated. The array is operated in argon and argon-neon mixtures close to atmospheric pressure with an AC voltage. The optical emission is analysed with phase and space resolution. It has been found that the emission is not continuous over the entire AC period, but occurs once per half period. Each of the observed emission phases shows a self-pulsing of the disc...

  18. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne;

    2007-01-01

    density increased with the plasma treatments. Adhesion test of the treated glassy carbon covered with cured epoxy showed cohesive failure, indicating strong bonding after the treatments. This is in contrast to the adhesion tests of untreated samples where the epoxy readily peeled off the glassy carbon.......Glassy carbon plates were treated with an atmospheric pressure dielectric barrier discharge (DBD). He gas, gas mixtures of He and reactive gases such as O2, CO2 and NH3, Ar gas and Ar/NH3 gas mixture were used as treatment gases. The oxygen and nitrogen contents on the surface as well as defect...

  19. Cold atmospheric pressure plasma jet interactions with plasmid DNA

    International Nuclear Information System (INIS)

    The effect of a cold (<40 deg. C) radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. Gel electrophoresis was used to analyze the DNA forms post-treatment. The experimental data are fitted to a rate equation model that allows for quantitative determination of the rates of single and double strand break formation. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks.

  20. The growth of organosilicon film using a hexamethyldisilazane/oxygen atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    An atmospheric pressure plasma jet, using a hexamethyldisilazane and oxygen mixture, was used to deposit an organosilicon thin film on polycarbonate (PC) substrates. The atmospheric pressure plasma jet deposited homogeneous thin films without unfavorable contamination from the plasma source. The surface properties of the organosilicon thin films were studied as a function of oxygen gas flow rate. The atmospheric pressure plasma deposited organosilicon thin films were analyzed using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV–vis spectrometry and atomic forced microscopy. Surface analysis showed that atmospheric pressure plasma deposited films are more inorganic as the oxygen flow rate increases. The UV–vis spectra, detected in the range 300–800 nm, demonstrated improved transparency in the visible region and increased absorption in UV region of the spectrum. The improved hardness of the atmospheric pressure plasma deposited PC substrates was measured using a pencil hardness testing method and this was related to the chemical composition of the plasma deposited organosilicon thin films. The plasma jet allowed deposition of the coating without a chamber. - Highlights: ► Organosilicon thin films on polycarbonate (PC) by atmospheric pressure plasma jet. ► Properties of SiOx films vary with the injected oxygen flow rate in the plasma jet. ► Improved hardness of atmospheric pressure plasma deposited SiOx films achieved. ► Double-pipe atmospheric pressure plasma jet suitable for chamberless deposition

  1. The growth of organosilicon film using a hexamethyldisilazane/oxygen atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chun, E-mail: chunhuang@saturn.yzu.edu.tw; Wu, Shin-Yi; Tsai, Ching-Yuan; Liu, Wei-Ting

    2013-02-01

    An atmospheric pressure plasma jet, using a hexamethyldisilazane and oxygen mixture, was used to deposit an organosilicon thin film on polycarbonate (PC) substrates. The atmospheric pressure plasma jet deposited homogeneous thin films without unfavorable contamination from the plasma source. The surface properties of the organosilicon thin films were studied as a function of oxygen gas flow rate. The atmospheric pressure plasma deposited organosilicon thin films were analyzed using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV–vis spectrometry and atomic forced microscopy. Surface analysis showed that atmospheric pressure plasma deposited films are more inorganic as the oxygen flow rate increases. The UV–vis spectra, detected in the range 300–800 nm, demonstrated improved transparency in the visible region and increased absorption in UV region of the spectrum. The improved hardness of the atmospheric pressure plasma deposited PC substrates was measured using a pencil hardness testing method and this was related to the chemical composition of the plasma deposited organosilicon thin films. The plasma jet allowed deposition of the coating without a chamber. - Highlights: ► Organosilicon thin films on polycarbonate (PC) by atmospheric pressure plasma jet. ► Properties of SiOx films vary with the injected oxygen flow rate in the plasma jet. ► Improved hardness of atmospheric pressure plasma deposited SiOx films achieved. ► Double-pipe atmospheric pressure plasma jet suitable for chamberless deposition.

  2. Biomedical Applications of the Cold Atmospheric Plasma: Cell Responses

    Science.gov (United States)

    Volotskova, Olga

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. Depending on the configuration the cold plasma sources can be used in the following areas: wound healing, skin diseases, hospital hygiene, sterilization, antifungal treatments, dental care, cosmetics targeted cell/tissue removal, and cancer treatments. This dissertation is focused on the studies of biomedical applications of cold atmospheric plasma jet based on helium flow and resultant cell responses to the cold plasma treatment. The studies were carried out on extra-cellular and intra-cellular levels in vitro. The main practical applications are wound healing and alternative to existing cancer therapy methods, areas of great interest and significant challenges. The CAP jet was built in the Micropropulsion and Nanotechnology Laboratory of Dr. Michael Keidar, as a part of multidisciplinary collaboration with the GW Medical School (Dr. M.A. Stepp) concerned with plasma medicine and bioengineering studies. Normal and cancer cells have two fundamental behavioral properties, proliferation and motility, which can be evaluated through cell migration rates and cell cycle progression. Various microscopic, spectroscopic and flow cytometry techniques were used to characterize cell responses to the cold plasma treatment. It was found that CAP effect on the cells is localized within the area of the treatment (of around ˜ 5mm in diameter). The migration rates of the normal skin cells can be reduced up to ˜ 40%. However, depending on the cell type the required treatment time is different, thus differential treatment of various cells presented in tissue is possible. The CAP effect on the migration was explained through the changes of the cell surface proteins/integrins. It was also found that normal and cancer cells respond differently to the CAP treatment under the same

  3. Towards the understanding of non-thermal airplasma action: effects on bacteria and fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Jäger, Aleš; Polívka, Leoš; Syková, Eva; Terebova, N.; Kulikov, A.; Kubinová, Šárka; Dejneka, Alexandr

    2016-01-01

    Roč. 6, č. 30 (2016), 25286-25292. ISSN 2046-2069 R&D Projects: GA MŠk(CZ) LM2011026; GA MŠk(CZ) LO1309 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : non-thermal plasma * bactericidal effects * medical applications Subject RIV: BO - Biophysics Impact factor: 3.840, year: 2014

  4. Cell Attachment and Viability Study of PCL Nano-fiber Modified by Cold Atmospheric Plasma.

    Science.gov (United States)

    Atyabi, Seyed Mohammad; Sharifi, Fereshteh; Irani, Shiva; Zandi, Mojgan; Mivehchi, Houri; Nagheh, Zahra

    2016-06-01

    The field of tissue engineering is an emerging discipline which applies the basic principles of life sciences and engineering to repair and restore living tissues and organs. The purpose of this study was to investigate the effect of cold and non-thermal plasma surface modification of poly (ϵ-caprolactone) (PCL) scaffolds on fibroblast cell behavior. Nano-fiber PCL was fabricated through electrospinning technique, and some fibers were then treated by cold and non-thermal plasma. The cell-biomaterial interactions were studied by culturing the fibroblast cells on nano-fiber PCL. Scaffold biocompatibility test was assessed using an inverted microscope. The growth and proliferation of fibroblast cells on nano-fiber PCL were analyzed by MTT viability assay. Cellular attachment on the nano-fiber and their morphology were evaluated using scanning electron microscope. The result of cell culture showed that nano-fiber could support the cellular growth and proliferation by developing three-dimensional topography. The present study demonstrated that the nano-fiber surface modification with cold plasma sharply enhanced the fibroblast cell attachment. Thus, cold plasma surface modification greatly raised the bioactivity of scaffolds. PMID:27286857

  5. Conversion of emitted dimethyl sulfide into eco-friendly species using low-temperature atmospheric argon micro-plasma system

    International Nuclear Information System (INIS)

    Highlights: ► Dimethyl sulfide (DMS) was fully decomposed by two-electrode Ar micro-plasma. ► The reaction of DMS/Ar resulted in forming solid compound and gaseous product. ► The C-, H- and S-containing solid compound was fixed on the quartz inner tube. ► The H2-, CS2-, and H2S-gaseous products were possibly recyclable and trapped. ► The dissociation mechanism and treatment efficiency of DMS were also discussed. - Abstract: A custom-made atmospheric argon micro-plasma system was employed to dissociate dimethyl sulfide (DMS) into a non-foul-smelling species. The proposed system takes the advantages of low energy requirement and non-thermal process with a constant flow rate at ambient condition. In the experiments, the compositions of DMS/argon plasma, the residual gaseous phases, and solid precipitates were respectively characterized using an optical emission spectrometer, various gas-phase analyzers, and X-ray photoemission spectroscopy. For 400 ppm DMS introduced into argon plasma with two pairs of electrodes (90 W), a complete decomposition of DMS was achieved; the DMS became converted into excited species such as C*, C2*, H*, and CH*. When gaseous products were taken away from the treatment area, the excited species tended to recombine and form stable compounds or species, which formed as solid particles and gaseous phases. The solid deposition was likely formed by the agglomeration of C-, H-, and S-containing species that became deposited on the quartz inner tube. For the residual gaseous phases, low-molecular-weight segments mostly recombined into relatively thermodynamic stable species, such as hydrogen, hydrogen sulfide, and carbon disulfide. The dissociation mechanism and treatment efficiency are discussed, and a treatment of converting DMS into H2-, CS2-, and H2S-dominant by-products is proposed.

  6. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    International Nuclear Information System (INIS)

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed

  7. Bactericide Effect of Atmospheric Plasma of Flat and Comb Electrodes on Escherichia coli

    OpenAIRE

    A. Hosseinzadeh Colagar; F. Sohbatzadeh; S. Mirzanejhad; N. Asadian

    2008-01-01

    Objective: The current study was undertaken to examine the bactericide effects of atmospheric plasma produced by flat and comb electrodes on E.coli.Materials and Methods: DC (20 W) and AC (500 W) power supplies, flat and comb electrodes, insulator and oxygen gas were used to produce atmospheric plasma. Bactericide effects of the atmospheric plasma were studied on E.coli on sterilized plate placed on ice powder, at 3 McFarland concentration.Results: Flow of the atmospheric plasma produced by f...

  8. Numerical simulation of chemical processes in helium plasmas in atmosphere environment

    Institute of Scientific and Technical Information of China (English)

    欧阳建明; 郭伟; 王龙; 邵福球

    2005-01-01

    A model is built to study chemical processes in plasmas generated in helium with trace amounts of air at atmospheric pressure or low pressures. The plasma lifetimes and the temporal evolutions of the main charged species are presented. The plasma lifetimes are longer than that in air plasma at atmospheric pressure, but this is not true at low pressures. The electron number density does not strictly obey the exponential damping law in a longer period.

  9. Atmospheric Pressure Plasma-Electrospin Hybrid Process for Protective Applications

    Science.gov (United States)

    Vitchuli Gangadharan, Narendiran

    2011-12-01

    Chemical and biological (C-B) warfare agents like sarin, sulfur mustard, anthrax are usually dispersed into atmosphere in the form of micro aerosols. They are considered to be dangerous weapon of mass destruction next to nuclear weapons. The airtight protective clothing materials currently available are able to stop the diffusion of threat agents but not good enough to detoxify them, which endangers the wearers. Extensive research efforts are being made to prepare advanced protective clothing materials that not only prevent the diffusion of C-B agents, but also detoxify them into harmless products thus ensuring the safety and comfort of the wearer. Electrospun nanofiber mats are considered to have effective filtration characteristics to stop the diffusion of submicron level particulates without sacrificing air permeability characteristics and could be used in protective application as barrier material. In addition, functional nanofibers could be potentially developed to detoxify the C-B warfare threats into harmless products. In this research, electrospun nanofibers were deposited on fabric surface to improve barrier efficiency without sacrificing comfort-related properties of the fabrics. Multi-functional nanofibers were fabricated through an electrospinning-electrospraying hybrid process and their ability to detoxify simulants of C-B agents was evaluated. Nanofibers were also deposited onto plasma-pretreated woven fabric substrate through a newly developed plasma-electrospinning hybrid process, to improve the adhesive properties of nanofibers on the fabric surface. The nanofiber adhesion and durability properties were evaluated by peel test, flex and abrasion resistance tests. In this research work, following tasks have been carried out: i) Controlled deposition of nanofiber mat onto woven fabric substrate Electrospun Nylon 6 fiber mats were deposited onto woven 50/50 Nylon/Cotton fabric with the motive of making them into protective material against submicron

  10. Targeting the cancer cell cycle by cold atmospheric plasma

    Science.gov (United States)

    Volotskova, O.; Hawley, T. S.; Stepp, M. A.; Keidar, M.

    2012-09-01

    Cold atmospheric plasma (CAP), a technology based on quasi-neutral ionized gas at low temperatures, is currently being evaluated as a new highly selective alternative addition to existing cancer therapies. Here, we present a first attempt to identify the mechanism of CAP action. CAP induced a robust ~2-fold G2/M increase in two different types of cancer cells with different degrees of tumorigenicity. We hypothesize that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. The expression of γH2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle. Together with a significant decrease in EdU-incorporation after CAP, these data suggest that tumorigenic cancer cells are more susceptible to CAP treatment.

  11. Plasma penetration depth and mechanical properties of atmospheric plasma-treated 3D aramid woven composites

    International Nuclear Information System (INIS)

    Three-dimensional aramid woven fabrics were treated with atmospheric pressure plasmas, on one side or both sides to determine the plasma penetration depth in the 3D fabrics and the influences on final composite mechanical properties. The properties of the fibers from different layers of the single side treated fabrics, including surface morphology, chemical composition, wettability and adhesion properties were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurement and microbond tests. Meanwhile, flexural properties of the composites reinforced with the fabrics untreated and treated on both sides were compared using three-point bending tests. The results showed that the fibers from the outer most surface layer of the fabric had a significant improvement in their surface roughness, chemical bonding, wettability and adhesion properties after plasma treatment; the treatment effect gradually diminished for the fibers in the inner layers. In the third layer, the fiber properties remained approximately the same to those of the control. In addition, three-point bending tests indicated that the 3D aramid composite had an increase of 11% in flexural strength and 12% in flexural modulus after the plasma treatment. These results indicate that composite mechanical properties can be improved by the direct fabric treatment instead of fiber treatment with plasmas if the fabric is less than four layers thick

  12. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas

    Science.gov (United States)

    Ishikawa, Kenji; Hori, Masaru

    2014-08-01

    Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  13. Integrin activation by a cold atmospheric plasma jet

    International Nuclear Information System (INIS)

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. In this paper, we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. We focus on the study of CAP interaction with fibroblasts and corneal epithelial cells. The data show that fibroblasts and corneal epithelial cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration. Both cell types reduced their migration rates by ∼30-40% after CAP compared to control cells. Also, the impact of CAP treatment on cell migration and persistence of fibroblasts after integrin activation by MnCl2, serum starvation or replating cells onto surfaces coated with integrin ligands is assessed; the results show that activation by MnCl2 or starvation attenuates cells’ responses to plasma. Studies carried out to assess the impact of CAP treatment on the activation state of β1 integrin and focal adhesion size by using immunofluorescence show that fibroblasts have more active β1 integrin on their surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly. (paper)

  14. Basic characteristics of an atmospheric pressure rf generated plasma jet

    Institute of Scientific and Technical Information of China (English)

    Wang Shou-Guo; Li Hai-Jiang; Ye Tian-Chun; Zhao Ling-Li

    2004-01-01

    A plasma jet has been developed which operates using radio frequency (rf) power and produces a stable homogeneous discharge at atmospheric pressure. Its discharge characteristics, especially the dependence of stable discharge operating range on the feed gas, were studied, and the electric parameters such as RMS current, RMS voltage and reflected power were obtained with different gas flows. These studies indicate that there is an optimum range of operation of the plasma jet for a filling with a gas mixture of He and O2. Two "failure" modes of the discharge are identified.One is a filamentary arc when the input power is raised above a critical level, another is that the discharge disappears gradually as the addition of O2 approaches 3.2%. Possible explanations for the two failure modes have been given. The current and voltage waveform measurements show that there is a clear phase shift between normal and failure modes.In addition, Ⅰ-Ⅴ curves as a function of pure helium and for 1% addition of oxygen have been studied.

  15. Surface chemistry of atmospheric plasma modified polycarbonate substrates

    International Nuclear Information System (INIS)

    Surface of polycarbonate substrates were activated by atmospheric plasma torch using different gas pressure, distance from the substrates, velocity of the torch and number of treatments. The modifications were analyzed by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Plasma treatment caused the surface characteristics to become more hydrophilic as measured by the water contact angle, which decreased from 88 deg. to 18 deg. The decrease in contact angle was mainly due to oxidation of the surface groups, leading to formation of polar groups with hydrophilic property. XPS results showed an increase in the intensity of -(C-O)- groups and also introduction of new functional groups i.e. -(O-C=O)- after the treatment process. AFM topographic images demonstrated an increase in the rms roughness of the surface from 2.0 nm to 4.0 nm caused by the treatment. Increase in rms roughness of the surface caused relevant decrease in transmission up to ∼2-5%.

  16. Cold Atmospheric Plasma as an alternative therapy for cancer therapies

    Science.gov (United States)

    Volotskova, Olga; Hawley, Teresa; Stepp, Mary Ann; Keidar, Michael

    2012-10-01

    CAP (cold atmospheric plasma) is a technology, which is based on quasi-neutral ionized gas (plasma at low temperatures), which is being evaluated as an alternative or addition to existing cancer therapies. A recent study shows that CAP treatment can cause a significant reduction in tumor size in vivo. Thus the purpose of this study is to begin to identify the mechanism by which cancer cells are killed by CAP, i.e. to identify the mechanism of CAP action. CAP induced a robust ˜2-fold G2/M increase in two different types of cancer cells with different degrees of tumorigenicity. We hypothesize that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. The expression of γH2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle together with significant decrease in EdU-signal of DNA-replicating cells. Our data suggest that more tumorigenic cancer cells are better susceptible to CAP treatment.

  17. Gas flow dependence of atmospheric pressure plasma needle discharge characteristics

    Science.gov (United States)

    Qian, Muyang; Yang, Congying; Liu, Sanqiu; Chen, Xiaochang; Ni, Gengsong; Wang, Dezhen

    2016-04-01

    In this paper, a two-dimensional coupled model of neutral gas flow and plasma dynamics is presented to explain the gas flow dependence of discharge characteristics in helium plasma needle at atmospherics pressure. The diffusional mixing layer between the helium jet core and the ambient air has a moderate effect on the streamer propagation. The obtained simulation results present that the streamer shows the ring-shaped emission profile at a moderate gas flow rate. The key chemical reactions which drive the streamer propagation are electron-impact ionization of helium neutral, nitrogen and oxygen molecules. At a moderate gas flow rate of 0.5 slm, a significant increase in propagation velocity of the streamer is observed due to appropriate quantity of impurities air diffuse into the helium. Besides, when the gas flow rate is below 0.35 slm, the radial density of ground-state atomic oxygen peaks along the axis of symmetry. However, when the gas flow rate is above 0.5 slm, a ring-shaped density distribution appears. The peak density is on the order of 1020 m-3 at 10 ns in our work.

  18. Development of Simplified Atmospheric-Pressure Plasma Nitriding

    Science.gov (United States)

    Yamamoto, Hirofumi; Ichiki, Ryuta; Maeda, Akihide; Yamanouchi, Kenta; Akamine, Shuichi; Kanazawa, Seiji; Oita University Team

    2015-09-01

    Nitriding treatment is one of the surface hardening technologies, applied to dies and automobile components. In recent industry, low-pressure nitriding treatment using vacuum system is mainstream. On the other hand, we have originally developed an atmospheric-pressure plasma nitriding which do not need vacuum system. However we needed an air-tight container to purge residual oxygen and external heater to control treatment temperature. To make this technique practical, we addressed to construct a simplified treatment system, where treatment temperature is controlled by thermal plasma itself and oxygen purging is achieved by a simple cover. This means that any air-tight container and external heater is not necessary. As a result, surface temperature is controlled by changing treatment gap from nozzle tip to steel surface. We succeeded in controlling well thickness of hardened layer by adjusting treatment temperature even in such a simplified system. In the conference, we also discuss experimental results for hardening complex shaped materials by using our simplified nitriding.

  19. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth

    Science.gov (United States)

    Zhu, Wei; Lee, Se-Jun; Castro, Nathan J.; Yan, Dayun; Keidar, Michael; Zhang, Lijie Grace

    2016-01-01

    Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and novel drug loaded core-shell nanoparticles and evaluate its underlying mechanism for targeted breast cancer treatment. For this purpose, core-shell nanoparticles were synthesized via co-axial electrospraying. Biocompatible poly (lactic-co-glycolic acid) was selected as the polymer shell to encapsulate anti-cancer therapeutics. Results demonstrated uniform size distribution and high drug encapsulation efficacy of the electrosprayed nanoparticles. Cell studies demonstrated the effectiveness of drug loaded nanoparticles and CAP for synergistic inhibition of breast cancer cell growth when compared to each treatment separately. Importantly, we found CAP induced down-regulation of metastasis related gene expression (VEGF, MTDH, MMP9, and MMP2) as well as facilitated drug loaded nanoparticle uptake which may aid in minimizing drug resistance-a major problem in chemotherapy. Thus, the integration of CAP and drug encapsulated nanoparticles provides a promising tool for the development of a new cancer treatment strategy. PMID:26917087

  20. Plasma-polymerized methyl methacrylate via intense and highly energetic atmospheric pressure micro-plasma for bio-medical applications

    Science.gov (United States)

    Park, Choon-Sang; Ballato, John; Kim, Sung-O.; Clemson University Team

    2013-09-01

    Poly (methyl methacrylate), PMMA, has been widely used as a biocompatible material in bone cement, dental fillings, and many other bio-related applications. Vacuum plasmas and radio frequency (RF) atmospheric plasmas are the most common methods for depositing plasma-derived thin films and nanoparticles. However, the necessary equipment is difficult to operate and maintain as well as being large and expensive. Here, we report the use of a novel intense and highly energetic atmospheric pressure plasma jet array using direct plasma jet-to-jet coupling effects to deposit high quality plasma-polymerized MMA (PPMMA) for bio-medical applications. The newly proposed atmospheric pressure micro-plasma jet array device can generate the intense plasma mode with a strong plasma emission and high plasma particle energy. PPMMA was successfully deposited on a variety of substrates and characterized by SEM, AFM, and FT-IR. The micro-plasma jet is obtained at a sinusoidal voltage with a peak value of 30 kV and frequency of 35 kHz. Argon gas was employed as the discharge gas for plasma generation and its flow rate was in the range of 2230 sccm, Methyl methacrylate (MMA) monomer was vaporized by means of a glass bubbler which was supplied by argon gas with flow rates in the range of 268 sccm from room temperature to 400°C. The deposited PPMMA thin films were flexible, transparent, thin, and strong on metal substrates.

  1. Influence of non-thermal TiCl4/Ar+O2 plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility.

    Science.gov (United States)

    Pandiyaraj, K N; Kumar, A Arun; Ramkumar, M C; Sachdev, A; Gopinath, P; Cools, Pieter; De Geyter, N; Morent, R; Deshmukh, R R; Hegde, P; Han, C; Nadagouda, M N

    2016-05-01

    The superior bulk properties (corrosion resistance, high strength to weight ratio, relatively low cost and easy processing) of hydrocarbon based polymers such as polypropylene (PP) have contributed significantly to the development of new biomedical applications such as artificial organs and cell scaffolds. However, low cell affinity is one of the main draw backs for PP due to its poor surface properties. In tissue engineering, physico-chemical surface properties such as hydrophilicity, polar functional groups, surface charge and morphology play a crucial role to enrich the cell proliferation and adhesion. In this present investigation TiOx based biocompatible coatings were developed on the surface of PP films via DC excited glow discharge plasma, using TiCl4/Ar+O2 gas mixture as a precursor. Various TiOx-based coatings are deposited on the surface of PP films as a function of discharge power. The changes in hydrophilicity of the TiOx/PP film surfaces were studied using contact angle analysis and surface energy calculations by Fowke's approximation. X-ray photo-electron spectroscopy (XPS) was used to investigate the surface chemical composition of TiOx/PP films. The surface morphology of the obtained TiOx/PP films was investigated by scanning electron and transmission electron microscopy (SEM &TEM). Moreover, the surface topography of the material was analyzed by atomic force microscopy (AFM). The cytocompatibility of the TiOx/PP films was investigated via in vitro analysis (cell viability, adhesion and cytotoxicity) using NIH3T3 (mouse embryonic fibroblast) cells. Furthermore the antibacterial activities of TiOx/PP films were also evaluated against two distinct bacterial models namely Gram positive Staphylococcus aureus (S.aureus) and Gram negative Escherichia coli DH5α. (E.coli) bacteria. XPS results clearly indicate the successful incorporation of TiOx and oxygen containing polar functional groups on the surface of plasma treated PP films. Moreover the surface

  2. Inactivation of Shiga toxin-producing Escherichia coli O104:H4 using cold atmospheric pressure plasma.

    Science.gov (United States)

    Baier, Matthias; Janssen, Traute; Wieler, Lothar H; Ehlbeck, Jörg; Knorr, Dietrich; Schlüter, Oliver

    2015-09-01

    From cultivation to the end of the post-harvest chain, heat-sensitive fresh produce is exposed to a variety of sources of pathogenic microorganisms. If contaminated, effective gentle means of sanitation are necessary to reduce bacterial pathogen load below their infective dose. The occurrence of rare or new serotypes raises the question of their tenacity to inactivation processes. In this study the antibacterial efficiency of cold plasma by an atmospheric pressure plasma-jet was examined against the Shiga toxin-producing outbreak strain Escherichia coli O104:H4. Argon was transformed into non-thermal plasma at a power input of 8 W and a gas flow of 5 L min(-1). Basic tests were performed on polysaccharide gel discs, including the more common E. coli O157:H7 and non-pathogenic E. coli DSM 1116. At 5 mm treatment distance and 10(5) cfu cm(-2) initial bacterial count, plasma reduced E. coli O104:H4 after 60 s by 4.6 ± 0.6 log, E. coli O157:H7 after 45 s by 4.5 ± 0.6 log, and E. coli DSM 1116 after 30 s by 4.4 ± 1.1 log. On the surface of corn salad leaves, gentle plasma application at 17 mm reduced 10(4) cfu cm(-2) of E. coli O104:H4 by 3.3 ± 1.1 log after 2 min, whereas E. coli O157:H7 was inactivated by 3.2 ± 1.1 log after 60 s. In conclusion, plasma treatment has the potential to reduce pathogens such as E. coli O104:H4 on the surface of fresh produce. However, a serotype-specific adaptation of the process parameters is required. PMID:25782617

  3. Cold Atmospheric Plasma: An Inside Look Through Optical Diagnostics for Biomedical Applications

    OpenAIRE

    Krause, Liesl; Hassanein, Ahmed; Diwakar, Prasoon

    2015-01-01

    An emerging technology for medical applications is cold atmospheric plasma (CAP). CAP is generated using various gasses in a “pen” to create room temperature plasma and then carry the effluents and species. Success has been shown when cold atmospheric plasma is applied to oncology treatments, accelerated wound healing, pathogen disinfection, and various material-changing effects. However, the mechanisms behind these effects are still speculative. This study uses multiple diagnostic techniques...

  4. Cold atmospheric plasma - A new technology for spacecraft component decontamination

    Science.gov (United States)

    Shimizu, Satoshi; Barczyk, Simon; Rettberg, Petra; Shimizu, Tetsuji; Klaempfl, Tobias; Zimmermann, Julia L.; Hoeschen, Till; Linsmeier, Christian; Weber, Peter; Morfill, Gregor E.; Thomas, Hubertus M.

    2014-01-01

    Cold atmospheric plasma (CAP) based on the Surface Micro-Discharge (SMD) technology was investigated for inactivation of different bacteria and endospores. The used technique was developed to serve as an alternative method for the decontamination of spacecraft components based on the COSPAR planetary protection policy where currently the dry heat microbial reduction method is the only applicable way to satisfy the required demands. However it is known, that dry heat can thermally damage sophisticated components installed on the device. Therefore, the development of a low temperature sterilization system is one of the high priority issues for upcoming space missions in the extraterrestrial field. In the study presented here, the vegetative bacteria Escherichia coli and Deinococcus radiodurans and several types of bacterial endospores - including Bacillus atrophaeus, Bacillus safensis, Bacillus megaterium, Bacillus megaterium 2c1 and Bacillus thuringiensis E24 - were inactivated by exposing them indirectly i.e. only to the reactive gases produced by the SMD electrode at room temperature. The results showed a 5 log inactivation for E. coli after 10 min of exposure. In contrast D. radiodurans proved to be more resistant resulting in a reduction of 3 log after exposure of 30 min. More than 6 log reductions were achieved for B. safensis, B. megaterium and B. megaterium 2c1 after 90 min of exposure. Furthermore the applicability of the used CAP system for spacecraft decontamination according to the planetary protection policy was investigated. This included also the investigation of the inactivation homogeneity by the plasma gas, the control of the temperature at the area of interest, the measurement of the O3 density in the treatment region and the detailed investigation of the effects of the exposure on different materials.

  5. Experimental characterization of an argon laminar plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    This paper deals with a dc laminar pure argon plasma jet operating at atmospheric pressure in ambient air that was experimentally studied in order to obtain temperature and velocity. Plasma jet temperature was evaluated by optical emission spectroscopy and the plasma jet velocity was determined by various methods using a pressure sensor. It is shown that the maximum plasma jet temperature is 15 000 K and the maximum plasma jet velocity is 250 m s-1 at the plasma jet centre. Finally, a study of the ambient air amount entrained into the plasma jet is presented.

  6. Experimental characterization of an argon laminar plasma jet at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Langlois-Bertrand, Emilie; De Izarra, Charles, E-mail: charles.de_izarra@univ-orleans.fr [Groupe de Recherche sur l' Energetique des Milieux Ionises, UMR6606 Universite d' Orleans - CNRS, Faculte des Sciences, Site de Bourges, rue Gaston Berger, BP 4043, 18028 BOURGES Cedex (France)

    2011-10-19

    This paper deals with a dc laminar pure argon plasma jet operating at atmospheric pressure in ambient air that was experimentally studied in order to obtain temperature and velocity. Plasma jet temperature was evaluated by optical emission spectroscopy and the plasma jet velocity was determined by various methods using a pressure sensor. It is shown that the maximum plasma jet temperature is 15 000 K and the maximum plasma jet velocity is 250 m s{sup -1} at the plasma jet centre. Finally, a study of the ambient air amount entrained into the plasma jet is presented.

  7. Effect of microwave frequency on plasma formation in air breakdown at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    赵朋程; 郭立新; 李慧敏

    2015-01-01

    Microwave breakdown at atmospheric pressure causes the formation of a discrete plasma structure. The one-dimensional fluid model coupling Maxwell equations with plasma fluid equations is used to study the effect of the mi-crowave frequency on the formation of air plasma. Simulation results show that, the filamentary plasma array propagating toward the microwave source is formed at different microwave frequencies. As the microwave frequency decreases, the ratio of the distance between two adjacent plasma filaments to the corresponding wavelength remains almost unchanged (on the order of 1/4), while the plasma front propagates more slowly due to the increase in the formation time of the new plasma filament.

  8. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.

    2011-01-01

    In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the contac

  9. Universal Non-thermal Pressure Fraction Profile in Galaxy Clusters

    CERN Document Server

    Nelson, Kaylea; Nagai, Daisuke

    2014-01-01

    Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties. Using a mass-limited sample of galaxy clusters from a high-resolution hydrodynamical cosmological simulation, we characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find that the non-thermal pressure fraction profile is universal across redshift when galaxy cluster radii are defined with respect to the mean matter density of the universe instead of the commonly used critical density. We also find that the non-thermal pressure is predominantly radial, and the gas velocity anisotropy profile exhibits strong universality when galaxy cluster radii are defined with respect to the mean matter density of the universe. However, we find that the non-thermal pressure fraction is strongly d...

  10. Use of Atmospheric Glow Discharge Plasma to Modify Spaceport Materials

    Science.gov (United States)

    Trigwell, S.; Shuerger, A. C.; Buhler, C. R.; Calle, C. J.

    2006-01-01

    Numerous materials used in spaceport operations require stringent evaluation before they can be utilized. It is critical for insulative polymeric materials that any surface charge be dissipated as rapidly as possible to avoid Electrostatic Discharges (ESD) that could present a danger. All materials must pass the Kennedy Space Center (KSC) standard electrostatic test [1]; however several materials that are considered favorable for Space Shuttle and International Space Station use have failed. Moreover, to minimize contamination of Mars spacecraft, spacecraft are assembled under cleanroom conditions and specific cleaning and sterilizing procedures are required for all materials. However, surface characteristics of these materials may allow microbes to survive by protecting them from sterilization and cleaning techniques. In this study, an Atmospheric Pressure Glow Discharge Plasma (APGD) [2] was used to modify the surface of several materials. This allowed the materials surface to be modified in terms of hydrophilicity, roughness, and conductivity without affecting the bulk properties. The objectives of this study were to alter the surface properties of polymers for improved electrostatic dissipation characteristics, and to determine whether the consequent surface modification on spaceport materials enhanced or diminished microbial survival.

  11. Bactericidal action of cold atmospheric plasma in solution

    International Nuclear Information System (INIS)

    In this study different influences on the bactericidal effect of cold atmospheric plasma (CAP) were investigated intensively. In detail, different initial densities of Escherichia coli cells and different treatment times of up to 8 min were studied. The results show that up to densities of 105 cells per 20 μl high reduction rates of up to 5 log can be achieved in less than 3 min of CAP application. In contrast, for higher cell densities almost no reduction was measured for CAP treatment times of up to 8 min. To understand this data in detail, a theoretical model was developed. This model starts from the premise that bacteria are able to some degree to neutralize reactive species and that accordingly the bactericidal effect depends on the bacterial concentration. A further purpose of this study was to analyze the contribution of reactive oxygen and also reactive nitrogen species—produced by the CAP—to the bactericidal effect. We therefore measured nitrites, nitrates and hydrogen peroxide—products of chemical reactions between the species produced by the CAP and the liquid. The evidence of nitric oxide (NO) uptake in bacteria and the corresponding reference experiments with hydrogen peroxide and a chemical NO donor clearly show that the bactericidal effect of CAP is related to a combination of oxidative and nitrosative effects. (paper)

  12. Influence of a sample surface on single electrode atmospheric plasma jet parameters

    International Nuclear Information System (INIS)

    The article reports on reciprocal influence between the sample surface and atmospheric plasma jet. This correlation is important since it changes plasma parameters and plasma itself, depending on the sample-material surface, presence of liquid or treatment distance. However, in experiments and treatments of surfaces with atmospheric plasma jets, this relationship is usually disregarded. In order to investigate reciprocal influence, we implemented electromagnetic and optical emission spectroscopy characterization of atmospheric plasma needle jet. Characterization was performed during treatment of various samples. We have shown that sample material and its distance from the tip of the electrode have a pronounced influence on atmospheric pressure plasma jet electromagnetic and optical characteristics, such as jet length, shape, color, voltage, current, power, electromagnetic field and concentrations of plasma species. It was shown that for a given flow there is a critical distance (≈ 15 mm) between the tip of the wire and the sample surface for which jet emission intensity, especially ionic, is at maximum. - Highlights: • First report on reciprocal influence between helium plasma jet and sample surface • Optical emission spectroscopy and electromagnetic measurements were performed. • For characterization different samples of various sizes and conductivities were used. • Discharge and plasma parameters vary with treated sample distance and its material. • Even plasma jet treatment of solids produced new plasma species observable with OES

  13. How various plasma sources may affect seed gemination and growth

    Czech Academy of Sciences Publication Activity Database

    Šerá, Božena; Gajdová, Iveta; Čermák, M.; Gavril, B.; Hnatiuc, E.; Kováčik, D.; Kříha, V.; Sláma, J.; Šerý, M.; Špatenka, P.

    Brasov: Universitatea Transilvania din Brasov, 2012 - (Clotea, L.; Cernat, M.), s. 1365-1370 ISBN 978-1-4673-1650-7. [Optimization of Electrical and Electronic Equipment (OPTIM), 2012 13th International Conference. Brasov (RO), 24.05.2012-26.05.2012] Institutional support: RVO:67179843 Keywords : non thermal plasma * atmospheric pressure * biotechnology * systems biology * seed germination * early growth Subject RIV: EI - Biotechnology ; Bionics

  14. Atmospheric-pressure plasma-enhanced chemical vapor deposition of electrochromic organonickel oxide thin films with an atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Deposition of electrochromic organonickel oxide (NiOxCy) films onto glass/indium tin oxide (ITO) substrates using atmospheric-pressure plasma-enhanced chemical vapor deposition with an atmospheric pressure plasma jet under various precursor injection angles is investigated. A precursor [nickelocene, Ni(C5H5)2] vapor, carried by argon gas and mixed with oxygen gas, is injected into an air plasma torch for the deposition of NiOxCy films by a short exposure of the substrate, 20 s, in the plasma. Uniform light modulation on glass/ITO/NiOxCy is produced while the moving glass/ITO substrate is exposed to the plasma torch at room temperature (∼ 23 °C) and under atmospheric pressure. Light modulation with up to a 40.9% transmittance variation at a wavelength of 513.9 nm under Li+ intercalation and de-intercalation in a 1 M LiClO4–propylene carbonate electrolyte is achieved. - Highlights: ► Rapid deposition of electrochromic NiOxCy film by atmospheric pressure plasma jet ► Uniform light modulation on NiOxCy film is produced. ► Nano-grains in NiOxCy films offer fast coloration and bleaching

  15. Prediction Performance of Blackout and Plasma Attenuation in Atmospheric Reentry Demonstrator Mission

    OpenAIRE

    Takahashi, Yusuke; Yamada, Kazuhiko; Abe, Takashi

    2014-01-01

    A numerical simulation model that combines the plasma ows and electromagnetic waves around a reentry vehicle during atmospheric reentry was developed to evaluate the radio frequency blackout and plasma attenuation. The physical properties of the plasma ow in the shock layer and wake region were obtained using a computational uid dynamics technique. The electromagnetic waves were expressed using a frequency- dependent nite-difference time-domain method with the plasma ...

  16. Deactivation of Enterococcus Faecalis Bacteria by an Atmospheric Cold Plasma Brush

    Science.gov (United States)

    Chen, Wei; Huang, Jun; Du, Ning; Liu, Xiao-Di; Lv, Guo-Hua; Wang, Xing-Quan; Zhang, Guo-Ping; Guo, Li-Hong; Yang, Si-Ze

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed and used to treat enterococcus faecalis bacteria. The results show that the efficiency of the inactivation process by helium plasma is dependent on applied power and exposure time. After plasma treatments, the cell structure and morphology changes can be observed by scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  17. Sequential Atmospheric Pressure Plasma-Assisted Laser Ablation of Photovoltaic Cover Glass for Improved Contour Accuracy

    OpenAIRE

    Christoph Gerhard; Maximilian Dammann; Stephan Wieneke; Wolfgang Viöl

    2014-01-01

    In this paper, we present sequential atmospheric pressure plasma-assisted laser ablation of photovoltaic cover glass. First, glass samples were plasma pre-treated using a hydrogenous plasma process gas in order to accomplish a modification of the near-surface glass network by a chemical reduction and the implantation of hydrogen. As a result, the transmission at a wavelength of 355 nm was reduced by approximately 2% after plasma treatment duration of 60 min. Further, the surface polarity was ...

  18. A Novel Continuously Initiated Polymerization by One-Atmosphere Low Temperature Plasma Device

    Institute of Scientific and Technical Information of China (English)

    You qingliang; Meng yuedong; Wang jianhua; Ou qiongrong; Xu xu; Zhong shaofeng

    2005-01-01

    A novel atmospheric plasma device developed in this paper, which is more effective and convenient to study the plasma-initiated polymerization (PIP) than conventional setup. The structure and mechanism of the device is introduced. Some plasma-initiated polymerization experiments are carried out on the device, and the conversion of AA (Acrylic acid) and AM (Acryl amide) atmospheric (N2) plasma polymerization are respectively 89% and 94% after 120 h post polymerization, whereby IR spectra of the product (AA, AM). Our PIP result are confirmed.

  19. Silicon-based quantum dots: synthesis, surface and composition tuning with atmospheric pressure plasmas

    Science.gov (United States)

    Askari, Sadegh; Macias-Montero, Manuel; Velusamy, Tamilselvan; Maguire, Paul; Svrcek, Vladmir; Mariotti, Davide

    2015-08-01

    The synthesis of silicon and silicon-based quantum dots (diameter plasmas is reviewed and the most recent developments are also reported. Atmospheric pressure plasmas are then compared with other synthesis methods that include low pressure plasmas, wet chemistry, electrochemical etching and laser-based methods. Finally, progress in the synthesis of alloyed silicon QDs is discussed where the nanoscale Si-Sn and Si-C systems are reported. The report also includes a theoretical analysis that highlights some fundamental differences offered by plasmas at atmospheric pressure and that may provide opportunities for novel materials with advantageous properties.

  20. Inactivation of human pathogenic dermatophytes by non-thermal plasma

    Czech Academy of Sciences Publication Activity Database

    Scholtz, V.; Soušková, H.; Hubka, Vít; Švarcová, M.; Julák, J.

    2015-01-01

    Roč. 119, DEC 2015 (2015), s. 53-58. ISSN 0167-7012 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Corona discharge * Cometary discharge * Decontamination of surfaces Subject RIV: CE - Biochemistry Impact factor: 2.026, year: 2014

  1. Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition

    International Nuclear Information System (INIS)

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O2 plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O2 plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O2 (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  2. Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition

    Science.gov (United States)

    Chen, Wei; Huang, Jun; Du, Ning; Liu, Xiao-Di; Wang, Xing-Quan; Lv, Guo-Hua; Zhang, Guo-Ping; Guo, Li-Hong; Yang, Si-Ze

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O2 plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O2 plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O2 (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  3. Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wei; Huang Jun; Wang Xingquan; Lv Guohua; Zhang Guoping [Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, 100190 Beijing (China); Du Ning; Liu Xiaodi; Guo Lihong [Department of Oral Biology, Peking University School and Hospital of Stomatology, 100080 Beijing (China); Yang Size [Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, 100190 Beijing (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005 (China)

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O{sub 2} plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O{sub 2} plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O{sub 2} (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  4. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishaq, M., E-mail: ishaqmusarat@gmail.com [Peter MacCallum Cancer Centre, East Melbourne, VIC 3002 (Australia); Comonwealth Scientific and Industrial Research Organization, Sydney, New South Wales (Australia); Bazaka, K. [Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Ostrikov, K. [Comonwealth Scientific and Industrial Research Organization, Sydney, New South Wales (Australia); Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia)

    2015-12-15

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  5. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    Science.gov (United States)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-12-01

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  6. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    International Nuclear Information System (INIS)

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas

  7. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device

    Science.gov (United States)

    Schmidt-Bleker, Ansgar; Winter, Jörn; Bösel, André; Reuter, Stephan; Weltmann, Klaus-Dieter

    2016-02-01

    A novel approach combining experimental and numerical methods for the study of reaction mechanisms in a cold atmospheric \\text{Ar} plasma jet is introduced. The jet is operated with a shielding gas device that produces a gas curtain of defined composition around the plasma plume. The shielding gas composition is varied from pure {{\\text{N}}2} to pure {{\\text{O}}2} . The density of metastable argon \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) in the plasma plume was quantified using laser atom absorption spectroscopy. The density of long-living reactive oxygen and nitrogen species (RONS), namely {{\\text{O}}3} , \\text{N}{{\\text{O}}2} , \\text{NO} , {{\\text{N}}2}\\text{O} , {{\\text{N}}2}{{\\text{O}}5} and {{\\text{H}}2}{{\\text{O}}2} , was quantified in the downstream region of the jet in a multipass cell using Fourier-transform infrared spectroscopy (FTIR). The jet produces a turbulent flow field and features guided streamers propagating at several \\text{km}~{{\\text{s}}-1} that follow the chaotic argon flow pattern, yielding a plasma plume with steep spatial gradients and a time dependence on the \\text{ns} scale while the downstream chemistry unfolds within several seconds. The fast and highly localized electron impact reactions in the guided streamer head and the slower gas phase reactions of neutrals occurring in the plasma plume and experimental apparatus are therefore represented in two separate kinetic models. The first electron impact reaction kinetics model is correlated to the LAAS measurements and shows that in the guided streamer head primary reactive oxygen and nitrogen species are dominantly generated from \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) . The second neutral species plug-flow model hence uses an \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) source term as sole energy input and yields good agreement with the RONS measured by FTIR spectroscopy.

  8. TREATMENT OF METALS, POLYMER FILMS, AND FABRICS WITH A ONE ATMOSPHERE UNIFORM GLOW DISCHARGE PLASMA (OAUGDP) FOR INCREASED SURFACE ENERGY AND DIRECTIONAL ETCHING

    Institute of Scientific and Technical Information of China (English)

    J. Reece Roth; Z.Y. Chen; Peter P.- Y. Tsai

    2001-01-01

    Direct exposure of samples to the active species of air generated by a One AtmosphereUniform Glow Discharge Plasma (OA UGDP) has been used to etch and to increasethe surface energy of metallic surfaces, photoresist, polymer films, and nonwoven fab-rics. The OAUGDP is a non-thermal plasma with the classical characteristics of aDC normal glow discharge that operates in air (and other gases) at atmospheric pres-sure. Neither a vacuum system nor batch processing is necessary. A wide range ofapplications to metals, photoresist, films, fabrics, and polymeric webs can be accom-modated by direct exposure of the workpiece to the plasma in parallel-plate reactors.This technology is simple, it produces effects that can be obtained in no other way atone atmosphere; it generates minimal pollutants or unwanted by-products; and it issuitable for individual sample or online treatment of metallic surfaces, wafers, films.and fabrics.``Early exposures of solid materials to the OA UGDP required minutes to produce rela-tively small increases of surface energy. These durations appeared too long for com-mercial application to fast-moving webs. Recent improvements in OA UGDP gas com-position, power density, plasma quality, recirculating gas flow, and impedance match-ing of the power supply to the parallel plate plasma reactor have made it possible toraise the surface energy ofa variety of polymeric webs (PP, PET, PE, etc.) to levels of60 to 70 dynes/crn with one second of exposure. In air plasmas, the high surface ener-gies are not durable, and fall to 50 dynes/em after periods of weeks to months. Here.we report the exposure of metallic surfaces, photoresist, polymeric films, and nonwo-ven fabrics made of PP and PET to an impedance matched parallel plate OA UGDPfor durations ranging from one second to several tens of seconds. Data will be re-ported on the surface energy, wettability, wickability, and aging effect of polymericfilms and fabrics as functions of time of exposure, and time

  9. Ultrafast non-thermal electron dynamics in single layer graphene

    OpenAIRE

    Novoselov K.S.; Geim A.K.; Nair R.R.; Polini M.; Tomadin A.; Cerullo G.; Manzoni C.; Brida D.; Milana S.; Lombardo A.; Ferrari A.C.

    2012-01-01

    We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times.

  10. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Science.gov (United States)

    Štěpánová, Vlasta; Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana; Černák, Mirko

    2015-11-01

    We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  11. Hydrophobicity attainment and wear resistance enhancement on glass substrates by atmospheric plasma-polymerization of mixtures of an aminosilane and a fluorocarbon

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • APTES and PFH were used to coat glass by non-thermal atmospheric jet plasma. • A mixture of 75% of APTES and 25% PFH produced the best sample of this work. • Hydrophobicity was achieved by changes in surface morphology and chemistry. • Wear resistance was enhanced by the formation of siloxane groups. - Abstract: Mixtures of different proportions of two liquid precursors were subjected to plasma-polymerization by a non-thermal atmospheric jet plasma system in a search for a coating that achieves a hydrophobic character on a glass substrate and enhances its wear resistance. 1-Perfluorohexene (PFH) was chosen as a low-surface-energy precursor to promote a hydrophobic character. Aminopropyltriethoxysilane (APTES) was chosen for its contribution to the improvement of wear resistance by the formation of siloxane bonds. The objective of this work was to determine which of the precursors’ mixtures that were tested provides the coating with the most balanced enhancement of both hydrophobicity and wear resistance, given that coatings deposited with fluorocarbon-based precursors such as PFH are usually low in resistance to wear and coatings deposited with APTES are generally hydrophilic. The coatings obtained were analyzed by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infra-Red (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), static Water Contact Angle (WCA) measurements, tribological ball-on-disc tests and contact profilometry. A relationship between the achievement of a hydrophobic character and the modifications to roughness and surface morphology and the incorporation of fluorocarbon groups in the surface chemistry was observed. Also, it was seen that the wear resistance was influenced by the SiOSi content of the coatings. In turn, the SiOSi content appears to be directly related to the percentage of APTES used in the mixture of precursors. The best conjunction of

  12. Hydrophobicity attainment and wear resistance enhancement on glass substrates by atmospheric plasma-polymerization of mixtures of an aminosilane and a fluorocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Múgica-Vidal, Rodolfo, E-mail: rodolfo.mugica@alum.unirioja.es [Department of Mechanical Engineering, University of La Rioja, c/ Luis de Ulloa 20, 26004, Logroño, La Rioja (Spain); Alba-Elías, Fernando, E-mail: fernando.alba@unirioja.es [Department of Mechanical Engineering, University of La Rioja, c/ Luis de Ulloa 20, 26004, Logroño, La Rioja (Spain); Sainz-García, Elisa, E-mail: elisa.sainzg@unirioja.es [Department of Mechanical Engineering, University of La Rioja, c/ Luis de Ulloa 20, 26004, Logroño, La Rioja (Spain); Pantoja-Ruiz, Mariola, E-mail: mpruiz@ing.uc3m.es [Materials Science and Engineering Department, IAAB, Materials Performance Group, University Carlos III of Madrid, Av. Universidad 30, 28911, Leganés, Madrid (Spain)

    2015-08-30

    Graphical abstract: - Highlights: • APTES and PFH were used to coat glass by non-thermal atmospheric jet plasma. • A mixture of 75% of APTES and 25% PFH produced the best sample of this work. • Hydrophobicity was achieved by changes in surface morphology and chemistry. • Wear resistance was enhanced by the formation of siloxane groups. - Abstract: Mixtures of different proportions of two liquid precursors were subjected to plasma-polymerization by a non-thermal atmospheric jet plasma system in a search for a coating that achieves a hydrophobic character on a glass substrate and enhances its wear resistance. 1-Perfluorohexene (PFH) was chosen as a low-surface-energy precursor to promote a hydrophobic character. Aminopropyltriethoxysilane (APTES) was chosen for its contribution to the improvement of wear resistance by the formation of siloxane bonds. The objective of this work was to determine which of the precursors’ mixtures that were tested provides the coating with the most balanced enhancement of both hydrophobicity and wear resistance, given that coatings deposited with fluorocarbon-based precursors such as PFH are usually low in resistance to wear and coatings deposited with APTES are generally hydrophilic. The coatings obtained were analyzed by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infra-Red (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), static Water Contact Angle (WCA) measurements, tribological ball-on-disc tests and contact profilometry. A relationship between the achievement of a hydrophobic character and the modifications to roughness and surface morphology and the incorporation of fluorocarbon groups in the surface chemistry was observed. Also, it was seen that the wear resistance was influenced by the SiOSi content of the coatings. In turn, the SiOSi content appears to be directly related to the percentage of APTES used in the mixture of precursors. The best conjunction of

  13. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.

  14. Power Absorption of High Frequency Electromagnetic Waves in a Partially Ionized Plasma Layer in Atmosphere Conditions

    Institute of Scientific and Technical Information of China (English)

    郭斌; 王晓钢

    2005-01-01

    We have studied the absorption, reflection, and transmission of electromagnetic waves in an unmagnetized uniform plasma layer covering a metal surface in atmosphere conditions.Instead of the absorption of the electromagnetic wave propagating only once in previous work on the plasma layer, a general formula of total power absorption by the plasma layer with an infinite time of reflections between the atmosphere-plasma interface and the metal surface has been derived for the first time. Effects of plasma parameters, especially the dependence of the fraction of positive ions, negative ions and electrons in plasmas on the power absorption processes are discussed. The results show that the existence of negative ions significantly reduces the power absorption of the electromagnetic wave. Absorptions of electromagnetic waves are calculated.

  15. Development of Low-Temperature Atmospheric Coaxial Dielectric Barrier Discharge (DBD) Plasma Source

    International Nuclear Information System (INIS)

    Full text: Low-temperature atmospheric plasma has played an increasingly important role in various industrial, medical, and research applications. Nevertheless, this type of plasma usually has low density which imposes a limit on its effectiveness and the type of work that it can be applied to. In this research, a low-temperature atmospheric plasma source has been designed and developed using the dielectric barrier discharge (DBD) plasma production technique. The source is designed to have coaxial geometry for future utilization in medical sterilization. The effects of the amplitude and frequency of the driving potential on the temperature and spectrum of plasma have been studied. It is found that with the amplitudes and frequencies of the driving potentials that can be supplied by the available power supply, similar plasma spectrum have been obtained and the electron temperatures are measured between 4-5 eV

  16. Polymer Surface Treatment by Atmospheric Pressure Low Temperature Surface Discharge Plasma:Its Characteristics and Comparison with Low Pressure Oxygen Plasma Treatment

    Institute of Scientific and Technical Information of China (English)

    Atsushi KUWABARA; Shin-ichi KURODA; Hitoshi KUBOTA

    2007-01-01

    The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed.The change of the surface property over time,in comparison with low pressure oxygen (O2) plasma treatment,is examined.As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement.However,when the atmospheric pressure plasma was used for PP(polypropylene),it produced remarkable hydrophilic effects.

  17. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    International Nuclear Information System (INIS)

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials

  18. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Jue, E-mail: zhangjue@pku.edu.cn; Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  19. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    Science.gov (United States)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  20. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Science.gov (United States)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to

  1. Comparative Study of Decomposition of CCl4 in Different Atmosphere Thermal Plasmas

    Institute of Scientific and Technical Information of China (English)

    HUANG Jianjun; GUO Wenkang; XU Ping

    2007-01-01

    Decomposition of carbon tetrachloride was studied theoretically in the most commonly used thermal plasma atmosphere such as H2, N2, O2 and water steam. A code developed by the National Aeronautics and Space Administration (NASA) was adopted to calculate the chemical equilibrium distribution and energy consumption of the decomposition of CCl4 in the H2, N2, O2 and water steam atmosphere thermal plasma respectively, with a temperature range of 500 K to 5000 K. In the neutral condition (H2, N2, atmosphere) formation of solid carbon was observed and in the oxygen-atmosphere (O2 and water steam) solid carbon formation disappeared through controlling the ratio of C/O. This indicates that the formation of polycyclic aromatic hydrocarbons (PAHs) is impossible theoretically. The energy consumption in the N2 atmosphere was much higher than that in the H2, O2 and water steam atmosphere at 1500 K.

  2. Plasma kinetic involved in the removal of formaldehyde by a DBD discharge in mixtures of atmospheric gases

    Energy Technology Data Exchange (ETDEWEB)

    Blin-Simiand, N.; Pasquiers, S.; Jorand, F.; Magne, L.; Postel, C. [Univ. de Paris-Sud, Orsay Cedex (France). Laboratoire de Physique des Gaz et des Plasmas

    2010-07-01

    Formaldehyde (CH{sub 2}O) is one of the major by-products from non-thermal plasma treatment of numerous volatile organic compounds (VOCs) at low deposited electrical energy in the plasma. However, few experimental studies have been devoted to the removal of CH{sub 2}O by non-thermal plasmas or combination of plasmas with catalysts. This study focused on the kinetics involved in the removal of CH{sub 2}O by filamentary plasmas such as those generated in dielectric barrier discharges (DBD). It examined the influence of mixture temperature and of the initial concentration on the removal of CH{sub 2}O by DBD in dry air. A simplified kinetic model was used to better understand the chemical processes involved and the role of the oxidation reactions as compared to dissociation of the CH{sub 2}O molecule through collisions with the nitrogen metastable states. The study showed that for the removal of formaldehyde by a DBD discharge in air, an exponential decrease is observed, at low energy, for the evolution of the molecule concentration as a function of specific energy. The characteristic energy, is a decreasing function of the temperature and an increasing function of the initial concentration. A DBD simplified reactor model showed that dissociation processes play a major role in molecule removal at low temperature. This role decreases when the temperature increases. 10 refs., 2 tabs., 8 figs.

  3. Characterization of a Dielectric Barrier Plasma Gun Discharging at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-Qiu; GE Yuan-Jing; ZHANG Yue-Fei; CHEN Guang-Liang

    2004-01-01

    @@ We develop a plasma gun based on dielectric barrier discharge and working at atmospheric pressure. A theoretical model to predict the gun discharge voltage is built, which is in agreement with the experimental results. After investigating the characterization of discharging gun and utilizing it for polymerization, we find that the gun can be used as a source to generate a stable uniform plasma for different plasma-processing technologies.

  4. Nano-Coating Process for Si [1 0 0] Wafer Using Atmospheric Pressure Plasma Jet (APPJ)

    OpenAIRE

    Ahmed Rida Galaly

    2012-01-01

    Three-electrode plasma jet system consisting of a perforated dielectric tube with two outer and one floating inner electrodes was developed and employed for nano-coating processes of Si [1 0 0] wafer. Lowered gas breakdown voltage, increasing plasma density and increased discharge current were achieved by using the floating inner electrode. The low temperature (Nonthermal) Atmospheric Pressure Plasma protective coating technique using precursor-containing gases (Ar, O2 and OMCTS mixture) whic...

  5. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    Science.gov (United States)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  6. Cold plasma source for bacterial inactivation at atmospheric pressure

    DEFF Research Database (Denmark)

    Chen, Weifeng; Stamate, Eugen; Mejlholm, Ole;

    A dielectric-barrier discharge system for cold plasma production was built for bacterial inactivation purpose. The eect of cold plasma treatment on sensory properties of seafood products was studied to establish how the sensory properties (e.g. appearance, texture) of seafood were aected by diere......, corresponding to a reduction of > 4-5 log (cfu/g). Further studies are need on the eect of cold plasma treatments on sensory properties of cold-smoked salmon......A dielectric-barrier discharge system for cold plasma production was built for bacterial inactivation purpose. The eect of cold plasma treatment on sensory properties of seafood products was studied to establish how the sensory properties (e.g. appearance, texture) of seafood were aected by dierent...... plasma treatment conditions (e.g. power, frequency, time). Preliminary experiments were also performed to evaluate the eect of plasma treatment time on the reduction of the concentration of microorganisms (Lactobacillus sakei and Photobacterium phosphoreum) on inoculated slides of Long & Hammer agar. The...

  7. AMPS sciences objectives and philosophy. [Atmospheric, Magnetospheric and Plasmas-in-Space project on Spacelab

    Science.gov (United States)

    Schmerling, E. R.

    1975-01-01

    The Space Shuttle will open a new era in the exploration of earth's near-space environment, where the weight and power capabilities of Spacelab and the ability to use man in real time add important new features. The Atmospheric, Magnetospheric, and Plasmas-in-Space project (AMPS) is conceived of as a facility where flexible core instruments can be flown repeatedly to perform different observations and experiments. The twin thrusts of remote sensing of the atmosphere below 120 km and active experiments on the space plasma are the major themes. They have broader implications in increasing our understanding of plasma physics and of energy conversion processes elsewhere in the universe.

  8. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    OpenAIRE

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased wi...

  9. Simulation of Electron-Beam Generating Plasma at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    OUYANG Liang; LI Hong; LI Benben; ZHOU Junqing; YAN Hong; SU Tie; WANG Huihui; LIUWandong

    2007-01-01

    As electron-beam generating plasma is widely applied,the software tool EGS4(Electron-Gamma Shower) was used to simulate the transmission and energy deposition of electron-beam in air.The simulation results indicated that the range of the electron-beam was inversely proportional to the gas pressure in a wide range of gas pressure,and the electron-beam of 200 keV could generate a plasma with a density 1011 cm-3 in air of latm.In addition,the energy distribution of the beam-electron and plasma density profile produced by the beam were achieved.

  10. Silicon-based quantum dots: synthesis, surface and composition tuning with atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    The synthesis of silicon and silicon-based quantum dots (diameter < 5 nm) is discussed. Specifically the synthesis of Si-based quantum dots (QDs) by atmospheric pressure plasmas is reviewed and the most recent developments are also reported. Atmospheric pressure plasmas are then compared with other synthesis methods that include low pressure plasmas, wet chemistry, electrochemical etching and laser-based methods. Finally, progress in the synthesis of alloyed silicon QDs is discussed where the nanoscale Si–Sn and Si–C systems are reported. The report also includes a theoretical analysis that highlights some fundamental differences offered by plasmas at atmospheric pressure and that may provide opportunities for novel materials with advantageous properties. (review article)

  11. Effect of the atmospheric pressure nonequilibrium plasmas on the conformational changes of plasmid DNA

    International Nuclear Information System (INIS)

    The cold atmospheric pressure plasma, which has been widely used for biomedical applications, may potentially affect the conformation of DNA. In this letter, an atmospheric pressure plasma plume is used to investigate its effects on the conformational changes of DNA of plasmid pAHC25. It is found that the plasma plume could cause plasmid DNA topology alteration, resulting in the percentage of the supercoiled plasmid DNA form decreased while that of the open circular and linearized form of plasmid DNA increased as detected by agrose gel electrophoresis. On the other hand, further investigation by using polymerase chain reaction method shows that the atmospheric pressure plasma jet treatments under proper conditions does not affect the genes of the plasmid DNA, which may have potential application in increasing the transformation frequency by genetic engineering.

  12. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Controlling hydrophilicity of polymer film by varying gas flow rate is proposed in atmospheric-pressure homogeneous plasma treatment. • Without employing additional reactive gas, requiring more plasma power and longer treatment time, hydrophilicity of polyimide films was improved after the low-gas-flow plasma treatment. • The gas flow rate affects the hydrophilic properties of polymer surface by changing the discharge atmosphere in the particular geometry of the reactor developed. • Low-gas-flow induced wettability control suggests effective and economical plasma treatment. - Abstract: This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films

  13. Atmospheric pressure plasma polymerization of 1,3-butadiene for hydrophobic finishing of textile substrates

    International Nuclear Information System (INIS)

    Atmospheric pressure plasma processing of textile has both ecological and economical advantages over the wet-chemical processing. However, reaction in atmospheric pressure plasma has important challenges to be overcome before it can be successfully used for finishing applications in textile. These challenges are (i) generating stable glow plasma in presence liquid/gaseous monomer, and (ii) keeping the generated radicals active in the presence of contaminants such as oxygen and air. In this study, a stable glow plasma was generated at atmospheric pressure in the mixture of gaseous reactive monomer-1,3-butadiene and He and was made to react with cellulosic textile substrate. After 12 min of plasma treatment, the hydrophilic surface of the cellulosic substrate turned into highly hydrophobic surface. The hydrophobic finish was found to be durable to soap washing. After soap washing, a water drop of 37 μl took around 250 s to get absorbed in the treated sample compared to 0. Both top and bottom sides of the fabric showed similar hydrophobic results in terms of water absorbency and contact angle. The results may be attributed to chemical reaction of butadiene with the cellulosic textile substrate. The surface characterization of the plasma modified samples under SEM and AFM revealed modification of the surface under <100 nm. The results showed that atmospheric pressure plasma can be successfully used for carrying out reaction of 1,3-butadiene with cellulosic textile substrates for producing hydrophobic surface finish.

  14. Characterization of atmospheric pressure plasmas for aerodynamic applications

    OpenAIRE

    Biganzoli,

    2014-01-01

    The use of plasmas in aerodynamics has become a recent topic of interest. In particular, over the last ten years, plasma actuation has received much attention as a promising active method for airflow control. Flow control consists of manipulating the properties of a generic moving fluid with the aim of achieving a desired change, but flow dynamics in proximity of a solid object is usually considered, being a consistent and significant issue in many engineering applications, such as engine, au...

  15. Gas Plasma Effects on Living Cells

    Science.gov (United States)

    Stoffels, E.; Sladek, R. E. J.; Kieft, I. E.

    This paper surveys the research activities at the Eindhoven University of Technology (The Netherlands) in the area of biomedical applications of gas discharge plasmas. A non-thermal atmospheric plasma source (the plasma needle) has been developed, and its interactions with living mammalian cells and bacteria are studied. It is concluded that plasma can efficiently kill bacteria without harming the cells, and also influence the cells without causing cell death (necrosis). In future it will lead to applications like skin (wound) and caries treatment.

  16. Measurement of plasma-generated RONS in the cancer cells exposed by atmospheric pressure helium plasma jet

    Science.gov (United States)

    Joh, Hea Min; Baek, Eun Jeong; Kim, Sun Ja; Chung, Tae Hun

    2015-09-01

    The plasma-induced reactive oxygen and nitrogen species (RONS) could result in cellular responses including DNA damages and apoptotic cell death. These chemical species, O, O2-,OH, NO, and NO2-,exhibit strong oxidative stress and/or trigger signaling pathways in biological cells. Each plasma-generated chemical species having biological implication should be identified and quantitatively measured. For quantitative measurement of RONS, this study is divided into three stages; plasma diagnostics, plasma-liquid interactions, plasma-liquid-cell interactions. First, the optical characteristics of the discharges were obtained by optical emission spectroscopy to identify various excited plasma species. And the characteristics of voltage-current waveforms, gas temperature, and plume length with varying control parameters were measured. Next, atmospheric pressure plasma jet was applied on the liquid. The estimated OH radical densities were obtained by ultraviolet absorption spectroscopy at the liquid surface. And NO2-is detected by Griess test and compared between the pure liquid and the cell-containing liquid. Finally, bio-assays were performed on plasma treated human lung cancer cells (A549). Intracellular ROS production was measured using DCF-DA. Among these RONS, productions of NO and OH within cells were measured by DAF-2DA and APF, respectively. The data are very suggestive that there is a strong correlation among the production of RONS in the plasmas, liquids, and cells.

  17. The evolution of atmospheric-pressure low-temperature plasma jets: jet current measurements

    International Nuclear Information System (INIS)

    In this study, we report insights into the dynamics of atmospheric-pressure low-temperature plasma jets (APLTPJs). The plasma jet current was measured by a Pearson current monitor for different operating conditions. These jet current measurements confirmed a proposed photo-ionization model based on streamer theory. Our results are supported by intensified charged-couple device camera observations. It was found that a secondary discharge ignition, arising from the positive high-voltage electrode, causes the inhibition of plasma bullet propagation. Our observations also showed the existence of an ionization channel between the APLTPJ reactor and the plasma bullet. In addition, the maximum electron density along the plasma jet was estimated using Ohm's law, and an empirical relationship was derived between the plasma bullet velocity and the plasma bullet area. (paper)

  18. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, Sangeeta B. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India); Joshi, N. K. [Faculty of Engineering and technology, MITS, lakshmangarh, (Sikar), Rajasthan 332311 (India); Mangalvedekar, H. A.; Lande, B. K. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Das, A. K. [Laser and Plasma Technology Division, BARC, Mumbai 400085 (India); Kothari, D. C. [Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India)

    2012-01-15

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  19. Effects of cold atmospheric plasma generated in DI water on Cancer cells

    CERN Document Server

    Chen, Zhitong; Cheng, Xiaoqian; Gjika, Eda; Keidar, Michael

    2016-01-01

    Cold atmospheric plasma (CAP) has been shown to affect cells not only directly, but also by means of indirect treatment with previously prepared plasma stimulated solution. The objective of this study is to reveal the effects of plasma-stimulated media (PSM) on breast cancer cells (MDA-MB-231) and gastric cancer cells (NCl-N87). In our experiments, cold atmospheric plasma is generated in water using helium as carrier gas. The plasma generated in DI water during a 30-minute treatment had the strongest affect in inducing apoptosis in cultured human breast and gastric cancer cells. This result can be attributed to the presence of reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced in water during treatment.

  20. Modification of silicon carbide surfaces by atmospheric pressure plasma for composite applications.

    Science.gov (United States)

    Rodriguez-Santiago, Victor; Vargas-Gonzalez, Lionel; Bujanda, Andres A; Baeza, Jose A; Fleischman, Michelle S; Yim, Jacqueline H; Pappas, Daphne D

    2013-06-12

    In this study, we explore the use of atmospheric pressure plasmas for enhancing the adhesion of SiC surfaces using a urethane adhesive, as an alternative to grit-blasting. Surface analysis showed that He-O2 plasma treatments resulted in a hydrophilic surface mostly by producing SiOx. Four-point bending tests and bonding pull tests were carried out on control, grit-blasted, and plasma-treated surfaces. Grit-blasted samples showed enhanced bonding but also a decrease in flexural strength. Plasma treated samples did not affect the flexural strength of the material and showed an increase in bonding strength. These results suggest that atmospheric pressure plasma treatment of ceramic materials is an effective alternative to grit-blasting for adhesion enhancement. PMID:23639326

  1. Comparison of atmospheric microplasma and plasma jet irradiation for increasing of skin permeability

    Science.gov (United States)

    Shimizu, K.; Tran, N. A.; Hayashida, K.; Blajan, M.

    2016-08-01

    Atmospheric plasma is attracting interest for medical applications such as sterilization, treatment of cancer cells and blood coagulation. Application of atmospheric plasma in dermatology has potential as a novel tool for wound healing, skin rejuvenation and treatment of wrinkles. In this study, we investigated the enhancement of percutaneous absorption of dye as alternative agents of transdermal drugs. Hypodermic needles are often the only way to deliver large-molecule drugs into the dermis, although a safe transdermal drug delivery method that does not require needles would be desirable. We therefore explored the feasibility of using atmospheric microplasma irradiation to enhance percutaneous absorption of drugs, as an alternative delivery method to conventional hypodermic needles. Pig skin was used as a biological sample, exposed to atmospheric microplasma, and analyzed by attenuated total reflection-Fourier transform infrared spectroscopy. A tape stripping test, a representative method for evaluating skin barrier performance, was also conducted for comparison. Transepidermal water loss (TEWL) was measured and compared with and without atmospheric microplasma irradiation, to quantify water evaporation from the inner body through the skin barrier. The results show that the stratum corneum, the outermost skin layer, could be chemically and physically modified by atmospheric microplasma irradiation. Physical damage to the skin by microplasma irradiation and an atmospheric plasma jet was also assessed by observing the skin surface. The results suggest that atmospheric microplasma has the potential to enhance percutaneous absorption.

  2. Introduction of a new atmospheric pressure plasma device and application on tomato seeds

    OpenAIRE

    Zhuwen Zhou; Yanfen Huang; Size Yang; Wei Chen

    2011-01-01

    We designed new atmospheric pressure plasma device, to explore appropriate voltage of plasma treatment that promote traits and yield of to-mato, tomato seeds were treated by plasma at 4760 to 6800 V, and traits and yield of tomato were observed. The results showed that the ef-fects of different voltage plasma treatments on seed germination were not the same. The bloom times, the height, the caulis, the extent of the plants and the average weight, length,diameter of each fruit in the seven tre...

  3. NEW CATHODE MATERIALS FOR INERT AND OXIDIZING ATMOSPHERE PLASMA APPLICATION

    OpenAIRE

    Sadek, A; Kusumoto, K.; Ushio, M; Matsuda, F.

    1990-01-01

    This study has been carried out to develop new cathode materials for two types of thermionic cathode. First is concerning to the tungsten electrodes for the plasma furnace and welding torches. The second one is the electrodes for air plasma cutting torch. Tungsten electrodes activated with a single and combined additives of rare earth metal oxides, such as La2O3, Y2O3 and CeO2, are produced and pared with pure and thoriated tungsten electrode conventionally used, from the point of view of ele...

  4. Computational studies on ECE spectrum for ITER, in the presence of a small fraction of non-thermals and radial resolution evolution for oblique view

    Directory of Open Access Journals (Sweden)

    Subhash P.V.

    2015-01-01

    Full Text Available In tokamaks, the temperature measurement using different techniques like Electron Cyclotron Emission (ECE, Thomson scattering etc. shows differences because of various phenomena. The physical reasons for this are not entirely understood. Thus to have comprehensive understanding of these difference, the contribution from each phenomenon needs to be individually understood. The phenomenon affecting radial temperature profile measurement includes harmonics overlap, relativistic down shifting, presence of non-thermals etc. For ITER like plasma, radial temperature profiles can be obtained from the first harmonics ordinary (O mode or second harmonic extra-ordinary(X mode of ECE spectrum. It is possible that, higher harmonics produced from the non-thermals can be relativistically downshifted to second harmonics and results a deviation in the measured temperature profile. We performed a parametric study on the effect of non-thermal electrons on measured ECE temperature for ITER scenario-2. All the numerical calculations reported in this paper are performed using NOTEC computer code which is capable of handling non-thermal populations. After proper validation of numerical methods using normal electron population (without non-thermals a parametric study with non-thermals is performed. In the parametric study radial locations of non-thermals, energy of non-thermals and fraction of non-thermals are considered. This study is initially performed for normal view and later extended in to oblique views. The range of deviation of temperature over the examined parametric regime as well as the possible physical reasons will be presented. The effect of parallel component of non-thermal energy is also examined. Finally results of one set of study for oblique view (where the detector is not exactly normal to the magnetic field with non-thermal electrons are also presented. In ITER apart from an Electron Cyclotron Emission (ECE detector placed normal to magnetic field

  5. Photo-resist stripping process using atmospheric micro-plasma system

    International Nuclear Information System (INIS)

    A capillary electrode based micro-plasma system was utilized to evaluate the photo-resist stripping effect. Argon and nitrogen micro-plasmas were, respectively, employed as the working gas and ignited under atmospheric pressure. The result showed that the latter system required a much higher breakdown voltage than the former one to keep the micro-plasma in a steady state. Nitrogen micro-plasma with the inclusion of atmospheric oxygen was relatively rich in N, O-containing varieties, which thereafter induced complex reactions, e.g. by forming C-N,O structures, with the chemical substances on the photo-resist surface and required extensive treatment time to complete the photo-resist stripping process. In contrast, the use of atmospheric argon micro-plasma was very successful in increasing the photo-resist stripping rate. It is presumable that for this particular process, a simple physical effect with reduced reaction steps is highly proficient in removing photo-resist molecules from the substrate. One may therefore adjust the composition of atmospheric micro-plasma for an effective treatment on a coating.

  6. Design and characterization of an RF excited micro atmospheric pressure plasma jet for reference in plasma medicine

    Science.gov (United States)

    Schulz-von der Gathen, Volker

    2015-09-01

    Over the last decade a huge variety of atmospheric pressure plasma jets has been developed and applied for plasma medicine. The efficiency of these non-equilibrium plasmas for biological application is based on the generated amounts of reactive species and radiation. The gas temperatures stay within a range tolerable for temperature-sensitive tissues. The variety of different discharge geometries complicates a direct comparison. In addition, in plasma-medicine the combination of plasma with reactive components, ambient air, as well as biologic tissue - typically also incorporating fluids - results in a complex system. Thus, real progress in plasma-medicine requires a profound knowledge of species, their fluxes and processes hitting biological tissues. That will allow in particular the necessary tailoring of the discharge to fit the conditions. The complexity of the problem can only be overcome by a common effort of many groups and requires a comparison of their results. A reference device based on the already well-investigated micro-scaled atmospheric pressure plasma jet is presented. It is developed in the frame of the European COST initiative MP1101 to establish a publicly available, stable and reproducible source, where required plasma conditions can be investigated. Here we present the design and the ideas behind. The presentation discusses the requirements for the reference source and operation conditions. Biological references are also defined by the initiative. A specific part of the talk will be attributed to the reproducibility of results from various samples of the device. Funding by the DFG within the Package Project PAK816 ``Plasma Cell Interaction in Dermatology'' and the Research Unit FOR 1123 ``Physics of microplasmas'' is gratefully acknowledged.

  7. Simple Evaluation Method of Atmospheric Plasma Irradiation Dose using pH of Water

    Science.gov (United States)

    Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Seo, Hyunwoong; Itagaki, Naho; Nakatsu, Yoshimichi; Tanaka, Akiyo; Shiratani, Masaharu

    2015-09-01

    Atmospheric discharge plasmas are promising for agricultural productivity improvements and novel medical therapies, because plasma provides high flux of short-lifetime reactive species at low temperature, leading to low damage to living body. For the plasma-bio applications, various kinds of plasma systems are employed, thus common evaluation methods are needed to compare plasma irradiation dose quantitatively among the systems. Here we offer simple evaluation method of plasma irradiation dose using pH of water. Experiments were carried out with a scalable DBD device. 300 μl of deionized water was prepared into the quartz 96 microwell plate at 3 mm below electrode. The pH value has been measured just after 10 minutes irradiation. The pH value was evaluated as a function of plasma irradiation dose. Atmospheric air plasma irradiation decreases pH of water with increasing the dose. We also measured concentrations of chemical species such as nitrites, nitrates and H2O2. The results indicate our method is promising to evaluate plasma irradiation dose quantitatively.

  8. Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma

    Science.gov (United States)

    Boehm, Daniela; Heslin, Caitlin; Cullen, Patrick J.; Bourke, Paula

    2016-01-01

    The exposure of aqueous solutions to atmospheric plasmas results in the generation of relatively long-lived secondary products such as hydrogen peroxide which are biologically active and have demonstrated anti-microbial and cytotoxic activity. The use of plasma-activated solutions in applications such as microbial decontamination or anti-cancer treatments requires not only adequate performance on target cells but also a safe operating window regarding the impact on surrounding tissues. Furthermore the generation of plasma-activated fluids needs to be considered as a by-stander effect of subjecting tissue to plasma discharges. Cytotoxicity and mutagenicity assays using mammalian cell lines were used to elucidate the effects of solutions treated with di-electric barrier discharge atmospheric cold plasma. Plasma-treated PBS inhibited cell growth in a treatment time-dependent manner showing a linear correlation to the solutions’ peroxide concentration which remained stable over several weeks. Plasma-treated foetal bovine serum (FBS) acting as a model for complex bio-fluids showed not only cytotoxic effects but also exhibited increased mutagenic potential as determined using the mammalian HPRT assay. Further studies are warranted to determine the nature, causes and effects of the cyto- and genotoxic potential of solutions exposed to plasma discharges to ensure long-term safety of novel plasma applications in medicine and healthcare. PMID:26908060

  9. Surface properties of polyethylene modified by atmospheric plasma

    Czech Academy of Sciences Publication Activity Database

    Novák, I.; Števiar, M.; Chodák, I.; Kuruc, Š.; Mosnáček, J.; Chehimi, M. M.; Špírková, Milena; Kleinová, A.

    Bratislava: Polymer Institute of the Slovak Academy of Sciences, 2006. s. 38-L1/2. [International Polymer Workshop /2./ From Polymer Modification to Multicomponent System. 26.11.2006-28.11.2006, Bratislava - Smolenice] Institutional research plan: CEZ:AV0Z40500505 Keywords : plasma modification * low-density polyethylene LDPE * surface properties Subject RIV: CF - Physical ; Theoretical Chemistry

  10. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    International Nuclear Information System (INIS)

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet

  11. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.

    Science.gov (United States)

    Babij, Michał; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

    2014-05-01

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet. PMID:24880391

  12. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment

    Science.gov (United States)

    Maheux, S.; Frache, G.; Thomann, J. S.; Clément, F.; Penny, C.; Belmonte, T.; Duday, D.

    2016-09-01

    Cold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex, and we still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this paper, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) have been synthesized in a phosphate buffered aqueous solution, and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. It is only the composition of the plasma gas that has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the phosphate buffered saline (PBS) solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, have been carefully characterized. These results allow us to further understand the effect of plasma reactive species on model cell membranes in physiological liquids. The permeation through the liposomal membrane and the reaction of plasma reactive species with molecules encapsulated inside the liposomes have also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under the pure nitrogen atmosphere.

  13. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ruiyun; Pan Xianlin [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Jiang Muwen [Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Peng Shujing [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Qiu Yiping, E-mail: ypqiu@dhu.edu.cn [Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer PBO fibers were treated with atmospheric pressure plasmas. Black-Right-Pointing-Pointer When 1% of oxygen was added to the plasma, IFSS increased 130%. Black-Right-Pointing-Pointer Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  14. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Highlights: ► PBO fibers were treated with atmospheric pressure plasmas. ► When 1% of oxygen was added to the plasma, IFSS increased 130%. ► Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  15. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne; Goutianos, Stergios; Mitra, Susanta; Ghanbari-Siahkali, Afshin; Kingshott, Peter; Sørensen, Bent F.; Bindslev, Henrik

    2007-01-01

    Glassy carbon plates were treated with an atmospheric pressure dielectric barrier discharge (DBD). He gas, gas mixtures of He and reactive gases such as O2, CO2 and NH3, Ar gas and Ar/NH3 gas mixture were used as treatment gases. The oxygen and nitrogen contents on the surface as well as defect...

  16. Large area atmospheric pressure plasma processes: Applications of the LARGE plasma source

    OpenAIRE

    Kotte, Liliana; Roch, Julius; Mäder, Gerrit; Haag, Jana; Mertens, Tobias

    2015-01-01

    The LARGE plasma source based on an extended DC arc offers a scalable working width up to 350 mm and operates with a range of plasma gases like argon, plus molecular gases like H2, O2, CO2, N2 or pure nitrogen and compressed air. Selected plasma gas mixtures were characterized (temperature and OES). Application such as SiO2 adhesion layers on titan or plasma pre-treatment of CFRP will be presented.

  17. Modelling of Mixing of Steam Plasma Jet with Steam Atmosphere in Thermal Plasma Reactor

    Czech Academy of Sciences Publication Activity Database

    Hirka, Ivan; Jeništa, Jiří; Hrabovský, Milan

    Brno, 2005, s. 84-87. ISBN 80-214-2931-3. [Symposium on Physics of Switching Arc/16th./. Nové Město na Moravě (CZ), 05.09.2005-09.09.2005] Institutional research plan: CEZ:AV0Z20430508 Keywords : steam plasma * modelling * flow * plasma jet * reactor chamber Subject RIV: BL - Plasma and Gas Discharge Physics

  18. Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma

    CERN Document Server

    Hubert, Julie; Dufour, Thierry; Vandencasteele, Nicolas; Reniers, François; Viville, Pascal; Lazzaroni, Roberto; Raes, M; Terryn, Herman

    2016-01-01

    The synthesis and texturization processes of fluorinated surfaces by means of atmospheric plasma are investigated and presented through an integrated study of both the plasma phase and the resulting material surface. Three methods enhancing the surface hydrophobicity up to the production of super-hydrophobic surfaces are evaluated: (i) the modification of a polytetrafluoroethylene (PTFE) surface, (ii) the plasma deposition of fluorinated coatings and (iii) the incorporation of nanoparticles into those fluorinated films. In all the approaches, the nature of the plasma gas appears to be a crucial parameter for the desired property. Although a higher etching of the PTFE surface can be obtained with a pure helium plasma, the texturization can only be created if O2 is added to the plasma, which simultaneously decreases the total etching. The deposition of CxFy films by a dielectric barrier discharge leads to hydrophobic coatings with water contact angles (WCAs) of 115{\\textdegree}, but only the filamentary argon d...

  19. A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges

    International Nuclear Information System (INIS)

    In atmospheric radio-frequency (rf) discharges, the plasma parameters, such as electron density, sheath thickness and sheath voltage, are not easy to be probed experimentally, while the electrical characteristics, such as impedance, resistance and reactance, are relatively convenient to be measured. In this paper we presented a simple theoretical model derived from the fluid description of generated plasmas without considering the circuit model, to investigate the relationship between the plasma impedance and plasma parameters. By introducing a relaxation frequency, the plasma impedance could be predicted by formulas presented in this study, and the mean electron density and sheath thickness can also be calculated from the measured or simulated impedance and reactance, respectively. (low temperature plasma)

  20. Modification of surface properties of polyamide 6 films with atmospheric pressure plasma

    International Nuclear Information System (INIS)

    To investigate the effect of the different plasma gases treatment on the surface modification of atmospheric pressure plasma, polyamide 6 films were treated using pure helium (He), He/O2 and He/CF4, respectively. Atomic force microscopy (AFM) showed rougher surface, while X-ray photoelectron spectroscopy (XPS) revealed increased oxygen and fluorine contents after the plasma treatments. The plasma treated samples had lower water contact angles and higher T-peel strength than that of the control. The addition of small amount of O2 or CF4 to He plasma increases the effectiveness of the plasma treatment in polymer surface modification in terms of surface roughness, surface hydrophilic groups, etching rate, water contact angle and bonding strength.

  1. Modification of surface properties of polyamide 6 films with atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gao Zhiqiang, E-mail: sdgaozq@126.com [College of Textile and Clothing Engineering, Dezhou University, Shandong, 253023 (China)

    2011-05-01

    To investigate the effect of the different plasma gases treatment on the surface modification of atmospheric pressure plasma, polyamide 6 films were treated using pure helium (He), He/O{sub 2} and He/CF{sub 4}, respectively. Atomic force microscopy (AFM) showed rougher surface, while X-ray photoelectron spectroscopy (XPS) revealed increased oxygen and fluorine contents after the plasma treatments. The plasma treated samples had lower water contact angles and higher T-peel strength than that of the control. The addition of small amount of O{sub 2} or CF{sub 4} to He plasma increases the effectiveness of the plasma treatment in polymer surface modification in terms of surface roughness, surface hydrophilic groups, etching rate, water contact angle and bonding strength.

  2. Modification of surface properties of polyamide 6 films with atmospheric pressure plasma

    Science.gov (United States)

    Gao, Zhiqiang

    2011-05-01

    To investigate the effect of the different plasma gases treatment on the surface modification of atmospheric pressure plasma, polyamide 6 films were treated using pure helium (He), He/O 2 and He/CF 4, respectively. Atomic force microscopy (AFM) showed rougher surface, while X-ray photoelectron spectroscopy (XPS) revealed increased oxygen and fluorine contents after the plasma treatments. The plasma treated samples had lower water contact angles and higher T-peel strength than that of the control. The addition of small amount of O 2 or CF 4 to He plasma increases the effectiveness of the plasma treatment in polymer surface modification in terms of surface roughness, surface hydrophilic groups, etching rate, water contact angle and bonding strength.

  3. A battery-operated atmospheric-pressure plasma wand for biomedical applications

    International Nuclear Information System (INIS)

    A handheld, battery-operated atmospheric-pressure plasma rod (named the plasma wand) which does not rely on an external power source (e.g. mains power or a power generator) or gas supply is reported. The plasma wand can be used for killing bacteria, fungi or viruses that are hidden in narrow channels such as the nasal cavity and ear canal, which are difficult to access using most currently available devices. Besides, the electrical characterization, plasma wand temperature, emission spectra of the plasma, ozone and OH radical concentration generated by the device, are investigated by different diagnostic methods. The ozone concentration reaches 120 ppm 1 mm away from the device and the OH concentration reaches 3.5 × 1014 cm−3 in the plasma. The preliminary bacteria inactivation experiment results show that all the bacteria samples on the microfiltration membrane are killed by this device within 30 s. (paper)

  4. Design and construction of triplet atmospheric cold plasma jet for sterilization

    Directory of Open Access Journals (Sweden)

    F. Sohbatzadeh

    2014-03-01

    Full Text Available In this paper, construction of triplet atmospheric plasma jet using argon, air, oxygen and nitrogen gases is reported. Bactericidal effect of the plasma jet is also investigated. To that end, longitudinal geometric configuration for the electrodes was chosen because it would increase the jet length. Electrical characteristics, jet length dependencies on the applied voltage and gas flow rate were decided, experimentally. Relative concentrations of chemical reactive species such as ozone, atomic oxygen, NOx compounds and hydroxyl were measured using optical emission spectroscopy. It was seen that atomic oxygen and ozone concentrations with triplet plasma jet are more than the concentration of single plasma jet. Triplet plasma jet was also used for sterilization of solid and liquid surfaces to disinfect gram-negative and gram-positive Escherichia coli and Streptococcus pyogenes bacteria. The results verified the effectiveness of the triplet plasma jet for killing bacteria.

  5. On the magnetic field signal radiated by an atmospheric pressure room temperature plasma jet

    International Nuclear Information System (INIS)

    In this paper, the magnetic field signal radiated from an atmospheric pressure room temperature plasma plume is measured. It's found that the magnetic field signal has similar waveform as the current carried by the plasma plume. By calibration of the magnetic field signal, the plasma plume current is obtained by measuring the magnetic field signal radiated by the plasma plume. In addition, it is found that, when gas flow modes changes from laminar regime to turbulence regime, the magnetic field signal waveforms appears different, it changes from a smooth curve to a curve with multiple spikes. Furthermore, it is confirmed that the plasma plume generated by a single electrode (without ground electrode) plasma jet device carries higher current than that with ground electrode.

  6. The Research on Atmospheric Pressure Water Vapour Plasma Generation and Application for the Destruction of Wastes

    Directory of Open Access Journals (Sweden)

    Viktorija Grigaitiene

    2013-01-01

    Full Text Available In the Lithuanian Energy Institute an experimental atmospheric pressure Ar/water vapour plasma torch has been designed and tested. The power of plasma torch was estimated 40 ÷ 69 kW, the mean temperature of plasma jet at the exhaust nozzle was 2300÷2900K. The chemical compositionof water vapour plasma was established from the emission spectrum lines at 300 ÷ 800nm range. The main species observed in Ar/water vapour plasma were: Ar, OH, H, O, Cu. The experiments on water vapour steam reforming were performed. The results confirmed that water vapour plasma has the unique properties – high enthalpy and environmentally friendly conditions. It could be employed for environmental purposes such as destruction of wastes into simple molecules or conversion to synthetic gas.

  7. Multiple plasma bullet behavior of an atmospheric-pressure plasma plume driven by a pulsed dc voltage

    International Nuclear Information System (INIS)

    The dynamics of an atmospheric-pressure plasma plume generated in a controlled gas environment are studied. It is found that, at a particular pulse width, two or three plasma bullets are generated in each voltage pulse for both positive and negative voltage pulses. The velocities of the multiple bullets are more than four and less than fourteen times those in the case of a single bullet, for positive and negative voltage pulses, respectively. A detailed analysis shows that the charges carried by the bullets probably play an important role in the propagation of plasma bullets and in the formation of multiple bullets. It is found that the electrode polarity also plays an important role in the generation and propagation of multiple plasma bullets. (paper)

  8. Surface modification of a polyamide 6 film by He/CF4 plasma using atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Polyamide 6 (PA 6) films are treated with helium(He)/CF4 plasma at atmospheric pressure. The samples are treated at different treatment times. The surface modification of the PA 6 films is evaluated by water contact angle, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The etching rate is used to study the etching effect of He/CF4 plasma on the PA 6 films. The T-peel strengths of the control and plasma treated films are measured to show the surface adhesion properties of the films. As the treatment time increases, the etching rate decreases steadily, the contact angle decreases initially and then increases, while the T-peel strength increases first and then decreases. AFM analyses show that the surface roughness increases after the plasma treatment. XPS analyses reveal substantial incorporation of fluorine and/or oxygen atoms to the polymer chains on the film surfaces.

  9. Surface modification of a polyamide 6 film by He/CF{sub 4} plasma using atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Gao Zhiqiang [Key Laboratory of Textile Science and Technology, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China); Sun Jie [Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education (China); Peng Shujing; Yao Lan [Key Laboratory of Textile Science and Technology, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China); Qiu Yiping, E-mail: ypqiu@dhu.edu.cn [Key Laboratory of Textile Science and Technology, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China)

    2009-12-15

    Polyamide 6 (PA 6) films are treated with helium(He)/CF{sub 4} plasma at atmospheric pressure. The samples are treated at different treatment times. The surface modification of the PA 6 films is evaluated by water contact angle, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The etching rate is used to study the etching effect of He/CF{sub 4} plasma on the PA 6 films. The T-peel strengths of the control and plasma treated films are measured to show the surface adhesion properties of the films. As the treatment time increases, the etching rate decreases steadily, the contact angle decreases initially and then increases, while the T-peel strength increases first and then decreases. AFM analyses show that the surface roughness increases after the plasma treatment. XPS analyses reveal substantial incorporation of fluorine and/or oxygen atoms to the polymer chains on the film surfaces.

  10. Surface modification of a polyamide 6 film by He/CF 4 plasma using atmospheric pressure plasma jet

    Science.gov (United States)

    Gao, Zhiqiang; Sun, Jie; Peng, Shujing; Yao, Lan; Qiu, Yiping

    2009-12-01

    Polyamide 6 (PA 6) films are treated with helium(He)/CF 4 plasma at atmospheric pressure. The samples are treated at different treatment times. The surface modification of the PA 6 films is evaluated by water contact angle, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The etching rate is used to study the etching effect of He/CF 4 plasma on the PA 6 films. The T-peel strengths of the control and plasma treated films are measured to show the surface adhesion properties of the films. As the treatment time increases, the etching rate decreases steadily, the contact angle decreases initially and then increases, while the T-peel strength increases first and then decreases. AFM analyses show that the surface roughness increases after the plasma treatment. XPS analyses reveal substantial incorporation of fluorine and/or oxygen atoms to the polymer chains on the film surfaces.

  11. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low-speed flows and...

  12. Behavior of alumina particles in atmospheric pressure plasma jets

    International Nuclear Information System (INIS)

    The distribution of Al2O3 particle size, velocity and temperature was mapped over the flow field of a 31.5 kW plasma torch. The effects of varying the powder loading were studied. The powder feed rate was varied between .45 and 2.05 kg/hr independent of the carrier gas flow rate. The particle flow field was non-symmetric due to the method of particle injection. The data indicate that powder feed rate does not significantly affect either the temperature or velocity of the particles, for typical plasma spray conditions, and that the assumption of a dilute particle flow field is valid. 1 ref., 7 figs

  13. Silicon drift detector based X-ray spectroscopy diagnostic system for the study of non-thermal electrons at Aditya tokamak.

    Science.gov (United States)

    Purohit, S; Joisa, Y S; Raval, J V; Ghosh, J; Tanna, R; Shukla, B K; Bhatt, S B

    2014-11-01

    Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented. PMID:25430326

  14. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.;

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... absorption spectroscopy was also employed for the detection of stable products in the exhaust gas. To clarify the different processes for ammonia decomposition, N-2(2 - 10%) was added to the plasma. Modeling of the chemical kinetics in an Ar/NH3 plasma was performed as well. The dominant stable products of...... an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  15. Promoted cell and material interaction on atmospheric pressure plasma treated titanium

    Energy Technology Data Exchange (ETDEWEB)

    Han, Inho [Convergence Technology Exam. Div. II, Korean Intellectual Patent Office, Daejeon (Korea, Republic of); Vagaska, Barbora [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Seo, Hyok Jin [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kang, Jae Kyeong [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kwon, Byeong-Ju [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Mi Hee [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Park, Jong-Chul, E-mail: parkjc@yuhs.ac [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2012-03-01

    Surface carbon contamination is a natural phenomenon. However, it interferes with cell-biomaterial interaction. In order to eliminate the interference, atmospheric pressure plasma treatment was employed. Dielectric barrier discharge treatment of titanium surface for less than 10 min turned titanium super-hydrophilic. Adsorption of fibronectin which is the major cell adhesive protein increased after plasma treatment. Cell attachment parameters of osteoblast cells such as population, cell area, perimeter, Feret's diameter and cytoskeleton development were also enhanced. Cell proliferation increased on the plasma treated titanium. In conclusion, dielectric barrier discharge type atmospheric pressure plasma system is effective to modify titanium surface and the modified titanium promotes cell and material interactions.

  16. Apoptotic effects on cultured cells of atmospheric-pressure plasma produced using various gases

    Science.gov (United States)

    Tominami, Kanako; Kanetaka, Hiroyasu; Kudo, Tada-aki; Sasaki, Shota; Kaneko, Toshiro

    2016-01-01

    This study investigated the effects of low-temperature atmospheric-pressure plasma on various cells such as rat fibroblastic Rat-1 cell line, rat neuroblastoma-like PC12 cell line, and rat macrophage-like NR8383 cell line. The plasma was irradiated directly to a culture medium containing plated cells for 0-20 s. The applied voltage, excitation frequency, and argon or helium gas flow were, respectively, 3-6 kV, 10 kHz, and 3 L/min. Cell viability and apoptotic activity were evaluated using annexin-V/propidium iodide staining. Results showed that the low-temperature atmospheric-pressure plasma irradiation promoted cell death in a discharge-voltage-dependent and irradiation-time-dependent manner. Furthermore, different effects are produced depending on the cell type. Moreover, entirely different mechanisms might be responsible for the induction of apoptosis in cells by helium and argon plasma.

  17. Liquid fuel reforming using microwave plasma at atmospheric pressure

    Science.gov (United States)

    Miotk, Robert; Hrycak, Bartosz; Czylkowski, Dariusz; Dors, Miroslaw; Jasinski, Mariusz; Mizeraczyk, Jerzy

    2016-06-01

    Hydrogen is expected to be one of the most promising energy carriers. Due to the growing interest in hydrogen production technologies, in this paper we present the results of experimental investigations of thermal decomposition and dry reforming of two alcohols (ethanol and isopropanol) in the waveguide-supplied metal-cylinder-based nozzleless microwave (915 MHz) plasma source (MPS). The hydrogen production experiments were preceded by electrodynamics properties investigations of the used MPS and plasma spectroscopic diagnostics. All experimental tests were performed with the working gas (nitrogen or carbon dioxide) flow rate ranging from 1200 to 3900 normal litres per hour and an absorbed microwave power up to 5 kW. The alcohols were introduced into the plasma using an induction heating vaporizer. The ethanol thermal decomposition resulted in hydrogen selectivity up to 100%. The hydrogen production rate was up to 1150 NL(H2) h‑1 and the energy yield was 267 NL(H2) kWh‑1 of absorbed microwave energy. Due to intense soot production, the thermal decomposition process was not appropriate for isopropanol conversion. Considering the dry reforming process, using isopropanol was more efficient in hydrogen production than ethanol. The rate and energy yield of hydrogen production were up to 1116 NL(H2) h‑1 and 223 NL(H2) kWh‑1 of microwave energy used, respectively. However, the hydrogen selectivity was no greater than 37%. Selected results given by the experiment were compared with the results of numerical modeling.

  18. Influence of ethylene glycol pretreatment on effectiveness of atmospheric pressure plasma treatment of polyethylene fibers

    International Nuclear Information System (INIS)

    For atmospheric pressure plasma treatments, the results of plasma treatments may be influenced by liquids adsorbed into the substrate. This paper studies the influence of ethylene glycol (EG) pretreatment on the effectiveness of atmospheric plasma jet (APPJ) treatment of ultrahigh molecular weight polyethylene (UHMWPE) fibers with 0.31% and 0.42% weight gain after soaked in EG/water solution with concentration of 0.15 and 0.3 mol/l for 24 h, respectively. Scanning electron microscopy (SEM) shows that the surface of fibers pretreated with EG/water solution does not have observable difference from that of the control group. The X-ray photoelectron spectroscopy (XPS) results show that the oxygen concentration on the surface of EG-pretreated fibers is increased less than the plasma directly treated fibers. The interfacial shear strength (IFSS) of plasma directly treated fibers to epoxy is increased almost 3 times compared with the control group while that of EG-pretreated fibers to epoxy does not change except for the fibers pretreated with lower EG concentration and longer plasma treatment time. EG pretreatment reduces the water contact angle of UHMWPE fibers. In conclusion, EG pretreatment can hamper the effect of plasma treatment of UHMWPE fibers and therefore longer plasma treatment duration is required for fibers pretreated with EG.

  19. Influence of ethylene glycol pretreatment on effectiveness of atmospheric pressure plasma treatment of polyethylene fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wen Ying; Li Ranxing [Key Laboratory of Textile Science and Technology (Donghua University), Ministry of Education (China); Cai Fang [Key Laboratory of Eco-Textiles (Donghua University), Ministry of Education (China); Fu Kun; Peng Shujing; Jiang Qiuran; Yao Lan [Key Laboratory of Textile Science and Technology (Donghua University), Ministry of Education (China); Qiu Yiping, E-mail: ypqiu@dhu.edu.cn [Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China)

    2010-03-01

    For atmospheric pressure plasma treatments, the results of plasma treatments may be influenced by liquids adsorbed into the substrate. This paper studies the influence of ethylene glycol (EG) pretreatment on the effectiveness of atmospheric plasma jet (APPJ) treatment of ultrahigh molecular weight polyethylene (UHMWPE) fibers with 0.31% and 0.42% weight gain after soaked in EG/water solution with concentration of 0.15 and 0.3 mol/l for 24 h, respectively. Scanning electron microscopy (SEM) shows that the surface of fibers pretreated with EG/water solution does not have observable difference from that of the control group. The X-ray photoelectron spectroscopy (XPS) results show that the oxygen concentration on the surface of EG-pretreated fibers is increased less than the plasma directly treated fibers. The interfacial shear strength (IFSS) of plasma directly treated fibers to epoxy is increased almost 3 times compared with the control group while that of EG-pretreated fibers to epoxy does not change except for the fibers pretreated with lower EG concentration and longer plasma treatment time. EG pretreatment reduces the water contact angle of UHMWPE fibers. In conclusion, EG pretreatment can hamper the effect of plasma treatment of UHMWPE fibers and therefore longer plasma treatment duration is required for fibers pretreated with EG.

  20. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    Science.gov (United States)

    Han, Xu; Klas, Matej; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2013-09-01

    The nitrogen atmospheric pressure plasma jet (APPJ) has been shown to effectively induce DNA double strand breaks in SCC-25 oral cancer cells. The APPJ source constructed in our laboratory consists of two external electrodes wrapping around a quartz tube and nitrogen as a feed gas and operates based on dielectric barrier gas discharge. Generally, it is more challenging to ignite plasma in N2 atmosphere than in noble gases. However, this design provides additional advantages such as lower costs compared to the noble gases for future clinical operation. Different parameters of the APPJ configuration were tested in order to determine radiation dosage. To explore the effects of delayed damage and cell self-repairing, various incubation times of cells after plasma treatment were also performed. Reactive species generated in plasma jet and in liquid environment are essential to be identified and quantified, with the aim of unfolding the mystery of detailed mechanisms for plasma-induced cell apoptosis. Moreover, from the comparison of plasma treatment effect on normal oral cells OKF6T, an insight to the selectivity for cancer treatment by APPJ can be explored. All of these studies are critical to better understand the damage responses of normal and abnormal cellular systems to plasma radiation, which are useful for the development of advanced plasma therapy for cancer treatment at a later stage.