WorldWideScience

Sample records for atmospheric nitrogen fluorescence

  1. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Teramoto, Yoshiyuki; Ono, Ryo [Department of Advanced Energy, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8568 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2012-06-01

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.

  2. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    International Nuclear Information System (INIS)

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N2 discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N2 discharge pulse is estimated to be 2.9 - 9.8 × 1013 atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 × 1016 atoms/J. The energy efficiency of atomic nitrogen production in N2 discharge is constant against the discharge energy, while that in N2/O2 discharge increases with discharge energy. In the N2/O2 discharge, two-step process of N2 dissociation plays significant role for atomic nitrogen production.

  3. Can mushrooms fix atmospheric nitrogen?

    Indian Academy of Sciences (India)

    H S Jayasinghearachchi; Gamini Seneviratne

    2004-09-01

    It is generally reported that fungi like Pleurotus spp. can fix nitrogen (N2). The way they do it is still not clear. The present study hypothesized that only associations of fungi and diazotrophs can fix N2. This was tested in vitro. Pleurotus ostreatus was inoculated with a bradyrhizobial strain nodulating soybean and P. ostreatus with no inoculation was maintained as a control. At maximum mycelial colonization by the bradyrhizobial strain and biofilm formation, the cultures were subjected to acetylene reduction assay (ARA). Another set of the cultures was evaluated for growth and nitrogen accumulation. Nitrogenase activity was present in the biofilm, but not when the fungus or the bradyrhizobial strain was alone. A significant reduction in mycelial dry weight and a significant increase in nitrogen concentration were observed in the inoculated cultures compared to the controls. The mycelial weight reduction could be attributed to C transfer from the fungus to the bradyrhizobial strain, because of high C cost of biological N2 fixation. This needs further investigations using 14C isotopic tracers. It is clear from the present study that mushrooms alone cannot fix atmospheric N2. But when they are in association with diazotrophs, nitrogenase activity is detected because of the diazotrophic N2 fixation. It is not the fungus that fixes N2 as reported earlier. Effective N2 fixing systems, such as the present one, may be used to increase protein content of mushrooms. Our study has implications for future identification of as yet unidentified N2 systems occurring in the environment.

  4. Atmospheric nitrogen evolution on Earth and Venus

    Science.gov (United States)

    Wordsworth, R. D.

    2016-08-01

    Nitrogen is the most common element in Earth's atmosphere and also appears to be present in significant amounts in the mantle. However, its long-term cycling between these two reservoirs remains poorly understood. Here a range of biotic and abiotic mechanisms are evaluated that could have caused nitrogen exchange between Earth's surface and interior over time. In the Archean, biological nitrogen fixation was likely strongly limited by nutrient and/or electron acceptor constraints. Abiotic fixation of dinitrogen becomes efficient in strongly reducing atmospheres, but only once temperatures exceed around 1000 K. Hence if atmospheric N2 levels really were as low as they are today 3.0-3.5 Ga, the bulk of Earth's mantle nitrogen must have been emplaced in the Hadean, most likely at a time when the surface was molten. The elevated atmospheric N content on Venus compared to Earth can be explained abiotically by a water loss redox pump mechanism, where oxygen liberated from H2O photolysis and subsequent H loss to space oxidises the mantle, causing enhanced outgassing of nitrogen. This mechanism has implications for understanding the partitioning of other Venusian volatiles and atmospheric evolution on exoplanets.

  5. Atmospheric nitrogen evolution on Earth and Venus

    CERN Document Server

    Wordsworth, R D

    2016-01-01

    Nitrogen is the most common element in Earth's atmosphere and also appears to be present in significant amounts in the mantle. However, its long-term cycling between these two reservoirs remains poorly understood. Here a range of biotic and abiotic mechanisms are evaluated that could have caused nitrogen exchange between Earth's surface and interior over time. In the Archean, biological nitrogen fixation was likely strongly limited by nutrient and/or electron acceptor constraints. Abiotic fixation of dinitrogen becomes efficient in strongly reducing atmospheres, but only once temperatures exceed around 1000 K. Hence if atmospheric N2 levels really were as low as they are today 3.0 - 3.5 Ga, the bulk of Earth's mantle nitrogen must have been emplaced in the Hadean, most likely at a time when the surface was molten. The elevated atmospheric N content on Venus compared to Earth can be explained abiotically by a water loss redox pump mechanism, where oxygen liberated from H2O photolysis and subsequent H loss to s...

  6. The Atmospheric Fate of Organic Nitrogen Compounds

    Science.gov (United States)

    Borduas, Nadine

    Organic nitrogen compounds are present in our atmosphere from biogenic and anthropogenic sources and have impacts on air quality and climate. Due to recent advances in instrumentation, these compounds are being detected in the gas and particle phases, raising questions as to their source, processing and sinks in the environment. With their recently identified role as contributors to aerosol formation and growth, their novel large scale use as solvents in carbon capture and storage (CCS) technology and their emissions from cigarette smoke, it is now important to address the gaps in our understanding of the fate of organic nitrogen. Experimentally and theoretically, I studied the chemical atmospheric fate of specific organic nitrogen compounds in the amine, amide and isocyanate families, yielding information that can be used in chemical transport models to assess the fate of this emerging class of atmospheric molecules. I performed kinetic laboratory studies in a smog chamber to measure the room temperature rate coefficient for reaction with the hydroxyl radical of monoethanolamine, nicotine, and five different amides. I employed online-mass spectrometry techniques to quantify the oxidation products. I found that amines react quickly with OH radicals with lifetimes of a few hours under sunlit conditions, producing amides as oxidation products. My studies on amides revealed that they have much longer lifetimes in the atmosphere, ranging from a few hours to a week. Photo-oxidation of amides produces isocyanates and I investigated these mechanisms in detail using ab initio calculations. Furthermore, I experimentally measured isocyanic acid's Henry's Law constant as well as its hydrolysis rate constants to better understand its sinks in the atmosphere. Finally, I re-examined the structure-activity relationship (SAR) of organic nitrogen molecules for improved model parameterizations.

  7. Ecological effects of atmospheric nitrogen deposition on soil enzyme activity

    Institute of Scientific and Technical Information of China (English)

    WANG Cong-yan; Lv Yan-na; LIU Xue-yan Liu; WANG Lei

    2013-01-01

    The continuing increase in human activities is causing global changes such as increased deposition of atmospheric nitrogen.There is considerable interest in understanding the effects of increasing atmospheric nitrogen deposition on soil enzyme activities,specifically in terms of global nitrogen cycling and its potential future contribution to global climate change.This paper summarizes the ecological effects of atmospheric nitrogen deposition on soil enzyme activities,including size-effects,stage-effects,site-effects,and the effects of different levels and forms of atmospheric nitrogen deposition.We discuss needs for further research on the relationship between atmospheric nitrogen deposition and soil enzymes.

  8. Mesoscale, Sources and Models: Sources for Nitrogen in the Atmosphere

    DEFF Research Database (Denmark)

    Hertel, O.

    1994-01-01

    Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen.......Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen....

  9. Chlorophyll fluorescence response to water and nitrogen deficit

    Science.gov (United States)

    Cendrero Mateo, Maria del Pilar

    The increasing food demand as well as the need to predict the impact of warming climate on vegetation makes it critical to find the best tools to assess crop production and carbon dioxide (CO2) exchange between the land and atmosphere. Photosynthesis is a good indicator of crop production and CO2 exchange. Chlorophyll fluorescence (ChF) is directly related to photosynthesis. ChF can be measured at leaf-scale using active techniques and at field-scales using passive techniques. The measurement principles of both techniques are different. In this study, three overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF? ; Q2) which are the limits within which active and passive techniques are comparable?; and Q3) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? To address these questions, two main experiments were conducted: Exp1) Concurrent photosynthesis and ChF light-response curves were measured in camelina and wheat plants growing under (i) intermediate-light and (ii) high-light conditions respectively. Plant stress was induced by (i) withdrawing water, and (ii) applying different nitrogen levels; and Exp2) coincident active and passive ChF measurements were made in a wheat field under different nitrogen treatments. The results indicated ChF has a direct relationship with photosynthesis when water or nitrogen drives the relationship. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Also, the results showed that for leaf-average-values, active measurements can be used to better understand the daily and seasonal behavior of passive ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a

  10. Atmospheric nitrogen inputs into the coastal ecosystem (ANICE)

    NARCIS (Netherlands)

    Leeuw, G. de

    1998-01-01

    The study on Atmospheric Nitrogen Inputs into the Coastal Ecosystem (ANICE) is focused on the improvement of models describing atmospheric transport and transformation of nitrogen compounds. Model tools are needed for mapping of the nitrogen load and for studies of the impacts of different regulatio

  11. Spectral resolved Measurement of the Nitrogen Fluorescence Emissions in Air induced by Electrons

    CERN Document Server

    Waldenmaier, Tilo; Klages, Hans

    2007-01-01

    For the calorimetric determination of the primary energy of extensive air showers, measured by fluorescence telescopes, a precise knowledge of the conversion factor (fluorescence yield) between the deposited energy in the atmosphere and the number of emitted fluorescence photons is essential. The fluorescence yield depends on the pressure and the temperature of the air as well as on the water vapor concentration. Within the scope of this work the fluorescence yield for the eight strongest nitrogen emission bands between 300 nm and 400 nm has been measured using electrons from a Sr-90 source with energies between 250 keV and 2000 keV. Measurements have been performed in dry air, pure nitrogen, and a nitrogen-oxygen mixture at pressures ranging from 2 hPa to 990 hPa. Furthermore the influence of water vapor has been studied. A new approach for the parametrization of the fluorescence yield was used to analyze the data, leading to a consistent description of the fluorescence yield with a minimal set of parameters...

  12. [Characteristics of atmospheric nitrogen wet deposition in Beijing urban area].

    Science.gov (United States)

    He, Cheng-Wu; Ren, Yu-Fen; Wang, Xiao-Ke; Mao, Yu-Xiang

    2014-02-01

    With the ion-exchange resin method, the atmospheric nitrogen wet deposition in Beijing urban area within the Fifth Ring Road was investigated from June to October, 2012. The relationship between atmospheric nitrogen wet deposition and rainfall precipitation was investigated, the differences of nitrogen wet deposition in different months, different ring roads (the Fifth Ring Road, the Fourth Ring Road, the Third Ring Road and the Second Ring Road) and different functional areas (institutes and colleges district, ring-road, residential areas, railway station and public garden) were also investigated. The results showed that the average value and standard deviation of ammonia-nitrogen, nitrate-nitrogen and nitrite-nitrogen were significantly different during different months in 2012. The atmospheric nitrite nitrogen deposition first decreased and then increased, the maximum value appeared in September. The positive relationships between ammonia nitrogen (nitrate nitrogen) and mean monthly precipitation and negative relationships between nitrite nitrogen and mean monthly precipitation were both significant (P depositions of ring-road and railway station were higher than other functional areas, but only the nitrite nitrogen deposition had obvious regional difference. The differences of the three nitrogen depositions among different ring roads were all not significant and it meant that the nitrogen wet deposition was equally distributed in Beijing urban area. PMID:24812938

  13. Atmospheric nitrogen budget in Sahelian dry savannas

    Directory of Open Access Journals (Sweden)

    C. Delon

    2009-06-01

    Full Text Available The atmospheric nitrogen budget depends on emission and deposition fluxes both as reduced and oxidized nitrogen compounds. In this study, a first attempt at estimating the Sahel nitrogen budget for the year 2006 is made, through measurements and simulations at three stations from the IDAF network situated in dry savanna ecosystems. Dry deposition fluxes are estimated from measurements of NO2, HNO3 and NH3 gaseous concentrations, and wet deposition fluxes are calculated from NH4+ and NO3 concentrations in samples of rain. Emission fluxes are estimated including biogenic emission of NO from soils (an Artificial Neural Network module has been inserted into the ISBA-SURFEX surface model, emission of NOx and NH3 from domestic fires and biomass burning, and volatilization of NH3 from animal excreta.

    This study uses original and unique data from remote and hardly-ever-explored regions. The monthly evolution of oxidized N compounds shows that deposition increases at the beginning of the rainy season because of large emissions of biogenic NO (pulse events. Emission of oxidized compounds is dominated by biogenic emission from soils (domestic fires and biomass burning account for 27% at the most, depending on the station, whereas emission of NH3 is dominated by the process of volatilization. Deposition fluxes are dominated by gaseous dry deposition processes (58% of the total, for both oxidized and reduced compounds. The average deposition flux in dry savanna ecosystems ranges from 8.6 to 10.9 kgN ha−1 yr−1, with 30% attributed to oxidized compounds, and the other 70% attributed to NHx. The average emission flux ranges from 7.8 to 9.7 kgN ha−1 yr−1, dominated by NH3 volatilization (67% and biogenic emission from soils (24%. The annual budget is then

  14. Atmospheric nitrogen budget in Sahelian dry savannas

    Directory of Open Access Journals (Sweden)

    C. Delon

    2010-03-01

    Full Text Available The atmospheric nitrogen budget depends on emission and deposition fluxes both as reduced and oxidized nitrogen compounds. In this study, a first attempt at estimating the Sahel nitrogen budget for the year 2006 is made, through measurements and simulations at three stations from the IDAF network situated in dry savanna ecosystems. Dry deposition fluxes are estimated from measurements of NO2, HNO3 and NH3 gaseous concentrations and from simulated dry deposition velocities, and wet deposition fluxes are calculated from NH4+ and NO3 concentrations in samples of rain. Emission fluxes are estimated including biogenic emission of NO from soils (an Artificial Neural Network module has been inserted into the ISBA-SURFEX surface model, emission of NOx and NH3 from domestic fires and biomass burning, and volatilization of NH3 from animal excreta. Uncertainties are calculated for each contribution of the budget.

    This study uses original and unique data from remote and hardly-ever-explored regions.The monthly evolution of oxidized N compounds shows that emission and deposition increase at the beginning of the rainy season because of large emissions of biogenic NO (pulse events. Emission of oxidized compounds is dominated by biogenic emission from soils (domestic fires and biomass burning of oxidized compounds account for 0 to 13% at the most at the annual scale, depending on the station, whereas emission of NH3 is dominated by the process of volatilization from soils. At the annual scale, the average gaseous dry deposition accounts for 47% of the total estimated deposition flux, for both oxidized and reduced compounds. The average estimated wet plus dry deposition flux in dry savanna ecosystems is 7.5±1.8 kgN ha−1 yr−1, with approximately 30% attributed to oxidized compounds, and the rest attributed

  15. Nitrogen Availability Of Nitriding Atmosphere In Controlled Gas Nitriding Processes

    Directory of Open Access Journals (Sweden)

    Michalski J.

    2015-06-01

    Full Text Available Parameters which characterize the nitriding atmosphere in the gas nitriding process of steel are: the nitriding potential KN, ammonia dissociation rate α and nitrogen availabilitymN2. The article discusses the possibilities of utilization of the nitriding atmosphere’s nitrogen availability in the design of gas nitriding processes of alloyed steels in atmospheres derived from raw ammonia, raw ammonia diluted with pre-dissociated ammonia, with nitrogen, as well as with both nitrogen and pre-dissociated ammonia. The nitriding processes were accomplished in four series. The parameters selected in the particular processes were: process temperature (T, time (t, value of nitriding potential (KN, corresponding to known dissociation rate of the ammonia which dissociates during the nitriding process (α. Variable parameters were: nitrogen availability (mN2, composition of the ingoing atmosphere and flow rate of the ingoing atmosphere (FIn.

  16. Atmospheric deposition of nitrogen and sulfur in Louisiana

    Science.gov (United States)

    Zhang, H.; Guo, H.

    2015-12-01

    Wet deposition and dry deposition reduce their concentrations of sulfur and nitrogen contained air pollutants in atmosphere, but lead to increase of sulfur and nitrogen fluxes to the surface. Atmospheric deposition of sulfur and nitrogen can lead to acidification of surface water bodies (lakes, rivers, and coasts) and subsequent damage to aquatic ecosystems as well as damage to forests and vegetation. Louisiana has abundant water resources with approximately 11% of the total surface area composed of water bodies. It is important to protect water resources from excessive atmospheric deposition of sulfur and nitrogen. However, the information obtained from the observation systems for understanding the deposition of sulfur and nitrogen and the adverse effects in Louisiana is limited. This study uses a source-oriented CMAQ model to simulate emission, formation, transport, and deposition of sulfur and nitrogen species in Louisiana. WRF is used to generate the meteorological inputs and SMOKE is used to generate the emissions based on national emission inventory (NEI). The forms and quantities of sulfur and nitrogen deposition from wet and dry processes in Louisiana will be discovered. The spatial and temporal variations of sulfur and nitrogen fluxes will be quantified and contributions of major source sectors or source regions will be quantified.

  17. Likelihood of nitrogen condensation in Titan's present atmosphere

    Science.gov (United States)

    Tokano, Tetsuya%F. AA(Institut für Geophysik und Meteorologie, Universität zu Köln)

    2016-06-01

    Nitrogen condensation is considered to have taken place in Titan's atmosphere in the past when the atmosphere contained much less methane than today or the solar luminosity was smaller. On the other hand, it is not known for sure whether nitrogen condensation takes place on present-day Titan. Vertical temperature profiles in Titan's troposphere obtained Voyager, Huygens and Cassini do not reach the pressure-dependent nitrogen condensation temperature at any location, so that nitrogen condensation was probably not occurring along these profiles at the time of measurements. However, these spacecraft may not have sounded the coldest seasons and areas of Titan since they all took place in the seasons following perihelion. The seasonal cycle of temperature and nitrogen relative humidity in Titan's troposphere has been simulated by a general circulation model in an effort to explore possible areas and seasons of nitrogen condensation on present Titan. In contrast to the upper stratosphere, the seasonal temperature variation in the troposphere is more strongly controlled by Saturn's orbital eccentricity than by Saturn's obliquity. Consequently, the tropospheric temperature globally decreases between the northern vernal equinox and autumnal equinox and reaches the annual minimum around the northern autumnal equinox approximately one season after aphelion. It is possible if not certain that the polar atmosphere between 30 and 40 km altitude temporarily reach the nitrogen condensation temperature in this season and thereby causes liquid nitrogen clouds. Qualitative differences to the more common methane condensation as well as possible impact on Titan's weather are discussed.

  18. Load of soil and water by atmospheric nitrogen deposition

    International Nuclear Information System (INIS)

    After comprehensive retrofitting of power plants with flue gas desulfurization systems has been completed in Germany, nitrogen oxides (NOx) and ammonia became the most important air pollutants. Pollution control measures to reduce the release of these substances which predominantly originate from traffic and agriculture had only marginal success. Some way or other, emissions into the atmosphere return to the ground and entail here generally harmful side effects. After introductory remarks on nitrogen as an air contaminant, the present potential in the derivation of emittor/receptor-relationships for nitrogen compounds are described. Subsequently, the nitrogen deposition rates are quantified and evaluated. (orig.)

  19. Atmospheric nitrogen compounds: Occurrence, composition and deposition

    DEFF Research Database (Denmark)

    Nielsen, T.; Pilegaard, K.; Egeløv, A.H.;

    1996-01-01

    Traffic in cities and on highways is an important contributor to NOy atmospheric pollution in open areas. In this situation both the concentration and composition of NOy compounds show a wide variation and are dependent on meteorological and atmospheric chemical conditions. The proportion of NOz....... The possibility that a significant contribution is caused by a group of unidentified NOy compounds cannot be excluded. Therefore, future investigations of atmospheric pollution of sensitive ecosystems, at conditions with a relatively high atmospheric content of NOy compared to that of NH3, ought to take...... into consideration the possible contribution from unidentified NOy compounds. This also implies that atmospheric research into the identity, occurrence, sources and sinks of these compounds-as well as further developments of sampling and analytical methods-should be given a high priority....

  20. Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Harmens, H., E-mail: hh@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Norris, D.A., E-mail: danor@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Cooper, D.M., E-mail: cooper@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Mills, G., E-mail: gmi@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Steinnes, E., E-mail: Eiliv.Steinnes@chem.ntnu.no [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Kubin, E., E-mail: Eero.Kubin@metla.fi [Finnish Forest Research Institute, Kirkkosaarentie 7, 91500 Muhos (Finland); Thoeni, L., E-mail: lotti.thoeni@fub-ag.ch [FUB-Research Group for Environmental Monitoring, Alte Jonastrasse 83, 8640 Rapperswil (Switzerland); Aboal, J.R., E-mail: jesusramon.aboal@usc.es [University of Santiago de Compostela, Faculty of Biology, Department of Ecology, 15782 Santiago de Compostela (Spain); Alber, R., E-mail: Renate.Alber@provinz.bz.it [Environmental Agency of Bolzano, 39055 Laives (Italy); Carballeira, A., E-mail: alejo.carballeira@usc.es [University of Santiago de Compostela, Faculty of Biology, Department of Ecology, 15782 Santiago de Compostela (Spain); Coskun, M., E-mail: coskunafm@yahoo.com [Canakkale Onsekiz Mart University, Faculty of Medicine, Department of Medical Biology, 17100 Canakkale (Turkey); De Temmerman, L., E-mail: ludet@var.fgov.be [Veterinary and Agrochemical Research Centre, Tervuren (Belgium); Frolova, M., E-mail: marina.frolova@lvgma.gov.lv [Latvian Environment, Geology and Meteorology Agency, Riga (Latvia); Gonzalez-Miqueo, L., E-mail: lgonzale2@alumni.unav.es [Univ. of Navarra, Irunlarrea No 1, 31008 Pamplona (Spain)

    2011-10-15

    In 2005/6, nearly 3000 moss samples from (semi-)natural location across 16 European countries were collected for nitrogen analysis. The lowest total nitrogen concentrations in mosses (<0.8%) were observed in northern Finland and northern UK. The highest concentrations ({>=}1.6%) were found in parts of Belgium, France, Germany, Slovakia, Slovenia and Bulgaria. The asymptotic relationship between the nitrogen concentrations in mosses and EMEP modelled nitrogen deposition (averaged per 50 km x 50 km grid) across Europe showed less scatter when there were at least five moss sampling sites per grid. Factors potentially contributing to the scatter are discussed. In Switzerland, a strong (r{sup 2} = 0.91) linear relationship was found between the total nitrogen concentration in mosses and measured site-specific bulk nitrogen deposition rates. The total nitrogen concentrations in mosses complement deposition measurements, helping to identify areas in Europe at risk from high nitrogen deposition at a high spatial resolution. - Highlights: > Nitrogen concentrations in mosses were determined at ca. 3000 sites across Europe. > Moss concentrations were compared with EMEP modelled nitrogen deposition. > The asymptotic relationship for Europe showed saturation at ca. 15 kg N ha{sup -1} y{sup -1}. > Linear relationships were found with measured nitrogen deposition in some countries. > Moss concentrations complement deposition measurements at high spatial resolution. - Mosses as biomonitors of atmospheric nitrogen deposition in Europe.

  1. Quantifying atmospheric nitrogen outflow from the Front Range of Colorado

    Science.gov (United States)

    Neuman, J. A.; Eilerman, S. J.; Brock, C. A.; Brown, S. S.; Dube, W. P.; Herndon, S. C.; Holloway, J. S.; Nowak, J. B.; Roscioli, J. R.; Ryerson, T. B.; Sjostedt, S. J.; Thompson, C. R.; Trainer, M.; Veres, P. R.; Wild, R. J.

    2015-12-01

    Reactive nitrogen emitted to the atmosphere from urban, industrial, and agricultural sources can be transported and deposited far from the source regions, affecting vegetation, soils, and water of sensitive ecosystems. Mitigation of atmospheric nitrogen deposition requires emissions characterization and quantification. Ammonia (NH3), a full suite of gas-phase oxidized nitrogen compounds, and particulate matter were measured from an aircraft that flew downwind from concentrated animal feeding operations, oil and gas extraction facilities, and urban areas along the Colorado Front Range in March and April 2015, as part of the Shale Oil and Natural Gas Nexus (SONGNEX) field study. Additionally, NH3 measurements from a fully instrumented aircraft that flew over the same region in July and August 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) are used to examine atmospheric nitrogen emission and transport. Cross-wind plume transects and altitude profiles were performed over the source regions and 60-240 km downwind. Plumes were transported in the boundary layer with large NH3 mixing ratios (typically 20-100 ppbv) and were tens of km wide. The NH3 in these plumes provided an atmospheric nitrogen burden greater than 0.2 kg N/ha. Nitrogen oxides and their oxidation products and particulate matter were also enhanced in the plumes, but with concentrations substantially less than NH3. With efficient transport followed by wet deposition, these plumes have the potential to provide a large nitrogen input to the neighboring Rocky Mountain National Park, where nitrogen deposition currently exceeds the ecological critical load of 1.5 kg N/ha/yr.

  2. A simplified nitrogen laser setup operated at atmospheric pressure

    Science.gov (United States)

    Ruangsri, Artit; Wungmool, Piyachat; Tesana, Siripong; Suwanatus, Suchat; Hormwantha, Tongchai; Chiangga, Surasak; Luengviriya, Chaiya

    2015-07-01

    A transversely excited atmospheric pressure nitrogen laser (TEA N2 Laser) is a molecular pulse gas laser, operated at atmospheric pressure, which generates an electromagnetic wave in ultraviolet wavelength of 337.1 nm. It can operate without an optical resonator. We present a TEA N2 laser setup excited by an electronic discharge circuit known as the Blumlein circuit. Our setup is composed of simple components commonly found in everyday life. The setup can be utilized in classroom to demonstrate the dependence of the laser intensity on the flow rate of nitrogen gas.

  3. Challenges in quantifying biosphere-atmosphere exchange of nitrogen species

    DEFF Research Database (Denmark)

    Sutton, M.A.; Nemitz, E.; Erisman, J.W.;

    2007-01-01

    Recent research in nitrogen exchange with the atmosphere has separated research communities according to N form. The integrated perspective needed to quantify the net effect of N on greenhouse-gas balance is being addressed by the NitroEurope Integrated Project (NEU). Recent advances have depende...

  4. Measurement of air and nitrogen fluorescence light yields induced by electron beam for UHECR experiments

    CERN Document Server

    Colin, P; Grebenyuk, V; Naumov, D; Nédélec, P; Nefedov, Y; Onofre, A; Porokhovoi, S; Sabirov, B; Tkatchev, L G

    2006-01-01

    Most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects (HiRes, AUGER, TA, EUSO, TUS,...) use air fluorescence to detect and measure extensive air showers (EAS). The precise knowledge of the Fluorescence Light Yield (FLY) is of paramount importance for the reconstruction of UHECR. The MACFLY - Measurement of Air Cherenkov and Fluorescence Light Yield - experiment has been designed to perform such FLY measurements. In this paper we will present the results of FLY in the 290-440 nm wavelength range for dry air and pure nitrogen, both excited by electrons with energy of 1.5 MeV, 20 GeV and 50 GeV. The experiment uses a 90Sr radioactive source for low energy measurement and a CERN SPS electron beam for high energy. We find that the FLY is proportional to the deposited energy (E_d) in the gas and we show that the air fluorescence properties remain constant independently of the electron energy. At the reference point: atmospheric dry air at 1013 hPa and 23C, the ratio FLY/E_d=17.6 photon/MeV with ...

  5. Atmospheric sulfur and nitrogen in West Java

    International Nuclear Information System (INIS)

    Wet-only rainwater composition on a weekly basis was determined at four sites in West Java, Indonesia, from June 1991 to June 1992. Three sites were near the extreme western end of Java, surrounding a coal-fired power station at Suralaya. The fourth site was ∼ 100 km to the east in the Indonesian capital, Jakarta. Over the 12 months study period wet deposition of sulfate at the three western sites varied between 32-46 meq m-2 while nitrate varied between 10-14 meq m-2. Wet deposition at the Jakarta site was systematically higher, at 56 meq m-2 for sulfate and 20 meq m-2 for nitrate. Since sulfate and nitrate wet deposition fluxes in the nearby and relatively unpopulated regions of typical Australia are both only ∼ 5 meq m-2 anthropogenic emissions of S and N apparently cause significant atmospheric acidification in Java. It is possible that total acid deposition fluxes (of S and N) in parts of Java are comparable with those responsible for environmental degradation in acid-sensitive parts of Europe and North America. 19 refs., 3 tabs

  6. Atmospheric Nitrogen Inputs to the Ocean and their Impact

    Science.gov (United States)

    Jickells, Tim D.

    2016-04-01

    Atmospheric Nitrogen Inputs to the Ocean and their Impact T Jickells (1), K. Altieri (2), D. Capone (3), E. Buitenhuis (1), R. Duce (4), F. Dentener (5), K. Fennel (6), J. Galloway (7), M. Kanakidou (8), J. LaRoche (9), K. Lee (10), P. Liss (1), J. Middleburg (11), K. Moore (12), S. Nickovic (13), G. Okin (14), A. Oschilies (15), J. Prospero (16), M. Sarin (17), S. Seitzinger (18), J. Scharples (19), P. Suntharalingram (1), M. Uematsu (20), L. Zamora (21) Atmospheric nitrogen inputs to the ocean have been identified as an important source of nitrogen to the oceans which has increased greatly as a result of human activity. The significance of atmospheric inputs for ocean biogeochemistry were evaluated in a seminal paper by Duce et al., 2008 (Science 320, 893-7). In this presentation we will update the Duce et al 2008 study estimating the impact of atmospheric deposition on the oceans. We will summarise the latest model estimates of total atmospheric nitrogen deposition to the ocean, their chemical form (nitrate, ammonium and organic nitrogen) and spatial distribution from the TM4 model. The model estimates are somewhat smaller than the Duce et al estimate, but with similar spatial distributions. We will compare these flux estimates with a new estimate of the impact of fluvial nitrogen inputs on the open ocean (Sharples submitted) which estimates some transfer of fluvial nitrogen to the open ocean, particularly at low latitudes, compared to the complete trapping of fluvial inputs on the continental shelf assumed by Duce et al. We will then estimate the impact of atmospheric deposition on ocean primary productivity and N2O emissions from the oceans using the PlankTOM10 model. The impacts of atmospheric deposition we estimate on ocean productivity here are smaller than those predicted by Duce et al impacts, consistent with the smaller atmospheric deposition estimates. However, the atmospheric input is still larger than the estimated fluvial inputs to the open ocean

  7. The Effects of Mineral Nitrogen on the Fixation of Atmospheric Nitrogen by Vicia Faba L

    International Nuclear Information System (INIS)

    ammonium sulphate application (8.1%). It was found that 54% of the ammonium sulphate and 71% of the potassium nitrate was utilized by the plant. The greenhouse pot tests showed that the nitrogen fertilizer used did not exert any substantial effect on the yield of the aerial portions of the horse bean plant. On the other hand, gradually increased nitrogen fertilizer levels produced in the plant a higher proportion of the plant nitrogen content originating from the fertilizer. Thus, the proportion of the nitrogen fixed from the atmosphere was decreased, which was in good accord with the observation of a reduced number of nodules on the root of horse bean plant. (author)

  8. Operational mapping of atmospheric nitrogen deposition to the Baltic Sea

    OpenAIRE

    Hertel, O.; Ambelas Skjøth, C.; Brandt, J.; J.H. Christensen; Frohn, L. M.; J. Frydendall

    2003-01-01

    A new model system for mapping and forecasting nitrogen deposition to the Baltic Sea has been developed. The system is based on the Lagrangian variable scale transport-chemistry model ACDEP (Atmospheric Chemistry and Deposition model), and aims at delivering deposition estimates to be used as input to marine ecosystem models. The system is tested by comparison of model results to measurements from monitoring stations around the Baltic Sea. The comp...

  9. Measuring atmospheric naphthalene with laser-induced fluorescence

    Directory of Open Access Journals (Sweden)

    M. Martinez

    2004-01-01

    Full Text Available A new method for measuring gas-phase naphthalene in the atmosphere is based on laser-induced fluorescence at low pressure. The fluorescence spectrum of naphthalene near 308 nm was identified. Naphthalene fluorescence quenching by N2, O2 and H2O was investigated in the laboratory. No significant quenching was found for H2O with mixing ratio up to 2.5%. The quenching rate of naphthalene fluorescence is (1.98±0.18×10−11 cm3 molecule−1 s−1 for N2, and (2.48±0.08×10−10 cm3 molecule−1 s−1 for O2 at 297 K. Instrument calibrations were performed with a range of naphthalene mixing ratios between 5 and 80 parts per billion by volume (ppbv, 10−9. In the current instrument configuration, the detection limit is estimated to be about 20 parts per trillion by volume (pptv, 10−12 with 2σ confidence and a 1-min integration time. Measurement of atmospheric naphthalene in three cities, Nashville, TN, Houston, TX, and New York City, NY, are presented. Good correlation between naphthalene and major anthropogenic pollutants is found.

  10. Integrated method for the measurement of trace nitrogenous atmospheric bases

    Science.gov (United States)

    Key, D.; Stihle, J.; Petit, J.-E.; Bonnet, C.; Depernon, L.; Liu, O.; Kennedy, S.; Latimer, R.; Burgoyne, M.; Wanger, D.; Webster, A.; Casunuran, S.; Hidalgo, S.; Thomas, M.; Moss, J. A.; Baum, M. M.

    2011-12-01

    Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace, atmospheric, gaseous nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications (e.g., methylamine, 1 pptv; ethylamine, 2 pptv; morpholine, 1 pptv; aniline, 1 pptv; hydrazine, 0.1 pptv; methylhydrazine, 2 pptv), as supported by field measurements in an urban park and in the exhaust of on-road vehicles.

  11. Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences

    Directory of Open Access Journals (Sweden)

    C. Pöhlker

    2012-01-01

    Full Text Available Primary biological aerosol particles (PBAP are an important subset of air particulate matter with a substantial contribution to the organic aerosol fraction and potentially strong effects on public health and climate. Recent progress has been made in PBAP quantification by utilizing real-time bioaerosol detectors based on the principle that specific organic molecules of biological origin such as proteins, coenzymes, cell wall compounds and pigments exhibit intrinsic fluorescence. The properties of many fluorophores have been well documented, but it is unclear which are most relevant for detection of atmospheric PBAP. The present study provides a systematic synthesis of literature data on potentially relevant biological fluorophores. We analyze and discuss their relative importance for the detection of fluorescent biological aerosol particles (FBAP by online instrumentation for atmospheric measurements such as the ultraviolet aerodynamic particle sizer (UV-APS or the wide issue bioaerosol sensor (WIBS.

    In addition, we provide new laboratory measurement data for selected compounds using bench-top fluorescence spectroscopy. Relevant biological materials were chosen for comparison with existing literature data and to fill in gaps of understanding. The excitation-emission matrices (EEM exhibit pronounced peaks at excitation wavelengths of ~280 nm and ~360 nm, confirming the suitability of light sources used for online detection of FBAP. They also show, however, that valuable information is missed by instruments that do not record full emission spectra at multiple wavelengths of excitation, and co-occurrence of multiple fluorophores within a detected sample will likely confound detailed molecular analysis. Selected non-biological materials were also analyzed to assess their possible influence on FBAP detection and generally exhibit only low levels of background-corrected fluorescent emission. This study strengthens the hypothesis that ambient

  12. Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences

    Directory of Open Access Journals (Sweden)

    C. Pöhlker

    2011-09-01

    Full Text Available Primary biological aerosol particles (PBAP are an important subset of air particulate matter with a substantial contribution to the organic aerosol fraction and potentially strong effects on public health and climate. Recent progress has been made in PBAP quantification by utilizing real-time bioaerosol detectors based on the principle that specific organic molecules of biological origin such as proteins, coenzymes, cell wall compounds and pigments exhibit intrinsic fluorescence. The properties of many fluorophores have been well documented, but it is unclear which are most relevant for detection of atmospheric PBAP. The present study provides a systematic synthesis of literature data on potentially relevant biological fluorophores. We analyze and discuss their relative importance for the detection of fluorescent biological aerosol particles (FBAP by online instrumentation for atmospheric measurements such as the ultraviolet aerodynamic particle sizer (UV-APS or the wide issue bioaerosol sensor (WIBS.

    In addition, we provide new laboratory measurement data for selected compounds using bench-top fluorescence spectroscopy. Relevant biological materials were chosen for comparison with existing literature data and to fill in gaps of understanding. The excitation-emission matrices (EEM exhibit pronounced peaks at excitation wavelengths of ~280 nm and ~360 nm, confirming the suitability of light sources used for online detection of FBAP. They also show, however, that valuable information is missed by instruments that do not record full emission spectra at multiple wavelengths of excitation, and co-occurrence of multiple fluorophores within a detected sample will likely confound detailed molecular analysis. Selected non-biological materials were also analyzed to assess their possible influence on FBAP detection and generally exhibit only low levels of background-corrected fluorescent emission. This study strengthens the hypothesis that ambient

  13. Possible Nuclear Transmutation of Nitrogen in the Earth's Atmosphere

    Science.gov (United States)

    Fukuhara, Mikio

    2006-02-01

    An attempt to give a possible answer to a question why nitrogen exists so abundantly in Earth's atmosphere and how it was formed in Archean era (3.8-2.5 billion years ago) is presented. The nitrogen is postulated to be the result of an endothermic nuclear transmutation of carbon and oxygen nuclei confined in carbonate MgCO3 lattice of the mantle with an enhanced rate by attraction effect of catalysis of neutral pions, produced by electron emission: 12C + 16O - 2π0 → 2 14N. The excited electrons were generated by rapid fracture or sliding of carbonate crystals due to volcanic earthquake, and many of the neutrinos were derived from stars, mainly the young sun. The formation of nitrogen would continued for 1.3 billion years from 2.5 to 3.8 billion years in Archean era, until the active volcanism or storm of neutrinos ceased. The transformation is possible by the combined effects of the screening attraction of free electrons and thermal activation in deeper mantle. The possible nuclear transmutation rate of nitrogen atoms could be calculated as 2.3 × 106 atom/s.

  14. Nitrogen Enrichment in Atmospheres of A- and F- Type Supergiants

    CERN Document Server

    Lyubimkov, Leonid S; Korotin, Sergey A; Poklad, Dmitry B; Rachkovskaya, Tamara M; Rostopchin, Sergey I

    2010-01-01

    Using new accurate fundamental parameters of 30 Galactic A and F supergiants, namely their effective temperatures Teff and surface gravities log g, we implemented a non-LTE analysis of the nitrogen abundance in their atmospheres. It is shown that the non-LTE corrections to the N abundances increase with Teff. The nitrogen overabundance as a general feature of this type of stars is confirmed. A majority of the stars has a nitrogen excess [N/Fe] between 0.2 and 0.9 dex with the maximum position of the star's distribution on [N/Fe] between 0.4 and 0.7 dex. The N excesses are discussed in light of predictions for B-type main sequence (MS) stars with rotationally induced mixing and for their next evolutionary phase, i.e. A- and F-type supergiants that have experienced the first dredge-up. Rotationally induced mixing in the MS progenitors of the supergiants may be a significant cause of the nitrogen excesses. When comparing our results with predictions of the theory developed for stars with the mixing, we find that...

  15. Titanium atom detection by resonance fluorescence excited with a nitrogen laser

    International Nuclear Information System (INIS)

    Coincidence of wave lengths of nitrogen laser basing lines and resonance transitions in titanium atom is investigated. It is shown that resonance fluorescence excited by nitrogen laser can be used for absolute titanium atom density measurements. Experiments on titanium atom detection in a vapour cloud formed under irradiation of a titanium target in vacuum by dye laser pulse, are conducted. Fluorescence extinguishing is observed under high evaporation power

  16. Governing processes for reactive nitrogen compounds in the European atmosphere

    Directory of Open Access Journals (Sweden)

    O. Hertel

    2012-12-01

    Full Text Available Reactive nitrogen (Nr compounds have different fates in the atmosphere due to differences in the governing processes of physical transport, deposition and chemical transformation. Nr compounds addressed here include reduced nitrogen (NHx: ammonia (NH3 and its reaction product ammonium (NH4+, oxidized nitrogen (NOy: nitrogen monoxide (NO + nitrogen dioxide (NO2 and their reaction products as well as organic nitrogen compounds (organic N. Pollution abatement strategies need to take into account the differences in the governing processes of these compounds when assessing their impact on ecosystem services, biodiversity, human health and climate. NOx (NO + NO2 emitted from traffic affects human health in urban areas where the presence of buildings increases the residence time in streets. In urban areas this leads to enhanced exposure of the population to NOx concentrations. NOx emissions generally have little impact on nearby ecosystems because of the small dry deposition rates of NOx. These compounds need to be converted into nitric acid (HNO3 before removal through deposition is efficient. HNO3 sticks quickly to any surface and is thereby either dry deposited or incorporated into aerosols as nitrate (NO3. In contrast to NOx compounds, NH3 has potentially high impacts on ecosystems near the main agricultural sources of NH3 because of its large ground-level concentrations along with large dry deposition rates. Aerosol phase NH4+ and NO3 contribute significantly to background PM2.5 and PM10 (mass of aerosols with an aerodynamic diameter of less than 2.5 and 10 μm, respectively with an impact on radiation balance as well as potentially on human

  17. Fluorescence action spectra of algae and bean leaves at room and at liquid nitrogen temperatures

    NARCIS (Netherlands)

    Goedheer, J.C.

    1965-01-01

    Fluorescence action spectra were determined, both at room temperature and at liquid nitrogen temperature, with various blue-green, red and green algae, and greening bean leaves. The action spectra of algae were established with samples of low light absorption as well as dense samples. Fluorescence

  18. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    Science.gov (United States)

    Zhuang, Qianlai; Chen, Min; Xu, Kai; Tang, Jinyun; Saikawa, Eri; Lu, Yanyu; Melillo, Jerry M.; Prinn, Ronald G.; McGuire, A. David

    2013-01-01

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a process-based biogeochemistry model to quantify soil consumption during the 20th and 21st centuries. We estimated that global soils consumed 32–36 Tg CH4 yr−1 during the 1990s. Natural ecosystems accounted for 84% of the total consumption, and agricultural ecosystems only consumed 5 Tg CH4 yr−1 in our estimations. During the twentieth century, the consumption rates increased at 0.03–0.20 Tg CH4 yr−2 with seasonal amplitudes increasing from 1.44 to 3.13 Tg CH4 month−1. Deserts, shrublands, and xeric woodlands were the largest sinks. Atmospheric CH4 concentrations and soil moisture exerted significant effects on the soil consumption while nitrogen deposition had a moderate effect. During the 21st century, the consumption is predicted to increase at 0.05-1.0 Tg CH4 yr−2, and total consumption will reach 45–140 Tg CH4 yr−1 at the end of the 2090s, varying under different future climate scenarios. Dry areas will persist as sinks, boreal ecosystems will become stronger sinks, mainly due to increasing soil temperatures. Nitrogen deposition will modestly reduce the future sink strength at the global scale. When we incorporated the estimated global soil consumption into our chemical transport model simulations, we found that nitrogen deposition suppressed the total methane sink by 26 Tg during the period 1998–2004, resulting in 6.6 ppb higher atmospheric CH4 mixing ratios compared to without considering nitrogen deposition effects. On average, a cumulative increase of every 1 Tg soil CH4 consumption decreased atmospheric CH4 mixing ratios by 0.26 ppb during the period 1998–2004.

  19. Impact of increased anthropogenic atmospheric nitrogen deposition on ocean biogeochemistry

    Science.gov (United States)

    Yang, Simon; Gruber, Nicolas

    2015-04-01

    In the last century, the strong increase in anthropogenic emissions and agricultural activities brought about a tripling in atmospheric nitrogen deposition (AND) rates to oceans. There is growing evidence for a strong fingerprint of increased AND on aquatic systems. Increases in excess N over P (N*) have been attributed to the growing anthropogenically sourced N-deposition in the North western Pacific (Kim et al. 2011) and the North Pacific (Kim et al. 2014). In this study, we use the ocean component of the global earth system model CESM and forced it with transient atmospheric nitrogen deposition from 1850 to 2000 (Lamarque et al. 2013) to study the impact of increased N-deposition on ocean biogeochemistry. We simulate detectable signals in N* in the northern hemisphere as well as a complex pattern of increases and decreases in ocean productivity, with the former causing an expansion of oxygen minimum zones and an increase in water column denitrification. The increase in AND also reduces the ecological niches for N2-fixers, causing a substantial decrease in global ocean N-fixation. Despite this increase in N-loss by denitrification and decrease in N-gain by N-fixation, the increase in AND has put the global marine N-budget severely out of balance ( 10 TgN.yr-1). Finally, we extend our simulation to 2100 using the RCP 8.5 emission scenario to find that these changes will probably grow in the future.

  20. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    Science.gov (United States)

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  1. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    International Nuclear Information System (INIS)

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility

  2. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Gao, Peng; Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn; Du, Dezhuang [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123 (China); Guo, Jun [Testing and Analysis Center, Soochow University, Suzhou 215123 (China)

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  3. Electron beam dispersion measurements in nitrogen using two-dimensional imaging of N2(+) fluorescence

    Science.gov (United States)

    Clapp, L. H.; Twiss, R. G.; Cattolica, R. J.

    Experimental results are presented related to the radial spread of fluorescence excited by 10 and 20 KeV electron beams passing through nonflowing rarefied nitrogen at 293 K. An imaging technique for obtaining species distributions from measured beam-excited fluorescence is described, based on a signal inversion scheme mathematically equivalent to the inversion of the Abel integral equation. From fluorescence image data, measurements of beam radius, integrated signal intensity, and spatially resolved distributions of N2(+) first-negative-band fluorescence-emitting species have been made. Data are compared with earlier measurements and with an heuristic beam spread model.

  4. Colorimetric microdetermination of nitrogen dioxide in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Saltzman, B.E.

    1954-12-01

    The determination of nitrogen dioxide in the atmosphere has heretofore been hampered by difficulties in sample absorption and lack of specificity. A new specific reagent has been developed and demonstrated to absorb efficiently in a midget fritted bubbler at levels below 1 ppM. The reagent is a mixture of sulfanilic acid, N-(1-naphthyl)-ethylenediamine dihydrochloride, and acetic acid. A stable direct color is produced with a sensitivity of a few parts per billion for a 10-minute sample at 0.4 liter per minute. Ozone in five-fold excess and other gases in tenfold excess produce only slight interfering effects; these may be reduced further by means which are described. 25 references, 1 figure, 3 tables.

  5. Regional atmospheric budgets of reduced nitrogen over the British isles assessed using a multi-layer atmospheric transport model

    NARCIS (Netherlands)

    Fournier, N.; Tang, Y.S.; Dragosits, U.; Kluizenaar, Y.de; Sutton, M.A.

    2005-01-01

    Atmospheric budgets of reduced nitrogen for the major political regions of the British Isles are investigated with a multi-layer atmospheric transport model. The model is validated against measurements of NH3 concentration and is developed to provide atmospheric budgets for defined subdomains of the

  6. Operational mapping of atmospheric nitrogen deposition to the Baltic Sea

    Directory of Open Access Journals (Sweden)

    O. Hertel

    2003-07-01

    Full Text Available A new model system for mapping and forecasting nitrogen deposition to the Baltic Sea has been developed. The system is based on the Lagrangian variable scale transport-chemistry model ACDEP (Atmospheric Chemistry and Deposition model, and aims at delivering deposition estimates to be used as input to marine ecosystem models. The system is tested by comparison of model results to measurements from monitoring stations around the Baltic Sea. The comparison shows that observed annual mean ambient air concentrations and wet depositions are well reproduced by the model. Diurnal mean concentrations of NHx (sum of  NH3 and NH4 and NO2 are fairly well reproduced, whereas concentrations of total nitrate (sum of HNO3 and NO3 are somewhat overestimated by the model. Wet depositions of nitrate and ammonia are fairly well described for annual mean values, whereas the discrepancy is high for the monthly mean values and the wet depositions are rather poorly described concerning the diurnal mean values. The model calculations show that the atmospheric nitrogen deposition has a pronounced south – north gradient with depositions in the range about 1.0 tonnes N km−2 in south and 0.2 tonnes N km−2 in north. The model results show that in 2000 the maximum deposition to the Danish waters appeared during the summer in the algae growth season. For the northern parts of the Baltic the highest depositions were distributed over most of the year.

  7. Operational mapping of atmospheric nitrogen deposition to the Baltic Sea

    Directory of Open Access Journals (Sweden)

    O. Hertel

    2003-01-01

    Full Text Available A new model system for mapping and forecasting nitrogen deposition to the Baltic Sea has been developed. The system is based on the Lagrangian variable scale transport-chemistry model ACDEP (Atmospheric Chemistry and Deposition model, and aims at delivering deposition estimates to be used as input to marine ecosystem models. The system is tested by comparison of model results to measurements from monitoring stations around the Baltic Sea. The comparison shows that observed annual mean ambient air concentrations and wet depositions are well reproduced by the model. Diurnal mean concentrations of NHx (sum of NH3 and NH4+ and NO2 are fairly well reproduced, whereas concentrations of total nitrate (sum of HNO3 and NO3- are somewhat overestimated. Wet depositions of nitrate and ammonia are fairly well described for annual mean values, whereas the discrepancy is high for the monthly mean values and the wet depositions are rather poorly described concerning the diurnal mean values. The model calculations show that the annual atmospheric nitrogen deposition has a pronounced south--north gradient with depositions in the range about 1.0 T N km-2 in the south and 0.2 T N km-2 in the north. The results show that in 1999 the maximum diurnal mean deposition to the Danish waters appeared during the summer in the algae growth season. For the northern parts of the Baltic the highest depositions were distributed over most of the year. Total deposition to the Baltic Sea was for the year 1999 estimated to 318 kT N for an area of 464 406 km2 equivalent to an average deposition of 684 kg N/km2.

  8. Challenges in quantifying biosphere-atmosphere exchange of nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M.A. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom)], E-mail: ms@ceh.ac.uk; Nemitz, E. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom); Erisman, J.W. [ECN, Clean Fossil Fuels, PO Box 1, 1755 ZG Petten (Netherlands); Beier, C. [Riso National Laboratory, PO Box 49, DK-4000 Roskilde (Denmark); Bahl, K. Butterbach [Institute of Meteorology and Climate Research, Atmos. Environ. Research (IMK-IFU), Research Centre Karlsruhe GmbH, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen (Germany); Cellier, P. [INRA Unite Mixte de Recherche, 78850 Thiverval-Grignon (France); Vries, W. de [Alterra, Green World Research, PO Box 47, 6700 AA Wageningen (Netherlands); Cotrufo, F. [Dip. Scienze Ambientali, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta (Italy); Skiba, U.; Di Marco, C.; Jones, S. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom); Laville, P.; Soussana, J.F.; Loubet, B. [INRA Unite Mixte de Recherche, 78850 Thiverval-Grignon (France); Twigg, M.; Famulari, D. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom); Whitehead, J.; Gallagher, M.W. [School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL (United Kingdom); Neftel, A.; Flechard, C.R. [Agroscope FAL Reckenholz, Federal Research Station for Agroecology and Agriculture, PO Box, CH 8046 Zurich (Switzerland)] (and others)

    2007-11-15

    Recent research in nitrogen exchange with the atmosphere has separated research communities according to N form. The integrated perspective needed to quantify the net effect of N on greenhouse-gas balance is being addressed by the NitroEurope Integrated Project (NEU). Recent advances have depended on improved methodologies, while ongoing challenges include gas-aerosol interactions, organic nitrogen and N{sub 2} fluxes. The NEU strategy applies a 3-tier Flux Network together with a Manipulation Network of global-change experiments, linked by common protocols to facilitate model application. Substantial progress has been made in modelling N fluxes, especially for N{sub 2}O, NO and bi-directional NH{sub 3} exchange. Landscape analysis represents an emerging challenge to address the spatial interactions between farms, fields, ecosystems, catchments and air dispersion/deposition. European up-scaling of N fluxes is highly uncertain and a key priority is for better data on agricultural practices. Finally, attention is needed to develop N flux verification procedures to assess compliance with international protocols. - Current N research is separated by form; the challenge is to link N components, scales and issues.

  9. Reactive nitrogen in atmospheric emission inventories – a review

    Directory of Open Access Journals (Sweden)

    S. Reis

    2009-05-01

    Full Text Available Excess reactive Nitrogen (Nr has become one of the most pressing environmental problems leading to air pollution, acidification and eutrophication of ecosystems, biodiversity impacts, leaching of nitrates into groundwater and global warming. This paper investigates how current inventories cover emissions of Nr to the atmosphere in Europe, the United States of America, and The People's Republic of China. The focus is on anthropogenic sources, assessing the state-of-the-art of quantifying emissions of Ammonia (NH3, Nitrogen Oxides (NOx and Nitrous Oxide (N2O, the different purposes for which inventories are compiled, and to which extent current inventories meet the needs of atmospheric dispersion modelling. The paper concludes with a discussion of uncertainties involved and a brief outlook on emerging trends in the three regions investigated is conducted.

    Key issues are substantial differences in the overall magnitude, but as well in the relative sectoral contribution of emissions in the inventories that have been assessed. While these can be explained by the use of different methodologies and underlying data (e.g. emission factors or activity rates, they may lead to quite different results when using the emission datasets to model ambient air quality or the deposition with atmospheric dispersion models. Hence, differences and uncertainties in emission inventories are not merely of academic interest, but can have direct policy implications when the development of policy actions is based on these model results.

    The robustness of emission estimates varies greatly between substances, regions and emission source sectors. This has implications for the direction of future research needs and indicates how existing gaps between modelled and measured concentration or deposition rates could be most efficiently addressed.

    The observed current trends in emissions display decreasing NO

  10. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  11. Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence.

    Science.gov (United States)

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Some filamentous cyanobacteria (including Anabaena) differentiate into heterocysts under nitrogen-depleted conditions. During differentiation, the phycobiliproteins and photosystem II in the heterocysts are gradually degraded. Nitrogen depletion induces changes in the pigment composition of both vegetative cells and heterocysts, which affect the excitation energy transfer processes. To investigate the changes in excitation energy transfer processes of Anabaena variabilis filaments grown in standard medium (BG11) and a nitrogen-free medium (BG110), we measured their steady-state absorption spectra, steady-state fluorescence spectra, and time-resolved fluorescence spectra (TRFS) at 77 K. TRFS were measured with a picosecond time-correlated single photon counting system. The pigment compositions of the filaments grown in BG110 changed throughout the growth period; the relative phycocyanin levels monotonically decreased, whereas the relative carotenoid (Car) levels decreased and then recovered to their initial value (at day 0), with formation of lower-energy Cars. Nitrogen starvation also altered the fluorescence kinetics of PSI; the fluorescence maximum of TRFS immediately after excitation occurred at 735, 740, and 730 nm after 4, 8, and 15 days growth in BG110, respectively. Based on these results, we discuss the excitation energy transfer dynamics of A. variabilis filaments under the nitrogen-depleted condition throughout the growth period. PMID:25596847

  12. Dissolved organic nitrogen dominates in European bogs under increasing atmospheric N deposition

    NARCIS (Netherlands)

    Bragazza, L.; Limpens, J.

    2004-01-01

    To assess the effects of increased atmospheric N input on N availability in ombrotrophic peatlands, the relative concentrations of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) were measured in bog waters along a natural gradient of atmospheric N deposition. Six European bog

  13. Exchange of nitrogen dioxide (NO 2) between plants and the atmosphere under laboratory and field conditions

    OpenAIRE

    Breuninger, Claudia

    2011-01-01

    Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earth’s atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by light...

  14. Efficient signal processing for time-resolved fluorescence detection of nitrogen-vacancy spins in diamond

    Science.gov (United States)

    Gupta, A.; Hacquebard, L.; Childress, L.

    2016-03-01

    Room-temperature fluorescence detection of the nitrogen-vacancy center electronic spin typically has low signal to noise, requiring long experiments to reveal an averaged signal. Here, we present a simple approach to analysis of time-resolved fluorescence data that permits an improvement in measurement precision through signal processing alone. Applying our technique to experimental data reveals an improvement in signal to noise equivalent to a 14% increase in photon collection efficiency. We further explore the dependence of the signal to noise ratio on excitation power, and analyze our results using a rate equation model. Our results provide a rubric for optimizing fluorescence spin detection, which has direct implications for improving precision of nitrogen-vacancy-based sensors.

  15. Absolute measurement of the nitrogen fluorescence yield in air between 300 and 430 nm

    CERN Document Server

    Lefeuvre, G; Gorodetzky, P; Patzak, T; Salin, P

    2007-01-01

    The nitrogen fluorescence induced in air is used to detect ultra-high energy cosmic rays and to measure their energy. The precise knowledge of the absolute fluorescence yield is the key quantity to improve the accuracy on the cosmic ray energy. The total yield has been measured in dry air using a 90Sr source and a [300-430 nm] filter. The fluorescence yield in air is 4.23 $\\pm$ 0.20 photons per meter when normalized to 760 mmHg, 15 degrees C and with an electron energy of 0.85 MeV. This result is consistent with previous experiments made at various energies, but with an accuracy improved by a factor of about 3. For the first time, the absolute continuous spectrum of nitrogen excited by 90Sr electrons has also been measured with a spectrometer. Details of this experiment are given in one of the author's PhD thesis [32].

  16. Atmospheric deposition of nitrogen, runoff of organic nitrogen, and critical loads for soils and waters

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Richard F.; Raastad, Inger Aandahl; Kaste, Oeyvind

    1997-12-31

    This report tests the hypothesis that increased deposition of inorganic nitrogen compounds leads to increased leaching and runoff of organic nitrogen and thus a higher critical load. The authors use mainly Norwegian data from input-output fluxes at small catchments, national lake surveys, and large-scale experiments with nitrogen deposition to whole catchments. Concentrations of organic nitrogen are not significantly related to nitrogen deposition. Much of the variance in organic nitrogen levels are explained by total organic carbon concentrations. For the small catchments, there is a significant relationship between the carbon/nitrogen (C/N) ratio in dissolved organic matter and the nitrogen deposition. The sites with high nitrogen deposition have low C/N ratio. Chronically high nitrogen deposition and long-term accumulation of nitrogen in soils and biomass may have led to organic matter more enriched in nitrogen relative to pristine sites. Time trend data from manipulated catchments do not show changes in organic-N leaching over 4 to 10 years. Although organic-N levels may have increased as a result of nitrogen deposition, the resultant effect on estimate of critical load for nitrogen for freshwater is minor. For practical purposes, organic nitrogen outputs can be neglected in estimating and mapping critical loads for nitrogen in Norway. 23 refs., 11 figs., 4 tabs.

  17. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    Science.gov (United States)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    The chemical composition of organic nitrogen (ON) in the environment is a research topic of broad significance. The topic intersects the branches of atmospheric, aquatic, and ecological science; thus, a variety of instrumentation, analytical methods, and data interpretation tools have evolved for determination of ON. Recent studies that focus on atmospheric particulate nitrogen (N) suggest a significant fraction (20-80%) of total N is bound in organic compounds. The sources, bioavailability and transport mechanisms of these N-containing compounds can differ, producing a variety of environmental consequences. Amino acids (AA) are a key class of atmospheric ON compounds that can contribute to secondary organic aerosol (SOA) formation and potentially influence water cycles, air pollutant scavenging, and the radiation balance. AA are water-soluble organic compounds (WSOC) that can significantly alter the acid-base chemistry of aerosols, and may explain the buffering capacity that impacts heterogeneous atmospheric chemistry. The chemical transformations that N-containing organic compounds (including AA) undergo can increase the light-absorbing capacity of atmospheric carbon via formation of 'brown carbon'. Suggested sources of atmospheric AA include: marine surface layer transport from bursting sea bubbles, the suspension of bacteria, fungi, algae, pollen, spores, or biomass burning. Methodology for detection of native (underivatized) amino acids (AA) in atmospheric aerosols has been developed and validated (Samy et al., 2011). This presentation describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southeastern U.S. forest environment. Accurate mass detection and the addition of isotopically labeled surrogates prior to sample preparation allows for sensitive quantitation of target AA in a complex aerosol matrix. A total of 16 native AA were detected above the reporting

  18. Fluorimetric determination of nitrogen oxides in the air by a novel red-region fluorescent reagent

    International Nuclear Information System (INIS)

    A sensitive fluorimetric method for the determination of nitrogen oxides (NOx: NO+NO2) in air is described. Nitrogen dioxide (nitrogen monoxide was previously converted to nitrogen dioxide in oxide tubes) was aspirated through a fritted glass bubble at a flow rate of 500 ml min-1 for 120 min and fixed as nitrite, using 0.1 N NaOH as a trapping solution with the empirical absorption efficiency 0.74 and the stoichiometric factor 0.5. The method is based on the fluorescence quenching of a red-region fluorescent reagent, tetra-substituted amino aluminum phthalocyanine (TAAlPc), after being diazotized by nitrite. Under optimal conditions the linear range of the calibration curve for nitrite is 1-40 ng ml-1 (NO2 0.24-9.6 ppb, v/v). The detection limit is 0.34 ng ml-1 for nitrite (NO2 0.08 ppb, v/v) and the relative standard deviation for six replicate measurements of 15 ng ml-1 nitrite is 3.2%. The method has been applied to the determination of nitrogen oxides in the air with satisfactory results. Typical gaseous co-pollutants such as SO2, H2S and HCHO did not interference the determination

  19. Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice

    Science.gov (United States)

    Yang, Jian; Gong, Wei; Shi, Shuo; Du, Lin; Sun, Jia; Song, Shalei; Chen, Biwu; Zhang, Zhenbing

    2016-06-01

    Leaf nitrogen content (LNC) is a significant factor which can be utilized to monitor the status of paddy rice and it requires a reliable approach for fast and precise quantification. This investigation aims to quantitatively analyze the correlation between fluorescence parameters and LNC based on laser-induced fluorescence (LIF) technology. The fluorescence parameters exhibited a consistent positive linear correlation with LNC in different growing years (2014 and 2015) and different rice cultivars. The R2 of the models varied from 0.6978 to 0.9045. Support vector machine (SVM) was then utilized to verify the feasibility of the fluorescence parameters for monitoring LNC. Comparison of the fluorescence parameters indicated that F740 is the most sensitive (the R2 of linear regression analysis of the between predicted and measured values changed from 0.8475 to 0.9226, and REs ranged from 3.52% to 4.83%) to the changes in LNC among all fluorescence parameters. Experimental results demonstrated that fluorescence parameters based on LIF technology combined with SVM is a potential method for realizing real-time, non-destructive monitoring of paddy rice LNC, which can provide guidance for the decision-making of farmers in their N fertilization strategies.

  20. Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice

    Science.gov (United States)

    Yang, Jian; Gong, Wei; Shi, Shuo; Du, Lin; Sun, Jia; Song, Shalei; Chen, Biwu; Zhang, Zhenbing

    2016-01-01

    Leaf nitrogen content (LNC) is a significant factor which can be utilized to monitor the status of paddy rice and it requires a reliable approach for fast and precise quantification. This investigation aims to quantitatively analyze the correlation between fluorescence parameters and LNC based on laser-induced fluorescence (LIF) technology. The fluorescence parameters exhibited a consistent positive linear correlation with LNC in different growing years (2014 and 2015) and different rice cultivars. The R2 of the models varied from 0.6978 to 0.9045. Support vector machine (SVM) was then utilized to verify the feasibility of the fluorescence parameters for monitoring LNC. Comparison of the fluorescence parameters indicated that F740 is the most sensitive (the R2 of linear regression analysis of the between predicted and measured values changed from 0.8475 to 0.9226, and REs ranged from 3.52% to 4.83%) to the changes in LNC among all fluorescence parameters. Experimental results demonstrated that fluorescence parameters based on LIF technology combined with SVM is a potential method for realizing real-time, non-destructive monitoring of paddy rice LNC, which can provide guidance for the decision-making of farmers in their N fertilization strategies. PMID:27350029

  1. Nitrogen atom detection in low-pressure flames by two-photon laser-excited fluorescence

    OpenAIRE

    Bittner, Jürgen; Lawitzki, Annette; Meier, Ulrich; Kohse-Höinghaus, Katharina

    1991-01-01

    Nitrogen atoms have been detected in stoichiometric flat premixed H2/O2/N2 flames at 33 and 96 mbar doped with small amounts of NH3, HCN, and (CN)2 using two-photon laser excitation at 211 nm and fluorescence detection around 870 nm. The shape of the fluorescence intensity profiles versus height above the burner surface is markedly different for the different additives. Using measured quenching rate coefficients and calibrating with the aid of known N-atom concentrations in a discharge flow r...

  2. Relationship between atmospheric ammonia concentration and nitrogen content in terricolous lichen (Cladonia portentosa)

    DEFF Research Database (Denmark)

    Nielsen, Knud Erik; Andersen, Helle Vibeke; Strandberg, Morten Tune;

    2014-01-01

    From April 2006 to April 2007, the geographical and seasonal variation in nitrogen content in terricolous lichen (Cladonia portentosa) and atmospheric ammonia concentrations were measured at five heathland sites. The seasonal variation in the nitrogen content of the lichen was small, even though...... in air at the different locations. This investigation is part of a larger attempt to incorporate effects of nitrogen in the conservation status of terrestrial habitat types....

  3. Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases

    Science.gov (United States)

    Ave, M.; Bohacova, M.; Curry, E.; Di Carlo, P.; Di Giulio, C.; Facal San Luis, P.; Gonzales, D.; Hojvat, C.; Hörandel, J.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Li, S.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; Rouille D'Orfeuil, B.; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2013-02-01

    A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be Y337=5.61±0.06stat±0.22syst photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.

  4. Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases

    CERN Document Server

    Ave, M; Curry, E; Di Carlo, P; Di Giulio, C; Luis, P Facal San; Gonzales, D; Hojvat, C; Hörandel, J; Hrabovsky, M; Iarlori, M; Keilhauer, B; Klages, H; Kleifges, M; Kuehn, F; Li, S; Monasor, M; Nozka, L; Palatka, M; Petrera, S; Privitera, P; Ridky, J; Rizi, V; D'Orfeuil, B Rouille; Salamida, F; Schovanek, P; Smida, R; Spinka, H; Ulrich, A; Verzi, V; Williams, C

    2012-01-01

    A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be $Y_{337} = 5.61\\pm 0.06_{stat} \\pm 0.21_{syst}$ photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.

  5. Effects of N2O and O2 addition to nitrogen Townsend dielectric barrier discharges at atmospheric pressure on the absolute ground-state atomic nitrogen density

    KAUST Repository

    Es-sebbar, Et-touhami

    2012-11-27

    Absolute ground-state density of nitrogen atoms N (2p3 4S3/2) in non-equilibrium Townsend dielectric barrier discharges (TDBDs) at atmospheric pressure sustained in N2/N2O and N2/O2 gas mixtures has been measured using Two-photon absorption laser-induced fluorescence (TALIF) spectroscopy. The quantitative measurements have been obtained by TALIF calibration using krypton as a reference gas. We previously reported that the maximum of N (2p3 4S3/2) atom density is around 3 × 1014 cm-3 in pure nitrogen TDBD, and that this maximum depends strongly on the mean energy dissipated in the gas. In the two gas mixtures studied here, results show that the absolute N (2p3 4S3/2) density is strongly affected by the N2O and O2 addition. Indeed, the density still increases exponentially with the energy dissipated in the gas but an increase in N2O and O2 amounts (a few hundreds of ppm) leads to a decrease in nitrogen atom density. No discrepancy in the order of magnitude of N (2p3 4S3/2) density is observed when comparing results obtained in N2/N2O and N2/O2 mixtures. Compared with pure nitrogen, for an energy of ∼90 mJ cm-3, the maximum of N (2p3 4S3/2) density drops by a factor of 3 when 100 ppm of N2O and O2 are added and it reduces by a factor of 5 for 200 ppm, to reach values close to our TALIF detection sensitivity for 400 ppm (1 × 1013 cm -3 at atmospheric pressure). © 2013 IOP Publishing Ltd.

  6. Total Nitrogen Deposition (wet+dry) from the Atmosphere

    Data.gov (United States)

    U.S. Environmental Protection Agency — Oxides of Nitrogen are emitted primarily as by-products of combustion. Sources include power plants, industrial boilers, and automobiles. In addition, agricultural...

  7. Investigation of Atmospheric Effects on Retrieval of Sun-Induced Fluorescence Using Hyperspectral Imagery.

    Science.gov (United States)

    Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei

    2016-01-01

    Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators-depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance-to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O₂-A and O₂-B bands (111.4% and 77.1% in the O₂-A band; and 27.5% and 32.6% in the O₂-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R² = 0.91 for Damm vs. SCOPE SIF; R² = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence. PMID:27058542

  8. Atmospheric nitrogen in the Mississippi River Basin - Amissions, deposition and transport

    Science.gov (United States)

    Lawrence, G.B.; Goolsby, D.A.; Battaglin, W.A.; Stensland, G.J.

    2000-01-01

    Atmospheric deposition of nitrogen has been cited as a major factor in the nitrogen saturation of forests in the north-eastern United States and as a contributor to the eutrophication of coastal waters, including the Gulf of Mexico near the mouth of the Mississippi River. Sources of nitrogen emissions and the resulting spatial patterns of nitrogen deposition within the Mississippi River Basin, however, have not been fully documented. An assessment of atmospheric nitrogen in the Mississippi River Basin was therefore conducted in 1998-1999 to: (1) evaluate the forms in which nitrogen is deposited from the atmosphere; (2) quantify the spatial distribution of atmospheric nitrogen deposition throughout the basin; and (3) relate locations of emission sources to spatial deposition patterns to evaluate atmospheric transport. Deposition data collected through the NADP/NTN (National Atmospheric Deposition Program/National Trends Network) and CASTNet (Clean Air Status and Trends Network) were used for this analysis. NO(x) Tier 1 emission data by county was obtained for 1992 from the US Environmental Protection Agency (Emissions Trends Viewer CD, 1985-1995, version 1.0, September 1996) and NH3 emissions data was derived from the 1992 Census of Agriculture (US Department of Commerce. Census of Agriculture, US Summary and County Level Data, US Department of Commerce, Bureau of the Census. Geographic Area series, 1995:1b) or the National Agricultural Statistics Service (US Department of Agriculture. National Agricultural Statistics Service Historical Data. Accessed 7/98 at URL, 1998. http://www.usda.gov/nass/pubs/hisdata.htm). The highest rates of wet deposition of NO3- were in the north-eastern part of the basin, downwind of electric utility plants and urban areas, whereas the highest rates of wet deposition of NH4+ were in Iowa, near the center of intensive agricultural activities in the Midwest. The lowest rates of atmospheric nitrogen deposition were on the western (windward

  9. Biogeochemical context impacts seawater pH changes resulting from atmospheric sulfur and nitrogen deposition

    NARCIS (Netherlands)

    Hagens, M.; Hunter, K.A.; Liss, P.S.; Middelburg, J.J.

    2014-01-01

    Seawater acidification can be induced both by absorption of atmospheric carbon dioxide (CO2) and by atmospheric deposition of sulfur and nitrogen oxides and ammonia. Their relative significance, interplay, and dependency on water column biogeochemistry are not well understood. Using a simple biogeoc

  10. Titan's past and future: 3D modeling of a pure nitrogen atmosphere and geological implications

    CERN Document Server

    Charnay, Benjamin; Tobie, Gabriel; Sotin, Christophe; Wordsworth, Robin

    2014-01-01

    Several clues indicate that Titan's atmosphere has been depleted in methane during some period of its history, possibly as recently as 0.5-1 billion years ago. It could also happen in the future. Under these conditions, the atmosphere becomes only composed of nitrogen with a range of temperature and pressure allowing liquid or solid nitrogen to condense. Here, we explore these exotic climates throughout Titan's history with a 3D Global Climate Model (GCM) including the nitrogen cycle and the radiative effect of nitrogen clouds. We show that for the last billion years, only small polar nitrogen lakes should have formed. Yet, before 1 Ga, a significant part of the atmosphere could have condensed, forming deep nitrogen polar seas, which could have flowed and flooded the equatorial regions. Alternatively, nitrogen could be frozen on the surface like on Triton, but this would require an initial surface albedo higher than 0.65 at 4 Ga. Such a state could be stable even today if nitrogen ice albedo is higher than th...

  11. Atmospheric deposition of nitrogen to the Baltic Sea in the period 1995–2006

    OpenAIRE

    Bartnicki, J.; Semeena, V. S.; H. Fagerli

    2011-01-01

    The EMEP Unified model has been used to compute atmospheric nitrogen deposition into the Baltic Sea basin for the period of 12 years: 1995–2006. The level of annual total nitrogen deposition into the Baltic Sea basin has changed from 230 Gg N in 1995 to 199 Gg N in 2006, decreasing 13%. This value corresponds well with the total nitrogen emission reduction (11%) in the HELCOM Contracting Parties. However, inter-annual variability of nitrogen depositions to the Baltic Sea basin is relatively l...

  12. Potential geographic distribution of atmospheric nitrogen deposition from intensive livestock production in North Carolina, USA

    Energy Technology Data Exchange (ETDEWEB)

    Costanza, Jennifer K. [Curriculum in Ecology, University of North Carolina at Chapel Hill, Campus Box 3275, Chapel Hill, NC 27599-3275 (United States)], E-mail: costanza@unc.edu; Marcinko, Sarah E. [Curriculum in Ecology, University of North Carolina at Chapel Hill, Campus Box 3275, Chapel Hill, NC 27599-3275 (United States); Goewert, Ann E. [Department of Geological Sciences, Campus Box 3315, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3315 (United States); Mitchell, Charles E. [Curriculum in Ecology, University of North Carolina at Chapel Hill, Campus Box 3275, Chapel Hill, NC 27599-3275 (United States)

    2008-07-15

    To examine the consequences of increased spatial aggregation of livestock production facilities, we estimated the annual production of nitrogen in livestock waste in North Carolina, USA, and analyzed the potential distribution of atmospheric nitrogen deposition from confined animal feeding operations ('CAFO') lagoons. North Carolina is a national center for industrial livestock production. Livestock is increasingly being raised in CAFOs, where waste is frequently held, essentially untreated, in open-air lagoons. Reduced nitrogen in lagoons is volatilized as ammonia (NH{sub 3}), transported atmospherically, and deposited to other ecosystems. The Albemarle-Pamlico Sound, NC, is representative of nitrogen-sensitive coastal waters, and is a major component of the second largest estuarine complex in the U.S. We used GIS to model the area of water in the Sound within deposition range of CAFOs. We also evaluated the number of lagoons within deposition range of each 1 km{sup 2} grid cell of the state. We considered multiple scenarios of atmospheric transport by varying distance and directionality. Modeled nitrogen deposition rates were particularly elevated for the Coastal Plain. This pattern matches empirical data, suggesting that observed regional patterns of reduced nitrogen deposition can be largely explained by two factors: limited atmospheric transport distance, and spatial aggregation of CAFOs. Under our medium-distance scenario, a small portion (roughly 22%) of livestock production facilities contributes disproportionately to atmospheric deposition of nitrogen to the Albemarle-Pamlico Sound. Furthermore, we estimated that between 14-37% of the state receives 50% of the state's atmospheric nitrogen deposition from CAFO lagoons. The estimated total emission from livestock is 134,000 t NH{sub 3} yr{sup -1}, 73% of which originates from the Coastal Plain. Stronger waste management and emission standards for CAFOs, particularly those on the Coastal Plain

  13. Isotopic constraints on the source of Pluto's nitrogen and the history of atmospheric escape

    Science.gov (United States)

    Mandt, Kathleen E.; Mousis, Olivier; Luspay-Kuti, Adrienn

    2016-10-01

    The origin and evolution of nitrogen in solar system bodies is an important question for understanding processes that took place during the formation of the planets and solar system bodies. Pluto has an atmosphere that is 99% molecular nitrogen, but it is unclear if this nitrogen is primordial or derived from ammonia in the protosolar nebula. The nitrogen isotope ratio is an important tracer of the origin of nitrogen on solar system bodies, and can be used at Pluto to determine the origin of its nitrogen. After evaluating the potential impact of escape and photochemistry on Pluto's nitrogen isotope ratio (14N/15N), we find that if Pluto's nitrogen originated as N2 the current ratio in Pluto's atmosphere would be greater than 324 while it would be less than 157 if the source of Pluto's nitrogen were NH3. The New Horizons spacecraft successfully visited the Pluto system in July 2015 providing a potential opportunity to measure 14N/15N in N2.

  14. Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China

    OpenAIRE

    Y. P. Pan; Wang, Y.S.; Tang, G Q; Wu, D.

    2012-01-01

    Emissions of reactive nitrogen (N) species can affect surrounding ecosystems via atmospheric deposition. However, few long-term and multi-site measurements have focused on both the wet and the dry deposition of individual N species in large areas of Northern China. Thus, the magnitude of atmospheric deposition of various N species in Northern China remains uncertain. In this study, the wet and dry atmospheric deposition of different N species was investigated during a three-year observ...

  15. Improved speciation of dissolved organic nitrogen in natural waters: amide hydrolysis with fluorescence derivatization

    Institute of Scientific and Technical Information of China (English)

    Ryan L.Firnmen; Tamara D.Trouts; Daniel D.Richter Jr.; Dharni Vasudevan

    2008-01-01

    The objective of this study was to improve primary-amine nitrogen (1°-N) quantification in dissolved organic matter (DOM)originating from natural waters where inorganic forms of N, which may cause analytical interference, are commonly encountered.Efforts were targeted at elucidating organic-N structural criteria influencing the response of organic amines to known colorimetric andfluorescent reagents and exploring the use of divalent metal-assisted amide hydrolysis in combination with fluorescence analyses.We found that reaction of o-phthaldialdehyde (OPA) with primary amines is significantly influenced by steric factors, whereasfluorescamine (FLU) lacks sensitivity to steric factors and allows for the detection of a larger suite of organic amines, includingdi- and tri-peptides and sterically hindered 1°-N. Due to the near quantitative recovery of dissolved peptides with the FLU reagent andlack of analytical response to inorganic nitrogen, we proposed that FLU be utilized for the quantification of primary amine nitrogen.In exploring the application of divalent metal promoted peptide hydrolysis to the analysis of organic forms of nitrogen in DOM, wefound that Zn(Ⅱ) reaction increased the total fraction of organic-N detectable by both OPA and FLU reagents. Zn-hydrolysis improvedrecovery of organic-N in natural waters from<5% to 35%. The above method, coupled with standard inorganic-N analyses, allows forenhanced resolution of dissolved organic nitrogen (DON) speciation in natural waters.

  16. Effect of carbon and nitrogen assimilation on chlorophyll fluorescence emission by the cyanobacterium Anacystis nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J.M.; Lara, C. (Instituto de Bioquimica Vegetal y Fotosintesis, Univ. de Sevilla y CSIC, Sevilla (ES)); Sivak, M.N. (Dept. of Biochemistry, Michigan State Univ., East Lansing (US))

    1992-01-01

    O{sub 2} evolution and chlorophyll A fluorescence emission have been monitored in intact cells of the cyanobacterium Anacystis nidulans 1402-1 to study the influence of carbon and nitrogen assimilation on the operation of the photosynthetic apparatus. The pattern of fluorescence induction in dark-adapted cyanobacterial cells was different from that of higher plants. Cyanobacteria undergo large, rapid state transitions upon illumination, which lead to marked changes in the fluorescence yield, complicating the estimation of quenching coefficients. The Kautsky effect was not evident, although it could be masked by a state II-state I transition, upon illumination with actinic light. The use of inhibitors of carbon assimilation such as D,L-glyceraldehyde or iodoacetamide allowed us to relate changes in variable fluorescence to active CO{sub 2} fixation. Ammonium, but not nitrate, induced non-photochemical fluorescence quenching, in agreement with a previous report on green algae, indicative of an ammonium-induced state i transition. (au).

  17. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    Science.gov (United States)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  18. Processing of atmospheric nitrogen by clouds above a forest environment

    Science.gov (United States)

    Hill, Kimberly A.; Shepson, Paul B.; Galbavy, Edward S.; Anastasio, Cort; Kourtev, Peter S.; Konopka, Allan; Stirm, Brian H.

    2007-06-01

    Dissolved inorganic ions (NH4+, Ca2+, Mg2+, K+, H+, NO3-, and SO42-) and organic nitrogen (DON) were measured in cloud water samples collected over the northern lower peninsula of Michigan. Within a given cloud field, several altitudes were sampled to examine changes in concentration and speciation with altitude. Several samples were analyzed for bacterial content and activity. Convective cumulus (cumulus congestus) were more concentrated than fair weather cumulus (cumulus humilis) for all major ions and DON, with the cloudy air DON concentrations in convective cumulus being twice as large as for fair weather cumulus, and for all other ions, the droplets were 4-6 times more concentrated. The molar average distribution of nitrogen in the cloud water was 43 (±10, 1σ)% ammonium, 39 (±7)% nitrate and 18 (±11)% DON. High concentrations of bacteria were observed in the clouds with an average concentration of 2.9 × 105 (±1.0 × 105, 1σ) bacteria m-3 of cloudy air but which contributed less than 1% of the nitrogen in the cloud water. In addition, nitrifying bacteria were identified, indicating bacterial processing of nitrogen in the cloud water may occur. Air mass origin and altitude influence observed cloud water concentrations, with the exception of DON. The correlation of ammonium and sulfate, and calcium and nitrate suggest that ammonium sulfate and calcium nitrate aerosol may be important sources of these ions.

  19. Responses of two summer annuals to interactions of atmospheric carbon dioxide and soil nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.B.

    1987-01-01

    The competitive relationship between Chenopodium album L. (C{sub 3}) and Amaranthus hybridus L. (C{sub 4}) was investigated in two atmospheric CO{sub 2} levels and tow soil nitrogen levels. Biomass and leaf surface area of Amaranthus plants did not respond to CO{sub 2} enrichment. Only in high nitrogen did Chenopodium plants respond to increased CO{sub 2} with greater biomass and leaf surface area. Nitrogen use efficiency (NUE) was higher in Amaranthus than in Chenopodium in all treatments except for the high-nitrogen high-CO{sub 2} treatment. Under conditions of high nitrogen and low CO{sub 2}, Chenopodium was a poor competitor, but competition favored Chenopodium in high nitrogen and high CO{sub 2}. In low nitrogen and high CO{sub 2}, competition favored Chenopodium on a dry weight basis, but favored Amaranthus on a seed weight basis, reflecting early senescence of Chenopodium. In low nitrogen and high CO{sub 2}, competition favored Amaranthus on a dry weight basis, but favored Chenopodium on a seed weight basis. Physiological aspects of the growth of Chenopodium and Amaranthus were studied. Acclimation to elevated CO{sub 2} occurred at the enzyme level in Chenopodium. Under conditions of high nitrogen and no competition, individual Chenopodium plants responded to elevated CO{sub 2} with greater biomass, leaf surface area, and maximum net photosynthetic rates. In high nitrogen, leaf nitrogen, soluble protein, and RuBP carboxylase activity of Chenopodium decreased and NUE increased when grown in elevated CO{sub 2}. In low nitrogen without competition, Chenopodium showed no significant response to CO{sub 2} enrichment. Amarantus grown in high and low nitrogen without competition showed no significant changes in leaf nitrogen, soluble protein, carboxylase activity, chlorophyll, or NUE of in response to CO{sub 2} enrichment.

  20. Manufacture of high-nitrogen corrosion-resistant steel by an aluminothermic method in a high-pressure nitrogen atmosphere

    Science.gov (United States)

    Dorofeev, G. A.; Karev, V. A.; Kuzminykh, E. V.; Lad'yanov, V. I.; Lubnin, A. N.; Vaulin, A. S.; Mokrushina, M. I.

    2013-01-01

    The conditions of aluminothermic synthesis of high-nitrogen Cr-N and Cr-Mn-N steels in a high-pressure nitrogen atmosphere are studied by thermodynamic simulation and metallurgical experiments. Thermodynamic analysis shows that the aluminothermic reduction reactions are incomplete. The most important synthesis parameter is the ratio of the aluminum to the oxygen content in a charge, and its optimum value ensures a compromise between the degree of oxide reduction, the aluminum and oxygen contents in steel (degree of deoxidation), and steel contamination by aluminum nitride. An analysis of experimental heats demonstrates good agreement between the experimental results and the data calculated by a thermodynamic model. As-cast ingots have the structure of nitrogen pearlite, and quenched ingots have an austenitic structure.

  1. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    Science.gov (United States)

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  2. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Junbao Yu

    2014-01-01

    Full Text Available The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD using automatic sampling equipment. The results showed that SO42- and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3-–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4+–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3-–N and NH4+–N was ~31.38% and ~20.50% for the contents of NO3-–N and NH4+–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  3. The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling

    Directory of Open Access Journals (Sweden)

    Hsien Ming eEaslon

    2013-08-01

    Full Text Available Terrestrial higher plants are composed of roots and shoots, distinct organs that conduct complementary functions in dissimilar environments. For example, roots are responsible for acquiring water and nutrients such as inorganic nitrogen from the soil, yet shoots consume the majority of these resources. The success of such a relationship depends on excellent root-shoot communications. Increased net photosynthesis and decreased shoot nitrogen and water use at elevated CO2 fundamentally alter these source-sink relations. Lower than predicted productivity gains at elevated CO2 under nitrogen or water stress may indicate shoot-root signaling lacks plasticity to respond to rising atmospheric CO2 concentrations. The following presents recent research results on shoot-root nitrogen and water signaling, emphasizing the influence that rising atmospheric carbon dioxide levels are having on these source-sink interactions.

  4. Raman Scattering by Molecular Hydrogen and Nitrogen in Exoplanetary Atmospheres

    CERN Document Server

    Oklopčić, Antonija; Heng, Kevin

    2016-01-01

    An important source of opacity in the atmospheres of exoplanets at short visible and near-UV wavelengths is Rayleigh scattering of light on molecules. It is accompanied by a related, albeit weaker process -- Raman scattering. In this paper, we analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets, which could provide valuable information about planetary atmospheres. Raman scattering affects the geometric albedo spectra of planets in two main ways. Firstly, it causes filling-in of strong absorption lines in the incident radiation, thus producing sharp peaks in the albedo. Secondly, it shifts the wavelengths of spectral features in the reflected light causing the so-called Raman ghost lines. Observing the Raman peaks in the albedo could be used to measure the column density of the scattering molecule, thus providing constrains on the presence of clouds and hazes in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically iden...

  5. Marine biogenic source of atmospheric organic nitrogen in the subtropical North Atlantic

    OpenAIRE

    Altieri, Katye E.; Fawcett, Sarah E.; Peters, Andrew J.; Sigman, Daniel M.; Hastings, Meredith G.

    2016-01-01

    Global models indicate that the human-derived nitrogen emissions that reach the ocean through atmospheric transport and deposition directly impact biology and the oceanic carbon dioxide (CO2) sink. Here, we find that the organic nitrogen in marine aerosols derives predominantly from biological production in the surface ocean rather than from pollution on land. Our previous work has shown significant anthropogenic influence on North Atlantic nitrate deposition, whereas ammonium cycles dynamica...

  6. Improvement of fluorescence intensity of nitrogen vacancy centers in self-formed diamond microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Furuyama, S.; Yaita, J.; Kondo, M. [Department of Physical Electronics, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Tahara, K.; Iwasaki, T.; Shimizu, M.; Kodera, T.; Hatano, M., E-mail: hatano.m.ab@m.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency, Tokyo 102-8666 (Japan)

    2015-10-19

    We present umbrella-shaped diamond microstructures with metal mirrors at the bottom in order to improve the amount of collected photons from nitrogen vacancy centers. The metal mirrors at the bottom are self-aligned to the umbrella-shaped diamond microstructures which are selectively grown through holes created on a metal mask. By the finite-difference time-domain simulations, we found that the umbrella-shaped microstructures, which have an effect similar to solid immersion lens, could collect photons more efficiently than bulk or pillar-shaped microstructures. Improvement of the fluorescence intensity by factors of from 3 to 5 is shown experimentally.

  7. Reconciling modeled and observed atmospheric deposition of soluble organic nitrogen at coastal locations

    Science.gov (United States)

    Ito, Akinori; Lin, Guangxing; Penner, Joyce E.

    2014-06-01

    Atmospheric deposition of reactive nitrogen (N) species from air pollutants is a significant source of exogenous nitrogen in marine ecosystems. Here we use an atmospheric chemical transport model to investigate the supply of soluble organic nitrogen (ON) from anthropogenic sources to the ocean. Comparisons of modeled deposition with observations at coastal and marine locations show good overall agreement for inorganic nitrogen and total soluble nitrogen. However, previous modeling approaches result in significant underestimates of the soluble ON deposition if the model only includes the primary soluble ON and the secondary oxidized ON in gases and aerosols. Our model results suggest that including the secondary reduced ON in aerosols as a source of soluble ON contributes to an improved prediction of the deposition rates (g N m-2 yr-1). The model results show a clear distinction in the vertical distribution of soluble ON in aerosols between different processes from the primary sources and the secondary formation. The model results (excluding the biomass burning and natural emission changes) suggest an increase in soluble ON outflow from atmospheric pollution, in particular from East Asia, to the oceans in the twentieth century. These results highlight the necessity of improving the process-based quantitative understanding of the chemical reactions of inorganic nitrogen species with organics in aerosol and cloud water.

  8. Nitrogen isotopes in ice core nitrate linked to anthropogenic atmospheric acidity change

    OpenAIRE

    Geng, Lei; Alexander, Becky; Cole-Dai, Jihong; Steig, Eric J.; Savarino, Joël; Sofen, Eric D.; Schauer, Andrew J.

    2014-01-01

    The specific cause of the long-term decrease in stable nitrogen isotope ratio (15N/14N) of ice core nitrate beginning ∼1850 is a subject of debate, hindering the efforts to understand changes in the global nitrogen cycle. Our high-resolution record of ice core 15N/14N combined with model calculations suggests that the decrease is mainly caused by equilibrium shift in gas−particle partitioning of atmospheric nitrate due to increasing atmospheric acidity resulting from anthropogenic emissions o...

  9. Fluorescence Indices for the Proximal Sensing of Powdery Mildew, Nitrogen Supply and Water Deficit in Sugar Beet Leaves

    Directory of Open Access Journals (Sweden)

    Georg Leufen

    2014-03-01

    Full Text Available Using potted sugar beet plants we aimed to investigate the suitability of four fluorescence indices to detect and differentiate the impact of nitrogen supply, water deficit and powdery mildew in two sugar beet cultivars (Beta vulgaris L.. Plants were grown inside a polytunnel under two nitrogen levels combined with water deficit or full irrigation. Changes in plant physiology were recorded at two physiological stages with a multiparametric handheld fluorescence sensor and a fluorescence imaging system. The analysis of chlorophyll content and osmotic potential served as reference. Based on our results, the fluorescence indices “Nitrogen Balance Index” and “Simple Fluorescence Ratio” responded quite sensitively to drought stress and mildew infection. Moreover, the blue-to-far-red fluorescence ratio revealed significant stress-induced alterations in the plant physiology. In all, fluorescence indices might be used as single or combined indices for successful stress sensing. However, a robust stress differentiation by using only one fluorescence ratio could not be accomplished.

  10. Box-modeling of the impacts of atmospheric nitrogen deposition and benthic remineralization on the nitrogen cycle of the eastern tropical South Pacific

    Directory of Open Access Journals (Sweden)

    B. Su

    2015-09-01

    Full Text Available Both atmospheric deposition and benthic remineralization influence the marine nitrogen cycle, and hence ultimately also marine primary production. The biological and biogeochemical relations of the eastern tropical South Pacific (ETSP to nitrogen deposition, benthic denitrification and phosphate regeneration are analysed in a prognostic box model of the oxygen, nitrogen and phosphorus cycles in the ETSP. In the model, atmospheric nitrogen deposition based on estimates for the years 2000–2009 is offset by half by reduced N2 fixation, with the other half transported out of the model domain. Both model- and data-based benthic denitrification are found to trigger nitrogen fixation, partly compensating for the NO3− loss. Since phosphate is the ultimate limiting nutrient in the model, enhanced sedimentary phosphate regeneration under suboxic conditions stimulates primary production and subsequent export production and NO3− loss in the oxygen minimum zone (OMZ. A sensitivity analysis of the local response to both atmospheric deposition and benthic remineralization indicates dominant stabilizing feedbacks in the ETSP, which tend to keep a balanced nitrogen inventory, i.e., nitrogen input by atmospheric deposition is counteracted by decreasing nitrogen fixation; NO3− loss via benthic denitrification is partly compensated by increased nitrogen fixation; enhanced nitrogen fixation stimulated by phosphate regeneration is partly removed by the stronger water-column denitrification. Even though the water column in our model domain acts as a NO3− source, the ETSP including benthic denitrification might become a NO3− sink.

  11. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    OpenAIRE

    Junbao Yu; Kai Ning; Yunzhao Li; Siyao Du; Guangxuan Han; Qinghui Xing; Huifeng Wu; Guangmei Wang; Yongjun Gao

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 2− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg ...

  12. Energy Estimation of UHE Cosmic Rays using the Atmospheric Fluorescence Technique

    CERN Document Server

    Song, C; Dawson, B R; Fick, B E; Lee, W; Sokolsky, P; Zhang, X

    2000-01-01

    We use the CORSIKA air shower simulation program to review the method for assigning energies to ultra-high energy (UHE) cosmic rays viewed with the air fluorescence technique. This technique uses the atmosphere as a calorimeter, and we determine the corrections that must be made to the calorimetric energy to yield the primary cosmic ray energy.

  13. Optical Reflectance and Fluorescence for Detecting Nitrogen Needs in Zea mays L.

    Science.gov (United States)

    McMurtrey, J. E.; Middleton, E. M.; Corp. L. A.; Campbell, P. K. Entcheva; Butcher, L. M.; Daughtry, C. S. T.

    2003-01-01

    Nitrogen (N) status in field grown corn (Zea mays L.) was assessed using spectral techniques. Passive reflectance remote sensing and, both passive and active fluorescence sensing methods were investigated. Reflectance and fluorescence methods are reported to detect changes in the primary plant pigments (chlorophylls a and b; carotenoids) in higher plant species. As a general rule, foliar chlorophyll a (Chl a) and chlorophyll b (Chl b) usually exist in approx.3:l ratio. In plants under stress, Chl b content is affected before Chl a reductions occur. For reflectance, a version of the chlorophyll absorption in reflectance index (CARI) method was tested with narrow bands from the Airborne Imaging Spectroradiometer for Applications (ASIA). CARI minimizes the effects of soil background on the signal from green canopies. A modified CARI (MCARI) was used to track total Chl a levels in the red dip of the spectrum from the corn canopy. A second MCARI was used to track the auxiliary plant pigments (Chl b and the carotenoids) in the yellow/orange/red edge part of the reflectance spectrum. The difference between these two MCARI indices detected variations in N levels across the field plot canopies using ASIA data. At the leaf level, ratios of fluorescence emissions in the blue, green, red and far-red wavelengths sensed responses that were associated with the plant pigments, and were indicative of energy transfer in the photosynthetic process. N stressed corn stands could be distinguish from those with optimally applied N with fluorescence emission spectra obtained from individual corn leaves. Both reflectance and fluorescence methods are sensitive in detecting corn N needs and may be especially powerful in monitoring crop conditions if both types of information can be combined.

  14. Nitrogen atmosphere and natural antioxidants effect on muesli oxidation during long-time storage

    Directory of Open Access Journals (Sweden)

    Dorota Klensporf-Pawlik

    2009-03-01

    Full Text Available The effects of natural antioxidants from raspberry and black currant seeds and modified atmosphere packaging on muesli oxidative stability measured by monitoring volatile lipid oxidation products were evaluated. The effectiveness toward lipid oxidation was investigated during 10 months storage at ambient temperature. Both ethanolic extracts as well as nitrogen atmosphere influenced lipid oxidation rate in muesli measured by volatile compounds content. The most abundant lipid derived volatile compounds was hexanal. After storage, its concentration changed from 802 µg/kg to 9.8 mg/kg in muesli stored in air atmosphere, whereas in muesli stored in nitrogen atmosphere with raspberry seed extract addition it raised to 3.1 mg/kg. Although, both natural antioxidants rich in phenolic compounds, were effective towards lipid oxidation, the strongest inhibiting effect had modified atmosphere packaging. The addition of ethanolic extracts did not fortify its positive effect. Total concentration of volatile compounds in muesli after 10 months of storage was 19.6 mg/kg when stored in air and 13.7 and 11.8 mg/kg when stored with raspberry and black currant seeds extract addition respectively, while 9.8 mg/kg when stored in nitrogen atmosphere without antioxidants, and 9.7 and 9.9 mg/kg when stored with antioxidants mentioned above.

  15. Governing processes for reactive nitrogen compounds in the European atmosphere

    DEFF Research Database (Denmark)

    Hertel, Ole; Skjøth, Carsten Ambelas; Reis, S.;

    2012-01-01

    on ecosystem services, biodiversity, human health and climate. NOx (NO+NO2) emitted from traffic affects human health in urban areas where the presence of buildings increases the residence time in streets. In urban areas this leads to enhanced exposure of the population to NOx concentrations. NOx emissions.......5 and PM10 (mass of aerosols with an aerodynamic diameter of less than 2.5 and 10 mu m, respectively) with an impact on radiation balance as well as potentially on human health. Little is known quantitatively and qualitatively about organic N in the atmosphere, other than that it contributes a significant...

  16. Atmospheric deposition of nitrogen to the Baltic Sea in the period 1995–2006

    Directory of Open Access Journals (Sweden)

    J. Bartnicki

    2011-01-01

    Full Text Available The EMEP Unified model has been used to compute atmospheric nitrogen deposition into the Baltic Sea basin for the period of 12 years: 1995–2006. The level of annual total nitrogen deposition into the Baltic Sea basin has changed from 230 Gg N in 1995 to 199 Gg N in 2006, decreasing 13%. This value corresponds well with the total nitrogen emission reduction (11% in the HELCOM Contracting Parties. However, inter-annual variability of nitrogen depositions to the Baltic Sea basin is relatively large, ranging from −13% to +17% of the averaged value. It is mainly caused by the changing meteorological conditions and especially precipitation in the considered period. The calculated monthly depositions are similar for most of the years showing maxima in the autumn months October and November. The source allocation budget for atmospheric nitrogen deposition to the Baltic Sea basin was calculated for each year of the period 1997–2006. The main emission sources contributing to total nitrogen deposition are: Germany 18–22 %, Poland 11–13% and Denmark 8–11%. There is also a significant contribution from distant sources like the United Kingdom 6–10%, as well as from the international ship traffic on the Baltic Sea 4–5%.

  17. Atmospheric deposition of nitrogen to the Baltic Sea in the period 1995–2006

    Directory of Open Access Journals (Sweden)

    J. Bartnicki

    2011-10-01

    Full Text Available The EMEP/MSC-W model has been used to compute atmospheric nitrogen deposition into the Baltic Sea basin for the period of 12 yr: 1995–2006. The level of annual total nitrogen deposition into the Baltic Sea basin has changed from 230 Gg N in 1995 to 199 Gg N in 2006, decreasing 13 %. This value corresponds well with the total nitrogen emission reduction (11 % in the HELCOM Contracting Parties. However, inter-annual variability of nitrogen deposition to the Baltic Sea basin is relatively large, ranging from −13 % to +17 % of the averaged value. It is mainly caused by the changing meteorological conditions and especially precipitation in the considered period. The calculated monthly deposition pattern is similar for most of the years showing maxima in the autumn months October and November. The source allocation budget for atmospheric nitrogen deposition to the Baltic Sea basin was calculated for each year of the period 1997–2006. The main emission sources contributing to total nitrogen deposition are: Germany 18–22 %, Poland 11–13 % and Denmark 8–11 %. There is also a significant contribution from distant sources like the United Kingdom 6–9 %, as well as from the international ship traffic on the Baltic Sea 4–5 %.

  18. Source receptor relations for the calculation of atmospheric deposition to the North Sea: Nitrogen and Cadmium

    NARCIS (Netherlands)

    van Jaarsveld JA; de Leeuw FAAM

    1993-01-01

    In this report a simplified atmospheric transport model for estimating the deposition of nitrogen (both NOx and NHx) and cadmium to the North Sea is presented. In this so-called meta-model a linear relationship between the emissions from a source area and the resulting deposition at receptor points

  19. Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential

    Science.gov (United States)

    Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A.; Peterka, Darcy S.; Boyden, Edward S.; Owen, Jonathan S.; Yuste, Rafael; Englund, Dirk

    2016-04-01

    The negatively charged nitrogen vacancy (NV-) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV- state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.

  20. Chinese coastal seas are facing heavy atmospheric nitrogen deposition

    Science.gov (United States)

    Luo, X. S.; Tang, A. H.; Shi, K.; Wu, L. H.; Li, W. Q.; Shi, W. Q.; Shi, X. K.; Erisman, J. W.; Zhang, F. S.; Liu, X. J.

    2014-09-01

    As the amount of reactive nitrogen (N) generated and emitted increases the amount of N deposition and its contribution to eutrophication or harmful algal blooms in the coastal zones are becoming issues of environmental concern. To quantify N deposition in coastal seas of China we selected six typical coastal sites from North to South in 2011. Concentrations of NH3, HNO3, NO2, particulate NH4+ (pNH4+) and pNO3- ranged from 1.97- 4.88, 0.46 -1.22, 3.03 -7.09, 2.24 - 4.90 and 1.13-2.63 μg N m-3 at Dalian (DL), Changdao (CD), Linshandao (LS), Fenghua (FH), Fuzhou (FZ), and Zhanjiang (ZJ) sites, respectively. Volume-weighted NO3--N and NH4+-N concentrations in precipitation varied from 0.46 to 1.67 and 0.47 to 1.31 mg N L-1 at the six sites. Dry, wet and total deposition rates of N were 7.8-23.1, 14.2-25.2 and 22.0 - 44.6 kg N ha-1 yr-1 across the six coastal sites. Average N dry deposition accounted for 45.4% of the total deposition and NH3 and pNH4+ contributed to 76.6% of the dry deposition. If we extrapolate our total N deposition of 33.9 kg N ha-1 yr-1 to the whole Chinese coastal sea area (0.40 million km2), total N deposition amounts to 1.36 Tg N yr-1, a large external N input to surrounding marine ecosystems.

  1. Chinese coastal seas are facing heavy atmospheric nitrogen deposition

    International Nuclear Information System (INIS)

    As the amount of reactive nitrogen (N) generated and emitted increases the amount of N deposition and its contribution to eutrophication or harmful algal blooms in the coastal zones are becoming issues of environmental concern. To quantify N deposition in coastal seas of China we selected six typical coastal sites from North to South in 2011. Concentrations of NH3, HNO3, NO2, particulate NH4+ (pNH4+) and pNO3− ranged from 1.97– 4.88, 0.46 –1.22, 3.03 –7.09, 2.24 – 4.90 and 1.13–2.63 μg N m−3 at Dalian (DL), Changdao (CD), Linshandao (LS), Fenghua (FH), Fuzhou (FZ), and Zhanjiang (ZJ) sites, respectively. Volume-weighted NO3−–N and NH4+–N concentrations in precipitation varied from 0.46 to 1.67 and 0.47 to 1.31 mg N L−1 at the six sites. Dry, wet and total deposition rates of N were 7.8–23.1, 14.2–25.2 and 22.0 – 44.6 kg N ha−1 yr−1 across the six coastal sites. Average N dry deposition accounted for 45.4% of the total deposition and NH3 and pNH4+ contributed to 76.6% of the dry deposition. If we extrapolate our total N deposition of 33.9 kg N ha−1 yr−1 to the whole Chinese coastal sea area (0.40 million km2), total N deposition amounts to 1.36 Tg N yr−1, a large external N input to surrounding marine ecosystems. (paper)

  2. Nitrogen isotopes in ice core nitrate linked to anthropogenic atmospheric acidity change

    Science.gov (United States)

    Geng, Lei; Alexander, Becky; Cole-Dai, Jihong; Steig, Eric J.; Savarino, Joël; Sofen, Eric D.; Schauer, Andrew J.

    2014-01-01

    Nitrogen stable isotope ratio (δ15N) in Greenland snow nitrate and in North American remote lake sediments has decreased gradually beginning as early as ∼1850 Christian Era. This decrease was attributed to increasing atmospheric deposition of anthropogenic nitrate, reflecting an anthropogenic impact on the global nitrogen cycle, and the impact was thought to be amplified ∼1970. However, our subannually resolved ice core records of δ15N and major ions (e.g., , ) over the last ∼200 y show that the decrease in δ15N is not always associated with increasing concentrations, and the decreasing trend actually leveled off ∼1970. Correlation of δ15N with H+, , and HNO3 concentrations, combined with nitrogen isotope fractionation models, suggests that the δ15N decrease from ∼1850–1970 was mainly caused by an anthropogenic-driven increase in atmospheric acidity through alteration of the gas−particle partitioning of atmospheric nitrate. The concentrations of and also leveled off ∼1970, reflecting the effect of air pollution mitigation strategies in North America on anthropogenic NOx and SO2 emissions. The consequent atmospheric acidity change, as reflected in the ice core record of H+ concentrations, is likely responsible for the leveling off of δ15N ∼1970, which, together with the leveling off of concentrations, suggests a regional mitigation of anthropogenic impact on the nitrogen cycle. Our results highlight the importance of atmospheric processes in controlling δ15N of nitrate and should be considered when using δ15N as a source indicator to study atmospheric flux of nitrate to land surface/ecosystems. PMID:24711383

  3. Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution

    Science.gov (United States)

    Zhao, Yuanhong; Zhang, Lin; Pan, Yuepeng; Wang, Yuesi; Paulot, Fabien; Henze, Daven

    2016-04-01

    Rapid Asian industrialization has lead to increased atmospheric nitrogen deposition downwind threatening the marine environment. We present an analysis of the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific, using the GEOS-Chem global chemistry model and its adjoint model at 1/2°× 2/3° horizontal resolution over the East Asia and its adjacent oceans. We focus our analyses on the marginal seas: the Yellow Sea and the South China Sea. Asian nitrogen emissions in the model are 28.6 Tg N a-1 as NH3 and 15.7 Tg N a-1 as NOx. China has the largest sources with 12.8 Tg N a-1 as NH3 and 7.9 Tg N a-1 as NOx; the much higher NH3 emissions reflect its intensive agricultural activities. We improve the seasonality of Asian NH3 emissions; emissions are a factor of 3 higher in summer than winter. The model simulation for 2008-2010 is evaluated with NH3 and NO2 column observations from satellite instruments, and wet deposition flux measurements from surface monitoring sites. Simulated atmospheric nitrogen deposition to the northwestern Pacific ranges 0.8-20 kg N ha-1 a-1, decreasing rapidly downwind the Asian continent. Deposition fluxes average 11.9 kg N ha-1 a-1 (5.0 as reduced nitrogen NHx and 6.9 as oxidized nitrogen NOy) to the Yellow Sea, and 5.6 kg N ha-1 a-1 (2.5 as NHx and 3.1 as NOy) to the South China Sea. Nitrogen sources over the ocean (ship NOx and oceanic NH3) have little contribution to deposition over the Yellow Sea, about 7% over the South China Sea, and become important (greater than 30%) further downwind. We find that the seasonality of nitrogen deposition to the northwestern Pacific is determined by variations in meteorology largely controlled by the East Asian Monsoon and in nitrogen emissions. The model adjoint further points out that nitrogen deposition to the Yellow Sea originates from sources over China (92% contribution) and the Korean peninsula (7%), and by sectors from fertilizer use (24%), power plants

  4. Ammonium first: natural mosses prefer atmospheric ammonium but vary utilization of dissolved organic nitrogen depending on habitat and nitrogen deposition.

    Science.gov (United States)

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Li, Xiao-Dong; Yoh, Muneoki; Liu, Cong-Qiang

    2013-07-01

    Mosses, among all types of terrestrial vegetation, are excellent scavengers of anthropogenic nitrogen (N), but their utilization of dissolved organic N (DON) and their reliance on atmospheric N remain uncharacterized in natural environments, which obscures their roles in N cycles. Natural (15) N abundance of N sources (nitrate (NO(3)(-)), ammonium (NH(4)(+)) and DON in deposition and soil) for epilithic and terricolous mosses was analyzed at sites with different N depositions at Guiyang, China. Moss NO(3)(-) assimilation was inhibited substantially by the high supply of NH(4)(+) and DON. Therefore, contributions of NH(4)(+) and DON to moss N were partitioned using isotopic mass-balance methods. The N contributions averaged 56% and 46% from atmospheric NH(4)(+), and 44% and 17% from atmospheric DON in epilithic and terricolous mosses, respectively. In terricolous mosses, soil NH(4)(+) and soil DON accounted for 16% and 21% of bulk N, which are higher than current estimations obtained using (15) N-labeling methods. Moreover, anthropogenic NH(4)(+) deposition suppressed utilization of DON and soil N because of the preference of moss for NH(4)(+) under elevated NH(4)(+) deposition. These results underscore the dominance of, and preference for, atmospheric NH(4)(+) in moss N utilization, and highlight the importance of considering DON and soil N sources when estimating moss N sequestration and the impacts of N deposition on mosses. PMID:23692546

  5. Atmospheric Water Soluble Organic Nitrogen (WSON) over marine environments: a global perspective

    Science.gov (United States)

    Violaki, K.; Sciare, J.; Williams, J.; Baker, A. R.; Martino, M.; Mihalopoulos, N.

    2014-07-01

    To obtain a comprehensive picture on the spatial distribution of water soluble organic nitrogen (WSON) in marine aerosols, samples were collected during research cruises in the tropical and south Atlantic Ocean and during a one year period (2005) over the southern Indian Ocean (Amsterdam island). Samples have been analyzed for both organic and inorganic forms of nitrogen and the factors controlling their levels have been examined. Fine mode WSON was found to play a significant role in the remote marine atmosphere with enhanced biogenic activity, with concentrations of WSON (11.3 ± 3.3 nmol N m-3) accounting for about 84% of the total dissolved nitrogen (TDN). Such levels are similar to those observed in the polluted marine atmosphere of the eastern Mediterranean (11.6 ± 14.0 nmol N m-3). Anthropogenic activities were found to be an important source of atmospheric WSON as evidenced by the ten times higher levels in the Northern Hemisphere (NH) than in the remote Southern Hemisphere (SH). Furthermore, the higher contribution of WSON to TDN (40%) in the SH, compared to the NH (20%), underlines the important role of organic nitrogen in remote marine areas. Finally, Sahara dust was also identified as a significant source of WSON in the coarse mode aerosols of the NH.

  6. Atmospheric water-soluble organic nitrogen (WSON) over marine environments: a global perspective

    Science.gov (United States)

    Violaki, K.; Sciare, J.; Williams, J.; Baker, A. R.; Martino, M.; Mihalopoulos, N.

    2015-05-01

    To obtain a comprehensive picture of the spatial distribution of water-soluble organic nitrogen (WSON) in marine aerosols, samples were collected during research cruises in the tropical and southern Atlantic Ocean and also in the southern Indian Ocean (Amsterdam Island) for a 1-year period (2005). Samples were analyzed for both organic and inorganic forms of nitrogen, and the factors controlling their levels were examined. Fine-mode WSON was found to play a significant role in the remote marine atmosphere with enhanced biogenic activity, with concentrations of WSON (11.3 ± 3.3 nmol N m-3) accounting for about 84 % of the total dissolved nitrogen (TDN). Such concentrations are similar to those observed in the polluted marine atmosphere of the eastern Mediterranean (11.6 ± 14.0 nmol N m-3). Anthropogenic activities were found to be an important source of atmospheric WSON as evidenced by the levels in the Northern Hemisphere (NH) being 10 times higher than in the remote Southern Hemisphere (SH). Furthermore, the higher contribution of fine-mode WSON to TDN (51%) in the SH, compared to the NH (13%), underlines the important role of organic nitrogen in remote marine areas. Finally, there was a strong association of WSON with dust in coarse-mode aerosols in the NH.

  7. Anode layer in a high-current arc in atmospheric pressure nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, Valerian A [ESAB Welding and Cutting Products and Francis Marion University, Florence, SC 29501 (United States)

    2005-11-21

    An anode layer in a high-current atmospheric nitrogen arc was modelled. Calculations were made in a one-dimensional approximation at current densities in the range 500-3000 A cm{sup -2}. Two-temperature approximation was used. We calculated the distributions of both electron and heavy particle temperatures, the concentrations of charged and neutral particles and the electric field inside the anode layer. It was shown that for the conditions that exist in the anode layer of a high-current atmospheric pressure arc in nitrogen (a) the concentration of the molecular ions is negligible and (b) the concentration of atoms exceeds the concentration of molecules everywhere in the anode layer except in a narrow region close to the anode. Calculation showed that the electric field decreases towards the anode, and then close to the anode it rises again. Contrary to the situation in argon, the present calculations showed that in nitrogen the electric field in the anode layer is always accelerating. However, the average electric field in the anode layer is weaker than in the adjacent arc column (the so-called negative anode layer voltage). The voltage drop in the Langmuir sheath is also negative. It is shown that the main difference in anode layer voltages between an arc in nitrogen and an arc in argon is due to the high reactive thermal conductivity in nitrogen.

  8. Nitrogen budget of Lago Maggiore: the relative importance of atmospheric deposition and catchment sources

    Directory of Open Access Journals (Sweden)

    Gabriele TARTARI

    2001-02-01

    Full Text Available Hydrological and chemical data of 1996 and 1997 are used to evaluate the relative contributions of atmospheric deposition and urban/industrial wastewaters to the nitrogen budget of Lago Maggiore. The atmospheric load of nitrogen was about 80% of the total input to the lake, with negligible variations in dry (1997 and wet (1996 years. A comparison of the two study years with the yearly N budgets evaluated from 1978 to 1998, showed that the N load was higher with increasing amounts of precipitation/water inflow. Soils and vegetation act as N sinks; the % retention varies between 40-60% for the forested catchments with low population density in the central-northern part of the basin, to values close to zero or even negative in the south, indicating a net leaching from the soils. The Traaen & Stoddard (1995 approach revealed that all the catchments of the major inflowing rivers were oversaturated with nitrogen. The long-term trend of nitrogen concentrations in Lago Maggiore (1955-99 is analogous to the trend for atmospheric deposition (1975-99, which is related to emissions of nitrogen oxides and ammonia in the atmosphere. The relationships between the present N load and in-lake concentrations are discussed using a budget model, which is also used to infer the pristine load of N. The close relationships between N trends in lakes Maggiore, Como and Iseo, and the geographical and anthropogenic features common to their catchments, suggest that the results obtained for Lago Maggiore can be extended to a wider area.

  9. Excitation of sensitized fluorescence of europium and curium in an aqueous solution of thenoyltrifluoroacetone by a nitrogen laser

    International Nuclear Information System (INIS)

    The fluorescence spectrum of trivalent europium in aqueous solutions of thenoyltrifluoroacetone, excited by a nitrogen laser with emission wavelength 337 nm, exhibits bands at 582, 593, 616, 650, and 695 nm. Two bands appear in the fluorescence spectrum of trivalent curium under the same conditions - at 598 and 607 nm. The times of quenching of the fluorescence of the ions of these elements were measured, both in H2O medium and in D2O. A linear relationship was found between the fluorescence intensity of europium and curium and their concentration in TTA solution. The limit of determination of europium and curium by the fluorescent method with laser excitation using the bands at 615 and 607 nm proved equal to 0.3 and 0.07 ng/ml, respectively

  10. Comparison of Measurements and FluorMOD Simulations for Solar Induced Chlorophyll Fluorescence and Reflectance of a Corn Crop under Nitrogen Treatments [SIF and Reflectance for Corn

    Science.gov (United States)

    Middleton, Elizabeth M.; Corp, Lawrence A.; Campbell, Petya K. E.

    2007-01-01

    The FLuorescence Explorer (FLEX) satellite concept is one of six semifinalist mission proposals selected in 2006 for pre-Phase studies by the European Space Agency (ESA). The FLEX concept proposes to measure passive solar induced chlorophyll fluorescence (SIF) of terrestrial ecosystems. A new spectral vegetation Fluorescence Model (FluorMOD) was developed to include the effects of steady state SIF on canopy reflectance. We used our laboratory and field measurements previously acquired from foliage and canopies of corn (Zea mays L.) under controlled nitrogen (N) fertilization to parameterize and evaluate FluorMOD. Our data included biophysical properties, fluorescence (F) and reflectance spectra for leaves; reflectance spectra of canopies and soil; solar irradiance; plot-level leaf area index; and canopy SIF emissions determined using the Fraunhofer Line Depth principal for the atmospheric telluric oxygen absorption features at 688 nm (O2-beta) and 760 nm (O2-alpha). FluorMOD simulations implemented in the default "look-up-table" mode did not reproduce the observed magnitudes of leaf F, canopy SIF, or canopy reflectance. However, simulations for all of these parameters agreed with observations when the default FluorMOD information was replaced with measurements, although N treatment responses were underestimated. Recommendations were provided to enhance FluorMOD's potential utility in support of SIF field experiments and studies of agriculture and ecosystems.

  11. Nitrogen- Doped Graphene Quantum Dots: "Turn-off" Fluorescent Probe for Detection of Ag(+) Ions.

    Science.gov (United States)

    Tabaraki, Reza; Nateghi, Ashraf

    2016-01-01

    Highly luminescent nitrogen-doped graphene quantum dots (N-GQDs) were prepared from glucose and ammonia as carbon and nitrogen sources, respectively. The N-GQDs showed a strong emission at 458 nm with excitation at 360 nm. The N-GQDs exhibited analytical potential as sensing probes for silver ions determination. Factors affecting the fluorescence sensing of Ag(+) ions such as pH, N-GQDs concentration and incubation time were studied using Box-Behnken experimental design. The optimum conditions were determined as pH 7, N-GQDs concentration 1 mg/mL and time 60 min. It suggested that N-GQDs exhibited high sensitivity and selectivity toward Ag(+). The linear range of N-GQDs and the limit of detection (LOD) were 0.2-40 μM and 168 nM, respectively. The N-GQDs-based Ag(+) ions sensor was successfully applied to the determination of Ag(+) in tap water and real river water samples.

  12. Atmospheric multiple scattering of fluorescence and Cherenkov light emitted by extensive air showers

    OpenAIRE

    Pekala, J.; Homola, P.; Wilczynska, B.; Wilczynski, H.

    2009-01-01

    Atmospheric scattering of light emitted by an air shower not only attenuates direct fluorescence light from the shower, but also contributes to the observed shower light. So far only direct and singly-scattered Cherenkov photons have been taken into account in routine analyses of the observed optical image of air showers. In this paper a Monte Carlo method of evaluating the contribution of multiply scattered light to the optical air shower image is presented, as well as results of simulations...

  13. Contribution of Atmospheric Nitrogen Compounds to N Deposition in a Broadleaf Forest of Southern China

    Institute of Scientific and Technical Information of China (English)

    HU Zheng-Yi; XU Cheng-Kai; ZHOU Li-Na; SUN Ben-Hua; HE Yuan-Qiu; ZHOU Jing; CAO Zhi-Hong

    2007-01-01

    A one-year study in a typical red soil region of southern China was conducted to determine atmospheric nitrogen (N) fluxes of typical N compounds (NH3, NH4-N, NO3-N, and NO2) and contribution of three sources (gas, rainwater, and particles) to N deposition. From July 2003 to June 2004, the total atmospheric N deposition was 70.7 kg N ha-1, with dry deposition accounting for 75% of the total deposition. Dry NH3 deposition accounted for 73% of the dry deposition and 55% of the total deposition. Moreover, NO2 contributed 11% of the dry deposition and 8% of the total deposition. Reduced N compounds (NH+4 and NH3) were the predominate contributors, accounting for 66% of the total deposition. Therefore, atmospheric N deposition should be considered when soil acidification and critical loads of atmospheric deposition on soils are estimated.

  14. Atmospheric nitrogen deposition budget in a subtropical hydroelectric reservoir (Nam Theun II case study, Lao PDR)

    Science.gov (United States)

    Adon, Marcellin; Galy-Lacaux, Corinne; Serça, Dominique; Guerin, Frederic; Guedant, Pierre; Vonghamsao, Axay; Rode, Wanidaporn

    2016-04-01

    With 490 km² at full level of operation, Nam Theun 2 (NT2) is one of the largest hydro-reservoir in South East Asia. NT2 is a trans-basin hydropower project that diverts water from the Nam Theun river (a Mekong tributary) to the Xe Ban Fai river (another Mekong tributary). Atmospheric deposition is an important source of nitrogen (N), and it has been shown that excessive fluxes of N from the atmosphere has resulted in eutrophication of many coastal waters. A large fraction of atmospheric N input is in the form of inorganic N. This study presents an estimation of the atmospheric inorganic nitrogen budget into the NT2 hydroelectric reservoir based on a two-year monitoring (July 2010 to July 2012) including gas concentrations and precipitation. Dry deposition fluxes are calculated from monthly mean surface measurements of NH3, HNO3 and NO2 concentrations (passive samplers) together with simulated deposition velocities, and wet deposition fluxes from NH4+ and NO3- concentrations in single event rain samples (automated rain sampler). Annual rainfall amount was 2500 and 3160 mm for the two years. The average nitrogen deposition flux is estimated at 1.13 kgN.ha-1.yr-1 from dry processes and 5.52 kgN.ha-1.yr-1 from wet ones, i.e., an average annual total nitrogen flux of 6.6 kgN.ha-1.yr-1 deposited into the NT2 reservoir. The wet deposition contributes to 83% of the total N deposition. The nitrogen deposition budget has been also calculated over the rain tropical forest surrounding the reservoir. Due to higher dry deposition velocities above forested ecosystems, gaseous dry deposition flux is estimated at 4.0 kgN.ha-1.yr-1 leading to a total nitrogen deposition about 9.5 kgN.ha-1.yr-1. This result will be compared to nitrogen deposition in the African equatorial forested ecosystems in the framework of the IDAF program (IGAC-DEBITS-AFrica).

  15. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2.

    Science.gov (United States)

    Berthrong, Sean T; Yeager, Chris M; Gallegos-Graves, Laverne; Steven, Blaire; Eichorst, Stephanie A; Jackson, Robert B; Kuske, Cheryl R

    2014-05-01

    Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.

  16. Torrefaction and low temperature carbonization of oil palm fiber and Eucalyptus in nitrogen and air atmospheres.

    Science.gov (United States)

    Lu, Ke-Miao; Lee, Wen-Jhy; Chen, Wei-Hsin; Liu, Shih-Hsien; Lin, Ta-Chang

    2012-11-01

    Torrefaction is a pretreatment method for upgrading biomass as solid fuels. To provide flexible operations for effectively upgrading biomass at lower costs, the aim of this study was to investigate the properties of oil palm fiber and eucalyptus pretreated in nitrogen and air atmospheres at temperatures of 250-350°C for 1h. Based on energy and solid yield and introducing an energy-mass co-benefit index (EMCI), oil palm fiber pretreatment under nitrogen at 300°C provided the solid fuel with higher energy density and less volume compared to other temperatures. Pretreatment of oil palm fiber in air resulted in the fuel with low solid and energy yields and is therefore not recommended. For eucalyptus, nitrogen and air can be employed to upgrade the biomass, and the suggested temperatures are 325 and 275°C, respectively.

  17. Characterization of transient discharges under atmospheric pressure conditions applying nitrogen photoemission and current measurements

    CERN Document Server

    Keller, Sandra; Bibinov, Nikita; Awakowicz, Peter

    2011-01-01

    Plasma parameters of three transient discharges (filamentary and homogeneous dielectric barrier discharges in air, and the spark discharge of an argon plasma coagulator) operated at atmospheric pressure conditions are determined applying a combination of diagnostics methods, namely numerical simulation, current measurement, and optical emission spectroscopy. These diagnostic methods supplement each other and resolve problems, which arise when these methods are used separately. Nitrogen is used as sensor gas and is admixed to argon for studying the argon plasma coagulator. The Boltzmann equation is solved in 'local' approximation to determine electron velocity distribution function. Drift velocity, electron-impact excitation rate constants for nitrogen molecular emission, electric current density, and emission spectrum of nitrogen molecule are calculated. Plasma parameters (electron velocity distribution function and electron density) are determined applying calculated as far as measured electric current, and ...

  18. Rotational and Vibrational Temperatures of Atmospheric Double Arc Argon-Nitrogen Plasma

    Institute of Scientific and Technical Information of China (English)

    YAN Jian-Hua; TU Xin; MA Zeng-Yi; CEN Ke-Fa; B.G.Chéron

    2007-01-01

    The spectroscopic technique is employed to study the emission of atmospheric argon-nitrogen plasma jet generated by an original dc double anode plasma torch. The molecular bands of the N(+2) first negative system are observed at the torch exit and chosen to evaluate the rotational and vibrational temperatures in comparison with the simulated spectra. The excitation temperature (Texc≈9600 K) is determined from the Boltzmann plot method. The results show that the rotational, vibrational, electron and kinetic temperatures are in good agreement with one another, which indicates that the core region of atmospheric double arc argon-nitrogen plasma jet at the torch exit is close to the local thermodynamic equilibrium state under our experimental conditions.

  19. Enhanced apatite formation on Ti metal heated in P{sub O2}-controlled nitrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Masami, E-mail: masami@jfcc.or.jp; Hayashi, Kazumi, E-mail: k_hayashi@jfcc.or.jp; Kitaoka, Satoshi, E-mail: kitaoka@jfcc.or.jp

    2013-10-15

    The oxynitridation of biomedical titanium metal under a precisely regulated oxygen partial pressure (P{sub O2}) of 10{sup −14} Pa in nitrogen atmosphere at 973 K for 1 h strongly enhanced apatite formation compared with that on Ti heated in air. The factors governing the high apatite-forming ability are discussed from the viewpoint of the surface properties of Ti heated under a P{sub O2} of 10{sup −14} Pa in nitrogen atmosphere determined from X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and zeta potential measurements. Nitrogen (N)-doped TiO{sub 2} (interstitial N) was formed on pure Ti heated under a P{sub O2} of 10{sup −14} Pa in nitrogen atmosphere at 973 K. The XPS O1s main peak shifted toward a lower binding energy upon heating under a P{sub O2} of 10{sup −14} Pa. This shift may be due to the formation of oxygen vacancies. This Ti surface had a positive zeta potential of approximately 20 mV. According to time-of-flight secondary ion mass spectroscopy results, PO{sub 4}{sup 3−} ions were predominantly adsorbed on Ti soaked in simulated body fluid (SBF) after heat treatment, followed by calcium ions. It was concluded that the apatite formation kinetics can be described using the Avrami–Erofeev equation with an Avrami index of n = 2, which implies the instantaneous nucleation of apatite on the surface of Ti soaked in SBF after heat treatment at 973 K under a P{sub O2} of 10{sup −14} Pa. - Highlights: • Nitrogen-doped TiO{sub 2} was formed on Ti heated under a P{sub O2} of 10{sup −14} Pa. • Oxygen vacancy was existed on the outermost layer of nitrogen-doped TiO{sub 2}. • This nitrogen-doped TiO{sub 2} surface had a positive zeta potential of 20 mV. • PO{sub 4}{sup 3−} ions were predominantly adsorbed on the nitrogen-doped TiO{sub 2} soaked in SBF.

  20. Mapping correlations between nitrogen concentrations in atmospheric deposition and mosses for natural landscapes in Europe

    OpenAIRE

    Schroder, Winfried; Pesch, Roland; Schonrock, Simon; Harmens, Harry; Mills, Gina; Fagerli, Hilde

    2014-01-01

    Recent investigations proved that nitrogen (N) concentrations in mosses are primarily determined byatmospheric deposition. The correlations are country- and N compound-specific and agree well withspatial patterns and temporal trends across Europe as a whole and in single European countries. Thisstudy investigates whether correlations between the concentration of N in atmospheric deposition andmosses within the units of an ecological land classification of Europe can be established. To this en...

  1. Box-modelling of the impacts of atmospheric nitrogen deposition and benthic remineralisation on the nitrogen cycle of the eastern tropical South Pacific

    Science.gov (United States)

    Su, Bei; Pahlow, Markus; Oschlies, Andreas

    2016-09-01

    Both atmospheric deposition and benthic remineralisation influence the marine nitrogen cycle, and hence ultimately also marine primary production. The biological and biogeochemical relations in the eastern tropical South Pacific (ETSP) among nitrogen deposition, benthic denitrification and phosphorus regeneration are analysed in a prognostic box model of the oxygen, nitrogen and phosphorus cycles in the ETSP. Atmospheric nitrogen deposition ( ≈ 1.5 Tg N yr-1 for the years 2000-2009) is offset by half in the model by reduced N2 fixation, with the other half transported out of the model domain. Model- and data-based benthic denitrification in our model domain are responsible for losses of 0.19 and 1.0 Tg Tg N yr-1, respectively, and both trigger nitrogen fixation, partly compensating for the NO3- loss. Model- and data-based estimates of enhanced phosphate release via sedimentary phosphorus regeneration under suboxic conditions are 0.062 and 0.11 Tg N yr-1, respectively. Since phosphate is the ultimate limiting nutrient in the model, even very small additional phosphate inputs stimulate primary production and subsequent export production and NO3- loss in the oxygen minimum zone (OMZ). A sensitivity analysis of the local response to both atmospheric deposition and benthic remineralisation indicates dominant stabilising feedbacks in the ETSP, which tend to keep a balanced nitrogen inventory; i.e. nitrogen input by atmospheric deposition is counteracted by decreasing nitrogen fixation; NO3- loss via benthic denitrification is partly compensated for by increased nitrogen fixation; enhanced nitrogen fixation stimulated by phosphate regeneration is partly counteracted by stronger water-column denitrification. Even though the water column in our model domain acts as a NO3- source, the ETSP including benthic denitrification might be a NO3- sink.

  2. Sources and source processes of organic nitrogen aerosols in the atmosphere

    Science.gov (United States)

    Erupe, Mark E.

    The research in this dissertation explored the sources and chemistry of organic nitrogen aerosols in the atmosphere. Two approaches were employed: field measurements and laboratory experiments. In order to characterize atmospheric aerosol, two ambient studies were conducted in Cache Valley in Northern Utah during strong winter inversions of 2004 and 2005. The economy of this region is heavily dependent on agriculture. There is also a fast growing urban population. Urban and agricultural emissions, aided by the valley geography and meteorology, led to high concentrations of fine particles that often exceeded the national ambient air quality standards. Aerosol composition was dominated by ammonium nitrate and organic species. Mass spectra from an aerosol mass spectrometer revealed that the organic ion peaks were consistent with reduced organic nitrogen compounds, typically associated with animal husbandry practices. Although no direct source characterization studies have been undertaken in Cache Valley with an aerosol mass spectrometer, spectra from a study at a swine facility in Ames, Iowa, did not show any evidence of reduced organic nitrogen species. This, combined with temporal and diurnal characteristics of organic aerosol peaks, was a pointer that the organic nitrogen species in Cache Valley likely formed from secondary chemistry. Application of multivariate statistical analyses to the organic aerosol spectra further supported this hypothesis. To quantify organic nitrogen signals observed in ambient studies as well as understand formation chemistry, three categories of laboratory experiments were performed. These were calibration experiments, smog chamber studies, and an analytical method development. Laboratory calibration experiments using standard calibrants indicated that quantifying the signals from organic nitrogen species was dependent on whether they formed through acid-base chemistry or via secondary organic aerosol pathway. Results from smog chamber

  3. Autofluorescence of atmospheric bioaerosols - fluorescent biomolecules, biological standard particles and potential interferences

    Science.gov (United States)

    Pöhlker, C.; Huffmann, J. A.; Pöschl, U.

    2012-04-01

    Primary biological aerosol particles (PBAP) such as pollen, fungal spores, bacteria, biogenic polymers and debris from larger organisms are known to influence atmospheric chemistry and physics, the biosphere and public health. PBAP account for up to ~30% of fine and up to ~70% of coarse particulate matter in urban, rural and pristine environment and are released with estimated emission rates of up to ~1000 Tg/a [1]. Continuous measurements of the abundance, variability and diversity of PBAP have been difficult until recently, however. The application of on-line instruments able to detect autofluorescence from biological particles in real-time has been a promising development for the measurement of PBAP concentrations and fluxes in different environments [2,3]. The detected fluorescent biological aerosol particles (FBAP) can be regarded as a subset of PBAP, although the exact relationship between PBAP and FBAP is still being investigated. Autofluorescence of FBAP is usually a superposition of fluorescence from a mixture of individual fluorescent molecules (fluorophores). Numerous biogenic fluorophores such as amino acids (e.g., tryptophan, tyrosine), coenzymes (e.g., NAD(P)H, riboflavin) and biopolymers (e.g., cellulose) emit fluorescent light due to heterocyclic aromatic rings or conjugated double bonds within their molecular structures. The tryptophan emission peak is a common feature of most bioparticles because the amino acid is a constituent of many proteins and peptides. The influence of the coenzymes NAD(P)H and riboflavin on the autofluorescence of bacteria can be regarded as an indicator for bacterial metabolism and has been utilized to discriminate between viable and non-viable organisms [4]. However, very little information is available about other essential biofluorophores in fungal spores and pollen. In order to better understand the autofluorescence behavior of FBAP, we have used fluorescence spectroscopy and fluorescence microscopy to analyze standard

  4. Carbon dioxide level and form of soil nitrogen regulate assimilation of atmospheric ammonia in young trees.

    Science.gov (United States)

    Silva, Lucas C R; Salamanca-Jimenez, Alveiro; Doane, Timothy A; Horwath, William R

    2015-08-21

    The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases ((13)CO2 and (15)NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH3 than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO2. However, unlike the (13)CO2 pulse, assimilation and transport of the (15)NH3 pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history.

  5. Thresholds for protecting Pacific Northwest ecosystems from atmospheric deposition of nitrogen: state of knowledge report

    Science.gov (United States)

    Cummings, Tonnie; Blett, Tamara; Porter, Ellen; Geiser, Linda; Graw, Rick; McMurray, Jill; Perakis, Steven S.; Rochefort, Regina

    2014-01-01

    The National Park Service and U.S. Forest Service manage areas in the states of Idaho, Oregon, and Washington – collectively referred to in this report as the Pacific Northwest - that contain significant natural resources and provide many recreational opportunities. The agencies are mandated to protect the air quality and air pollution-sensitive resources on these federal lands. Human activity has greatly increased the amount of nitrogen emitted to the atmosphere, resulting in elevated amounts of nitrogen being deposited in park and forest ecosystems. There is limited information in the Pacific Northwest about the levels of nitrogen that negatively affect natural systems, i.e., the critical loads. The National Park Service and U.S. Forest Service, with scientific input from the U.S. Geological Survey, have developed an approach for accumulating additional nitrogen critical loads information in the Pacific Northwest and using the data in planning and regulatory arenas. As a first step in that process, this report summarizes the current state of knowledge about nitrogen deposition, effects, and critical loads in the region. It also describes ongoing research efforts and identifies and prioritizes additional data needs.

  6. TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen

    Directory of Open Access Journals (Sweden)

    V. Wolff

    2012-05-01

    Full Text Available The input and loss of plant available nitrogen (reactive nitrogen: Nr from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter, which offers the opportunity to quantify the sum of all airborne reactive nitrogen compounds (∑Nr in high time resolution. The basic concept of the TRANC is the full conversion of all Nr to nitrogen monoxide (NO within two reaction steps. Initially, reduced Nr compounds are being oxidised, and oxidised Nr compounds are thermally converted to lower oxidation states. Particulate Nr is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher nitrogen oxides or those generated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3−, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in ∑Nr concentrations and also matches the sum of all individual Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal

  7. The influence of leaf-atmosphere NH3(g ) exchange on the isotopic composition of nitrogen in plants and the atmosphere.

    Science.gov (United States)

    Johnson, Jennifer E; Berry, Joseph A

    2013-10-01

    The distribution of nitrogen isotopes in the biosphere has the potential to offer insights into the past, present and future of the nitrogen cycle, but it is challenging to unravel the processes controlling patterns of mixing and fractionation. We present a mathematical model describing a previously overlooked process: nitrogen isotope fractionation during leaf-atmosphere NH3(g ) exchange. The model predicts that when leaf-atmosphere exchange of NH3(g ) occurs in a closed system, the atmospheric reservoir of NH3(g ) equilibrates at a concentration equal to the ammonia compensation point and an isotopic composition 8.1‰ lighter than nitrogen in protein. In an open system, when atmospheric concentrations of NH3(g ) fall below or rise above the compensation point, protein can be isotopically enriched by net efflux of NH3(g ) or depleted by net uptake. Comparison of model output with existing measurements in the literature suggests that this process contributes to variation in the isotopic composition of nitrogen in plants as well as NH3(g ) in the atmosphere, and should be considered in future analyses of nitrogen isotope circulation. The matrix-based modelling approach that is introduced may be useful for quantifying isotope dynamics in other complex systems that can be described by first-order kinetics. PMID:23452149

  8. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume

    Science.gov (United States)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Sethuraman, Mathur Gopalakrishnan; Lee, Yong Rok

    2016-10-01

    Highly fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized using the extract of unripe Prunus mume (P. mume) fruit by a simple one step hydrothermal-carbonization method. The N-CDs were synthesized at different pH ranges, 2.3, 5, 7, and 9. The pH of the P. mume extract was adjusted using an aqueous ammonia solution (25%). The optical properties of N-CDs were examined by UV-vis and fluorescence spectroscopy. The N-CDs synthesized at pH 9 emitted high fluorescence intensity compared to other obtained N-CDs. The N-CDs synthesized at pH 9 was further characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform-infra red (FT-IR) spectroscopy. HR-TEM showed that the average size of the synthesized N-CDs was approximately 9 nm and the interlayer distance was 0.21 nm, which was validated by XRD. The graphitic nature of the synthesized N-CDs were confirmed by Raman spectroscopy. XPS and FT-IR spectroscopy confirmed the doping of the nitrogen moiety over the synthesized CDs. The synthesized nitrogen doped CDs (N-CDs) were low toxicity and were used as a staining probe for fluorescence cell imaging.

  9. Enhanced apatite formation on Ti metal heated in PO2-controlled nitrogen atmosphere.

    Science.gov (United States)

    Hashimoto, Masami; Hayashi, Kazumi; Kitaoka, Satoshi

    2013-10-01

    The oxynitridation of biomedical titanium metal under a precisely regulated oxygen partial pressure (PO2) of 10(-14)Pa in nitrogen atmosphere at 973 K for 1 h strongly enhanced apatite formation compared with that on Ti heated in air. The factors governing the high apatite-forming ability are discussed from the viewpoint of the surface properties of Ti heated under a PO2 of 10(-14)Pa in nitrogen atmosphere determined from X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and zeta potential measurements. Nitrogen (N)-doped TiO2 (interstitial N) was formed on pure Ti heated under a PO2 of 10(-14)Pa in nitrogen atmosphere at 973 K. The XPS O1s main peak shifted toward a lower binding energy upon heating under a PO2 of 10(-14)Pa. This shift may be due to the formation of oxygen vacancies. This Ti surface had a positive zeta potential of approximately 20 mV. According to time-of-flight secondary ion mass spectroscopy results, PO4(3-) ions were predominantly adsorbed on Ti soaked in simulated body fluid (SBF) after heat treatment, followed by calcium ions. It was concluded that the apatite formation kinetics can be described using the Avrami-Erofeev equation with an Avrami index of n=2, which implies the instantaneous nucleation of apatite on the surface of Ti soaked in SBF after heat treatment at 973 K under a PO2 of 10(-14)Pa. PMID:23910327

  10. Assessing atmospheric nitrogen deposition to natural and semi-natural ecosystems – experience from Danish studies using the DAMOS system

    DEFF Research Database (Denmark)

    Hertel, Ole; Geels, Camilla; Frohn, Lise;

    2013-01-01

    Local agricultural emissions contribute significantly to the atmospheric reactive nitrogen loads of Danish terrestrial ecosystems. In the vicinity of the sources this may be up to 6-8 kg N ha(-1) yr(-1) depending on location and ecosystem type. This contribution arises from dry deposition of gas...... phase ammonia derived from local livestock production. Long-range transport, however, often constitutes the largest contribution to the overall atmospheric terrestrial reactive nitrogen loadings in Denmark. This is often in the range 10-15 kg N ha(-1) yr(-1) and consists mainly of aerosol phase nitrate...... and ammonium (reaction products of nitrogen oxides and ammonia), but also dry deposition of other reactive nitrogen compounds (mainly nitrogen oxides in the form of gas phase nitric acid and nitrogen dioxide). In Denmark's environmental management of the sensitive terrestrial ecosystems modelling tools...

  11. Measurement of the First Townsend's Ionization Coefficients in Helium, Air, and Nitrogen at Atmospheric Pressure

    Science.gov (United States)

    Ran, Junxia; Luo, Haiyun; Yue, Yang; Wang, Xinxin

    2014-07-01

    In the past the first Townsend’s ionization coefficient α could only be measured with Townsend discharge in gases at low pressure. After realizing Townsend discharge in some gases at atmospheric pressure by using dielectric barrier electrodes, we had developed a new method for measuring α coefficient at atmospheric pressure, a new optical method based on the discharge images taken with ICCD camera. With this newly developed method α coefficient in helium, nitrogen and air at atmospheric pressure were measured. The results were found to be in good agreement with the data obtained at lower pressure but same reduced field E/p by other groups. It seems that the value of α coefficient is sensitive to the purity of the working gas.

  12. Nitrogen oxide air pollution: atmospheric chemistry. 1964-1978 (citations from the NTIS data base). Report for 1964-78

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    Research reports on photochemical air pollution models, smog chemistry and reactivity, and SSt exhaust effects are cited in the bibliography. Auroral and upper atmospheric in chemistry, and photochemistry of naturally occurring nitrogen oxides are excluded. (Contains 247 citations)

  13. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation

    Science.gov (United States)

    Zhu, Jianxing; Wang, Qiufeng; He, Nianpeng; Smith, Melinda D.; Elser, James J.; Du, Jiaqiang; Yuan, Guofu; Yu, Guirui; Yu, Qiang

    2016-06-01

    Atmospheric wet nitrogen (N) and phosphorus (P) depositions are important sources of bioavailable N and P, and the input of N and P and their ratios significantly influences nutrient availability and balance in terrestrial as well as aquatic ecosystems. Here we monitored atmospheric P depositions by measuring monthly dissolved P concentration in rainfall at 41 field stations in China. Average deposition fluxes of N and P were 13.69 ± 8.69 kg N ha-1 a-1 (our previous study) and 0.21 ± 0.17 kg P ha-1 a-1, respectively. Central and southern China had higher N and P deposition rates than northwest China, northeast China, Inner Mongolia, or Qinghai-Tibet. Atmospheric N and P depositions showed strong seasonal patterns and were dependent upon seasonal precipitation. Fertilizer and energy consumption were significantly correlated with N deposition but less correlated with P deposition. The N:P ratios of atmospheric wet deposition (with the average of 77 ± 40, by mass) were negatively correlated with current soil N:P ratios in different ecological regions, suggesting that the imbalanced atmospheric N and P deposition will alter nutrient availability and strengthen P limitation, which may further influence the structure and function of terrestrial ecosystems. The findings provide the assessments of both wet N and P deposition and their N:P ratio across China and indicate potential for strong impacts of atmospheric deposition on broad range of terrestrial ecosystems.

  14. Water in planetary and cometary atmospheres: H2O/HDO transmittance and fluorescence models

    International Nuclear Information System (INIS)

    We developed a modern methodology to retrieve water (H2O) and deuterated water (HDO) in planetary and cometary atmospheres, and constructed an accurate spectral database that combines theoretical and empirical results. On the basis of a greatly expanded set of spectroscopic parameters, we built a full non-resonance cascade fluorescence model and computed fluorescence efficiencies for H2O (500 million lines) and HDO (700 million lines). The new line list was also integrated into an advanced terrestrial radiative transfer code (LBLRTM) and adapted to the CO2 rich atmosphere of Mars, for which we adopted the complex Robert-Bonamy formalism for line shapes. We retrieved water and D/H in the atmospheres of Mars, comet C/2007 W1 (Boattini), and Earth by applying the new formalism to spectra obtained with the high-resolution spectrograph NIRSPEC/Keck II atop Mauna Kea (Hawaii). The new model accurately describes the complex morphology of the water bands and greatly increases the accuracy of the retrieved abundances (and the D/H ratio in water) with respect to previously available models. The new model provides improved agreement of predicted and measured intensities for many H2O lines already identified in comets, and it identifies several unassigned cometary emission lines as new emission lines of H2O. The improved spectral accuracy permits retrieval of more accurate rotational temperatures and production rates for cometary water.

  15. Responses of chlorophyll fluorescence and nitrogen level of Leymus chinensis Seedling to changes of soil moisture and temperature

    Institute of Scientific and Technical Information of China (English)

    XU Zhen-zhu; ZHOU Guang-sheng; LI Hui

    2004-01-01

    Controlled experiment of Leymus chinensis seedlings grown in the environmental growth chambers at 3 soilmoisture levels and 3 temperature levels was conducted in order to improve the understanding how leafphotosynthetic parameters will respond to climatic change. The results indicated that soil drought and hightemperature decreased the photochemical efficiency of photosystem (Fv/Fm ), the overall photochemical quantumyield of PSIl(yield), the coefficient of photochemical fluorescence quenching(qp), but increased the coefficient ofnon-photochemical fluorescence quenching(qN). Severe soil drought would decrease Fv/Fm and yield by 3.12% and 37.04% under 26℃ condition, respectively, and 6.60% and 73.33% under 32℃ condition, respectively, suggesting that higher temperature may enhance the negative effects of soil drought. All the soil drought treatments resulted in the decline in leaf nitrogen content. There was no significant effect of temperature on leaf nitrogen level, but higher temperature significantly reduced the root nitrogen content and the ratio of root nitrogen to leaf nitrogen, indicating the different strategies of adaptation to soil drought and temperature. It was also implied that higher temperature would enhance the effect of soil drought on leaf photosynthetic capacity, decrease the adaptability of Leymus chinensis to drought.

  16. Atmospheric pressure microwave sample preparation procedure for the combined analysis of total phosphorus and kjeldahl nitrogen.

    Science.gov (United States)

    Collins, L W; Chalk, S J; Kingston, H M

    1996-08-01

    An atmospheric pressure microwave digestion method has been developed for the combined analysis of total phosphorus and Kjeldahl nitrogen in complex matrices. In comparison to the digestion steps in EPA Methods 365.4 (total phosphorus) and 351.x (Kjeldahl nitrogen), this method requires less time, eliminates the need for a catalyst, and reduces the toxicity of the waste significantly. It employs a microwave-assisted digestion step, using refluxing borosilicate glass vessels at atmospheric pressure. Traditionally, this method has a time-consuming sample preparation step and generates toxic waste through the use of heavy metal catalysts. These advantages are gained by the combination of a high boiling point acid (sulfuric acid) and the application of focused microwave irradiation, which enhances the digestion process by direct energy coupling. NIST standard reference materials 1572 (citrus leaves), 1577a (bovine liver), and 1566 (oyster tissue) and tryptophan were analyzed to validate the method. Phosphorus concentrations were determined by the colorimetric ascorbic acid method outlined in EPA Method 365.3. Kjeldahl nitrogen concentrations were determined using EPA Method 351.1. The results of the analyses showed good precision and are in excellent agreement with the NIST published values for both elements.

  17. ADVANTAGE OF VACUUM VERSUS NITROGEN TO ACHIEVE INERT ATMOSPHERE DURING SOFTWOOD THERMAL MODIFICATION

    Directory of Open Access Journals (Sweden)

    Kévin CANDELIER

    2014-12-01

    Full Text Available Wood heat treatment is an attractive alternative to improve decay resistance of wood species with low natural durability. Durability and mechanical properties are strongly correlated to thermal degradation of wood cells wall components. Mass loss resulting from this degradation is a good indicator of treatment intensity and final treated wood properties. Several types of convective heating processes exist currently differing mainly by the nature of the inert atmosphere used during treatment: nitrogen, steam or oil. Conductive heat treatment using vacuum as inert atmosphere is an attractive new alternative to previous classical methods. Heat transfer by conduction has been reported to provide better treatment homogeneity than heat transfer using convection. The aim of this study is to investigate the effect of vacuum comparatively to nitrogen on the thermal degradation pathways and on the conferred properties to the material. It appears that utilization of vacuum permit a better control of thermal degradation reactions limiting the mass loss resulting from degradation of wood cell wall polymers. Chemical analysis indicates that wood heat treated under nitrogen present higher Klason lignin and carbon contents, lower hemicelluloses and neutral monosaccharides contents comparatively to wood heat treated under vacuum. At the same time, mechanical properties are less affected under vacuum, which constitute another advantage of this technology.

  18. Possible nuclear transmutation of nitrogen in the earth's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, Mikio [Institute for Materials Research, Tohoku University (Japan)

    2006-07-01

    An attempt to give a possible answer to a question why nitrogen exists so abundantly in Earth's atmosphere and how was it formed in Archean era (3.8-2.5 billion years ago) is presented. The nitrogen is postulated to be the result of an endothermic nuclear transmutation of carbon and oxygen nuclei confined in carbonate MgCO{sub 3} lattice of the mantle with an enhanced rate by attraction effect of catalysis of neutral pions, produced by electron emission: {sup 12}C + {sup 16}O - 2{pi}{sup 0} {yields} 2 {sup 14}N. The excited electrons were generated by rapid fracture or sliding of carbonate crystals due to volcanic earthquake, and many of the neutrinos were derived from stars, mainly the young sun. The formation of nitrogen would continued for J.3 billion years from 2.5 to 3.8 billion years in Archean era, until the active volcanism or storm of neutrinos ceased. The transformation is possible by the combined effects of the screening attraction of free electrons and thermal activation in deeper mantle. The possible nuclear transmutation rate of nitrogen atoms could be calculated as 2.3 x 10{sup 6} atom/s. (authors)

  19. Atmospheric multiple scattering of fluorescence and Cherenkov light emitted by extensive air showers

    CERN Document Server

    Pekala, J; Wilczynska, B; Wilczynski, H; 10.1016/j.nima.2009.03.244

    2009-01-01

    Atmospheric scattering of light emitted by an air shower not only attenuates direct fluorescence light from the shower, but also contributes to the observed shower light. So far only direct and singly-scattered Cherenkov photons have been taken into account in routine analyses of the observed optical image of air showers. In this paper a Monte Carlo method of evaluating the contribution of multiply scattered light to the optical air shower image is presented, as well as results of simulations and a parameterization of scattered light contribution to measured shower signal.

  20. Process-Scale Modeling of Atmosphere-Snowpack Exchange of Nitrogen Oxides

    Science.gov (United States)

    Murray, K. A.; Doskey, P. V.; Ganzeveld, L.

    2013-12-01

    Snowpack over glacial ice is a reservoir for reactive nitrogen gases. Previous studies indicate nitrogen oxides (NOx) are generated in snowpack interstitial air through photolysis of nitrate (NO3-). Gradients in NOx mixing ratios between snowpack interstitial air and the overlying atmosphere regulate exchange of NOx with snowpack, which affects the Arctic ozone budget and climate. To better understand the dynamics of cryosphere-atmosphere exchange of NOx in the Arctic, we collected 2 years of meteorological and chemical data in and above the snowpack at Summit, Greenland. The comprehensive dataset indicates NOx emissions are episodic, with NOx enhancements in snowpack in early spring during high wind speed events (10-20 mph), which elevate NOx levels to ~500 pptv at depths of 2.5 m. Analysis of the observations will be based upon application of a 1-D process-scale model of atmosphere-snowpack exchange of NOx. The model will include representations of the snowpack chemistry in gas and aqueous phases, mass transfer of chemical species between phases, and physical transport by diffusion and wind pumping. The model will calculate the chemical and physical tendencies in three dimensions: depth, time, and intensity. Analysis of the tendencies will allow us to perform model sensitivity tests of pertinent snowpack physical and chemical processes. The end-goal of the project is to simplify the major tendencies into a parameterized model add-on for use in global models to determine the importance of properly representing snowpack in global model simulations.

  1. The Role of Nitrogen in Titan’s Upper Atmospheric Hydrocarbon Chemistry Over the Solar Cycle

    Science.gov (United States)

    Luspay-Kuti, A.; Mandt, K. E.; Westlake, J. H.; Plessis, S.; Greathouse, T. K.

    2016-06-01

    Titan’s thermospheric photochemistry is primarily driven by solar radiation. Similarly to other planetary atmospheres, such as Mars’, Titan’s atmospheric structure is also directly affected by variations in the solar extreme-UV/UV output in response to the 11-year-long solar cycle. Here, we investigate the influence of nitrogen on the vertical production, loss, and abundance profiles of hydrocarbons as a function of the solar cycle. Our results show that changes in the atmospheric nitrogen atomic density (primarily in its ground state N(4S)) as a result of photon flux variations have important implications for the production of several minor hydrocarbons. The solar minimum enhancement of CH3, C2H6, and C3H8, despite the lower CH4 photodissociation rates compared with solar maximum conditions, is explained by the role of N(4S). N(4S) indirectly controls the altitude of termolecular versus bimolecular chemical regimes through its relationship with CH3. When in higher abundance during solar maximum at lower altitudes, N(4S) increases the importance of bimolecular CH3 + N(4S) reactions producing HCN and H2CN. The subsequent remarkable CH3 loss and decrease in the CH3 abundance at lower altitudes during solar maximum affects the overall hydrocarbon chemistry.

  2. Monitoring changes in whiting (Merlangius merlangus) fillets stored under modified atmosphere packaging by front face fluorescence spectroscopy and instrumental techniques.

    Science.gov (United States)

    Hassoun, Abdo; Karoui, Romdhane

    2016-06-01

    Quality assessment of whiting (Merlangius merlangus) fillets stored in normal air (control group) and modified atmosphere packaging (MAP1: 50% N2/50% CO2 and MAP2: 80% N2/20% CO2) for up to 15 days at 4 °C was performed. The physico-chemical [pH, drip loss, moisture content, total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS) and peroxide value (PV)], textural (i.e., hardness, fragility, gumminess, chewiness, springiness, cohesiveness), and color (i.e., L(∗), a(∗), b(∗)) parameters were determined. Front face fluorescence spectroscopy (FFFS) emission spectra were also scanned on the same samples with excitation set at 290 and 360 nm. The results indicated that MAP treatment, particularly MAP1 had an obvious preservative effect on fish quality by reducing pH value, TBARS and TVB-N contents, and retarding the softening of fish texture compared to control samples. Principal component analysis (PCA) applied to physico-chemical and instrumental data sets showed a clear discrimination of fish samples according to both their storage time and condition. A complete (100%) of correct classification was obtained by the concatenation of spectral, physico-chemical, and instrumental data sets. The results demonstrated that storage under MAP can be recommended to improve quality of whiting fillets, which in turn, can be evaluated by FFFS as a rapid and non-destructive technique. PMID:26830598

  3. Effects of nitrogen form on growth, CO2 assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants*

    OpenAIRE

    Zhou, Yan-Hong; Zhang, Yi-li; Wang, Xue-Min; Cui, Jin-xia; Xia, Xiao-Jian; Kai SHI; Yu, Jing-quan

    2011-01-01

    Cucumber and rice plants with varying ammonium (NH4 +) sensitivities were used to examine the effects of different nitrogen (N) sources on gas exchange, chlorophyll (Chl) fluorescence quenching, and photosynthetic electron allocation. Compared to nitrate (NO3 −)-grown plants, cucumber plants grown under NH4 +-nutrition showed decreased plant growth, net photosynthetic rate, stomatal conductance, intercellular carbon dioxide (CO2) level, transpiration rate, maximum phot...

  4. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China

    Science.gov (United States)

    Xu, W.; Luo, X. S.; Pan, Y. P.; Zhang, L.; Tang, A. H.; Shen, J. L.; Zhang, Y.; Li, K. H.; Wu, Q. H.; Yang, D. W.; Zhang, Y. Y.; Xue, J.; Li, W. Q.; Li, Q. Q.; Tang, L.; Lu, S. H.; Liang, T.; Tong, Y. A.; Liu, P.; Zhang, Q.; Xiong, Z. Q.; Shi, X. J.; Wu, L. H.; Shi, W. Q.; Tian, K.; Zhong, X. H.; Shi, K.; Tang, Q. Y.; Zhang, L. J.; Huang, J. L.; He, C. E.; Kuang, F. H.; Zhu, B.; Liu, H.; Jin, X.; Xin, Y. J.; Shi, X. K.; Du, E. Z.; Dore, A. J.; Tang, S.; Collett, J. L., Jr.; Goulding, K.; Zhang, F. S.; Liu, X. J.

    2015-07-01

    Global reactive nitrogen (Nr) deposition to terrestrial ecosystems has increased dramatically since the industrial revolution. This is especially true in recent decades in China due to continuous economic growth. However, there are no comprehensive reports of both measured dry and wet Nr deposition across China. We therefore conducted a multiple-year study during the period mainly from 2010 to 2014 to monitor atmospheric concentrations of five major Nr species of gaseous NH3, NO2 and HNO3, and inorganic nitrogen (NH4+ and NO3-) in both particles and precipitation, based on a Nationwide Nitrogen Deposition Monitoring Network (NNDMN, covering 43 sites) in China. Wet deposition fluxes of Nr species were measured directly; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet Nr deposition. The annual average concentrations (1.3-47.0 μg N m-3) and dry plus wet deposition fluxes (2.9-75.2 kg N ha-1 yr-1) of inorganic Nr species ranked by region as North China > Southeast China > Southwest China > Northeast China > Northwest China > the Tibetan Plateau or by land use as urban > rural > background sites, reflecting the impact of anthropogenic Nr emission. Average dry and wet N deposition fluxes were 18.5 and 19.3 kg N ha-1 yr-1, respectively, across China, with reduced N deposition dominating both dry and wet deposition. Our results suggest atmospheric dry N deposition is equally important to wet N deposition at the national scale and both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health.

  5. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China

    Directory of Open Access Journals (Sweden)

    W. Xu

    2015-07-01

    Full Text Available Global reactive nitrogen (Nr deposition to terrestrial ecosystems has increased dramatically since the industrial revolution. This is especially true in recent decades in China due to continuous economic growth. However, there are no comprehensive reports of both measured dry and wet Nr deposition across China. We therefore conducted a multiple-year study during the period mainly from 2010 to 2014 to monitor atmospheric concentrations of five major Nr species of gaseous NH3, NO2 and HNO3, and inorganic nitrogen (NH4+ and NO3− in both particles and precipitation, based on a Nationwide Nitrogen Deposition Monitoring Network (NNDMN, covering 43 sites in China. Wet deposition fluxes of Nr species were measured directly; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet Nr deposition. The annual average concentrations (1.3–47.0 μg N m−3 and dry plus wet deposition fluxes (2.9–75.2 kg N ha−1 yr−1 of inorganic Nr species ranked by region as North China > Southeast China > Southwest China > Northeast China > Northwest China > the Tibetan Plateau or by land use as urban > rural > background sites, reflecting the impact of anthropogenic Nr emission. Average dry and wet N deposition fluxes were 18.5 and 19.3 kg N ha−1 yr−1, respectively, across China, with reduced N deposition dominating both dry and wet deposition. Our results suggest atmospheric dry N deposition is equally important to wet N deposition at the national scale and both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health.

  6. Supercontinuum Generation in Atmospheric-Pressure Nitrogen Using a Tightly Focused Intense Femtosecond Laser Beam

    Institute of Scientific and Technical Information of China (English)

    QIN Yuan-Dong; ZHU Chang-Jun; YANG Hong; GONG Qi-Huang

    2000-01-01

    Supercontinuum generation in atmospheric-pressure nitrogen by a focused intense femtosecond Ti: sapphire laser was studied at various pulse durations and energies. The generated supercontinuum was greatly blue-broadened due to self-phase modulation in the plasma produced. The measured blue-broadening △ω is proportional to pulse intensity for fixed pulse duration, and values up to 0. 7ω (ω being the originaI laser frequency) was obtained with a pulse energy of 9.5 mJ and minimum duration of 100 fs.

  7. Nitrogen and Carbon Cycling in a Grassland Community Ecosystem as Affected by Elevated Atmospheric CO2

    OpenAIRE

    Torbert, H.A.; Johnson, H. B.; H. W. Polley

    2012-01-01

    Increasing global atmospheric carbon dioxide (CO2) concentration has led to concerns regarding its potential effects on terrestrial ecosystems and the long-term storage of carbon (C) and nitrogen (N) in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L.) Willd (Huisache). Seedlings of Acacia along with grass species were grown for 13 months at CO2 concentrations of 385 (ambient), 690, and 980 μmol mol−1. Elevated CO2 ...

  8. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    International Nuclear Information System (INIS)

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  9. Effect of Nitrogen Fertilization on Leaf Chlorophyll Fluorescence in Field-Grown Winter Wheat Under Rainfed Conditions

    Institute of Scientific and Technical Information of China (English)

    SHANGGUAN Zhou-ping; ZHENG Shu-xia; ZHANG Lei-ming; XUE Qing-wu

    2005-01-01

    The effect of nitrogen fertilization on leaf chlorophyll fluorescence was studied in field-grown winter wheat during grain filling under rainfed conditions in Loess Plateau. Results showed that the actual photochemical efficiency of PS Ⅱ reaction center (Ф PS Ⅱ) decreased significantly as leaf water stress progressed, however, the Ф PS was increased by nitrogen fertilization. The Ф PS Ⅱ of 0, 90 and 180 kg ha-1 nitrogen treatments at noon were 0.197, 0.279 and 0.283, respectively, which decreased by 57.7, 56.4 and 40.2% as compared was even higher than that in the moming. Application of nitrogen fertilizer significantly increased maximum photochemical efficiency (Fv/Fm), photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (qNP). These results indicated that application of nitrogen fertilizer could increase the light energy conversion efficiency, the potential activity of photosynthetic reaction center, and the non-photochemical dissipation of excess light energy, which can prevent leaf photosynthetic apparatus from damage of treatments, indicating that the excess nitrogen was unfavorable to photosynthesis.

  10. Impact of atmospheric nitrogen deposition on phytoplankton productivity in the South China Sea

    Science.gov (United States)

    Kim, Tae-Wook; Lee, Kitack; Duce, Robert; Liss, Peter

    2014-05-01

    The impacts of anthropogenic nitrogen (N) deposition on the marine N cycle are only now being revealed, but the magnitudes of those impacts are largely unknown in time and space. The South China Sea (SCS) is particularly subject to high anthropogenic N deposition, because the adjacent countries are highly populated and have rapidly growing economies. Analysis of data sets for atmospheric N deposition, satellite chlorophyll-a (Chl-a), and air mass back trajectories reveals that the transport of N originating from the populated east coasts of China and Indonesia, and its deposition to the ocean, has been responsible for the enhancements of Chl-a in the SCS. We found that atmospheric N deposition contributed approximately 20% of the annual biological new production in the SCS. The airborne contribution of N to new production in the SCS is expected to grow considerably in the coming decades.

  11. Effects of Nitrogen Fertilizer Level on Chlorophyll Fluorescence Characteristics in Flag Leaf of Super Hybrid Rice at Late Growth Stage

    Institute of Scientific and Technical Information of China (English)

    LONG Ji-rui; MA Guo-hui; WAN Yi-zheng; SONG Chun-fang; SUN Jian; QIN Rui-jun

    2013-01-01

    To compare the effects of slow-release nitrogen fertilizer at six different levels on the flag leaf chlorophyll fluorescence characteristics of super hybrid rice,a field fertilization experiment was conducted with super hybrid rice Y Liangyou 1 as a test material.The photosynthetic electron transport rate (ETR),effective quantum yield (EQY),photochemical quenching coefficient (qp),and non-photochemical quenching coefficient (NPQ) of flag leaves were measured at the initial heading,full heading,10 d after full heading and 20 d after full heading stages.Results showed that the values of ETR,EQY and qp increased with rice development from initial heading to 20 d after full heading,whereas the NPQ decreased.During the measured stages,ETR,EQY and qp increased initially and then decreased as nitrogen application amount increased,but they peaked at different nitrogen fertilizer levels.The maximum ETR and EQY values appeared at the treatment of 135 kg/hm2 N.In conclusion,the optimum nitrogen amount for chlorophyll fluorescence characteristics of super hybrid rice was 135-180 kg/hm2.

  12. Resolving the influence of nitrogen abundances on sediment organic matter in macrophyte-dominated lakes, using fluorescence spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Xin Yao; Shengrui Wang; Lixin Jiao; Caihong Yan; Xiangcan Jin

    2015-01-01

    A controlled experiment was designed to resolve the influence of nitrogen abundance on sediment organic matters in macrophyte-dominated lakes using fluorescence analysis.Macrophyte biomass showed coincident growth trends with time,but different variation rates with nitrogen treatment.All plant growth indexes with nitrogen addition (N,NH4Cl 100,200,400 mg/kg,respectively) were lower than those of the control group.Four humiclike components,two autochthonous tryptophan-like components,and one autochthonous tyrosine-like component were identified using the parallel factor analysis model.The results suggested that the relative component changes of fluorescence in the colonized sediments were in direct relation to the change of root biomass with time.In the experiment,the root formation parameters of the plants studied were significantly affected by adding N in sediments,which may be related to the reason that the root growth was affected by N addition.Adding a low concentration of N to sediments can play a part in supplying nutrients to the plants.However,the intensive uptake of NH~ may result in an increase in the intracellular concentration of ammonia,which is highly toxic to the plant cells.Hence,our experiment results manifested that organic matter cycling in the macrophyte-dominated sediment was influenced by nitrogen enrichment through influencing vegetation and relevant microbial activity.

  13. Sources and sinks of atmospheric N2O and the possible ozone reduction due to industrial fixed nitrogen fertilizers

    Science.gov (United States)

    Liu, S. C.; Cicerone, R. J.; Donahue, T. M.; Chameides, W. L.

    1977-01-01

    The terrestrial and marine nitrogen cycles are examined in an attempt to clarify how the atmospheric content of N2O is controlled. We review available data on the various reservoirs of fixed nitrogen, the transfer rates between the reservoirs, and estimate how the reservoir contents and transfer rates can change under man's influence. It is seen that sources, sinks and lifetime of atmospheric N2O are not understood well. Based on our limited knowledge of the stability of atmospheric N2O we conclude that future growth in the usage of industrial fixed nitrogen fertilizers could cause a 1% to 2% global ozone reduction in the next 50 years. However, centuries from now the ozone layer could be reduced by as much as 10% if soils are the major source of atmospheric N2O.

  14. Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity's mass spectrometer

    Science.gov (United States)

    Wong, Michael H; Atreya, Sushil K; Mahaffy, Paul N; Franz, Heather B; Malespin, Charles; Trainer, Melissa G; Stern, Jennifer C; Conrad, Pamela G; Manning, Heidi L K; Pepin, Robert O; Becker, Richard H; McKay, Christopher P; Owen, Tobias C; Navarro-González, Rafael; Jones, John H; Jakosky, Bruce M; Steele, Andrew

    2013-01-01

    [1] The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) measured a Mars atmospheric14N/15N ratio of 173 ± 11 on sol 341 of the mission, agreeing with Viking's measurement of 168 ± 17. The MSL/SAM value was based on Quadrupole Mass Spectrometer measurements of an enriched atmospheric sample, with CO2 and H2O removed. Doubly ionized nitrogen data at m/z 14 and 14.5 had the highest signal/background ratio, with results confirmed by m/z 28 and 29 data. Gases in SNC meteorite glasses have been interpreted as mixtures containing a Martian atmospheric component, based partly on distinctive14N/15N and40Ar/14N ratios. Recent MSL/SAM measurements of the40Ar/14N ratio (0.51 ± 0.01) are incompatible with the Viking ratio (0.35 ± 0.08). The meteorite mixing line is more consistent with the atmospheric composition measured by Viking than by MSL. PMID:26074632

  15. Atmospheric Deposition and Critical Loads for Nitrogen and Metals in Arctic Alaska: Review and Current Status

    Science.gov (United States)

    Linder, Greg; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  16. NATO Advanced Research Workshop on The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere

    CERN Document Server

    Charlson, Robert; Andreae, Meinrat; Rodhe, Henning

    1985-01-01

    Viewed from space, the Earth appears as a globe without a beginning or an end. Encompassing the globe is the atmosphere with its three phases-­ gaseous, liquid, and solid--moving in directions influenced by sunlight, gravity, and rotation. The chemical compositions of these phases are determined by biogeochemical cycles. Over the past hundred years, the processes governing the rates and reactions in the atmospheric biogeochemical cycles have typically been studied in regions where scientists lived. Hence, as time has gone by, the advances in our knowledge of atmospheric chemical cycles in remote areas have lagged substantially behind those for more populated areas. Not only are the data less abundant, they are also scattered. Therefore, we felt a workshop would be an excellent mechanism to assess the state­ of-knowledge of the atmospheric cycles of sulfur and nitrogen in remote areas and to make recommendations for future research. Thus, a NATO Advanced Research Workshop '~he Biogeochemical Cycling of Sulfu...

  17. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI

    Directory of Open Access Journals (Sweden)

    J. P. Lawrence

    2015-06-01

    Full Text Available Nitrogen Dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI remote sensing system. The ANDI system includes an imaging (UV-vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2 concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK. Retrieved NO2 columns at a surface resolution of 80 m x 20 m revealed hot spots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands and a power station (Ratcliffe-on-Soar. In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hot spots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  18. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    Science.gov (United States)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; White, J.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-11-01

    Nitrogen dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging UV/Vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK on a cloud-free winter day in February 2013. Retrieved NO2 columns gridded to a surface resolution of 80 m × 20 m revealed hotspots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hotspots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  19. Meteorological and Back Trajectory Modeling for the Rocky Mountain Atmospheric Nitrogen and Sulfur Study II

    Directory of Open Access Journals (Sweden)

    Kristi A. Gebhart

    2014-01-01

    Full Text Available The Rocky Mountain Atmospheric Nitrogen and Sulfur (RoMANS II study with field operations during November 2008 through November 2009 was designed to evaluate the composition and sources of reactive nitrogen in Rocky Mountain National Park, Colorado, USA. As part of RoMANS II, a mesoscale meteorological model was utilized to provide input for back trajectory and chemical transport models. Evaluation of the model's ability to capture important transport patterns in this region of complex terrain is discussed. Previous source-receptor studies of nitrogen in this region are also reviewed. Finally, results of several back trajectory analyses for RoMANS II are presented. The trajectory mass balance (TrMB model, a receptor-based linear regression technique, was used to estimate mean source attributions of airborne ammonia concentrations during RoMANS II. Though ammonia concentrations are usually higher when there is transport from the east, the TrMB model estimates that, on average, areas to the west contribute a larger mean fraction of the ammonia. Possible reasons for this are discussed and include the greater frequency of westerly versus easterly winds, the possibility that ammonia is transported long distances as ammonium nitrate, and the difficulty of correctly modeling the transport winds in this area.

  20. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    Science.gov (United States)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  1. Nitrogen-rich plasma polymers: Comparison of films deposited in atmospheric- and low-pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Truica-Marasescu, Florina [Groupe des Couches Minces (GCM) and Department of Engineering Physics, Ecole Polytechnique, C.P. 6079, Succ. Centre-Ville, Montreal, QC H3C 3A7 (Canada)], E-mail: florina-elena.truica-marasescu@polymtl.ca; Girard-Lauriault, Pierre-Luc; Lippitz, Andreas; Unger, Wolfgang E.S. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Unter den Eichen 44-46, D-12203 Berlin (Germany); Wertheimer, Michael R. [Groupe des Couches Minces (GCM) and Department of Engineering Physics, Ecole Polytechnique, C.P. 6079, Succ. Centre-Ville, Montreal, QC H3C 3A7 (Canada)

    2008-09-01

    Low- and atmospheric-pressure plasma co-polymerisations of binary gas mixtures of C{sub 2}H{sub 4} and NH{sub 3} or N{sub 2}, respectively, were investigated for depositing N-rich plasma polymer coatings for biomedical applications. Deposition kinetics and relevant surface characteristics of resulting plasma polymerised ethylene enriched with nitrogen, 'PPE:N', coatings were investigated as a function of the gas mixture ratio, X = NH{sub 3}(N{sub 2})/C{sub 2}H{sub 4}. Physico-chemical properties of the coatings were determined using a combination of complementary surface-sensitive techniques: for example, total nitrogen concentrations, [N], up to 40 at.% were measured by X-ray Photoelectron Spectroscopy, XPS, while those of primary amines, [-NH{sub 2}], were determined by performing chemical derivatisation followed by XPS analyses. PPE:N films were further characterised by UV-VIS Ellipsometry, Near Edge X-ray Absorption Fine Structure Spectroscopy, IR Spectroscopy and by Contact Angle Goniometry measurements. The stability of the coatings was tested, both in terms of water solubility and of 'ageing' in ambient atmosphere. For the latter, selected samples were stored in the laboratory for different durations, in order to assess possible changes in their chemical structures.

  2. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    Science.gov (United States)

    Han, Xu; Klas, Matej; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2013-09-01

    The nitrogen atmospheric pressure plasma jet (APPJ) has been shown to effectively induce DNA double strand breaks in SCC-25 oral cancer cells. The APPJ source constructed in our laboratory consists of two external electrodes wrapping around a quartz tube and nitrogen as a feed gas and operates based on dielectric barrier gas discharge. Generally, it is more challenging to ignite plasma in N2 atmosphere than in noble gases. However, this design provides additional advantages such as lower costs compared to the noble gases for future clinical operation. Different parameters of the APPJ configuration were tested in order to determine radiation dosage. To explore the effects of delayed damage and cell self-repairing, various incubation times of cells after plasma treatment were also performed. Reactive species generated in plasma jet and in liquid environment are essential to be identified and quantified, with the aim of unfolding the mystery of detailed mechanisms for plasma-induced cell apoptosis. Moreover, from the comparison of plasma treatment effect on normal oral cells OKF6T, an insight to the selectivity for cancer treatment by APPJ can be explored. All of these studies are critical to better understand the damage responses of normal and abnormal cellular systems to plasma radiation, which are useful for the development of advanced plasma therapy for cancer treatment at a later stage.

  3. DNA damage in oral cancer and normal cells induced by nitrogen atmospheric pressure plasma jets

    Science.gov (United States)

    Han, Xu; Kapaldo, James; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2015-09-01

    Nitrogen atmospheric pressure plasma jets (APPJs) have been shown to effectively induce DNA double strand breaks in SCC25 oral cancer cells. The APPJ source constructed in our laboratory operates based on dielectric barrier discharge. It consists of two copper electrodes alternatively wrapping around a fused silica tube with nitrogen as a feed gas. It is generally more challenging to ignite plasma in N2 atmosphere than in noble gases. However, N2 provides additional advantages such as lower costs compared to noble gases, thus this design can be beneficial for the future long-term clinical use. To compare the effects of plasma on cancer cells (SCC25) and normal cells (OKF), the cells from both types were treated at the same experimental condition for various treatment times. The effective area with different damage levels after the treatment was visualized as 3D maps. The delayed damage effects were also explored by varying the incubation times after the treatment. All of these studies are critical for a better understanding of the damage responses of cellular systems exposed to the plasma radiation, thus are useful for the development of the advanced plasma cancer therapy. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through Grant No. DE-FC02-04ER15533.

  4. [Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity].

    Science.gov (United States)

    Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei

    2015-11-01

    In this study, a semi-open-top artificial climate chamber was used to study the effect of CO2 enrichment (360 and 540 µmol · mol(-1)) and nitrogen addition (0, 150, 300 and 450 kg · hm(-2)) on cotton dry matter accumulation and distribution, nitrogen absorption and soil urease activity. The results showed that the dry matter accumulation of bud, stem, leaf and the whole plant increased significantly in the higher CO2 concentration treatment irrespective of nitrogen level. The dry matter of all the detected parts of plant with 300 kg · hm(-2) nitrogen addition was significantly higher than those with the other nitrogen levels irrespective of CO2 concentration, indicating reasonable nitrogen fertilization could significantly improve cotton dry matter accumulation. Elevated CO2 concentration had significant impact on the nitrogen absorption contents of cotton bud and stem. Compared to those under CO2 concentration of 360 µmol · mol(-1), the nitrogen contents of bud and stem both increased significantly under CO2 concentration of 540 µmol · mol(-1). The nitrogen content of cotton bud in the treatment of 300 kg · hm(-2) nitrogen was the highest among the four nitrogen fertilizer treatments. While the nitrogen contents of cotton stem in the treatments of 150 kg · hm(-2) and 300 kg · hm(-2) nitrogen levels were higher than those in the treatment of 0 kg · hm(-2) and 450 kg · hm(-2) nitrogen levels. The nitrogen content of cotton leaf was significantly influenced by the in- teraction of CO2 elevation and N addition as the nitrogen content of leaf increased in the treatments of 0, 150 and 300 kg · hm(-2) nitrogen levels under the CO2 concentration of 540 µmol · mol(-1). The nitrogen content in cotton root was significantly increased with the increase of nitrogen fertilizer level under elevated CO2 (540 µmol · mol(-1)) treatment. Overall, the cotton nitrogen absorption content under the elevated CO2 (540 µmol · mol(-1)) treatment was higher than that

  5. Atmospheric deposition and watershed nitrogen export along an elevational gradient in the Catskill Mountains, New York

    Science.gov (United States)

    Lawrence, G.B.; Lovett, Gary M.; Baevsky, Y.H.

    2000-01-01

    Cumulative effects of atmospheric N deposition may increase N export from watersheds and contribute to the acidification of surface waters, but natural factors (such as forest productivity and soil drainage) that affect forest N cycling can also control watershed N export. To identify factors that are related to stream-water export of N, elevational gradients in atmospheric deposition and natural processes were evaluated in a steep, first-order watershed in the Catskill Mountains of New York, from 1991 to 1994. Atmospheric deposition of SO4/2-, and probably N, increased with increasing elevation within this watershed. Stream-water concentrations of SO4/2- increased with increasing elevation throughout the year, whereas stream-water concentrations of NO3/- decreased with increasing elevation during the winter and spring snowmelt period, and showed no relation with elevation during the growing season or the fall. Annual export of N in stream water for the overall watershed equaled 12% to 17% of the total atmospheric input on the basis of two methods of estimation. This percentage decreased with increasing elevation, from about 25% in the lowest subwatershed to 7% in the highest subwatershed; a probable result of an upslope increase in the thickness of the surface organic horizon, attributable to an elevational gradient in temperature that slows decomposition rates at upper elevations. Balsam fir stands, more prevalent at upper elevations than lower elevations, may also affect the gradient of subwatershed N export by altering nitrification rates in the soil. Variations in climate and vegetation must be considered to determine how future trends in atmospheric deposition will effect watershed export of nitrogen.

  6. Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells

    Science.gov (United States)

    Zhu, Xiaohua; Zhao, Tingbi; Nie, Zhou; Miao, Zhuang; Liu, Yang; Yao, Shouzhuo

    2016-01-01

    In this work, nitrogen-doped carbon nanoparticle (N-CNP) modulated turn-on fluorescent probes were developed for rapid and selective detection of histidine. The as synthesized N-CNPs exhibited high fluorescence quantum yield and excellent biocompatibility. The fluorescence of N-CNPs can be quenched selectively by Cu(ii) ions with high efficiency, and restored by the addition of histidine owing to the competitive binding of Cu(ii) ions and histidine that removes Cu(ii) ions from the surface of the N-CNPs. Under the optimal conditions, a linear relationship between the increased fluorescence intensity of N-CNP/Cu(ii) ion conjugates and the concentration of histidine was established in the range from 0.5 to 60 μM. The detection limit was as low as 150 nM (signal-to-noise ratio of 3). In addition, the as-prepared N-CNP/Cu(ii) ion nanoprobes showed excellent biocompatibility and were applied for a histidine imaging assay in living cells, which presented great potential in the bio-labeling assay and clinical diagnostic applications.In this work, nitrogen-doped carbon nanoparticle (N-CNP) modulated turn-on fluorescent probes were developed for rapid and selective detection of histidine. The as synthesized N-CNPs exhibited high fluorescence quantum yield and excellent biocompatibility. The fluorescence of N-CNPs can be quenched selectively by Cu(ii) ions with high efficiency, and restored by the addition of histidine owing to the competitive binding of Cu(ii) ions and histidine that removes Cu(ii) ions from the surface of the N-CNPs. Under the optimal conditions, a linear relationship between the increased fluorescence intensity of N-CNP/Cu(ii) ion conjugates and the concentration of histidine was established in the range from 0.5 to 60 μM. The detection limit was as low as 150 nM (signal-to-noise ratio of 3). In addition, the as-prepared N-CNP/Cu(ii) ion nanoprobes showed excellent biocompatibility and were applied for a histidine imaging assay in living cells, which

  7. Chlorophyll signatures and nutrient cycles in the Mediterranean Sea: a model sensitivity study to nitrogen and phosphorus atmospheric inputs

    OpenAIRE

    Pacciaroni, M.; G. Crispi

    2007-01-01

    In this work, the relative importance of nitrogen and phosphorus, considered as external loads, on Mediterranean biogeochemical cycles is evaluated. Biomass concentrations are analysed considering the steady state response of the three-dimensional ECHYM model to three nitrogen and phosphorus atmospheric depositions, considered as continuous in time.

    After reaching stationary evolutions, chlorophyll surficial maps and vertical transects are compared with existing datasets,...

  8. Soil carbon accumulation in a Populus spp. plantation supplied with high atmospheric CO2 and nitrogen fertilization

    OpenAIRE

    Lagomarsino A; De Angelis P; Moscatelli MC; Grego S; Scarascia Mugnozza G

    2009-01-01

    This work was carried out in the experimental area POPFACE (Tuscania, Viterbo), where a poplar short rotation forest (SRF) was treated with 550 ppm of atmospheric CO2 for six years. The experimental plots (Control and FACE) were divided in two halves, one of which was treated with nitrogen fertilization. The general aim of this research was to quantify the impact of the two rotation cycles, the CO2 enrichment and the nitrogen fertilization on: i) soil organic matter fractions more relevant fo...

  9. Response of biomass and nitrogen yield of white clover to radiation and atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    The objectives of the present study were to test (i) whether the effect of season-long CO2 enrichment on plant dry matter production of white clover (Trifolium repens cv. Karina) depends on the temperature or can solely be explained by changes in radiation use efficiency, and (ii) whether the atmospheric CO2 concentration affects the relationship between tissue %N and plant biomass. Plants were grown in pots with adequate nutrient and water supply and were exposed to ambient and above ambient CO2 concentrations (approximately +80 ppm, +160 ppm, +280 ppm) in open-top chambers for two seasons. Nitrogen fertilizer was given only before the experiment started to promote N2 fixation. Plants were clipped to a height of 5 cm, when the canopy had reached a height of about 20 cm and when the CO2 effect had not been diminished due to self-shading of the leaves. Photon exposure (400–700 nm) measured above the canopy was linearly related to the above ground biomass, the leaf area index and the nitrogen yield (r2 > 0.94). The slopes of the curves depended on the CO2 concentration. Since most of the radiation (>90%) was absorbed by the foliage, the slopes were used to calculate the CO2 effect on the radiation use efficiency of biomass production, which is shown to increase curvilinearly between 380 and 660 ppm CO2 from 2.7 g MJ−1 to 3.9 g MJ−1. CO2 enrichment increased above ground biomass by increasing the leaf number, the individual leaf weight and the leaf area; specific leaf weight was not affected. The relative CO2 response varied between harvests; there was a slight but not significant positive relationship with mean daytime temperature. At the beginning of the season, plant nitrogen concentration in the above ground biomass was decreased by CO2 enrichment. However, at later growth stages, when the plants depended solely on N2 fixation, nitrogen concentration was found to be increased when the nitrogen concentration value was adjusted for the decrease due to the

  10. Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition

    Science.gov (United States)

    Elser, J.J.; Kyle, M.; Steuer, L.; Nydick, K.R.; Baron, J.S.

    2009-01-01

    Atmospheric nitrogen (N) deposition to lakes and watersheds has been increasing steadily due to various anthropogenic activities. Because such anthropogenic N is widely distributed, even lakes relatively removed from direct human disturbance are potentially impacted. However, the effects of increased atmospheric N deposition on lakes are not well documented, We examined phytoplankton biomass, the absolute and relative abundance of limiting nutrients (N and phosphorus [P]), and phytoplankton nutrient limitation in alpine lakes of the Rocky Mountains of Colorado (USA) receiving elevated (>6 kg N??ha-1??yr-1) or low (atmospheric N deposition. Highdeposition lakes had higher NO3-N and total N concentrations and higher total N : total P ratios. Concentrations of chlorophyll and seston carbon (C) were 2-2.5 times higher in highdeposition relative to low-deposition lakes, while high-deposition lakes also had higher seston C:N and C:P (but not N:P) ratios. Short-term enrichment bioassays indicated a qualitative shift in the nature of phytoplankton nutrient limitation due to N deposition, as highdeposition lakes had an increased frequency of primary P limitation and a decreased frequency and magnitude of response to N and to combined N and P enrichment. Thus elevated atmospheric N deposition appears to have shifted nutrient supply from a relatively balanced but predominantly N-deficient regime to a more consistently P-limited regime in Colorado alpine lakes. This adds to accumulating evidence that sustained N deposition may have important effects on lake phytoplankton communities and plankton-based food webs by shifting the quantitative and qualitative nature of nutrient limitation. ?? 2009 by the Ecological Society of America.

  11. Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction.

    Science.gov (United States)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Lee, Yong Rok

    2016-11-15

    This paper reports the robust hydrothermal synthesis of nitrogen doped carbon dots (N-CDs) using the unripe fruit of Prunus persica (peach) as the carbon precursor and aqueous ammonia as the nitrogen source. The optical properties of synthesized N-CDs were characterized by ultraviolet visible (UV-Vis) and fluorescence spectroscopy techniques. The synthesized N-CDs were emitted blue light when excitated with a portable UV lamp. The materials with the optical properties were characterized further by high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The mean size of the N-CDs was approximately 8nm, as calculated from the HRTEM image. The d-spacing of N-CDs, calculated using Bragg law, was approximately 0.21nm, which was consistent with the interlayer distance calculated from the HRTEM image. FT-IR spectroscopy and XPS revealed the presence of the phytoconstituents functionalities of peach fruit over the N-CDs surface and a high level of nitrogen doping on carbon dots (CDs) was confirmed by XPS studies. These results suggest that the unripe fruit extract of peach is an ideal candidate for the preparation of N-CDs. The resulting N-CDs showed excellent optical properties in water. The synthesized N-CDs exhibited a high fluorescence quantum yield and low cytotoxicity, and can be used as fluorescence imaging probes. In addition, the N-CDs were catalytically activite towards the oxygen reduction reaction (ORR). The N-CDs exhibited good catalytic activity in an alkaline medium (0.1M KOH) with a remarkable ORR of approximately 0.72V vs reversible hydrogen electrode (RHE), and O2 reduction follows mainly a 2 electron pathway by being reduced to hydrogen peroxide. The 2-electron reduction pathway is used in industry for H2O2 production. PMID:27479911

  12. Oxidation Behaviour of Si3N4 Materials in Air and Nitrogen Atmosphere

    Institute of Scientific and Technical Information of China (English)

    ZHANGQitu; LINGZhida

    1999-01-01

    Si3N4 powder and hot-pressed Si3N4 ceramics added with Al2O3 are used for investigate their oxidation behvior in air and nitrogen atmosphere(with oxygen partial pressure PO2=1-10Pa),The oxidation products of Si3N4 are examined by chemical analysi,X-ray diffraction (XRD) and XPS method,Also, thermodynamic calculation is made to analyze oxidation behavior of Si3N4.The results show that only passive oxidation will occur when Si3N4 is oxidized in air at high temperature,whereas in N2 at high temperature,the active oxidation is dominant in spite of the existence of a little passive oxidation.

  13. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    International Nuclear Information System (INIS)

    Chronic nitrogen deposition has measureable impacts on soil and plant health. We investigate burning emissions from biomass grown in areas of high and low NOx deposition. Gas and aerosol-phase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not available, results indicate a systemic compositional difference between biomass grown in high and low deposition areas. Aerosol emissions from biomass grown in areas of high NOx deposition exhibit a lower volatility than biomass grown in a low deposition area. Furthermore, fuel elemental analysis, NOx emission rates, and aerosol particle number distributions differed significantly between the two sites. Despite the limited scale of fuels explored, there is strong evidence that the atmospheric emissions community must pay attention to the regional air quality of biomass fuels growth areas. (letter)

  14. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide.

    Science.gov (United States)

    Yuan, Shi-Jie; Chen, Jie-Jie; Lin, Zhi-Qi; Li, Wen-Wei; Sheng, Guo-Ping; Yu, Han-Qing

    2013-01-01

    The concentration of nitrate in aquatic systems is rising with the development of modern industry and agriculture, causing a cascade of environmental problems. Here we describe a previously unreported nitrate formation process. Both indoor and outdoor experiments are conducted to demonstrate that nitrate may be formed from abundant atmospheric nitrogen and oxygen on nano-sized titanium dioxide surfaces under UV or sunlight irradiation. We suggest that nitric oxide is an intermediate product in this process, and elucidate its formation mechanisms using first-principles density functional theory calculations. Given the expanding use of titanium dioxide worldwide, such a titanium dioxide-mediated photocatalysis process may reveal a potentially underestimated source of nitrate in the environment, which on one hand may lead to an increasing environmental pollution concern, and on the other hand may provide an alternative, gentle and cost-effective method for nitrate production.

  15. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.

    Science.gov (United States)

    Leonardi, Stefano; Magnani, Federico; Nolè, Angelo; Van Noije, Twan; Borghetti, Marco

    2015-01-01

    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select 'pure' pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models. PMID:25044609

  16. CFC-11 destruction by microwave torch generated atmospheric-pressure nitrogen discharge

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, Mariusz; Mizeraczyk, Jerzy; Zakrzewski, Zenon [Centre for Plasma and Laser Engineering, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Ohkubo, Toshikazu [Department of Electrical and Electronic Engineering, Oita University, Oita (Japan); Chang Jenshih [Department of Engineering Physics, McMaster University, Hamilton, ON (Canada)

    2002-09-21

    A novel plasma method and its application for destruction of Freons using a moderate-power (several hundred watts) microwave torch discharge (MTD) in atmospheric-pressure flowing nitrogen are presented. The capability of the MTD to decompose Freons is demonstrated using a chlorofluorocarbon CCl{sub 3}F (Freon CFC-11) as an example. The gas flow rate and microwave power (2.45 GHz) delivered to the MTD were 1-3 litre min{sup -1} and 200-400 W, respectively. Concentration of the CFC-11 in the nitrogen was up to 50%. The results show that the decomposition efficiency of CFC-11 is up to 100% with the removal rate of several hundred g h{sup -1} and energy efficiency of about 1 kg kWh{sup -1}. This impressive performance, superior to that of other methods, is achieved without generating any significant unwanted by-products. As a result of this investigation, a relatively low-cost prototype system for Freon destruction based on a moderate-power MTD and a scrubber is proposed. (author)

  17. Atmospheric nitrogen dioxide at ambient levels stimulates growth and development of horticultural plants

    International Nuclear Information System (INIS)

    Studies have demonstrated that ambient levels of atmospheric nitrogen dioxide (NO2) can cause Nicotiana plumbaginifolia to double its biomass as well as its cell contents. This paper examined the influence of NO2 on lettuce, sunflower, cucumber, and pumpkin plants. Plants were grown in environments supplemented with stable isotope-labelled NO2 for approximately 6 weeks and irrigated with nitrates. Measured growth parameters included leaf number, internode number, stem length, number of flower buds, and root length. Results of the study demonstrated that the addition of NO2 doubled the aboveground and belowground biomass of sunflowers, while only the aboveground biomass of pumpkin, cucumbers, and lettuces was doubled. Levels of carbon (C), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were also doubled in the lettuce samples. A mass spectrometry analysis showed that only a small percentage of total plant N was derived from NO2. It was concluded that exogenous NO2 additions function as a signal rather than as a significant nutrient source in horticultural plants. 22 refs., 2 tabs., 1 fig

  18. Formation of single-wall carbon nanotubes in Ar and nitrogen gas atmosphere by using laser furnace technique

    Science.gov (United States)

    Suzuki, S.; Asai, N.; Kataura, H.; Achiba, Y.

    2007-07-01

    The formation of single-wall carbon nanotubes (SWNTs) by using laser vaporization technique in different ambient gas atmosphere was investigated. SWNTs were prepared with Rh/Pd (1.2/1.2 atom%)-carbon composite rod in Ar and nitrogen gas atmosphere, respectively. Raman spectra of raw carbon materials including SWNTs and photoluminescence mapping of dispersed SWNTs in a surfactant solution demonstrate that the diameter distribution of SWNTs prepared in Ar atmosphere is narrower than those obtained by using CVD technique (e.g. HiPco nanotube), even when the ambient temperature is as high as 1150 ?C. It was also found that nitrogen atmosphere gives wider diameter distribution of SWNTs than that obtained with Ar atmosphere. Furthermore, the relative yield of fullerenes (obtained as byproducts) is investigated by using HPLC (high-performance liquid chromatography) technique. It was found that the relative yield of higher fullerenes becomes lower, when nitrogen is used as an ambient gas atmosphere. Based on these experimental findings, a plausible formation mechanism of SWNTs is discussed.

  19. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes

    Science.gov (United States)

    Baron, J.S.; Driscoll, C.T.; Stoddard, J.L.; Richer, E.E.

    2011-01-01

    The ecological effects of elevated atmospheric nitrogen (N) deposition on high-elevation lakes of the western and northeastern United States include nutrient enrichment and acidification. The nutrient enrichment critical load for western lakes ranged from 1.0 to 3.0 kilograms (kg) of N per hectare (ha) per year, reflecting the nearly nonexistent watershed vegetation in complex, snowmelt-dominated terrain. The nutrient enrichment critical load for northeastern lakes ranged from 3.5 to 6.0 kg N per ha per year. The N acidification critical loads associated with episodic N pulses in waters with low values of acid neutralizing capacity were 4.0 kg N per ha per year (western) and 8.0 kg N per ha per year (northeastern). The empirical critical loads for N-caused acidification were difficult to determine because of a lack of observations in the West, and high sulfur deposition in the East. For both nutrient enrichment and acidification, the N critical load was a function of how atmospheric N deposition was determined. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  20. Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington Forests, USA

    Energy Technology Data Exchange (ETDEWEB)

    Geiser, Linda H., E-mail: lgeiser@fs.fed.u [US Forest Service Pacific Northwest Region Air Resource Management Program, Siuslaw National Forest, PO Box 1148, Corvallis, OR 97339 (United States); Jovan, Sarah E. [US Forest Service Forest Inventory and Analysis Program, Pacific Northwest Research Station, 620 SW Main St, Suite 400, Portland, OR 97205 (United States); Glavich, Doug A. [US Forest Service Pacific Northwest Region Air Resource Management Program, Siuslaw National Forest, PO Box 1148, Corvallis, OR 97339 (United States); Porter, Matthew K. [Laboratory for Atmospheric Research, Washington State University, Pullman, WA 99164 (United States)

    2010-07-15

    Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America's maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry, and total N deposition from the Communities Multi-Scale Air Quality model, and 3) ambient particulate N from Interagency Monitoring of Protected Visual Environments (IMPROVE). Sensitive species declines of 20-40% were associated with CLs of 1-4 and 3-9 kg N ha{sup -1} y{sup -1} in wet and total deposition. CLs increased with precipitation across the landscape, presumably from dilution or leaching of depositional N. Tight linear correlation between lichen and IMPROVE data suggests a simple screening tool for CL exceedance in US Class I areas. The total N model replicated several US and European lichen CLs and may therefore be helpful in estimating other temperate-forest lichen CLs. - Lichen-based critical loads for N deposition in western Oregon and Washington forests ranged from 3 to 9 kg ha{sup -1} y{sup -1}, increasing with mean annual precipitation.

  1. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for mediterranean evergreen woodlands

    Science.gov (United States)

    Pinho, P.; Theobald, M. R.; Dias, T.; Tang, Y. S.; Cruz, C.; Martins-Loução, M. A.; Máguas, C.; Sutton, M.; Branquinho, C.

    2011-11-01

    Nitrogen (N) has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds have been established, such as critical loads (deposition fluxes) and levels (concentrations). For Mediterranean ecosystems, few studies have been carried out to assess these parameters. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for Mediterranean evergreen woodlands. For that we have considered changes in epiphytic lichen communities, which have been shown to be one of the most sensitive to excessive N. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done under Mediterranean climate, in evergreen cork-oak woodlands, by sampling lichen functional diversity and annual atmospheric ammonia concentrations and modelling N deposition downwind from a reduced N source (a cattle barn). By modelling the highly significant relationship between lichen functional groups and N deposition, the critical load was estimated to be below 26 kg (N) ha-1 yr-1, which is within the upper range established for other semi-natural ecosystems. By modelling the highly significant relationship of lichen functional groups with annual atmospheric ammonia concentration, the critical level was estimated to be below 1.9 μg m-3, in agreement with recent studies for other ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should be taken into account in policies that aim at protecting Mediterranean woodlands from the initial effects of excessive N.

  2. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for mediterranean evergreen woodlands

    Directory of Open Access Journals (Sweden)

    P. Pinho

    2011-11-01

    Full Text Available Nitrogen (N has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds have been established, such as critical loads (deposition fluxes and levels (concentrations. For Mediterranean ecosystems, few studies have been carried out to assess these parameters. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for Mediterranean evergreen woodlands. For that we have considered changes in epiphytic lichen communities, which have been shown to be one of the most sensitive to excessive N. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done under Mediterranean climate, in evergreen cork-oak woodlands, by sampling lichen functional diversity and annual atmospheric ammonia concentrations and modelling N deposition downwind from a reduced N source (a cattle barn. By modelling the highly significant relationship between lichen functional groups and N deposition, the critical load was estimated to be below 26 kg (N ha−1 yr−1, which is within the upper range established for other semi-natural ecosystems. By modelling the highly significant relationship of lichen functional groups with annual atmospheric ammonia concentration, the critical level was estimated to be below 1.9 μg m−3, in agreement with recent studies for other ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should be taken into account in policies that aim at protecting Mediterranean woodlands from the initial effects of excessive N.

  3. Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China

    Directory of Open Access Journals (Sweden)

    Y. P. Pan

    2012-01-01

    Full Text Available Emissions of reactive nitrogen (N species can affect surrounding ecosystems via atmospheric deposition. However, few long-term and multi-site measurements have focused on both the wet and the dry deposition of individual N species in large areas of Northern China. Thus, the magnitude of atmospheric deposition of various N species in Northern China remains uncertain. In this study, the wet and dry atmospheric deposition of different N species was investigated during a three-year observation campaign at ten selected sites in Northern China. The results indicate that N deposition levels in Northern China were high with a ten-site, three-year average of 60.6 kg N ha−1 yr−1. The deposition levels showed spatial and temporal variation in the range of 28.5–100.4 kg N ha−1 yr−1. Of the annual total deposition, 40% was deposited via precipitation, and the remaining 60% was comprised of dry-deposited forms. Compared with gaseous N species, particulate N species were not the major contributor of dry-deposited N; they contributed approximately 10% to the total flux. On an annual basis, oxidized species accounted for 21% of total N deposition, thereby implying that other forms of gaseous N, such as NH3, comprised a dominant portion of the total flux. The contribution of NO3 to N deposition was enhanced in certain urban and industrial areas. As expected, the total N deposition in Northern China was significantly larger than the values reported by national scale monitoring networks in Europe, North America and East Asia because of high rates of wet deposition and gaseous NH3 dry deposition. The results have three important implications. First, atmospheric N deposition in Northern China falls within the range of critical loads for temperate forests and grasslands, a threshold above which harmful ecological effects to specified parts of temperate ecosystems often

  4. Nitrogen oxide air pollution: atmospheric chemistry. 1979-August, 1980 (citations from the NTIS data base). Report for 1979-Aug 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    Photochemical air pollution models, smog chemistry and reactivity, and SSt exhaust effects are covered in the bibliography. Auroral and upper atmospheric chemistry, and photochemistry of naturally occurring nitrogen oxides are excluded. (This updated bibliography contains 63 citations, 40 of which are new entries to the previous edition.)

  5. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts

    NARCIS (Netherlands)

    Phoenix, G.K.; Hicks, W.K.; Cinderby, S.; Kuylenstierna, J.C.I.; Stock, W.D.; Dentener, F.J.; Giller, K.E.; Austin, A.T.; Lefroy, R.D.B.; Gimeno, B.S.; Ashmore, M.R.; Ineson, P.

    2006-01-01

    Increased atmospheric nitrogen (N) deposition is known to reduce plant diversity in natural and semi-natural ecosystems, yet our understanding of these impacts comes almost entirely from studies in northern Europe and North America. Currently, we lack an understanding of the threat of N deposition t

  6. Influence of the atmospheric species water, oxygen, nitrogen and carbon dioxide on the degradation of aluminum doped zinc oxide layers

    NARCIS (Netherlands)

    Theelen, M.; Dasgupta, S.; Vroon, Z.; Kniknie, B.; Barreau, N.; Berkum, J. van; Zeman, M.

    2014-01-01

    Aluminum doped zinc oxide (ZnO:Al) layers were exposed to the atmospheric gases carbon dioxide (CO2), oxygen (O2), nitrogen (N 2) and air as well as liquid H2O purged with these gases, in order to investigate the chemical degradation behavior of these layers. The samples were analyzed by electrical,

  7. Nitrogen isotope variations in camphor (Cinnamomum Camphora) leaves of different ages in upper and lower canopies as an indicator of atmospheric nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Huayun, E-mail: xiaohuayun@vip.skleg.c [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 46, Guanshui Road, Guiyang 550002 (China); Wu Lianghong; Zhu Renguo; Wang Yanli; Liu Congqiang [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 46, Guanshui Road, Guiyang 550002 (China)

    2011-02-15

    Nitrogen isotopic composition of new, middle-aged and old camphor leaves in upper and lower canopies has been determined in a living area, near a motorway and near an industrial area (Jiangan Chemical Fertilizer Plant). We found that at sites near roads, more positive {delta}{sup 15}N values were observed in the camphor leaves, especially in old leaves of upper canopies, and {Delta}{delta}{sup 15}N = {delta}{sup 15}N{sub upper} - {delta}{sup 15}N{sub lower} > 0, while those near the industrial area had more negative {delta}{sup 15}N values and {Delta}{delta}{sup 15}N < 0. These could be explained by two isotopically different atmospheric N sources: greater uptake from isotopically heavy pools of atmospheric NO{sub x} by old leaves in upper canopies at sites adjacent to roads, and greater uptake of {sup 15}N-depleted NH{sub y} in atmospheric deposition by leaves at sites near the industrial area. This study presents novel evidence that {sup 15}N natural abundance of camphor leaves can be used as a robust indicator of atmospheric N sources. - Research highlights: Camphor leaves showed high {delta}{sup 15}N values near roads and low values near the industrial area. The {delta}{sup 15}N values of camphor leaves near roads increased with time of exposure. The {delta}{sup 15}N values of camphor leaves near the industrial area decreased with time of exposure. More positive foliage {delta}{sup 15}N values were found in the upper canopies near roads. Near the industrial area, the upper canopies showed more negative foliage {delta}{sup 15}N values. - Nitrogen isotope in camphor leaves indicating atmospheric nitrogen sources.

  8. TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen

    Directory of Open Access Journals (Sweden)

    O. Marx

    2011-12-01

    Full Text Available The input and loss of plant available nitrogen (N from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for the measurement of total reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter, which offers the opportunity to quantify the sum of all airborne reactive nitrogen (Nr compounds in high time resolution. The basic concept of the TRANC is the full conversion of total Nr to nitrogen monoxide (NO within two reaction steps. Initially, reduced N compounds are being oxidised, and oxidised N compounds are thermally converted to lower oxidation states. Particulate N is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher N oxides or those originated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in Nr concentrations and also matches the sum of all

  9. Sensitivity of modeled atmospheric nitrogen species and nitrogen deposition to variations in sea salt emissions in the North Sea and Baltic Sea regions

    Science.gov (United States)

    Neumann, Daniel; Matthias, Volker; Bieser, Johannes; Aulinger, Armin; Quante, Markus

    2016-03-01

    Coarse sea salt particles are emitted ubiquitously from the ocean surface by wave-breaking and bubble-bursting processes. These particles impact the atmospheric chemistry by affecting the condensation of gas-phase species and, thus, indirectly the nucleation of new fine particles, particularly in regions with significant air pollution. In this study, atmospheric particle concentrations are modeled for the North Sea and Baltic Sea regions in northwestern Europe using the Community Multiscale Air Quality (CMAQ) modeling system and are compared to European Monitoring and Evaluation Programme (EMEP) measurement data. The sea salt emission module is extended by a salinity-dependent scaling of the sea salt emissions because the salinity in large parts of the Baltic Sea is very low, which leads to considerably lower sea salt mass emissions compared to other oceanic regions. The resulting improvement in predicted sea salt concentrations is assessed. The contribution of surf zone emissions is considered separately. Additionally, the impacts of sea salt particles on atmospheric nitrate and ammonium concentrations and on nitrogen deposition are evaluated. The comparisons with observational data show that sea salt concentrations are commonly overestimated at coastal stations and partly underestimated farther inland. The introduced salinity scaling improves the predicted Baltic Sea sea salt concentrations considerably. The dates of measured peak concentrations are appropriately reproduced by the model. The impact of surf zone emissions is negligible in both seas. Nevertheless, they might be relevant because surf zone emissions were cut at an upper threshold in this study. Deactivating sea salt leads to minor increases in NH3 + NH4+ and HNO3 + NO3- and a decrease in NO3- concentrations. However, the overall effect on NH3 + NH4+ and HNO3 + NO3- concentrations is smaller than the deviation from the measurements. Nitrogen wet deposition is underestimated by the model at most

  10. Nitrogen

    Science.gov (United States)

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  11. Atmospheric NH3 and NO2 concentration and nitrogen deposition in an agricultural catchment of Eastern China.

    Science.gov (United States)

    Yang, Rong; Hayashi, Kentaro; Zhu, Bin; Li, Feiyue; Yan, Xiaoyuan

    2010-09-15

    To assess the atmospheric environmental impacts of anthropogenic reactive nitrogen in the fast-developing Eastern China region, we measured atmospheric concentrations of nitrogen dioxide (NO(2)) and ammonia (NH(3)) as well as the wet deposition of inorganic nitrogen (NO(3)(-) and NH(4)(+)) and dissolved organic nitrogen (DON) levels in a typical agricultural catchment in Jiangsu Province, China, from October 2007 to September 2008(.) The annual average gaseous concentrations of NO(2) and NH(3) were 42.2 microg m(-3) and 4.5 microg m(-3) (0 degree C, 760 mm Hg), respectively, whereas those of NO(3)(-), NH(4)(+), and DON in the rainwater within the study catchment were 1.3, 1.3, and 0.5 mg N L(-1), respectively. No clear difference in gaseous NO(2) concentrations and nitrogen concentrations in collected rainwater was found between the crop field and residential sites, but the average NH(3) concentration of 5.4 microg m(-3) in residential sites was significantly higher than that in field sites (4.1 microg m(-3)). Total depositions were 40 kg N ha(-1) yr(-1) for crop field sites and 30 kg N ha(-1) yr(-1) for residential sites, in which dry depositions (NO(2) and NH(3)) were 7.6 kg N ha(-1) yr(-1) for crop field sites and 1.9 kg N ha(-1) yr(-1) for residential sites. The DON in the rainwater accounted for 16% of the total wet nitrogen deposition. Oxidized N (NO(3)(-) in the precipitation and gaseous NO(2)) was the dominant form of nitrogen deposition in the studied region, indicating that reactive forms of nitrogen created from urban areas contribute greatly to N deposition in the rural area evaluated in this study. PMID:20624633

  12. Precise measurement of the absolute fluorescence yield of nitrogen in air. Consequences on the detection of ultra-high energy cosmic rays; Mesure precise du rendement absolu de la fluorescence de l'azote dans l'air. Consequences sur la detection des rayons cosmiques d'ultra-haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Lefeuvre, G

    2006-07-15

    The study of the energy spectrum of ultra-high energy cosmic rays (E > 10{sup 20} eV) requires to determine the energy with much more precision than what is currently achieved. The shower of particles created in the atmosphere can be detected either by sampling particle on the ground, or by detecting the fluorescence induced by the excitation of nitrogen by shower electrons. At present, the measurement of the fluorescence is the simplest and the most reliable method, since it does not call upon hadronic physics laws at extreme energies, a field still inaccessible to accelerators. The precise knowledge of the conversion factor between deposited energy and the number of fluorescence photons produced (the yield) is thus essential. Up to now, it has been determined with an accuracy of 15 % only. This main goal of this work is to measure this yield to better than 5 per cent. To do this, 1 MeV electrons from a radioactive source excite nitrogen of the air. The accuracy has been reached thanks to the implementation of a new method for the absolute calibration of the photomultipliers detecting the photons, to better than 2 per cent. The fluorescence yield, measured and normalized to 0.85 MeV, 760 mmHg and 15 Celsius degrees, is (4.23 {+-} 0.20) photons per meter, or (20.46 {+-} 0.98) photons per deposited MeV. In addition, and for the first time, the absolute fluorescence spectrum of nitrogen excited by a source has been measured with an optical grating spectrometer. (author)

  13. Field investigations of nitrogen dioxide (NO2 exchange between plants and the atmosphere

    Directory of Open Access Journals (Sweden)

    J. Kesselmeier

    2013-01-01

    Full Text Available The nitrogen dioxide (NO2 exchange between the atmosphere and needles of Picea abies L. (Norway Spruce was studied under uncontrolled field conditions using a dynamic chamber system. This system allows measurements of the flux density of the reactive NO-NO2-O3 triad and additionally of the non-reactive trace gases CO2 and H2O. For the NO2 detection a highly NO2 specific blue light converter was used, which was coupled to chemiluminescence detection of the photolysis product NO. This NO2 converter excludes known interferences with other nitrogen compounds, which occur by using more unspecific NO2 converters. Photo-chemical reactions of NO, NO2, and O3 inside the dynamic chamber were considered for the determination of NO2 flux densities, NO2 deposition velocities, as well as NO2 compensation point concentrations. The calculations are based on a bi-variate weighted linear regression analysis (y- and x-errors considered. The NO2 deposition velocities for spruce, based on projected needle area, ranged between 0.07 and 0.42 mm s−1. The calculated NO2 compensation point concentrations ranged from 2.4 ± 9.63 to 29.0 ± 16.30 nmol m−3 (0.05–0.65 ppb but the compensation point concentrations were all not significant in terms of compensation point concentration is unequal to zero. These data challenge the existence of a NO2 compensation point concentration for spruce. Our study resulted in lower values of NO2 gas exchange flux densities, NO2 deposition velocities and NO2 compensation point concentrations in comparison to most previous studies. It is essential to use a more specific NO2 analyzer than used in previous studies and to consider photo-chemical reactions between NO, NO2, and O3 inside the chamber.

  14. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  15. Solar-Induced Fluorescence (SIF) Captured by California Laboratory for Atmospheric Remote Sensing (CLARS)

    Science.gov (United States)

    Xi, X.

    2015-12-01

    Solar-induced fluorescence (SIF) is emitted from the core of the photosynthetic apparatus and can serve as a direct indicator of photosynthetic efficiency. It could be exploited for large scale monitoring of plant health, which is crucial for studies in ecosystem, carbon cycle, agriculture, and other related fields. In this study, we use Fourier Transform Spectrometers at California Laboratory for Atmospheric Remote Sensing (CLARS) to measure high-resolution spectra near the oxygen A band. Measurement campaigns conducted in recent two years provide weeks of measurements that capture the diurnal variations of SIF from a variety of species including grasses and oak trees. Stationed on the top of Mount. Wilson in Southern California, CLARS is capable of monitoring SIF over the nearby mountains and the Los Angeles basin. This study aims to demonstrate that instruments at CLARS are capable of capturing SIF with high precision over different times of day. The high spatiotemporal variations of SIF are unique features of the CLARS measurements. The results have implications for the proposed constellation of geostationary satellites that are designed to capture SIF at regional scales.

  16. Atmospheric Nitrogen Deposition to the Oceans: Observation- and Model-Based Estimates

    Science.gov (United States)

    Baker, Alex

    2016-04-01

    The reactive nitrogen (Nr) burden of the atmosphere has been increased by a factor of 3-4 by anthropogenic activity since the Industrial Revolution. This has led to large increases in the deposition of nitrate and ammonium to the surface waters of the open ocean, particularly downwind of major human population centres, such as those in North America, Europe and Southeast Asia. In oligotrophic waters, this deposition has the potential to significantly impact marine productivity and the global carbon cycle. Global-scale understanding of N deposition to the oceans is reliant on our ability to produce effective models of reactive nitrogen emission, atmospheric chemistry, transport and deposition (including deposition to the land surface). Over land, N deposition models can be assessed using comparisons to regional monitoring networks of precipitation chemistry (notably those located in North America, Europe and Southeast Asia). No similar datasets exist which would allow observation - model comparisons of wet deposition for the open oceans, because long-term wet deposition records are available for only a handful of remote island sites and rain collection over the open ocean itself is logistically very difficult. In this work we attempt instead to use ~2800 observations of aerosol nitrate and ammonium concentrations, acquired from sampling aboard ships in the period 1995 - 2012, to assess the performance of modelled N deposition fields over the remote ocean. This database is non-uniformly distributed in time and space. We selected three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) where we considered the density and distribution of observational data is sufficient to provide effective comparison to the model ensemble. Our presentation will focus on the eastern tropical North Atlantic region, which has the best data coverage of the three. We will compare dry deposition fluxes calculated from the observed nitrate

  17. Effect of liquid nitrogen and formalin-based conservation in the in-vitro measurement of laser-induced fluorescence of peripheral vascular tissue

    OpenAIRE

    Filippidis, G.; Zacharakis, G.; Katsamouris, A; Kouktzela, M; Montan, Sune; Andersson-Engels, Stefan; Papazoglou, TG

    1997-01-01

    In order to investigate the effects of conservation in liquid nitrogen and formalin on peripheral vascular tissue (abdominal aortic, femoral and flank artery tissue) laser-induced fluorescence spectra were recorded during the exposure of these tissues to He-Cd radiation (442 nm). The spectral distribution of tissue fluorescence allowed the development of simple algorithms based on the intensity difference in order to discriminate the tissue samples when they were fresh and after they were sto...

  18. Unique erosion features of hafnium cathode in atmospheric pressure arcs of air, nitrogen and oxygen

    Science.gov (United States)

    Ghorui, S.; Meher, K. C.; Kar, R.; Tiwari, N.; Sahasrabudhe, S. N.

    2016-07-01

    Experimental investigation of cathode erosion in atmospheric pressure hafnium-electrode plasma torches is reported under different plasma environments along with the results of numerical simulation. Air, nitrogen and oxygen are the plasma gases considered. Distinct differences in the erosion features in different plasmas are brought out. Cathode images exhibiting a degree of erosion and measured erosion rates are presented in detail as a function of time of arc operation and arc current. Physical erosion rates are determined using high precision balance. The changes in the surface microstructures are investigated through scanning electron microscopy (SEM). Evolution of cathode chemistry is determined using energy dispersive x-ray spectroscopy (EDX). Numerical simulation with proper consideration of the plasma effects is performed for all the plasma gases. The important role of electromagnetic body forces in shaping the flow field and the distribution of pressure in the region is explored. It is shown that the mutual interaction between fluid dynamic and electromagnetic body forces may self-consistently evolve a situation of an extremely low cathode erosion rate.

  19. Seasonal trends of atmospheric nitrogen dioxide and sulfur dioxide over North Santa Clara, Cuba.

    Science.gov (United States)

    Alejo, Daniellys; Morales, Mayra C; de la Torre, Jorge B; Grau, Ricardo; Bencs, László; Van Grieken, René; Van Espen, Piet; Sosa, Dismey; Nuñez, Vladimir

    2013-07-01

    Atmospheric nitrogen dioxide (NO2) and sulfur dioxide (SO2) levels were monitored simultaneously by means of Radiello passive samplers at six sites of Santa Clara city, Cuba, in the cold and the warm seasons in 2010. The dissolved ionic forms of NO2 and SO2 as nitrate and sulfite plus sulfate, respectively, were determined by means of ion chromatography. Analysis of NO2 as nitrite was also performed by UV-Vis spectrophotometry. For NO2, significant t tests show good agreement between the results of IC and UV-Vis methods. The NO2 and SO2 concentrations peaked in the cold season, while their minimum levels were experienced in the warm season. The pollutant levels do not exceed the maximum allowable limit of the Cuban Standard 39:1999, i.e., 40 μg/m(3) and 50 μg/m(3) for NO2 and SO2, respectively. The lowest pollutant concentrations obtained in the warm season can be attributed to an increase in their removal via precipitation (scavenging) while to the decreased traffic density and industrial emission during the summer holidays (e.g., July and August).

  20. Interpretation of biomass gasification yields regarding temperature intervals under nitrogen-steam atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469 Maslak, Istanbul (Turkey)

    2007-04-15

    Gasification of some agricultural waste biomass samples (sunflower shell, pine cone, cotton refuse, and olive refuse) and colza seed was performed using a thermogravimetric analyzer at temperatures up to 1273 K with a constant heating rate of 20 K/min under a dynamic nitrogen-steam atmosphere. Derivative thermogravimetric analysis profiles of the samples were derived from the non-isothermal thermogravimetric analysis data. Gasification yields of the biomass samples at temperature intervals of 473-553 K, 553-653 K, 653-773 K, 773-973 K, and 973-1173 K were investigated considering the successive stages of ''evolution of carbon oxides'', ''start of hydrocarbon evolution'', ''evolution of hydrocarbons'', ''dissociation'', and ''evolution of hydrogen'', respectively. Although, there were some interactions between these stages, some evident relations were observed between the gasification yields in a given stage and the chemical properties of the parent biomass materials. (author)

  1. Melting and spheroidization of hexagonal boron nitride in a microwave-powered, atmospheric pressure nitrogen plasma `

    Energy Technology Data Exchange (ETDEWEB)

    Gleiman, S. S. (Seth S.); Phillips, J. (Jonathan)

    2001-01-01

    We have developed a method for producing spherically-shaped, hexagonal phase boron nitride (hBN) particles of controlled diameter in the 10-100 micron size range. Specifically, platelet-shaped hBN particles are passed as an aerosol through a microwave-generated, atmospheric pressure, nitrogen plasma. In the plasma, agglomerates formed by collisions between input hBN particles, melt and forms spheres. We postulate that this unprecedented process takes place in the unique environment of a plasma containing a high N-atom concentration, because in such an environment the decomposition temperature can be raised above the melting temperature. Indeed, given the following relationship [1]: BN{sub (condensed)} {leftrightarrow} B{sub (gas)} + N{sub (gas)}. Standard equilibrium thermodynamics indicate that the decomposition temperature of hBN is increased in the presence of high concentrations of N atoms. We postulate that in our plasma system the N atom concentration is high enough to raise the decomposition temperature above the (undetermined) melting temperature. Keywords Microwave plasma, boron nitride, melting, spherical, thermodynamics, integrated circuit package.

  2. Nitrogen and Carbon Cycling in a Grassland Community Ecosystem as Affected by Elevated Atmospheric CO2

    Directory of Open Access Journals (Sweden)

    H. A. Torbert

    2012-01-01

    Full Text Available Increasing global atmospheric carbon dioxide (CO2 concentration has led to concerns regarding its potential effects on terrestrial ecosystems and the long-term storage of carbon (C and nitrogen (N in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L. Willd (Huisache. Seedlings of Acacia along with grass species were grown for 13 months at CO2 concentrations of 385 (ambient, 690, and 980 μmol mol−1. Elevated CO2 increased both C and N inputs from plant growth which would result in higher soil C from litter fall, root turnover, and excretions. Results from the incubation indicated an initial (20 days decrease in N mineralization which resulted in no change in C mineralization. However, after 40 and 60 days, an increase in both C and N mineralization was observed. These increases would indicate that increases in soil C storage may not occur in grass ecosystems that are invaded with Acacia over the long term.

  3. Design and construction of prototype transversely excited atmospheric (TEA) nitrogen laser energized by a high voltage electrical discharge

    OpenAIRE

    Mukhtar Hussain; Tayyab Imran

    2015-01-01

    The present study reports design and construction, of a prototype of Transversely Excited Atmospheric (TEA) nitrogen laser, and a high voltage power supply to excite N2 gas in air, while air is used as an active lasing medium. A Blumlein line discharge circuit is used for operation of this laser. The high voltage is generated by a fly back transformer based power supply varying from 10 kV to 20 kV. The wavelength (337.1 nm) of TEA nitrogen laser is measured employing a standard commercial spe...

  4. Peculiarities in the formation of complex organic compounds in a nitrogen-methane atmosphere during hypervelocity impacts

    Science.gov (United States)

    Zaitsev, M. A.; Gerasimov, M. V.; Safonova, E. N.; Vasiljeva, A. S.

    2016-03-01

    Results of the experiments on model impact vaporization of peridotite, a mineral analogue of stony asteroids, in a nitrogen-methane atmosphere are presented. Nd-glass laser (γ = 1.06 µm) was used for simulation. Pulse energy was ~600-700 J, pulse duration ~10-3 s, vaporization tempereature ~4000-5000 K. The gaseous medium (96% vol. of N2 and 4% vol. of CH4, P = 1 atm) was a possible analogue of early atmospheres of terrestrial planets and corresponded to the present-day atmosphere composition of Titan, a satellite of Saturn. By means of pyrolytic gas chromatography/mass spectrometry, it is shown that solid condensates obtained in laser experiments contain relatively complex lowand high-molecular weight (kerogen-like) organic compounds. The main products of condensate pyrolysis were benzene and alkyl benzenes (including long-chain ones), unbranched aliphatic hydrocarbons, and various nitrogen-containing compounds (aliphatic and aromatic nitriles and pyrrol). It is shown that the nitrogen-methane atmosphere favors the formation of complex organic compounds upon hypervelocity impacts with the participation of stony bodies even with a small methane content in it. In this process, falling bodies may not contain carbon, hydrogen, and other chemical elements necessary for the formation of the organic matter. In such conditions, a noticeable contribution to the impact-induced synthesis of complex organic substances is probably made by heterogeneous catalytic reactions, in particular, Fischer-Tropsch type reactions.

  5. The Effect of Surface Ice and Topography on the Atmospheric Circulation and Distribution of Nitrogen Ice on Pluto.

    Science.gov (United States)

    Rafkin, Scot; Soto, Alejandro; Michaels, Timothy

    2016-04-01

    A newly developed general circulation model (GCM) for Pluto is used to investigate the unexpected and highly heterogeneous distribution of nitrogen surface ice imaged by the New Horizons spacecraft on the surface of Pluto. The GCM is based on the GFDL Flexible Modeling System (FMS) dynamical core, solved on a discretized latitude/longitude horizontal grid and a pressure-based hybrid vertical coordinate. Model physics include a 3-band radiative scheme, molecular thermal conduction within the atmosphere, subsurface thermal conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4, including non-local thermodynamic equilibrium effects. The subsurface conduction model assumes a water ice regolith. In the case of nitrogen surface ice deposition, additional super-surface layers are added above the water ice regolith to properly account for conductive energy flow through the nitrogen ice. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile surface ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient resulting primarily from the slow seasonal variations of radiative-conductive equilibrium. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Furthermore, the circulation, and thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows (so-called "condensation flows") associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over topography of substantial geologic diversity. To maintain such an ice distribution, the atmospheric circulation and

  6. A Remote Raman and Laser-Induced Fluorescence Spectrometer and its Application for Lidar Remote Sensing of Martian Atmosphere

    Science.gov (United States)

    Ismail, S.; Sharma, S. K.; Angel, S. M.; Lucey, P. G.; McKay, C. P.; Misra, A. K.; Mouginis-Mark, P. J.; Newsom, H.; Scott, E. R.; Singh, U. N.; Taylor, J. G.; Porter, J. N.

    2005-05-01

    A combined remote Raman and Laser Induced Fluorescence (RLIF) spectrometer was proposed as a mast-mounted instrument for the Mars Science Laboratory (MSL). This remote RLIF system is capable of conducting reconnaissance of fluorescence materials and minerals with high sensitivity (e.g., carbonates, sulfates, phosphates, quartz, etc.) that can be recorded with a single 532 nm (35 mJ) laser pulse of 8 ns half-width. The RLIF system is also capable of identification of mineral, organic, and biogenic materials and is sitable for atmospheric studies of Mars. This instrument design is based on a prototypes that was developed with partial support from NASA's Planetary Instrument Definition and Development Program (PIDDP) at the University of Hawaii. This prototype instrument has been modified to operate in the lidar mode to obtain Mie-Rayleigh scattering profiles in the atmosphere for studying meteorological processes in the marine atmosphere. Application of RLIF to obtain range-resolved atmospheric backscattering profiles using the AOTF technique are capable of providing atmospheric backscatter profiles. Data from RLIF can be used to retrieve optical properties of dust aerosols and clouds, including the profiling of scattering intensity, location of cloud base and thickness, atmospheric extinction, and de-polarization. These measurements can be made at high vertical resolution up to altitudes >5 km. Simultaneous measurements can be made of atmospheric CO2 and its variations; surface CO2-ice and water-ice; and surface and subsurface hydrated methane on Mars. Capability of RLIF and examples of atmospheric measurements applicable to RLIF will be presented in this paper.

  7. Remote monitoring of 129I and 127I isotopes in the atmosphere using the laser-induced fluorescence method

    Science.gov (United States)

    Kireev, S. V.; Shnyrev, S. L.; Suganeev, S. V.

    2016-09-01

    This paper reports the experimental and calculation research of the development of the remote laser-induced fluorescence method for the detection of 129I and 127I molecular iodine isotopologues in atmospheric air in real time. As an excitation source we used a frequency-doubled neodymium laser (~532 nm). We estimated the sensitivity of 127I129I and 129I2 detection in the atmosphere. Detection sensitivity of molecular iodine is 4 · 1013 cm-3 for a sensing distance of 6 km.

  8. Remote monitoring of 129I and 127I isotopes in the atmosphere using the laser-induced fluorescence method

    Science.gov (United States)

    Kireev, S. V.; Shnyrev, S. L.; Suganeev, S. V.

    2016-09-01

    This paper reports the experimental and calculation research of the development of the remote laser-induced fluorescence method for the detection of 129I and 127I molecular iodine isotopologues in atmospheric air in real time. As an excitation source we used a frequency-doubled neodymium laser (~532 nm). We estimated the sensitivity of 127I129I and 129I2 detection in the atmosphere. Detection sensitivity of molecular iodine is 4 · 1013 cm‑3 for a sensing distance of 6 km.

  9. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures.

    Science.gov (United States)

    Aleksandrov, N L; Bodrov, S B; Tsarev, M V; Murzanev, A A; Sergeev, Yu A; Malkov, Yu A; Stepanov, A N

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ∼3% O_{2}), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures. PMID:27575227

  10. Enhanced Removal of Biogenic Hydrocarbons in Power Plant Plumes Constrains the Dependence of Atmospheric Hydroxyl Concentrations on Nitrogen Oxides

    Science.gov (United States)

    De Gouw, J. A.; Trainer, M.; Parrish, D. D.; Brown, S. S.; Edwards, P.; Gilman, J.; Graus, M.; Hanisco, T. F.; Kaiser, J.; Keutsch, F. N.; Kim, S. W.; Lerner, B. M.; Neuman, J. A.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Veres, P. R.; Warneke, C.; Wolfe, G.

    2015-12-01

    Hydroxyl (OH) radicals in the atmosphere provide one of the main chemical mechanisms for the removal of trace gases. OH plays a central role in determining the atmospheric lifetime and radiative forcing of greenhouse gases like methane. OH also plays a major role in the oxidation of organic trace gases, which can lead to formation of secondary pollutants such as ozone and PM2.5. Due to its very short atmospheric lifetime of seconds or less, OH concentrations are extremely variable in space and time, which makes measurements and their interpretation very challenging. Several recent measurements have yielded higher than expected OH concentrations. To explain these would require the existence of unidentified, radical recycling processes, but issues with the measurements themselves are also still being discussed. During the NOAA airborne SENEX study in the Southeast U.S., the biogenic hydrocarbons isoprene and monoterpenes were consistently found to have lower mixing ratios in air masses with enhanced nitrogen oxides from power plants. We attribute this to faster oxidation rates of biogenic hydrocarbons due to increased concentrations of OH in the power plant plumes. Measurements at different downwind distances from the Scherer and Harllee Branch coal-fired power plants near Atlanta are used to constrain the dependence of OH on nitrogen oxides. It is found that OH concentrations were highest at nitrogen dioxide concentrations of 1-2 ppbv and decreased at higher and at lower concentrations. These findings agree with the expected dependence of OH on nitrogen oxide concentrations, but do not appear to be consistent with the reports in the literature that have shown high OH concentrations in regions of the atmosphere with high biogenic emissions and low NOx concentrations that would require unidentified radical recycling processes to be explained.

  11. Quantifying importance and scaling effects of atmospheric deposition of inorganic fixed nitrogen for the eutrophic Black Sea

    OpenAIRE

    A. Varenik; Konovalov, S.; S. Stanichny

    2015-01-01

    Wet atmospheric depositions have been collected in a rural (Katsiveli) and urban (Sevastopol) location at the Crimean coast of the Black Sea from 2003 to 2008. Samples, 217 from Katsiveli and 228 from Sevastopol, have been analysed for inorganic fixed nitrogen (nitrate, nitrite, and ammonium). Data have revealed almost equal contributions of ammonium (44–45 %) and nitrate (52–53 %) and minor contribution of nitrite (2–4 %) for both rural and urban samples. The volume weight ...

  12. Quantifying importance and scaling effects of atmospheric deposition of inorganic fixed nitrogen for the eutrophic Black Sea

    OpenAIRE

    A. Varenik; Konovalov, S.; S. Stanichny

    2015-01-01

    Wet atmospheric depositions have been collected in a rural (Katsiveli) and urban (Sevastopol) location at the Crimean coast of the Black Sea from 2003 to 2008. Samples, 217 from Katsiveli and 228 from Sevastopol, have been analyzed for inorganic fixed nitrogen (nitrate, nitrite, and ammonium). Data has revealed almost equal contributions of ammonium (44–45 %) and nitrate (52–53 %) and minor contribution of nitrite (2–4 %) for both rural and urban samples. The average concent...

  13. Standard method for continuous measurement of nitric oxide, nitrogen dioxide, and ozone in the atmosphere. [Calorimetrically using Griess Reagent

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Nitrogen dioxide is absorbed from the atmosphere in a modified Griess reagent which contains 0.5 percent sulfanilic acid and 50 ppM of N-(1-naphthyl)-ethylene diamine hydrochloride in 5 percent acetic acid that produces a red dye. The red dye is measured continuously in a recording colorimeter by comparison with a blank of unreacted reagent. Nitric oxide from the atmosphere passes through the absorber practically unaffected and is oxidized to nitrogen dioxide by bubbling through a dilute permanganate solution prior to determination with modified Griess reagent in a separate cell. Optionally, ozone in the air sample may be determined in a third absorber-colorimeter cell unit by adding about 0.5 to 1.0 ppM of pure nitric oxide to another sample of air and noting the increase in nitrogen dioxide level due to the rapid oxidation of nitric oxide to nitrogen dioxide by ozone. The overall accuracy of the results of the method is +-10 percent. (BLM)

  14. Effects of Bleaching by Nitrogen Deficiency on the Quantum Yield of Photosystem II in Synechocystis sp. PCC 6803 Revealed by Chl Fluorescence Measurements.

    Science.gov (United States)

    Ogawa, Takako; Sonoike, Kintake

    2016-03-01

    Estimation of photosynthesis by Chl fluorescence measurement of cyanobacteria is always problematic due to the interference from respiratory electron transfer and from phycocyanin fluorescence. The interference from respiratory electron transfer could be avoided by the use of DCMU or background illumination by blue light, which oxidizes the plastoquinone pool that tends to be reduced by respiration. On the other hand, the precise estimation of photosynthesis in cells with a different phycobilisome content by Chl fluorescence measurement is difficult. By subtracting the basal fluorescence due to the phycobilisome and PSI, it becomes possible to estimate the precise maximum quantum yield of PSII in cyanobacteria. Estimated basal fluorescence accounted for 60% of the minimum fluorescence, resulting in a large difference between the 'apparent' yield and 'true' yield under high phycocyanin conditions. The calculated value of the 'true' maximum quantum yield of PSII was around 0.8, which was similar to the value observed in land plants. The results suggest that the cause of the apparent low yield reported in cyanobacteria is mainly ascribed to the interference from phycocyanin fluorescence. We also found that the 'true' maximum quantum yield of PSII decreased under nitrogen-deficient conditions, suggesting the impairment of the PSII reaction center, while the 'apparent' maximum quantum yield showed a marginal change under the same conditions. Due to the high contribution of phycocyanin fluorescence in cyanobacteria, it is essential to eliminate the influence of the change in phycocyanin content on Chl fluorescence measurement and to evaluate the 'true' photosynthetic condition. PMID:26858287

  15. Alpine Microbial Community Responses to Climate Change and Atmospheric Nitrogen Deposition in Rocky Mountain National Park

    Science.gov (United States)

    Osborne, B. B.; Baron, J.; Wallenstein, M. D.; Richer, E.

    2010-12-01

    Remote alpine ecosystems of the western US exhibit vulnerability to anthropogenic drivers of change. Atmospheric nitrogen (N) deposition and a changing climate introduce nutrients, alter hydrological processes, and expose soils to modified temperature regimes. We cannot yet predict the interacting effects and far-reaching biogeochemical consequences of this influence. Importantly, long-term data reveal headwater nitrate (NO3-) concentration trends increasing >50% from the 1990s to 2006 along the Colorado Front Range in conjunction with warm summer temperatures. Such a change in nutrient cycling raises concern for eutrophication in nutrient-poor alpine lakes. Increasing stream NO3- suggests terrestrial microbes may be responding to changes in important controls of community development and activity: temperature and ammonium (NH4+) availability. Nitrifying bacteria and archaea strongly influence alpine soil NO3- concentrations. Little is understood about alpine microbes. Our research characterizes nitrifier abundance and activity in alpine substrates by exposing them to experimental NH4+ and temperature treatments. Soil substrates fall along a gradient of succession commonly represented in alpine catchments due to deglaciation. These include well-developed meadow soils, unvegetated talus substrate, and newly-exposed glacial sediments. All three substrate types were collected from the Loch Vale watershed in Rocky Mountain National Park, a long-term research site in the Colorado Front Range known to receive elevated levels of atmospheric N deposition. All soils have been evaluated for initial %C, %N, microbial biomass, NO3-, NH4+, and DOC concentrations, and nitrifier abundance. After temperature and NH4+ treatments, samples will be evaluated for changes in biomass and nitrifier abundance as well as net and gross nitrification. Linking the influence of relative soil temperature and NH4+ concentrations on alpine substrates, at a range of successional stages, will

  16. Atmospheric wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan Province, China.

    Science.gov (United States)

    Qiao, Xue; Xiao, Weiyang; Jaffe, Daniel; Kota, Sri Harsha; Ying, Qi; Tang, Ya

    2015-04-01

    In the last two decades, remarkable ecological changes have been observed in Jiuzhaigou National Nature Reserve (JNNR). Some of these changes might be related to excessive deposition of sulfur (S) and nitrogen (N), but the relationship has not been quantified due to lack of monitoring data, particularly S and N deposition data. In this study, we investigated the concentrations, fluxes, and sources of S and N wet deposition in JNNR from April 2010 to May 2011. The results show that SO4(2-), NO3-, and NH4+ concentrations in the wet deposition were 39.4-170.5, 6.2-34.8, and 0.2-61.2 μeq L(-1), with annual Volume-Weighted Mean (VWM) concentrations of 70.5, 12.7, and 13.4 μeq L(-1), respectively. Annual wet deposition fluxes of SO4(2-), NO3-, and NH4+ were 8.06, 1.29, and 1.39 kg S(N)ha(-1), respectively, accounting for about 90% of annual atmospheric inputs of these species at the monitoring site. The results of Positive Matrix Factorization (PMF) analysis show that fossil fuel combustion, agriculture, and aged sea salt contributed to 99% and 83% of annual wet deposition fluxes of SO4(2-) and NO3-, respectively. Agriculture alone contributed to 89% of annual wet deposition flux of NH4+. Although wet deposition in JNNR was polluted by anthropogenic acids, the acidity was largely neutralized by the Ca2+ from crust and 81% of wet deposition samples had a pH higher than 6.00. However, acid rain mainly caused by SO4(2-) continued to occur in the wet season, when ambient alkaline dust concentration was lower. Since anthropogenic emissions have elevated S and N deposition and caused acid rain in JNNR, further studies are needed to better quantify the regional sources and ecological effects of S and N deposition for JNNR.

  17. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L.; Mancinelli, B. R. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina) and Instituto de Fisica del Plasma (CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales UBA Ciudad Universitaria Pab. I, (1428) Buenos Aires (Argentina)

    2012-09-15

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processes inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.

  18. Atmospheric Nitrogen Deposition Threatens Biodiversity: Development of Novel Mitigation Policies in California

    Science.gov (United States)

    Weiss, S. B.

    2011-12-01

    Atmospheric nitrogen deposition threatens biodiversity in many parts of the world. In California, 20% of the land surface receives > 5 kg-N ha-1 year-1, with hotspots receiving > 50 kg-N ha-1 year-1. Documented impacts of N-deposition include increased growth of annual grass and other invasives in coastal sage scrub, serpentine grasslands, vernal pools, and deserts, altered nutrient cycling and fuel accumulation of montane forests, enhanced fire cycles, nitrate leaching into surface and groundwater, and eutrophication of montane lakes such as Lake Tahoe. 40% of listed threatened and endangered plants are exposed to > 5 kg-N ha-1 year-1, and N-deposition is arguably a greater immediate threat to biodiversity than is climate change. Appropriate policy responses are lagging, because the magnitude of N-deposition impacts on biodiversity is poorly known in the broader conservation/regulatory community and the general public. Policies to decrease emissions and deposition are clearly the ultimate solution on a decadal time scale. In the interim, habitat management is critical to preventing extinction of many species. This presentation reviews recent policies and regulatory actions in California that address N-deposition impacts on biodiversity. The immediate and long-term needs for invasive weed management are overwhelming and require long-term endowment funding. Mitigation requirements under the US Endangered Species Act have been used to secure land and management resources. The on-going story of the threatened Bay checkerspot butterfly, from the first precedent setting mitigation in 2001 through a regional Habitat Conservation Plan (HCP), illustrates the development of these novel policies based on science, regulatory authority, grassroots activism, public education, habitat restoration, and legal actions. The 50-year HCP will ultimately result in a network of conserved lands with management endowments. Eventually N-deposition may be reduced below critical loads

  19. Atmospheric organic nitrogen deposition: Analysis of nationwide data and a case study in Northeast China

    International Nuclear Information System (INIS)

    The origin of atmospheric dissolved organic nitrogen (DON) deposition is not very clear at present. Across China, the DON deposition was substantially larger than that of world and Europe, and we found significant positive correlation between contribution of DON and the deposition flux with pristine site data lying in outlier, possibly reflecting the acute air quality problems in China. For a case study in Northeast China, we revealed the deposited DON was mainly derived from intensive agricultural activities rather than the natural sources by analyzing the compiled dataset across China and correlating DON flux with NH4+–N and NO3−–N. Crop pollens and combustion of fossil fuels for heating probably contributed to summer and autumn DON flux respectively. Overall, in Northeast China, DON deposition could exert important roles in agro-ecosystem nutrient management and carbon sequestration of natural ecosystems; nationally, it was suggested to found rational network for monitoring DON deposition. -- Highlights: •Contribution and deposition flux of DON across China was positively correlated. •Deposited DON was more influenced by human in China than across the world and Europe. •DON of a farmland in Northeast China was mainly derived from agricultural activities. •Crop pollen and combustion of fossil fuels contributed to summer and autumn DON. •Deposited DON should not be neglected when evaluating its ecological impacts. -- Synthesis of DON deposition across China implied regional importance of anthropogenic sources, and an observation in Northeast China suggested the ecological significances of the DON flux should be considered

  20. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    Science.gov (United States)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. PMID:26956177

  1. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States

    Science.gov (United States)

    Simkin, Samuel M.; Allen, Edith B.; Bowman, William D.; Clark, Christopher M.; Belnap, Jayne; Brooks, Matthew L.; Cade, Brian S.; Collins, Scott L.; Geiser, Linda H.; Gilliam, Frank S.; Jovan, Sarah E.; Pardo, Linda H.; Schulz, Bethany K.; Stevens, Carly J.; Suding, Katharine N.; Throop, Heather L.; Waller, Donald M.

    2016-01-01

    Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these environmental factors. We assessed the effect of N deposition on herbaceous richness for 15,136 forest, woodland, shrubland, and grassland sites across the continental United States, to address how edaphic and climatic conditions altered vulnerability to this stressor. In our dataset, with N deposition ranging from 1 to 19 kg N⋅ha−1⋅y−1, we found a unimodal relationship; richness increased at low deposition levels and decreased above 8.7 and 13.4 kg N⋅ha−1⋅y−1 in open and closed-canopy vegetation, respectively. N deposition exceeded critical loads for loss of plant species richness in 24% of 15,136 sites examined nationwide. There were negative relationships between species richness and N deposition in 36% of 44 community gradients. Vulnerability to N deposition was consistently higher in more acidic soils whereas the moderating roles of temperature and precipitation varied across scales. We demonstrate here that negative relationships between N deposition and species richness are common, albeit not universal, and that fine-scale processes can moderate vegetation responses to N deposition. Our results highlight the importance of contingent factors when estimating ecosystem vulnerability to N deposition and suggest that N deposition is affecting species richness in forested and nonforested systems across much of the continental United States.

  2. Atmospheric pressure route to epitaxial nitrogen-doped trilayer graphene on 4H-SiC (0001) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Boutchich, M.; Arezki, H.; Alamarguy, D.; Güneş, F.; Alvarez, J.; Kleider, J. P. [LGEP, CNRS UMR8507, SUPELEC, Univ Paris-Sud, Sorbonne Universités - UPMC, Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex (France); Ho, K.-I.; Lai, C. S. [Department of Electronic Engineering, Chang Gung University, No. 259, Wen-Hua 1st Rd, Kweishan, Taoyuan 333, Taiwan (China); Sediri, H.; Ouerghi, A. [Laboratoire de Photonique et de Nanostructures (CNRS - LPN), Route de Nozay, 91460 Marcoussis (France)

    2014-12-08

    Large-area graphene film doped with nitrogen is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, and fuel cells among many others. Here, we report on the structural and electronic properties of nitrogen doped trilayer graphene on 4H-SiC (0001) grown under atmospheric pressure. The trilayer nature of the growth is evidenced by scanning transmission electron microscopy. X-ray photoelectron spectroscopy shows the incorporation of 1.2% of nitrogen distributed in pyrrolic-N, and pyridinic-N configurations as well as a graphitic-N contribution. This incorporation causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. Ultraviolet photoelectron spectroscopy shows a decrease of the work function of 0.3 eV due to the N-type doping of the nitrogen atoms in the carbon lattice and the edge defects. A top gate field effect transistor device has been fabricated and exhibits carrier mobilities up to 1300 cm{sup 2}/V s for holes and 850 cm{sup 2}/V s for electrons at room temperature.

  3. Carbon dynamics in subtropical forest soil. Effects of atmospheric carbon dioxide enrichment and nitrogen addition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juxiu X.; Zhou, Guoyi Y.; Zhang, Deqiang Q.; Duan, Honglang L.; Deng, Qi; Zhao, Liang [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Xu, Zhihong H. [Griffith Univ., Nathan, Queensland (Australia). Environmental Futures Centre and School of Biomolecular and Physical Sciences

    2010-06-15

    The levels of atmospheric carbon dioxide concentration ([CO{sub 2}]) are rapidly increasing. Understanding carbon (C) dynamics in soil is important for assessing the soil C sequestration potential under elevated [CO{sub 2}]. Nitrogen (N) is often regarded as a limiting factor in the soil C sequestration under future CO{sub 2} enrichment environment. However, few studies have been carried out to examine what would happen in the subtropical or tropical areas where the ambient N deposition is high. In this study, we used open-top chambers to study the effect of elevated atmospheric [CO{sub 2}] alone and together with N addition on the soil C dynamics in the first 4 years of the treatments applied in southern China. Materials and methods Above- and below-ground C input (tree biomass) into soil, soil respiration, soil organic C, and total N as well as dissolved organic C (DOC) were measured periodically in each of the open-top chambers. Soil samples were collected randomly in each chamber from each of the soil layers (0-20, 20-40, and 40-60 cm) using a standard soil sampling tube (2.5-cm inside diameter). Soil leachates were collected at the bottom of the chamber below-ground walls in stainless steel boxes. Results and discussion The highest above- and below-ground C input into soil was found in the high CO{sub 2} and high N treatment (CN), followed by the only high N treatment (N+), the only high CO{sub 2} treatment (C+), and then the control (CK) without any CO{sub 2} enrichment or N addition. DOC in the leachates was small for all the treatments. Export of DOC played a minor role in C cycling in our experiment. Generally, soil respiration rate in the chambers followed the order: CN treatment > C + treatment > N + treatment > the control. Except for the C+ treatment, there were no significant differences in soil total N among the CN treatment, N + treatment, and the control. Overall, soil organic C (SOC) was significantly affected by the treatments (p < 0.0001). SOC

  4. Effects of Atmospheric CO2 Enrichment, Applied Nitrogen and Soil Moisture on Dry Matter Accumulation and Nitrogen Uptake in Spring Wheat

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Spring wheat (Triticum aestivum L. cv. Dingxi No. 8654) was treated with two concentrations of atmospheric COz (350 and 700 μmol mol-1), two levels of soil moisture (well-watered and drought) and five rates of nitrogen fertilizer (0, 50, 100, 150, and 200 mg kg-1 soil) to study the atmospheric CO2 concentration effect on dry matter accumulation and N uptake of spring wheat. The effects of CO2 enrichment on the shoot and total mass depended largely on soil nitrogen level, and the shoot and total mass increased significantly in the moderate to high N treatments but did not increase significantly in the low N treatment. Enriched CO2concentration did not increase more shoot and total mass in the drought treatment than in the well-watered treatment. Thus, elevated CO2 did not ameliorate the depressive effects of drought and nitrogen stress. In addition, root mass decreased slightly and root/shoot ratio decreased significantly due to CO2 enrichment in no N treatment under well-watered condition. Enriched CO2 decreased shoot N content and shoot and total N uptake; but it reduced root N content and uptake slightly. Shoot critical N concentration was lower for spring wheat grown at 700 μmol mol-1 CO2 than at 350 μmol mol-1 CO2 in both well-watered and drought treatments. The critical N concentrations were 16 and 19 g kg-1 for the well-watered treatment and drought treatment at elevated CO2 and 21 and 26 g kg-1 at ambient CO2, respectively. The reductions in the movement of nutrients to the plant roots through mass flow due to the enhancement in WUE (water use efficiency) and the increase in N use efficiency at elevated CO2 could elucidate the reduction of shoot and root N concentrations.

  5. On extreme atmospheric and marine nitrogen fluxes and chlorophyll-a levels in the Kattegat Strait

    DEFF Research Database (Denmark)

    Hasager, C.B.; Carstensen, J.; Ellermann, T.;

    2003-01-01

    A retrospective analysis is carried out to investigate the importance of the vertical fluxes of nitrogen to the marine sea surface layer in which high chlorophyll a levels may cause blooms of harmful algae and subsequent turn over and oxygen depletion at the bottom of the sea. Typically nitrogen ...

  6. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Atmospheric (Wet) Deposition of Inorganic Nitrogen, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the average atmospheric (wet) deposition, in kilograms per square kilometer, of inorganic nitrogen for the year 2002 compiled for...

  7. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Atmospheric (Wet) Deposition of Inorganic Nitrogen, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the average atmospheric (wet) deposition, in kilograms per square kilometer, of inorganic nitrogen for the year 2002 compiled for every...

  8. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Normalized Atmospheric Deposition for 2002, Total Inorganic Nitrogen

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the average normalized atmospheric (wet) deposition, in kilograms, of Total Inorganic Nitrogen for the year 2002 compiled for every...

  9. Detection of atmospheric nitrogen dioxide using a miniaturised fibre-optic spectroscopy system and the ambient sunlight.

    Science.gov (United States)

    Morales, J A; Walsh, J E

    2005-07-01

    A miniaturised fibre-optic spectrometer based system is presented for direct detection of one of the major atmospheric pollutants, nitrogen dioxide, by absorption spectroscopy using the ambient sunlight as light source. The detection system consists of a 10 cm collimator assembly, a fibre-optic cable and a portable diode-array spectrometer. The absorbance spectrum of the open-path is calculated using a reference spectrum recorded when the nitrogen dioxide (NO2) concentration in the atmosphere is low. The relative concentration of the pollutant is calculated normalising the detected spectra and subtracting the background broadband spectrum from the specific NO2 absorbance features, since the broadband spectrum changes according to atmospheric conditions and solar intensity. Wavelengths between 400 and 500 nm are used in order to maximise sensitivity and to avoid interference from other species. Calibration is carried out using Tedlar sample bags of known concentration of the pollutant. A commercial differential optical absorption spectroscopy (DOAS) system is used as a reference standard detection system to compare the results with the new system. Results show that detection of NO2 at typical urban atmospheric levels has been achieved using an inexpensive field based fibre-optic spectrometer and a readily available, easy to align, light source. In addition the new system can be used to get a semi-quantitative estimation of the nitrogen dioxide concentration within errors of 20%. While keeping the typical benefits of open-path techniques, the new system has important advantages over them such as cost, simplicity and portability. PMID:15911394

  10. Elevated atmospheric CO2 and increased nitrogen deposition : effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst

    NARCIS (Netherlands)

    Van Der Heijden, E; Verbeek, SK; Kuiper, PJC

    2000-01-01

    Sphagnum bogs play an important role when considering the impacts of global change on global carbon and nitrogen cycles. Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) was grown at 360 (ambient) and 700 mu L L-1 (elevated) atmospheric [CO2] in combination with different nitrogen deposition rate

  11. Governing processes for reactive nitrogen compounds in the atmosphere in relation to ecosystem, climatic and human health impacts

    Directory of Open Access Journals (Sweden)

    O. Hertel

    2012-07-01

    Full Text Available Reactive nitrogen (Nr compounds have different fates in the atmosphere due to differences in governing processes of physical transport, deposition and chemical transformation. Nr compounds addressed here include reduced nitrogen (NHx: ammonia (NH3 and its reaction product ammonium (NH4+, oxidized nitrogen (NOy: nitrogen monoxide (NO + nitrogen dioxide (NO2 and their reaction products as well as organic nitrogen compounds (organic N. Pollution abatement strategies need to take into account these differences in the governing processes of these compounds when assessing their impact on ecosystem services, biodiversity, human health and climate. NOx (NO + NO2 emitted from traffic affects human health in urban areas where the presence of buildings increases the residence time in streets. In urban areas this leads to enhanced exposure of the population to NOx concentrations. NOx emissions have little impact on nearby ecosystems because of the small dry deposition rates of NOx. These compounds need to be converted into nitric acid (HNO3 before removal through deposition is efficient. HNO3 sticks quickly to any surface and is thereby either dry deposited or incorporated into aerosols as nitrate (NO3. In contrast to NOx compounds, NH3 has potentially high impacts on ecosystems near the main agricultural sources of NH3 because of its large ground-level concentrations along with large dry deposition rates. Aerosol phase NH4+ and NO3 contribute significantly to background PM2.5 and PM10 (mass of aerosols with a diameter of less than 2.5 and 10 μm, respectively with an impact on radiation balance as well as potentially on human health. Little is known quantitatively and

  12. Atmospheric Ammonia Emissions and a Nitrogen Mass Balance for a Dairy

    Science.gov (United States)

    Rumburg, B. P.; Mount, G. H.; Filipy, J. M.; Lamb, B.; Yonge, D.; Wetherelt, S.

    2003-12-01

    Atmospheric ammonia (NH3) emissions have many impacts on the environment and human health. Environmental NH3 impacts include terrestrial and aquatic eutrophication, soil acidification, and aerosol formation. Aerosols affect global radiative transfer and have been linked to human health effects. The global emissions of NH3 are estimated to be 45 Tg N yr-1 (Dentener and Crutzen, 1994) with most of the emissions coming from domestic animals. The largest per animal emission come from dairy cows at 33 kg N animal{-1} year{-1} versus 10 kg N animal{-1} {-1} for cattle. On a global scale the emissions uncertainty is about 25%, but local emissions are highly uncertain (Bouwman et al., 1997). Local emissions determination is required for proper treatment in air pollution models. The main sources of emission from dairies are the cow stalls where urea and manure react to form NH3, the storage lagoons where NH3 is the end product of microbial degradation and the disposal of the waste. There have been numerous studies of NH3 emissions in Europe but farming practices are quite different in Europe than in the U.S.. The impact of these differences on emissions is unknown. We have been studying the NH3 emissions from the Washington State University dairy for three years to develop a detailed emission model for use in a regional air pollution model. NH3 is measured using a short-path spectroscopic absorption near 200 nm with a sensitivity of a few ppbv and a time resolution of a few seconds. The open air short-path method is advantageous because it is self calibrating and avoids inlet wall adherence which is a major problem for most NH3 measurement techniques. A SF6 tracer technique has been used to measure fluxes from the three main emission sources: the cow stalls, anaerobic lagoon and the waste application to grass fields using a sprinkler system. Estimated yearly emissions from each source will be compared to a nitrogen mass balance model for the dairy.

  13. Current and Future Impacts of Atmospheric Nitrogen Deposition on Grassland GHG Balance

    Science.gov (United States)

    Hudiburg, T. W.; Gomez-Casanovas, N.; Bernacchi, C.; DeLucia, E. H.

    2014-12-01

    Nitrogen deposition (Ndep), a consequence of human activities, affects the greenhouse gas (GHG; CO2, N2O and CH4) sink capacity of terrestrial ecosystems. Grasslands play an important role in determining the concentration of GHGs in the atmosphere. While they store greater than 10% of terrestrial net primary productivity and sustain up to 30% of the world's organic C in their soils, grasslands also may be responsible for significant CH4 and N2O emissions. Many fertilization experiments have examined the response of grasslands to N loads of 50 to 100 kg N ha-1 yr-1. However, few studies have been designed to examine ecosystem responses to low N loads (< 20 kg N ha-1 yr-1) which they are likely to experience in the future according to the new IPCC representative concentration pathway (RCP) scenarios. This is consistent with the notion that the N saturation threshold at which Net Ecosystem Productivity (NEP) levels off, or the dose-response relationships between N2O, N-trace gases, CH4, and Ndep in grasslands have not being well characterized. We combined data from grassland ecosystems in major climate zones and biogeochemical modeling (DayCent v. 4.5) to characterize the dose-response relationship between increased Ndep and GHG, and other N-trace gases fluxes and N leaching of these grasslands. We used the synthesized data to evaluate the modeling for above- and belowground NPP, N2O, CH4, and response to N fertilization and climate. We found that in most cases increased Ndep will continue to increase the non-CO2 GHG source strength of grasslands, whereas NEP will saturate at N levels ranging from 10 - 70 kg N ha-1 yr-1depending on the precipitation, fire regime, and/or species composition of the grassland. Given these thresholds, we modeled the potential net GHG sink capacity for the world's major grassland biomes using several of the IPCC RCP scenarios which include a range of climate and Ndep trajectories. Our results suggest that although global grassland C

  14. Chlorophyll signatures and nutrient cycles in the Mediterranean Sea: a model sensitivity study to nitrogen and phosphorus atmospheric inputs

    Directory of Open Access Journals (Sweden)

    M. Pacciaroni

    2007-03-01

    Full Text Available In this work, the relative importance of nitrogen and phosphorus, considered as external loads, on Mediterranean biogeochemical cycles is evaluated. Biomass concentrations are analysed considering the steady state response of the three-dimensional ECHYM model to three nitrogen and phosphorus atmospheric depositions, considered as continuous in time.

    After reaching stationary evolutions, chlorophyll surficial maps and vertical transects are compared with existing datasets, showing a good agreement at their large scale sampling.

    The distributions of nutrients within the biochemical compartments are analysed, highlighting, inside the Mediterranean oligotrophic environment, the role played by ultraplankton, the smaller phytoplankton compartment. For all the three different atmospheric loads, western primary production estimation is about twice than that in the eastern basin, while western secondary production is about three times the eastern one.

    This numerical exercise suggests that the Eastern Mediterranean, cycling at low nutrient sill, is eventually pushed toward an higher nutrient depletion, when loading new nitrogen and phosphorus.

  15. X-ray photoelectron spectroscopic study on surface reaction on titanium by laser irradiation in nitrogen atmosphere

    International Nuclear Information System (INIS)

    The surface reaction on titanium due to pulsed Nd:YAG laser irradiation in a nitrogen atmosphere was investigated using X-ray photoelectron spectroscopy (XPS). The laser, with a wavelength of 532 nm (SHG mode), was irradiated on a titanium substrate in an atmosphere-controlled chamber, and then the substrate was transported to an XPS analysis chamber without exposure to air. This in situ XPS technique makes it possible to clearly observe the intrinsic surface reaction. The characteristics of the surface layer strongly depend on the nitrogen gas pressure. When the pressure is 133 kPa, an oxynitride and a stoichiometric titanium nitride form the topmost and lower surface layers on the titanium substrate, respectively. However, only a nonstoichiometric titanium oxide layer containing a small amount of nitrogen is formed when the pressure is lower than 13.3 kPa. Repetition of laser shots promotes the formation of the oxide layer, but the formation is completed within a few laser shots. After the initial structure is formed, the chemical state of the surface layer is less influenced by the repetition of laser shots.

  16. Impact of Urban, Agricultural and Industrial Emissions on the Atmospheric Reactive Nitrogen in the Columbia River Gorge Scenic Area

    Science.gov (United States)

    Mainord, J.; George, L. A.; Orlando, P.

    2015-12-01

    Secondary inorganic aerosol (SIA) formation is not fully characterized due to inadequate knowledge of pre-cursor emissions (ammonia, NH3, and nitrogen oxides, NOx) and from incomplete understanding of reactions in model predictions involving the precursors and the chemical products such as nitric acid (HNO3). The Columbia River Gorge (CRG), located between Oregon and Washington states, has unique sources of reactive nitrogen located at both ends and experiences bimodal winds: winter easterlies and summer westerlies. Because of the unique winds, this project will utilize the CRG as an environmental flow tube as we monitor for atmospheric reactive nitrogen species at two locations within the CRG: one located on the western side and one on the east. Measurements will include total oxidized nitrogen, NOx, NH3 and HNO3 using annular denuders, and a novel method using ion exchange resins for particulate ammonium, nitrate, and sulfates. In addition, an ozone gas analyzer and meteorological conditions of temperature, relative humidity, wind speed and direction will be measured. Our December 2012- June 2014 NOx measurements located near the eastern end of the CRG show significantly different (pwind conditions. This suggests an eastern NOx source - potentially the 550 megawatt Boardman Coal Power Plant 100 km to the east. These measurements in the near-source environment will provide insight into uncertainties in HNO3 formation, regional ammonia levels, and the best strategy for managers to reduce NOx or NH3 emissions to minimize SIA formation.

  17. Determination of nitrogen in uranium-plutonium mixed oxide fuel by gas chromatography after fusion in an inert gas atmosphere

    International Nuclear Information System (INIS)

    A gas chromatographic technique has been developed for the determination of nitrogen in uranium-plutonium mixed oxide fuel after fusion in an inert gas atmosphere. When the sample and pure iron powder in a graphite crucible were heated to approximately 2500C by a resistance heating furnace, a large amount of carbon monoxide was evolved with a small amount of nitrogen and hydrogen. A gas chromatograph equipped with a pre-cut system was used for the separation of nitrogen from the carbon monoxide. Nitrogen separated by the gas chromatograph was determined by means of a thermal conductivity detector. Only 100mg of the sample was used, and the analysis requires about 10min. No specific skills for glove-box work are necessary. The relative standard deviation and detection limit (3σ-criterion) were less than 5% and 9μgg-1, respectively. The present method is not only applicable to the analysis of research samples but also to the quality control of uranium-plutonium mixed oxide fuel production lines

  18. Impact of Urban, Agricultural and Industrial Emissions on the Atmospheric Reactive Nitrogen in the Columbia River Gorge Scenic Area

    Science.gov (United States)

    Mainord, J.; George, L. A.; Orlando, P.

    2015-12-01

    Secondary inorganic aerosol (SIA) formation is not fully characterized due to inadequate knowledge of pre-cursor emissions (ammonia, NH3, and nitrogen oxides, NOx) and from incomplete understanding of reactions in model predictions involving the precursors and the chemical products such as nitric acid (HNO3). The Columbia River Gorge (CRG), located between Oregon and Washington states, has unique sources of reactive nitrogen located at both ends and experiences bimodal winds: winter easterlies and summer westerlies. Because of the unique winds, this project will utilize the CRG as an environmental flow tube as we monitor for atmospheric reactive nitrogen species at two locations within the CRG: one located on the western side and one on the east. Measurements will include total oxidized nitrogen, NOx, NH3 and HNO3 using annular denuders, and a novel method using ion exchange resins for particulate ammonium, nitrate, and sulfates. In addition, an ozone gas analyzer and meteorological conditions of temperature, relative humidity, wind speed and direction will be measured. Our December 2012- June 2014 NOx measurements located near the eastern end of the CRG show significantly different (pmanagers to reduce NOx or NH3 emissions to minimize SIA formation.

  19. EnviroAtlas - Atmospheric Nitrogen Deposition by 12-digit HUC for the Conterminous United States (2002)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2002. Values are provided for total...

  20. EnviroAtlas - Atmospheric Nitrogen Deposition by 12-digit HUC for the Conterminous United States (2006)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2006. Values are provided for total...

  1. Total atmospheric deposition of oxidized nitrogen in the United States Pacific Northwest for 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This spatial data set was created by the U.S. Geological Survey (USGS) to represent the amount of wet and dry deposition of oxidized nitrogen in the Pacific...

  2. Total atmospheric deposition of reduced nitrogen in the United States Pacific Northwest for 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This spatial data set was created by the U.S. Geological Survey (USGS) to represent the amount of wet and dry deposition of reduced nitrogen in the Pacific...

  3. Total atmospheric deposition of oxidized and reduced nitrogen in the United States Pacific Northwest for 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This spatial data set was created by the U.S. Geological Survey (USGS) to represent the amount of wet and dry deposition of oxidized and reduced nitrogen in the...

  4. Effects of Nitrogen Application on Chlorophyll Fluorescence Parameters and Leaf Gas Exchange in Naked Oat

    Institute of Scientific and Technical Information of China (English)

    LIN Ye-chun; HU Yue-gao; REN Chang-zhong; GUO Lai-chun; WANG Chun-long; JIANG Ying; WANG Xue-jiao; Phendukani Hlatshwayo; ZENG Zhao-hai

    2013-01-01

    Naked oat (Avena nuda L.) was originated from China, where soil nitrogen (N) is low availability. The responses of chlorophyll (Chl.) lfuorescence parameters and leaf gas exchange to N application were analysed in this study. After the N application rate ranged from 60 to 120 kg ha-1, variable lfuorescence (Fv), the maximal lfuorescence (Fm), the maximal photochemical efifciency (Fv/Fm), quantum yield (ΦPS I) of the photosynthetic system II (PS II), electron transport rate (ETR), and photochemical quenching coefifcient (qP) increased with N application level, however, non-photochemical quenching coefifcient (qN) decreased. Moreover, there was no difference in initial lfuorescence (Fo) with further more N enhancement. The maximum net photosynthetic rate (Pmax), apparent dark respiration rate (Rd) and light saturation point (LSP) were improved with 40-56 kg N ha-1 as basal fertilizer and 24-40 kg N ha-1 as top dressing fertilizer applied at jointing stage. Initial quantum yield (α) was decreased with 24 kg N ha-1 as basal fertilizer and 56 kg N ha-1 as top dressing fertilizer.Flag-leaf net photosynthetic rate (Pn) was signiifcantly enhanced at the jointing and heading stages with 40-56 kg N ha-1 as basal fertilizer;in addition, increased at grain iflling stage of naked oat with 40-56 kg N ha-1 as top dressing fertilizer. 90 kg N ha-1 (50-70% as basal fertilizer and 30-50% as top dressing fertilizer) application is recommended to alleviate photodamage of photosystem and improve the photosynthetic rate in naked oat.

  5. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA-a critical review

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Douglas A

    2004-01-01

    The Rocky Mountains of Colorado and southern Wyoming receive atmospheric nitrogen (N) deposition that ranges from 2 to 7 kg ha{sup -1} yr{sup -1}, and some previous research indicates pronounced ecosystem effects at the highest rates of deposition. This paper provides a critical review of previously published studies on the effects of atmospheric N deposition in the region. Plant community changes have been demonstrated through N fertilization studies, however, N limitation is still widely reported in alpine tundra and subalpine forests of the Front Range, and sensitivity to changes in snow cover alone indicate the importance of climate sensitivity in these ecosystems. Retention of N in atmospheric wet deposition is <50% in some watersheds east of the Continental Divide, which reflects low biomass and a short growing season relative to the timing and N load in deposition. Regional upward temporal trends in surface water NO{sub 3}{sup -} concentrations have not been demonstrated, and future trend analyses must consider the role of climate as well as N deposition. Relatively high rates of atmospheric N deposition east of the Divide may have altered nutrient limitation of phytoplankton, species composition of diatoms, and amphibian populations, but most of these effects have been inconclusive to date, and additional studies are needed to confirm hypothesized cause and effect relations. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future. - The effects of nitrogen deposition will become more evident as growth increases.

  6. Atmospheric dry deposition of inorganic and organic nitrogen to the Bay of Bengal: Impact of continental outflow

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, B.; Sarin, M.M.; Sarma, V.V.S.S.

    in the deep freezer at - 19 0 C until the time of analysis. The mass concentrations of PM 2.5 and PM 10 were obtained gravimetrically by measuring the weight of the filters, before and after the collection. All samples were handled under a clean laminar-flow..., including organic nitrogen (N Org ), are bio-available (Bronk et al., 2007; Duce et al., 2008; Jickells, 2006; Seitzinger and Sanders, 1999; Spokes et al., 2000). As a result, studies on atmospheric deposition needs to be extended to measure organic...

  7. Trends in atmospheric deposition fluxes of sulphur and nitrogen in Czech forests

    International Nuclear Information System (INIS)

    We present the temporal trends and spatial changes of deposition of sulphur and nitrogen in Czech forests based on records from long-term monitoring. A statistically significant trend for sulphur was detected at most of the sites measuring for wet, dry, and total deposition fluxes and at many of these the trend was also present for the period after 2000. The spatial pattern of the changes in sulphur deposition flux between 1995 and 2011 shows the decrease over the entire forested area in a wide range of 18.1–0.2 g m−2 year−1 with the most pronounced improvement in formerly most impacted regions. Nitrogen still represents a considerable stress in many areas. The value of nitrogen deposition flux of 1 g m−2 year−1 is exceeded over a significant portion of the country. On an equivalent basis, the ion ratios of NO3−/SO42− and NH4+/SO42− in precipitation show significantly increasing trends in time similarly to those of pH. -- Highlights: • Significant decrease of sulphur deposition at most of sites has been recorded. • Nitrogen deposition still represents a considerable stress in Czech forests. • Significantly increasing trends of NO3−/SO42−, NH4+/SO42−, and pH in precipitation. -- While sulphur deposition significantly decreased with the highest improvement in formerly most affected areas, nitrogen deposition still represents a considerable stress in Czech forests

  8. Nitrogen Flux in Watersheds: The Role of Atmospheric Deposition, Waste Water Treatment Plants and Climate Oscillations in Nitrogen Exported to the Coastal Ecosystems

    Science.gov (United States)

    Showers, W. J.; Harris, J.; Genna, B.

    2007-12-01

    Quantifying the flux of nitrate from different sources in watersheds is important to understand the increased flux of nitrogen to coastal ecosystems. Recent technological advances in chemical sensor networks has demonstrated that chemical variability in aquatic environments are chronically under-sampled, and that many chemical monitoring programs with monthly or daily sampling rates are inadequate to characterize the dominate seasonal, daily or semi-diurnal process and episodic storm event fluxes. The RiverNet program has measured the nitrate flux in the Neuse River Basin, NC on a 15 minute interval over the past six years. Significant diurnal variation has been observed in nitrate concentrations during high and low flow periods associated with waste water treatment plants in the basin. Other species of riverine nitrogen do not show this type of concentration variation. Comparison of 15 minute versus 24 hour nitrate flux calculations show that daily monitoring programs underestimate N flux by 10-40%. Two RiverNet stations were used to estimate nitrate gains in the river from biosolid application fields at one waste water treatment plant. Over a 4 year period non-point source nitrate entering the river from the fields was 50% of the nitrogen released in plant effluent. Non-point source flux from biosolid application fields is event driven and can not be determined from daily or weekly sampling. These results suggest that the importance of waste water treatment plant N flux has been under-estimated in current models. The δ15N and δ 18O composition of nitrate has been used to assess importance of atmospheric sources to watershed N flux, but because of transformations contaminant source tracing with these isotopes has been complicated. We have used multiple isotope tracers of nitrate δ 15N, Δ 17O, δ 18O to distinguish between different N contamination sources, areas of extensive denitrification, and areas of atmospheric N. Areas of extensive denitrification are

  9. Fluorescence from atmospheric aerosol detected by a lidar indicates biogenic particles in the lowermost stratosphere

    Directory of Open Access Journals (Sweden)

    F. Immler

    2005-01-01

    Full Text Available With a lidar system that was installed in Lindenberg/Germany, we observed in June 2003 an extended aerosol layer at 13km altitude in the lowermost stratosphere. This layer created an inelastic backscatter signal that we detected with a water vapour Raman channel, but that was not produced by Raman scattering. Also, we find evidence for inelastic scattering from a smoke plume from a forest fire that we observed in the troposphere. We interpret the unexpected properties of these aerosols as fluorescence induced by the laser beam at organic components of the aerosol particles. Fluorescence from ambient aerosol had not yet been considered detectable by lidar systems. However, organic compounds such as polycyclic aromatic hydrocarbons sticking to the aerosol particles, or bioaerosol such as bacteria, spores or pollen fluoresce when excited with UV-radiation in a way that is detectable by our lidar system. Therefore, we conclude that fluorescence from organic material released by biomass burning creates, inelastic backscatter signals that we measured with our instrument and thus demonstrate a new and powerful way to characterize aerosols by a remote sensing technique. The stratospheric aerosol layer that we have observed in Lindenberg for three consecutive days is likely to be a remnant from Siberian forest fire plumes lifted across the tropopause and transported around the globe.

  10. Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East

    KAUST Repository

    Lelieveld, J.

    2015-08-21

    Nitrogen oxides, released from fossil fuel use and other combustion processes, affect air quality and climate. From the mid-1990s onward, nitrogen dioxide (NO2) has been monitored from space, and since 2004 with relatively high spatial resolution by the Ozone Monitoring Instrument. Strong upward NO2 trends have been observed over South and East Asia and the Middle East, in particular over major cities. We show, however, that a combination of air quality control and political factors, including economical crisis and armed conflict, has drastically altered the emission landscape of nitrogen oxides in the Middle East. Large changes, including trend reversals, have occurred since about 2010 that could not have been predicted and therefore are at odds with emission scenarios used in projections of air pollution and climate change in the early 21st century.

  11. The Effect of Surface Ice and Topography on the Atmospheric Circulation and Distribution of Nitrogen Ice on Pluto

    Science.gov (United States)

    Rafkin, Scot C. R.; Soto, Alejandro; Michaels, Timothy I.

    2016-10-01

    A newly developed general circulation model (GCM) for Pluto is used to investigate the impact of a heterogeneous distribution of nitrogen surface ice and large scale topography on Pluto's atmospheric circulation. The GCM is based on the GFDL Flexible Modeling System (FSM). Physics include a gray model radiative-conductive scheme, subsurface conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4 and CO, including non-local thermodynamic equilibrium effects. including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Further, the circulation, and the thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over substantial and variable topography. To produce such an ice distribution, the atmospheric circulation and volatile transport must be more complex than previously envisioned. Simulations where topography, surface ice distributions, and volatile cycle physics are added individually and in various combinations are used to individually quantify the importance of the general circulation, topography, surface ice distributions, and condensation flows. It is shown that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and hence, the distribution of

  12. Ethane in Planetary and Cometary Atmospheres: Transmittance and Fluorescence Models of the nu7 Band at 3.3 Micrometers

    Science.gov (United States)

    Villanueva, G. L.; Mumma, M. J.; Magee-Sauer, K.

    2011-01-01

    Ethane and other hydrocarbon gases have strong rovibrational transitions in the 3.3 micron spectral region owing to C-H, CH2, and CH3 vibrational modes, making this spectral region prime for searching possible biomarker gases in extraterrestrial atmospheres (e.g., Mars, exoplanets) and organic molecules in comets. However, removing ethane spectral signatures from high-resolution terrestrial transmittance spectra has been imperfect because existing quantum mechanical models have been unable to reproduce the observed spectra with sufficient accuracy. To redress this problem, we constructed a line-by-line model for the n7 band of ethane (C2H6) and applied it to compute telluric transmittances and cometary fluorescence efficiencies. Our model considers accurate spectral parameters, vibration-rotation interactions, and a functional characterization of the torsional hot band. We integrated the new band model into an advanced radiative transfer code for synthesizing the terrestrial atmosphere (LBLRTM), achieving excellent agreement with transmittance data recorded against Mars using three different instruments located in the Northern and Southern hemispheres. The retrieved ethane abundances demonstrate the strong hemispheric asymmetry noted in prior surveys of volatile hydrocarbons. We also retrieved sensitive limits for the abundance of ethane on Mars. The most critical validation of the model was obtained by comparing simulations of C2H6 fluorescent emission with spectra of three hydrocarbon-rich comets: C/2004 Q2 (Machholz), 8P/Tuttle, and C/2007 W1 (Boattini). The new model accurately describes the complex emission morphology of the nu7 band at low rotational temperatures and greatly increases the confidence of the retrieved production rates (and rotational temperatures) with respect to previously available fluorescence models.

  13. Synergistic Effects of Nitrogen Amendments and Ethylene on Atmospheric Methane Uptake under a Temperate Old-growth Forest

    Institute of Scientific and Technical Information of China (English)

    XU Xingkai; HAN Lin; LUO Xianbao; HAN Shijie

    2011-01-01

    An increase in atmospheric nitrogen (N) deposition can promote soil acidification, which may increase the release of ethylene (C2H4) under forest floors. Unfortunately, knowledge of whether increasing N deposition and C2H4 releases have synergistic effects on soil methane (CH4) uptake is limited and certainly deserves to be examined. We conducted some field measurements and laboratory experiments to examine this issue. The addition of (NH4)2SO4 or NH4C1 at a rate of 45 kg N ha-1 yr 1 reduced the soil CH4 uptake under a temperate old-growth forest in northeast China, and there were synergistic effects of N amnendments in the presence of C2H4 concentrations equal to atmospheric CH4 concentration on the soil CH4 uptake, particularly in the NH4Cl-treated plots. Effective concentrations of added C2H4 on the soil CH4 uptake were smaller in NH4+-treated plots than in KNO3-treated plots. The concentration of ca 0.3 μ1 C2H4 L-1 in the headspace gases reduced by 20% soil atmospheric CH4 uptake in the NH4Cl-treated plots, and this concentration was easily produced in temperate forest topsoils under short-term anoxic conditions. Together with short-term stimulating effects of N amendments and soil acidification on C2H4 production from forest soils, our observations suggest that knowledge of synergistic effects of NH4+, rather than NO3-, amendments and C2H4 on the in situ soil CH4 uptake is critical for understanding the role of atmospheric N deposition and cycling of C2H4 under forest floors in reducing global atmospheric CH4 uptake by forests. Synergistic functions of NH4+-N deposition and C2H4 release due to soil acidification in reducing atmospheric CH4 uptake by forests are discussed.

  14. Design and construction of prototype transversely excited atmospheric (TEA nitrogen laser energized by a high voltage electrical discharge

    Directory of Open Access Journals (Sweden)

    Mukhtar Hussain

    2015-07-01

    Full Text Available The present study reports design and construction, of a prototype of Transversely Excited Atmospheric (TEA nitrogen laser, and a high voltage power supply to excite N2 gas in air, while air is used as an active lasing medium. A Blumlein line discharge circuit is used for operation of this laser. The high voltage is generated by a fly back transformer based power supply varying from 10 kV to 20 kV. The wavelength (337.1 nm of TEA nitrogen laser is measured employing a standard commercial spectrometer and the laser output energy of 300 μJ is measured from the constructed system. Different parameters such as beam profile, laser output spectrum, laser efficiency, and variation of E/P (Electrical field/Pressure value with respect to input voltage and electrodes separations are studied in order to optimize the overall operational efficiency of present nitrogen laser. The analysis of the high voltage prototype appeared in this designed source has also been made and described in this paper.

  15. Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

    Energy Technology Data Exchange (ETDEWEB)

    Ave, M.; /Karlsruhe, Inst. Technol.; Bohacova, M.; /Chicago U., EFI; Daumiller, K.; /Karlsruhe, Inst. Technol.; Di Carlo, P.; /INFN, Aquila; Di Giulio, C.; /INFN, Rome; Luis, P.Facal San; /Chicago U., EFI; Gonzales, D.; /Karlsruhe U., EKP; Hojvat, C.; /Fermilab; Horandel, J.R.; /Nijmegen U., IMAPP; Hrabovsky, M.; /Palacky U.; Iarlori, M.; /INFN, Aquila /Karlsruhe, Inst. Technol.

    2011-01-01

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  16. Analysis of High Frequency Site-Specific Nitrogen and Oxygen Isotopic Composition of Atmospheric Nitrous Oxide at Mace Head, Ireland

    Science.gov (United States)

    McClellan, M. J.; Harris, E. J.; Olszewski, W.; Ono, S.; Prinn, R. G.

    2014-12-01

    Atmospheric nitrous oxide (N2O) significantly impacts Earth's climate due to its dual role as an inert potent greenhouse gas in the troposphere and as a reactive source of ozone-destroying nitrogen oxides in the stratosphere. However, there remain significant uncertainties in the global budget of this gas. The marked spatial divide in its reactivity means that all stages in the N2O life cycle—emission, transport, and destruction—must be examined to understand the overall effect of N2O on climate. Source and sink processes of N2O lead to varying concentrations of N2O isotopologues (14N14N16O, 14N15N16O, 15N14N16O, and 14N14N18O being measured) due to preferential isotopic production and elimination in different environments. Estimation of source and sink fluxes can be improved by combining isotopically resolved N2O observations with simulations using a chemical transport model with reanalysis meteorology and treatments of isotopic signatures of specific surface sources and stratospheric intrusions. We present the first few months of site-specific nitrogen and oxygen isotopic composition data from the Stheno-TILDAS instrument (Harris et al, 2013) at Mace Head, Ireland and compare these to results from MOZART-4 (Model for Ozone and Related Chemical Tracers, version 4) chemical transport model runs including N2O isotopic fractionation processes and reanalysis meterological fields (NCEP/NCAR, MERRA, and GEOS-5). This study forms the basis for future inverse modeling experiments that will improve the accuracy of isotopically differentiated N2O emission and loss estimates. Ref: Harris, E., D. Nelson, W. Olszewski, M. Zahniser, K. Potter, B. McManus, A. Whitehill, R. Prinn, and S. Ono, Development of a spectroscopic technique for continuous online monitoring of oxygen and site-specific nitrogen isotopic composition of atmospheric nitrous oxide, Analytical Chemistry, 2013; DOI: 10.1021/ac403606u.

  17. Atmospheric organic and inorganic nitrogen inputs to coastal urban and montane Atlantic Forest sites in southeastern Brazil

    Science.gov (United States)

    de Souza, Patricia A.; Ponette-González, Alexandra G.; de Mello, William Z.; Weathers, Kathleen C.; Santos, Isimar A.

    2015-06-01

    Tropical regions are currently experiencing changes in the quantity and form of nitrogen (N) deposition as a result of urban and industrial emissions. We quantified atmospheric N inputs to two coastal urban and two montane (400 m and 1000 m) Atlantic Forest sites downwind of the Metropolitan Region of Rio de Janeiro (MRRJ), Brazil, from August 2008 to August 2009. Concentrations of total dissolved nitrogen (TDN), dissolved inorganic nitrogen (DIN) and urea were measured in bulk precipitation at all sites, as well as in canopy throughfall in the lower montane forest. Dissolved organic nitrogen (DON) was calculated as the difference between TDN and DIN (NH4+ + NO3- + NO2-). Annual volume-weighted mean bulk concentrations of all N species were higher at the coastal urban than montane forest sites, with DON accounting for 32-56% and 26-32%, respectively, of the TDN concentration in bulk precipitation. Bulk deposition of TDN ranged 12.1-17.2 kg N ha- 1 yr- 1 and tended to decrease with increasing distance from the coastal urban region. In the lower montane forest, throughfall TDN flux, 34.3 kg N ha- 1 yr- 1, was over 2-fold higher than bulk TDN deposition, and DON comprised 57% of the total N deposited by throughfall to the forest soil. Urea comprised 27% of DON in throughfall compared to up to 100% in bulk precipitation. Our findings show that DON is an important, yet understudied, component of TDN deposition in tropical forest regions, comprising one-third to greater than one-half of the N deposited in rainfall and throughfall. Further, in this lower montane Atlantic Forest site, throughfall DIN flux was 1.5-3 fold higher than the suggested empirical critical load for humid tropical forests, highlighting the potential for increasing N pollution emitted from the MRRJ to impact N cycling in adjacent ecosystems.

  18. Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake.

    Science.gov (United States)

    Ellis, Bonnie K; Craft, James A; Stanford, Jack A

    2015-01-01

    We documented significantly increasing trends in atmospheric loading of ammonium (NH4) and nitrate/nitrite (NO2/3) and decreasing trends in total phosphorus (P) and sulfate (SO4) to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass.

  19. Contributions of atmospheric nitrogen deposition to U.S. estuaries: Summary and conclusions: Chapter 8

    Science.gov (United States)

    Stacey, Paul E.; Greening, Holly; Kremer, James N.; Peterson, David; Tomasko, David A.

    2001-01-01

    A NOAA project was initiated in 1998, with support from the U.S. EPA, to develop state-of-the-art estimates of atmospheric N deposition to estuarine watersheds and water surfaces and its delivery to the estuaries. Work groups were formed to address N deposition rates, indirect (from the watershed) yields from atmospheric and other anthropogenic sources, and direct deposition on the estuarine waterbodies, and to evaluate the levels of uncertainty within the estimates. Watershed N yields were estimated using both a land-use based process approach and a national (SPARROW) model, compared to each other, and compared to estimates of N yield from the literature. The total N yields predicted by the national model were similar to values found in the literature and the land-use derived estimates were consistently higher. Atmospheric N yield estimates were within a similar range for the two approaches, but tended to be higher in the land-use based estimates and were not wellcorrelated. Median atmospheric N yields were around 15% of the total N yield for both groups, but ranged as high as 60% when both direct and indirect deposition were considered. Although not the dominant source of anthropogenic N, atmospheric N is, and will undoubtedly continue to be, an important factor in culturally eutrophied estuarine systems, warranting additional research and management attention.

  20. Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake

    Directory of Open Access Journals (Sweden)

    Bonnie K. Ellis

    2015-03-01

    Full Text Available We documented significantly increasing trends in atmospheric loading of ammonium (NH4 and nitrate/nitrite (NO2/3 and decreasing trends in total phosphorus (P and sulfate (SO4 to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter <10 µm in size, aerosol fine soil mass, aerosol nutrient species, aerosol index, hectares burned suggest that dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass.

  1. Determination of symbiotic nitrogen fixation by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment

    International Nuclear Information System (INIS)

    A direct method to determine the total symbiotic nitrogen fixation during the leguminous plants cycles has been, developed, by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment, of about 1 atom % excess. The soil explored by the root system of leguminous plants was confined by means of a chamber in the field and by sealed pots in greenhouse experiments in order to maintain the soil air labelled with sup(15)N sub(2). The average sup(15)N concentration in the soil atmosphere, necessary to calculate dinitrogen fixation, was obtained by integration of the exponential functions of isotope dilution. Those functions were obtained by periodic sampling and analysis of the N sub(2) in the soil atmosphere. The field experiment with labelled atmosphere was carried out from the 22 sup(nd) to the 31 sup(st) day of the bean crop cycle and 5.5 mg N/plant (24% of total plant N) was derived from fixation. In pot experiments, under greenhouse conditions, integrated determination of fixation was made in Phaseolus beans (from the 19 sup(th) to the 67 sup(th) day from planting) and in soybeans (from the 24 sup(th) to the 70 sup(th) day from planting). The soil atmosphere was labelled with sup(15)N sub(2) in both cases. Average fixation obtained for Phaseolus beans was 80 mg N/plant (65% of total plant N) and for soybeans 265 mg N/plant (71% of total plant N). Evaluation of the basic concept of the isotope dilution method to determine nitrogen fixation in pots experiments, as proposed by Fried and Middelboe (1977) has also been made in the present paper. Simultaneous determinations of fixation in soybeans, using the isotope dilution method of Fried and Middelboe, natural variation of the sup(15)N/ sup(14)N ratios, and total-N differences, indicated the same results for pot experiments, harvested at the end of the plant cycle. (author)

  2. Investigation of potential interferences in the detection of atmospheric ROx radicals by laser-induced fluorescence under dark conditions

    Science.gov (United States)

    Fuchs, Hendrik; Tan, Zhaofeng; Hofzumahaus, Andreas; Broch, Sebastian; Dorn, Hans-Peter; Holland, Frank; Künstler, Christopher; Gomm, Sebastian; Rohrer, Franz; Schrade, Stephanie; Tillmann, Ralf; Wahner, Andreas

    2016-04-01

    Direct detection of highly reactive, atmospheric hydroxyl radicals (OH) is widely accomplished by laser-induced fluorescence (LIF) instruments. The technique is also suitable for the indirect measurement of HO2 and RO2 peroxy radicals by chemical conversion to OH. It requires sampling of ambient air into a low-pressure cell, where OH fluorescence is detected after excitation by 308 nm laser radiation. Although the residence time of air inside the fluorescence cell is typically only on the order of milliseconds, there is potential that additional OH is internally produced, which would artificially increase the measured OH concentration. Here, we present experimental studies investigating potential interferences in the detection of OH and peroxy radicals for the LIF instruments of Forschungszentrum Jülich for nighttime conditions. For laboratory experiments, the inlet of the instrument was over flowed by excess synthetic air containing one or more reactants. In order to distinguish between OH produced by reactions upstream of the inlet and artificial signals produced inside the instrument, a chemical titration for OH was applied. Additional experiments were performed in the simulation chamber SAPHIR where simultaneous measurements by an open-path differential optical absorption spectrometer (DOAS) served as reference for OH to quantify potential artifacts in the LIF instrument. Experiments included the investigation of potential interferences related to the nitrate radical (NO3, N2O5), related to the ozonolysis of alkenes (ethene, propene, 1-butene, 2,3-dimethyl-2-butene, α-pinene, limonene, isoprene), and the laser photolysis of acetone. Experiments studying the laser photolysis of acetone yield OH signals in the fluorescence cell, which are equivalent to 0.05 × 106 cm-3 OH for a mixing ratio of 5 ppbv acetone. Under most atmospheric conditions, this interference is negligible. No significant interferences were found for atmospheric concentrations of reactants

  3. Nitrogen and carbon cycling in a grassland community ecosystem as affected by elevated atmospheric CO2

    Science.gov (United States)

    Increasing global atmospheric CO2 concentration has led to concerns regarding its potential effects on terrestrial ecosystem and the long-term storage of C and N in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L.) Willd (...

  4. Low atmospheric nitrogen loads lead to grass encroachment in coastal dunes, but only on acid soils

    NARCIS (Netherlands)

    E. Remke; E. Brouwer; A. Kooijman; I. Blindow; J.G.M. Roelofs

    2009-01-01

    The impact of atmospheric N-deposition on succession from open sand to dry, lichen-rich, short grassland, and tall grass vegetation dominated by Carex arenaria was surveyed in 19 coastal dune sites along the Baltic Sea. Coastal dunes with acid or slightly calcareous sand reacted differently to atmos

  5. Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure

    OpenAIRE

    Martins, Alexandre A.

    2012-01-01

    In this work we are going to perform a simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas, and compare our results with already published experimental results in air for the same structure. We have chosen to simulate this innovative geometry because it has been established experimentally that it can generate a thrust per unit electrode length transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind top velocity in the range of 8-9 m/s in air. ...

  6. X-Ray Fluorescence Analysis of Fine Atmospheric Aerosols from a Site in Mexico City

    Directory of Open Access Journals (Sweden)

    A. E. Hernández-López

    2016-08-01

    Full Text Available A study was performed in the Winter of the year 2015 in a Southwestern site in the MAMC (Ciudad Universitaria, collecting PM2.5 samples with a MiniVol. As a part of wider study focused to fully characterize aerosols at this site, an X-ray Fluorescence (XRF spectrometer (based on an Rh X-ray tube built to analyze environmental samples, was used to characterize the sample set. A total of 16 elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb were detected in most samples and mean concentrations were calculated. Cluster analysis was also applied to the elemental concentrations to find possible correlations among the elements.

  7. Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Alexandre A. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2012-06-15

    In this work, we are going to perform a simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas, and compare our results with already published experimental results in air for the same structure. We have chosen to simulate this innovative geometry because it has been established experimentally that it can generate a thrust per unit electrode length transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind top velocity in the range of 8-9 m/s in air. In our model, the used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode, after which the generated positive ions are further accelerated in the acceleration channel between the ground and cathode. By applying the fluid dynamic and electrostatic theories, all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to theoretically confirm the generated ion wind profile and also the thrust per unit electrode length. These results are important to establish the validity of this simulation tool for the future study and development of this effect for practical purposes.

  8. Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure

    CERN Document Server

    Martins, Alexandre A

    2012-01-01

    In this work we are going to perform a simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas, and compare our results with already published experimental results in air for the same structure. We have chosen to simulate this innovative geometry because it has been established experimentally that it can generate a thrust per unit electrode length transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind top velocity in the range of 8-9 m/s in air. In our model, the used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode, after which the generated positive ions are further accelerated in the acceleration channel between the ground and cathode. By applying the fluid dynamic and electrostatic theories all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to theoretically confirm the generated ion wind profile and also the thrust per u...

  9. Avalanches near a solid insulator in nitrogen gas at atmospheric pressure

    International Nuclear Information System (INIS)

    The pulsed Townsend (PT) technique was used to record the growth of avalanches near a solid insulator in nitrogen gas at 0.1 MPa. Several other nonconventional techniques for releasing initiatory electrons at the cathode are discussed. In this paper, experimental results of avalanches initiated by illuminating a fast (0.6-ns) nitrogen laser onto the cathode triple junction are presented. Data were recorded with plexiglas, Teflon, high-density polyethylene, low-density polyethylene, Delrin, etc. Effect of surface condition, variation of the distance between insulator surface and the avalanche initiation region, and the effect of a large number of previous avalanches on the avalanche characteristics at a particular voltage were studied. The Townsend primary ionization coefficient, hereafter referred to as growth coefficient (α), and drift velocity (V/sub e/) were evaluated through the PT technique. Results indicate that the avalanche growth in the vicinity of a solid insulator is less than that in an identical plain gas gap. Existence of a nonuniform field as a result of surface charges on the insulator and/or field modifications due to the avalanche space charge are believed to be responsible for this behavior

  10. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands

    Science.gov (United States)

    Pinho, P.; Theobald, M. R.; Dias, T.; Tang, Y. S.; Cruz, C.; Martins-Loução, M. A.; Máguas, C.; Sutton, M.; Branquinho, C.

    2012-03-01

    Nitrogen (N) has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds such as critical loads (deposition fluxes) and levels (concentrations) can be established. Few studies have assessed these thresholds for semi-natural Mediterranean ecosystems. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. We have considered changes in epiphytic lichen communities, one of the most sensitive comunity indicators of excessive N in the atmosphere. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done for a Mediterranean climate in evergreen cork-oak woodlands, based on the relation between lichen functional diversity and modelled N deposition for critical loads and measured annual atmospheric ammonia concentrations for critical levels, evaluated downwind from a reduced N source (a cattle barn). Modelling the highly significant relationship between lichen functional groups and annual atmospheric ammonia concentration showed the critical level to be below 1.9 μg m-3, in agreement with recent studies for other ecosystems. Modelling the highly significant relationship between lichen functional groups and N deposition showed that the critical load was lower than 26 kg (N) ha-1 yr-1, which is within the upper range established for other semi-natural ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should aid development of policies to protect Mediterranean woodlands from the initial effects of excessive N.

  11. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands

    Directory of Open Access Journals (Sweden)

    P. Pinho

    2012-03-01

    Full Text Available Nitrogen (N has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds such as critical loads (deposition fluxes and levels (concentrations can be established. Few studies have assessed these thresholds for semi-natural Mediterranean ecosystems. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. We have considered changes in epiphytic lichen communities, one of the most sensitive comunity indicators of excessive N in the atmosphere. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done for a Mediterranean climate in evergreen cork-oak woodlands, based on the relation between lichen functional diversity and modelled N deposition for critical loads and measured annual atmospheric ammonia concentrations for critical levels, evaluated downwind from a reduced N source (a cattle barn. Modelling the highly significant relationship between lichen functional groups and annual atmospheric ammonia concentration showed the critical level to be below 1.9 μg m−3, in agreement with recent studies for other ecosystems. Modelling the highly significant relationship between lichen functional groups and N deposition showed that the critical load was lower than 26 kg (N ha−1 yr−1, which is within the upper range established for other semi-natural ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should aid development of policies to protect Mediterranean woodlands from the initial effects of excessive N.

  12. Disequilibrium Carbon, Oxygen, and Nitrogen Chemistry in the Atmospheres of HD 189733b and HD 209458b

    CERN Document Server

    Moses, Julianne I; Fortney, Jonathan J; Showman, Adam P; Lewis, Nikole K; Griffith, Caitlin A; Shabram, Megan; Friedson, A James; Marley, Mark S; Freedman, Richard S

    2011-01-01

    We have developed 1-D photochemical and thermochemical kinetics and diffusion models for the transiting exoplanets HD 189733b and HD 209458b to study the effects of disequilibrium chemistry on the atmospheric composition of "hot Jupiters." Here we investigate the coupled chemistry of neutral carbon, hydrogen, oxygen, and nitrogen species, and we compare the model results with existing transit and eclipse observations. We find that the vertical profiles of molecular constituents are significantly affected by transport-induced quenching and photochemistry, particularly on cooler HD 189733b; however, the warmer stratospheric temperatures on HD 209458b can help maintain thermochemical equilibrium and reduce the effects of disequilibrium chemistry. For both planets, the methane and ammonia mole fractions are found to be enhanced over their equilibrium values at pressures of a few bar to less than a mbar due to transport-induced quenching, but CH$_4$ and NH$_3$ are photochemically removed at higher altitudes. Atomi...

  13. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Hye Yeon Seo

    Full Text Available The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ, elicited from one of two different gas sources (nitrogen and air, to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in

  14. A Comparison of Process-Scale Modeling and Measurements of Atmosphere-Snowpack Exchange of Nitrogen Oxides at Summit, Greenland

    Science.gov (United States)

    Murray, K. A.; Helmig, D.; Kramer, L. J.; Doskey, P. V.; Van Dam, B. A.; Seok, B.; Ganzeveld, L.

    2015-12-01

    Snowpack over glacial ice is a reservoir for reactive nitrogen gases. Previous studies indicate nitrogen oxides (NOx) are generated in snowpack interstitial air through photolysis of nitrate (NO3-). Gradients in NOx mixing ratios between snowpack interstitial air and the overlying atmosphere regulate NOx surface exchange, which affects the Arctic ozone budget and climate. To better understand the dynamics of cryosphere-atmosphere exchange of NOx in the Arctic, we use a 1-D process-scale model to evaluate measurements of NOxin and above the snowpack during March-May 2009 at Summit, Greenland. The model is based upon the processes previously presented in the snowpack chemistry and physics model, MISTRA-SNOW, which represents snow grains as spheres with surfaces uniformly coated by an aqueous phase. Modeled profiles of NO, NO2, and O3 up to ~ 2 meters deep into the snowpack for March-May 2009 have been compared to measured profiles and will be presented. During the March-May time period at Summit, low irradiances are observed during March, diurnal irradiance profiles are observed during April, and the sun never sets in May. The model results suggest a key chemical pathway for the formation of NO2 during "nighttime" that was previously unexplained. In addition, modeled 24-hour NOx fluxes are compared to measured NOx fluxes from a MET tower at Summit. Modeled fluxes of NOx in April 2009 are the same order of magnitude as the measurements; however, modeled fluxes of NOx deviate up to one order of magnitude from measurements in May 2009. A detailed analysis of the modeled/measured flux comparison will be presented.

  15. Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation

    Science.gov (United States)

    Meyerholt, Johannes; Zaehle, Sönke; Smith, Matthew J.

    2016-03-01

    Including a terrestrial nitrogen (N) cycle in Earth system models has led to substantial attenuation of predicted biosphere-climate feedbacks. However, the magnitude of this attenuation remains uncertain. A particularly important but highly uncertain process is biological nitrogen fixation (BNF), which is the largest natural input of N to land ecosystems globally. In order to quantify this uncertainty and estimate likely effects on terrestrial biosphere dynamics, we applied six alternative formulations of BNF spanning the range of process formulations in current state-of-the-art biosphere models within a common framework, the O-CN model: a global map of static BNF rates, two empirical relationships between BNF and other ecosystem variables (net primary productivity and evapotranspiration), two process-oriented formulations based on plant N status, and an optimality-based approach. We examined the resulting differences in model predictions under ambient and elevated atmospheric [CO2] and found that the predicted global BNF rates and their spatial distribution for contemporary conditions were broadly comparable, ranging from 108 to 148 Tg N yr-1 (median: 128 Tg N yr-1), despite distinct regional patterns associated with the assumptions of each approach. Notwithstanding, model responses in BNF rates to elevated levels of atmospheric [CO2] (+200 ppm) ranged between -4 Tg N yr-1 (-3 %) and 56 Tg N yr-1 (+42 %) (median: 7 Tg N yr-1 (+8 %)). As a consequence, future projections of global ecosystem carbon (C) storage (+281 to +353 Pg C, or +13 to +16 %) as well as N2O emission (-1.6 to +0.5 Tg N yr-1, or -19 to +7 %) differed significantly across the different model formulations. Our results emphasize the importance of better understanding the nature and magnitude of BNF responses to change-induced perturbations, particularly through new empirical perturbation experiments and improved model representation.

  16. Temperature dependence of evaporation coeffcient of water in air and nitrogen under atmospheric pressure; study in water droplets

    CERN Document Server

    Zientara, M; Kolwas, K; Kolwas, M

    2008-01-01

    The evaporation coefficients of water in air and nitrogen were found as a function of temperature, by studying the evaporation of pure water droplet. The droplet was levitated in an electrodynamic trap placed in a climatic chamber maintaining atmospheric pressure. Droplet radius evolution and evaporation dynamics were studied with high precision by analyzing the angle-resolved light scattering Mie interference patterns. A model of quasi-stationary droplet evolution, accounting for the kinetic effects near the droplet surface was applied. In particular, the effect of thermal effusion (a short range analogue of thermal diffusion) was discussed and accounted for. The evaporation coefficient \\alpha in air and in nitrogen were found equal. \\alpha was found to decrease from ~ 0.18 to ~ 0.13 for the temperature range from 273.1 K to 293.1 K and follow the trend given by Arrhenius formula. The agreement with condensation coefficient values obtained with essentially different method by Li et al.[1] was found excellent...

  17. Sensitivity of wave-length dispersive x-ray fluorescence of atmospheric aerosols

    International Nuclear Information System (INIS)

    The possibilities of wave-length dispersive x-ray spectrometry for the elemental analysis of the inorganic fraction of atmospheric aerosols collected on filter materials were thoroughly investigated. Three filter-types, namely one cellulose filter (Whatman 41) and two membrane filters (Millipore AAWP, pore size 0.8 um and Nuclepore, pore size 0.4 um) were compared. In order to measure the Nuclepore filters in a reproducible geometry under vacuum condition, a number of minor technical modifications had to be applied to the Philips PW 1450 spectrometer. X-ray tubes with chromium, tungsten, or silver anticathodes were tested for their capabilities for excitation of the particulate material. To obtain a wide range of elements, whether by their K-x rays or by their L-x rays, the tungsten tube appeared to be the best compromise. Detection limits of typical atmospheric aerosols after a 24 hour sampling on Nuclepore filters with a dust load of less than 100 ug. cm-2, were derived for Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr (K-x rays), Cd, Sn, Sb, Ba and Pb

  18. Atmospheric Pressure Radio Frequency Dielectric Barrier Discharges in Nitrogen/Argon

    International Nuclear Information System (INIS)

    This work reports the experimental results on the characteristics of radio frequency dielectric barrier N2/Ar discharges. Depending on the nitrogen content in the feed gas and the input power, the discharge can operate in two different modes: a homogeneous glow discharge and a constricted discharge. With increasing input power, the number of discharge columns increases. The discharge columns have starlike structures and exhibit symmetric self-organized arrangement. Optical emission spectroscopy was performed to estimate the plasma temperature. Spatially resolved gas temperature measurements, determined from NO emission rotational spectroscopy were taken across the 4.4 mm gap filled by the discharge. Gas temperature in the middle of the gas gap is lower than that close to the electrodes

  19. Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere

    Science.gov (United States)

    Pérez del Pino, Ángel; György, Enikö; Cabana, Laura; Ballesteros, Belén; Tobias, Gerard

    2014-03-01

    Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

  20. Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pérez del Pino, Ángel, E-mail: aperez@icmab.es; Cabana, Laura; Tobias, Gerard [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); György, Enikö [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, P. O. Box MG 36, 76900 Bucharest V (Romania); Ballesteros, Belén [ICN2—Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2014-03-07

    Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

  1. The photosynthesis - leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Andrew G. Peterson; J. Timothy Ball; Yiqi Luo; Christopher B. Field; Peter B. Reich; Peter S. Curtis; Kevin L. Griffin; Carla S Gunderson; Richard J. Norby; David T. Tissue; Manfred Forstreuter; Ana Rey; Christoph S. Vogel; CMEAL collaboration

    1998-09-25

    Estimation of leaf photosynthetic rate (A) from leaf nitrogen content (N) is both conceptually and numerically important in models of plant, ecosystem and biosphere responses to global change. The relationship between A and N has been studied extensively at ambient CO{sub 2} but much less at elevated CO{sub 2}. This study was designed to (1) assess whether the A-N relationship was more similar for species within than between community and vegetation types, and (2) examine how growth at elevated CO{sub 2} affects the A-N relationship. Data were obtained for 39 C{sub 3} species grown at ambient CO{sub 2} and 10 C{sub 3} species grown at ambient and elevated CO{sub 2}. A regression model was applied to each species as well as to species pooled within different community and vegetation types. Cluster analysis of the regression coefficients indicated that species measured at ambient CO{sub 2} did not separate into distinct groups matching community or vegetation type. Instead, most community and vegetation types shared the same general parameter space for regression coefficients. Growth at elevated CO{sub 2} increased photosynthetic nitrogen use efficiency for pines and deciduous trees. When species were pooled by vegetation type, the A-N relationship for deciduous trees expressed on a leaf-mass bask was not altered by elevated CO{sub 2}, while the intercept increased for pines. When regression coefficients were averaged to give mean responses for different vegetation types, elevated CO{sub 2} increased the intercept and the slope for deciduous trees but increased only the intercept for pines. There were no statistical differences between the pines and deciduous trees for the effect of CO{sub 2}. Generalizations about the effect of elevated CO{sub 2} on the A-N relationship, and differences between pines and deciduous trees will be enhanced as more data become available.

  2. Total reflection X-ray fluorescence analysis of pollen as an indicator for atmospheric pollution*1

    Science.gov (United States)

    Pepponi, G.; Lazzeri, P.; Coghe, N.; Bersani, M.; Gottardini, E.; Cristofolini, F.; Clauser, G.; Torboli, A.

    2004-08-01

    The viability of pollen is affected by environmental pollution and its use as a bio-indicator is proposed. Such effects can be observed and quantified by biological tests. However, a more accurate identification of the agents affecting the viability is required in order to validate the biological assay for environmental monitoring. The chemical analysis of pollen is meant to ascertain the existence of a correlation between its reduced biological functions and the presence of pollutants. Moreover, such biological systems act as accumulators and allow the detection and quantification of species present in the environment at low concentrations. Total reflection X-ray fluorescence analysis (TXRF) has been chosen for the investigation due to its high sensitivity, multielement capability and wide dynamic range. Corylus avellana L. (hazel) pollen has been collected in areas with different anthropic impact in the province of Trento, Italy. For the TXRF measurements, a liquid sample is needed, especially if a quantitative analysis is required. In the present work, the analysis after a microwave digestion has been compared with the analysis of a suspension of the pollen samples. In both cases, an internal standard has been used for the quantification. The concentrations of 17 elements ranging from Al to Pb have been determined in 13 samples. Analysis of the suspensions showed to be comparable to that of digested samples in terms of spectral quality, but the latter preparation method gave better reproducibility. Sub-ppm lowest limits of detection were obtained for iron and heavier elements detected.

  3. One-pot synthesis of highly greenish-yellow fluorescent nitrogen-doped graphene quantum dots for pyrophosphate sensing via competitive coordination with Eu(3+) ions.

    Science.gov (United States)

    Lin, Liping; Song, Xinhong; Chen, Yiying; Rong, Mingcong; Zhao, Tingting; Jiang, Yaqi; Wang, Yiru; Chen, Xi

    2015-10-01

    Highly fluorescent nitrogen-doped graphene quantum dots (N-GQDs) with greenish-yellow emission and quantum yield of 13.2% have been synthesized via a one-pot hydrothermal method. The obtained N-GQDs displayed excellent optical properties, high photostability and resistance to strong ion strength. Based on the higher affinity of pyrophosphate (PPi) than carboxyl and amido groups on the surface of the N-GQDs to Eu(3+), a Eu(3+)-modulated N-GQD off-on fluorescent probe for PPi detection was constructed with a detection limit of 0.074 μM. The detection process was simple in design, easy to operate, and showed a highly selective response to PPi in the presence of co-existing anions. This work widens the applications of N-GQDs with versatile functionality and reactivity in clinical diagnostics and as biosensors.

  4. Direct Solvent-Derived Polymer-Coated Nitrogen-Doped Carbon Nanodots with High Water Solubility for Targeted Fluorescence Imaging of Glioma.

    Science.gov (United States)

    Wang, Yi; Meng, Ying; Wang, Shanshan; Li, Chengyi; Shi, Wei; Chen, Jian; Wang, Jianxin; Huang, Rongqin

    2015-08-01

    Cancer imaging requires biocompatible and bright contrast-agents with selective and high accumulation in the tumor region but low uptake in normal tissues. Herein, 1-methyl-2-pyrrolidinone (NMP)-derived polymer-coated nitrogen-doped carbon nanodots (pN-CNDs) with a particle size in the range of 5-15 nm are prepared by a facile direct solvothermal reaction. The as-prepared pN-CNDs exhibit stable and adjustable fluorescence and excellent water solubility. Results of a cell viability test (CCK-8) and histology analysis both demonstrate that the pN-CNDs have no obvious cytotoxicity. Most importantly, the pN-CNDs can expediently enter glioma cells in vitro and also mediate glioma fluorescence imaging in vivo with good contrast via elevated passive targeting. PMID:25808813

  5. A rapid microwave synthesis of nitrogen-sulfur co-doped carbon nanodots as highly sensitive and selective fluorescence probes for ascorbic acid.

    Science.gov (United States)

    Duan, Junxia; Yu, Jie; Feng, Suling; Su, Li

    2016-06-01

    A ultrafast one-step microwave-assisted method was developed for the synthesis of nitrogen-sulfur co-doped carbon nanodots (N,S-CDs) by using ethylenediamine as the carbon source and sulfamic acid as the surface passivation reagent. The morphology and the properties of N,S-CDs were explored by a series of techniques, such as high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis absorption and fluorescence spectroscopy. The prepared N,S-CDs exhibit bright blue photoluminescence with a high fluorescence quantum yield (FLQY) up to 28%, and high stability and excellent water solubility. A N,S-CDs-based fluorescent probe was developed for sensitive detection ascorbic acid (AA) in the presence of Cu(2+), based on the mechanism that AA reduces Cu(2+) to Cu(+), then Cu(+) quenches the fluorescence of N,S-CDs through electron or energy transfer due to the interaction between Cu(+) and thiol ligand on the N,S-CDs surface. The observed linear response concentration range was from 0.057 to 4.0μM to AA with a detection limit as low as 18nM. The probe exhibited a highly selective response toward AA even in the presence of possible interfering substances, such as uric acid and citric acid. Moreover, these promising features made the sensing system used for the analysis of human serum and urine samples. PMID:27130124

  6. Nitrogen-rich functional groups carbon nanoparticles based fluorescent pH sensor with broad-range responding for environmental and live cells applications.

    Science.gov (United States)

    Shi, Bingfang; Su, Yubin; Zhang, Liangliang; Liu, Rongjun; Huang, Mengjiao; Zhao, Shulin

    2016-08-15

    A nitrogen-rich functional groups carbon nanoparticles (N-CNs) based fluorescent pH sensor with a broad-range responding was prepared by one-pot hydrothermal treatment of melamine and triethanolamine. The as-prepared N-CNs exhibited excellent photoluminesence properties with an absolute quantum yield (QY) of 11.0%. Furthermore, the N-CNs possessed a broad-range pH response. The linear pH response range was 3.0 to 12.0, which is much wider than that of previously reported fluorescent pH sensors. The possible mechanism for the pH-sensitive response of the N-CNs was ascribed to photoinduced electron transfer (PET). Cell toxicity experiment showed that the as-prepared N-CNs exhibited low cytotoxicity and excellent biocompatibility with the cell viabilities of more than 87%. The proposed N-CNs-based pH sensor was used for pH monitoring of environmental water samples, and pH fluorescence imaging of live T24 cells. The N-CNs is promising as a convenient and general fluorescent pH sensor for environmental monitoring and bioimaging applications. PMID:27085956

  7. The quenching effect of hydrogen on the nitrogen in metastable state in atmospheric-pressure N2-H2 microwave plasma torch

    International Nuclear Information System (INIS)

    The atmospheric-pressure microwave N2-H2 plasma torch is generated and diagnosed by optical emission spectroscopy. It is found that a large amount of N atoms and NH radicals are generated in the plasma torch and the emission intensity of N2+ first negative band is the strongest over the spectra. The mixture of hydrogen in nitrogen plasma torch causes the morphology of the plasma discharge to change with appearance that the afterglow shrinks greatly and the emission intensity of N2+ first negative band decreases with more hydrogen mixed into nitrogen plasma. In atmospheric-pressure microwave-induced plasma torch, the hydrogen imposes a great influence on the characteristics of nitrogen plasma through the quenching effect of the hydrogen on the metastable state of N2

  8. Formation of Biphasic State in Vacuum-Arc Coatings Obtained by Evaporation of Ti-Al-Zr-Nb-Y Alloy in the Atmosphere of Nitrogen

    Directory of Open Access Journals (Sweden)

    V.M. Beresnev

    2014-04-01

    Full Text Available By means of X-ray diffraction, transmission and scanning electron microscopy, energy dispersive spectroscopy and indentation methods, the effect of nitrogen atmosphere pressure on composition, structure and hardness of vacuum-arc (Ti-Al-Zr-Nb-YN coatings during the deposition process has been studied. The two-phase state of the coating with solid-solution metal component (bcc lattice and nitride phase (fcc lattice have been formed. Increasing the pressure of nitrogen atmosphere leads to the increase of nitrogen component in the coating as well as to increase of the ordering regions size, allowing to achieve the hardness of H = 49 GPa at a pressure of P = 0.5 Pa.

  9. Production characteristics of reactive oxygen/nitrogen species in water using atmospheric pressure discharge plasmas

    Science.gov (United States)

    Takahashi, Kazuhiro; Satoh, Kohki; Itoh, Hidenori; Kawaguchi, Hideki; Timoshkin, Igor; Given, Martin; MacGregor, Scott

    2016-07-01

    A pulsed discharge, a DC corona discharge, and a plasma jet are separately generated above a water surface, and reactive oxygen species and reactive nitrogen species (ROS/RNS) in the water are investigated. ROS/RNS in water after the sparging of the off-gas of a packed-bed dielectric barrier discharge (PB-DBD) are also investigated. H2O2, NO2 ‑, and NO3 ‑ are detected after plasma exposure and only NO3 ‑ after off-gas sparging. Short-lifetime species in plasma are found to play an important role in H2O2 and NO2 ‑ production and long-lifetime species in NO3 ‑ production. NO x may inhibit H2O2 production through OH consumption to produce HNO2 and HNO3. O3 does not contribute to ROS/RNS production. The pulsed plasma exposure is found to be effective for the production of H2O2 and NO2 ‑, and the off-gas sparging of the PB-DBD for the production of NO3 ‑.

  10. Atmospheric multiple scattering of fluorescence light from extensive air showers and effect of the aerosol size on the reconstruction of energy and depth of maximum

    CERN Document Server

    Louedec, K

    2013-01-01

    The reconstruction of the energy and the depth of maximum Xmax of an extensive air shower depends on the multiple scattering of fluorescence photons in the atmosphere. In this work, we explain how atmospheric aerosols, and especially their size, scatter the fluorescence photons during their propagation. Using a Monte Carlo simulation for the scattering of light, the dependence on the aerosol conditions of the multiple scattered light contribution to the recorded signal is fully parameterised. A clear dependence on the aerosol size is proposed for the first time. Finally, using this new parameterisation, the effect of atmospheric aerosols on the energy and on the Xmax reconstructions is presented for a typical extensive air shower observed by a ground-based detector: a systematic over-estimation of these two quantities is observed if aerosols of large size are neglected in the estimation of the multiple scattered fraction.

  11. Impacts of changing atmospheric deposition chemistry on nitrogen and phosphorus loading to Ganga River (India).

    Science.gov (United States)

    Pandey, Jitendra; Singh, Anand V; Singh, Ashima; Singh, Rachna

    2013-08-01

    Investigations on atmospheric deposition (AD) and water chemistry along a 35 km stretch of Ganga River indicated that although N:P stoichiometry of AD did not change, there were over 1.4-2.0 fold increase in AD-NO₃⁻, AD-NH₄⁺ and AD-PO₄³⁻ overtime. Concentration of dissolved inorganic-N (DIN) in river showed significant positive correlations with AD-NO₃⁻ and runoff DIN. Similarly, dissolved reactive-P (DRP) in river showed significant positive correlation with AD-PO₄³⁻ and runoff DRP. The study shows that AD has become an important source of N and P input to Ganga River.

  12. Impacts of changing atmospheric deposition chemistry on nitrogen and phosphorus loading to Ganga River (India).

    Science.gov (United States)

    Pandey, Jitendra; Singh, Anand V; Singh, Ashima; Singh, Rachna

    2013-08-01

    Investigations on atmospheric deposition (AD) and water chemistry along a 35 km stretch of Ganga River indicated that although N:P stoichiometry of AD did not change, there were over 1.4-2.0 fold increase in AD-NO₃⁻, AD-NH₄⁺ and AD-PO₄³⁻ overtime. Concentration of dissolved inorganic-N (DIN) in river showed significant positive correlations with AD-NO₃⁻ and runoff DIN. Similarly, dissolved reactive-P (DRP) in river showed significant positive correlation with AD-PO₄³⁻ and runoff DRP. The study shows that AD has become an important source of N and P input to Ganga River. PMID:23700007

  13. Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet.

    Science.gov (United States)

    Hu, Zhujun; Anderson, Nicholas John; Yang, Xiangdong; McGowan, Suzanne

    2014-05-01

    The south-east margin of Tibet is highly sensitive to global environmental change pressures, in particular, high contemporary reactive nitrogen (Nr) deposition rates (ca. 40 kg ha(-1)  yr(-1) ), but the extent and timescale of recent ecological change is not well prescribed. Multiproxy analyses (diatoms, pigments and geochemistry) of (210) Pb-dated sediment cores from two alpine lakes in Sichuan were used to assess whether they have undergone ecological change comparable to those in Europe and North America over the last two centuries. The study lakes have contrasting catchment-to-lake ratios and vegetation cover: Shade Co has a relatively larger catchment and denser alpine shrub than Moon Lake. Both lakes exhibited unambiguous increasing production since the late 19th to early 20th. Principle component analysis was used to summarize the trends of diatom and pigment data after the little ice age (LIA). There was strong linear change in biological proxies at both lakes, which were not consistent with regional temperature, suggesting that climate is not the primary driver of ecological change. The multiproxy analysis indicated an indirect ecological response to Nr deposition at Shade Co mediated through catchment processes since ca. 1930, while ecological change at Moon Lake started earlier (ca. 1880) and was more directly related to Nr deposition (depleted δ(15) N). The only pronounced climate effect was evidenced by changes during the LIA when photoautotrophic groups shifted dramatically at Shade Co (a 4-fold increase in lutein concentration) and planktonic diatom abundance declined at both sites because of longer ice cover. The substantial increases in aquatic production over the last ca. 100 years required a substantial nutrient subsidy and the geochemical data point to a major role for Nr deposition although dust cannot be excluded. The study also highlights the importance of lake and catchment morphology for determining the response of alpine lakes to

  14. Prediction of BOD, COD, and total nitrogen concentrations in a typical urban river using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices.

    Science.gov (United States)

    Hur, Jin; Cho, Jinwoo

    2012-01-01

    The development of a real-time monitoring tool for the estimation of water quality is essential for efficient management of river pollution in urban areas. The Gap River in Korea is a typical urban river, which is affected by the effluent of a wastewater treatment plant (WWTP) and various anthropogenic activities. In this study, fluorescence excitation-emission matrices (EEM) with parallel factor analysis (PARAFAC) and UV absorption values at 220 nm and 254 nm were applied to evaluate the estimation capabilities for biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total nitrogen (TN) concentrations of the river samples. Three components were successfully identified by the PARAFAC modeling from the fluorescence EEM data, in which each fluorophore group represents microbial humic-like (C1), terrestrial humic-like organic substances (C2), and protein-like organic substances (C3), and UV absorption indices (UV(220) and UV(254)), and the score values of the three PARAFAC components were selected as the estimation parameters for the nitrogen and the organic pollution of the river samples. Among the selected indices, UV(220), C3 and C1 exhibited the highest correlation coefficients with BOD, COD, and TN concentrations, respectively. Multiple regression analysis using UV(220) and C3 demonstrated the enhancement of the prediction capability for TN.

  15. Prediction of BOD, COD, and Total Nitrogen Concentrations in a Typical Urban River Using a Fluorescence Excitation-Emission Matrix with PARAFAC and UV Absorption Indices

    Directory of Open Access Journals (Sweden)

    Jin Hur

    2012-01-01

    Full Text Available The development of a real-time monitoring tool for the estimation of water quality is essential for efficient management of river pollution in urban areas. The Gap River in Korea is a typical urban river, which is affected by the effluent of a wastewater treatment plant (WWTP and various anthropogenic activities. In this study, fluorescence excitation-emission matrices (EEM with parallel factor analysis (PARAFAC and UV absorption values at 220 nm and 254 nm were applied to evaluate the estimation capabilities for biochemical oxygen demand (BOD, chemical oxygen demand (COD, and total nitrogen (TN concentrations of the river samples. Three components were successfully identified by the PARAFAC modeling from the fluorescence EEM data, in which each fluorophore group represents microbial humic-like (C1, terrestrial humic-like organic substances (C2, and protein-like organic substances (C3, and UV absorption indices (UV220 and UV254, and the score values of the three PARAFAC components were selected as the estimation parameters for the nitrogen and the organic pollution of the river samples. Among the selected indices, UV220, C3 and C1 exhibited the highest correlation coefficients with BOD, COD, and TN concentrations, respectively. Multiple regression analysis using UV220 and C3 demonstrated the enhancement of the prediction capability for TN.

  16. Measurement and Modeling of Site-specific Nitrogen and Oxygen Isotopic Composition of Atmospheric Nitrous Oxide at Mace Head, Ireland

    Science.gov (United States)

    McClellan, M. J.; Saikawa, E.; Prinn, R. G.; Ono, S.

    2015-12-01

    Global mixing ratios of atmospheric nitrous oxide (N2O), a potent greenhouse gas, have increased nearly linearly from the beginning of the modern industrial period to today, with the current global average in excess of 325 ppb. This increase can be largely attributed to anthropogenic activity above the level of N2O emissions from natural biotic sources. The effect of N2O on Earth's climate is twofold: in the troposphere, N2O is radiatively active and chemically inert, while it serves as a reactive source of ozone-destroying nitrogen oxides in the stratosphere. The marked altitudinal divide in its reactivity means that all stages in the N2O life cycle—emission, transport, and destruction—must be examined to understand the overall effect of N2O on Earth's climate. However, the understanding of the total impact of N2O is incomplete, as there remain significant uncertainties in the global budget of this gas. Due to unique isotopic substitutions (15N and 18O) made by different N2O sources and stratospheric chemical reactions, the measurement of N2O isotopic ratios in ambient air can help identify the distribution and magnitude of distinct source types. We present the first year of site-specific nitrogen and oxygen isotopic composition data from the MIT Stheno-tunable infrared direct absorption spectroscopy (TILDAS) instrument at Mace Head, Ireland. Aided by the Stheno preconcentration system, Stheno-TILDAS can achieve measurement precisions of 0.10‰ or greater for all isotopic ratios (δ15N and δ18O) in ambient N2O. We further compare these data to the results from Model for Ozone and Related Tracers version 4 (MOZART-4) simulations, including N2O isotopic fractionation processes and MERRA/GEOS-5 reanalysis meteorological fields. These results will form the basis of future Bayesian inverse modeling simulations that will constrain global N2O source, circulation, and sink dynamics better.

  17. Atmospheric Pressure Plasma CVD of Amorphous Hydrogenated Silicon Carbonitride (a-SiCN:H) Films Using Triethylsilane and Nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan Guruvenket; Steven Andrie; Mark Simon; Kyle W. Johnson; Robert A. Sailer

    2011-10-04

    Amorphous hydrogenated silicon carbonitride (a-SiCN:H) thin films are synthesized by atmospheric pressure plasma enhanced chemical vapor (AP-PECVD) deposition using the Surfx Atomflow{trademark} 250D APPJ source with triethylsilane (HSiEt{sub 3}, TES) and nitrogen as the precursor and the reactive gases, respectively. The effect of the substrate temperature (T{sub s}) on the growth characteristics and the properties of a-SiCN:H films was evaluated. The properties of the films were investigated via scanning electron microscopy (SEM), atomic force microscopy (AFM) for surface morphological analyses, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) for chemical and compositional analyses; spectroscopic ellipsometry for optical properties and thickness determination and nanoindentation to determine the mechanical properties of the a-SiCN:H films. Films deposited at low T{sub s} depict organic like features, while the films deposited at high T{sub s} depict ceramic like features. FTIR and XPS studies reveal that an increases in T{sub s} helps in the elimination of organic moieties and incorporation of nitrogen in the film. Films deposited at T{sub s} of 425 C have an index of refraction (n) of 1.84 and hardness (H) of 14.8 GPa. A decrease in the deposition rate between T{sub s} of 25 and 250 C and increase in deposition rate between T{sub s} of 250 and 425 C indicate that the growth of a-SiCN:H films at lower T{sub s} are surface reaction controlled, while at high temperatures film growth is mass-transport controlled. Based on the experimental results, a potential route for film growth is proposed.

  18. Response of stable carbon isotope in epilithic mosses to atmospheric nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xueyan, E-mail: liuxueyan@vip.skleg.c [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Xiao Huayun; Liu Congqiang [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Li Youyi; Xiao Hongwei; Wang Yanli [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Graduate University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049 (China)

    2010-06-15

    Epilithic mosses are characterized by insulation from substratum N and hence meet their N demand only by deposited N. This study investigated tissue C, total Chl and delta{sup 13}C of epilithic mosses along 2 transects across Guiyang urban (SW China), aiming at testing their responses to N deposition. Tissue C and total Chl decreased from the urban to rural, but delta{sup 13}C{sub moss} became less negative. With measurements of atmospheric CO{sub 2} and delta{sup 13}CO{sub 2}, elevated N deposition was inferred as a primary factor for changes in moss C and isotopic signatures. Correlations between total Chl, tissue C and N signals indicated a nutritional effect on C fixation of epilithic mosses, but the response of delta{sup 13}C{sub moss} to N deposition could not be clearly differentiated from effects of other factors. Collective evidences suggest that C signals of epilithic mosses are useful proxies for N deposition but further works on physiological mechanisms are still needed. - Photosynthetic {sup 13}C discrimination of bryophytes might increase with elevated N deposition.

  19. A simple model to estimate exchange rates of nitrogen dioxide between the atmosphere and forests

    Directory of Open Access Journals (Sweden)

    J. Duyzer

    2005-08-01

    Full Text Available A simple model (2layer was constructed that describes the exchange of the reactive gases NO, NO2 and O3 between forest and the atmosphere. The model uses standard equations to describe exchange processes and uptake of gases. It also takes into account reactions taking place in the trunk space between NO and O3 and photolysis of NO2. All equations are solved analytically leading to a scheme efficient enough to allow implementation in a large scale dispersion model such as the EMEP model.

    The model is tested on two comprehensive datasets obtained in a coniferous forest and a deciduous forest. The model calculations of NO2 and O3 fluxes to the forest were compared with observations of these fluxes. Although the comparison is often not perfect some of the striking features of the observed fluxes i.e. upward fluxes of NO2 were simulated quite well. The impact of chemical reactions between O3, NO and NO2 in the trunk space appear to have a significant effect on the deposition rate of O2. This is especially true during the night and more so for forests emitting large amounts of NO.

  20. Experimental investigation of anaerobic nitrogen fixation rates with varying pressure, temperature and metal concentration with application to the atmospheric evolution of early Earth and Mars.

    Science.gov (United States)

    Gupta, Prateek

    2012-07-01

    The atmosphere of the early Earth is thought to have been significantly different than the modern composition of 21% O2 and 78% N2, yet the planet has been clearly established as hosting microbial life as far back as 3.8 billion years ago. As such, constraining the atmospheric composition of the early Earth is fundamental to establishing a database of habitable atmospheric compositions. A similar argument can be made for the planet Mars, where nitrates have been hypothesized to exist in the subsurface. During the early period on Mars when liquid water was likely more abundant, life may have developed to take advantage of available nitrates and a biologically-driven Martian nitrogen cycle could have evolved. Early Earth atmospheric composition has been investigated numerically, but only recently has the common assumption of a pN2 different than modern been investigated. Nonetheless, these latest attempts fail to take into account a key atmospheric parameter: life. On modern Earth, nitrogen is cycled vigorously by biology. The nitrogen cycle likely operated on the early Earth, but probably differed in the metabolic processes responsible, dominantly due to the lack of abundant oxygen which stabilizes oxidized forms of N that drive de-nitrification today. Recent advances in evolutionary genomics suggest that microbial pathways that are relatively uncommon today (i.e. vanadium and iron-based nitrogen fixation) probably played important roles in the early N cycle. We quantitatively investigate in the laboratory the effects of variable pressure, temperature and metal concentration on the rates of anoxic nitrogen fixation, as possible inputs for future models investigating atmospheric evolution, and better understand the evolution of the nitrogen cycle on Earth. A common anaerobic methanogenic archaeal species with i) a fully sequenced genome, ii) all three nitrogenases (molybdenum, vanadium and iron-based) and iii) the ability to be genetically manipulated will be used as

  1. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an atmospheric pressure air plasma jet

    Science.gov (United States)

    Conway, J.; Gogna, G. S.; Gaman, C.; Turner, M. M.; Daniels, S.

    2016-08-01

    Atomic oxygen number density [O] is measured in an air atmospheric pressure plasma jet (APPJ) using two-photon absorption laser induced fluorescence (TALIF). Gas flow is fixed at 8 slpm, the RF power coupled into the plasma jet varied between 5 W and 20 W, and the resulting changes in atomic oxygen density measured. Photolysis of molecular oxygen is employed to allow in situ calibration of the TALIF system. During calibration, O2 photo-dissociation and two-photon excitation of the resulting oxygen atoms are achieved within the same laser pulse. The atomic oxygen density produced by photolysis is time varying and spatially non-uniform which needs to be corrected for to calibrate the TALIF system for measurement of atomic oxygen density in plasma. Knowledge of the laser pulse intensity I 0(t), wavelength, and focal spot size allows correction factors to be determined using a rate equation model. Atomic oxygen is used for calibration and measurement, so the laser intensity can be increased outside the TALIF quadratic laser power dependence region without affecting the calibration reliability as the laser power dependence will still be the same for both. The atomic O density results obtained are not directly benchmarked against other known density measurement techniques. The results show that the plasma jet atomic oxygen content increases as the RF power coupled into the plasma increases.

  2. Pitfalls and new mechanisms in moss isotope biomonitoring of atmospheric nitrogen deposition.

    Science.gov (United States)

    Liu, Xue-Yan; Koba, Keisuke; Liu, Cong-Qiang; Li, Xiao-Dong; Yoh, Muneoki

    2012-11-20

    Moss N isotope (δ(15)N(bulk)) has been used to monitor N deposition, but it remains questionable whether inhibition of nitrate reductase activity (NRA) by reduced dissolved N (RDN) engenders overestimation of RDN in deposition when using moss δ(15)N(bulk). We tested this question by investigation of δ(15)N(bulk) and δ(15)NO(3)(-) in mosses under the dominance of RDN in N depositions of Guiyang, SW China. The δ(15)N(bulk) of mosses on bare rock (-7.9‰) was unable to integrate total dissolved N (TDN) (δ(15)N = -6.3‰), but it reflected δ(15)N-RDN (-7.5‰) exactly. Moreover, δ(15)N-NO(3)(-) in mosses (-1.7‰) resembled that of wet deposition (-1.9‰). These isotopic approximations, together with low isotopic enrichment with moss [NO(3)(-)] variations, suggest the inhibition of moss NRA by RDN. Moreover, isotopic mixing modeling indicated a negligible contribution from NO(3)(-) to moss δ(15)N(bulk) when the RDN/NO(3)(-) reaches 3.8, at which maximum overestimation (21%) of RDN in N deposition can be generated using moss δ(15)N(bulk) as δ(15)N-TDN. Moss δ(15)N-NO(3)(-) can indicate atmospheric NO(3)(-) under distinctly high RDN/NO(3)(-) in deposition, although moss δ(15)N(bulk) can reflect only the RDN therein. These results reveal pitfalls and new mechanisms associated with moss isotope monitoring of N deposition and underscore the importance of biotic N dynamics in biomonitoring studies. PMID:23050838

  3. Intercomparison of peroxy radical measurements obtained at atmospheric conditions by laser-induced fluorescence and electron spin resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Hofzumahaus

    2009-03-01

    Full Text Available Measurements of hydroperoxy radical (HO2 and organic peroxy radical (RO2 concentrations were performed by two different techniques in the atmospheric simulation chamber SAPHIR in Jülich, Germany. The first technique was the well-established Matrix Isolation Electron Spin Resonance (MIESR, which provides absolute measurements with a time resolution of 30 min and high accuracy (10%, 2 σ. The other technique, ROxLIF, has been newly developed. It is based on the selective chemical conversion of ROx radicals (HO2 and RO2 to OH, which is detected with high sensitivity by laser-induced fluorescence (LIF. ROxLIF is calibrated by quantitative photolysis of water vapor at 185 nm and provides ambient measurements at a temporal resolution of 1 min and accuracy of 20% (2 σ. The measurements of HO2 and RO2 obtained by the two techniques were compared for two types of atmospheric simulation experiments. In one experiment, HO2 and CH3O2 radicals were produced by photooxidation of methane in air at tropospheric conditions. In the second experiment, HO2 and C2H5O2 were produced by ozonolysis of 1-butene in air at dark conditions. The radical concentrations were within the range of 16 to 100 pptv for HO2 and 12 to 45 pptv for RO2. Good agreement was found in the comparison of the ROxLIF and MIESR measurements within their combined experimental uncertainties. Linear regressions to the combined data set yield slopes of 1.02±0.13 (1 σ for RO2 and 0.98±0.08 (1 σ for HO2 without significant offsets. The results confirm the calibration of the ROxLIF instrument and demonstrate that it can be applied with good accuracy for measurements of atmospheric peroxy radical concentrations.

  4. The camera of the Pierre Auger Observatory Fluorescence Detector

    CERN Document Server

    Ambrosio, M; Bracci, F; Facal, P; Fonte, R; Gallo, G; Kemp, E; Matthiae, Giorgio; Nicotra, D; Privitera, P; Raia, G; Tusi, E; Vitali, G

    2002-01-01

    The Fluorescence Detector of the Pierre Auger Observatory is a set of telescopes which measure the fluorescence light emitted by atmospheric nitrogen stimulated by the cosmic-ray showers. The Camera is an array of photomultipliers positioned on the telescope focal surface. We describe the main features of the camera: the hexagonal pixels geometry on the spherical focal surface; the light collectors which complement the photomultipliers; the photomultipliers test.

  5. Snowpack-atmosphere gas exchanges of carbon dioxide, ozone, and nitrogen oxides at a hardwood forest site in northern Michigan

    Directory of Open Access Journals (Sweden)

    Brian Seok

    2015-03-01

    Full Text Available Abstract Snowpack-atmosphere gas exchanges of CO2, O3, and NOx (NO + NO2 were investigated at the University of Michigan Biological Station (UMBS, a mid-latitude, low elevation hardwood forest site, during the 2007–2008 winter season. An automated trace gas sampling system was used to determine trace gas concentrations in the snowpack at multiple depths continuously throughout the snow-covered period from two adjacent plots. One natural plot and one with the soil covered by a Tedlar sheet were setup for investigating whether the primary source of measured trace gases was biogenic (i.e., from the soil or non-biogenic (i.e., from the snowpack. The results were compared with the “White on Green” study conducted at the Niwot Ridge (NWT Long Term Ecological Research site in Colorado. The average winter CO2 flux ± s.e. from the soil at UMBS was 0.54 ± 0.037 µmol m-2 s-1 using the gradient diffusion method and 0.71 ± 0.012 µmol m-2 s-1 using the eddy covariance method, and in a similar range as found for NWT. Observed snowpack-O3 exchange was also similar to NWT. However, nitrogen oxides (NOx fluxes from snow at UMBS were 10 times smaller than those at NWT, and fluxes were bi-directional with the direction of the flux dependent on NOx concentrations in ambient air. The compensation point for the change in the direction of NOx flux was estimated to be 0.92 nmol mol-1. NOx in snow also showed diurnal dependency on incident radiation. These NOx dynamics in the snow at UMBS were notably different compared to NWT, and primarily determined by snow-atmosphere interactions rather than by soil NOx emissions.

  6. Changes in fungal community composition in response to elevated atmospheric CO2 and nitrogen fertilization varies with soil horizon

    Directory of Open Access Journals (Sweden)

    Carolyn F Weber

    2013-04-01

    Full Text Available Increasing levels of atmospheric carbon dioxide (CO2 and rates of nitrogen (N-deposition to forest ecosystems are predicted to alter the structure and function of soil fungal communities, but the spatially heterogeneous distribution of soil fungi has hampered investigations aimed at understanding such impacts. We hypothesized that soil physical and chemical properties and fungal community composition would be differentially impacted by elevated atmospheric CO2 (eCO2 and N-fertilization in spatially separated field samples, in the forest floor, 0-2 cm, 2-5 cm and 5-10 cm depth intervals in a loblolly pine Free-Air-Carbon Dioxide Enrichment (FACE experiment. In all soils, quantitative PCR-based estimates of fungal biomass were highest in the forest floor. Fungal richness, based on pyrosequencing of the fungal ribosomal large subunit gene, increased in response to N-fertilization in 0-2 cm and forest floor intervals. Composition shifted in forest floor, 0-2 cm and 2-5 cm intervals in response to N-fertilization, but the shift was most distinct in the 0-2 cm interval, in which the largest number of statistically significant changes in soil chemical parameters (i.e phosphorus, organic matter, calcium, pH was also observed. In the 0-2 cm interval, increased recovery of sequences from the Thelephoraceae, Tricholomataceae, Hypocreaceae, Clavicipitaceae, and Herpotrichiellaceae families and decreased recovery of sequences from the Amanitaceae correlated with N-fertilization. In this same depth interval, Amanitaceae, Tricholomataceae and Herpotriciellaceae sequences were recovered less frequently from soils exposed to eCO2 relative to ambient conditions. These results demonstrated that vertical stratification should be taken into consideration in future efforts to elucidate environmental impacts on fungal communities and their feedbacks on ecosystem processes.

  7. Blue-green fluorescence and visible-infrared reflectance of corn (Zea mays L.) grain for in situ field detection of nitrogen supply

    International Nuclear Information System (INIS)

    The sensing of spectral attributes of corn (Zea mays L.) grain from site specific areas of the field during the harvest process may be useful in managing agronomic inputs and production practices on those areas of the field in subsequent growing seasons. Eight levels of nitrogen (N) fertilization were applied to field grown corn at Beltsville, Maryland. These N treatments produced a range of chlorophyll levels, biomass and physiological condition in the live plant canopies. After harvest, spectra were obtained in the laboratory on whole grain samples. Fluorescence emissions were acquired from 400 to 600 nm and percent reflectance were measured in the visible (VIS) near infrared (NIR) and mid-infrared (MIR) regions from 400 nm to 2400 nm. A ultraviolet (UV) excitation band centered at 385 nm was the most effective in producing fluorescence emission differences in the blue-green region of the fluorescence spectrum with maxima centered from 430-470nm in the blue and with an intense shoulder centered at around 530-560 nm in the green region. Reflectance showed the most spectral differences in the NIR and MIR (970-2330 nm) regions

  8. Fluorescence Resonance Energy Transfer-based Biosensor Composed of Nitrogen-doped Carbon Dots and Gold Nanoparticles for the Highly Sensitive Detection of Organophosphorus Pesticides.

    Science.gov (United States)

    Gong, Nian Chun; Li, Yan Le; Jiang, Xi; Zheng, Xiao Fang; Wang, Ya Ya; Huan, Shuang Yan

    2016-01-01

    The present article reports a novel biosensor for organophosphorus pesticides based on fluorescence resonance energy transfer (FRET) between nitrogen-doped carbon dots (NC-dots) and gold nanoparticles (AuNPs). The effective NC-dots/AuNPs assembly through the Au-N interaction results in good fluorescence quenching. Active acetylcholinesterase (AChE) catalyzes the hydrolysis of acetylthiocholine into -SH containing thiocholine to replace the NC-dots and trigger the aggregation of AuNPs. In the presence of paraoxon, the activity of AChE is inhibited, and thus preventing the generation of thiocholine, causing fewer NC-dots to be replaced. As a consequence, the fluorescence intensity gradually decreases with increasing amount of paraoxon. This biosensor does not require any complex synthesis or modification, and the results show a wide detection range of from 10(-4) to 10(-9) g/L with a detection limit of 1.0 × 10(-9) g/L (3.6 × 10(-12) mol/L). Two linear response regions have been reported with a turning point at about 10(-6) g/L and three different factors that would influence the response behavior. These phenomena discussed in detail so as to explain the special response mechanism. PMID:27682399

  9. Combined Tree-Ring Carbon and Nitrogen Isotopes to infer past atmospheric deposition in Northeastern Alberta

    Science.gov (United States)

    Savard, M. M.; Bégin, C.; Marion, J.

    2013-12-01

    Monitoring atmospheric emissions from industrial centers in North America is significantly younger than the emitting activities themselves. Attention should be placed on SOx and NOx emissions as they have been increasing over the last 15 years in western Canada. In Northeastern Alberta in particular, two distinct diffuse pollution contexts deserve attention: the Lower Athabasca Oil Sands (OS) district (north of Fort McMurray), and the coal fired power plant (CFPP) area (west of Edmonton). The NOx and SO2 emissions started in 1967 and 1956, but the direct air quality monitoring has been initiated in 1997 and 1985, in these respective contexts. In an attempt to address the gap in emission and deposition monitoring, we explored the δ13C and δ15N patterns of spruce trees (Picea glauca and Picea mariana) growing in four stands in the OS district and one stand, in the CFPP area. Tree-ring series collected from these five sites all covering the 1880-2010 period were analyzed and their δ13C and δ15N values examined along with the climatic parameters and SOx and NOx emission proxies. For two stands in the OS district where soil drainage was poor δ15N series did not vary significantly, but the intermediate and long-term δ13C and δ15N trends inversely correlate in the three other studied stands. For these three sites statistical analyses for the pre-operation calibration periods (1910-1961 and 1900-1951) allowed developing transfer functions and predicting the natural δ13C and δ15N responses to climatic conditions for the operation periods. The measured series all depart from the modeled natural trends, depicting anomalies. Interestingly, the anomalies in the two regions can be nicely reproduced by multiple-regression models combining local climatic parameters with acidifying emissions. Notwithstanding the significant inverse correlations between the δ13C and δ15N series for the three well drained sites and their link to acidifying emissions, it is too early to

  10. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA.

    Science.gov (United States)

    McDonnell, T C; Belyazid, S; Sullivan, T J; Sverdrup, H; Bowman, W D; Porter, E M

    2014-04-01

    To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010-2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha(-1) yr(-1). Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone.

  11. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA

    International Nuclear Information System (INIS)

    To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010–2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha−1 yr−1. Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone. - Highlights: • A novel calibration step was introduced for modeling biodiversity with ForSAFE-Veg. • Modeled increases in tree cover are consistent with empirical studies. • Reductions in N deposition decreased future graminoid percent cover. • Critical loads of N to protect biodiversity should consider climate change effects. - Subalpine plant biodiversity in Rocky Mountain National Park has already been impacted by N deposition and climate change and is expected to experience significant future effects

  12. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the midwestern and northeastern United States

    Science.gov (United States)

    Elliott, E.M.; Kendall, C.; Wankel, Scott D.; Burns, Douglas A.; Boyer, E.W.; Harlin, K.; Bain, D.J.; Butler, T.J.

    2007-01-01

    Global inputs of NOx are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NOx sources. However, elucidating NOx sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (??15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in ??15N are strongly correlated with NOx emissions from surrounding stationary sources and additionally that ??15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO 42-, or NO3- concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U.S., our results suggest that wet NO 3- deposition at sites in this study is strongly associated with NOx emissions from stationary sources. This suggests that large areas of the landscape potentially receive atmospheric NOy deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in ??15N values are a robust indicator of stationary NOx contributions to wet NO3- deposition and hence a valuable complement to existing tools for assessing relationships between NO 3- deposition, regional emission inventories, and for evaluating progress toward NOx reduction goals. ?? 2007 American Chemical Society.

  13. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia.

    Science.gov (United States)

    Chen, Guang C; Ulumuddin, Yaya I; Pramudji, Sastro; Chen, Shun Y; Chen, Bin; Ye, Yong; Ou, Dan Y; Ma, Zhi Y; Huang, Hao; Wang, Jing K

    2014-07-15

    The soil to atmosphere fluxes of greenhouse gases N2O, CH4 and CO2 and their relationships with soil characteristics were investigated in three tropical oceanic mangrove swamps (Teremaal, Likupang and Kema) in North Sulawesi, Indonesia. Mangrove soils in North Sulawesi were rich in organic carbon and nitrogen, but the greenhouse gas fluxes were low in these mangroves. The fluxes ranged -6.05-13.14 μmol m(-2)h(-1), -0.35-0.61 μmol m(-2)h(-1) and -1.34-3.88 mmol m(-2)h(-1) for N2O, CH4 and CO2, respectively. The differences in both N2O and CH4 fluxes among different mangrove swamps and among tidal positions in each mangrove swamp were insignificant. CO2 flux was influenced only by mangrove swamps and the value was higher in Kema mangrove. None of the measured soil parameters could explain the variation of CH4 fluxes among the sampling plots. N2O flux was negatively related to porewater salinity, while CO2 flux was negatively correlated with water content and organic carbon. This study suggested that the low gas emissions due to slow metabolisms would lead to the accumulations of organic matters in North Sulawesi mangrove swamps. PMID:24784732

  14. Influence of field emission on the propagation of cylindrical fast ionization wave in atmospheric-pressure nitrogen

    Science.gov (United States)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode-anode gap by rather dense plasma (˜1013 cm-3) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizing it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.

  15. Seasonal variability of atmospheric nitrogen oxides and non-methane hydrocarbons at the GEOSummit station, Greenland

    Directory of Open Access Journals (Sweden)

    L. J. Kramer

    2014-05-01

    Full Text Available Measurements of atmospheric NOx (NOx = NO + NO2, peroxyacetyl nitrate (PAN, NOy and non-methane hydrocarbons (NMHC were taken at the GEOSummit Station, Greenland (72.34° N, 38.29° W, 3212 m.a.s.l from July 2008 to July 2010. The data set represents the first year-round concurrent record of these compounds sampled at a high latitude Arctic site in the free troposphere. Here, the study focused on the seasonal variability of these important ozone (O3 precursors in the Arctic free troposphere and the impact from transported anthropogenic and biomass burning emissions. Our analysis shows that PAN is the dominant NOy species in all seasons at Summit, varying from 49% to 78%, however, we find that odd NOy species (odd NOy = NOy − PAN-NOx contribute a large amount to the total NOy speciation with monthly means of up to 95 pmol mol−1 in the winter and ∼40 pmol mol−1 in the summer, and that the level of odd NOy species at Summit during summer is greater than that of NOx. We hypothesize that the source of this odd NOy is most likely alkyl nitrates from transported pollution, and photochemically produced species such as HNO3 and HONO. FLEXPART retroplume analysis and tracers for anthropogenic and biomass burning emissions, were used to identify periods when the site was impacted by polluted air masses. Europe contributed the largest source of anthropogenic emissions during the winter and spring months, with up to 82% of the simulated anthropogenic black carbon originating from this region between December 2009 and March 2010, whereas, North America was the primary source of biomass burning emissions. Polluted air masses were typically aged, with median transport times to the site from the source region of 11 days for anthropogenic events in winter, and 14 days for BB plumes. Overall we find that the transport of polluted air masses to the high altitude Arctic typically resulted in high variability in levels of O3 and O3 precursors. During winter

  16. Spatial Variation of Atmospheric Nitrogen Deposition and Estimated Critical Loads for Aquatic Ecosystems in the Greater Yellowstone Area

    Science.gov (United States)

    Nanus, L.; McMurray, J. A.; Clow, D. W.; Saros, J. E.; Blett, T.

    2015-12-01

    Aquatic ecosystems at high-elevations in the Greater Yellowstone Area (GYA) are sensitive to the effects of atmospheric nitrogen (N) deposition. Current and historic N deposition has impacted aquatic ecosystems in the GYA and N deposition is increasing in many areas. Anticipated changes in atmospheric emissions may further affect these sensitive ecosystems. Understanding the spatial variation in atmospheric N deposition is needed to develop estimates of air pollution critical loads for aquatic ecosystems in complex terrain. For the GYA, high resolution (400 meter) maps were developed for 1993-2014 to identify areas of high loading of mean annual Total N deposition (wet + dry) and wet deposition of inorganic N (nitrate and ammonium). Total N deposition estimates in the GYA range from ≤ 1.4 to 7.5 kg N ha-1 yr-1 and show greater variability than inorganic N deposition. Spatially explicit estimates of critical loads of N deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed using a geostatistical approach. CLNdep in the GYA ranges from less than 1.5 kg N ha-1 yr-1 to over 10 kg N ha-1 yr-1 and variability is controlled by differences in basin characteristics. The lowest CLNdep estimates occurred in high-elevation basins with steep slopes, sparse vegetation, and exposed bedrock, including areas within GYA Wilderness boundaries. These areas often have high inorganic N deposition (>3 kg N ha-1 yr-1), resulting in CLNdep exceedances greater than 1.5 kg N ha-1 yr-1. The N deposition maps were used to identify CLNdep exceedances for aquatic ecosystems, and to explore scale dependence and boundary issues related to estimating CLNdep. Based on a NO3- threshold of 1.0 μmol L-1, inorganic N deposition exceeds CLNdep in 12% of the GYA, and Total N deposition is in exceedance for 23% of the GYA. These maps can be used to help identify and protect sensitive ecosystems that may be impacted by excess N deposition in the GYA.

  17. Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres

    KAUST Repository

    Hoffman, A. S.

    2016-07-26

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities—to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions—to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell and a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported.

  18. Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres.

    Science.gov (United States)

    Hoffman, A S; Debefve, L M; Bendjeriou-Sedjerari, A; Ouldchikh, S; Bare, Simon R; Basset, J-M; Gates, B C

    2016-07-01

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities-to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions-to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell and a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported. PMID:27475549

  19. Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres

    Science.gov (United States)

    Hoffman, A. S.; Debefve, L. M.; Bendjeriou-Sedjerari, A.; Ouldchikh, S.; Bare, Simon R.; Basset, J.-M.; Gates, B. C.

    2016-07-01

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities—to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions—to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell and a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported.

  20. X-ray fluorescence spectrometry for high throughput analysis of atmospheric aerosol samples: The benefits of synchrotron X-rays

    Science.gov (United States)

    Bukowiecki, Nicolas; Lienemann, Peter; Zwicky, Christoph N.; Furger, Markus; Richard, Agnes; Falkenberg, Gerald; Rickers, Karen; Grolimund, Daniel; Borca, Camelia; Hill, Matthias; Gehrig, Robert; Baltensperger, Urs

    2008-09-01

    The determination of trace element mass concentrations in ambient air with a time resolution higher than one day represents an urgent need in atmospheric research. It involves the application of a specific technique both for the aerosol sampling and the subsequent analysis of the collected particles. Beside the intrinsic sensitivity of the analytical method, the sampling interval and thus the quantity of collected material that is available for subsequent analysis is a major factor driving the overall trace element detection power. This is demonstrated for synchrotron radiation X-ray fluorescence spectrometry (SR-XRF) of aerosol samples collected with a rotating drum impactor (RDI) in hourly intervals and three particle size ranges. The total aerosol mass on the 1-h samples is in the range of 10 µg. An experimental detection of the nanogram amounts of trace elements with the help of synchrotron X-rays was only achievable by the design of a fit-for-purpose sample holder system, which considered the boundary conditions both from particle sampling and analysis. A 6-µm polypropylene substrate film has evolved as substrate of choice, due to its practical applicability during sampling and its suitable spectroscopic behavior. In contrast to monochromatic excitation conditions, the application of a 'white' beam led to a better spectral signal-to-background ratio. Despite the low sample mass, a counting time of less than 30 s per 1-h aerosol sample led to sufficient counting statistics. Therefore the RDI-SR-XRF method represents a high-throughput analysis procedure without the need for any sample preparation. The analysis of a multielemental mass standard film by SR-XRF, laboratory-based wavelength-dispersive XRF spectrometry and laboratory-based micro XRF spectrometry showed that the laboratory-based methods were no alternatives to the SR-XRF method with respect to sensitivity and efficiency of analysis.

  1. Microbial ecology of á-Proteobacteria ammonia-oxidizers along a concentration gradient of dry atmospheric nitrogen deposition in the San Bernadino Mountain Range.

    Science.gov (United States)

    Jordan, F. L.; Fenn, M. E.; Stein, L. Y.

    2002-12-01

    The fate of atmospherically-deposited nitrogen from industrial pollution is of major concern in the montane ecosystems bordering the South Coast California Air Basin. Nitrogen deposition rates in the more exposed regions of the San Bernardino Mountains (SBM) are among the highest in North America often exceeding 40 kg ha-1 year-1 in throughfall deposition of nitrate and ammonium (Fenn and Poth, 1999). Forest ecosystems with elevated N deposition generally exhibit elevated accumulation of soil nitrate, leaching and runoff, elevated emissions of nitrogenous gases, increased nitrification, and decreased litter decomposition rates. The role of nitrifying microbial populations, especially those taxonomically associated with the beta-Proteobacteria ammonia-oxidizers (AOB), will provide insight into nitrogen-cycling in these extremely N-saturated environments. Using 16S ribosomal DNA-based molecular techniques (16S rDNA clone library construction and Restriction Fragment Length Polymorphism), we are comparing AOB community diversity at 3 different locations along a natural atmospheric N-deposition concentration gradient in the SBM: from high at Camp Paviaka (CP), medium at Strawberry Peak (SP) to low at Dogwood (DW). As observed for wet N-deposition systems on the east coast, we hypothesized a negative correlation between AOB community diversity, abundance and function with nitrogen loading in the dry N deposition system of SBM. Nitrification potentials determined for the 3 sites along the N-deposition gradient were in the order of CP less than SP less than DW. Preliminary results indicate no correlation between diversity of AOB and increased nitrogen loading. Shannon-Weiner diversity indices calculated for ammonia-oxidizer RFLP group units were 2.22, 2.66 and 1.80 for CP, SP and DW, respectively.

  2. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    Science.gov (United States)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  3. Monitoring of atmospheric ozone and nitrogen dioxide over the south of Portugal by ground-based and satellite observations.

    Science.gov (United States)

    Bortoli, Daniele; Silva, Ana Maria; Costa, Maria João; Domingues, Ana Filipa; Giovanelli, Giorgio

    2009-07-20

    The SPATRAM (Spectrometer for Atmospheric TRAcers Monitoring) instrument has been developed as a result of the collaboration between CGE-UE, ISAC-CNR and Italian National Agency for New Technologies, Energy and the Environment (ENEA). SPATRAM is a multi-purpose UV-Vis-scanning spectrometer (250 - 950 nm) and it is installed at the Observatory of the CGE, in Evora, since April 2004. A brief description of the instrument is given, highlighting the technological innovations with respect to the previous version of similar equipment. The need for such measurements automatically taken on a routine basis in south-western European regions, specifically in Portugal, has encouraged the development and installation of the equipment and constitutes a major driving force for the present work. The main features and some improvements introduced in the DOAS (Differential Optical Absorption Spectroscopy) algorithms are discussed. The results obtained applying DOAS methodology to the SPATRAM spectrometer measurements of diffused spectral sky radiation are presented in terms of diurnal and seasonal variations of nitrogen dioxide (NO(2)) and ozone (O(3)). NO(2) confirms the typical seasonal cycle reaching the maximum of (6.5 +/- 0.3) x 10(+15) molecules cm(-2) for the sunset values (PM), during the summer season, and the minimum of (1.55 +/- 0.07) x 10(+15) molecules cm(-2) for the sunrise values (AM) in winter. O(3) presents the maximum total column of (433 +/- 5) Dobson Unit (DU) in the spring season and the minimum of (284 +/- 3) DU during the fall period. The huge daily variations of the O(3) total column during the spring season are analyzed and discussed. The ground-based results obtained for NO(2) and O(3) column contents are compared with data from satellite-borne equipment (GOME - Global Ozone Monitoring Experiment; SCIAMACHY - Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY; TOMS - Total Ozone Monitoring Spectrometer) and it is shown that the two data

  4. Monitoring of atmospheric ozone and nitrogen dioxide over the south of Portugal by ground-based and satellite observations.

    Science.gov (United States)

    Bortoli, Daniele; Silva, Ana Maria; Costa, Maria João; Domingues, Ana Filipa; Giovanelli, Giorgio

    2009-07-20

    The SPATRAM (Spectrometer for Atmospheric TRAcers Monitoring) instrument has been developed as a result of the collaboration between CGE-UE, ISAC-CNR and Italian National Agency for New Technologies, Energy and the Environment (ENEA). SPATRAM is a multi-purpose UV-Vis-scanning spectrometer (250 - 950 nm) and it is installed at the Observatory of the CGE, in Evora, since April 2004. A brief description of the instrument is given, highlighting the technological innovations with respect to the previous version of similar equipment. The need for such measurements automatically taken on a routine basis in south-western European regions, specifically in Portugal, has encouraged the development and installation of the equipment and constitutes a major driving force for the present work. The main features and some improvements introduced in the DOAS (Differential Optical Absorption Spectroscopy) algorithms are discussed. The results obtained applying DOAS methodology to the SPATRAM spectrometer measurements of diffused spectral sky radiation are presented in terms of diurnal and seasonal variations of nitrogen dioxide (NO(2)) and ozone (O(3)). NO(2) confirms the typical seasonal cycle reaching the maximum of (6.5 +/- 0.3) x 10(+15) molecules cm(-2) for the sunset values (PM), during the summer season, and the minimum of (1.55 +/- 0.07) x 10(+15) molecules cm(-2) for the sunrise values (AM) in winter. O(3) presents the maximum total column of (433 +/- 5) Dobson Unit (DU) in the spring season and the minimum of (284 +/- 3) DU during the fall period. The huge daily variations of the O(3) total column during the spring season are analyzed and discussed. The ground-based results obtained for NO(2) and O(3) column contents are compared with data from satellite-borne equipment (GOME - Global Ozone Monitoring Experiment; SCIAMACHY - Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY; TOMS - Total Ozone Monitoring Spectrometer) and it is shown that the two data

  5. The Fluorescence Detector of the Pierre Auger Observatory (CALOR2010 Proceedings)

    CERN Document Server

    Necesal, Petr

    2010-01-01

    The Pierre Auger Observatory is a facility designed for the study of ultra-high energy cosmic rays. The Observatory combines two different types of detectors: a surface array of 1600 water Cherenkov stations placed on a 1.5 km triangular grid covering over 3000 km$^2$; and a fluorescence detector of 24 telescopes located in 4 buildings at the perimeter of the surface array. The fluorescence telescopes, each consisting of 440 photomultipliers, collect the ultraviolet light produced when the charged secondary particles in an air shower excite nitrogen molecules in the atmosphere. Because the intensity of the nitrogen fluorescence is proportional to the energy deposited in the atmosphere during the air shower, the air fluorescence measurements can be used to make a calorimetric measurement of the cosmic ray primary energy. Showers observed independently by the surface array and fluorescence telescopes, called hybrid events, are critical to the function of the Observatory, as they allow for a model-independent ca...

  6. Model-Based Analysis of the Effect of Long-term Atmospheric Nitrogen Deposition on Nitrogen and Carbon Dynamics in Northern Peatlands

    Science.gov (United States)

    Wu, Y.; Blodau, C.

    2011-12-01

    Peatlands as a unique biological community that provide important ecological, economic and protective functions are highly threatened by climate change and nitrogen deposition. A process based model has been developed to simulate short term and long term changes in peatlands biogeochemistry and ecology. The model contains three modules: Hydrothermal generates daily water table and soil temperature as environmental inputs for other modules; Plant dynamics simulates the competition of plants in natural nutrient poor condition and the potential shifting of ecosystem under high nutrient input and climate change; Soil organic matter (SOM) dynamics simulates the decomposition of SOM into mineralized carbon and nitrogen and their transformation and translocation within the peat and efflux. This model especially focuses on nitrogen dynamics both in plant and soil and the coupling of nitrogen cycle to carbon cycle for peatland. Water table is modeled as a bucket model that calculates real time water storage from precipitation, evapotranspiration and runoff, which in turn generates water table level and soil moisture profile in soil. Soil temperature along depth is calculated from soil thermal conductivity features and air temperature. Plant carbon and nitrogen dynamics are modeled for 3 plant functional types (moss, graminoids and shrubs) with different tolerant levels to temperate, moisture, light and nutrients. SOM decomposition is simulated in a layer structure with 5cm resolution. Within each layer one labile and one recalcitrant organic carbon and nitrogen pool are decomposed simultaneously on rates controlled by SOM quality, nitrogen availability and environment. Simulation for water table, Temperature, plant dynamics, carbon nitrogen budget and fluxes and peat initiation for Mer Bleue bog (Ottawa Canada, Fluxnet data) shows good correlation with field data. SOM decomposition simulation reveals that the extremely low decomposition rate of SOM in saturated zone plays

  7. Space-resolved characterization of high frequency atmospheric-pressure plasma in nitrogen applying optical emission spectroscopy and numerical simulation

    CERN Document Server

    Rajasekaran, Priyadarshini; Bibinov, Nikita; Awakowicz, Peter

    2011-01-01

    Averaged plasma parameters such as electron distribution function and electron density are determined by characterization of high frequency (2.4 GHz) nitrogen-plasma using both experimental methods, namely optical emission spectroscopy (OES) and microphotography, and numerical simulation. Both direct and stepwise electron-impact excitation of nitrogen emissions are considered. The determination of space-resolved electron distribution function, electron density, rate constant for electron-impact dissociation of nitrogen molecule and the production of nitrogen atoms, applying the same methods, is discussed. Spatial distribution of intensities of neutral nitrogen molecule and nitrogen molecular ion from the microplasma is imaged by a CCD camera. The CCD images are calibrated using the corresponding emissions measured by absolutely-calibrated OES, and are then subjected to inverse Abel transformation to determine space-resolved intensities and other parameters. The space-resolved parameters are compared, respecti...

  8. Heterogeneous Atmospheric Chemistry of Lead Oxide Particles with Nitrogen Dioxide Increases Lead Solubility: Environmental and Health Implications

    OpenAIRE

    Baltrusaitis, Jonas; Chen, Haihan; Rubasinghege, Gayan; Grassian, Vicki H.

    2012-01-01

    Heterogeneous chemistry of nitrogen dioxide with lead-containing particles is investigated to better understand lead metal mobilization in the environment. In particular, PbO particles, a model lead-containing compound due to its wide spread presence as a component of lead paint and as naturally occurring minerals, massicot and litharge, are exposed to nitrogen dioxide at different relative humidity. X-ray photoelectron spectroscopy (XPS) shows that upon exposure to nitrogen dioxide the surfa...

  9. TIG welding phenomenon and properties of welds in welding atmospheres with various oxygen and nitrogen partial pressures. Pt. 1. Study on welding of zirconium alloy tubing. 3

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate the influence of extremely low levels of oxygen and nitrogen partial pressure, PO2 and PN2 in TIG welding atmospheres on the welding phenomenon and properties of welds of zirconium alloy tubing. In TIG welding of Zircaloy-2 tubing in welding atmospheres with various PO2 and PN2, the arc voltages were measured and the properties of welds (surface discoloration, oxygen and nitrogen contents) were examined. Although definite arc voltage change is not observed at welding in ≤4.1 Pa of PO2, a significant arc voltage drop with increase of PN2 is observed at welding in 0.4-16.9 Pa of PN2, and oxygen appears to inhibit this arc voltage drop. The surface of weld metal and heat affected zone (HAZ) in the atmosphere of 0.1 Pa of PO2 and 0.4 Pa of PN2 remains bright. The surface discoloration is observable slightly on weld metal and HAZ in the atmosphere of 1.1 Pa of PO2, and with increase of PO2 the initial straw color becomes darker until it gets partially blue. No surface discoloration is observable on weld metals and HAZ in the atmospheres of PN2 ≤ 16.9 Pa with 0.1 Pa of PO2. The nitrogen content [N] in the weld metal increases linearly with increase of √PN2, and the increasing rate of [N] in inner part of weld metal is lower than that of [N] in outer part. The oxygen content [O] in the weld metal increases linearly with increase of √PO2 and shows same relations as [N], although the values of [O] in the weld metals fluctuate more than [N]. (author)

  10. A new fluorescent nitrogen-doped carbon dot system modified by the fluorophore-labeled ssDNA for the analysis of 6-mercaptopurine and Hg (II).

    Science.gov (United States)

    Li, Zhuo; Ni, Yongnian; Kokot, Serge

    2015-12-15

    A simple, environmentally friendly hydrothermal method was used to prepare strongly luminescent, nitrogen-doped carbon dots (NCDs) with the use of Chinese yams as a source of carbon and nitrogen. Such NCDs have an average size of 2.7±1.4 nm; they emit blue light at 420 nm and have a quantum yield of up to 9.3%. Thus, carboxyfluorescein (FAM)-DNA macro-molecules were assembled on the surfaces of the NCDs, and stabilised by strong π-π stacking; the so formed hybrid nano-sensors were found to have an ultra-sensitive response to 6-mercaptopurine (6-MP). A strong emission and enhancement of yellow radiation was observed from FAM. Furthermore, due to the specific interactions between DNA and Hg(2+), which resulted in the formation of the T-Hg(2+)-T (T: thymine base) complex - a large, conjugated system, which formed between NCDs, DNA and 6-MP, was broken up. Thus, the fluorescence from FAM was quenched. The detection limits for 6-MP and Hg(2+) were 0.67 and 1.26 nM, respectively. The proposed method was applied for the determination of 6-MP in human serum and Hg(2+) in water samples with satisfactory results. PMID:26120815

  11. On-line enrichment and determination of polycyclic aromatic hydrocarbons in atmospheric particulates using high performance liquid chromatography with fluorescence as detector

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Seven polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulates were determinated by high performance liquid chromatography (HPLC) with fluorescence detector using direction injection and an on-line enrichment trap column. The method simplified the sample pretreatment, saved time and increased the efficiency. With the on-line trap column, PAHs were separated availably even underground injecting 1.0 ml sample with relatively high column efficiency. The recoveries of the seven PAHs were from 85% to 120% for spiked atmospheric particulate sample. The limit of detection was 15.3-39.6 ng/L (S/N=3.3). There were good linear correlations between the peak areas and concentrations of the seven kinds of PAHs in the range of 1-50 ng/ml with the correlation coefficients over 0.9970. Furthermore, it also indicated that the method is available to determine PAHs in atmospheric particulates well.

  12. Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures

    Science.gov (United States)

    Chang, Yunhua; Liu, Xuejun; Deng, Congrui; Dore, Anthony J.; Zhuang, Guoshun

    2016-09-01

    Stable nitrogen isotope composition (δ15N) offers new opportunities to address the long-standing and ongoing controversy regarding the origins of ambient ammonia (NH3), a vital precursor of PM2.5 (particulate matters with aerodynamic diameter equal or less than 2.5 µm) inorganic components, in the urban atmosphere. In this study, the δ15N values of NH3 samples collected from various sources were constrained using a novel and robust chemical method coupled with standard elemental analysis procedures. Independent of the wide variation in mass concentrations (ranging from 33 (vehicle) to over 6000 (human excreta) µg m-3), different NH3 sources have generally different δ15N values (ranging from -52.0 to -9.6 ‰). Significantly high δ15N values are seen as a characteristic feature of all vehicle-derived NH3 samples (-14.2 ± 2.8 ‰), which can be distinguished from other sources emitted at environmental temperature (-29.1 ± 1.7, -37.8 ± 3.6, and -50.0 ± 1.8 ‰ for livestock, waste, and fertilizer, respectively). The isotope δ15N signatures for a range of NH3 emission sources were used to evaluate the contributions of the different sources within measured ambient NH3 in Beijing, using an isotope mixing model (IsoSource). The method was used to quantify the sources of ambient NH3 before, during and after the 2014 Asia-Pacific Economic Cooperation (APEC) summit, when a set of stringent air quality control measures were implemented. Results show that the average NH3 concentrations (the overall contributions of traffic, waste, livestock, and fertilizer) during the three periods were 9.1 (20.3, 28.3, 23.6, and 27.7 %), 7.3 (8.8, 24.9, 14.3, and 52.0 %), and 12.7 (29.4, 23.6, 31.7, and 15.4 %) µg m-3, respectively, representing a 20.0 % decrease first and then a 74.5 % increase in overall NH3 mass concentrations. During (after) the summit, the contributions of traffic, waste, livestock, and fertilizer decreased (increased) by 56.7 (234.2), 12.0 (-5.0), 39.4 (120

  13. Precise Measurement of the Absolute Fluorescence Yield

    Science.gov (United States)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  14. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    Science.gov (United States)

    Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N. J.; Matejcik, S.

    2016-11-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  15. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    Science.gov (United States)

    Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N. J.; Matejcik, S.

    2016-04-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  16. Anthropogenic emissions of oxidized sulfur and nitrogen into the atmosphere of the former Soviet Union in 1985 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    Ryaboshapko, A.G.; Brukhanov, P.A.; Gromov, S.A.; Proshina, Yu.V; Afinogenova, O.G. [Institute of Global Climate and Ecology, Moscow (Russian Federation)

    1996-09-01

    Anthropogenic emissions of oxidized sulfur and nitrogen over the former Soviet Union for 1985 and 1990 were calculated on the basis of a combination of `bottom-up` and `top-down` approaches. Sulfur dioxide emissions from combustion of hard coal, brown coal, oil products, natural gas, shale oil, peat, wood as well as from metallurgy, sulfuric acid production, and cement production were estimated. Nitrogen oxides emissions were considered separately for large power plants, small power plants, industrial boilers, residential combustion units, and for transport. The sulfur and nitrogen emissions were spatially distributed over the former Soviet Union with 1 x 1 degree resolution. Data on 721 point sources of sulfur dioxide emissions and on the 242 largest power stations as nitrogen oxides sources were used. The area sources of both sulfur dioxide and nitrogen oxides were distributed according to the population density separately for about 150 administrative units of the former Soviet Union. 63 refs., 19 tabs.

  17. Nitrogen and oxygen concentration in zirconium alloy with 2,5 % niobium after arc welding in controlled atmosphere

    International Nuclear Information System (INIS)

    Results on investigation of kinetics and mechanism of nitrogen and oxygen interaction with Zr alloy with 2.5% niobium are presented for the process of arc welding at partial pressure of nitrogen and oxygen in helium within the 10-5000 Pa pressure range. It is established that equilibrium gas concentration is achieved after 16-20 s of melting. Nitrogen absorption is governed by the basic Siverts law and oxygen - by the Henry law. Increase of welding rate from 0.28 up to 1.68 cm/s decreases a degree of weld metal saturation with nitrogen and oxygen. Equations allowing to calculate concentrations of nitrogen and oxygen absorbed by melted weldpool metal are suggested

  18. Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming - A review and new analysis of past study results

    Science.gov (United States)

    Burns, Douglas A.

    2003-01-01

    The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7kgha-1yr-1 of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but data from the National Atmospheric Deposition Program and Clean Air Status and Trends Network show no region-wide increase during the past 2 decades. Nitrogen loads in atmospheric wet deposition have increased since the mid-1980s, however, at three high elevation (>3000m) sites east of the Continental Divide in the Front Range. Much of this increase is the result of increased ammonium (NH4+) concentrations in wet deposition. This suggests an increase in contributions from agricultural areas or from vehicles east of the Rocky Mountains and is consistent with the results of previous studies that have suggested a significant eastern source for atmospheric N deposition to the Front Range. The four sites with the highest NH4+ concentrations in wet deposition were among the six easternmost NADP sites, which is also consistent with a source to the east of the Rockies. This analysis found an increase in N loads in wet deposition at Niwot Ridge of only 0.013kgha-1yr-1, more than an order of magnitude less than previously reported for this site. This lower rate of increase results from application of the non-parametric Seasonal Kendall trend test to mean monthly data, which failed a test for normality, in contrast to linear regression, which was applied to mean annual data in a previous study. Current upward trends in population growth and energy use in Colorado and throughout the west suggest a need for continued monitoring of atmospheric deposition of N, and may reveal more widespread trends in N deposition in the future.

  19. Effects of grass species and grass growth on atmospheric nitrogen deposition to a bog ecosystem surrounded by intensive agricultural land use

    Science.gov (United States)

    Hurkuck, Miriam; Brümmer, Christian; Mohr, Karsten; Spott, Oliver; Well, Reinhard; Flessa, Heinz; Kutsch, Werner L

    2015-01-01

    We applied a 15N dilution technique called “Integrated Total Nitrogen Input” (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increased biomass production. Plant biomass production was positively correlated with atmospheric N uptake (up to 102.7 mg N pot−1) when using Lolium multiflorum. In contrast, atmospheric N deposition to Eriophorum vaginatum did not show a clear dependency to produced biomass and ranged from 81.9 to 138.2 mg N pot−1. Both species revealed a relationship between atmospheric N input and total biomass N contents. Airborne N deposition varied from about 24 to 55 kg N ha−1 yr−1. Partitioning of airborne N within the monitor system differed such that most of the deposited N was found in roots of Eriophorum vaginatum while the highest share was allocated in aboveground biomass of Lolium multiflorum. Compared to other approaches determining atmospheric N deposition, ITNI showed highest airborne N input and an up to fivefold exceedance of the ecosystem-specific critical load of 5–10 kg N ha−1 yr−1. PMID:26257870

  20. Laser ablation of zirconium in gas atmospheres at low pressures

    International Nuclear Information System (INIS)

    Pulsed nitrogen laser induced ablation of solid zirconium targets was monitored using laser induced fluorescence. Starting from 'new' surfaces, the density evolution under the influence of different gas atmospheres (oxygen, helium, hydrogen and nitrogen) with pressures up to 10-3 mbar has been studied. It was observed that even small amounts of gas lead to a large increase in the velocity and the density of the ablated atomic cloud. (author)

  1. Atmospheric inorganic nitrogen in dry deposition to a typical red soil agro-ecosystem in southeastern China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Yang, Hao

    2010-06-01

    Atmospheric dry deposition is an important pathway of nitrogen (N) sources input to agro-ecosystems. With the knowledge of increasing agricultural effects by dry N deposition, researchers have paid great attention to this topic. Characteristics of dry N deposition were estimated by a big-leaf resistance analogy model and the Auto-Meteorological Experiment Station (AMES) in a typical red soil agro-ecosystem in southeastern China for two years (2005-2006). Monthly dry deposition velocities (V(d)) were in the range of 0.16-0.36, 0.07-0.17 and 0.07-0.24 cm s(-1) for NH(3), NO(2) and aerosol particles (aerosol NH(4)(+) or NO(3)(-)), respectively, and the V(d) were higher in spring and winter than in summer and autumn. Monthly dry N deposition concentration (C(a)) and inferred deposition flux (F(d)) were in the range of 63.38-261.10, 47.21-278.92, 1.56-7.15, 47.21-278.92 microg N m(-3) and of 1.31-8.60, 0.38-3.67, 0-0.08, 0.01-0.23 kg N ha(-2) for NH(3), NO(2), aerosol NH(4)(+) and aerosol NO(3)(-), respectively. During the study period (2005-2006), the total dry N deposition was 70.55 kg N ha(-1) yr(-1) which equivalent to 1.53.8 kg (urea) ha(-1) yr(-1) or 415.0 kg (ammonium bicarbonate) ha(-1) yr(-1) applied in the red soil agro-ecosystems. In addition, the annual mean N depositions, mean sum of the monthly N depositions were 69.44, 1.12, 53.95 and 16.60 kg N ha(-1) yr(-1) for gaseous N, aerosol N, ammonia N and oxidized N, making up 98.42%, 1.58%, 53.95% and 16.60% of the total dry deposition N (70.50 kg ha(-1) yr(-1)). PMID:20532381

  2. Nitrogen cycling of atmosphere-plant-soil system in the typical Calamagrostis angustifolia wetland in the Sanjiang Plain, Northeast China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The nitrogen (N) distribution and cycling of atmosphere-plant-soil system in the typical meadow Calamagrostis angustifolia wetland (TMCW) and marsh meadow Calamagrostis angustifolia wetland (MMCW) in the Sanjiang plain were studied by a compartment model. The results showed that the N wet deposition amount was 0.757 gN/(m2·a), and total inorganic N (TIN) was the main body (0.640 gN/(m2·a)). The ammonia volatilization amounts of TMCW and MMCW soils in growing season were 0.635 and 0.687 gN/m2, and the denitrification gaseous lost amounts were 0.617 and 0.405 gN/m2, respectively. In plant subsystem, the N was mainly stored in root and litter. Soil organic N was the main N storage of the two plant-soil systems and the proportions of it were 93.98% and 92.16%, respectively. The calculation results of N turnovers among compartments of TMCW and MMCW showed that the uptake amounts of root were 23.02 and 28.18 gN/(m2·a) and the values of aboveground were 11.31 and 6.08 gN/(m2·a), the re-translocation amounts from aboveground to root were 5.96 and 2.70 gN/(m2·a), the translocation amounts from aboveground living body to litter were 5.35 and 3.38 gN/(m2·a), the translocation amounts from litter to soil were larger than 1.55 and 3.01 gN/(m2·a), the translocation amounts from root to soil were 14.90 and 13.17 gN/(m2·a), and the soil (0-15cm) N net mineralization amounts were 1.94 and 0.55 gN/(m2·a), respectively. The study of N balance indicated that the two plant-soil systems might be situated in the status of lacking N, and the status might induce the degradation of C. angustifolia wetland.

  3. Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion

    Science.gov (United States)

    Landera, Alexander

    2013-12-01

    Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards

  4. Using a biochemical C4 photosynthesis model and combined gas exchange and chlorophyll fluorescence measurements to estimate bundle-sheath conductance of maize leaves differing in age and nitrogen content.

    Science.gov (United States)

    Yin, Xinyou; Sun, Zhouping; Struik, Paul C; Van der Putten, Peter E L; Van Ieperen, Wim; Harbinson, Jeremy

    2011-12-01

    Bundle-sheath conductance (g(bs) ) affects CO(2) leakiness, and, therefore, the efficiency of the CO(2) -concentrating mechanism (CCM) in C(4) photosynthesis. Whether and how g(bs) varies with leaf age and nitrogen status is virtually unknown. We used a C(4) -photosynthesis model to estimate g(bs) , based on combined measurements of gas exchange and chlorophyll fluorescence on fully expanded leaves of three different ages of maize (Zea mays L.) plants grown under two contrasting nitrogen levels. Nitrogen was replenished weekly to maintain leaf nitrogen content (LNC) at a similar level across the three leaf ages. The estimated g(bs) values on leaf-area basis ranged from 1.4 to 10.3 mmol m(-2) s(-1) and were affected more by LNC than by leaf age, although g(bs) tended to decrease as leaves became older. When converted to resistance (r(bs) = 1/g(bs)), r(bs) decreased monotonically with LNC. The correlation was presumably associated with nitrogen effects on leaf anatomy such as on wall thickness of bundle-sheath cells. Despite higher g(bs), meaning less efficient CCM, the calculated loss due to photorespiration was still low for high-nitrogen leaves. Under the condition of ambient CO(2) and saturating irradiance, photorespiratory loss accounted for 3-5% of fixed carbon for the high-nitrogen, versus 1-2% for the low-nitrogen, leaves. PMID:21883288

  5. Fluorescence Processes in the Outer Atmospheres of the Evolved M-Stars Alpha Ori (M2 Iab) and Gamma Cru (M3.4 III)

    Science.gov (United States)

    Carpenter, Kenneth; Kober, Gladys; Nielsen, Krister; Ayres, Thomas; Wahlgren, Glenn

    2015-08-01

    The prototypical M-giant and M-supergiant stars, Gamma Cru (M3.4 III)) and Alpha Ori (M2Iab), have been observed as part of the "Advanced Spectral Library (ASTRAL) Project: Cool Stars" (PI = T. Ayres). "ASTRAL-Cool Stars" is an HST Cycle 18 Treasury Program designed to collect, using the Space Telescope Imaging Spectrograph (STIS), a definitive set of representative, high-resolution (R~46,000 in the FUV up to ~1700 Å, R~30,000 for 1700-2150 Å, and R~114,000 >2150 Å) and high signal/noise (S/N>100) UV spectra of eight F-M evolved cool stars. These extremely high-quality UV echelle spectra are available from the HST archive and through the University of Colorado (http://casa.colorado.edu/~ayres/ASTRAL/). In this paper, we use the very rich emission-line spectra of the two evolved M stars in the sample, Gamma Cru (GaCrux) and Alpha Ori (Betelgeuse), to study the fluorescence processes operating in their outer atmospheres. We summarize the pumping transitions and fluorescent line products known on the basis of previous work and newly identified in our on-going analysis of these extraordinary new “Treasury” spectra. Detailed descriptions of selected processes are given to illustrate their operation. The wide variety of fluorescence processes in operation in these outer atmospheres, both molecular and atomic, suggest that there is a mixture of warm and cool plasmas present and that H I Ly-alpha in particular is locally very strong, even though, in the case of Alpha Ori, no flux is seen at earth due to strong circumstellar absorption at that wavelength. Many new fluorescence line products and several new processes have been identified in these spectra, which are more complete and of higher S/N than previously available for these stars.

  6. Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO{sub 2} and nitrogen fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, F., E-mail: fleischmann@wzw.tum.d [Phytopathology of Woody Plants, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Raidl, S. [Department Biology I and GeoBioCenterLMU, Systematic Mycology, Ludwig Maximilians Universitaet Muenchen, Menzinger Strasse 67, 80638 Muenchen (Germany); Osswald, W.F. [Phytopathology of Woody Plants, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany)

    2010-04-15

    The growth-differentiation balance hypothesis (GDBH) predicts changes in susceptibility of plants against herbivores with changing resource availability. In the presented study we tested the validity of the GDBH for trees infected with a root pathogen. For this purpose Fagus sylvatica seedlings grown under different atmospheric CO{sub 2}- and soil nitrogen regimes were infected with the root pathogen Phytophthora citricola. High nitrogen supply increased total biomass of beech regardless of the CO{sub 2}-treatment, whereas elevated CO{sub 2} enhanced biomass only in the high nitrogen treatment. The responses of beech under the different growing regimes to the Phytophthora root infection were not in line with the predictions of the GDBH. Enhanced susceptibility of beech against P. citricola was found in seedlings grown under elevated CO{sub 2} and low nitrogen supply. Fifteen months after inoculation these plants were characterized by enhanced water use efficiency, by altered root-shoot ratios, and by enhanced specific root tip densities. - Susceptibility of Fagus sylvatica to the root pathogen Phytophthora citricola increased under elevated CO{sub 2}

  7. Atmospheric Nitrogen Deposition and the Habitats Directive: Tinkering with the Law in the Face of the Precautionary Principle?

    OpenAIRE

    Schoukens, Hendrik

    2016-01-01

    The implementation of the EU Habitats Directives has urged the permit issuing instances to apply more scrutiny when assessing the local impacts of nitrogen deposition. At present, the critical loads for nitrogen deposition are exceeded in many Natura 2000-sites across Europe, making it one of the most important bottlenecks for the achievement of the good conservation status. This article addresses the legal conundrum of how to reconcile continuous economic developme...

  8. Effects of nitrogen form on growth,CO2 assimilation,chlorophyll fluorescence,and photosynthetic electron allocation in cucumber and rice plants

    Institute of Scientific and Technical Information of China (English)

    Yan-hong ZHOU; Yi-li ZHANG; Xue-min WANG; Jin-xia CUI; Xiao-jian XIA; Kai SHI; Jing-quan YU

    2011-01-01

    Cucumber and rice plants with varying ammonium(NH4+)sensitivities were used to examine the effects of different nitrogen(N)sources on gas exchange,chlorophyll(ChI)fluorescence quenching,and photosynthetic electron allocation.Compared to nitrate(NO3-)-grown plants,cucumber plants grown under NH4+-nutdtion showed decreased plant growth,net photosynthetic rate,stomatal conductance,intercellular carbon dioxide(CO2)level,transpiration rate,maximum photochemical efficiency of photosystem Ⅱ,and O2-independent alternative electron flux,and increased O2-dependent alternative electron flux.However,the N source had little effect on gas exchange,ChI a fluorescence parameters,and photosynthetic electron allocation in rice plants,except that NH4+-grown plants had a higher O2-independent alternative electron flux than NO3--grown plants.NO3-reduction activity was rarely detected in leaves of NH4+-grown cucumber plants,but was high in NH4+-grown rice plants.These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO3-assimilation,an effect more significant in NO3--grown plants than in NH4+-grown plants.Meanwhile,NH4+-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate(NADPH)for NO3-reduction,regardless of the N form supplied,while NH4+-sensitive plants had a high water-water cycle activity when NH4+was supplied as the sole N source.

  9. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation Historical and Projected Changes

    Science.gov (United States)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, D.; Shindell, D. T.; Stevenson, D. S.; Strode, S.; Zeng, G.

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr1 from nitrogen oxide emissions, 60 Tg(N) yr1 from ammonia emissions, and 83 Tg(S) yr1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching 1300 mg(N) m2 yr1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, 3050 larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  10. Analyses of Heavy Metal Contents in the Bulk Atmospheric Aerosols Simultaneously Collected at Okinawa Archipelago, Japan by Using X-ray fluorescence spectrometric method (XRF)

    Science.gov (United States)

    Oshiro, Y.; ITOH, A.; Azechi, S.; Somada, Y.; Handa, D.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2012-12-01

    We studied heavy metal contents of bulk atmospheric aerosols using an X-ray fluorescence spectrometric method (XRF). The XRF method enables us to analyze heavy metal contents in the bulk aerosols rapidly without any chemical pretreatments. We used an energy dispersive X-ray fluorescence spectrometer that is compact and portable. We prepared several different amounts of standard reference materials (referred to "SRM", NIES No.28 of Japanese National Institute of Environmental Studies) on quartz filters for calibration curves in two different methods; 1) water-insoluble materials were collected after dispersing SRM in pure water and filtered with the quartz filters ("wet method"), and 2) SRM was dispersed in air in the plastic container and the aerosols were collected by using the low-volume air sampler ("dry method"). Good linear relationships between X-ray intensity and amount of aerosols on the filter were seen in the following 9 metals; Al, K, Ti, V, Fe, Ni, Rb, Ba, and Pb (with wet method) and 12 metals; K, Ti, Fe, Ni, Rb, Ba, Pb, Sr, Ca, Mn, Zn, and Cu (with dry method). Furthermore, we evaluated quantitative responses of XRF method by comparing with the metal contents determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) after acid-digestion. We then used XRF method to determine heavy metal contents in authentic atmospheric aerosols collected in Okinawa islands, Japan. We simultaneously collected bulk aerosol samples by using identical high-volume air samplers at 3 islands; Cape Hedo Atmospheric Aerosol Monitoring Station (CHAAMS, Okinawa island), Kume island (ca. 160 km south-west of CHAAMS), and Minami-Daitou island (ca. 320 km south-east of CHAAMS). We report and discuss spatial and temporal distribution of heavy metals determined by the XRF method in the bulk atmospheric aerosols collected at the three islands during June 2008 to June 2010, and for CHAAMS during June 2008 to October 2012.

  11. The contribution to nitrogen deposition and ozone formation in South Norway from atmospheric emissions related to the petroleum activity in the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Solberg, S.; Walker, S.-E.; Knudsen, S.; Lazaridis, M.; Beine, H.J.; Semb, A

    1999-03-01

    A photochemical plume model has been developed and refined. The model is designed to simulate the advection and photochemistry for several simultaneous point sources as well as the atmospheric mixing. the model has been used to calculate nitrogen deposition and ozone formation due to offshore emissions in the North Sea. Based on meteorological data for 1992 the calculations give a total contribution of 60-80 mg (N)/m{sub 2} at most in South Norway. Emission from British and Norwegian sector is calculated to contribute less than 5% each to the AOT40 index for ozone. (author)

  12. The contribution to nitrogen deposition and ozone formation in South Norway from atmospheric emissions related to the petroleum activity in the North Sea

    International Nuclear Information System (INIS)

    A photochemical plume model has been developed and refined. The model is designed to simulate the advection and photochemistry for several simultaneous point sources as well as the atmospheric mixing. the model has been used to calculate nitrogen deposition and ozone formation due to offshore emissions in the North Sea. Based on meteorological data for 1992 the calculations give a total contribution of 60-80 mg (N)/m2 at most in South Norway. Emission from British and Norwegian sector is calculated to contribute less than 5% each to the AOT40 index for ozone. (author)

  13. Allowed energetic pathways for the three-body recombination reaction of nitrogen monoxide with the hydroxyl radical and their potential atmospheric implications

    OpenAIRE

    Luca D´Ottone; Adeel Jamal

    2010-01-01

    The OH initiated oxidation of nitric oxide (NO) is an important atmospheric reaction being, during the day time, the main channel that leads to the formation of HONO a reservoir species for both OH and odd nitrogen. This work reports ab initio study of the Potential Energy Surface (PES) of NO + OH using density functional theory calculations conducted at the B3LYP level of theory with a 6-311g (d,p) basis set. We confirmed experimental observations pointing out that the main channel for this ...

  14. Carbon-Nitrogen-Oxygen Line Radiation and the X-ray Bowen Fluorescence Mechanism in Optically Thick, Highly Ionized Media

    Science.gov (United States)

    Sako, Masao

    2003-01-01

    Radiative transfer effects due to overlapping X-ray lines in a high-temperature, optically thick, highly ionized medium are investigated. One particular example, in which the O VIII Lyalpha doublet (2(sup 2) P(sub 1/2,3/2)-1(sup 2) S(sub 1/2) coincides in frequency with the N VII Lyzeta lines (7(sup 2) P(sub 1/2,3/2)-1(sup 2) S(sub 1/2) is studied in detail to illustrate the effects on the properties of the emergent line spectrum. We solve the radiative transfer equation to study the energy transport of resonance-line radiation in a static, infinite, plane-parallel geometry, which is used to compute the destruction/escape probabilities for each of the lines for various total optical thicknesses of the medium, as well as destruction probabilities by sources of underlying photoelectric opacity. It is found that a large fraction of the O vIII Lyalpha line radiation can be destroyed by N VII, which can result in a reversal of the O VIII Lyalpha/N VII Lyalpha line intensity ratio similar to what may be seen under nonsolar abundances. Photoelectric absorption by ionized carbon and nitrogen can also subsequently increase the emission-line intensities of these ions. We show that line ratios, which are directly proportional to the abundance ratios in optically thin plasmas, are not good indicators of the true CNO abundances. Conversely, global spectral modeling that assumes optically thin conditions may yield incorrect abundance estimates when compared with observations, especially if the optical depth is large. Other potentially important overlapping lines and continua in the X-ray band are also identified, and their possible relevance to recent high-resolution spectroscopic observations with Chandra and XMM-Newton are briefly discussed.

  15. Nitrogen metastable (N2(A3 Σu + )) in a cold argon atmospheric pressure plasma jet: Shielding and gas composition

    Science.gov (United States)

    Iseni, Sylvain; Bruggeman, Peter J.; Weltmann, Klaus-Dieter; Reuter, Stephan

    2016-05-01

    N 2 ( A 3 Σu + ) metastable species are detected and measured in a non-equilibrium atmospheric pressure plasma jet by laser induced fluorescence. A shielding device is used to change the ambient conditions additionally to the feeding gas composition. Varying the amount of N2 and air admixed to the feeding gas as well as changing the shielding gas from N2 to air reveals that the highest N 2 ( A 3 Σu + ) is achieved in the case of air admixtures in spite of the enhanced collisional quenching due to the presence of O2. The reasons for these observations are discussed in detail.

  16. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores.

    Science.gov (United States)

    van Bokhorst-van de Veen, Hermien; Xie, Houyu; Esveld, Erik; Abee, Tjakko; Mastwijk, Hennie; Nierop Groot, Masja

    2015-02-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity. PMID:25481059

  17. Effects of high atmospheric CO2 concentration on root hydraulic conductivity of conifers depend on species identity and inorganic nitrogen source.

    Science.gov (United States)

    Gebauer, Tobias; Bassirirad, Hormoz

    2011-12-01

    We examined root hydraulic conductivity (L(p)) responses of one-year-old seedlings of four conifers to the combined effects of elevated CO2 and inorganic nitrogen (N) sources. We found marked interspecific differences in L(p) responses to high CO2 ranging from a 37% increase in P. abies to a 27% decrease in P. menziesii, but these effects depended on N source. The results indicate that CO2 effects on root water transport may be coupled to leaf area responses under nitrate (NO(3)(-)), but not ammonium (NH(4)(+)) dominated soils. To our knowledge, this is the first study that highlights the role of inorganic N source and species identity as critical factors that determine plant hydraulic responses to rising atmospheric CO2 levels. The results have important implications for understanding root biology in a changing climate and for models designed to predict feedbacks between rising atmospheric CO2, N deposition, and ecohydrology.

  18. TIG welding phenomenon and properties of welds in welding atmospheres with various oxygen and nitrogen partial pressures. Pt. 2. Study on welding of zirconium alloy tubing. 5

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate the influence of extremely low levels of oxygen and nitrogen partial pressure, PO2 and PN2 in pressurized TIG welding atmospheres on the welding phenomenon and properties of welds of zirconium alloy tubing. In TIG welding of Zircaloy-2 tubing in welding atmospheres with various PO2 and PN2 in total pressure (PT) of 0.32 MPa (optionally 0.55 MPa), the arc voltages were measured and the properties of welds (surface discoloration, oxygen and nitrogen contents) were examined. Although definite arc voltage change is not observable at welding in ≤12.9 Pa of PO2 and 15.6-67.2 Pa of PO2+N2 (PO2/PN2=1/4), a tendency of arc voltage drop with increase of PN2 is observed at welding in 13.1-53.0 Pa of PN2 (PO2=0.3 Pa). The surface of weld metal and heat affected zone (HAZ) in the atmosphere of 0.3 Pa of PO2 and 1.3 Pa of PN2 remains bright. The surface discoloration is observable slightly on weld metal and HAZ in the atmosphere of 3.4 Pa of PO2, and with increase of PO2 the initial straw color becomes darker until it gets partially blue. No surface discoloration is observable on weld metals and HAZ in the atmospheres of PN2 ≤ 53.0 Pa with 0.3 Pa of PO2. The nitrogen content [N] in the weld metal increases linearly with increase of √PN2, and the increasing rate of [N] in inner part of weld metal is lower than that of [N] in outer part. The oxygen content [O] in outer part of weld metal increases linearly with increase of √PO2 and shows same relations as [N] although the values of [O] in the weld metals fluctuate more than [N]. The increasing rates of [N] and [O] in the weld metal under PT=0.32 MPa are lower than that of [N] and [O] in the weld metal under PT=0.10 MPa which is reported in Report 3. (author)

  19. The Seasonal Cycle of Satellite Chlorophyll Fluorescence Observations and its Relationship to Vegetation Phenology and Ecosystem Atmosphere Carbon Exchange

    Science.gov (United States)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Schaefer, K.; Jung, M.; Guanter, L.; Zhang, Y; Garrity, S.; Middleton, E. M.; Huemmrich, K. F.; Gu, L.; Marchesini, L. Belelli

    2014-01-01

    Mapping of terrestrial chlorophyll uorescence from space has shown potentialfor providing global measurements related to gross primary productivity(GPP). In particular, space-based fluorescence may provide information onthe length of the carbon uptake period that can be of use for global carboncycle modeling. Here, we examine the seasonal cycle of photosynthesis asestimated from satellite fluorescence retrievals at wavelengths surroundingthe 740nm emission feature. These retrievals are from the Global OzoneMonitoring Experiment 2 (GOME-2) flying on the MetOp A satellite. Wecompare the fluorescence seasonal cycle with that of GPP as estimated froma diverse set of North American tower gas exchange measurements. Because the GOME-2 has a large ground footprint (40 x 80km2) as compared with that of the flux towers and requires averaging to reduce random errors, we additionally compare with seasonal cycles of upscaled GPP in the satellite averaging area surrounding the tower locations estimated from the Max Planck Institute for Biogeochemistry (MPI-BGC) machine learning algorithm. We also examine the seasonality of absorbed photosynthetically-active radiation(APAR) derived with reflectances from the MODerate-resolution Imaging Spectroradiometer (MODIS). Finally, we examine seasonal cycles of GPP as produced from an ensemble of vegetation models. Several of the data-driven models rely on satellite reflectance-based vegetation parameters to derive estimates of APAR that are used to compute GPP. For forested sites(particularly deciduous broadleaf and mixed forests), the GOME-2 fluorescence captures the spring onset and autumn shutoff of photosynthesis as delineated by the tower-based GPP estimates. In contrast, the reflectance-based indicators and many of the models tend to overestimate the length of the photosynthetically-active period for these and other biomes as has been noted previously in the literature. Satellite fluorescence measurements therefore show potential for

  20. Ethane in planetary and cometary atmospheres: Transmittance and fluorescence models of the ν7 band at 3.3 μm

    Science.gov (United States)

    Villanueva, G. L.; Mumma, M. J.; Magee-Sauer, K.

    2011-08-01

    Ethane and other hydrocarbon gases have strong rovibrational transitions in the 3.3 μm spectral region owing to C-H, CH2, and CH3 vibrational modes, making this spectral region prime for searching possible biomarker gases in extraterrestrial atmospheres (e.g., Mars, exoplanets) and organic molecules in comets. However, removing ethane spectral signatures from high-resolution terrestrial transmittance spectra has been imperfect because existing quantum mechanical models have been unable to reproduce the observed spectra with sufficient accuracy. To redress this problem, we constructed a line-by-line model for the ν7 band of ethane (C2H6) and applied it to compute telluric transmittances and cometary fluorescence efficiencies. Our model considers accurate spectral parameters, vibration-rotation interactions, and a functional characterization of the torsional hot band. We integrated the new band model into an advanced radiative transfer code for synthesizing the terrestrial atmosphere (LBLRTM), achieving excellent agreement with transmittance data recorded against Mars using three different instruments located in the Northern and Southern hemispheres. The retrieved ethane abundances demonstrate the strong hemispheric asymmetry noted in prior surveys of volatile hydrocarbons. We also retrieved sensitive limits for the abundance of ethane on Mars. The most critical validation of the model was obtained by comparing simulations of C2H6 fluorescent emission with spectra of three hydrocarbon-rich comets: C/2004 Q2 (Machholz), 8P/Tuttle, and C/2007 W1 (Boattini). The new model accurately describes the complex emission morphology of the ν7 band at low rotational temperatures and greatly increases the confidence of the retrieved production rates (and rotational temperatures) with respect to previously available fluorescence models.

  1. Design, fabrication, and testing of a getter-based atmosphere purification and waste treatment system for a nitrogen-hydrogen-helium glovebox

    International Nuclear Information System (INIS)

    A system containing a combination of getters (Zr-Mn-Fe, SAES St909; and Zr2Fe, SAES St198) was used to process the nitrogen-hydrogen-helium atmosphere in a glovebox used for handling metal tritide samples. During routine operations, the glovebox atmosphere is recirculated and hydrogenous impurities (i.e. CQ4, Q2O, and NQ3, where Q =H, D, T) are decomposed (cracked) and removed by Zr-Mn-Fe without absorbing elemental hydrogen isotopes. If the tritium content of the glovebox atmosphere becomes unacceptably high, the getter system can rapidly strip the glovebox atmosphere of all hydrogen isotopes by absorption on the Zr2Fe, thus lessening the burden on the facility waste gas treatment system. The getter system was designed for high flowrate ( > 100 1/min), which is achieved by using a honeycomb support for the getter pellets and 1.27-cm diameter tubing throughout the system for reduced pressure drop. The novel getter bed design also includes an integral preheater and copper liner to accommodate swelling of the getter pellets, which occurs during loading with oxygen and carbon impurities. Non-tritium functional tests were conducted to determine the gettering efficiencies at different getter bed temperatures and flowrates by recirculating gas through the system from, a 6-m3 glovebox containing known concentrations of impurities. (authors)

  2. Effects of high atmospheric CO{sub 2} concentration on root hydraulic conductivity of conifers depend on species identity and inorganic nitrogen source

    Energy Technology Data Exchange (ETDEWEB)

    Gebauer, Tobias [University of Illinois at Chicago, Department of Biological Sciences, 840 West Taylor Street, Chicago, IL 60607 (United States); BassiriRad, Hormoz, E-mail: hormoz@uic.edu [University of Illinois at Chicago, Department of Biological Sciences, 840 West Taylor Street, Chicago, IL 60607 (United States)

    2011-12-15

    We examined root hydraulic conductivity (L{sub p}) responses of one-year-old seedlings of four conifers to the combined effects of elevated CO{sub 2} and inorganic nitrogen (N) sources. We found marked interspecific differences in L{sub p} responses to high CO{sub 2} ranging from a 37% increase in P. abies to a 27% decrease in P. menziesii, but these effects depended on N source. The results indicate that CO{sub 2} effects on root water transport may be coupled to leaf area responses under nitrate (NO{sub 3}{sup -}), but not ammonium (NH{sub 4}{sup +}) dominated soils. To our knowledge, this is the first study that highlights the role of inorganic N source and species identity as critical factors that determine plant hydraulic responses to rising atmospheric CO{sub 2} levels. The results have important implications for understanding root biology in a changing climate and for models designed to predict feedbacks between rising atmospheric CO{sub 2}, N deposition, and ecohydrology. - Highlights: > Root hydraulic conductivity (L{sub p}) in conifers is affected by increased atmospheric CO{sub 2} levels. > This response depends on inorganic N source and species identity. > This is the first report of L{sub p} responses to elevated CO{sub 2} and N source in multiple species. - Root water transport responses to rising atmospheric CO{sub 2} concentration depends on species identity and inorganic N sources.

  3. The shower size parameter as estimator of extensive air shower energy in fluorescence telescopes

    OpenAIRE

    de Souza, Vitor; Medina-Tanco, Gustavo; Ortiz, Jeferson A.; Sanchez, Federico

    2005-01-01

    The fluorescence technique has been successfully used to detect ultrahigh energy cosmic rays by indirect measurements. The underlying idea is that the number of charged particles in the atmospheric shower, i.e, its longitudinal profile, can be extracted from the amount of emitted nitrogen fluorescence light. However the influence of shower fluctuations and the very possible presence of different nuclear species in the primary cosmic ray spectrum makes the estimate of the shower energy from th...

  4. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Atmospheric (Wet) Deposition of Inorganic Nitrogen, 2002

    Science.gov (United States)

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average atmospheric (wet) deposition, in kilograms per square kilometer, of inorganic nitrogen for the year 2002 compiled for every catchment for MRB_E2RF1 of Major River Basins (MRBs, Crawford and others, 2006). The source data set for wet deposition was from the USGS's raster data set atmospheric (wet) deposition of inorganic nitrogen for 2002 (Gronberg, 2005). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every catchment of MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  5. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Total Inorganic Nitrogen

    Science.gov (United States)

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized atmospheric (wet) deposition, in kilograms per square kilometer multiplied by 100, of Total Inorganic Nitrogen for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). Estimates of Total Inorganic Nitrogen deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  6. Charge-state and element-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    CERN Document Server

    Franz, Robert; Anders, André

    2014-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al$^{+}$ regardless of the background gas species, whereas Cr$^{2+}$ ions were dominating in Ar and N$_2$ and Cr$^{+}$ in O$_2$ atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were mainly thermalised. In addition to the positively charged metal and gas ions, negatively charged oxygen an...

  7. Comparison of surface films formed on titanium by pulsed Nd:YAG laser irradiation at different powers and wavelengths in nitrogen atmosphere

    International Nuclear Information System (INIS)

    The nitridation of titanium (Ti) caused by a Q-switched Nd:YAG laser under nitrogen gas atmosphere was investigated in situ using X-ray photoelectron spectroscopy (XPS). A laser having a wavelength of 1064 nm and 532 nm (SHG mode) was irradiated on a titanium substrate in an atmosphere-controlled chamber, and the substrate was then transported to an XPS analysis chamber without exposing it to air. The characteristics of the surface layer strongly depend on the laser power. When the power is relatively low, a titanium dioxide layer containing a small amount of nitrogen is formed on the substrate. Laser irradiation beyond a certain laser power is required to obtain a stoichiometric titanium nitride (TiN) layer. A TiN layer and an oxynitride layer with a TiOxNy-like structure are formed as the topmost and the lower surface layer, respectively, when the laser power exceeds this threshold value. The threshold laser power strongly depends on the wavelength of the laser, and this threshold value for the 532-nm laser is quite lower than that for the 1064-nm laser.

  8. Hydride generation atomic fluorescence spectrometric determination of As, Bi, Sb, Se(IV) and Te(IV) in aqua regia extracts from atmospheric particulate matter using multivariate optimization

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso-Perez, Carmen [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain); Moreda-Pineiro, Jorge [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain)]. E-mail: jmoreda@udc.es; Lopez-Mahia, Purificacion [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain); Muniategui-Lorenzo, Soledad [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain); Fernandez-Fernandez, Esther [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain); Prada-Rodriguez, Dario [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain)

    2004-11-22

    A highly sensitive and simple method, based on hydride generation and atomic fluorescence detection, has been developed for the determination of As, Bi, Sb, Se(IV) and Te(IV) in aqua regia extracts from atmospheric particulate matter samples. Atmospheric particulates matter was collected on glass fiber filters using a medium volume sampler (PM1 particulate matter). Two-level factorial designs have been used to optimise the hydride generation atomic fluorescence spectrometry (HG-AFS) procedure. The effects of several parameters affecting the hydride generation efficiency (hydrochloric acid, sodium tetrahydroborate and potassium iodide concentrations and flow rates) have been evaluated using a Plackett-Burman experimental design. In addition, parameters affecting the hydride measurement (delay, analysis and memory times) have been also investigated. The significant parameters obtained (sodium tetrahydroborate concentration, sodium tetrahydroborate flow rate and analysis time for As; hydrochloric acid concentration and sodium tetrahydroborate flow rate for Se(IV); and sodium tetrahydroborate concentration and sodium tetrahydroborate flow rate for Te(IV)) have been optimized by using 2{sup n} + star central composite design. Hydrochloric acid concentration and sodium tetrahydroborate flow rate were the significant parameters obtained for Sb and Bi determination, respectively. Using a univariate approach these parameters were optimized. The accuracy of methods have been verified by using several certified reference materials: SRM 1648 (urban particulate matter) and SRM 1649a (urban dust). Detection limits in the range of 6 x 10{sup -3} to 0.2 ng m{sup -3} have been achieved. The developed methods were applied to several atmospheric particulate matter samples corresponding to A Coruna city (NW Spain)

  9. Methodology to assess and map the potential development of forest ecosystems exposed to climate change and atmospheric nitrogen deposition: A pilot study in Germany.

    Science.gov (United States)

    Schröder, Winfried; Nickel, Stefan; Jenssen, Martin; Riediger, Jan

    2015-07-15

    A methodology for mapping ecosystems and their potential development under climate change and atmospheric nitrogen deposition was developed using examples from Germany. The methodology integrated data on vegetation, soil, climate change and atmospheric nitrogen deposition. These data were used to classify ecosystem types regarding six ecological functions and interrelated structures. Respective data covering 1961-1990 were used for reference. The assessment of functional and structural integrity relies on comparing a current or future state with an ecosystem type-specific reference. While current functions and structures of ecosystems were quantified by measurements, potential future developments were projected by geochemical soil modelling and data from a regional climate change model. The ecosystem types referenced the potential natural vegetation and were mapped using data on current tree species coverage and land use. In this manner, current ecosystem types were derived, which were related to data on elevation, soil texture, and climate for the years 1961-1990. These relations were quantified by Classification and Regression Trees, which were used to map the spatial patterns of ecosystem type clusters for 1961-1990. The climate data for these years were subsequently replaced by the results of a regional climate model for 1991-2010, 2011-2040, and 2041-2070. For each of these periods, one map of ecosystem type clusters was produced and evaluated with regard to the development of areal coverage of ecosystem type clusters over time. This evaluation of the structural aspects of ecological integrity at the national level was added by projecting potential future values of indicators for ecological functions at the site level by using the Very Simple Dynamic soil modelling technique based on climate data and two scenarios of nitrogen deposition as input. The results were compared to the reference and enabled an evaluation of site-specific ecosystem changes over time

  10. Methodology to assess and map the potential development of forest ecosystems exposed to climate change and atmospheric nitrogen deposition: A pilot study in Germany.

    Science.gov (United States)

    Schröder, Winfried; Nickel, Stefan; Jenssen, Martin; Riediger, Jan

    2015-07-15

    A methodology for mapping ecosystems and their potential development under climate change and atmospheric nitrogen deposition was developed using examples from Germany. The methodology integrated data on vegetation, soil, climate change and atmospheric nitrogen deposition. These data were used to classify ecosystem types regarding six ecological functions and interrelated structures. Respective data covering 1961-1990 were used for reference. The assessment of functional and structural integrity relies on comparing a current or future state with an ecosystem type-specific reference. While current functions and structures of ecosystems were quantified by measurements, potential future developments were projected by geochemical soil modelling and data from a regional climate change model. The ecosystem types referenced the potential natural vegetation and were mapped using data on current tree species coverage and land use. In this manner, current ecosystem types were derived, which were related to data on elevation, soil texture, and climate for the years 1961-1990. These relations were quantified by Classification and Regression Trees, which were used to map the spatial patterns of ecosystem type clusters for 1961-1990. The climate data for these years were subsequently replaced by the results of a regional climate model for 1991-2010, 2011-2040, and 2041-2070. For each of these periods, one map of ecosystem type clusters was produced and evaluated with regard to the development of areal coverage of ecosystem type clusters over time. This evaluation of the structural aspects of ecological integrity at the national level was added by projecting potential future values of indicators for ecological functions at the site level by using the Very Simple Dynamic soil modelling technique based on climate data and two scenarios of nitrogen deposition as input. The results were compared to the reference and enabled an evaluation of site-specific ecosystem changes over time

  11. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes

    Energy Technology Data Exchange (ETDEWEB)

    Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

    2013-08-20

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  12. Nitrogen and Oxygen Budget ExpLoration (NOBEL) for ESA M5-call: Measurement requirements to understand the atmospheric escape/budget

    Science.gov (United States)

    Yamauchi, Masatoshi; Dandouras, Iannis; Rème, Henri; Marghitu, Octav

    2016-04-01

    The NOBEL mission aims to study the thermal and non-thermal escape of major atmospheric components (nitrogen, oxygen, and their isotopes) from the Earth, a magnetized planet. This requires the first-time exploration of the Earth's entire exosphere as well as the first-time examination of isotope ratios in an extended altitude range from the upper ionosphere (800 km high) up to the magnetosphere. The measurement quality should allow connecting the various types of escape from the Earth to the different gravity mass-filtering and chemical reactions on a geological time scale, such that the result will be used as a good reference to understand the atmospheric/ionospheric evolution of magnetized planets based on their 17,18O/16O isotope ratio and N/O ratio. Since the solar EUV and solar wind conditions during solar maximum at present are comparable to the solar minimum conditions 1-2 billion years ago, the escaping amount and the isotope and N/O ratios should be obtained as a function of external forcing (solar and geomagnetic conditions) to allow a scaling to the past. To achieve these goals, the ion measurements in this mission should be able to separate nitrogen species (N, N2, N+ and N2+) from oxygen (O, O+), near the exobase, in the exosphere (for modelling thermal escape, hydrodynamics escape, and the pre-acceleration amount of non-thermal escape) and up in the magnetosphere (for modelling non-thermal escape and circulation of all ions). Furthermore, these aims require the capability to measure isotope ratios of cold oxygen ions and neutrals. We briefly discuss why we focus on the exosphere, on isotope ratios, and nitrogen measurements, and finally describe the current idea of a mission profile using a spinning satellite in a 500 km × 33000 km altitude high-inclination orbit.

  13. Uncertainty and perspectives in studies of atmospheric nitrogen deposition in China: A response to Liu et al. (2015).

    Science.gov (United States)

    He, Nianpeng; Zhu, Jianxing; Wang, Qiufeng

    2015-07-01

    In this paper, we have formally responded to the speculation in "Liu et al. suspect that Zhu et al. (2015) may have underestimated dissolved organic N but overestimated total particulate N in wet deposition in China" by Liu et al. (2015). Here, we first discussed the uncertainty and plausible reasons of atmospheric deposition in China, which have been reported in different studies. We disagree with their interpretation on some points. Firstly, the difficulties in quality control from sampling to analyzing are common to all studies regarding atmospheric deposition, including the studies cited by Liu et al. (2015). More importantly, their discussion did not fully consider the apparent influence of different scaling-up methods (from an observation site scale to a national scale) on estimations of atmospheric N deposition in China. Furthermore, we provided the optimal approaches to resolve these challenges discussed in order to promote the related studies of atmospheric N deposition in China in the future.

  14. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; Boer, W. de; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha⁻¹ a⁻¹. The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha⁻¹ a⁻¹. The Dutch sites had also lime

  15. A multi-isotope approach for estimating industrial contributions to atmospheric nitrogen deposition in the Athabasca oil sands region in Alberta, Canada

    International Nuclear Information System (INIS)

    Industrial nitrogen (N) emissions in the Athabasca oil sands region (AOSR), Alberta, Canada, affect nitrate (NO3) and ammonium (NH4) deposition rates in close vicinity of industrial emitters. NO3–N and NH4–N open field and throughfall deposition rates were determined at various sites between 3 km and 113 km distance to the main oil sand operations between May 2008 and May 2009. NO3 and NH4 were analyzed for δ15N–NO3, δ18O–NO3, Δ17O–NO3 and δ15N–NH4. Marked differences in the δ18O and Δ17O values between industrial emissions and background deposition allowed for the estimation of minimum industrial contributions to atmospheric NO3 deposition. δ15N–NH4 values also allowed for estimates of industrial contributions to atmospheric NH4 deposition. Results revealed that particularly sites within ∼30 km radius from the main oil sands developments are significantly affected by industrial contributions to atmospheric NO3 and NH4 deposition. -- Highlights: •Atmospheric NO3 and NH4 deposition rates are elevated near industrial emitters. •δ18O and Δ17O values of NO3 at high N deposition sites are isotopically distinct. •Industrial contributions to NO3 deposition are estimated using δ18O and Δ17O values. •Elevated δ15N values of NO3 and NH4 deposition indicate industrial contributions. -- Distinct δ18O, Δ17O, and δ15N values were used to estimate industrially derived N contributions to atmospheric nitrate and ammonium deposition in the Athabasca oil sands region

  16. Simulating a Measurement of the 2nd Knee in the Cosmic Ray Spectrum with an Atmospheric Fluorescence Telescope Tower Array

    Directory of Open Access Journals (Sweden)

    Jiali Liu

    2014-01-01

    Full Text Available A fluorescence telescope tower array has been designed to measure cosmic rays in the energy range of 1017–1018 eV. A full Monte Carlo simulation, including air shower production, light generation and propagation, detector response, electronics, and trigger system, has been developed for that purpose. Using such a simulation tool, the detector configuration, which includes one main tower array and two side-trigger arrays, 24 telescopes in total, has been optimized. The aperture and the event rate have been estimated. Furthermore, the performance of the Xmax⁡ technique in measuring composition has also been studied.

  17. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP: evaluation of historical and projected future changes

    Directory of Open Access Journals (Sweden)

    J.-F. Lamarque

    2013-08-01

    Full Text Available We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP. The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice, the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N yr−1 from nitrogen oxide emissions, 60 Tg(N yr−1 from ammonia emissions, and 83 Tg(S yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching > 1300 mg(N m−2 yr−1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30–50% larger than the values in any region currently (circa 2000. However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in

  18. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP: evaluation historical and projected changes

    Directory of Open Access Journals (Sweden)

    J.-F. Lamarque

    2013-03-01

    Full Text Available We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP. The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice, the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N yr−1 from nitrogen oxide emissions, 60 Tg(N yr−1 from ammonia emissions, and 83 Tg(S yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching > 1300 mg(N m−2 yr−1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30–50 % larger than the values in any region currently (2000. The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of

  19. Characterization of Heavy Metal Contents in the Bulk Atmospheric Aerosols Simultaneously Collected at Three Islands in Okinawa, Japan by X-ray fluorescence spectrometric method (XRF)

    Science.gov (United States)

    Oshiro, Y.; ITOH, A.; Azechi, S.; Somada, Y.; Handa, D.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    We studied heavy metal contents of atmospheric aerosols using an X-ray fluorescence spectrometric method (XRF). The XRF method enables us to analyze heavy metal contents of bulk aerosols rapidly without any chemical pretreatments. We used an energy dispersive X-ray fluorescence spectrometer that is compact and portable. We prepared several different amounts of standard reference materials (NIES No.28) of Japanese National Institute of Environmental Studies on quartz filters for calibration curves. Then, we evaluated quantitative responses of XRF method by comparing with the metal contents determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) after acid-digestion. Good linear relationships between X-ray intensity and amount of aerosol on filter were seen in the following 10 metals; Al, K, Ti, V, Fe, Ni, Rb, Ba, Pb and As. We then used XRF method to determine heavy metal contents in authentic atmospheric aerosols collected in Okinawa islands, Japan. Okinawa islands, consisting of many small islands, are situated east of Asian continent, and its location in Asian is well suited for studying long-range transport of air pollutants. Also, in Okinawa islands, maritime air mass prevails during summer, while Asian continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air mass which has been affected by anthropogenic activities such as industries and automobiles. Therefore, Okinawa region is suitable area for studying impacts of air pollutants from East Asia. We simultaneously collected bulk aerosol samples by using identical high-volume air samplers at 3 islands; Cape Hedo Atmospheric Aerosol Monitoring Station (CHAAMS, Okinawa island), Kume island (ca. 160 km south-west of CHAAMS), and Minami-Daitou island (ca. 320 km south-east of CHAAMS). We report and discuss spatial and temporal distribution of heavy metals

  20. Research progress on nitrogen in atmospheric aerosols:Chemical speciation and isotopic characteristics%大气气溶胶中的氮:化学形态与同位素特征研究进展

    Institute of Scientific and Technical Information of China (English)

    李佩霖; 傅平青; 康世昌; 万欣; 刘彬; 邬光剑; 丛志远

    2016-01-01

    氮是大气气溶胶的重要组成部分.气溶胶中的氮组分参与大气中的光化学反应,进而改变大气组成,影响气候变化与人类健康.同时,大气中过量的颗粒氮改变了氮素的自然循环,当它们沉降到地表时对陆地和水生生态系统产生深远的影响.本文综述了近年来气溶胶氮组分的研究进展,按其化学形态分别阐述了气溶胶中无机氮和有机氮的来源及其相关大气化学过程等,同时探讨了气溶胶中氮的同位素特征,指出该研究领域的薄弱环节并对其研究前景进行了展望.%As a key component, nitrogen constituents in atmospheric aerosols can participate in the atmospheric photochemical reactions and thereby altering the atmospheric composition. They can also exert great influence on the climate and human health. Excessive levels of atmospheric particulate nitrogen have profoundly changed the natural nitrogen cycle. Furthermore, after the deposition, it has dramatically affected the terrestrial/aquatic ecosystems. In this review, the research progress on nitrogen in atmospheric aerosols is summarized in terms of the chemical composition of inorganic/organic nitrogen, their sources and related atmospheric chemical processes, and the nitrogen isotopic compositions. Lastly, the shortcomings of previous researches and the future research prospective are discussed.

  1. Electron density change of atmospheric-pressure plasmas in helium flow depending on the oxygen/nitrogen ratio of the surrounding atmosphere

    Science.gov (United States)

    Tomita, Kentaro; Urabe, Keiichiro; Shirai, Naoki; Sato, Yuta; Hassaballa, Safwat; Bolouki, Nima; Yoneda, Munehiro; Shimizu, Takahiro; Uchino, Kiichiro

    2016-06-01

    Laser Thomson scattering was applied to an atmospheric-pressure plasma produced in a helium (He) gas flow for measuring the spatial profiles of electron density (n e) and electron temperature (T e). Aside from the He core flow, the shielding gas flow of N2 or synthesized air (\\text{N}2:\\text{O}2 = 4:1) surrounding the He flow was introduced to evaluate the effect of ambient gas components on the plasma parameters, eliminating the effect of ambient humidity. The n e at the discharge center was 2.7 × 1021 m-3 for plasma generated with N2/O2 shielding gas, 50% higher than that generated with N2 shielding.

  2. Trace analysis in the atmosphere, water bodies and uranium ores by means of X-ray fluorescence

    International Nuclear Information System (INIS)

    Analysis with X-ray fluorescence is an instrumental method that evaluates concentrations, at trace levels, of elements in samples of all kinds. The applications of this method are broad, specially useful in the analysis of metals as contaminators in air and water, and as impurities in minerals. The preparation of the samples is very important to obtain good accuracy, and at the same time, you should make a series of standards of known concentrations so you can compare the counting of each sample against the standard, for each of the elements. You should make, depending on the nature of the sample, several corrections with respect to the background, interferences, overlaps, or for effects of a third element. (author)

  3. Vibrational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric pressure fuel/air mixtures

    International Nuclear Information System (INIS)

    The use of nonequilibrium plasma generated by nanosecond discharges to ignite fuel/air mixtures, known as transient plasma ignition (TPI), has been shown to effectively reduce ignition delay and improve engine performance relative to spark ignition for combustion engines. While this method is potentially useful for many engine applications, at present the underlying physics are poorly understood. This work uses coherent anti-Stokes Raman spectroscopy (CARS) to measure the rotational and vibrational excitation of nitrogen molecules in the discharge afterglow in a variety of fuel/air mixtures outside the limits of combustion in order to elucidate the thermal behaviour of TPI. The time evolution of relative populations of vibrationally excited states of nitrogen in the electronic ground state are reported for each gas mixture; it is shown that generation of these vibrationally excited states is inefficient during the discharge in air but that generation occurs at a high rate roughly 5 µs following the discharge; with the addition of fuels vibrationally excited states are observed during the discharge but an increase in population is still seen at 5 µs. Possible mechanisms for this behaviour are discussed. In addition, rotational temperature increases of at least 500 K are reported for all gas mixtures. The effect of this temperature increase on ignition, reaction rates, and thermal energy pathways are discussed.

  4. Effects of increased deposition of atmospheric nitrogen on an upland moor: leaching of N species and soil solution chemistry

    International Nuclear Information System (INIS)

    This study was designed to investigate the leaching response of an upland moorland to long-term (10 yr) ammonium nitrate additions of 40, 80 and 120 kg N ha-1 yr-1 and to relate this response to other indications of potential system damage, such as acidification and cation displacement. Results showed increases in nitrate leaching only in response to high rates of N input, in excess of 96 and 136 kg total N input ha-1 yr-1 for the organic Oh horizon and mineral Eag horizon, respectively. Individual N additions did not alter ammonium leaching from either horizon and ammonium was completely retained by the mineral horizon. Leaching of dissolved organic nitrogen (DON) from the Oh horizon was increased by the addition of 40 kg N ha-1 yr-1, but in spite of increases, retention of total dissolved nitrogen reached a maximum of 92% and 95% of 80 kg added N ha-1 yr-1 in the Oh and Eag horizons, respectively. Calcium concentrations and calcium/aluminium ratios were decreased in the Eag horizon solution with significant acidification mainly in the Oh horizon leachate. Nitrate leaching is currently regarded as an early indication of N saturation in forest systems. Litter C:N ratios were significantly lowered but values remained above a threshold predicted to increase leaching of N in forests. - Nitrate leaching from an upland moor podsol was significantly increased only in response to rates of N deposition in excess of 96 kg N ha-1 yr-1

  5. Effects of increased deposition of atmospheric nitrogen on an upland moor: leaching of N species and soil solution chemistry.

    Science.gov (United States)

    Pilkington, M G; Caporn, S J M; Carroll, J A; Cresswell, N; Lee, J A; Ashenden, T W; Brittain, S A; Reynolds, B; Emmett, B A

    2005-05-01

    This study was designed to investigate the leaching response of an upland moorland to long-term (10 yr) ammonium nitrate additions of 40, 80 and 120 kg N ha(-1) yr(-1) and to relate this response to other indications of potential system damage, such as acidification and cation displacement. Results showed increases in nitrate leaching only in response to high rates of N input, in excess of 96 and 136 kg total N input ha(-1) yr(-1) for the organic Oh horizon and mineral Eag horizon, respectively. Individual N additions did not alter ammonium leaching from either horizon and ammonium was completely retained by the mineral horizon. Leaching of dissolved organic nitrogen (DON) from the Oh horizon was increased by the addition of 40 kg N ha(-1) yr(-1), but in spite of increases, retention of total dissolved nitrogen reached a maximum of 92% and 95% of 80 kg added N ha(-1) yr(-1) in the Oh and Eag horizons, respectively. Calcium concentrations and calcium/aluminium ratios were decreased in the Eag horizon solution with significant acidification mainly in the Oh horizon leachate. Nitrate leaching is currently regarded as an early indication of N saturation in forest systems. Litter C:N ratios were significantly lowered but values remained above a threshold predicted to increase leaching of N in forests.

  6. Preparation of Ag Schottky contacts on n-type GaN bulk crystals grown in nitrogen rich atmosphere by the hydride vapor phase epitaxy technique

    Energy Technology Data Exchange (ETDEWEB)

    Stübner, R., E-mail: ronald.stuebner@physik.tu-dresden.de; Kolkovsky, Vl.; Weber, J. [Technische Universität Dresden, 01062 Dresden (Germany); Leibiger, Gunnar; Habel, Frank [Freiberger Compound Materials GmbH, 09599 Freiberg (Germany)

    2014-10-14

    Electrical properties of Schottky contacts on n-type GaN grown in nitrogen rich atmosphere with different N/Ga ratios by hydride vapor phase epitaxy were investigated. We show that tunneling of electrons from the conduction band of GaN to the metal is dominant in our samples. The quality of Schottky contacts does not only depend on surface preparation but also on the growth conditions of the crystals. Schottky contacts on these crystals show an increasing deterioration when higher N/Ga growth ratios are used. We correlate our results with the presence of negatively charged gallium vacancies in the samples. These charges compensate the positively charged donors and lead to a significant increase in series resistance.

  7. Reactive spark plasma sintering of MgB2 in nitrogen atmosphere for the enhancement of the high-field critical current density

    Science.gov (United States)

    Badica, P.; Burdusel, M.; Popa, S.; Pasuk, I.; Ivan, I.; Borodianska, H.; Vasylkiv, O.; Kuncser, A.; Ionescu, A. M.; Miu, L.; Aldica, G.

    2016-10-01

    High density bulks (97%-99%) of MgB2 were prepared by spark plasma sintering (SPS) in nitrogen (N2) atmosphere for different heating rates (10, 20 and 100 °C min-1) and compared with reference samples processed in vacuum and Ar. N2 reacts with MgB2 and forms MgB9N along the MgB2 grain boundaries. The high-field critical current density is enhanced for the sample processed in N2 with a heating rate of 100 °C min-1. At 2-35 K, this sample shows the strongest contribution of the grain boundary pinning (GBP). All samples are in the point pinning (PP) limit and by increasing temperature the GBP contribution decreases.

  8. Nitrogen species

    Science.gov (United States)

    Harries, J. E.; Brasseur, G.; Coffey, M. T.; Fischer, H.; Gille, J.; Jones, R.; Louisnard, N.; McCormick, M. P.; Noxon, J.; Owens, A. J.

    Total odd nitrogen, NO(y), may be defined as the sum of all active nitrogen species that interchange photochemically with one another on a time scale of the order of weeks or less. As noted, NO + NO2 reactions dominate the processes controlling the ozone balance in the contemporary stratosphere. The observational data from non-satellite platforms are reviewed. The growth in available satellite data in the past four years is considered. Some of the most important scientific issues are discussed, taking into account new results from atmospheric models (mainly 2-D). The model results are compared with the observational data.

  9. Monitoring of atmospheric ozone and nitrogen dioxide over the south of Portugal by ground-based and satellite observations

    OpenAIRE

    Bortoli, Daniele; Silva, Ana Maria; Costa, Maria Joao; Domingues, Ana Filipa; Giovanelli, Giorgio

    2009-01-01

    The SPATRAM (Spectrometer for Atmospheric TRAcers Monitoring) instrument has been developed as a result of the collaboration between CGE-UE, ISAC-CNR and Italian National Agency for New Technologies, Energy and the Environment (ENEA). SPATRAM is a multi-purpose UV-Vis-scanning spectrometer (250-950 nm) and it is installed at the Observatory of the CGE, in Evora, since April 2004. A brief description of the instrument is given, highlighting the technological innovations with respect to the pre...

  10. Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas

    Science.gov (United States)

    Torokova, Lucie; Mazankova, Vera; Krcma, Frantisek; Mason, Nigel J.; Matejcik, Stefan

    2015-07-01

    This paper reports the results of an extensive study of with the in situ mass spectrometry analysis of gaseous phase species produced by an atmospheric plasma glow discharge in N2-CH4 gas mixtures (with methane concentrations ranging from 1% to 4%). The products are studied using proton-transfer-reaction mass spectrometry (PTR-MS). HCN and CH3CN are identified as the main gaseous products. Hydrazine, methanimine, methyldiazene, ethylamine, cyclohexadiene, pyrazineacetylene, ethylene, propyne and propene are identified as minor compounds. All the detected compounds and their relative abundances are determined with respect to the experimental conditions (gas composition and applied power). The same molecules were observed by the Cassini-Huygens probe in Titan's atmosphere (which has same N2-CH4 gas mixtures). Such, experiments show that the formation of such complex organics in atmospheres containing C, N and H, like that of Titan, could be a source of prebiotic molecules. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  11. The VLT-FLAMES Tarantula Survey. XIX. B-type supergiants: Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence

    OpenAIRE

    McEvoy, C. M.; Dufton, P. L.; Evans, C J; Kalari, V. M.; Markova, N.; Simón-Díaz, S.; Vink, J. S.; N. R. Walborn; Crowther, P. A.; Koter, de, A.; Mink, de, S.E.; Dunstall, P. R.; Hénault-Brunet, V.; Herrero, A.; Langer, N.

    2015-01-01

    Context. Model atmosphere analyses have been previously undertaken for both Galactic and extragalactic B-type supergiants. By contrast, little attention has been given to a comparison of the properties of single supergiants and those that are members of multiple systems. Aims. Atmospheric parameters and nitrogen abundances have been estimated for all the B-type supergiants identified in the VLT-FLAMES Tarantula survey. These include both single targets and binary candidates. The results h...

  12. Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere

    OpenAIRE

    Liang, Jinyou; Horowitz, Larry W.; Jacob, Daniel James; Wang, Yuhang; Fiore, Arlene M.; Logan, Jennifer A.; Gardner, Geraldine M.; Munger, J. William

    1998-01-01

    A three-dimensional, continental-scale photochemical model is used to investigate seasonal budgets of O3 and NOy species (including NOx and its oxidation products) in the boundary layer over the United States and to estimate the export of these species from the U.S. boundary layer to the global atmosphere. Model results are evaluated with year-round observations for O3, CO, and NOy species at nonurban sites. A seasonal transition from NOx to hydrocarbon-limited conditions for O3 production ov...

  13. Total N content and δ15N signatures in moss tissue for indicating varying atmospheric nitrogen deposition in Guizhou Province, China

    Science.gov (United States)

    Qu, Linglu; Xiao, Huayun; Guan, Hui; Zhang, Zhongyi; Xu, Yu

    2016-10-01

    Unsurprisingly, the amount of reactive nitrogen circulating annually on land has been doubled because of increasing anthropogenic activities. Exceedingly large amounts of reactive nitrogen (Nr) are likely to disrupt N dynamics and negatively impact the environment and human health. Guizhou Province, a major energy-producing province in southwest China, is suffering from serious long-term acid deposition. However, little work has been done to quantify the levels of atmospheric N deposition in this province, in which some ecologically vulnerable areas have resulted from rocky desertification. In this study, tissue N contents and δ15N signatures in 109 epilithic mosses were analyzed by the ordinary kriging (OK) interpolation technique to determine atmospheric N deposition. Moss N content (1.36-2.65%) showed a significant decrease from west to east, indicating that the spatial variance of TN deposition was the same as that of moss N content, with an average of 27.74 kg N ha-1 yr-1. Moss δ15N ranged from -5.89‰ to -0.72‰ and showed an opposite spatial variance compared with moss N contents. Negative δ15N indicated that the main sources for N deposition were urban sewage and agricultural NH3. According to Moss δ15N values, it could be concluded that NH4+-N and NO3--N were the main components of wet deposition, accounting for 52% and 44% of TN, respectively. The deposition fluxes were 14.49 kg N ha-1 yr-1 and 12.16 kg N ha-1 yr-1, respectively. Although the emission flux of NO3--N far exceeded that of NH4+-N, the amount of NH4+-N deposited on land was larger than that of NO3--N. N deposition in 99.6% of the province exceeded the critical load for terrestrial ecosystems. High N deposition is the main environmental problem facing Guizhou Province, and recommendations regarding regulatory strategies for mitigating atmospheric N pollution are urgently needed.

  14. Aircraft measurements of nitrogen and phosphorus in and around the Lake Tahoe Basin: implications for possible sources of atmospheric pollutants to Lake Tahoe.

    Science.gov (United States)

    Zhang, Qi; Carroll, John J; Dixon, Alan J; Anastasio, Cort

    2002-12-01

    Atmospheric deposition of nitrogen (N) and phosphorus (P) into Lake Tahoe appears to have been a major factor responsible for the shifting of the lake's nutrient response from N-limited to P-limited. To characterize atmospheric N and P in and around the Lake Tahoe Basin during summer, samples were collected using an instrumented aircraft flown over three locations: the Sierra Nevada foothills east of Sacramento ("low-Sierra"), further east and higher in the Sierra ("mid-Sierra"), and in the Tahoe Basin. Measurements were also made within the smoke plume downwind of an intense forest fire just outside the Tahoe Basin. Samples were collected using a denuder-filter pack sampling system (DFP) and analyzed for gaseous and water-soluble particle components including HNO3/ NO3-, NH3 /NH4+, organic N (ON), total N, SRP (soluble reactive phosphate) and total P. The average total gaseous and particulate N concentrations (+/- 1sigma) measured over the low- and mid-Sierra were 660 (+/- 270) and 630 (+/- 350) nmol N/m3-air, respectively. Total airborne N concentrations in the Tahoe samples were one-half to one-fifth of these values. The forest fire plume had the highest concentration of atmospheric N (860 nmol N/m3-air) and a greater contribution of organic N (ON) to the total N compared to nonsmoky conditions. Airborne P was rarely observed over the low- and mid-Sierra but was present at low concentrations over Lake Tahoe, with average +/- 1sigma) concentrations of 2.3 +/- 2.9 and 2.8 +/- 0.8 nmol P/m3-air under typical clear air and slightly smoky air conditions, respectively. Phosphorus in the forestfire plume was present at concentrations approximately 10 times greater than over the Tahoe Basin. P in these samples included both fine and coarse particulate phosphate as well as unidentified, possibly organic, gaseous P species. Overall, our results suggest that out-of-basin emissions could be significant sources of nitrogen to Lake Tahoe during the summer and that forest

  15. The fluorescence detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J. [Universidad Tecnologica Nacional, Facultad Regional Mendoza, (UTN-FRM), Mendoza (Argentina); Abreu, P. [LIP and Instituto Superior Tecnico, Lisboa (Portugal); Aglietta, M. [Istituto di Fisica dello Spazio Interplanetario (INAF), Universita di Torino and Sezione INFN, Torino (Italy); Aguirre, C. [Universidad Catolica de Bolivia, La Paz (Bolivia, Plurinational State of); Ahn, E.J. [Fermilab, Batavia, IL (United States); Allard, D. [Laboratoire AstroParticule et Cosmologie (APC), Universite Paris 7, CNRS-IN2P3, Paris (France); Allekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J. [New York University, New York, NY (United States); Allison, P. [Ohio State University, Columbus, OH (United States); Alvarez-Muniz, J. [Universidad de Santiago de Compostela (Spain); Ambrosio, M. [Universita di Napoli ' Federico II' and Sezione INFN, Napoli (Italy); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Andringa, S. [LIP and Instituto Superior Tecnico, Lisboa (Portugal); Anzalone, A. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo (Italy); Sezione INFN, Catania (Italy); Aramo, C. [Universita di Napoli ' Federico II' and Sezione INFN, Napoli (Italy); Arganda, E. [Universidad Complutense de Madrid, Madrid (Spain); Argiro, S. [Universita di Torino and Sezione INFN, Torino (Italy); Arisaka, K. [University of California, Los Angeles, CA (United States); Arneodo, F. [INFN, Laboratori Nazionali del Gran Sasso, Assergi , L' Aquila (Italy); Arqueros, F. [Universidad Complutense de Madrid, Madrid (Spain)

    2010-08-21

    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.

  16. The Fluorescence Detector of the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aglietta, M; Aguirre, C; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Allison, P; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Arganda, E; Argirò, S; Arisaka, K; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bacher, A; Bäcker, T; Badagnani, D; Barber, K B; Barbosa-Ademarlaudo, F; Barbosa, H J M; Barenthien, N; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Bérat, C; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Bleve, C; Blümer, H; Boháčová, M; Bollmann, E; Bolz, H; Bonifazi, C; Bonino, R; Borodai, N; Bracci, F; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, D CaminL; Caruso, R; Carvalho, W; Castellina, A; Castro, J; Catalano, O; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Chye, J; Clark, P D J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordero, A; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J W; Cuautle, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daudo, F; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; De Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; De Souza, V; de Vries, K D; Decerprit, G; Del Peral, L; Deligny, O; Della Selva, A; Fratte, C Delle; Dembinski, H; Di Giulio, C; Diaz, J C; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dornic, D; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fleck, I; Fliescher, S; Fonte, R; Fracchiolla, C E; Fraenkel, E D; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; Gámez, D García; Garcia-Pinto, D; Garrido, X; Geenen, H; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Gibbs, K; Giller, M; Gitto, J; Glass, H; Goggin, L M; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gomez; Gonçalves, P; Amaral, M Gonçalves do; González, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Grashorn, E; Grassi, V; Grebe, S; Grigat, M; Grillo, A F; Grygar, J; Guardincerri, Y; Guardone, N; Guerard, C; Guarino, F; Gumbsheimer, R; Guedes, G P; Gutiérrez, J; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Hartmann, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Hofman, G; Hörandel, J R; Horneffer, A; Horvat, M; Hrabovský, M; Hucker, H; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Kemp, E; Kern, H; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D -H; Kopmann, A; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; Kusenko, A; La Rosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Malek, M; Mandat, D; Mantsch, P; Marchetto, F; Mariazzi, A G; Maris, I C; Falcon, H R Marquez; Martello, D; Martineau, O; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; McNeil, R R; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Mucchi, M; Müller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nerling, F; Newman-Holmes, C; Newton, D; Nhung, P T; Nicotra, D; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Ortolani, F; Oßwald, B; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pȩkala, J; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Pichel, A; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Ponce, V H; Pontz, M; Pouryamout, J; Prado, L; Privitera, P; Prouza, M; Quel, E J; Rautenberg, G Raia J; Ravel, O; Ravignani, D; Redondo, A; Reis, H C; Reucroft, S; Revenu, B; Rezende, F A S; Rídky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Robledo, C; Roberts, M D; Rodríguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; b, H Salazar; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, G Schleif A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Sequieros, G; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Smiałkowski, A; Šmída, R; Smith, A G K; Smith, B E; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tarutina, T; Taşcuau, O; Tcaciuc, R; Tcherniakhovski, D; Thao, N T; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Torres, I; Trapani, P; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tuci, V; Tueros, M; Tusi, E; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Vázquez, J R; Vázquez, R A; Veberič, D; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vitali, G; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Westerhoff, S; Whelan, B J; Wild, N; Wiebusch, C; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wörner, G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; b, A Zepeda; Ziolkowski, M

    2009-01-01

    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.

  17. Impact of atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in cucumber (Cucumis sativus L.) plants.

    Science.gov (United States)

    Agüera, Eloísa; Ruano, David; Cabello, Purificación; de la Haba, Purificación

    2006-07-01

    Expression and activity of nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2) were analysed in relation to the rate of CO(2) assimilation in cucumber (Cucumis sativus L.) leaves. Intact plants were exposed to different atmospheric CO(2) concentrations (100, 400 and 1200microLL(-1)) for 14 days. A correlation between the in vivo rates of net CO(2) assimilation and the atmospheric CO(2) concentrations was observed. Transpiration rate and stomatal conductance remained unaffected by CO(2) levels. The exposure of the cucumber plants to rising CO(2) concentrations led to a concomitant increase in the contents of starch and soluble sugars, and a decrease in the nitrate content in leaves. At very low CO(2), NR and GS expression decreased, in spite of high nitrate contents, whereas at normal and elevated CO(2) expression and activity were high although the nitrate content was very low. Thus, in cucumber, NR and GS expression appear to be dominated by sugar levels, rather than by nitrate contents.

  18. Development and Study of Hard-Facing Materials on the Base of Heat-Resisting High-Hardness Steels for Plasma-Jet Hard- Facing in Shielding-Doping Nitrogen Atmosphere

    Science.gov (United States)

    Malushin, N. N.; Kovalev, A. P.; Valuev, D. V.; Shats, E. A.; Borovikov, I. F.

    2016-08-01

    The authors develop hard-facing materials on the base of heat-resisting highhardness steels for plasma-jet hard-facing in nitrogen atmosphere for manufacturing parts of mining and metallurgic equipment which significantly simplify the production process and effect a saving when producing bimetallic parts and tools.

  19. Hemodynamic Changes Caused by Exposure of Animals with Acute Immobilization Stress to Continuous Terahertz Radiation with Frequencies equal to Absorption and Emission Frequencies of Nitrogen Oxide and Atmospheric Oxygen

    Directory of Open Access Journals (Sweden)

    Vyacheslav F. Kirichuk

    2012-12-01

    Full Text Available The aim was to study the effects of exposure of albino rats to continuous terahertz radiation with frequencies equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz and atmospheric oxygen (129.0 ± 0.75 GHz during their immobilization stress on their blood flow rate. Methods – The group of 120 male non-pedigree albino rats with average weight of 180-220 g was chosen as a test subject. Simulation of hemodynamic disorders was achieved by incurring active immobilization stress. All rats were exposed to electromagnetic terahertz radiation equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz and atmospheric oxygen (129.0 ± 0.75 GHz for 5, 15 and 30 minutes. Results – Experimental simulation of hemodynamic disorders during acute immobilization stress has shown that exposure to continuous terahertz radiation with frequencies equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz and atmospheric oxygen (129.0 ± 0.75 GHz for 5, 15 and 30 minutes allows to revert post-stress hemodynamic changes in great vessels. Conclusion – This allows using terahertz electromagnetic radiation with frequencies equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz and atmospheric oxygen (129.0 ± 0.75 GHz to treat hemodynamic disorders accompanying some of pathologic diseases.

  20. Effect of Heat Treatment Under Nitrogen Atmosphere on Sprayed Fluorine Doped In2O3 Thin Films

    Science.gov (United States)

    Beji, Nasreddine; Ajili, Mejda; Turki, Najoua Kamoun

    2016-07-01

    Fluorine-doped indium oxide thin films (In2O3:F) were prepared at 500°C for different fluorine concentrations (0 at.%, 2 at.%, 6 at.% and 10 at.%) using the chemical spray pyrolysis technique. Structure and surface morphology of these films were characterized by x-ray diffraction (XRD) and atomic force microscopy (AFM). XRD analysis revealed that fluorine doped In2O3 thin films exhibit a centered cubic structure with the (400) preferential orientation. The change of the preferential reflection plane from (222) to (400) was found after doping. The doping optimum concentration of thin film crystal structure is obtained witha fluorine ratio equal to 2 at.%. The crystallinity improvement of In2O3:F (2 at.%) film is detected after annealing at 200°C, 300°C, and 400°C in nitrogen gas for 45 min. Transmission and reflection spectra measurements were performed over the wavelength range of 250-2500 nm. The band gap energy increase from 3.10 eV to 3.45 eV was detected after treatment at 400°C. In parallel, the electrical resistivity, deduced from Hall effect measurements, decreases from 428.90 × 10-4 Ω cm to 6.58 × 10-4 Ω cm.

  1. Effects of long-term nitrogen fertilization on the uptake kinetics of atmospheric methane in temperate forest soils.

    Science.gov (United States)

    Gulledge, Jay; Hrywna, Yarek; Cavanaugh, Colleen; Steudler, Paul A

    2004-09-01

    To determine whether repeated, long-term NH(4) (+) fertilization alters the enzymatic function of the atmospheric CH(4) oxidizer community in soil, we examined CH(4) uptake kinetics in temperate pine and hardwood forest soils amended with 150 kg N ha(-1) y(-1) as NH(4)NO(3) for more than a decade. The highest rates of atmospheric CH(4) consumption occurred in the upper 5 cm mineral soil of the control plots. In contrast to the results of several previous studies, surface organic soils in the control plots also exhibited high consumption rates. Fertilization decreased in situ CH(4) consumption in the pine and hardwood sites relative to the control plots by 86% and 49%, respectively. Fertilization increased net N mineralization and relative nitrification rates and decreased CH(4) uptake most dramatically in the organic horizon, which contributed substantially to the overall decrease in field flux rates. In all cases, CH(4) oxidation followed Michaelis-Menten kinetics, with apparent K(m) (K(m(app))) values typical of high-affinity soil CH(4) oxidizers. Both K(m(app)) and V(max(app)) were significantly lower in fertilized soils than in unfertilized soils. The physiology of the methane consumer community in the fertilized soils was distinct from short-term responses to NH(4) (+) addition. Whereas the immediate response to NH(4) (+) was an increase in K(m(app)), resulting from apparent enzymatic substrate competition, the long-term response to fertilization was a community-level shift to a lower K(m(app)), a possible adaptation to diminish the competitiveness of NH(4) (+) for enzyme active sites. PMID:19712289

  2. Oxidation and nitration of tyrosine by ozone and nitrogen dioxide: reaction mechanisms and biological and atmospheric implications.

    Science.gov (United States)

    Sandhiya, L; Kolandaivel, P; Senthilkumar, K

    2014-04-01

    The nitration of tyrosine by atmospheric oxidants, O3 and NO2, is an important cause for the spread of allergenic diseases. In the present study, the mechanism and pathways for the reaction of tyrosine with the atmospheric oxidants O3 and NO2 are studied using DFT-M06-2X, B3LYP, and B3LYP-D methods with the 6-311+G(d,p) basis set. The energy barrier for the initial oxidation reactions is also calculated at the CCSD(T)/6-31+G(d,p) level of theory. The reaction is studied in gas, aqueous, and lipid media. The initial oxidation of tyrosine by O3 proceeds by H atom abstraction and addition reactions and leads to the formation of six different intermediates. The subsequent nitration reaction is studied for all the intermediates, and the results show that the nitration affects both the side chain and the aromatic ring of tyrosine. The rate constant of the favorable oxidation and nitration reaction is calculated using variational transition state theory over the temperature range of 278-350 K. The spectral properties of the oxidation and nitration products are calculated at the TD-M06-2X/6-311+G(d,p) level of theory. The fate of the tyrosine radical intermediate is studied by its reaction with glutathione antioxidant. This study provides an enhanced understanding of the oxidation and nitration of tyrosine by O3 and NO2 in the context of improving the air quality and reducing the allergic diseases.

  3. Effects of long-term nitrogen fertilization on the uptake kinetics of atmospheric methane in temperate forest soils.

    Science.gov (United States)

    Gulledge, Jay; Hrywna, Yarek; Cavanaugh, Colleen; Steudler, Paul A

    2004-09-01

    To determine whether repeated, long-term NH(4) (+) fertilization alters the enzymatic function of the atmospheric CH(4) oxidizer community in soil, we examined CH(4) uptake kinetics in temperate pine and hardwood forest soils amended with 150 kg N ha(-1) y(-1) as NH(4)NO(3) for more than a decade. The highest rates of atmospheric CH(4) consumption occurred in the upper 5 cm mineral soil of the control plots. In contrast to the results of several previous studies, surface organic soils in the control plots also exhibited high consumption rates. Fertilization decreased in situ CH(4) consumption in the pine and hardwood sites relative to the control plots by 86% and 49%, respectively. Fertilization increased net N mineralization and relative nitrification rates and decreased CH(4) uptake most dramatically in the organic horizon, which contributed substantially to the overall decrease in field flux rates. In all cases, CH(4) oxidation followed Michaelis-Menten kinetics, with apparent K(m) (K(m(app))) values typical of high-affinity soil CH(4) oxidizers. Both K(m(app)) and V(max(app)) were significantly lower in fertilized soils than in unfertilized soils. The physiology of the methane consumer community in the fertilized soils was distinct from short-term responses to NH(4) (+) addition. Whereas the immediate response to NH(4) (+) was an increase in K(m(app)), resulting from apparent enzymatic substrate competition, the long-term response to fertilization was a community-level shift to a lower K(m(app)), a possible adaptation to diminish the competitiveness of NH(4) (+) for enzyme active sites.

  4. Comparison of atmospheric concentrations of sulphur and nitrogen compounds, chloride and base cations at Ahtari and Hyytiala, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Ruoho-Airola, T. [Finnish Meteorological Institute, Helsinki (Finland)

    2012-11-01

    Seven-year (2003-2009) time series of atmospheric SO{sub 2}, SO{sub 4}{sup 2-}, NO{sub 3}-, NH{sub 4}{sup +} and Cl{sup -} concentrations as well as four-year time series of atmospheric Na{sup +}, K{sup +}, Ca{sup 2+} and Mg{sup 2+} concentrations from Ahtari and Hyytiala background stations in southern Finland, located within 85 km of each other were compared. At Ahtari the air sampler was located in a clearing within a young forest, while at Hyytiala it was within dense forest stands. Pearson's correlations between the time series were very strong (r{sub P} {>=} 0.9) for SO{sub 2}, SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +}, Cl{sup -} and Ca{sup 2+}, strong (r{sub P} > 0.8) for Na{sup +} and Mg{sup 2+} and week (r{sub P} = 0.65) for K{sup +}. The concentrations recorded at Hyytiala were on average 0.8-1.0 times those at Ahtari, although for K{sup +} and Ca{sup 2+} the ratios were higher. The GLS-ARMA method used takes into account the seasonal behaviour and serial correlation in the air quality time series, which revealed similar seasonal and temporal behaviour for S and N compounds and Cl- at both stations. As a result of the dense seasonalization of the time series, the part of the data heavily influenced by local agricultural sources could be identified. This enables elimination of the minimal part of the data affected and the use of the remaining data for further studies on a more regional level. (orig.)

  5. Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling

    Directory of Open Access Journals (Sweden)

    J. M. F. Martins

    2009-11-01

    Full Text Available The nitrogen15N and triple oxygen (δ17O and δ18O isotopic composition of nitrate (NO3 was measured year-round in the atmosphere and snow pits at Dome C, Antarctica (DC, 75.1° S, 123.3° E, and in surface snow on a transect between DC and the coast. Comparison to the isotopic signal in atmospheric NO3 shows that snow NO3 is significantly enriched in δ15N by >200‰ and depleted in δ18O by <40‰. Post-depositional fractionation in Δ17O(NO3 is small, potentially allowing reconstruction of past shifts in tropospheric oxidation pathways from ice cores. Assuming a Rayleigh-type process we find fractionation constants ε of −60±15‰, 8±2‰ and 1±1‰, for δ15N, δ18O and Δ17O, respectively. A photolysis model yields an upper limit for the photolytic fractionation constant 15ε of δ15N, consistent with lab and field measurements, and demonstrates a high sensitivity of 15ε to the incident actinic flux spectrum. The photolytic 15ε is process-specific and therefore applies to any snow covered location. Previously published 15ε values are not representative for conditions at the Earth surface, but apply only to the UV lamp used in the reported experiment (Blunier et al., 2005; Jacobi et al., 2006. Depletion of oxygen stable isotopes is attributed to photolysis followed by isotopic exchange with water and hydroxyl radicals. Conversely, 15N enrichment of the NO3 fraction in the snow implies 15N depletion of emissions. Indeed, δ15N in atmospheric NO3 shows a strong decrease from background levels (4±7‰ to −35‰ in spring followed by recovery during summer, consistent with significant snowpack

  6. Evaluation of heavy metals in atmospheric emissions from automotive industry by total reflection X-ray fluorescence with synchrotron radiation

    International Nuclear Information System (INIS)

    This study had as goal to determine heavy metals and other elements (Ba, Br, Ca, Pb, Cl, Cr, Sr, Fe, Mn, Ni, K, Si, Ti and Zn) in atmospheric pollutants generated by an automotive industry located in the city of Engenheiro Coelho, state of Sao Paulo, Brazil. The sampling and sample preparation procedures were based on methods established by the Company of Sanitation and Technology (CETESB L9.234) and also by the Environmental Protection Agency (EPA - Method 29). The analysis was performed at XRF Beamline (D09B-XRF) in the Synchrotron Light Source Laboratory (Campinas/SP). A white beam of synchrotron radiation was used for sample and standard excitation which were irradiated by 100 seconds. For X-ray lines detection, a Ge (HP) detector with 150 eV of resolution at 5.9 keV was employed. For zinc, iron, barium, calcium and potassium, the values obtained were in the range of 30 mg/Nm3 and, for other elements, the concentrations were approximately 1 mg/Nm3. The sum of As, Be, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, Te and Zn concentration was compared with the limits established by CONAMA 264/1999 and SEMA 041/2002 resolutions (7.0 mg/Nm3) and it was observed that, for all samples, sums are higher than the permissive value mainly due to the high concentration of zinc. Detection limits for SR-TXRF technique were 0.10 μg/Nm3 for Pb and 0.02 μg/Nm3 for Zn. (author)

  7. Evaluation of heavy metals in atmospheric emissions from automotive industry by total reflection X-ray fluorescence with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Weber Neto, Jose, E-mail: silvana@fec.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Saneamento e Ambiente; Vives, Ana Elisa Sirito de, E-mail: aesvives@unimep.b [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo

    2009-07-01

    This study had as goal to determine heavy metals and other elements (Ba, Br, Ca, Pb, Cl, Cr, Sr, Fe, Mn, Ni, K, Si, Ti and Zn) in atmospheric pollutants generated by an automotive industry located in the city of Engenheiro Coelho, state of Sao Paulo, Brazil. The sampling and sample preparation procedures were based on methods established by the Company of Sanitation and Technology (CETESB L9.234) and also by the Environmental Protection Agency (EPA - Method 29). The analysis was performed at XRF Beamline (D09B-XRF) in the Synchrotron Light Source Laboratory (Campinas/SP). A white beam of synchrotron radiation was used for sample and standard excitation which were irradiated by 100 seconds. For X-ray lines detection, a Ge (HP) detector with 150 eV of resolution at 5.9 keV was employed. For zinc, iron, barium, calcium and potassium, the values obtained were in the range of 30 mg/Nm{sup 3} and, for other elements, the concentrations were approximately 1 mg/Nm{sup 3}. The sum of As, Be, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, Te and Zn concentration was compared with the limits established by CONAMA 264/1999 and SEMA 041/2002 resolutions (7.0 mg/Nm{sup 3}) and it was observed that, for all samples, sums are higher than the permissive value mainly due to the high concentration of zinc. Detection limits for SR-TXRF technique were 0.10 mug/Nm{sup 3} for Pb and 0.02 mug/Nm{sup 3} for Zn. (author)

  8. Effects of nitrogen on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon-based cold atmospheric pressure plasma.

    Science.gov (United States)

    Tabuchi, Yoshiaki; Uchiyama, Hidefumi; Zhao, Qing-Li; Yunoki, Tatsuya; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2016-06-01

    Cold atmospheric pressure plasma (CAP) is known as a source of biologically active agents, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). In the present study, we examined the effects of nitrogen (N2) on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon (Ar)-CAP. Enormous amounts of hydroxyl (·OH) radicals in aqueous solution were produced using Ar‑CAP generated using a 20 kHz low frequency at 18 kV with a flow rate of 2 l/min. The increase in the levels of ·OH radicals was significantly attenuated by the addition of N2 to Ar gas. On the other hand, the level of total nitrate/nitrite in the supernatant was significantly elevated in the Ar + N2-CAP‑exposed U937 cells. When the cells were exposed to Ar‑CAP, a significant increase in apoptosis was observed, whereas apoptosis was markedly decreased in the cells exposed to Ar + N2-CAP. Microarray and pathway analyses revealed that a newly identified gene network containing a number of heat shock proteins (HSPs), anti-apoptotic genes, was mainly associated with the biological function of the prevention of apoptosis. Quantitative PCR revealed that the expression levels of HSPs were significantly elevated in the cells exposed to Ar + N2-CAP than those exposed to Ar‑CAP. These results indicate that N2 gas in Ar‑CAP modifies the ratio of ROS to RNS, and suppresses the apoptosis induced by Ar‑CAP. The modulation of gaseous conditions in CAP may thus prove to be useful for future clinical applications, such as for switching from a sterilizing mode to cytocidal effect for cancer cells.

  9. Effects of nitrogen on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon-based cold atmospheric pressure plasma.

    Science.gov (United States)

    Tabuchi, Yoshiaki; Uchiyama, Hidefumi; Zhao, Qing-Li; Yunoki, Tatsuya; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2016-06-01

    Cold atmospheric pressure plasma (CAP) is known as a source of biologically active agents, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). In the present study, we examined the effects of nitrogen (N2) on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon (Ar)-CAP. Enormous amounts of hydroxyl (·OH) radicals in aqueous solution were produced using Ar‑CAP generated using a 20 kHz low frequency at 18 kV with a flow rate of 2 l/min. The increase in the levels of ·OH radicals was significantly attenuated by the addition of N2 to Ar gas. On the other hand, the level of total nitrate/nitrite in the supernatant was significantly elevated in the Ar + N2-CAP‑exposed U937 cells. When the cells were exposed to Ar‑CAP, a significant increase in apoptosis was observed, whereas apoptosis was markedly decreased in the cells exposed to Ar + N2-CAP. Microarray and pathway analyses revealed that a newly identified gene network containing a number of heat shock proteins (HSPs), anti-apoptotic genes, was mainly associated with the biological function of the prevention of apoptosis. Quantitative PCR revealed that the expression levels of HSPs were significantly elevated in the cells exposed to Ar + N2-CAP than those exposed to Ar‑CAP. These results indicate that N2 gas in Ar‑CAP modifies the ratio of ROS to RNS, and suppresses the apoptosis induced by Ar‑CAP. The modulation of gaseous conditions in CAP may thus prove to be useful for future clinical applications, such as for switching from a sterilizing mode to cytocidal effect for cancer cells. PMID:27121589

  10. Effects of atmospheric deposition nitrogen flux and its composition on soil solution chemistry from a red soil farmland, southeast China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; Chan, Andrew; Mao, Jingdong

    2015-12-01

    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.

  11. One-step fabrication of nitrogen-doped fluorescent nanoparticles from non-conjugated natural products and their temperature-sensing and bioimaging applications

    Directory of Open Access Journals (Sweden)

    Xiaoling Zeng

    2015-03-01

    Full Text Available A facile solvothermal method was used to prepare N-doped fluorescent nanoparticles (NFNPs at gram scale from tartaric acid/citric acid/ethylenediamine using oleic acid as the reaction medium. The quantum yield of the obtained fluorescent nanoparticles could reach 48.7%. The NFNPs were characterized by multiple analytical techniques. By combining with the circular dichroism (CD spectra, the structure and the origin of photoluminescence of the NFNPs were discussed. The fluorescent intensity of the obtained NFNPs had remarkable stability, and exhibited a reversible temperature-dependent enhancement/quenching. The products with low cytotoxicity could be introduced into the target cells for in vitro bioimaging.

  12. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Atmospheric (Wet) Deposition of Inorganic Nitrogen, 2002

    Science.gov (United States)

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average atmospheric (wet) deposition, in kilograms per square kilometer, of inorganic nitrogen for the year 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data set for wet deposition was from the USGS's raster data set atmospheric (wet) deposition of inorganic nitrogen for 2002 (Gronberg, 2005). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years (2007-2008), an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris

  13. Distribution of atmospheric reactive nitrogen at two sites of different socio- economic characteristics in IndoGangetic Plain(IGP) region, India.

    Science.gov (United States)

    Singh, S.; Sharma, A.; Kulshrestha, U. C.

    2015-12-01

    In India, most of the human population lives in rural areas. People depends on agriculture products to meet the demand of food supply. In order to get higher yield of agriculture and food product, increased practice of fertilizer application has added extra burden of nutrients especially, the reactive nitrogen (Nr) species viz NH3 and NOx. Growing energy demands has resulted in increased emissions of NOx from coal combustion in thermal power plant and the petroleum combustion in transport sector. In addition, biomass burning in traditional cooking and heating has become significant source of NH3 and NOx in Indian region. Significance of the study lies in the fact that increasing Nr emissions have adverse impact on human health, plant, soil and water bodies directly and to see the effect, knowledge of emission and deposition for Nr at different sites. Hence, the selection of the sites for present study was done very carefully. Delhi city and Mai village were selected to represent typical characteristics of high and low socioeconomic region respectively. Delhi is the capital of India, known for higher income group urban cluster where rural site having agricultural dominance has its importance in Indian scenario because still in India our primary source of income is agriculture. Atmospheric abundance of two major gaseous inorganic (Nr) species i.e NH3 and NO2 has been measured for one year, on monthly basis. Average concentrations of NH3 at urban and rural site have been recorded as 40.4 ±16.8 and 51.57 ±22.8 μg/m3 respectively. The average concentrations of NO2 have been recorded as 24.4 ±13.5 and 18.8 ± 12.6 μg/m3 at urban & rural site respectively. Study, also presents seasonal and diurnal variations of gaseous reactive nitrogen species at urban & rural sites to observe the contribution of different the sources of atmospheric Nr. Dynamics of Nr at both sites will be discussed in details at the conference.

  14. Deposition of nitrogen into the North Sea

    NARCIS (Netherlands)

    Leeuw, G.de; Ambelas Skjøth, C.; Hertel, O.; Jickells, T.; Spokes, L.; Vignati, E.; Frohn, L.; Frydendall, J.; Schulz, M.; Tamm, S.; Sørensen, L.L.; Kunz, G.J.

    2003-01-01

    The flux of nitrogen species from the atmosphere into the ocean, with emphasis on coastal waters, was addressed during the ANICE project (Atmospheric Nitrogen Inputs into the Coastal Ecosystem). ANICE focused on quantifying the deposition of atmospheric inputs of inorganic nitrogen compounds (HNO3,

  15. Laser-induced Fluorescence and Optical Emission Spectroscopy for the Determination of Reactive Species in the Effluent of Atmospheric Pressure Low Temperature Plasma Jets

    Science.gov (United States)

    Pei, Xuekai; Razavi, Hamid; Lu, Xinpei; Laroussi, Mounir

    2014-10-01

    OH radicals and O atoms are important active species in various applications of room temperature atmospheric pressure plasma jet (RT-APPJ). So the determination of absolute density of OH radicals and O atoms in RT-APPJs is necessary. In this work, the time and spatially resolved OH radicals density of a RT-APPJ are measured using the laser-induced fluorescence (LIF) technology. In addition, the spatial distribution of the emitting species along the axial direction of the jet is of interest and is measured using optical emission spectroscopy. The absolute OH density of the RT-APPJ is about 2.0 × 1013 cm-3 at 5 mm away from the plasma jet nozzle and 1 μs after the discharge. The OH density reaches a maximum when H2O concentration in helium gas flow is about 130ppm. In order to control the OH density, the effect of voltage polarity, applied voltage magnitude, pulse frequency, pulse width on the OH density are also investigated and discussed. O atoms are investigated by TA-LIF. It is demonstrated that the O atoms density reaches a maximum when O2 percent is about 0.3% in pure He and the lifetime of O atoms in RT-APPJ is much longer (up to dozens of ms) than OH radicals.

  16. Analysis of trace in Rhododendron ferrigineum leaves for monitoring of urban atmospheric pollution by x-ray fluorescence with Synchrotron Radiation Excitation technique

    International Nuclear Information System (INIS)

    The purpose of this work was perform the biomonitoring of the atmospheric pollution in Campinas City (SP), applying the Energy Dispersive X-ray Fluorescence with Synchrotron Radiation Excitation technique. For this were performed the elemental analysis of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se and Pb in Rhododendron ferrigineum leaves, employed here as bioindicator from environmental pollution in order to evaluate the effects of spatial and climatic contribution on the elemental concentration on the vegetable. Urban and rural sites were sampling in different seasons. The collected leaves were divided in two parts, one of them was washed by detergent and deionized water, in order to quantify the losses due the washing, and the second one was not washed, following the both parts of material were dried in stove, crushed and so the samples were submitted to an nitric-perchloric digestion. The samples were preconcentrated with ammonium pyrrolidinedithiocarbamate (APDC), and the suspension was separated by filtration in cellulose membrane, then the samples were analyzed with X-ray tube and synchrotron radiation excitations. The results obtained shown that the vehicle flow can be associated to the distribution of the elements in the Rhododendrom ferrigineum leaves therefore the climatic contribution was not conclusive. (author)

  17. Effects of atmospheric deposition nitrogen flux and its composition on soil solution chemistry from a red soil farmland, southeast China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; Chan, Andrew; Mao, Jingdong

    2015-12-01

    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands. PMID:26515781

  18. Modelling changes in nitrogen cycling to sustain increases in forest productivity under elevated atmospheric CO2 and contrasting site conditions

    Directory of Open Access Journals (Sweden)

    R. F. Grant

    2013-04-01

    Full Text Available If increases in net primary productivity (NPP caused by rising concentrations of atmospheric CO2 (Ca are to be sustained, key N processes such as soil mineralization, biological fixation, root uptake and plant translocation must be hastened. Simulating the response of these processes to elevated Ca is therefore vital for models used to project the effects of rising Ca on NPP. In this modelling study, hypotheses are proposed for changes in soil mineralization, biological fixation, root uptake and plant translocation with changes in Ca. Algorithms developed from these hypotheses were tested in the ecosystem model ecosys against changes in N and C cycling measured over several years under ambient vs. elevatedCa in Free Air CO2 Enrichment (FACE experiments at the Duke Forest in North Carolina, the Oak Ridge National Laboratory forest in Tennessee, and the USDA research forest in Wisconsin, USA. Simulating more rapid soil N mineralization was found to be vital for modelling sustained increases in NPP measured under elevated vs. ambient Ca at all three FACE sites. This simulation was accomplished by priming decomposition of N-rich humus from increases in microbial biomass generated by increased litterfall modelled under elevated Ca. Simulating more rapid nonsymbiotic N2 fixation, root N uptake and plant N translocation under elevated Ca was found to make much smaller contributions to modelled increases in NPP, although such contributions might be greater over longer periods and under more N-limited conditions than those simulated here. Greater increases in NPP with Ca were also modelled with increased temperature and water stress, and with coniferous vs. deciduous plant functional types. These increases were also associated with changes in N cycling.

  19. Temperature and Humidity Dependence of Air Fluorescence Yield measured by AIRFLY

    CERN Document Server

    Ave, M; Bohacova, M; Buonomo, B; Busca, N; Cazon, L; Chemerisov, S D; Conde, M E; Crowell, R A; Di Carlo, P; Di Giulio, C; Doubrava, M; Esposito, A; Facal, P; Franchini, F J; Horandel, J; Hrabovsky, M; Iarlori, M; Kasprzyk, T E; Keilhauer, B; Klages, H; Kleifges, M; Kuhlmann, S; Mazzitelli, G; Nozka, L; Obermeier, A; Palatka, M; Petrera, S; Privitera, P; Rídky, J; Rizi, V; Rodríguez, G; Salamida, F; Schovanek, P; Spinka, H; Strazzeri, E; Ulrich, A; Yusof, Z M; Vacek, V; Valente, P; Verzi, V; Waldenmaier, T

    2007-01-01

    The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6 nm, 337.1 nm, 353.7 nm and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20%) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays.

  20. Spatially valid data of atmospheric deposition of heavy metals and nitrogen derived by moss surveys for pollution risk assessments of ecosystems.

    Science.gov (United States)

    Schröder, Winfried; Nickel, Stefan; Schönrock, Simon; Meyer, Michaela; Wosniok, Werner; Harmens, Harry; Frontasyeva, Marina V; Alber, Renate; Aleksiayenak, Julia; Barandovski, Lambe; Carballeira, Alejo; Danielsson, Helena; de Temmermann, Ludwig; Godzik, Barbara; Jeran, Zvonka; Karlsson, Gunilla Pihl; Lazo, Pranvera; Leblond, Sebastien; Lindroos, Antti-Jussi; Liiv, Siiri; Magnússon, Sigurður H; Mankovska, Blanka; Martínez-Abaigar, Javier; Piispanen, Juha; Poikolainen, Jarmo; Popescu, Ion V; Qarri, Flora; Santamaria, Jesus Miguel; Skudnik, Mitja; Špirić, Zdravko; Stafilov, Trajce; Steinnes, Eiliv; Stihi, Claudia; Thöni, Lotti; Uggerud, Hilde Thelle; Zechmeister, Harald G

    2016-06-01

    For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990-2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990-2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990-2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests. PMID:27068915

  1. 青岛大气气溶胶中水溶性有机氮对总氮的贡献%Contribution of Water Soluble Organic Nitrogen to Total Nitrogen in Atmospheric Aerosols in Qingdao

    Institute of Scientific and Technical Information of China (English)

    石金辉; 韩静; 范得国; 祁建华; 高会旺

    2011-01-01

    Organic nitrogen (ON) is a quantitatively important component of reactive nitrogen in atmospheric aerosols. Deposition of ON in seawater from atmosphere could enhance primary productivity, as well as with the changes in the phytoplankton community composition. 64 total suspended particles (TSP) samples collected at Qingdao from January to December in 2008 were applied to analyze the concentrations of water soluble organic nitrogen in aerosols. Concentrations of ON in Qingdao aerosols ranged from 30 to 2 073 nmol.m -3 ( 100-12 157 p mol-g-1 ) , with the highest values occurring in December, followed in March and April and the lowest values in June to September. ON mean concentration in TSP in 2008 was 430 nmol·m -3 (2 323 μmol.g-1 ). The contribution of ON to total nitrogen (TN) was (37.5 ± 21.6)%, with the maximum presenting in December and the minimum in September. The distribution of organic nitrogen in aerosols was significantly affected by the weather conditions. During haze and fog episodes, the concentrations of ON in the aerosols were 789 nmol·m-3 and 412 nmol.m-3, respectively, 4 times and twice higher than that during clear episodes. However, the particle mass concentrations in haze and fog days were comparable with that in clear days. During dust episodes, the concentration of particles was 5 times higher than that during clear episodes while ON concentration slightly enhanced 0.4 times. The ON concentration in aerosols after raining was 57 nmol. m -3 ,decreased 80% than that before raining due to the efficient wet scavenging.%有机氮是大气气溶胶中重要的氮组分,其沉降入海后不仅能够促进海洋初级生产力的增长,还可能影响海洋生态系统的群落结构.利用2008年1~12月在青岛采集的64个总悬浮颗粒物样品,分析了其中水溶性有机氮的浓度.气溶胶中有机氮的浓度为30~2 073 nmol·m-3(100~12 157 μmol·g-1),以12月浓度最高,3、4月次之,6~9

  2. Atmospheric COS measurements and satellite-derived vegetation fluorescence data to evaluate the terrestrial gross primary productivity of CMIP5 model

    Science.gov (United States)

    Peylin, Philippe; MacBean, Natasha; Launois, Thomas; Belviso, Sauveur; Cadule, Patricia; Maignan, Fabienne

    2016-04-01

    Predicting the fate of the ecosystem carbon stocks and their sensitivity to climate change strongly relies on our ability to accurately model the gross carbon fluxes, i.e. photosynthesis and respiration. The Gross Primary Productivity (GPP) simulated by the different terrestrial models used in CMIP5 show large differences however, not only in terms of mean value but also in terms of phase and amplitude, thus hampering accurate investigations into carbon-climate feedbacks. While the net C flux of an ecosystem (NEE) can be measured in situ with the eddy covariance technique, the GPP is not directly accessible at larger scales and usually estimates are based on indirect measurements combining different tracers. Recent measurements of a new atmospheric tracer, the Carbonyl sulphide (COS), as well as the global measurement of Solar Induced Fluorescence (SIF) from satellite instruments (GOSAT, GOME2) open a new window for evaluating the GPP of earth system models. The use of COS relies on the fact that it is absorbed by the leaves in a similar manner to CO2, while there seems to be nothing equivalent to respiration for COS. Following recent work by Launois et al. (ACP, 2015), there is a potential to evaluate model GPP from atmospheric COS and CO2 measurements, using a transport model and recent parameterizations for the non-photosynthetic sinks (oxic soils, atmospheric oxidation) and biogenic sources (oceans and anoxic soils) of COS. Vegetation uptake of COS is modeled as a linear function of GPP and the ratio of COS to CO2 rate of uptake by plants. For the fluorescence, recent measurements of SIF from space appear to be highly correlated with monthly variations of data-driven GPP estimates (Guanter et al., 2012), following a strong dependence of vegetation SIF on photosynthetic activity. These global measurements thus provide new indications on the timing of canopy carbon uptake. In this work, we propose a dual approach that combines the strength of both COS and SIF

  3. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    Science.gov (United States)

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-01

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city.

  4. Depth profiles of nitrogen and oxygen absorbed in HAZ of ZrTN802D alloy tube by TIG welding in various atmospheres. 2

    International Nuclear Information System (INIS)

    As a study relative to the evaluation of corrosion characteristics in high temperature water of welds of ZrTN802D alloy (Zircaloy-2) tubes, continued investigations were made on the depth profiles of nitrogen (N) and oxygen (O) absorbed in HAZ by TIG welding in various atmospheres. A calculation was attempted to estimate N depth profiles in a portion heated to β phase temperature range in HAZ. Although the calculated depth profiles were somewhat different from those of SIMS analysis values at the portions nearer the surface, the calculated value was seen to decrease rapidly toward the value of N in base metal with increase of depth. It was also found out by additional chemical and SIMS analyses of N after surface etching of the welds that the depth of diffusion of N in HAZ was not deep under this welding condition. O was absorbed and diffused in the region heated within α phase range in HAZ, and it was also confirmed that the diffusion depth was shallower. (author)

  5. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    Science.gov (United States)

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-01

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city. PMID:26687163

  6. Allowed energetic pathways for the three-body recombination reaction of nitrogen monoxide with the hydroxyl radical and their potential atmospheric implications

    Directory of Open Access Journals (Sweden)

    Luca D´Ottone

    2010-12-01

    Full Text Available The OH initiated oxidation of nitric oxide (NO is an important atmospheric reaction being, during the day time, the main channel that leads to the formation of HONO a reservoir species for both OH and odd nitrogen. This work reports ab initio study of the Potential Energy Surface (PES of NO + OH using density functional theory calculations conducted at the B3LYP level of theory with a 6-311g (d,p basis set. We confirmed experimental observations pointing out that the main channel for this reaction is the formation the HONO. From the addition of OH to NO both cis and trans isomers of HONO were found to be the formed as stable intermediate, both having a negative enthalpy of formation relative to the reactants, the cis isomer being more stable than the trans one. The ab initio calculations were extended to include the hydrogen extraction mechanism with its respective transition state to investigate the potential existence of a reaction channel leading to the formation of NO2 + H, that was found not to be of significant interest.

  7. Effects of annealing in nitrogen atmosphere and HCl-etching on the photoluminescence spectra of spray-deposited CdS:In thin films

    International Nuclear Information System (INIS)

    The aim of this work is to find the effect of processing on the photoluminescence (PL) of spray-deposited CdS:In thin films. So the PL spectra of the as-deposited, annealed and HCl-etched CdS:In thin films prepared by the spray pyrolysis (SP) technique were recorded at T = 23 K. The yellow and red bands were observed in the spectrum of the as-deposited film beside bands with weaker intensity in the infrared region. The PL signal was weakened by annealing in nitrogen atmosphere at T = 400 deg. C and HCl-etching. A deconvolution peak fit was established to find the effects of these treatments on the different bands. The spectrum of the as-deposited film was deconvoluted to 12 peaks, which were reduced to 6 peaks after both treatments. It was found that both treatments have approximately the same effects on the PL spectra; that is they removed most of the peaks and shoulders in the red and infrared regions and attenuated most of the peaks in the yellow region. Some peaks were blue-shifted after annealing which was explained by the growth of nanocrystallites due to the thermal stress that results from the different expansion coefficients of the film and the substrate. These changes were accompanied by a phase change from the mixed (cubic and hexagonal) phase to the hexagonal phase as shown in the X-ray diffractograms.

  8. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric

    OpenAIRE

    Jacquemin, J.; Costa Gomes, M.F.; Husson, P.; Majer, V.

    2006-01-01

    Experimental values for the solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon and carbon monoxide in 1-butyl-3- methylimidazolium tetrafluoroborate, [bmim][BF4] - a room temperature ionic liquid - are reported as a function of temperature between 283 K and 343 K and at pressures close to atmospheric. Carbon dioxide is the most soluble gas with mole fraction solubilities of the order of 10-2. Ethane and methane are one order of magnitude more soluble than the oth...

  9. Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: normalized atmospheric deposition for 2002, Total Inorganic Nitrogen

    Science.gov (United States)

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average normalized atmospheric (wet) deposition, in kilograms, of Total Inorganic Nitrogen for the year 2002 compiled for every catchment of NHDPlus for the conterminous United States. Estimates of Total Inorganic Nitrogen deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River

  10. Dry and Wet Atmospheric Deposition of Nitrogen into Shaoguan, Guangdong Province%广东韶关地区大气氮干湿沉降特征研究

    Institute of Scientific and Technical Information of China (English)

    刘思言; 陈瑾; 卢平; 李来胜; 陈中颖

    2014-01-01

    2012年4月─2013年9月利用自动分离干湿沉降的采样器对广东省韶关市降雨和干沉降进行采集,分析样品降雨量、降尘量及氮营养盐干湿沉降浓度,计算各指标干湿沉降通量,利用沉降通量分析其影响因素及季节性变化趋势,为该地区大气氮沉降的通量预测及其环境管理提供支持,并为其生态环境中污染物的控制与减排提供科学依据。结果表明,观测期间总氮干沉降通量、湿沉降通量和总沉降通量平均值分别为47.73、295.7和310.5 kg·km-2·month-1。氨态氮、硝酸盐氮与有机氮干沉降通量平均值分别为17.39、12.98和17.37 kg·km-2·month-1,其湿沉降通量平均值分别为132.4、117.0和46.23 kg·km-2·month-1。总氮湿沉降通量占总氮总沉降通量平均比例为83.19%,说明总氮沉降通量以湿沉降为主。影响因素方面,总氮干沉降通量与降尘量无相关性;湿沉降受降雨量影响较大,所以受雨季影响,韶关地区4─6月总氮湿沉降负荷较大。成分组成上,干沉降中氨态氮平均占总氮比例35.48%,硝酸盐氮平均占27.96%,有机氮平均占36.55%,因此该地区氮营养盐干沉降中以氨态氮和有机氮为主;氮营养盐湿沉降以氨态氮和硝酸盐氮为主,氨态氮平均占总氮比例46.87%,硝酸盐氮平均占40.64%,有机氮平均比例为12.49%,说明该地区湿沉降同时受到农业活动和工业活动的影响。季节变化上,氮营养盐干沉降通量由大到小依次为冬季、春季、秋季、夏季,湿沉降通量春季较高,夏秋两季较低。%To help predicate the atmospheric nitrogen deposition fluxes and provide scientific basises for ecological environment pollution control and abatement assist environmental, the characteristics of atmospheric nitrogen deposition in Shaoguan, Guangdong Province were investigated. In the study, the dry and wet atmospheric nitrogen deposition samples

  11. The effect of elevated atmospheric CO2 concentration on gross nitrogen and carbon dynamics in a permanent grassland: A field pulse-labeling study

    Science.gov (United States)

    Moser, Gerald; Gorenflo, André; Keidel, Lisa; Brenzinger, Kristof; Elias, Dafydd; McNamara, Niall; Maček, Irena; Vodnik, Dominik; Braker, Gesche; Schimmelpfennig, Sonja; Gerstner, Judith; Müller, Christoph

    2014-05-01

    To predict ecosystem reactions to elevated atmospheric CO2 (eCO2) it is essential to understand the interactions between plant carbon input, microbial community composition and activity and associated nutrient dynamics. Long-term observations (> 14 years) within the Giessen Free Air Carbon dioxide Enrichment (Giessen FACE) study on permanent grassland showed next to an enhanced biomass production an unexpected strong positive feedback effect on ecosystem respiration and nitrous oxide (N2O) production. The overall goal of this study is to understand the long-term effects of eCO2 and carbon input on microbial community composition and activity as well as the associated nitrogen dynamics, N2O production and plant N uptake in the Giessen FACE study on permanent grassland. A combination of 13CO2 pulse labelling with 15N tracing of 15NH4+ and 15NO3- was carried out in situ. Different fractions of soil organic matter (recalcitrant, labile SOM) and the various mineral N pools in the soil (NH4+, NO3-), gross N transformation rates, pool size dependent N2O and N2 emissions as well as N species dependent plant N uptake rates and the origin of the CO2 respiration have been quantified. Microbial analyses include exploring changes in the composition of microbial communities involved in the turnover of NH4+, NO3-, N2O and N2, i.e. ammonia oxidizing, denitrifying, and microbial communities involved in dissimilatory nitrate reduction to ammonia (DNRA). mRNA based analyses will be employed to comparably evaluate the long-term effects of eCO2 on the structure and abundance of these communities, while transcripts of these genes will be used to target the fractions of the communities which actively contribute to N transformations. We quantified the contribution of mycorrhizae on N2O emissions and observed the phenological development of the mycorrhizae after the labeling.

  12. Trends in aluminium export from a mountainous area to surface waters, from deglaciation to the recent: effects of vegetation and soil development, atmospheric acidification, and nitrogen-saturation.

    Science.gov (United States)

    Kopácek, Jirí; Hejzlar, Josef; Kana, Jirí; Norton, Stephen A; Porcal, Petr; Turek, Jan

    2009-11-01

    We reconstructed the history of terrestrial export of aluminium (Al) to Plesné Lake (Czech Republic) since the lake origin approximately 12,600 year BC, and predicted Al export for 2010-2050 on the basis of previously published and new data on mass budget studies, palaeolimnological data, and MAGIC modelling. We focused on three major Al forms; ionic Al (Al(i)), organically-bound Al (Al(o)), and particulate Al hydroxide [Al(OH)(3)]. In early post-glacial time, Plesné Lake received high terrestrial export of Al, but with a minor proportion of Al(OH)(3) (4-25 microM), and concentrations of Al(i) and Al(o) were negligible. Since the forest and soil development ( approximately 9900-9000 year BC), erosion has declined and soil organic acids increased export of Al(o) from soils. The terrestrial Al(o) leaching ( approximately 7.5 microM) persisted throughout the Holocene until the industrial period. Then, Al(i) concentrations continuously increased (up to 28 microM in the mid-1980s) due to atmospheric acidification; the Al(i) leaching was mostly associated with sulphate. The proportion of Al(i) associated with nitrate has been increasing since the beginning of lake recovery from acidification after approximately 1990 due to reduction in sulphur deposition and nitrogen-saturation of the catchment, leading to persistent nitrate leaching. Currently, nitrate has become the dominant strong acid anion and the major Al(i) carrier. Al(o) (5.5 microM) is predicted to dominate Al concentrations around 2050, but the predicted Al(i) concentrations ( approximately 4 microM) are uncertain because of uncertainty associated with the future nitrate leaching and its effect on soils. PMID:19793616

  13. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    International Nuclear Information System (INIS)

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering

  14. Glutamine Synthetases GLN1;2 and GLN2 in Relation to Arabidopsis Growth Response to Elevated Atmospheric Carbon Dioxide and Varying Nitrogen Forms

    DEFF Research Database (Denmark)

    Vurrakula, Swathi

    content while diluting nitrogen concentrations. Such a reduction in nitrogen concentration will affect plant response to stress and seed/grain yield. Glutamine synthetase (GS) is the central nitrogen-assimilatory enzyme, performing primary and secondary nitrogen assimilation, in response to environmental...... in nitrate assimilation. This was the case as the gln2 mutant biomass was highly reduced with an increased supply of nitrate in solo. Nitrate assimilation was impaired in the mutant in parallel with reduced NR activity and activation state (%), leading to reduced glutamine content while glycine accumulated...

  15. variation in wet deposition of nitrogen from atmosphere in typical areas of Chongqing%重庆典型地区大气湿沉降氮的时空变化

    Institute of Scientific and Technical Information of China (English)

    袁玲; 周鑫斌; 辜夕容; 黄建国

    2009-01-01

    The present experiment was carried out to investigate spatio-temporal changes in wet deposition of nitrogen from atmosphere in Chongqing area. Rainfall in successive three years was collected from three test sites, including a forestry site and two urban sites near and far from city, and analyzed for variable nitrogen concentrations. Total nitrogen (TN) in rainfall ranged from (3.94±0.50) mg L~(-1) to (4.56±1.01) mg L~(-1),averaged (4.27±0.73) mg L~(-1). NH_4~+-N accounted for 44.9%, NO_3~--N for 27.4% and DON (dissolved organic nitrogen) for 27.5% of TN in rainfall, respectively, indicating largest contribution of NH_4~+-N to wet deposition of nitrogen from atmosphere. The concentrations of nitrogen in rainfall varied seasonally, I.e. Winter > summer > spring and autumn. Nitrogen deposition in rainfall tended to decrease from the urban area near the city to forestry site far from city. TN concentrations in rainfall were 4.56 mg L~(-1)(urban area near the city), 4.32 mg L~(-1)(urban area far from city) and 3.94 mg L~(-1)(forestry area), respectively. Even though there were no correlations between nitrogen concentrations (NH_4~+-N、NO_3~--N、DON and TN) in rainfall and the amount of precipitation, wet deposition of nitrogen from atmosphere were positively correlated to the amount of rainfall. The amount of nitrogen deposition from rainfall in Chongqing, which was higher than critical index of nitrogen load in water and probably harmful to water resources in Three Gorge′s Area, varied spatio-temporally due to ground nitrogen emission and the amount of rainfall.%验连续3a采集雨样研究了重庆市郊区和林区大气湿沉降氮的时空变化.结果表明,重庆市近郊区、远郊区和林区3个采样点雨水总氮浓度范围为(3.94±0.50)~(4.56±1.01)mg L~(-1),平均(4.27±0.73)mg L~(-1).NH_4~+-N、NO_3~--N和DON占TN百分比例分别为44.9%、27.4%和27.5%.降雨中NH_4~+-N对氮沉降量的贡献率最大.在时间尺度上,不同季节降

  16. Effects of different concentrations of nitrogen and phosphorus on chlorophyll biosynthesis,chlorophyll a fluorescence,and photosynthesis In Larix olgensis seedlings

    Institute of Scientific and Technical Information of China (English)

    Wu Chu; Wang Zhengquan; Sun Hailong; Guo Shenglei

    2006-01-01

    In our experiments,one-year-old Larix olgensis seedlings were cultivated in sand,and supplied with solutions with different concentrations of nitrate or phosphate.The effects of nitrogen and phosphorus supply on chlorophyll biosynthesis,total nitrogen content,and photosynthetic rate were studied.The experimental results are listed below: 1) 5-aminolevulinic acid (ALA) synthetic rate increased as nitrate concentrations supplied to larch seedlings increased from 1 to 8 mmol/L.But the rate decreased by 17% when nitrate concentration increased to 16 mmol/L,in contrast to the control.Under phosphate treatments,ALA synthetic rates were similar to those under nitrate treatments.The activities of porphobilinogen (PBG)synthase reached a maximum when larch seedlings were supplied with 8 mmol/L of nitrate or 1 mmol/L of phosphate.2) When larch seedlings were supplied with 8 mmol/L of nitrate and 0.5 mmol/L of phosphate,the contents of chlorophyll a,chlorophyll b,total chlorophyll,and carotenoids reached a maximum.The total nitrogen contents in leaves increased as nitrate concentrations increased.3) When phosphate concentrations increased from 0.125 to 1 mmol/L,the total nitrogen contents in leaves slightly increased;however,continuous increase of phosphate concentrations resulted in the decrease in total nitrogen contents in leaves.When nitrate concentrations increased from 1 to 8 mmol/L,soluble protein contents in leaves increased in general,and continuous increase of nitrate concentrations induced a decrease in soluble protein contents in leaves.Under treatment of 0.25 mmol/L of phosphate,the soluble protein contents reached a maximum.4) In general,Fv/Fm increased as nitrate concentrations increased from 1 to 8 mmol/L,and continuous increase of nitrate concentration resulted in decrease in FvlFm.The similar changes occurred under phosphate treatments.As nitrate concentrations increased from 1 to 8 mmol/L,photosynthetic rates gradually increased,but when nitrate

  17. Effects of Nitrogen Rate on the Characteristics of Photosynthesis and Chlorophyll Fluorescence in Potato (Solanum Tuberosum L.)%氮肥水平对马铃薯光合及叶绿素荧光特性的影响

    Institute of Scientific and Technical Information of China (English)

    郑顺林; 杨世民; 李世林; 袁继超

    2013-01-01

    以3个品种为材料,采用随机区组设计,在田间试验条件下,研究了施氮水平对春、秋马铃薯Solanum Tuberosum L.光合和叶绿素荧光特性的影响,以期为合理氮肥运筹,提高马铃薯光能利用提供理论依据.结果表明:①增施氮肥因提高了功能叶的叶绿素质量分数而显著影响春、秋马铃薯的净光合速率及其对光照强度和CO2体积分数的响应,但影响的程度和趋势在春、秋马铃薯之间有一定差异.在试验的处理范围内,春马铃薯功能叶的最大净光合速率(Am)、表观量子效率(ψ)随施氮水平的增加而提高,而秋马铃薯的Am和ψ则随氮肥用量的增加先增后减,春薯光合作用的光饱和点和补偿点均大于秋薯,表明马铃薯光合作用的氮肥效应受栽培季节的影响;②氮肥水平对马铃薯功能叶片叶绿素的荧光特性也有一定影响,适量的氮肥可以提高最大光化学效率(Fv/Fm)、实际光化学效率(ΦpsⅡ)和电子传递速率(ETR),降低光化学猝灭系数(qP)和非光化学猝灭系数(qN),从而增加PsⅡ天线色素对光能的捕获效率,降低光能的热耗散,提高PsⅡ的光化学效率;③不同马铃薯品种的光合与叶绿素荧光特性及其对氮肥的响应存在一定差异,在秋播和中高氮水平下,川芋117的Am、羧化效率(CE)、Fv/Fm、ΦpsⅡ、ETR和qP等光合和叶绿素荧光参数均高于青薯2号.%Two field experiments were conducted with three potato varieties in spring and autumn in Ya'an, Sichuan province to study the effects of nitrogen rate on the characteristics of photosynthesis and chloro-phyll fluorescence of the plants. The main results were as follows: 1) The increase in nitrogen rate increased the chlorophyll content of the functional leaves and thus significantly improved the net photosyn-thetic rate (Pn) and its response to light intensity and CO2 concentration of both spring and autumn potato. However, some differences between

  18. The VLT-FLAMES Tarantula Survey. XIX. B-type supergiants: Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence

    Science.gov (United States)

    McEvoy, C. M.; Dufton, P. L.; Evans, C. J.; Kalari, V. M.; Markova, N.; Simón-Díaz, S.; Vink, J. S.; Walborn, N. R.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Dunstall, P. R.; Hénault-Brunet, V.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Najarro, F.; Puls, J.; Sana, H.; Schneider, F. R. N.; Taylor, W. D.

    2015-03-01

    Context. Model atmosphere analyses have been previously undertaken for both Galactic and extragalactic B-type supergiants. By contrast, little attention has been given to a comparison of the properties of single supergiants and those that are members of multiple systems. Aims: Atmospheric parameters and nitrogen abundances have been estimated for all the B-type supergiants identified in the VLT-FLAMES Tarantula survey. These include both single targets and binary candidates. The results have been analysed to investigate the role of binarity in the evolutionary history of supergiants. Methods: tlusty non-local thermodynamic equilibrium (LTE) model atmosphere calculations have been used to determine atmospheric parameters and nitrogen abundances for 34 single and 18 binary supergiants. Effective temperatures were deduced using the silicon balance technique, complemented by the helium ionisation in the hotter spectra. Surface gravities were estimated using Balmer line profiles and microturbulent velocities deduced using the silicon spectrum. Nitrogen abundances or upper limits were estimated from the N ii spectrum. The effects of a flux contribution from an unseen secondary were considered for the binary sample. Results: We present the first systematic study of the incidence of binarity for a sample of B-type supergiants across the theoretical terminal age main sequence (TAMS). To account for the distribution of effective temperatures of the B-type supergiants it may be necessary to extend the TAMS to lower temperatures. This is also consistent with the derived distribution of mass discrepancies, projected rotational velocities and nitrogen abundances, provided that stars cooler than this temperature are post-red supergiant objects. For all the supergiants in the Tarantula and in a previous FLAMES survey, the majority have small projected rotational velocities. The distribution peaks at about 50 km s-1 with 65% in the range 30 km s-1 ≤ vesini ≤ 60 km s-1. About

  19. Measurement of the pressure dependence of air fluorescence emission induced by electrons

    CERN Document Server

    Ave, M; Buonomo, B; Busca, N; Cazon, L; Chemerisov, S D; Conde, M E; Crowell, R A; Di Carlo, P; Di Giulio, C; Doubrava, M; Esposito, A; Facal, P; Franchini, F J; Horandel, J; Hrabovsky, M; Iarlori, M; Kasprzyk, T E; Keilhauer, B; Klages, H; Kleifges, M; Kuhlmann, S; Mazzitelli, G; Nozka, L; Obermeier, A; Palatka, M; Petrera, S; Privitera, P; Rídky, J; Rizi, V; Rodríguez, G; Salamida, F; Schovanek, P; Spinka, H; Strazzeri, E; Ulrich, A; Yusof, Z M; Vacek, V; Valente, P; Verzi, V; Waldenmaier, T

    2007-01-01

    The fluorescence detection of ultra high energy (> 10^18 eV) cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules, which are excited by the cosmic ray shower particles along their path in the atmosphere. We have made a precise measurement of the fluorescence light spectrum excited by MeV electrons in dry air. We measured the relative intensities of 34 fluorescence bands in the wavelength range from 284 to 429 nm with a high resolution spectrograph. The pressure dependence of the fluorescence spectrum was also measured from a few hPa up to atmospheric pressure. Relative intensities and collisional quenching reference pressures for bands due to transitions from a common upper level were found in agreement with theoretical expectations. The presence of argon in air was found to have a negligible effect on the fluorescence yield. We estimated that the systematic uncertainty on the cosmic ray shower energy due to the pressure dependence of the fluorescence spectrum i...

  20. 湿沉降氮对2种禾本科植物中氮含量的影响%Effects of Atmosphere Deposition on Nitrogen Content of Two Poaceae Plants

    Institute of Scientific and Technical Information of China (English)

    林菲; 史锟

    2009-01-01

    [Objective] It was to study nitrogen use efficiency under the condition of deposition of perennial ryegrass (Lolium perenne L.) and barley (Hordeum vulgare L.), further revealing the difference in gene variation.[Method] A pot experiment was conducted under 3 treatments of rainwater, ammonium-N (aN) and nitrate-N (nN).[Result] In the treatments of aN and nN, the biomass and N contents in plants were obviously higher than those in rainwater treatment, while the largest biomass(36.116 g) was observed in nN treatment. The absorption to aN was best to perennial ryegrass while nN to barley. According to the differential analysis of N content, treatments of both aN and nN was nitrogen superfluous, which led to release excessive N to the atmosphere, and the rainwater treatment and the control were N deficient, the largest N absorption from atmosphere was 0.698 g in rainwater treatment.[Conclusion] Average N use efficiency contributed by atmosphere N deposition ranged from 1.321%-6.116%, while the control of barley had the highest of 6.116%.

  1. Atmospheric composition

    Science.gov (United States)

    Daniels, G. E.

    1973-01-01

    The earth's atmosphere is made up of a number of gases in different relative amounts. Near sea level and up to about 90 km, the amount of these atmospheric gases in clean, relatively dry air is practically constant. Four of these gases, nitrogen, oxygen, argon, and carbon dioxide, make up 99.99 percent by volume of the atmosphere. Two gases, ozone and water vapor, change in relative amounts, but the total amount of these two is very small compared to the amount of the other gases. The atmospheric composition shown in a table can be considered valid up to 90 km geometric altitude. Above 90 km, mainly because of molecular dissociation and diffusive separation, the composition changes.

  2. Improvements to the Characterization of Organic Nitrogen Chemistry

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  3. Non-equilibrium vibrational and electron energy distributions functions in atmospheric nitrogen ns pulsed discharges and \\mus post-discharges: the role of electron molecule vibrational excitation scaling-laws

    CERN Document Server

    Colonna, Gianpiero; Celiberto, Roberto; Capitelli, Mario; Tennyson, Jonathan

    2015-01-01

    The formation of the electron energy distribution function in nanosecond atmospheric nitrogen discharges is investigated by means of self-consistent solution of the chemical kinetics and the Boltzmann equation for free electrons. The post-discharge phase is followed to few microseconds. The model is formulated in order to investigate the role of the cross section set, focusing on the vibrational-excitation by electron-impact through resonant channel. Four different cross section sets are considered, one based on internally consistent vibrational-excitation calculations which extend to the whole vibrational ladder, and the others obtained by applying commonly used scaling-laws.

  4. [Characteristics of Atmospheric Nitrogen Wet Deposition and Associated Impact on N Transport in the Watershed of Red Soil Area in Southern China].

    Science.gov (United States)

    Hao, Zhuo; Gao, Yang; Zhang, Jin-zhong; Xu, Ya-juan; Yu, Gui-rui

    2015-05-01

    In this study, Qianyanzhou Xiangxi River Basin in the rainy season was monitored to measure different nitrogen form concentrations of rainfall and rainfall-runoff process, in order to explore the southern red soil region of nitrogen wet deposition characteristics and its influence on N output in watershed. The results showed that there were 27 times rainfall in the 2014 rainy season, wherein N wet deposition load reached 43.64-630.59 kg and N deposition flux were 0.44-6.43 kg · hm(-2), which presented a great seasonal variability. We selected three rainfall events to make dynamic analysis. The rainfall in three rainfall events ranged from 8 to 14mm, and the deposition load in the watershed were from 18.03 to 41.16 kg and its flux reached 0.18 to 0.42 kg · hm(-2). Meanwhile, this three rainfall events led to 4189.38 m3 of the total runoff discharge, 16.72 kg of total nitrogen (TN) load and 4.64 kg · hm(-2) of flux, wherein dissolved total nitrogen (DTN) were 9.64 kg and 2.68 kg · hm(-2), ammonium-nitrogen (NH(4+)-N) were 2.93 kg and 0.81 kg · hm(-2), nitrate-nitrogen (NO(3-)-N) were 5.60 kg and 1.56 kg · hm(-2). The contribution rate of N wet deposition to N output from watershed reached 56%-94% , implying that the rainfall-runoff had tremendous contribution to N loss in this small watershed. The concentrations of TN in water had exceeded 1.5 mg · L(-1) of eutrophication threshold, which existed an eutrophication potential.

  5. Marine nitrogen cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    and particulate organic forms, respectively) and atmospheric deposition (~50 Tg N a -1 ), a substantial fraction of which is believed to be of anthropogenic (human-made) origin. Of the various loss terms of combined nitrogen from the ocean, emission of N 2 O... and nitrous oxide budgets: Moving targets as we enter the anthropocene?, Sci. Mar., 65, 85-105, 2001. Page 2 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www.eoearth.org/article/Marine_nitrogen_cycle square6 Gruber, N.: The dynamics...

  6. Influence of heat treatment in nitrogen atmosphere on structure and superconducting properties of pure niobium stannide layers prepared by electrochemical codeposition

    International Nuclear Information System (INIS)

    Electrolytically codeposited single-phase layers of Nb3Sn with tin concentration within the limits of 19-25 at.% were annealed in nitrogen environment at 850 and 1000 deg C. X ray diffraction analysis, microscopic examination and measurements of critical temperature and critical current made it possible to conclude that the heat treatment in nitrogen results in partial decomposition of Nb3Sn with formation of niobium nitrides and beta-Sn and in a decrease of critical current and the temperature of superconducting transition. All specimens display degradation of superconducting properties as compared to initial layers. 23 refs.; 2 figs

  7. 闽北果园生态系统大气氮湿沉降研究%Study on Wet Deposition of Atmospheric Nitrogen in Orchard Ecosystem of Northern Fujian

    Institute of Scientific and Technical Information of China (English)

    刘尔平; 刘桂生; 雷俊杰

    2012-01-01

    研究了2011年3月至2012年2月期间闽北果园生态系统中大气氮素湿沉降浓度、沉降量的变化规律.结果表明:监测期间降水中总氮(TN)、无机氮(TIN)、溶解有机氮(DON)、铵态氮(NH4+-N)和硝态氮(N03- -N)的平均浓度分别为2.11、1.07、1.04、0.65和0.42 mg/L.湿沉降氮量有明显的季节性变化,春、夏季高,秋、冬季低.TN年沉降量为23.19 kg/hm2,其中NH4+ -N、NO3--N和DON年沉降量分别占TN年沉降量的30.60%、20.02%和49.38%.%The wet - deposition concentration and amount of atmospheric nitrogen in the orchard ecosystem of northern Fujian province were studied from May, 2011 to February, 2012. The results indicated that the average concentration of total nitrogen (TN) , total inorganic nitrogen (TIN) , dissolved organic nitrogen ( DON) , ammonium nitrogen ( NH4 - N) and nitrate nitrogen ( NO3 -N ) in the rainwater during monitoring was 2.11, 1. 07, 1.04, 0. 65 and 0.42 mg/L, respectively. The amount of nitrogen wet - deposition had an obvious seasonal change, and it was high in spring and summer, low in autumn and winter. Annual TN wet - deposition amount was 23. 19 kg/hm2 , and the annual wet - deposition amount of NH4 + - N, NO3 - N and DON accounted for 30. 60% , 20.02% and 49. 38% of the annual TN wet -deposition amount, respectively.

  8. Ambient Pressure LIF Instrument for Nitrogen Dioxide

    Science.gov (United States)

    Parra, J.; George, L. A.

    2009-12-01

    Concerns about the health effects of nitrogen dioxide (NO2) and its role in forming deleterious atmospheric species have made it desirable to have low-cost, sensitive ambient measurements of NO2. A continuous-wave laser-diode Laser Induced Fluorescence (LIF) system for NO2 that operates at ambient pressure has been developed, thereby eliminating the need for an expensive pumping system. The use of high quality optical filters has facilitated low-concentration detection of NO2 using atmospheric pressure LIF by providing substantial discrimination against scattered laser photons without the use of time-gated electronics, which add complexity and cost to the LIF instrumentation. This improvement allows operation at atmospheric pressure with a low-cost diaphragm sampling pump. The current prototype system has achieved sensitivity several orders of magnitude beyond previous efforts at ambient pressure (LOD of 2 ppb, 60 s averaging time). Ambient measurements of NO2 were made in Portland, OR using both the standard NO2 chemiluminescence method (CL-NO2) and the LIF instrument and showed good agreement (r2 = 0.92). Our instrument is currently being developed as a “back-end” detector for a more field portable NOy system. In addition, we are currently utilizing this instrument to study surface chemistry involving NO2 at atmospherically relevant concentrations and pressures.

  9. The leaking soil nitrogen cycle and rising atmospheric N2O: Is there anything we can do to cap the well?

    Science.gov (United States)

    Nutrient management refers to the addition and management of synthetic or organic fertilizers to soils primarily for purposes of increasing the supply of nutrients and efficiency of crop nutrient uptake in order to improve yields while minimizing environmental impact. Nitrogen (N) is generally the m...

  10. Atmospheric ammonia measurements at low concentration sites in the northeastern USA: implications for total nitrogen deposition and comparison with CMAQ estimates

    Science.gov (United States)

    We evaluated the relative importance of dry deposition of ammonia (NH3) gas at several headwater areas of the Susquehanna River, the largest single source of nitrogen pollution to Chesapeake Bay, including three that are remote from major sources of NH3 emissions (CTH, ARN, and K...

  11. 上海地区应用充氮气调储粮技术分析报告%EXPERIMENTAL STUDY ON APPLICATION OF NITROGEN CONTROLLED ATMOSPHERE IN THE AREA OF SHANG HAI

    Institute of Scientific and Technical Information of China (English)

    洪小琴

    2016-01-01

    上海地区气候温和湿润,储粮中较易发生虫害,粮食品质下降较快。通过开展充氮气调储粮相关研究课题,研究充氮气调储粮技术在上海地区推广应用的可行性。结果表明,充氮气调储粮对保持粮食品质、防治储粮虫害孳生、降低仓储劳动强度、提高粮食食品安全等具有积极的作用,适合在上海地区推广和应用。%The climate is mild and humid in Shanghai region ,making insects grow quickly and grain quality dete-riorates rapidly .The report aims to study the practicability of using nitrogen controlled atmosphere in grain storage by experimental study .The results show that nitrogen controlled atmosphere can keep grain quali-ty ,prevent and control pests ,reduce labour intensity and keep food safety .T he technology is suitable for application in Shanghai region .

  12. Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils

    Science.gov (United States)

    Thorp, N. R.; Wieder, R. K.; Vile, M. A.

    2015-12-01

    Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that

  13. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Total Inorganic Nitrogen

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the average normalized atmospheric (wet) deposition, in kilograms per square kilometer multiplied by 100, of Total Inorganic...

  14. Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Femtosecond laser induced breakdown spectroscopic (LIBS) studies were performed on three high energy materials namely 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and 2,4,6-trinitrotoluene (TNT). LIBS spectral features were obtained for these samples in three different atmospheres i.e. air, nitrogen, and argon. Different molecular to elemental ratios in these three atmospheres were investigated in detail. CN/C and CN/N ratios were observed to be prominent in nitrogen and air atmospheres. We attempt to elucidate the role of several reactions involving CN molecular formation in connection with discrepancies obtained in the measured ratios. The complete temporal dynamics of atomic C (247.82 nm) and CN (388.20 nm) molecular species in three different atmospheres are elaborated. The decay rates of C peak were found to be longest (96 ns–121 ns) in argon atmosphere for all the samples. The decay rates of CN peak (388.2 nm) were longer (161 ns–364 ns) in nitrogen compared to air and argon atmospheres. We also attempt to explicate the decay mechanisms with respect to the molecular species formation dynamics in different atmospheres. - Highlights: • LIBS studies of NTO, RDX, and TNT in nitrogen, air, and argon were performed using fs pulses. • Decay constants of C, CN in three atmospheres were recorded systematically. • Different molecular to elemental ratios were investigated in detail. • CN/C and CN/N ratios were observed to be prominent in nitrogen and air atmospheres

  15. A comparative study on total reflection X-ray fluorescence determination of low atomic number elements in air, helium and vacuum atmospheres using different excitation sources

    International Nuclear Information System (INIS)

    A comparison of trace element determinations of low atomic number (Z) elements Na, Mg, Al, P, K and Ca in air, helium and vacuum atmospheres using W Lβ1, Mo Kα and Cr Kα excitations has been made. For Mo Kα and W Lβ1 excitations a Si (Li) detector with beryllium window was used and measurements were performed in air and helium atmospheres. For Cr Kα excitation, a Si (Li) detector with an ultra thin polymer window (UTW) was used and measurements were made in vacuum and air atmospheres. The sensitivities of the elemental X-ray lines were determined using TXRF spectra of standard solutions and processing them by IAEA QXAS program. The elemental concentrations of the elements in other solutions were determined using their TXRF spectra and pre-determined sensitivity values. The study suggests that, using the above experimental set up, Mo Kα excitation is not suited for trace determination of low atomic number element. Excitation by WLβ1 and helium atmosphere, the spectrometer can be used for the determination of elements with Z = 15 (P) and above with fairly good detection limits whereas Cr Kα excitation with ultra thin polymer window and vacuum atmosphere is good for the elements having Z = 11 (Na) and above. The detection limits using this set up vary from 7048 pg for Na to 83 pg for Ti. - Highlights: • TXRF conditions are optimized for low atomic number (Z) element determinations. • Mo Kα with Be window detector can be used for elements with Z ≥ 20 (K). • W Lβ1 with Be window detector can be used for elements with Z ≥ 15 (P). • Cr Kα, UTW detector and vacuum atmosphere are suitable for elements with Z ≥ 11 (Na). • For the elements with Z ≥ 11 (Na), a separate study is needed

  16. Nutritional disorders in spruce (Picea abies) as a consequence of damage to needle surfaces and deposition of atmospheric nitrogenous compounds - one of the mechanisms of forest decline

    Energy Technology Data Exchange (ETDEWEB)

    Glatzel, G.; Kazda, M.; Katzensteiner, K.; Grill, D.; Halbwachs, G.

    1987-01-01

    A hypothesis to explain the damages as combined effect of needle damage by polluted fog and high deposition of plant useable nitrogen is discussed. It has been shown, that epicuticular was structures can be destroyed by exposure to polluted wet deposition, especially under conditions where cycles of wetting and drying of leave surface alternate without wash off by rain. When water containing plant available nitrogen is deposited on damaged leave surfaces, exchange with the interior of the leaves may disturb the ratios of individual nutrients in the leaves and cause metabolic stress. High ammonium concentrations in the precipitation water and low pH-values increase the leaching of plant nutrients, especially magnesium, potassium, manganese and zinc. By use of fertilizers or soil amendments the nutritional status of the trees can be improved. As long as polluted precipitation reaches the canopy and causes damage to the needle surfaces additional detrimental effects, such as easy invasion of pathogenic fungi, remain.

  17. Are climate warming and enhanced atmospheric deposition of sulfur and nitrogen threatening tufa landscapes in Jiuzhaigou National Nature Reserve, Sichuan, China?

    Science.gov (United States)

    Qiao, Xue; Du, Jie; Lugli, Stefano; Ren, Jinhai; Xiao, Weiyang; Chen, Pan; Tang, Ya

    2016-08-15

    Massive deposition of calcium carbonate in ambient temperature waters (tufa) can form magnificent tufa landscapes, many of which are designated as protected areas. However, tufa landscapes in many areas are threatened by both local anthropogenic activities and climate change. This study, for the first time, posed the question whether the tufa landscape degradation (characterized by tufa degradation and increased biomass of green algae) in Jiuzhaigou National Nature Reserve of China is partially caused by regional air pollution and climate warming. The results indicate that wet deposition (including rain and snow) polluted by anthropogenic SO2, NOx, and NH3 emissions dissolves exposed tufa and may considerably reduce tufa deposition rate and even cause tufa dissolution within shallow waters. These effects of wet deposition on tufa enhanced as pH of wet deposition decreased from 8.01 to 5.06. Annual Volume Weighted Mean concentration of reactive nitrogen (including NH4(+) and NO3(-)) in wet deposition (26.1μmolL(-1)) was 1.8 times of the corresponding value of runoff (14.8μmolL(-1)) and exceeded China's national standard of total nitrogen in runoff for nature reserves (14.3μmolL(-1)), indicating a direct nitrogen fertilization effect of wet deposition on green algae. As water temperature is the major limiting factor of algal growth in Jiuzhaigou and temperature in the top layer (0-5cm) of runoff (depthalgae (p<0.05), climate warming in this region would favor algal growth. In sum, this study suggests that climate warming and enhanced sulfur and nitrogen deposition have contributed to the current degradation of tufa landscape in Jiuzhaigou, but in order to quantify the contributions, further studies are needed, as many other anthropogenic and natural processes also influence tufa landscape evolution. PMID:27110983

  18. Are climate warming and enhanced atmospheric deposition of sulfur and nitrogen threatening tufa landscapes in Jiuzhaigou National Nature Reserve, Sichuan, China?

    Science.gov (United States)

    Qiao, Xue; Du, Jie; Lugli, Stefano; Ren, Jinhai; Xiao, Weiyang; Chen, Pan; Tang, Ya

    2016-08-15

    Massive deposition of calcium carbonate in ambient temperature waters (tufa) can form magnificent tufa landscapes, many of which are designated as protected areas. However, tufa landscapes in many areas are threatened by both local anthropogenic activities and climate change. This study, for the first time, posed the question whether the tufa landscape degradation (characterized by tufa degradation and increased biomass of green algae) in Jiuzhaigou National Nature Reserve of China is partially caused by regional air pollution and climate warming. The results indicate that wet deposition (including rain and snow) polluted by anthropogenic SO2, NOx, and NH3 emissions dissolves exposed tufa and may considerably reduce tufa deposition rate and even cause tufa dissolution within shallow waters. These effects of wet deposition on tufa enhanced as pH of wet deposition decreased from 8.01 to 5.06. Annual Volume Weighted Mean concentration of reactive nitrogen (including NH4(+) and NO3(-)) in wet deposition (26.1μmolL(-1)) was 1.8 times of the corresponding value of runoff (14.8μmolL(-1)) and exceeded China's national standard of total nitrogen in runoff for nature reserves (14.3μmolL(-1)), indicating a direct nitrogen fertilization effect of wet deposition on green algae. As water temperature is the major limiting factor of algal growth in Jiuzhaigou and temperature in the top layer (0-5cm) of runoff (depth<1m, no canopy coverage of trees and shrubs) was significantly higher at the sites with increased biomass of green algae (p<0.05), climate warming in this region would favor algal growth. In sum, this study suggests that climate warming and enhanced sulfur and nitrogen deposition have contributed to the current degradation of tufa landscape in Jiuzhaigou, but in order to quantify the contributions, further studies are needed, as many other anthropogenic and natural processes also influence tufa landscape evolution.

  19. Nitrogen Fixation in Cyanobacteria

    NARCIS (Netherlands)

    Stal, L.J.

    2015-01-01

    Cyanobacteria are oxygenic photosynthetic bacteria that are widespread in marine, freshwater and terrestrial environments, and many of them are capable of fixing atmospheric nitrogen. However, ironically, nitrogenase, the enzyme that is responsible for the reduction of N2, is extremely sensitive to

  20. The evolution of nitrogen cycling

    Science.gov (United States)

    Mancinelli, Rocco L.; Mckay, Christopher P.

    1988-01-01

    The energetics of nitrogen transformation reactions and the evolution of nitrogen cycling are examined. It is suggested that meteor impact-produced fixed nitrogen could have caused the entire reservoir of the earth's N2 to convert into fixed nitrogen at the end of accretion. The abiotic fixation rate on the early earth by lightning is estimated at about 1-3 X 10 to the 16th molecules of NO/J. It is found that biological nitrogen fixation may have evolved after the development of an aerobic atmosphere. It is shown that HNO could eventually become NO2(-) and NO3(-) after reaching the earth's surface. It is concluded that the evolutionary sequence for the biological transformation of nitrogen compounds is ammonification - denitrification - nitrification - nitrogen fixation.

  1. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  2. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma and comparison to thermal and chemical based methods

    NARCIS (Netherlands)

    Bokhorst-van de Veen, van H.; Xie, H.; Esveld, D.C.; Abee, T.; Mastwijk, H.C.; Nierop Groot, M.N.

    2015-01-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is s

  3. Measurements of Atmospheric NH3, NOy/NOx, and NO2 and Deposition of Total Nitrogen at the Beaufort, NC CASTNET Site (BFT142)

    Science.gov (United States)

    The Clean Air Status and Trends Network (CASTNET) is a long-term environmental monitoring program that measures trends in ambient air quality and atmospheric dry pollutant deposition across the United States. CASTNET has been operating since 1987 and currently consists of 89 moni...

  4. Comments on ''laser-excited fluorescence of the hydroxyl radical: relaxation coefficients at atmospheric pressure'' by C.Y. Chan, R.J. O'Brien, T.M. Hard, and T.B. Cook

    International Nuclear Information System (INIS)

    The comment points out discrepancies and inconsistencies in conclusions drawn about results by Chan et. al. Data published by a number of other independent experimenters support the supposition that the quenching cross sections of hydroxyl radicals are pressure independent at atmospheric pressure. Data, which led Chan et. al. to claim the existence of a pressure dependence, were measured in oxygen at pressures of 40 torr and higher. At 40 torr, the fluorescence lifetime is already shorter than their laser pulse width by a factor of ca 35. The authors need to improve their temporal resolution by at least one order of magnitude to improve accuracy of measurements. For measurements at higher pressures, still faster excitation and detection will be necessary. 7 references

  5. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric

    International Nuclear Information System (INIS)

    Experimental values for the solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4] - a room temperature ionic liquid - are reported as a function of temperature between 283 K and 343 K and at pressures close to atmospheric. Carbon dioxide is the most soluble gas with mole fraction solubilities of the order of 10-2. Ethane and methane are one order of magnitude more soluble than the other five gases that have mole fraction solubilities of the order of 10-4. Hydrogen is the less soluble of the gaseous solutes studied. From the variation of solubility, expressed as Henry's law constants, with temperature, the partial molar thermodynamic functions of solvation such as the standard Gibbs energy, the enthalpy, and the entropy are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations is of 1%

  6. Influence of thermal treatment in N{sub 2} atmosphere on chemical, microstructural and optical properties of indium tin oxide and nitrogen doped indium tin oxide rf-sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stroescu, H.; Anastasescu, M.; Preda, S.; Nicolescu, M.; Stoica, M. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Stefan, N. [National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, RO-77125, Bucharest-Magurele (Romania); Kampylafka, V.; Aperathitis, E. [FORTH-IESL, Crete (Greece); Modreanu, M. [Tyndall National Institute, University College Cork, Cork (Ireland); Zaharescu, M. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Gartner, M., E-mail: mgartner@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania)

    2013-08-31

    We report the influence of the normal thermal treatment (TT) and of rapid thermal annealing (RTA) on the microstructural, optical and electrical properties of indium tin oxide (ITO) and nitrogen doped indium tin oxide (ITO:N) thin films. The TT was carried out for 1 h at 400 °C and the RTA for 1 min up to 400 °C, both in N{sub 2} atmosphere. The ITO and ITO:N films were deposited by reactive sputtering in Argon, and respectively Nitrogen plasma, on Si with (100) and (111) orientation. The present study brings data about the microstructural and optical properties of ITO thin films with thicknesses around 300–400 nm. Atomic Force Microscopy analysis showed the formation of continuous and homogeneous films, fully covered by quasi-spherical shaped particles, with higher roughness values on Si(100) as compared to Si(111). Spectroscopic ellipsometry allowed the determination of film thickness, optical band gap as well as of the dispersion curves of n and k optical constants. X-ray diffraction analysis revealed the presence of diffraction peaks corresponding to the same nominal bulk composition of ITO, but with different intensities and preferential orientation depending on the substrate, atmosphere of deposition and type of thermal treatment. - Highlights: ► Stability of the films can be monitored by experimental ellipsometric spectra. ► The refractive index of indium tin oxide film on 0.3–30 μm range is reported. ► Si(100) substrate induces rougher film surfaces than Si(111). ► Rapid thermal annealing and normal thermal treatment lead to stable conductive film. ► The samples have a higher preferential orientation after rapid thermal annealing.

  7. Air fluorescence measurements in the spectral range 300-420 nm using a 28.5 GeV electron beam

    CERN Document Server

    Abbasi, R; Belov, K; Belz, J; Cao, Z; Dalton, M; Fedorova, Y; Huentemeyer, P; Jones, B F; Jui, C C H; Loh, E C; Manago, N; Martens, K; Matthews, J N; Maestas, M; Smith, J; Sokolsky, P; Springer, R W; Thomas, J; Thomas, S; Chen, P; Field, C; Hast, C; Iverson, R; Ng, J S T; Odian, A; Reil, K; Walz, D; Bergman, D R; Thomson, G; Zech, A; Chang, F-Y; Chen, C-C; Chen, C-W; Huang, M A; Hwang, W-Y P; Lin, G-L

    2007-01-01

    Measurements are reported of the yield and spectrum of fluorescence, excited by a 28.5 GeV electron beam, in air at a range of pressures of interest to ultra-high energy cosmic ray detectors. The wavelength range was 300 - 420 nm. System calibration has been performed using Rayleigh scattering of a nitrogen laser beam. In atmospheric pressure dry air at 304 K the yield is 20.8 +/- 1.6 photons per MeV.

  8. Effects of ascorbate feeding on chlorophyll fluorescence and xanthophyll cycle components in the lichen Parmelia quercina (Willd.) Vainio exposed to atmospheric pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Calatayud, A.; Deltoro, V.I.; Barreno, E. [Univ. de Valencia, Inst. `Cavanilles` de Biodiversitat y Biologia Evolutiva, Burjassot (Spain); Abadia, A. [Estacion Experimental Aula Dei, CSIC, Dept. of Plant Nutrition, Zaragoza (Spain)

    1999-08-01

    The effects of environmental stresses on photosynthetic responses, ascorbate levels and pigment composition were investigated in samples of Parmelia quercina (Willd.) Vainio from control and polluted regions of the northern Castellon area (Valencia, Spain). In response to sustained pollutant stress in the field, lichen thalli has closed PSII traps and exhibited lower rates of electron transport and non-radiative energy dissipation. The xanthophyll concentration was not affected by exposure to atmospheric pollutants. The ascorbate concentration was lower in samples exposed to ambient air pollutants compared to control thalli. Ascorbate feeding of thalli from polluted sites stimulated electron flow, photochemical quenching and non-raditive energy dissipation. Additionally, ascorbate feeding enhances the de-epoxidation state of the xanthophyll pool in polluted thalli. The partial recovery for non-radiative energy dissipation was presumabley due to the interaction between the increased thylakoid pH gradient and de-epoxidized xanthophylls. Furhtermore, ascorbate feeding descreased photon excess in thalli from polluted sites owing to the stimulation of linear electron flow and non-radiative energy dissipation. The present study suggests that atmospheric pollutants besides their intrinsic toxicity, put on an additional burden by hampering the operation of photoprotective mechanisms. (au)

  9. 氮素水平对转C4光合基因水稻花期剑叶PSⅡ荧光特性的影响%Responses of Chlorophyll Fluorescence Characteristics to Nitrogen in Flag Leaves of C4 Photosynthetic Enzymes Transgenic Rice during the Reproductive Stage

    Institute of Scientific and Technical Information of China (English)

    魏晓东; 李霞; 郭士伟; 陈平波

    2013-01-01

    There was close relationship between nitrogen use efficiency and photosynthetic capability. C4 photo-synthetic gene transgenic rice had higher light use efficiency and CO2 assimilation compared to traditional C3 rice cultivars. However, whether nitrogen had influence on photosynthesis of these transgenic rice cultivars was unknown Chlorophyll fluorescence can reflect intrinsic characteristics using fast measurement without any damage to leaves, and is usually used as probe of photosynthesis. In the present study, the pepc (PC) ,ppdk (PK)and pepc + ppdk (CK) transgenic rice plants were used as experimental materials with their wild type Kitaaki( WT) to investigate the responses of photosynthetic characteristics to different nitrogen levels in C4 photosynthetic gene transgenic rice at the late reproductive stage. Changes in SPAD values, morphological parameters were measured in flag leaves of four cultivars under different nitrogen levels. The analysis of chlorophyll fluorescence kinetic curves and some related parameters were also done under three nitrogen levels(0. 7 mmol/L N-1/4N low nitrogen,3 mmol/L N-1N control, 6 mmol/L N-2N high nitrogen)at the late reproductive stage using fast chlorophyll fluorescence kinetic technology, in order to explore the effects of nitrogen on photosystem Ⅱ ( PS Ⅱ ) function of C4 photosynthetic gene transgenic rice flag leaves. The results showed that 1/4N treatment increased root length,decreased plant height,leaf area and chlorophyll contents of flag leaves in all cultivars, while 2N treatment increased leaf area and chlorophyll contents. C4 photosynthetic gene transgenic plants exposed to 1/4N treatment had higher chlorophyll contents, and PC had longest root length and largest leaf area of flag leaves, which indicated that they had more morphological advantage under 1/4N treatment than wild type. The fluorescence O-J-I-P curves changes were found in all cultivars under 1/4N treatment. The K phase (at 300 μs) increased and C

  10. The VLT-FLAMES Tarantula Survey XIX. B-type Supergiants - Atmospheric Parameters and Nitrogen Abundances to Investigate the Role of Binarity and the Width of the Main Sequence

    CERN Document Server

    McEvoy, C M; Evans, C J; Kalari, V M; Markova, N; Simón-Díaz, S; Vink, J S; Walborn, N R; Crowther, P A; de Koter, A; de Mink, S E; Dunstall, P R; Hénault-Brunet, V; Herrero, A; Langer, N; Lennon, D J; Apellániz, J Maíz; Najarro, F; Puls, J; Sana, H; Schneider, F R N; Taylor, W D

    2014-01-01

    TLUSTY non-LTE model atmosphere calculations have been used to determine atmospheric parameters and nitrogen (N) abundances for 34 single and 18 binary B-type supergiants (BSGs). The effects of flux contribution from an unseen secondary were considered for the binary sample. We present the first systematic study of the incidence of binarity for a sample of BSGs across the theoretical terminal age main sequence (TAMS). To account for the distribution of effective temperatures of the BSGs it may be necessary to extend the TAMS to lower temperatures. This is consistent with the derived distribution of mass discrepancies, projected rotational velocities (vsini) and N abundances, provided that stars cooler than this temperature are post RSG objects. For the BSGs in the Tarantula and previous FLAMES surveys, most have small vsini. About 10% have larger vsini (>100 km/s) but surprisingly these show little or no N enhancement. All the cooler BSGs have low vsini of <70km/s and high N abundance estimates, implying t...

  11. J Fluorescence

    OpenAIRE

    Resch-Genger, U.; Hoffmann, K.; Nietfeld, W; A. Engel; Neukammer, J.; Nitschke, R.; Ebert, P.; Macdonald, R

    2005-01-01

    The scope of this paper is to illustrate the need for an improved quality assurance in fluorometry. For this purpose, instrumental sources of error and their influences on the reliability and comparability of fluorescence data are highlighted for frequently used photoluminescence techniques ranging from conventional macro- and microfluorometry over fluorescence microscopy and flow cytometry to microarray technology as well as in vivo fluorescence imaging. Particularly, the need for and requir...

  12. SOIL CONTAMINATION BY NITROGEN COMPOUNDS DURING ORGANIC FUEL COMBUSTION

    Directory of Open Access Journals (Sweden)

    V. P. Bubnov

    2010-01-01

    Full Text Available The paper considers a transition mechanism of flue gas nitrogen oxides being formed due to organic fuel combustion from atmosphere into soil. Mechanisms of nitrogen compound origination and transformation in atmosphere and their transition into soil have been presented in the paper. The paper recommends a generalized equation for mathematical description of nitrogen migration into soil. 

  13. Atmospheric emission of nitrogen oxide from kraft recovery boilers in Sweden; Kartlaeggning av NO{sub x}-utslaepp fraan sodapannor i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Kjoerk, Anders; Herstad Swaerd, Solvie [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2000-05-01

    Recovery boiler NO{sub x} emissions are low compared with those from power boilers. However tighter environmental requirements to decrease the acidic emissions implies that all sources have to be addressed. There are an ongoing evaluation and development of NO{sub x} control technologies in the pulp industry. Basically air staging, selective catalytic reduction, SCR, and selective noncatalytic reduction, SNCR, have been discussed. Other NO{sub x} control options may be available as a result of ongoing research and development. As a background in the work to reduce the acid rain it has been considered necessary to have a good picture of the NO{sub x} emission from recovery boilers, and the Thermal Engineering Research Institute in Sweden have therefore sponsored this study. The intention is to give a good general view and try to explain the reasons for the large differences between boilers. Data from the 30 kraft recovery boilers which were in operation in Sweden during 1999 have been collected. Both NO{sub x} levels and specific conditions which could have an influence on the level have been included. The evaluation show a clear correlation between the nitrogen content in the liquor and the NO{sub x} level. It seams also that a long retention time in the furnace give an opportunity to reduce the amount of nitrogen oxide. For most boilers in Sweden the NO{sub x} levels are reported in mg/MJ and comparison could be done between different types of boilers. However for recovery boilers there could be a large uncertainty in the calculation which gives the amount (mg) of NO{sub x}, the definition of the heat input to be used (MJ) is either not clear. As a base for the study the measured concentration in ppm is used instead. The reported values are in the range of 30 - 100 ppm, however the majority of the boilers operate in a more narrow range 60-80 ppm. Air staging and other combustion methods could not reasonably reduce the NO{sub x} emission with more than 20% in the

  14. Ultraviolet fluorescence monitor

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, P.J. Jr.; Preppernau, B.L.; Aragon, B.P. [Sandia National Labs., Albuquerque, NM (United States). Laser, Optics and Remote Sensing Dept.

    1997-05-01

    A multispectral ultraviolet (UV) fluorescence imaging fluorometer and a pulsed molecular beam laser fluorometer were developed to detect volatile organic compounds of interest in environmental monitoring and drug interdiction applications. The UV fluorescence imaging fluorometer is a relatively simple instrument which uses multiple excitation wavelengths to measure the excitation/emission matrix for irradiated samples. Detection limits in the high part-per-million to low part-per-million range were measured for a number of volatile organic vapors in the atmosphere. Detection limits in the low part-per-million range were obtained using cryogenic cooling to pre-concentrate unknown samples before introducing them into the imaging fluorometer. A multivariate analysis algorithm was developed to analyze the excitation/emission matrix and used to determine the relative concentrations of species in computer synthesized mixtures containing up to five organic compounds. Analysis results demonstrated the utility of multispectral UV fluorescence in analytical measurements. A transportable UV fluorescence imaging fluorometer was used in two field tests. Field test results demonstrated that detection limits in the part-per-billion range were needed to reliably identify volatile organic compounds in realistic field test measurements. The molecular beam laser fluorometer, a more complex instrument with detection limits in the part-per-billion to part-per-trillion range, was therefore developed to satisfy detection sensitivity requirements for field test measurements. High-resolution spectroscopic measurements made with the molecular beam laser fluorometer demonstrated its utility in identifying volatile organic compounds in the atmosphere.

  15. Mineral commodity profiles: nitrogen

    Science.gov (United States)

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  16. Properties of YBaCuO superconducting thin films deposited by nitrogen laser evaporation and heat-treated in O2 atmosphere by CW Co2-laser

    International Nuclear Information System (INIS)

    One of successfully applied methods for obtaining high Tc superconducting thin films is the pulsed laser deposition. The advantage of this method is preserving the film stoichiometry in comparison to target if UV eximer lasers, and for Nd-YAG laser in Q-modulation mode are used. In order to obtain the orthorombic phase of YBa2Cu3O7-x, the films are annealed in O2 atmosphere during the deposition process and after that. One problem her is the substrate temperature control. This temperature (Ts) determines to a great extent the vapor condensation mechanism and the chemical-physical processes at the substrate-film interface. This paper describes a method of obtaining high Tc superconducting thin films of YBa2Cu3O7-x by means of an N2 pulse laser and the properties of received films. The substrates used were poly-Al2O3, sapphire, SrTiO3 and Si

  17. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. PMID:26446274

  18. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected.

  19. Distribution of nitrogen in nature and its separation

    International Nuclear Information System (INIS)

    Proceeding from a survey on nitrogen in the atmosphere, biosphere, hydrosphere, and lithosphere and nitrogen determination methods, a detailed review is given of procedures that allow to transform any nitrogen-containing starting material into molecular nitrogen for mass spectroscopic isotope analysis

  20. 缙云山大气氮湿沉降组成及其变化特征%Composition and temporal variation of atmospheric nitrogen wet deposition in Jinyun Mountain, southwestern China

    Institute of Scientific and Technical Information of China (English)

    孙素琪; 王云琦; 王玉杰; 张会兰; 于雷; 唐晓芬; 朱锦奇; 周彬

    2013-01-01

    Field observation of nitrogen wet deposition in Jinyun Mountain,the natural conservation station of southwestern China,was fixed collected by APS-2A precipitation-dust automatic acquisition instrument from May to October 2012,based on which the composition,monthly and seasonal variation of nitrogen wet deposition were analyzed.Results showed that:1) the concentration of NH4+-N was higher than that of NO3--N and DON (dissolved organic nitrogen),indicating that emission load of NH3 within this area was generally high; 2) the major form of atmospheric reactive nitrogen in Jinyun Mountain area was reduced nitrogen NH4+-N,which primarily came from agricultural productivity; 3) the average concentrations of NO3-N,NH4+-N and DON in precipitation were (0.441 ±0.304),(0.821 ±0.480) and (0.203 ± 0.211) mg/L during the monitoring period,respectively,of which the above three nitrogen forms ranked in NH4+-N > NO3--N > DON ; 4) the highest concentrations of NO3--N,NH4+-N and DON all occurred in May,and the average values were (0.642 ± 0.292),(1.273 ± 0.739) and (0.329 ±0.231) kg/hm2,accounted for 29.76%,56.27% and 13.98% of the total nitrogen wet deposition,respectively; 5) nitrogen concentration was weakly correlated with rainfall and rainfall intensity,while the total nitrogen wet deposition presented an obvious linear correlation with the precipitation amount (P <0.01),which demonstrates that nitrogen wet deposition is mainly affected by rainfall,but rainfall and rainfall intensity have little impact on N concentration.%采用APS-2A型降水降尘自动采集仪,定位收集2012年5-10月重庆缙云山自然保护站的湿沉降数据,分析该地区大气氮湿沉降浓度及沉降的组成、月变化及季节变化.结果表明:1)相对于NO3--N和DON(可溶性有机氮),降雨中NH4+-N的质量浓度较高,说明该地区NH3的排放量较高;2)缙云山地区大气活性氮主要是还原态的NH4+-N,其主要来源于农业生产;3)

  1. Determination of Inorganic Arsenic in Atmospheric Particles by Hydride Generation-atomic Fluorescence Spectrometry%氢化物发生-原子荧光光谱法测定大气颗粒物中的砷形态

    Institute of Scientific and Technical Information of China (English)

    梁淑轩; 吴虹; 齐学先; 郑璇; 何晓娇

    2011-01-01

    Concentration of atmospheric particles is one of the atmospheric pollution indicators. Heavy metals in the atmospheric particles can risk for human health in both direct and indirect way. Arsenic is one of the higher metal content in them. The inorganic compounds are far more toxic than their organic metabolites. In this paper, the hydride generation atomic fluorescence spectrometric method was employed to the determination of As ( Ⅲ ) and As (V) in the Atmospheric particles. The amount of reducing agent,acid medium and its acidity, carrier gas and shield gas flow rate and observation height of the fluorescence intensity were investigated, and the interference experiment was carried out for concomitant elements. In the best conditions, the detection limit was 0. 34 μg/L, the recovery ranged from 98.18% ~ 102.54%,and the relative standard deviation was about 0.8%. The method was featured by easy operation, fast speed and it has been applied to the analysis of arsenic in the particles with satisfactory results.%采用氢化物发生原子荧光法直接测定不同粒径大气颗粒物中As(Ⅲ)和As(Ⅴ)的含量.研究了还原剂用量、酸介质及其酸度、载气及屏蔽气流量和观测高度等对荧光强度的影响,探讨了共存离子对砷测定的干扰.在选定的最佳条件下,得到检出限为0.34μg/L,方法检出限为0.21μg/g,加标回收率为98.18%~102.54%,相对标准偏差为0.8%左右.用该方法测定大气颗粒物中不同形态的砷,操作简便,快速,灵敏度高.

  2. Assessment of nitrogen losses to the environment with a Nitrogen Trading Tool (NTT)

    Science.gov (United States)

    Delta (or reduced) nitrogen losses (DNL) refer to potential downstream reductions in nonpoint source nitrogen (N) loading of streams or other water bodies and/or in reduced loading of the atmosphere with N-associated greenhouse gases from agriculture. Nitrogen credits as traded on the Communities Ma...