WorldWideScience

Sample records for atmospheric neutrino-induced cascades

  1. First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; B, S; "oser,; Botner, O; Braun, J; Brown, A M; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demir, L; "ors,; Denger, T; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; D'iaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; aard, O Engdeg; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Gross, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hül\\ss, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K -H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nie\\ssen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Heros, C Pérez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schoenwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Stür, M; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Tur\\v\\can, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2011-01-01

    We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of $8.3\\pm 3.6$. At 90% confidence we set an upper limit of $E^2\\Phi_{90%CL}<3.6\\times10^{-7} GeV \\cdot cm^{-2} \\cdot s^{-1}\\cdot sr^{-1} $ on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that $\\Phi \\propto E^{-2}$ and that the flavor composition of the $\

  2. First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector

    International Nuclear Information System (INIS)

    We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of 8.3±3.6. At 90% confidence we set an upper limit of E2Φ90%CL-7 GeV·cm-2·s-1·sr-1 on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that Φ∝E-2 and the flavor composition of the νe ratio νμ ratio ντ flux is 1 ratio 1 ratio 1 at the Earth. The atmospheric neutrino analysis was optimized for lower energies. A total of 12 events were observed with energies above 5 TeV. The observed number of events is consistent with the expected background, within the uncertainties.

  3. Neutrino-Induced Cascades From GRBs With AMANDA-II

    CERN Document Server

    Hughey, B; Ahrens, J; Atlee, D W; Bahcall, J N; Bai, X; Baret, B; Bartelt, M; Bay, R; Barwick, S W; Beattie, K; Becka, T; Becker, K H; Becker, J K; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Blaufuss, E; Boersma, D J; Bohm, C; Boser, S; Botner, O; Bouchta, A; Braun, J; Burgess, C; Burgess, T; Castermans, T; Chirkin, D; Clem, J; Conrad, J; Cooley, J; Cowen, D F; D'Agostino, M V; Davour, A; Day, C T; De Clercq, C; Desiati, P; De Young, T R; Dreyer, J; Duvoort, M R; Edwards, W R; Ehrlich, R; Ekstrom, P; Ellsworth, R W; Evenson, P A; Fazely, A R; Feser, T; Filimonov, K; Gaisser, T K; Gallagher, J; Ganugapati, R; Geenen, H; Gerhardt, L; Greene, M G; Grullon, S; Goldschmidt, A; Goodman, J; Gro, A; Gunasingha, R M; Hallgren, A; Halzen, F; Hanson, K; Hardtke, D; Hardtke, R; Harenberg, T; Hart, J E; Hauschildt, T; Hays, D; Heise, J; Helbing, K; Hellwig, M; Herquet, P; Hill, G C; Hodges, J; Hoffman, K D; Hoshina, K; Hubert, D; Hughey, B; Hulth, P O; Hultqvist, K; Hundertmark, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Jones, A; Joseph, J M; Kampert, K H; Karle, A; Kawai, H; Kelley, J L; Kestel, M; Kitamura, N; Klein, S R; Klepser, S; Kohnen, G; Kolanoski, H; Köpke, L; Krasberg, M; Kühn, K; Kujawski, E; Landsman, H; Lang, R; Leich, H; Liubarsky, I; Lundberg, J; Madsen, J; Marciniewski, P; Mase, K; Matis, H S; McCauley, T; McParland, C P; Meli, A; Messarius, T; Mészáros, P; Minor, R H; Miocinovic, P; Miyamoto, H; Mokhtarani, A; Montaruli, T; Morey, A; Morse, R; Movit, S M; Munich, K; Nahnhauer, R; Nam, J W; Niessen, P; Nygren, D R; Ogelman, H; Olbrechts, P; Olivas, A; Patton, S; Peña-Garay, C; Perez de los Heros, C; Pieloth, D; Pohl, A C; Porrata, R; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Refflinghaus, F; Resconi, E; Rhode, W; Ribordy, M; Richter, S; Rizzo, A; Robbins, S; Rott, C; Rutledge, D; Sander, H G; Schlenstedt, S; Schneider, D; Schwarz, R; Seckel, D; Seo, S H; Silvestri, A; Smith, A J; Solarz, M; Song, C; Sopher, J E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Steffen, P; Stezelberger, T; Stokstad, R G; Stoufer, M; Stoyanov, S; Sulanke, K H; Sullivan, G W; Sumner, T J; Taboada, I; Tarasova, O; Tepe, A; Thollander, L; Tilav, S; Toale, P A; Turcan, D; van Eijndhoven, N; Vandenbroucke, J; Voigt, B; Wagner, W; Walck, C; Waldmann, H; Walter, M; Wang, Y R; Wendt, C; Wiebusch, C; Wikström, G; Williams, D; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, X W; Yoshida, S; Yodh, G

    2005-01-01

    Using AMANDA-II we have performed a search for neutrino-induced cascades in coincidence with 73 bursts reported by BATSE in 2000. Background is greatly suppressed by the BATSE temporal constraint. No evidence of neutrinos was found. We set a limit on a WB-like spectrum, $A_{90}^{all flavors}$ = 9.5$\\times10^{-7}$ GeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$. The determination of systematic uncertainties is in progress, and the limit will be somewhat weakened once these uncertainties are taken into account. We are also conducting a rolling time-window search for neutrino-induced cascades consistent with a GRB signal in 2001. The data set is searched for a statistically significant cluster of signal-like events within a 1 s or 100 s time window. The non-triggered search has the potential to discover phenomena, including gamma-ray dark choked bursts, which did not trigger gamma-ray detectors.

  4. Search for neutrino-induced cascade events in the icecube detector

    International Nuclear Information System (INIS)

    This thesis presents results of a search for a diffuse flux of high energetic neutrinos from extra-terrestrial origin. Such a flux is predicted by several models of sources of cosmic ray particles. In a neutrino detector, such as IceCube, there are mainly two signatures available for detection of neutrinos: The track-like light signal of a neutrino induced muon and the spherical light pattern of a neutrino induced particle shower, called cascades in this context. The search is based on the measurement of neutrino induced cascades within the IceCube neutrino detector. The data were taken in 2008/2009 with a total uptime of 367 days. At that time the detector was still under construction and had just reached half of its final size. A search for a neutrino flux using cascades is sensitive to all neutrino flavors. A cascade develops within few meters, in contrast to the muon track of several kilometers length. Therefore a good energy reconstruction is possible. With such a reconstruction the astrophysical neutrino flux can be statistically distinguished from the background of atmospheric neutrinos. In the simulation of cascades so far it was not included, that in hadronic cascades muons are produced. This can influence the shape of the cascade, to a less spherical one. Therefore the effect was parameterized in this thesis and included in the simulation. Further cuts on the event topology and reconstructed energy were developed, in order to reduce the background of atmospheric muons and atmospheric neutrinos. Four events from the measured data pass these cuts. Taking the high systematic uncertainties into account, this result is in agreement with the expected background of 0.72±0.28±1.540.49 events. For an assumed flavor ratio of νe:νμ:ντ=1:1:1 the upper limit for the all flavor neutrino flux is 9.5.10-8E-2 GeVs-1sr-1cm-2.

  5. Search for neutrino-induced cascade events in the icecube detector

    Energy Technology Data Exchange (ETDEWEB)

    Panknin, Sebastian

    2011-09-15

    This thesis presents results of a search for a diffuse flux of high energetic neutrinos from extra-terrestrial origin. Such a flux is predicted by several models of sources of cosmic ray particles. In a neutrino detector, such as IceCube, there are mainly two signatures available for detection of neutrinos: The track-like light signal of a neutrino induced muon and the spherical light pattern of a neutrino induced particle shower, called cascades in this context. The search is based on the measurement of neutrino induced cascades within the IceCube neutrino detector. The data were taken in 2008/2009 with a total uptime of 367 days. At that time the detector was still under construction and had just reached half of its final size. A search for a neutrino flux using cascades is sensitive to all neutrino flavors. A cascade develops within few meters, in contrast to the muon track of several kilometers length. Therefore a good energy reconstruction is possible. With such a reconstruction the astrophysical neutrino flux can be statistically distinguished from the background of atmospheric neutrinos. In the simulation of cascades so far it was not included, that in hadronic cascades muons are produced. This can influence the shape of the cascade, to a less spherical one. Therefore the effect was parameterized in this thesis and included in the simulation. Further cuts on the event topology and reconstructed energy were developed, in order to reduce the background of atmospheric muons and atmospheric neutrinos. Four events from the measured data pass these cuts. Taking the high systematic uncertainties into account, this result is in agreement with the expected background of 0.72{+-}0.28{+-}{sup 1.54}{sub 0.49} events. For an assumed flavor ratio of {nu}{sub e}:{nu}{sub {mu}}:{nu}{sub {tau}}=1:1:1 the upper limit for the all flavor neutrino flux is 9.5.10{sup -8}E{sup -2} GeVs{sup -1}sr{sup -1}cm{sup -2}.

  6. Atmospheric Neutrino Induced Muons in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Dipu; /Minnesota U.

    2007-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment. The MINOS Far Detector, located in the Soudan Underground Laboratory in Soudan MN, has been collecting data since August 2003. The scope of this dissertation involves identifying the atmospheric neutrino induced muons that are created by the neutrinos interacting with the rock surrounding the detector cavern, performing a neutrino oscillation search by measuring the oscillation parameter values of {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23}, and searching for CPT violation by measuring the charge ratio for the atmospheric neutrino induced muons. A series of selection cuts are applied to the data set in order to extract the neutrino induced muons. As a result, a total of 148 candidate events are selected. The oscillation search is performed by measuring the low to high muon momentum ratio in the data sample and comparing it to the same ratio in the Monte Carlo simulation in the absence of neutrino oscillation. The measured double ratios for the ''all events'' (A) and high resolution (HR) samples are R{sub A} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.60{sub -0.10}{sup +0.11}(stat) {+-} 0.08(syst) and R{sub HR} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.58{sub -0.11}{sup +0.14}(stat) {+-} 0.05(syst), respectively. Both event samples show a significant deviation from unity giving a strong indication of neutrino oscillation. A combined momentum and zenith angle oscillation fit is performed using the method of maximum log-likelihood with a grid search in the parameter space of {Delta}m{sup 2} and sin{sup 2} 2{theta}. The best fit point for both event samples occurs at {Delta}m{sub 23}{sup 2} = 1.3 x 10{sup -3} eV{sup 2}, and sin{sup 2} 2{theta}{sub 23} = 1. This result is compatible with previous measurements from the Super Kamiokande experiment and Soudan 2 experiments. The MINOS Far Detector is the first

  7. Atmospheric Neutrino Induced Muons in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Aftabur Dipu [Univ. of Minnesota, Minneapolis, MN (United States)

    2007-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment. The MINOS Far Detector, located in the Soudan Underground Laboratory in Soudan MN, has been collecting data since August 2003. The scope of this dissertation involves identifying the atmospheric neutrino induced muons that are created by the neutrinos interacting with the rock surrounding the detector cavern, performing a neutrino oscillation search by measuring the oscillation parameter values of Δm$2\\atop{23}$ and sin223, and searching for CPT violation by measuring the charge ratio for the atmospheric neutrino induced muons. A series of selection cuts are applied to the data set in order to extract the neutrino induced muons. As a result, a total of 148 candidate events are selected. The oscillation search is performed by measuring the low to high muon momentum ratio in the data sample and comparing it to the same ratio in the Monte Carlo simulation in the absence of neutrino oscillation. The measured double ratios for the ''all events'' (A) and high resolution (HR) samples are RA = R$data\\atop{low/high}$/R$MC\\atop{low/high}$ = 0.60$+0.11\\atop{-0.10}$(stat) ± 0.08(syst) and RHR = R$data\\atop{low/high}$/R$MC\\atop{low/high}$ = 0.58$+0.14\\atop{-0.11}$(stat) ± 0.05(syst), respectively. Both event samples show a significant deviation from unity giving a strong indication of neutrino oscillation. A combined momentum and zenith angle oscillation fit is performed using the method of maximum log-likelihood with a grid search in the parameter space of Δm2 and sin2 2θ. The best fit point for both event samples occurs at Δm$2\\atop{23}$ = 1.3 x 10-3 eV2, and sin223 = 1. This result is compatible with previous measurements from the Super Kamiokande experiment and Soudan 2 experiments. The MINOS Far Detector is the first

  8. Search for Neutrino-induced Cascades from Gamma-Ray Bursts with AMANDA

    Science.gov (United States)

    Achterberg, A.; Ackermann, M.; Adams, J.; Ahrens, J.; Andeen, K.; Auffenberg, J.; Bahcall, J. N.; Bai, X.; Baret, B.; Barwick, S. W.; Bay, R.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Burgess, C.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Davour, A.; Day, C. T.; De Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; De Young, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Filimonov, K.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Griesel, T.; Grullon, S.; Groß, A.; Gunasingha, R. M.; Gurtner, M.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, D.; Hardtke, R.; Hart, J. E.; Hasegawa, Y.; Hauschildt, T.; Hays, D.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hommez, B.; Hoshina, K.; Hubert, D.; Hughey, B.; Hulth, P. O.; Hultqvist, K.; Hülß, J.-P.; Hundertmark, S.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Jones, A.; Joseph, J. M.; Kampert, K.-H.; Karg, T.; Karle, A.; Kawai, H.; Kelley, J. L.; Kitamura, N.; Klein, S. R.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Labare, M.; Landsman, H.; Leich, H.; Leier, D.; Liubarsky, I.; Lundberg, J.; Lünemann, J.; Madsen, J.; Mase, K.; Matis, H. S.; McCauley, T.; McParland, C. P.; Meli, A.; Messarius, T.; Mészáros, P.; Miyamoto, H.; Mokhtarani, A.; Montaruli, T.; Morey, A.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Ögelman, H.; Olivas, A.; Patton, S.; Peña-Garay, C.; Pérez de los Heros, C.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, S.; Roth, P.; Rott, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Seckel, D.; Semburg, B.; Seo, S. H.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Solarz, M.; Song, C.; Sopher, J. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Steffen, P.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Sumner, T. J.; Taboada, I.; Tarasova, O.; Tepe, A.; Thollander, L.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Viscomi, V.; Voigt, B.; Wagner, W.; Walck, C.; Waldmann, H.; Walter, M.; Wang, Y.-R.; Wendt, C.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zornoza, J. D.

    2007-07-01

    Using the neutrino telescope AMANDA-II, we have conducted two analyses searching for neutrino-induced cascades from gamma-ray bursts. No evidence of astrophysical neutrinos was found, and limits are presented for several models. We also present neutrino effective areas which allow the calculation of limits for any neutrino production model. The first analysis looked for a statistical excess of events within a sliding window of 1 or 100 s (for short and long burst classes, respectively) during the years 2001-2003. The resulting upper limit on the diffuse flux normalization times E2 for the Waxman-Bahcall model at 1 PeV is 1.6×10-6 GeV cm-2 s-1 sr-1 (a factor of 120 above the theoretical prediction). For this search 90% of the neutrinos would fall in the energy range 50 TeV to 7 PeV. The second analysis looked for neutrino-induced cascades in coincidence with 73 bursts detected by BATSE in the year 2000. The resulting upper limit on the diffuse flux normalization times E2, also at 1 PeV, is 1.5×10-6 GeV cm-2 s-1 sr-1 (a factor of 110 above the theoretical prediction) for the same energy range. The neutrino-induced cascade channel is complementary to the up-going muon channel. We comment on its advantages for searches of neutrinos from GRBs and its future use with IceCube.

  9. First search for extraterrestrial neutrino-induced cascades with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Kiryluk, Joanna

    2009-05-22

    We report on the first search for extraterrestrial neutrino-induced cascades in IceCube.The analyzed data were collected in the year 2007 when 22 detector strings were installed and operated. We will discuss the analysis methods used to reconstruct cascades and to suppress backgrounds. Simulated neutrino signal events with a E-2 energy spectrum, which pass the background rejection criteria, are reconstructed with a resolution Delta(log E) ~;; 0.27 in the energy range from ~;; 20 TeV to a few PeV. We present the range of the diffuse flux of extra-terrestrial neutrinos in the cascade channel in IceCube within which we expect to be able to put a limit.

  10. Search for neutrino-induced cascades with five years of AMANDA data

    NARCIS (Netherlands)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Actis, O.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S.W.; Bay, R.; Alba, J.L.B.; Beattie, K.; Beatty, J.J.; Bechet, S.; Becker, J.K.; Becker, K.H.; Benabderrahmane, M.L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D.Z.; Bissok, M.; Blaufuss, E.; Boersma, D.J.; Bohm, C.; Boser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitirik, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D.F.; D'Agostino, M.V.; Danninger, M.; Davis, J.C.; Clercq, C. De; Demirors, L.; Depaepe, O.; Descamps, F.; Desiati, P.; Vries-Uiterweerd, G. de; DeYoung, T.; Diaz-Velez, J.C.; Dreyer, J.; Dumm, J.P.; Duvoort, M.R.; Ehrlich, R.; Eisch, J.; Ellsworth, R.W.; Engdegard, O.; Euler, S.; Evenson, P.A.; Fadiran, O.; Fazely, A.R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M.M.; Fox, B.D.; Franckowiak, A.; Franke, R.; Gaisser, T.K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glusenkamp, T.; Goldschmidt, A.; Goodman, J.A.; Grant, D.; Griesel, T.; Gross, A.; Grullon, S.; Gunasingha, R.M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G.C.; Hoffman, K.D.; Homeier, A.; Hoshina, K.; Hubert, D.; Lafebre, S.J.

    2011-01-01

    We report on the search for electromagnetic and hadronic showers ("cascades") produced by a diffuse flux of extraterrestrial neutrinos in the AMANDA neutrino telescope. Data for this analysis were recorded during 1001 days of detector livetime in the years 2000-2004. The observed event rates are con

  11. Charge-Separated Atmospheric Neutrino-Induced Muons in the MINOS Far Detector

    CERN Document Server

    Adamson, P; Arms, K E; Armstrong, R; Auty, D J; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barnes, P D; Barr, G; Barrett, W L; Beall, E; Becker, B R; Belias, A; Bergfeld, T; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, B; Bock, G J; Bogert, D; Border, P M; Bower, C; Buckley-Geer, E; Böhm, J; Böhnlein, D J; Cabrera, A; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Culling, A J; De Jong, J K; De Santo, A; Dierckxsens, M; Diwan, M V; Dorman, M; Drakoulakos, D; Durkin, T; Erwin, A R; Escobar, C O; Evans, J J; Falk-Harris, E; Feldman, G J; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Giurgiu, G A; Godley, A; Gogos, J; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hartouni, E P; Hatcher, R; Heller, K; Holin, A; Howcroft, C; Hylen, J; Indurthy, D; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jenner, L; Jensen, D; Joffe-Minor, T; Kafka, T; Kang, H J; Kasahara, S M; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Lebedev, A; Lee, R; Ling, 6J; Litchfield, P J; Litchfield, R P; Liu, J; Lucas, P; Mann, W A; Marchionni, A; Marino, A D; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Merzon, G I; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Mislivec, A; Miyagawa, P S; Moore, C D; Morfin, J; Mualem, L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Osiecki, T; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovic, Z; Pearce, G F; Peck, C W; Peterson, E A; Petyt, D A; Ping, H; Piteira, R; Pittam, R; Plunkett, R K; Rahman, D; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Reyna, D E; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Saakyan, R; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Semenov, V K; Seun, S M; Shanahan, P; Smart, W; Smirnitsky, V; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Symes, P A; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Verebryusov, V; Viren, B; Ward, C P; Ward, D R; Watabe, M; Webb, R C; Weber, A; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Wu, Q K; Yang, T; Yumiceva, F X; Zheng, H; Zois, M; Zwaska, R

    2007-01-01

    We found 140 neutrino-induced muons in 854.24 live days in the MINOS far detector. We looked for evidence of neutrino disappearance in this data set by computing the ratio of the number of low momentum muons to the sum of the number of high momentum and unknown momentum muons for both data and Monte Carlo expectation in the absence of neutrino oscillations. The ratio of data and Monte Carlo ratios is consistent with an oscillation signal. A fit to the data for the oscillation parameters excludes the null oscillation hypothesis at the 94% confidence level. We separated the muons by charge sign in both the data and Monte Carlo events and found the ratio of the total number of negative to positive muons in both samples. The ratio of those ratios is a test of CPT conservation. The result is consistent with CPT conservation.

  12. Search for neutrino-induced particle showers with IceCube-40

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.;

    2014-01-01

    We report on the search for neutrino-induced particle-showers, so-called cascades, in the IceCube-40 detector. The data for this search was collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each...... optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical...... neutrino flux. The analysis with an intermediate threshold of 25 TeV lead to the observation of 14 cascade-like events, again consistent with the prediction of 3.0 atmospheric neutrino and 7.7 atmospheric muon events. We hence set an upper limit of E^2Φ_lim≤7.46×10^−8 GeV sr^−1 s^−1 cm^−2 (90% C.L.) on the...

  13. Search for neutrino-induced particle showers with IceCube-40

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Bruijn, R; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Kelley, J L; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kriesten, A; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Macías, O; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-01-01

    We report on the search for neutrino-induced particle-showers, so-called cascades, in the IceCube-40 detector. The data for this search was collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical neutrino flux. The analysis with an intermediate threshold of 25 TeV lead to the observation of 14 cascade-like events, again consistent with the prediction of 3.0 atmospheric neutrino and 7.7 atmospheric muon events. We hence set an upper limit of $E^2 \\Phi_{lim} \\leq 7.46\\times10^{-8}\\,\\mathrm{GeV sr^{-1} s^{-1} cm^{-2}}$ (90% C.L.) on the diffuse flux from astrophysical neutrinos of all neutrino flavors, applicabl...

  14. Neutrino induced 1-pion production

    CERN Document Server

    González-Jiménez, R; Van Dessel, N; Pandey, V; Jachowicz, N

    2016-01-01

    Neutrino-induced pion production constitutes an important contribution to neutrino-nucleus scattering cross sections at intermediate energies. A deep understanding of this process is mandatory for a correct interpretation of neutrino-oscillation experiments. We aim at contributing to the ongoing effort to understand the various experimental results obtained by different collaborations in a wide range of energies. In particular, in this work we analyze recent MiniBooNE and MINERvA charged-current neutrino 1-pion production data. We use a relativistic theoretical approach which accounts for resonant and non-resonant 1-pion production contributions.

  15. Neutrino-induced coherent pion production

    CERN Document Server

    Alvarez-Ruso, L; Hirenzaki, S; Vacas, M J Vicente; Leitner, T; Mosel, U

    2007-01-01

    We have investigated the neutrino induced coherent pion production reaction at the energies of interest for recent experiments like K2K and MiniBooNE. The model includes pion, nucleon and the Delta(1232) resonance. Medium effects in the production mechanism and the distortion of the pion wave function are taken into account. We find a strong reduction of the cross section due to these effects and also substantial modifications in the energy distributions of the final pion. The sensitivity of the results on the axial N-Delta coupling C5A(0) and the coherent fraction in neutral-current pi0 production are discussed.

  16. Charged current neutrino induced coherent pion production

    CERN Document Server

    Alvarez-Ruso, L; Hirenzaki, S; Vacas, M J V

    2007-01-01

    We analyze the neutrino induced charged current coherent pion production at the energies of interest for recent experiments like K2K and MiniBooNE. Medium effects in the production mechanism and the distortion of the pion wave function, obtained solving the Klein Gordon equation with a microscopic optical potential, are included in the calculation. We find a strong reduction of the cross section due to these effects and also substantial modifications of the energy distributions of the final lepton and pion.

  17. Nuclear effects in neutrino induced reactions

    CERN Document Server

    Vacas, M J Vicente; Geng, L S; Nieves, J; Valverde, M; Hirenzaki, S

    2008-01-01

    We discuss the relevance of nuclear medium effects in the analysis of some low and medium energy neutrino reactions of current interest. In particular, we study the Quasi-Elastic (QE) process, where RPA correlations and Final State Interactions (FSI) are shown to play a crucial role. We have also investigated the neutrino induced coherent pion production. We find a strong reduction of the cross section due to the distortion of the pion wave function and the modification of the production mechanisms in the nucleus. The sensitivity of the results to the axial $N\\Delta$ coupling $C_5^A(0)$ has been also investigated.

  18. Neutrino-induced reactions on nuclei

    Science.gov (United States)

    Gallmeister, K.; Mosel, U.; Weil, J.

    2016-09-01

    Background: Long-baseline experiments such as the planned deep underground neutrino experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. Purpose: Develop a consistent theory and code framework for the description of lepton-nucleus interactions that can be used to describe not only inclusive cross sections, but also the complete final state of the reaction. Methods: The Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory is used, with improvements in its treatment of the nuclear ground state and of 2p2h interactions. For the latter an empirical structure function from electron scattering data is used as a basis. Results: Results for electron-induced inclusive cross sections are given as a necessary check for the overall quality of this approach. The calculated neutrino-induced inclusive double-differential cross sections show good agreement data from neutrino and antineutrino reactions for different neutrino flavors at MiniBooNE and T2K. Inclusive double-differential cross sections for MicroBooNE, NOvA, MINERvA, and LBNF/DUNE are given. Conclusions: Based on the GiBUU model of lepton-nucleus interactions a good theoretical description of inclusive electron-, neutrino-, and antineutrino-nucleus data over a wide range of energies, different neutrino flavors, and different experiments is now possible. Since no tuning is involved this theory and code should be reliable also for new energy regimes and target masses.

  19. Numerical calculations of cosmic ray cascade in the Earth's atmosphere using different particle interaction models

    Science.gov (United States)

    Nesterenok, A. V.; Naidenov, V. O.

    2015-12-01

    The interaction of primary cosmic rays with the Earth's atmosphere is investigated using the simulation toolkit GEANT4. Two reference lists of physical processes - QGSP_BIC_HP and FTFP_BERT_HP - are used in the simulations of cosmic ray cascade in the atmosphere. The cosmic ray neutron fluxes are calculated for mean level of solar activity, high geomagnetic latitudes and sea level. The calculated fluxes are compared with the published results of other analogous simulations and with experimental data.

  20. Neutrino Induced Coherent ρ Production in a Fine Grained Tracker

    Science.gov (United States)

    Jiang, Libo; Kullenberg, Christpher; Tian, Xinchun; Mishra, Sanjib; LBNE Collaboration

    2015-04-01

    We present simulation of neutrino induced coherent ρ-meson production in charged and neutral current interactions. Sensitivity studies of this process is presented in a fine grain tracker, a near detector option for LBNE. Measurements of coherent ρ0 and ρ+ production in NOMAD are reported.

  1. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    SNO collaboration; Aharmim, B.; Ahmed, S.N.; Andersen, T.C.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; Boulay, M.G.; Burritt, T.H.; Cai, B.; Chan, Y.D.; Chen, M.; Chon, M.C.; Cleveland, B.T.; Cox-Mobrand, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P.J.; Dosanjh, R.S.; Doucas, G.; Drouin, P.-L.; Duncan, F.A.; Dunford, M.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Gagnon, N.; Goon, J.TM.; Grant, D.R.; Guillian, E.; Habib, S.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hargrove, C.K.; Harvey, P.J.; Harvey, P.J.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hemingway, R.J.; Henning, R.; Hime, A.; Howard, C.; Howe, M.A.; Huang, M.; Jamieson, B.; Jelley, N.A.; Klein, J.R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C.B.; Kutter, T.; Kyba, C.C.M.; Lange, R.; Law, J.; Lawson, I.T.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald, A.B.; McGee, S.; Mifflin, C.; Miller, M.L.; Monreal, B.; Monroe, J.; Noble, A.J.; Oblath, N.S.; Okada, C.E.; O?Keeffe, H.M.; Opachich, Y.; Orebi Gann, G.D.; Oser, S.M.; Ott, R.A.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Rielage, K.; Robertson, B.C.; Robertson, R.G.H.; Rollin, E.; Schwendener, M.H.; Secrest, J.A.; Seibert, S.R.; Simard, O.; Simpson, J.J.; Sinclair, D.; Skensved, P.; Smith, M.W.E.; Sonley, T.J.; Steiger, T.D.; Stonehill, L.C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R.G.; VanDevender, B.A.; Virtue, C.J.; Waller, D.; Waltham, C.E.; Wan Chan Tseung, H.; Wark, D.L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J.F.; Wilson, J.R.; Wouters, J.M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-02-16

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  2. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    Science.gov (United States)

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  3. Transition radiation at radio frequencies from ultra-high energy neutrino-induced showers

    CERN Document Server

    Motloch, Pavel; Privitera, Paolo; Zas, Enrique

    2015-01-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium - like ice, salt or regolith - has been extensively investigated as a promising technique to search for ultra-high energy (UHE) neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to $\\sim$ 1 GHz. These properties encourage further work to evaluate the potential of a large-aperture UHE neutrino experiment based on detection of transition radiation.

  4. Transition radiation at radio frequencies from ultrahigh-energy neutrino-induced showers

    Science.gov (United States)

    Motloch, Pavel; Alvarez-Muñiz, Jaime; Privitera, Paolo; Zas, Enrique

    2016-02-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium—like ice, salt, soil, or regolith—has been extensively investigated as a promising technique to search for ultrahigh-energy neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth's surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to ˜1 GHz . These properties encourage further work to evaluate the potential of a large-aperture ultrahigh-energy neutrino experiment based on the detection of transition radiation.

  5. Comparison between methods for the determination of the primary cosmic ray mass composition from the longitudinal profile of atmospheric cascades

    CERN Document Server

    Ambrosio, M; Donalek, C; D'Urso, D; Erlykin, A D; Guarino, F; Insoiia, A; Longo, G

    2005-01-01

    The determination of the primary cosmic ray mass composition from the longitudinal development of atmospheric cascades is still a debated issue. In this work we discuss several data analysis methods and show that if the entire information contained in the longitudinal profile is exploited, reliable results may be obtained. Among the proposed methods FCC ('Fit of the Cascade Curve'), MTA ('Multiparametric Topological Analysis') and NNA ('Neural Net Analysis') with conjugate gradient optimization algorithm give the best accuracy.

  6. Neutrino-Induced Fission and r-Process Nucleosynthesis

    OpenAIRE

    Qian, Y. -Z.

    2002-01-01

    An r-process scenario with fission but no fission cycling is considered to account for the observed abundance patterns of neutron-capture elements in ultra-metal-poor stars. It is proposed that neutrino reactions play a crucial role in inducing the fission of the progenitor nuclei after the r-process freezes out in Type II Supernovae. To facilitate neutrino-induced fission, the proposed r-process scenario is restricted to occur in a low-density environment such as the neutrino-driven wind fro...

  7. Development of a cascade arc discharge source for an atmosphere-vacuum interface device.

    Science.gov (United States)

    Namba, S; Endo, T; Fujino, S; Suzuki, C; Tamura, N

    2016-08-01

    To realize a novel vacuum-atmosphere interface that does not require a large differential pumping system, a robust cascade arc discharge source called a plasma window is constructed and tested for long-term operation. By modifying a test plasma with a direct current discharge, a vacuum interface with a high gas pressure ratio of 1/407 between the discharge and expansion sections is demonstrated for currents as high as 20 A. No significant damage to the electrodes is observed during the operation. Analysis of the visible emission spectra reveals that a stationary, stable argon plasma having a temperature of 1 eV and a density of 1.5 × 10(16) cm(-3) is generated in the plasma channel. PMID:27587119

  8. Development of a cascade arc discharge source for an atmosphere-vacuum interface device

    Science.gov (United States)

    Namba, S.; Endo, T.; Fujino, S.; Suzuki, C.; Tamura, N.

    2016-08-01

    To realize a novel vacuum-atmosphere interface that does not require a large differential pumping system, a robust cascade arc discharge source called a plasma window is constructed and tested for long-term operation. By modifying a test plasma with a direct current discharge, a vacuum interface with a high gas pressure ratio of 1/407 between the discharge and expansion sections is demonstrated for currents as high as 20 A. No significant damage to the electrodes is observed during the operation. Analysis of the visible emission spectra reveals that a stationary, stable argon plasma having a temperature of 1 eV and a density of 1.5 × 1016 cm-3 is generated in the plasma channel.

  9. Open-path, quantum cascade laser-based sensor for high resolution atmospheric ammonia measurements

    Directory of Open Access Journals (Sweden)

    D. J. Miller

    2013-07-01

    Full Text Available We demonstrate a compact, open-path, quantum cascade laser-based atmospheric ammonia sensor operating at 9.06 μm for high sensitivity, high temporal resolution, ground-based measurements. Atmospheric ammonia (NH3 is a gas-phase precursor to fine particulate matter, with implications for air quality and climate change. Currently, NH3 sensing challenges have led to a lack of widespread in-situ measurements. Our open-path sensor configuration avoids sampling artifacts associated with NH3 surface adsorption onto inlet tubing and reduced pressure sampling cells, as well as condensed-phase partitioning ambiguities. Multi-harmonic wavelength modulation spectroscopy allows for selective and sensitive detection of atmospheric-pressure broadened absorption features. An in-line ethylene reference cell provides real-time calibration (±20% accuracy and normalization for instrument drift under rapidly changing field conditions. The sensor has a sensitivity and minimum detection limit of 0.15 ppbv NH3 at 10 Hz, a mass of ~ 5 kg and consumes ~ 50 W of electrical power. In-situ field performance of this open-path NH3 sensor is demonstrated, with 10 Hz time resolution and a large dynamic response for in-situ NH3 measurements. This sensor provides the capabilities for improved in-situ gas phase NH3 sensing relevant for emission source characterization and flux measurements.

  10. Neutrino Induced Coherent Pion Production off Nuclei and PCAC

    CERN Document Server

    Hernández, E; Vicente-Vacas, M J

    2009-01-01

    We have critically reviewed the commonly used Rein--Sehgal model for neutrino induced coherent pion production. We have studied the validity of the main approximations implicit in that model, trying to compare with physical observables when that is possible and with microscopical calculations. Next, we have tried to elaborate a new improved model by removing the more problematic approximations, while keeping the model still reasonably simple. Last, we have discussed the limitations intrinsic to any approach based on the partial conservation of the axial current hypothesis. In particular, we have shown the inability of such models to determine the angular distribution of the outgoing pion with respect to the direction of the incoming neutrino, except for the $q^2= 0$ kinematical point.

  11. Neutrino-induced Reactions and Neutrino Scattering with Nuclear Targets

    Science.gov (United States)

    Cheoun, Myung-Ki; Ha, Eunja; Yang, Ghil-Seok; Kim, Kyungsik; Kajino, T.

    2016-02-01

    We reviewed present status regarding experimental data and theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation for quasielastic region are presented for MiniBooNE data. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data. Finally, we discussed that one step-process in the reaction is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis.

  12. Neutrino-induced Reactions and Neutrino Scattering with Nuclear Targets

    Directory of Open Access Journals (Sweden)

    Cheoun Myung-Ki

    2016-01-01

    Full Text Available We reviewed present status regarding experimental data and theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation for quasielastic region are presented for MiniBooNE data. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data. Finally, we discussed that one step-process in the reaction is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis.

  13. Development of a continuous-wave quantum cascade laser instrument for atmospheric measurements of HONO near 1255 cm-1

    Science.gov (United States)

    Cui, Xiaojuan; Chen, Weidong; Fertein, Eric; Liu, Wenqing; Zhang, Yujun; Dong, Fengzhong

    2010-05-01

    Gaseous nitrous acid (HONO), as an important hydroxyl (OH) free radical source in the atmosphere by photolysis at dawn, plays a very important role in the atmospheric chemistry of irradiated mixtures of VOC and NOx. It is also an important precursor for OH radicals in simulation chambers. Concentration measurement of atmospheric HONO requires high sensitivity, good temporal and spatial resolution. Tunable diode laser spectrometry (TDLS) provides advantage in terms of sensitivity (due to the laser source) and spatial resolution (due to point sampling) in comparison with the currently used spectroscopic instruments (FTIR and DOAS). In this paper, we report on the development of a TDLS instrument for atmospheric HONO detection, based on a continuous wave, room temperature operation quantum cascade laser (QCL) emitting at about 1254.7 cm-1 at 20 °C with an output power of up to 35 mW. Experimental details will be presented and discussed.

  14. Neutrino Induced Reactions on Nuclei in the Lab and in Stars

    International Nuclear Information System (INIS)

    The important role of neutrino induced reactions on nuclei at low and intermediate energies both in accelerator-based experiments in Neutrino Physics and in Neutrino Astrophysics is discussed. After a short description of the theoretical nuclear model we present selected applications to various neutrino experiments. We will focus on the sensitivity of neutral current neutrino scattering to the strangeness content of the nucleon and on the calculation of neutrino induced reactions on 56Fe and 208Pb, which have been discussed as target materials in future neutrino detectors. (author)

  15. Charged and Neutral Current Neutrino Induced Nucleon Emission Reactions

    CERN Document Server

    Nieves, J; Vacas, M J V

    2006-01-01

    By means of a Monte Carlo cascade method, to account for the rescattering of the outgoing nucleon, we study the charged and neutral current inclusive one nucleon knockout reactions off nuclei induced by neutrinos. The nucleon emission process studied here is a clear signal for neutral--current neutrino driven reactions, and can be used in the analysis of future neutrino experiments.

  16. Jets and macroturbulent "cascades" in atmospheres, oceans and the laboratory (Lewis Fry Richardson Medal Lecture)

    Science.gov (United States)

    Read, Peter L.

    2016-04-01

    The banded organization of clouds associated with intense zonal (east-west) jet streams and large-scale oval vortices on Jupiter and Saturn have long fascinated astronomers and atmospheric dynamicists for many years. The current view is that these features are a manifestation of strongly anisotropic energy transfers within a highly turbulent fluid on a rapidly rotating, spherical planet that is energised at relatively small scales, either by free convection or baroclinic instabilities. The details are still not fully understood, however. Energy exchanges in the Earth's atmosphere and oceans, and on other planets, are similarly complex, with evidence of both upscale and downscale transfers and formation of zonal jet-like features. In this lecture we will explore insights from laboratory experiments on both small scales and on the Coriolis platform in Grenoble, France that investigate plausible physical analogues of such atmospheric or oceanic circulations, energized mainly by free thermal convection with strong background rotation. Weak, eddy-driven jets may be obtained through anisotropic energy exchanges, though (for reasons to be discussed) it is not possible to match Jupiter's parameter regime very closely in the laboratory. We will compare the dynamics and energetics of our laboratory experiment with new measurements of energy exchanges, spectra and structure functions in Jupiter's atmosphere from analysis of Cassini spacecraft images, which indicate some new directions for models of gas giant atmospheric circulations.

  17. Neutrino - Induced Muons in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, Brian J. [Indiana Univ., Bloomington, IN (United States)

    2004-08-25

    The Main Injector Neutrino Oscillation Search (MINOS) is an experiment designed to probe the phenomenon of neutrino oscillations. When MINOS is completed it will consist of a neutrino beam and two detectors, which are separated by a distance of 735 km. The near detector measures the energy distribution and ux of a beam of muon neutrinos produced at Fermilab, while the far detector, located in Soudan, MN, measures these same neutrino properties 735 km away. The signal for a detection of neutrino oscillations is a de cit of neutrinos at the far detector compared to expectations based on the near detector measurements. In addition to measuring beam neutrinos, the far detector can be used to measure neutrinos produced in cosmic ray interactions in the atmosphere. While waiting for the beam to begin running, the far detector was used in this mode. Several previous experiments, such as Super-K and MACRO, have suggested that the atmospheric neutrinos oscillate between di erent avor states. This dissertation looks for an oscillation signal in the atmospheric neutrinos by using muons resulting from the interaction of the atmospheric neutrinos in the rock surrounding the MINOS far detector.

  18. Neutrino induced pion production at MiniBooNE and K2K energies

    CERN Document Server

    Leitner, T; Mosel, U; Alvarez-Ruso, L

    2009-01-01

    We investigate charged and neutral current neutrino-induced incoherent pion production off nuclei within the GiBUU model at energies relevant for the MiniBooNE and K2K experiments. Special attention is paid to the entanglement between measured CCQE and CC1pi+ cross sections. We further give predictions and compare to recent data measured at MiniBooNE.

  19. Neutrino-induced Muons In The Minos Far Detector

    CERN Document Server

    Rebel, B J

    2004-01-01

    The Main Injector Neutrino Oscillation Search (MINOS) is an experiment designed to probe the phenomenon of neutrino oscillations. When MINOS is completed it will consist of a neutrino beam and two detectors, which are separated by a distance of 735∼km. The near detector measures the energy distribution and flux of a beam of muon neutrinos produced at Fermilab, while the far detector, located in Soudan, MN, measures these same neutrino properties 735∼km away. The signal for a detection of neutrino oscillations is a deficit of neutrinos at the far detector compared to expectations based on the near detector measurements. In addition to measuring beam neutrinos, the far detector can be used to measure neutrinos produced in cosmic ray interactions in the atmosphere. While waiting for the beam to begin running, the far detector was used in this mode. Several previous experiments, such as Super-K and MACRO, have suggested that the atmospheric neutrinos oscillate between different flavor states. This...

  20. Mapping Atmospheric Ammonia Emissions Using a Mobile Quantum Cascade Laser-based Open-path Sensor

    Science.gov (United States)

    Sun, K.; Tao, L.; Miller, D. J.; Khan, M. A.; Zondlo, M. A.

    2012-12-01

    Ammonia (NH3) is a key precursor to atmospheric fine particulate matter, with strong implications for regional air quality and global climate change. Despite the importance of atmospheric ammonia, its spatial/temporal variation is poorly characterized, and the knowledge of its sources, sinks, and transport is severely limited. Existing measurements suggest that traffic exhaust may provide significant amounts of ammonia in urban areas, which cause greater impacts on particulate matter formation and urban air quality. To capture the spatial and temporal variation of ammonia emissions, a portable, low power sensor with high time resolution is necessary. We have developed a portable open-path ammonia sensor with a detection limit of 0.5 ppbv ammonia for 1 s measurements. The sensor has a power consumption of about 60 W and is capable of running on a car battery continuously for 24 hours. An additional laser has been coupled to the sensor to yield concurrent N2O and CO measurements as tracers for determining various sources. The overall sensor prototype fits on a 60 cm × 20 cm aluminum breadboard. Roadside measurements indicated NH3/CO emission ratios of 4.1±5.4 ppbv/ppmv from a fleet of 320 vehicles, which agree with existing on-ramp measurements. Urban measurements in the Baltimore and Washington, DC metropolitan areas have shown significant ammonia mixing ratios concurrent with carbon monoxide levels from the morning and evening rush hours. On-road measurements of our open-path sensor have also been performed continuously from the Midwest to Princeton, NJ including urban areas such as Pittsburgh, tunnels, and relatively clean conditions. The emission ratios of ammonia against CO and/or CO2 help identify the sources and amounts of both urban and agricultural ammonia emissions. Preliminary data from both spatial mapping, monitoring, and vehicle exhaust measurements suggest that urban ammonia emissions from fossil fuel combustion are significant and may provide an

  1. Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer.

    Science.gov (United States)

    Li, Jingsong; Parchatka, Uwe; Königstedt, Rainer; Fischer, Horst

    2012-03-26

    A compact, mobile mid-infrared laser spectrometer based on a thermoelectrically (TE) cooled continuous-wave room temperature quantum cascade laser and TE-cooled detectors has been newly developed to demonstrate the applicability of high sensitivity and high precision measurements of atmospheric CO. Performance of the instrument was examined with periodic measurements of reference sample and ambient air at 1 Hz sampling rate and a 1-hourly calibration cycle. The typical precision evaluated from replicate measurements of reference sample over the course of 66-h is 1.41 ppbv. With the utilization of wavelet filtering to improve the spectral SNR and minimize the dispersion of concentration values, a better precision of 0.88 ppbv and a lower detection limit of ~0.4 ppbv with sub-second averaging time have been achieved without reducing the fast temporal response. Allan variance analysis indicates a CO measurement precision of ~0.28 ppbv for optimal integration time of approximate 50 s. The absolute accuracy is limited by the calibration gas standard. This completely thermoelectrically cooled system shows the capability of long-term, unattended and continuous operation at room temperature without complicated cryogenic cooling. PMID:22453438

  2. Neutrino induced pion production at MiniBooNE and K2K

    CERN Document Server

    Leitner, T; Mosel, U; Alvarez-Ruso, L

    2008-01-01

    We investigate charged and neutral current neutrino induced incoherent pion production off nuclei at MiniBooNE and K2K energies within the GiBUU model. We assume impulse approximation and treat the nucleus as a local Fermi gas of nucleons bound in a mean-field potential. In-medium spectral functions are also taken into account. The outcome of the initial neutrino nucleon reaction undergoes complex hadronic final state interactions. We present results for neutral current pi^0 and charged current pi^+ production and compare to MiniBooNE and K2K data.

  3. Atmospheric ammonia measurements in Houston, TX using an external cavity-quantum cascade laser-based sensor

    Science.gov (United States)

    Gong, L.; Lewicki, R.; Griffin, R. J.; Flynn, J. H.; Lefer, B. L.; Tittel, F. K.

    2010-12-01

    Ammonia (NH3) plays a significant role in atmospheric chemistry. It has many anthropogenic (e.g., agricultural crops and mineral fertilizers) and natural sources (e.g., animals, oceans, and vegetation) in the environment. In certain areas, industrial and motor vehicle activities also can contribute to increases in atmospheric NH3 levels. From a perspective of environmental concern, NH3 is a precursor of particulate matter (PM) because it can lead to production of ammonium salts (e.g., (NH4)2SO4 and NH4NO3) through chemical reactions with sulfuric and nitric acid. As a result, the abundance of NH3 in the atmosphere has a great impact on aerosol nucleation and composition. Despite this, NH3 is not regulated. It is crucial, however, to improve our understanding of the dynamics of NH3 in an industrial and urban area such as Greater Houston where atmospheric NH3 data are limited. In this study, a 10.4 µm external cavity quantum cascade laser (EC-QCL)-based sensor was developed and utilized. To monitor atmospheric NH3 at trace gas concentration levels, an amplitude modulated photo-acoustic spectroscopy (AM-PAS) technique was employed. The minimum detection limit obtained from the sensor is ~1.5 ppb for a 5-second data acquisition time. After averaging data over 300 seconds a sub-ppb NH3 concentration level can be achieved. The NH3 sensor has been deployed on the roof of a ~60-meter-high building (North Moody Tower) located on the University of Houston campus since November 2009. Several episodes of high NH3 concentrations were observed. For example, the sensor recorded a significant and lasting increase in NH3 concentrations (~21 ppb) on August 14, 2010, when a major accident occurred during the same time period on the Gulf Freeway (I-45) in Houston only 2 miles from the sampling site. The elevated concentration levels are assumed to be associated with NH3 generation from a chemical fire resulting from the collision involving two 18-wheelers, one carrying fertilizer

  4. Methane and nitrous oxide measurements onboard the UK Atmospheric Research Aircraft using quantum cascade laser spectrometry (QCL)

    Science.gov (United States)

    Muller, J. B.; O'Shea, S.; Dorsey, J.; Bauguitte, S.; Cain, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.

    2012-12-01

    A Aerodyne Research© Mini-Quantum Cascade Laser (QCL) spectrometer was installed on the UK Facility of Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft and employed during summer 2012. Methane (CH4) and nitrous oxide (N2O) concentrations were measured within the Arctic Circle as part of the MAMM project (Methane and other greenhouse gases in the Arctic - Measurements, process studies and Modelling) as well as around the UK as part of the ClearfLo project (Clean Air for London). A range of missions were flown, including deep vertical profiles up to the stratosphere, providing concentration profiles of CH4 and N2O, as well as low altitude level runs exploring near surface diffuse emission sources such as the wetlands in Arctic Lapland and point emissions sources such as gas platforms off the UK coast. Significant pollution plumes were observed both in the Arctic and around the UK with elevated CH4 concentrations, as well as enhanced CO, O3 and aerosol levels. The NAME Lagrangian particle dispersion model will be used to investigate the origins of these CH4 plumes to identify the locations of the emissions sources. The first set of flights using QCL on the FAAM research aircraft have been successful and regular in-flight calibrations (high/low span) and target concentrations were used to determine instrument accuracy and precision. Additional data quality control checks could be made by comparison with an onboard Los Gatos Fast Greenhouse Gas Analyser (FGGA) for CO2 and CH4 and provide the basis for further instrument development and implementation for future Arctic MAMM flights during spring and summer 2013.

  5. Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse Supernovae

    Science.gov (United States)

    Banerjee, Projjwal; Qian, Yong-Zhong; Heger, Alexander; Haxton, Wick

    2016-02-01

    We summarize our studies on neutrino-driven nucleosynthesis in He shells of early core-collapse supernovae with metallicities of Z ≲ 10-3 Z⊙. We find that for progenitors of ˜ 11-15 M⊙, the neutrons released by 4He(accent="true">ν¯ee, e+n)3H in He shells can be captured to produce nuclei with mass numbers up to A ˜ 200. This mechanism is sensitive to neutrino emission spectra and flavor oscillations. In addition, we find two new primary mechanisms for neutrino-induced production of 9Be in He shells. The first mechanism produces 9Be via 7Li(n,γ)8Li(n,γ)9Li(e- accent="true">ν¯ee)9Be and relies on a low explosion energy for its survival. The second mechanism operates in progenitors of ˜ 8 M⊙, where 9Be can be produced directly via 7Li(3H, n0)9Be during the rapid expansion of the shocked Heshell material. The light nuclei 7Li and 3H involved in these mechanisms are produced by neutrino interactions with 4He. We discuss the implications of neutrino-induced nucleosynthesis in He shells for interpreting the elemental abundances in metal-poor stars.

  6. Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Banerjee Projjwal

    2016-01-01

    Full Text Available We summarize our studies on neutrino-driven nucleosynthesis in He shells of early core-collapse supernovae with metallicities of Z ≲ 10−3 Z⊙. We find that for progenitors of ∼ 11–15 M⊙, the neutrons released by 4He(ν¯ee, e+n3H in He shells can be captured to produce nuclei with mass numbers up to A ∼ 200. This mechanism is sensitive to neutrino emission spectra and flavor oscillations. In addition, we find two new primary mechanisms for neutrino-induced production of 9Be in He shells. The first mechanism produces 9Be via 7Li(n,γ8Li(n,γ9Li(e− ν¯ee9Be and relies on a low explosion energy for its survival. The second mechanism operates in progenitors of ∼ 8 M⊙, where 9Be can be produced directly via 7Li(3H, n09Be during the rapid expansion of the shocked Heshell material. The light nuclei 7Li and 3H involved in these mechanisms are produced by neutrino interactions with 4He. We discuss the implications of neutrino-induced nucleosynthesis in He shells for interpreting the elemental abundances in metal-poor stars.

  7. Corsika+Herwig Monte Carlo Simulation of Neutrino Induced Atmospheric Air Showers

    CERN Document Server

    Ambrosio, M; Selva, A D; Miele, G; Pastor, S; Pisanti, O; Rosa, L

    2003-01-01

    High-energy neutrino astronomy represents an open window both on astrophysical mechanisms of particle acceleration and on fundamental interactions. The possibility of detecting them in large earth-based apparatus, like AUGER, AMANDA, ANTARES, is quite challenging. In view of this, the capability of generating reliable simulations of air showers induced by neutrinos is mandatory in the analysis of experimental data. In this paper we describe preliminary results towards the development of a new version of the Monte Carlo CORSIKA, capable of handling neutrinos too as primary particles. In our approach the first interaction of the primary neutrino is simulated in CORSIKA with a call to the HERWIG event generator.

  8. Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS for measurements of atmospheric ammonia

    Directory of Open Access Journals (Sweden)

    R. A. Ellis

    2009-12-01

    Full Text Available A compact, fast-response Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS for measurements of ammonia has been evaluated under both laboratory and field conditions. Absorption of radiation from a pulsed, thermoelectrically cooled QC laser occurs at reduced pressure in a 0.5 L multiple pass absorption cell with an effective path length of 76 m. Detection is achieved using a thermoelectrically cooled Mercury Cadmium Telluride (HgCdTe infrared detector. A novel sampling inlet was used, consisting of a short, heated, quartz tube with a hydrophobic coating to minimize the adsorption of ammonia to surfaces. The inlet contains a critical orifice that reduces the pressure, a virtual impactor for separation of particles, and additional ports for delivering ammonia-free background air and calibration gas standards. This instrument has been found to have a detection limit of 0.23 ppb at 1 Hz. The sampling technique has been compared to the results of a conventional lead salt Tunable Diode Laser Absorption Spectrometer (TDLAS during a laboratory intercomparison. The effect of humidity and heat on the surface interaction of ammonia with sample tubing was investigated at mixing ratios ranging from 30–1000 ppb. Humidity was seen to worsen the ammonia time response and considerable improvement was observed when using a heated sampling line. A field intercomparison of the QC-TILDAS with a modified Thermo 42CTL chemiluminescence based analyzer was also performed at Environment Canada's Centre for Atmospheric Research Experiments (CARE in the rural town of Egbert, ON between May–July 2008. Background tests and calibrations using two different permeation tube sources and an ammonia gas cylinder were regularly carried out throughout the study. Results indicate a very good correlation with 1 min time resolution (R2=0.93 between the two instruments at the beginning of the study, when regular background

  9. Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS for measurements of atmospheric ammonia

    Directory of Open Access Journals (Sweden)

    R. A. Ellis

    2010-03-01

    Full Text Available A compact, fast-response Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS for measurements of ammonia (NH3 has been evaluated under both laboratory and field conditions. Absorption of radiation from a pulsed, thermoelectrically cooled QC laser occurs at reduced pressure in a 0.5 L multiple pass absorption cell with an effective path length of 76 m. Detection is achieved using a thermoelectrically-cooled Mercury Cadmium Telluride (HgCdTe infrared detector. A novel sampling inlet was used, consisting of a short, heated, quartz tube with a hydrophobic coating to minimize the adsorption of NH3 to surfaces. The inlet contains a critical orifice that reduces the pressure, a virtual impactor for separation of particles, and additional ports for delivering NH3-free background air and calibration gas standards. The level of noise in this instrument has been found to be 0.23 ppb at 1 Hz. The sampling technique has been compared to the results of a conventional lead salt Tunable Diode Laser Absorption Spectrometer (TDLAS during a laboratory intercomparison. The effect of humidity and heat on the surface interaction of NH3 with sample tubing was investigated at mixing ratios ranging from 30–1000 ppb. Humidity was seen to worsen the NH3 time response and considerable improvement was observed when using a heated sampling line. A field intercomparison of the QC-TILDAS with a modified Thermo 42CTL chemiluminescence-based analyzer was also performed at Environment Canada's Centre for Atmospheric Research Experiments (CARE in the rural town of Egbert, ON between May–July 2008. Background tests and calibrations using two different permeation tube sources and an NH3 gas cylinder were regularly carried out throughout the study. Results indicate a very good correlation at 1 min time resolution (R2 = 0.93 between the two instruments at the

  10. The Drawdown of Atmospheric CO2 by Hyperalkaline Spring Waters Emanating from Cascade Spring, Dun Mountain Ophiolite Belt, New Zealand

    Science.gov (United States)

    Menzies, C. D.; Teagle, D. A. H.; Cox, S.; Boyce, A.; Hathorne, E. C.

    2014-12-01

    The Permian Dun Mountain Ophiolite Belt (DMOB) is an important marker terrane in New Zealand geology and is displaced by ~460 km by right lateral offset on the Alpine Fault that forms the Pacific-Australian plate boundary through the South Island. The DMOB contains a number of ultramafic massifs of partially serpentinized mantle peridotite and notwithstanding that much of this terrane is extremely remote, peridotite-hosted hyperalkaline springs are rare. The Cascade Spring issues ~17°C waters at ~13 L/min from the western slope of a steep harzburgite ridge close to the DMOB's southern intersection with the Alpine Fault. High pH (11.1-11.6), Ca-OH type fluids with low concentrations of HCO3-, Mg and SiO2 continue to form a steep >500 m2 patch of hummocky calcium carbonate travertine. The spring fluids flow more than 50 m across the surface of a ~2 m-thick travertine blanket before it abruptly terminates. This gives the opportunity to study the evolution of the fluids and their precipitates as the waters flow down the travertine terrace. The spring waters have meteoric oxygen and hydrogen isotope ratios similar to local surface waters. 87Sr/86Sr of vent fluids are ~0.7042, higher than DMOB primary mantle values (0.7030-0.7035), indicating exchange with either hydrothermally altered ocean crustal rocks or mixing with fluids that have interacted with nearby tectonically juxtaposed metasediments. As waters flow over this steep terrace their chemistry changes; pH decreases from 11.5 to 9.7, and Ca concentrations decrease from 20 μg/g to 9.1 μg/g, corresponding to precipitation of 0.271 mmoles/L calcite and dissolution of 0.012 g/L CO2 across terrace. Considering spring flow rates this equates to precipitation of ~188 kg of calcite and drawdown of 83 kg of atmospheric CO2 from this vent per year. The fluid chemistry changes most in the first 17 m from the vent where pH decreases from 11.5 to 10.8 and Ca concentration almost halves from 20 to 10.9 μg/g, indicating

  11. Leading order analysis of neutrino induced dimuon events in the CHORUS experiment

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Oldeman, R G C; Güler, M; Kama, S; Köse, U; Serin-Zeyrek, M; Tolun, P; Catanesi, M G; Muciaccia, M T; Bülte, A; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Rozanov, A; Tsenov, R; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlioueva, I; Artamonov, A; Gorbunov, P; Khovansky, V; Shamanov, V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2008-01-01

    We present a leading order QCD analysis of a sample of neutrino induced charged-current events with two muons in the final state originating in the lead-scintillating fibre calorimeter of the CHORUS detector. The results are based on a sample of 8910 neutrino and 430 antineutrino induced opposite-sign dimuon events collected during the exposure of the detector to the CERN Wide Band Neutrino Beam between 1995 and 1998. The analysis yields a value of the charm quark mass of $m_c=(1.26+- 0.16+-0.09) GeV/c^2$ and a value of the ratio of the strange to non-strange sea in the nucleon of $\\kappa=0.33+-0.05+-0.05$, improving the results obtained in similar analyses by previous experiments.

  12. Leading order analysis of neutrino induced dimuon events in the CHORUS experiment

    International Nuclear Information System (INIS)

    We present a leading order QCD analysis of a sample of neutrino induced charged-current events with two muons in the final state originating in the lead-scintillating fibre calorimeter of the CHORUS detector. The results are based on a sample of 8910 neutrino and 430 antineutrino induced opposite-sign dimuon events collected during the exposure of the detector to the CERN Wide Band Neutrino Beam between 1995 and 1998. The analysis yields a value of the charm quark mass of mc=(1.26±0.16±0.09)GeV/c2 and a value of the ratio of the strange to non-strange sea in the nucleon of κ=0.33±0.05±0.05, improving the results obtained in similar analyses by previous experiments

  13. Radio pulses from electromagnetic, hadronic and neutrino-induced showers up to EeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muniz, Jaime, E-mail: jaime.alvarezmuniz@gmail.com [Depto. de Fisica de Particulas and Inst. Galego de Fisica de Altas Enerxias, Univ. de Santiago de Compostela, 15782 Santiago (Spain); Carvalho, Washington R.; Zas, Enrique [Depto. de Fisica de Particulas and Inst. Galego de Fisica de Altas Enerxias, Univ. de Santiago de Compostela, 15782 Santiago (Spain); Romero-Wolf, Andres [Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Tueros, Matias [Depto. de Fisica, Facultad de Ciencias Exactas, Univ. Nacional de La Plata (Argentina)

    2012-01-11

    The radio pulses emitted by electromagnetic, hadronic, and neutrino-induced showers are calculated for showers of energies in the EeV range and above in ice and in air. These are obtained in three-dimensional simulations of both the shower and the radio emission. An AIRES-based Monte Carlo code, ZHAIRES, has been developed for this purpose that allows us to predict the radio emission in both the time and frequency domains. The algorithms used, obtained from first principles, predict the radio emission due to all emission mechanisms, including the deflection of charged particles in the Earth's magnetic field. The code which has been extended to calculate in the Fresnel regime can reproduce the full complexity of the relevant shower phenomena.

  14. Neutrino-induced reactions and neutrino scattering with nuclei in low and high neutrino energy

    Science.gov (United States)

    Cheoun, Myung-Ki; Ha, Eunja; Yang, Ghil-Seok; Kim, K. S.; Kajino, T.

    2016-06-01

    We reviewed present status regarding theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation (DWBA) for quasielastic region are presented for MiniBooNE data. We also discussed that one step-process estimated by the DWBA is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data.

  15. Experimental and theoretical determination of the efficiency of a sub-atmospheric flowing high power cascaded arc hydrogen plasma source

    NARCIS (Netherlands)

    Vijvers, W. A. J.; D.C. Schram,; Shumack, A. E.; Cardozo, N. J. L.; Rapp, J.; van Rooij, G. J.

    2010-01-01

    Cascaded arc plasma sources with channel diameters between 4 and 8mm were experimentally investigated at discharge currents up to 900A and hydrogen (H-2) flow rates up to 10 slm. Pressure measurements at the arc exit showed that the heavy particle temperature in the discharge channel was about 0.8 e

  16. Atmospheric Deposition and Surface-Water Chemistry in Mount Rainier and North Cascades National Parks, U.S.A., Water Years 2000 and 2005-2006

    Science.gov (United States)

    Clow, David W.; Campbell, Donald H.

    2008-01-01

    High-elevation aquatic ecosystems in Mount Rainier and North Cascades National Parks are highly sensitive to atmospheric deposition of nitrogen and sulfur. Thin, rocky soils promote fast hydrologic flushing rates during snowmelt and rain events, limiting the ability of basins to neutralize acidity and assimilate nitrogen deposited from the atmosphere. Potential effects of nitrogen and sulfur deposition include episodic or chronic acidification of terrestrial and aquatic ecosystems. In addition, nitrogen deposition can cause eutrophication of water bodies and changes in species composition in lakes and streams. This report documents results of a study performed by the U.S. Geological Survey, in cooperation with the National Park Service, of the effects of atmospheric deposition of nitrogen and sulfur on surface-water chemistry in Mount Rainier and North Cascades National Parks. Inorganic nitrogen in wet deposition was highest in the vicinity of North Cascades National Park, perhaps due to emissions from human sources and activities in the Puget Sound area. Sulfur in wet deposition was highest near the Pacific coast, reflecting the influence of marine aerosols. Dry deposition generally accounted for less than 30 percent of wet plus dry inorganic nitrogen and sulfur deposition, but occult deposition (primarily fog) represents a potentially substantial unmeasured component of total deposition. Trend analyses indicate inorganic nitrogen in wet deposition was relatively stable during 1986-2005, but sulfur in wet deposition declined substantially during that time, particularly after 2001, when emissions controls were added to a large powerplant in western Washington. Surface-water sulfate concentrations at the study site nearest the powerplant showed a statistically significant decrease between 2000 and 2005-06, but there was no statistically significant change in alkalinity, indicating a delayed response in surface-water alkalinity. Seasonal patterns in surface

  17. A Measurement of Neutrino-Induced Charged-Current Neutral Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Robert H.; /Colorado U.

    2010-04-01

    This work presents the first comprehensive measurement of neutrino-induced charged-current neutral pion production (CC{pi}{sup 0}) off a nuclear target. The Mini Booster Neutrino Experiment (MiniBooNE) and Booster Neutrino Beam (BNB) are discussed in detail. MiniBooNE is a high-statistics ({approx} 1,000,000 interactions) low-energy (E{sub {nu}} {element_of} 0.5-2.0 GeV) neutrino experiment located at Fermilab. The method for selecting and reconstructing CC{pi}{sup 0} events is presented. The {pi}{sup 0} and {mu}{sup -} are fully reconstructed in the final state allowing for the measurement of, among other things, the neutrino energy. The total observable CC{pi}{sup 0} cross-section is presented as a function of neutrino energy, along with five differential cross-sections in terms of the final state kinematics and Q{sup 2}. The results are combined to yield a flux-averaged total cross-section of <{sigma}>{sub {Phi}} = (9.2 {+-} 0.3{sub stat.} {+-} 1.5{sub syst}.) x 10{sup -39} cm{sup 2}/CH{sub 2} at energy 965 MeV. These measurements will aid future neutrino experiments with the prediction of their neutrino interaction rates.

  18. A Measurement of Neutrino-Induced Charged-Current Neutral Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Robert H. [Univ. of Colorado, Boulder, CO (United States)

    2010-01-01

    This work presents the first comprehensive measurement of neutrino-induced charged-current neutral pion production (CCπ0) off a nuclear target. The Mini Booster Neutrino Experiment (MiniBooNE) and Booster Neutrino Beam (BNB) are discussed in detail. MiniBooNE is a high-statistics (~ 1, 000, 000 interactions) low-energy (Evϵ 2 0.5 - 2.0 GeV) neutrino experiment located at Fermilab. The method for selecting and reconstructing CCπ0 events is presented. The π0 and μ- are fully reconstructed in the final state allowing for the measurement of, among other things, the neutrino energy. The total observable CCπ0 cross-section is presented as a function of neutrino energy, along with five differential cross-sections in terms of the final state kinematics and Q2. The results are combined to yield a flux-averaged total cross-section of <σ>Φ = (9.2 ± 0.3stat. ± 1.5syst.) × 10-39 cm2/CH2 at energy 965 MeV. These measurements will aid future neutrino experiments with the prediction of their neutrino interaction rates.

  19. A Search for Neutrino Induced Coherent NC($\\pi^{0}$) Production in the MINOS Near Detector

    Energy Technology Data Exchange (ETDEWEB)

    Cherdack, Daniel David [Tufts Univ., Medford, MA (United States)

    2011-02-01

    The production of single, highly forward π0 mesons by NC coherent neutrino-nucleus interactions (νμ + N → νμ + N + π0) is a process which probes fundamental aspects of the weak interaction. This reaction may also pose as a limiting background for long baseline searches for νμ → νe oscillations if the neutrino mixing angle θ13 is very small. The high-statistics sample of neutrino interactions recorded by the MINOS Near Detector provides an opportunity to measure the cross section of this coherent reaction on a relatively large-A nucleus at an average Ev = 4.9 GeV. A major challenge for this measurement is the isolation of forward-going electromagnetic (EM) showers produced by the relatively rare coherent NC(π0) process amidst an abundant rate of incoherently produced EM showers. The backgrounds arise from single π0 dominated NC events and also from quasi-elastic-like CC scattering of electron neutrinos. In this Thesis the theory of coherent interactions is summarized, and previous measurements of the coherent NC(π0) cross section are reviewed. Then, methods for selecting a sample of coherent NC(π0) like events, extracting the coherent NC(π0) event rate from that sample, estimating the analysis uncertainties, and calculating a cross section, are presented. A signal for neutrino-induced NC(π0) production is observed in the relevant kinematic regime as an excess of events of three standard deviations above background. The reaction cross sections, averaged over an energy window of 2.5 ≤ Ev ≤ 9.0 GeV is determined to be (31.6±10.5) x 10-40 cm2/nucleus. The result is the first evidence obtained for neutrino-nucleus coherent NC(π0) scattering on iron, and is the first measurement on an average nuclear target above A = 30. The cross section measurement

  20. Neutrino induced pion production at MiniBooNE and K2K within the GiBUU model

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Tina; Buss, Oliver; Mosel, Ulrich [Institut fuer Theoretische Physik, Universitaet Giessen (Germany); Alvarez Ruso, Luis [Universidad de Murcia (Spain)

    2009-07-01

    The interest in neutrino nucleus reactions is driven by the discovery of neutrino oscillations where one now aims at a precise determination of neutrino oscillation parameters. This demands for an equally precise knowledge of the neutrino nucleus interaction process. Neutrino induced pion production is strongly influenced by nuclear effects. Their understanding is crucial since neutral current {pi}{sup 0} production is a major background in {nu}{sub e} appearance experiments, while charged current {pi}{sup +} production introduces a background to {nu}{sub {mu}} disappearance searches. We have investigated both, charged and neutral current neutrino induced pion production off nuclei, at MiniBooNE and K2K energies within the GiBUU transport model. Assuming impulse approximation, we treat the nucleus as a local Fermi gas of nucleons bound in a density and momentum potential. The outcome of the initial neutrino nucleon reaction undergoes complex hadronic final state interactions where in-medium spectral functions of the particles are taken into account. We present results for neutral current {pi}{sup 0} and charged current {pi}{sup +} production and compare to first MiniBooNE and K2K data.

  1. Neutrino induced weak pion production off the nucleon and coherent pion production in nuclei at low energies

    CERN Document Server

    Amaro, J E; Nieves, J; Valverde, M; Vicente-Vacas, M J

    2009-01-01

    We present a microscopic model for neutrino induced one-pion production off the nucleon and its implementation for the purpose of calculating coherent pion production in nuclei. We further criticize the use of the Rein--Sehgal model for coherent pion production by low energy neutrinos. In particular, we show how the approximations in that model give rise to a much flatter differential cross section in the $\\eta=E_\\pi(1-\\cos\\theta_\\pi)$ variable. We discuss the limitations intrinsic to any approach based on the partial conservation of the axial current hypothesis and the inability of such models to properly determine the angular distribution of the outgoing pion with respect to the direction of the incoming neutrino. We show the effects of those limitation for the case of the $\\frac{d\\sigma}{d\\eta}$ differential cross section.

  2. Learning Cascading

    CERN Document Server

    Covert, Michael

    2015-01-01

    This book is intended for software developers, system architects and analysts, big data project managers, and data scientists who wish to deploy big data solutions using the Cascading framework. You must have a basic understanding of the big data paradigm and should be familiar with Java development techniques.

  3. Atmospheric muons and neutrinos

    CERN Document Server

    Naumov, V A

    2002-01-01

    This paper is a mini-review of the atmospheric muon and neutrino flux calculations based upon a recent version of CORT code and up-to-date data on primary cosmic rays and hadronic interactions. A comparison of calculations with a representative set of atmospheric muon data for momenta below 1 TeV/c is presented. The overall agreement between the calculated muon fluxes and the data provides an evidence in favor of the validity of adopted description of hadronic interactions and shower development. In particular, this supports the low-energy atmospheric neutrino fluxes predicted with CORT which are essentially lower than those used in current analyses of the sub-GeV and multi-GeV neutrino induced events in underground neutrino detectors.

  4. Cascading Cosmology

    CERN Document Server

    Agarwal, Nishant; Khoury, Justin; Trodden, Mark

    2009-01-01

    We develop a fully covariant, well-posed 5D effective action for the 6D cascading gravity brane-world model, and use this to study cosmological solutions. We obtain this effective action through the 6D decoupling limit, in which an additional scalar degree mode, \\pi, called the brane-bending mode, determines the bulk-brane gravitational interaction. The 5D action obtained this way inherits from the sixth dimension an extra \\pi self-interaction kinetic term. We compute appropriate boundary terms, to supplement the 5D action, and hence derive fully covariant junction conditions and the 5D Einstein field equations. Using these, we derive the cosmological evolution induced on a 3-brane moving in a static bulk. We study the strong- and weak-coupling regimes analytically in this static ansatz, and perform a complete numerical analysis of our solution. Although the cascading model can generate an accelerating solution in which the \\pi field comes to dominate at late times, the presence of a critical singularity prev...

  5. Multi-elemental analysis of atmospheric pollutants and determination of particle size using the PIXE method, a cascade impactor and a filter unit constructed in Mexico

    International Nuclear Information System (INIS)

    This work presents: 1) The methodology and the experimental conditions of the PIXE technique so that it is used as a better option inside the analytical methods in aerosols studies, 2) The development, tests and applications of a cascade impactor of the Batelle type built to determine particle size to use it jointly with the mentioned technique in the determination of the elements concentration according to its size.By this way is fulfilled with the first goal of this extensive project. (Author)

  6. Isospin decomposition of the $\\gamma^{(*)} N \\to N^*$ transitions as input for constructing models of neutrino-induced reactions in the nucleon resonance region

    CERN Document Server

    Kamano, H; Lee, T -S H; Sato, T

    2016-01-01

    We present our recent efforts to determine the matrix elements associated with the transition between the nucleon and a nucleon resonance induced by the vector current, which are necessary ingredients for models of neutrino-induced reactions in the resonance region. This is accomplished by making the comprehensive analysis of the data for various meson photo- and electro-production reactions off the nucleon within a sophisticated coupled-channels framework, which is known as the ANL-Osaka dynamical coupled-channels model. We also give a brief introduction to our project for constructing a unified neutrino reaction model conducted at the J-PARC Branch of the KEK Theory Center.

  7. Atmospheric deposition, water-quality, and sediment data for selected lakes in Mount Rainer, North Cascades, and Olympic National Parks, Washington, 2008-10

    Science.gov (United States)

    Sheibley, Rich W.; Foreman, James R.; Moran, Patrick W.; Swarzenski, Peter W.

    2012-01-01

    To evaluate the potential effect from atmospheric deposition of nitrogen to high-elevation lakes, the U.S. Geological Survey partnered with the National Park Service to develop a "critical load" of nitrogen for sediment diatoms. A critical load is defined as the level of a given pollutant (in this case, nitrogen) at which detrimental effects to a target endpoint (sediment diatoms) result. Because sediment diatoms are considered one of the "first responders" to ecosystem changes from nitrogen, they are a sensitive indicator for nitrogen deposition changes in natural areas. This report presents atmospheric deposition, water quality, sediment geochronology, and sediment diatom data collected from July 2008 through August 2010 in support of this effort.

  8. Cascading costs: An economic nitrogen cycle

    Institute of Scientific and Technical Information of China (English)

    William; R.; Moomaw; Melissa; B.; L.; Birch

    2005-01-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrifled to N2. We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single tonne of nitrogen can cascade through the system, the costs also cascade.Therefore evaluating the benefits of mitigating a tonne of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that tonne would cascade.The analysis reveals that it is most cost effective to remove a tonne of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  9. Atmospheric neutrino flux and muon data

    CERN Document Server

    Fiorentini, G; Villante, F L

    2001-01-01

    We present a new one-dimensional calculation of low and intermediate energy atmospheric muon and neutrino fluxes, using up-to-date data on primary cosmic rays and hadronic interactions. The existing agreement between calculated muon fluxes and the data of the CAPRICE 94 muon experiment provides an evidence in favor of the validity of our description of hadronic interactions and shower development. This also supports our neutrino fluxes which are essentially lower than those used for the standard analyses of the sub-GeV and multi-GeV neutrino induced events in underground detectors.

  10. Atmospheric neutrino flux supported by recent muon experiments

    CERN Document Server

    Fiorentini, G; Villante, F L

    2001-01-01

    We present a new one-dimensional calculation of low and intermediate energy atmospheric muon and neutrino fluxes, using up-to-date data on primary cosmic rays and hadronic interactions. We study several sources of uncertainties relevant to our calculations. A comparison with the muon fluxes and charge ratios measured in several modern balloon-borne experiments suggests that the atmospheric neutrino flux is essentially lower than one used for the standard analyses of the sub-GeV and multi-GeV neutrino induced events in underground detectors.

  11. Measurement of the Atmospheric $\

    CERN Document Server

    Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose1, D; Boser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Velez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glusenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Gora, D; Grant, D; Gross, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klas, J; Klein, S R; Kohne, J -H; Kohnen, G; Kolanoski, H; Kopke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meszaros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Perez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Radel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schoneberg, S; Schonherr, L; Schonwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stoss, A; Strahler, E A; Strom, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge1, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M

    2012-01-01

    We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by neutral current interactions of atmospheric neutrinos of all flavors. Using data recorded during the first year of operation of IceCube's DeepCore low energy extension, a sample of 1029 events is observed in 281 days of data. The number of observed cascades is $N_{\\rm cascade} = 496 \\pm 66 (stat.) \\pm 88(syst.)$ and the rest of the sample consists of residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is determined in the energy range between approximately 80 GeV and 6 TeV and is consistent with models of atmospheric neutrinos.

  12. Cascade quantum teleportation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nan-run; GONG Li-hua; LIU Ye

    2006-01-01

    In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.

  13. Cascade Lake: A Novel

    OpenAIRE

    Pack, Camille Marian

    2009-01-01

    Twenty-two-year-old Macy Oman narrates the book in retrospect from Cascade, Oregon, where she is visiting her mother. Macy's father moved with her to Portland shortly after the accidental death of her brother, Nick, seven years before the narration begins. Macy's mother stayed behind in Cascade. Thematically the work centers on the emotional repercussions of these losses. Macy's, and her older lover Jason's, involvement with Nick's death is unknown to everyone. Her guilt and her mother's perc...

  14. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  15. Cascaded Poisson processes

    Science.gov (United States)

    Matsuo, Kuniaki; Saleh, Bahaa E. A.; Teich, Malvin Carl

    1982-12-01

    We investigate the counting statistics for stationary and nonstationary cascaded Poisson processes. A simple equation is obtained for the variance-to-mean ratio in the limit of long counting times. Explicit expressions for the forward-recurrence and inter-event-time probability density functions are also obtained. The results are expected to be of use in a number of areas of physics.

  16. CSS - Cascading Style Sheets

    OpenAIRE

    Martinelli, Massimo

    2009-01-01

    Curso "CSS - Cascading Style Sheets" sobre programación web con CSS para el "Máster doble competencia en ciencias informáticas y ciencias sociales" ("Master double competence in computer science and social science"). Proyecto TEMPUS JEP – 26235-2005

  17. Integrated Broadband Quantum Cascade Laser

    Science.gov (United States)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  18. A new cascadic multigrid

    Institute of Scientific and Technical Information of China (English)

    SHI; Zhongci

    2001-01-01

    [1]Bornemann, F., Deuflhard, P., The cascadic multigrid method for elliptic problems, Numer. Math., 996, 75: 35.[2]Bornemann, F., Deuflhard, P., The cascadic multigrid method, The Eighth International Conference on Domain Decomposition Methods for Partial Differential Equations (eds. Glowinski, R., Periaux, J., Shi, Z. et al.), New York: John Wiley and Sons, 997.[3]Bornemann, F., Krause, R., Classical and cascadic multigrid-methodogical comparison, Proceedings of the 9th International Conference on Domain Decomposition (eds. Bjorstad, P., Espedal, M., Keyes, D.), New York: John Wiley and Sons, 998.[4]Shaidurov, V., Some estimates of the rate of convergence for the cascadic conjugate gradient method, Comp. Math. Applic., 996, 3: 6.[5]Shi, Z., Xu, X., Cascadic multigrid method for the second order elliptic problem, East-West J. Numer. Math., 998, 6: 309.[6]Shi, Z., Xu, X., Cascadic multigrid for elliptic problems, East-West J. Numer. Math., 999, 7: 99.[7]Shi, Z., Xu, X., Cascadic multigrid method for the plate bending problem, East-West J. Numer. Math., 998, 6: 37.[8]Braess, D., Dahmen, W., A cascade multigrid algorithm for the Stokes equations, Number. Math., 999, 82: 79.[9]Shi, Z., Xu, X., Cascadic multigrid for parabolic problems, J. Comput. Math., 2000, 8: 450.[10]Ciarlet, P.,The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland, 978.[11]Zienkiewicz, O. C., The Finite Element Method, 3rd. ed., London: McGraw-Hill, 977.[12]Powell, M. J. D., Sabin, M. A., Piecewise quadratic approximations on triangles, ACM Trans. Mat. Software, 977, 3: 36.[13]Xu, J., The auxiliary space method and optimal multigrid precondition techniques for unstructured grids, Computing, 996, 56: 25.[14]Bank, R., Dupont, T., An optimal order process for solving finite element equations, Math. Comput., 980, 36: 35.[15]Brenner, S., Convergence of nonconforming multigrid methods without full elliptic regularity, Math

  19. Quantum Cascade Detectors

    OpenAIRE

    Giorgetta, Fabrizio R.; Baumann, Esther; Graf, Marcel; Yang, Quankui; Manz, Christian; Köhler, Klaus; Beere, Harvey E.; Ritchie, David A.; Linfield, Edmund; Davies, Alexander G.; Fedoryshyn, Yuriy; Jackel, Heinz; Fischer, Milan; Faist, Jérôme; Hofstetter, Daniel

    2010-01-01

    This paper gives an overview on the design, fabrication, and characterization of quantum cascade detectors. They are tailorable infrared photodetectors based on intersubband transitions in semiconductor quantum wells that do not require an external bias voltage due to their asymmetric conduction band profile. They thus profit from favorable noise behavior, reduced thermal load, and simpler readout circuits. This was demonstrated at wavelengths from the near infrared at 2 μm to THz radiation a...

  20. Information cascade on networks

    Science.gov (United States)

    Hisakado, Masato; Mori, Shintaro

    2016-05-01

    In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.

  1. Neutrino induced coherent pion production

    CERN Document Server

    Hernández, E; Valverde, M; Vicente-Vacas, M J

    2009-01-01

    We discuss different parameterizations of the $C_5^A(q^2)$ $N\\Delta$ axial form factor, fitted to the old Argonne bubble chamber data for pion production by neutrinos, and we use coherent pion production to test their low $q^2$ behavior. We find moderate effects that will be difficult to observe with the accuracy of present experiments. We also discuss the use of the Rein-Sehgal model for low energy coherent pion production. By comparison to a microscopic calculation, we show the weaknesses of some of the approximations in that model that lead to very large cross sections as well as to the wrong shapes for differential ones. Finally we show that models based on the partial conservation of the axial current hypothesis are not fully reliable for differential cross sections that depend on the angle formed by the pion and the incident neutrino.

  2. Multiphase cascaded lattice Boltzmann method

    OpenAIRE

    Lycett-Brown, D.; Luo, K. H.

    2014-01-01

    To improve the stability of the lattice Boltzmann method (LBM) at high Reynolds number the cascaded LBM has recently been introduced. As in the multiple relaxation time (MRT) method the cascaded LBM introduces additional relaxation times into the collision operator, but does so in a co-moving reference frame. This has been shown to significantly increase stability at low viscosity in the single phase case. Here the cascaded LBM is further developed to include multiphase flow. For this the for...

  3. Cascade hydrodewaxing process

    Energy Technology Data Exchange (ETDEWEB)

    Yen, J.H.

    1986-07-08

    A cascade catalytic hydrodewaxing process is described comprising: (a) passing a hydrocarbon feedstock containing waxy components selected from a group of normal paraffins and slightly branched chain paraffins over a hydroisomerization catalyst comprising a crystalline silicate zeolite having the structure of ZSM-12 in admixture with a crystalline silicate zeolite having the structure of ZSM-23, the admixture having hydrogenation/dehydrogenation activity to hydroisomerize the feedstock; and (b) passing at least a majority of the normally liquid hydrocarbon recovered from step (a) over a dewaxing catalyst comprising a crystalline silicate zeolite having a structure of ZSM-5, the zeolite of step (b) having hydrogenation/-dehydrogenation activity to dewax the recovered hydrocarbon.

  4. Energy Cascades in MHD

    Science.gov (United States)

    Alexakis, A.

    2009-04-01

    Most astrophysical and planetary systems e.g., solar convection and stellar winds, are in a turbulent state and coupled to magnetic fields. Understanding and quantifying the statistical properties of magneto-hydro-dynamic (MHD) turbulence is crucial to explain the involved physical processes. Although the phenomenological theory of hydro-dynamic (HD) turbulence has been verified up to small corrections, a similar statement cannot be made for MHD turbulence. Since the phenomenological description of Hydrodynamic turbulence by Kolmogorov in 1941 there have been many attempts to derive a similar description for turbulence in conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is going to be based inevitably on strong assumptions (typically borrowed from hydrodynamics) that do not however necessarily apply to the MHD case. In this talk I will discuss some of the properties and differences of the energy and helicity cascades in turbulent MHD and HD flows. The investigation is going to be based on the analysis of direct numerical simulations. The cascades in MHD turbulence appear to be a more non-local process (in scale space) than in Hydrodynamics. Some implications of these results to turbulent modeling will be discussed

  5. Cascade Error Projection Learning Algorithm

    Science.gov (United States)

    Duong, T. A.; Stubberud, A. R.; Daud, T.

    1995-01-01

    A detailed mathematical analysis is presented for a new learning algorithm termed cascade error projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters.

  6. Cascade Distillation System Development

    Science.gov (United States)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah

    2014-01-01

    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  7. Interband cascade lasers

    Science.gov (United States)

    Vurgaftman, I.; Weih, R.; Kamp, M.; Meyer, J. R.; Canedy, C. L.; Kim, C. S.; Kim, M.; Bewley, W. W.; Merritt, C. D.; Abell, J.; Höfling, S.

    2015-04-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron-hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3-6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm-2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT.

  8. Interband cascade lasers

    International Nuclear Information System (INIS)

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron–hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3–6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm−2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT. (topical review)

  9. Cascade Mountain Range in Oregon

    Science.gov (United States)

    Sherrod, David R.

    2016-01-01

    The Cascade mountain system extends from northern California to central British Columbia. In Oregon, it comprises the Cascade Range, which is 260 miles long and, at greatest breadth, 90 miles wide (fig. 1). Oregon’s Cascade Range covers roughly 17,000 square miles, or about 17 percent of the state, an area larger than each of the smallest nine of the fifty United States. The range is bounded on the east by U.S. Highways 97 and 197. On the west it reaches nearly to Interstate 5, forming the eastern margin of the Willamette Valley and, farther south, abutting the Coast Ranges. 

  10. Cascade redox flow battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  11. Analysis of the atmospheric neutrino data in terms of 3-neutrino oscillations

    CERN Document Server

    Maltoni, M

    2001-01-01

    A global analysis of atmospheric and reactor neutrino data is presented in terms of three-neutrino oscillations. We consider in our analysis both contained events and upward-going neutrino-induced muon events, including the previous data samples of Frejus, IMB, Nusex, and Kamioka experiments as well as the full 71 kton-yr (1144 days) Super-Kamiokande data set, the recent 5.1 kton-yr contained events of Soudan-2 and the results on upgoing muons from the MACRO detector. After presenting the results for the analysis of atmospheric data alone, we add to our data sample the reactor bound of the CHOOZ experiment, showing and important complementarity between the atmospheric and reactor limits which results in a stronger constraint on the allowed value of theta_13.

  12. Cascading Gravity is Ghost Free

    CERN Document Server

    de Rham, Claudia; Tolley, Andrew J

    2010-01-01

    We perform a full perturbative stability analysis of the 6D cascading gravity model in the presence of 3-brane tension. We demonstrate that for sufficiently large tension on the (flat) 3-brane, there are no ghosts at the perturbative level, consistent with results that had previously only been obtained in a specific 5D decoupling limit. These results establish the cascading gravity framework as a consistent infrared modification of gravity.

  13. Interband Cascade Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui Q. [Univ. of Oklahoma, Norman, OK (United States); Santos, Michael B. [Univ. of Oklahoma, Norman, OK (United States); Johnson, Matthew B. [Univ. of Oklahoma, Norman, OK (United States)

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  14. Communication Scheme via Cascade Chaotic Systems

    Institute of Scientific and Technical Information of China (English)

    HUA Chang-Chun; GUAN Xin-Ping

    2004-01-01

    @@ A new chaotic communication scheme is constructed. Different from the existing literature, cascade chaotic systems are employed. Two cascade modes are considered. First, we investigate the input to state cascade mode;cascade systems between different kinds of chaotic systems are considered. Then the parameter cascade case of chaotic system is studied. Under the different cases, the corresponding receivers are designed, which can succeed in recovering the former emitted signal. Simulations are performed to verify the validity of the proposed main results.

  15. A Cascading Failure Model by Quantifying Interactions

    OpenAIRE

    Qi, Junjian; Mei, Shengwei

    2013-01-01

    Cascading failures triggered by trivial initial events are encountered in many complex systems. It is the interaction and coupling between components of the system that causes cascading failures. We propose a simple model to simulate cascading failure by using the matrix that determines how components interact with each other. A careful comparison is made between the original cascades and the simulated cascades by the proposed model. It is seen that the model can capture general features of t...

  16. Economical cascadic multigrid method (ECMG)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, an economical cascadic multigrid method is proposed. Compared with the usual cascadic multigrid method developed by Bornemann and Deuflhard, the new one requires less iterations on each level, especially on the coarser grids. Many operations can be saved in the new cascadic multigrid algorithms. The main ingredient is the control of the iteration numbers on the each level to preserve the accuracy without over iterations. The theoretical justification is based on the observations that the error reduction rate of an iteration scheme in terms of the smoothing property is no longer accurate while the iteration number is big enough. A new formulae of the error reduction rate is employed in our new algorithm. Numerical experiments are reported to support our theory.

  17. Rescuing Ecosystems from Extinction Cascades

    Science.gov (United States)

    Sahasrabudhe, Sagar; Motter, Adilson

    2010-03-01

    Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.

  18. Finite-size scaling of two-point statistics and the turbulent energy cascade generators.

    Science.gov (United States)

    Cleve, Jochen; Dziekan, Thomas; Schmiegel, Jürgen; Barndorff-Nielsen, Ole E; Pearson, Bruce R; Sreenivasan, Katepalli R; Greiner, Martin

    2005-02-01

    Within the framework of random multiplicative energy cascade models of fully developed turbulence, finite-size-scaling expressions for two-point correlators and cumulants are derived, taking into account the observationally unavoidable conversion from an ultrametric to an Euclidean two-point distance. The comparison with two-point statistics of the surrogate energy dissipation, extracted from various wind tunnel and atmospheric boundary layer records, allows an accurate deduction of multiscaling exponents and cumulants, even at moderate Reynolds numbers for which simple power-law fits are not feasible. The extracted exponents serve as input for parametric estimates of the probabilistic cascade generator. Various cascade generators are evaluated.

  19. Characteristics for two kinds of cascading events

    Science.gov (United States)

    Zou, Sheng-Rong; Gu, Ai-Hua; Liu, Ai-Fen; Xu, Xiu-Lian; Wang, Jian; He, Da-Ren

    2011-04-01

    Avalanche or cascade failure is ubiquitous. We first classify the cascading phenomena into two categories: the cascading disasters which result in large-scale functional failures and the cascading events that do not lead to disasters. We elucidate that two important factors, the increasing amount of events and the acceleration of event frequency, can induce the crossover from the cascading phenomenon to the cascading disaster. Through a simplified sandpile model and a heuristic logistic map, we demonstrate that the dependence of the event number on the observation time behaves as a power-law and as an exponential for these two different cascading events, respectively. The analytic derivations are found to be consistent with several empirical observations. Our present findings contribute to the understanding of the transition between different cascading events, providing a basis for the further understanding of the transitions among more general critical events.

  20. Cascade Support Vector Machines with Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    Oliver Kramer

    2015-01-01

    Full Text Available Cascade support vector machines have been introduced as extension of classic support vector machines that allow a fast training on large data sets. In this work, we combine cascade support vector machines with dimensionality reduction based preprocessing. The cascade principle allows fast learning based on the division of the training set into subsets and the union of cascade learning results based on support vectors in each cascade level. The combination with dimensionality reduction as preprocessing results in a significant speedup, often without loss of classifier accuracies, while considering the high-dimensional pendants of the low-dimensional support vectors in each new cascade level. We analyze and compare various instantiations of dimensionality reduction preprocessing and cascade SVMs with principal component analysis, locally linear embedding, and isometric mapping. The experimental analysis on various artificial and real-world benchmark problems includes various cascade specific parameters like intermediate training set sizes and dimensionalities.

  1. Unsteady transonic flow in cascades

    Science.gov (United States)

    Surampudi, S. P.; Adamczyk, J. J.

    1984-01-01

    There is a need for methods to predict the unsteady air loads associated with flutter of turbomachinery blading at transonic speeds. The results of such an analysis in which the steady relative flow approaching a cascade of thin airfoils is assumed to be transonic, irrotational, and isentropic is presented. The blades in the cascade are allowed to undergo a small amplitude harmonic oscillation which generates a small unsteady flow superimposed on the existing steady flow. The blades are assumed to oscillate with a prescribed motion of constant amplitude and interblade phase angle. The equations of motion are obtained by linearizing about a uniform flow the inviscid nonheat conducting continuity and momentum equations. The resulting equations are solved by employing the Weiner Hopf technique. The solution yields the unsteady aerodynamic forces acting on the cascade at Mach number equal to 1. Making use of an unsteady transonic similarity law, these results are compared with the results obtained from linear unsteady subsonic and supersonic cascade theories. A parametric study is conducted to find the effects of reduced frequency, solidity, stagger angle, and position of pitching axis on the flutter.

  2. Applications of cascade multilevel inverters

    Institute of Scientific and Technical Information of China (English)

    彭方正; 钱照明

    2003-01-01

    Cascade multilevel inverters have been developed for electric utility applications. A cascade M-level inverter consists of (M-1)/2 H-bridges in which each bridge's dc voltage is supported by its own de ca-pacitor. The new inverter can : ( 1 ) generate almost sinusoidal waveform voltage while only switching one timeper fundamental cycle ; (2) dispense with multi-pulse inverters' transformers used in conventional utility in-terfaces and static var compensators; (3) enables direct parallel or series transformer-less connection to medium- and high-voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi-pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features,feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical,simulated, and experimental results demonstrated the superiority of the new inverters.

  3. Applications of cascade multilevel inverters

    Institute of Scientific and Technical Information of China (English)

    彭方正; 钱照明

    2003-01-01

    Cascade multilevel inverters have been developed for electric utility applications. A cascade M-level inverter consists of (M-1)/2 H-bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi-pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer-less connection to medium- and high-voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi-pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters.

  4. Azobenzene-functionalized cascade molecules

    DEFF Research Database (Denmark)

    Archut, A.; Vogtle, F.; De Cola, L.;

    1998-01-01

    Cascade molecules bearing up to 32 azobenzene groups in the periphery have been prepared from poly(propylene imine) dendrimers and N-hydroxysuccinimide esters. The dendritic azobenzene species show similar isomerization properties as the corresponding azobenzene monomers. The all-E azobenzene...

  5. Intranuclear cascade models lack dynamic flow

    OpenAIRE

    Molitoris, Joseph J.; Stöcker, Horst; Gustafsson, Hans-Ake; Cugnon, Joseph; L'Hote, Denis

    2006-01-01

    We study the recent claim that the intranuclear cascade model exhibits collective sidewards flow. 4000 intranuclear cascade simulations of the reaction Nb(400 MeV/nucleon)+Nb are performed employing bound and unbound versions of the Cugnon cascade. We show that instability of the target and projectile nuclei in the unbound cascade produces substantial spurious sidewards flow angles, for spectators as well as for participants. Once the nuclear binding is included, the peak of the flow angle di...

  6. Cascaded Bragg scattering in fiber optics.

    Science.gov (United States)

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  7. Cascade Chaotic System With Applications.

    Science.gov (United States)

    Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip

    2015-09-01

    Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level.

  8. Bankruptcy cascades in interbank markets.

    Directory of Open Access Journals (Sweden)

    Gabriele Tedeschi

    Full Text Available We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable.

  9. Bankruptcy Cascades in Interbank Markets

    Science.gov (United States)

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank’s liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable. PMID:23300760

  10. Optimally Training a Cascade Classifier

    CERN Document Server

    Shen, Chunhua; Hengel, Anton van den

    2010-01-01

    Cascade classifiers are widely used in real-time object detection. Different from conventional classifiers that are designed for a low overall classification error rate, a classifier in each node of the cascade is required to achieve an extremely high detection rate and moderate false positive rate. Although there are a few reported methods addressing this requirement in the context of object detection, there is no a principled feature selection method that explicitly takes into account this asymmetric node learning objective. We provide such an algorithm here. We show a special case of the biased minimax probability machine has the same formulation as the linear asymmetric classifier (LAC) of \\cite{wu2005linear}. We then design a new boosting algorithm that directly optimizes the cost function of LAC. The resulting totally-corrective boosting algorithm is implemented by the column generation technique in convex optimization. Experimental results on object detection verify the effectiveness of the proposed bo...

  11. Thermal cascaded lattice Boltzmann method

    CERN Document Server

    Fei, Linlin

    2016-01-01

    In this paper, a thermal cascaded lattice Boltzmann method (TCLBM) is developed in combination with the double-distribution-function (DDF) approach. A density distribution function relaxed by the cascaded scheme is employed to solve the flow field, and a total energy distribution function relaxed by the BGK scheme is used to solve temperature field, where two distribution functions are coupled naturally. The forcing terms are incorporated by means of central moments, which is consistent with the previous force scheme [Premnath \\emph{et al.}, Phys. Rev. E \\textbf{80}, 036702 (2009)] but the derivation is more intelligible and the evolution process is simpler. In the method, the viscous heat dissipation and compression work are taken into account, the Prandtl number and specific-heat ratio are adjustable, the external force is considered directly without the Boussinesq assumption, and the low-Mach number compressible flows can also be simulated. The forcing scheme is tested by simulating a steady Taylor-Green f...

  12. Lens Coupled Quantum Cascade Laser

    Science.gov (United States)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  13. Turbulence: does energy cascade exist?

    CERN Document Server

    Josserand, Christophe; Lehner, Thierry; Pomeau, Yves

    2016-01-01

    To answer the question whether a cascade of energy exists or not in turbulence, we propose a set of correlation functions able to test if there is an irreversible transfert of energy, step by step, from large to small structures. These tests are applied to real Eulerian data of a turbulent velocity flow, taken in the wind grid tunnel of Modane, and also to a prototype model equation for wave turbulence. First we demonstrate the irreversible character of the flow by using multi-time correlation function at a given point of space. Moreover the unexpected behavior of the test function leads us to connect irreversibility and finite time singularities (intermittency). Secondly we show that turbulent cascade exists, and is a dynamical process, by using a test function depending on time and frequency. The cascade shows up only in the inertial domain where the kinetic energy is transferred more rapidly (on average) from the wavenumber $k_{1}$ to $k_{2}$ than from $k_{1}$ to $k'_{2}$ larger than $k_{2}$.

  14. Check of the accuracy of the relativity theory with atmospheric muon neutrinos from the AMANDA data of the years 2000 to 2003

    International Nuclear Information System (INIS)

    Atmospheric neutrinos allow one to test the principles of the Theory of Relativity in particular Lorentz invariance and the equivalence principle. Small deviations from these principles could lead, according to some theories, to detectable neutrino oscillations. Such oscillation effects are analysed in this thesis, using the data collected by the AMANDA detector. The neutrino telescope AMANDA is located at the South Pole and embedded in the Antarctic ice shield at a depth between 1500 m and 2000 m. AMANDA detects muon neutrinos via the Cherenkov light of neutrino induced muons allowing the reconstruction of the original neutrino direction. From the data of the years 2000 to 2003, which contain about seven billion recorded events and which mainly consist of the background of atmospheric muons, a sample of 3401 neutrino induced events has been selected. No indication for alternative oscillation effects has been found. For maximal mixing angles, a lower limit for parameters which violate Lorentz invariance or the equivalence principle could be set to Δβ(2 vertical stroke φ vertical stroke Δγ)≤5.15.10-27. (orig)

  15. Energy cascades in the upper ocean

    Institute of Scientific and Technical Information of China (English)

    Ray Q.Lin; Scott Chubb

    2006-01-01

    Wave-wave interactions cause energy cascades. These are the most important processes in the upper ocean because they govern wave-growth and dissipation. Through indirect cascades, wave energy is transferred from higher frequencies to lower frequencies, leading to wave growth. In direct cascades, energy is transferred from lower frequencies to the higher frequencies, which causes waves to break, and dissipation of wave energy. However, the evolution and origin of energy cascade processes are still not fully understood. In particular, for example, results from a recent theory (Kalmykov, 1998) suggest that the class I wave-wave interactions (defined by situations involving 4-, 6-, 8-, etc, even numbers of resonantly interacting waves) cause indirect cascades, and Class II wave-wave interactions (involving, 5-, 7-, 9-, etc, .., odd numbers of waves) cause direct cascades. In contrast to this theory, our model results indicate the 4-wave interactions can cause significant transfer of wave energy through both direct and indirect cascades. In most situations, 4-wave interactions provide the major source of energy transfer for both direct cascades and indirect cascades, except when the wave steepness is larger than 0.28. Our model results agree well with wave measurements, obtained using field buoy data (for example, Lin and Lin, 2002). In particular, in these observations, asymmetrical wave-wave interactions were studied. They found that direct and indirect cascades both are mainly due to the 4-wave interactions when wave steepness is less than 0.3.

  16. A Comparison of Methods for Cascade Prediction

    CERN Document Server

    Guo, Ruocheng

    2016-01-01

    Information cascades exist in a wide variety of platforms on Internet. A very important real-world problem is to identify which information cascades can go viral. A system addressing this problem can be used in a variety of applications including public health, marketing and counter-terrorism. As a cascade can be considered as compound of the social network and the time series. However, in related literature where methods for solving the cascade prediction problem were proposed, the experimental settings were often limited to only a single metric for a specific problem formulation. Moreover, little attention was paid to the run time of those methods. In this paper, we first formulate the cascade prediction problem as both classification and regression. Then we compare three categories of cascade prediction methods: centrality based, feature based and point process based. We carry out the comparison through evaluation of the methods by both accuracy metrics and run time. The results show that feature based met...

  17. Lateral Modes in Quantum Cascade Lasers

    Directory of Open Access Journals (Sweden)

    Gregory C. Dente

    2016-03-01

    Full Text Available We will examine the waveguide mode losses in ridge-guided quantum cascade lasers. Our analysis illustrates how the low-loss mode for broad-ridge quantum cascade lasers (QCLs can be a higher-order lateral waveguide mode that maximizes the feedback from the sloped ridge-wall regions. The results are in excellent agreement with the near- and far-field data taken on broad-ridge-guided quantum cascade lasers processed with sloped ridge walls.

  18. Disaster Mythology and Availability Cascades

    Directory of Open Access Journals (Sweden)

    Lisa Grow Sun

    2013-04-01

    Full Text Available Sociological research conducted in the aftermath of natural disasters has uncovered a number of “disaster myths” – widely shared misconceptions about typical post-disaster human behavior. This paper discusses the possibility that perpetuation of disaster mythology reflects an “availability cascade,” defined in prior scholarship as a “self-reinforcing process of collective belief formation by which an expressed perception triggers a chain reaction that gives the perception increasing plausibility through its rising availability in public discourse.” (Kuran and Sunstein 1999. Framing the spread of disaster mythology as an availability cascade suggests that certain tools may be useful in halting the myths’ continued perpetuation. These tools include changing the legal and social incentives of so-called “availability entrepreneurs” – those principally responsible for beginning and perpetuating the cascade, as well as insulating decision-makers from political pressures generated by the availability cascade. This paper evaluates the potential effectiveness of these and other solutions for countering disaster mythology. Las investigaciones sociológicas realizadas tras los desastres naturales han hecho evidentes una serie de “mitos del desastre”, conceptos erróneos ampliamente compartidos sobre el comportamiento humano típico tras un desastre. Este artículo analiza la posibilidad de que la perpetuación de los mitos del desastre refleje una “cascada de disponibilidad”, definida en estudios anteriores como un “proceso de auto-refuerzo de la formación de una creencia colectiva, a través del que una percepción expresada produce una reacción en cadena que hace que la percepción sea cada vez más verosímil, a través de una mayor presencia en el discurso público” (Kuran y Sunstein 1999. Enmarcar la propagación de los mitos del desastre como una cascada de disponibilidad sugiere que ciertas herramientas pueden ser

  19. Spray formation: an inverse cascade

    CERN Document Server

    Ling, Yue; Tryggvason, Gretar; zaleski, Stephane

    2015-01-01

    We present a study of droplet formation in a gas-liquid mixing layer using direct numerical simulation. It is seen that two mechanisms compete to generate the droplets: fingering at the tip of the waves and hole formation in the thin liquid sheet. The three dimensional liquid structures are much shorter than the longitudinal wavelength of the instability at the first instant of their formation. As time evolves, the structures evolves to larger and larger scales, in a way similar to the inverse cascade of length scales in droplet impact and impact crown formation.

  20. WHISTLER TURBULENCE FORWARD CASCADE VERSUS INVERSE CASCADE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ouliang [Oracle Corporation, Redwood Shores, CA (United States); Gary, S. Peter [Space Science Institute, Boulder, CO (United States); Wang, Joseph, E-mail: ouliang@usc.edu, E-mail: pgary@lanl.gov, E-mail: josephjw@usc.edu [University of Southern California, Los Angeles, CA (United States)

    2015-02-20

    We present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β {sub e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.

  1. Single-Seed Cascades on Clustered Networks

    CERN Document Server

    McSweeney, John K

    2015-01-01

    We consider a dynamic network cascade process developed by Watts applied to a random networks with a specified amount of clustering, belonging to a class of random networks developed by Newman. We adapt existing tree-based methods to formulate an appropriate two-type branching process to describe the spread of a cascade started with a single active node, and obtain a fixed-point equation to implicitly express the extinction probability of such a cascade. In so doing, we also recover a special case of a formula of Hackett et al. giving conditions for certain extinction of the cascade.

  2. Unsteady transonic flow over cascade blades

    Science.gov (United States)

    Surampudi, S. P.; Adamczyk, J. J.

    1986-01-01

    An attempt is made to develop an efficient staggered cascade blade unsteady aerodynamics model for the neighborhood of March 1, representing the blade row by a rectilinear two-dimensional cascade of thin, flat plate airfoils. The equations of motion are derived on the basis of linearized transonic small perturbation theory, and an analytical solution is obtained by means of the Wiener-Hopf procedure. Making use of the transonic similarity law, the results obtained are compared with those of other linearized cascade analyses. A parametric study is conducted to find the effects of reduced frequency, stagger angle, solidity, and the location of the pitching axis on cascade stability.

  3. Contingency Analysis of Cascading Line Outage Events

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L Baldwin; Magdy S Tawfik; Miles McQueen

    2011-03-01

    As the US power systems continue to increase in size and complexity, including the growth of smart grids, larger blackouts due to cascading outages become more likely. Grid congestion is often associated with a cascading collapse leading to a major blackout. Such a collapse is characterized by a self-sustaining sequence of line outages followed by a topology breakup of the network. This paper addresses the implementation and testing of a process for N-k contingency analysis and sequential cascading outage simulation in order to identify potential cascading modes. A modeling approach described in this paper offers a unique capability to identify initiating events that may lead to cascading outages. It predicts the development of cascading events by identifying and visualizing potential cascading tiers. The proposed approach was implemented using a 328-bus simplified SERC power system network. The results of the study indicate that initiating events and possible cascading chains may be identified, ranked and visualized. This approach may be used to improve the reliability of a transmission grid and reduce its vulnerability to cascading outages.

  4. Time evolution of cascade decay

    CERN Document Server

    Boyanovsky, Daniel

    2014-01-01

    We study non-perturbatively the time evolution of cascade decay for generic fields $\\pi \\rightarrow \\phi_1\\phi_2\\rightarrow \\phi_2\\chi_1\\chi_2$ and obtain the time dependence of amplitudes and populations for the resonant and final states. We analyze in detail the different time scales and the manifestation of unitary time evolution in the dynamics of production and decay of resonant intermediate and final states. The probability of occupation (population) ``flows'' as a function of time from the initial to the final states. When the decay width of the parent particle $\\Gamma_\\pi$ is much larger than that of the intermediate resonant state $\\Gamma_{\\phi_1}$ there is a ``bottleneck'' in the flow, the population of resonant states builds up to a maximum at $t^* = \\ln[\\Gamma_\\pi/\\Gamma_{\\phi_1}]/(\\Gamma_\\pi-\\Gamma_{\\phi_1})$ nearly saturating unitarity and decays to the final state on the longer time scale $1/\\Gamma_{\\phi_1}$. As a consequence of the wide separation of time scales in this case the cascade decay ...

  5. Cascade decays of hollow ions

    International Nuclear Information System (INIS)

    A multiple-electron-emission process for atoms with one or more inner-shell vacancies is treated using the radiative- and Auger-electron-emission cascade model, in which inner-shell holes are assumed to decay by sequentially emitting radiations and/or Auger electrons. Such hollow ions are produced by synchrotron irradiation of atomic targets and in ion-surface interactions with multiple-electron transfers. The final charge-state distribution is determined by the Auger and radiative branching ratios at each stage of the decay sequence. At intermediate stages of cascade, hollow ions with more than one hole in different ionization stages are created. The Ne, Mg, and Fe14+ ions with the initial 1s, 2s, and 2p vacancies are considered in detail, and the core charge dependence of the maximum charge state is studied. The hollow Mg ion with double initial 1s holes is analyzed, and the result compared with that for the case of one 1s hole. The peak is shifted more than two units to a higher degree of ionization. The correlated shake-off and shake-up multiple-electron processes are not considered, but they are expected to cause further shifts

  6. Multifunctional Cascaded Metamaterials: Integrated Transmitarrays

    Science.gov (United States)

    Elsakka, Amr A.; Asadchy, Viktar S.; Faniayeu, Ihar A.; Tcvetkova, Svetlana N.; Tretyakov, Sergei A.

    2016-10-01

    Control of electromagnetic waves using engineered materials is very important in a wide range of applications, therefore there is always a continuous need for new and more efficient solutions. Known natural and artificial materials and surfaces provide a particular functionality in the frequency range they operate but cast a "shadow" and produce reflections at other frequencies. Here, we introduce a concept of multifunctional engineered materials that possess different predetermined functionalities at different frequencies. Such response can be accomplished by cascading metasurfaces (thin composite layers) that are designed to perform a single operation at the desired frequency and are transparent elsewhere. Previously, out-of-band transparent metasurfaces for control over reflection and absorption were proposed. In this paper, to complete the full set of functionalities for wave control, we synthesize transmitarrays that tailor transmission in a desired way, being "invisible" beyond the operational band. The designed transmitarrays for wavefront shaping and anomalous refraction are tested numerically and experimentally. To demonstrate our concept of multifunctional engineered materials, we have designed a cascade of three metasurfaces that performs three different functions for waves at different frequencies. Remarkably, applied to volumetric metamaterials, our concept can enable a single composite possessing desired multifunctional response.

  7. Physics of interband cascade lasers

    Science.gov (United States)

    Vurgaftman, I.; Bewley, W. W.; Merritt, C. D.; Canedy, C. L.; Kim, C. S.; Abell, J.; Meyer, J. R.; Kim, M.

    2012-01-01

    The interband cascade laser (ICL) is a unique device concept that combines the effective parallel connection of its multiple-quantum-well active regions, interband active transitions, and internal generation of electrons and holes at a semimetallic interface within each stage of the device. The internal generation of carriers becomes effective under bias, and the role of electrical injection is to replenish the carriers consumed by recombination processes. Major strides have been made toward fundamentally understanding the rich and intricate ICL physics, which has in turn led to dramatic improvements in the device performance. In this article, we review the physical principles of the ICL operation and designs of the active region, electron and hole injectors, and optical waveguide. The results for state-of- the-art ICLs spanning the 3-6 μm wavelength range are also briefly reviewed. The cw threshold input powers at room temperature are more than an order of magnitude lower than those for quantum cascade lasers throughout the mid-IR spectral range. This will lengthen battery lifetimes and greatly relax packaging and size/weight requirements for fielded sensing systems.

  8. Cascading rainfall uncertainty into flood inundation impact models

    Science.gov (United States)

    Souvignet, Maxime; Freer, Jim E.; de Almeida, Gustavo A. M.; Coxon, Gemma; Neal, Jeffrey C.; Champion, Adrian J.; Cloke, Hannah L.; Bates, Paul D.

    2014-05-01

    Observed and numerical weather prediction (NWP) simulated precipitation products typically show differences in their spatial and temporal distribution. These differences can considerably influence the ability to predict hydrological responses. For flood inundation impact studies, as in forecast situations, an atmospheric-hydrologic-hydraulic model chain is needed to quantify the extent of flood risk. Uncertainties cascaded through the model chain are seldom explored, and more importantly, how potential input uncertainties propagate through this cascade, and how best to approach this, is still poorly understood. This requires a combination of modelling capabilities, the non-linear transformation of rainfall to river flow using rainfall-runoff models, and finally the hydraulic flood wave propagation based on the runoff predictions. Improving the characterisation of uncertainty, and what is important to include, in each component is important for quantifying impacts and understanding flood risk for different return periods. In this paper, we propose to address this issue by i) exploring the effects of errors in rainfall on inundation predictive capacity within an uncertainty framework by testing inundation uncertainty against different comparable meteorological conditions (i.e. using different rainfall products) and ii) testing different techniques to cascade uncertainties (e.g. bootstrapping, PPU envelope) within the GLUE (generalised likelihood uncertainty estimation) framework. Our method cascades rainfall uncertainties into multiple rainfall-runoff model structures using the Framework for Understanding Structural Errors (FUSE). The resultant prediction uncertainties in upstream discharge provide uncertain boundary conditions that are cascaded into a simplified shallow water hydraulic model (LISFLOOD-FP). Rainfall data captured by three different measurement techniques - rain gauges, gridded radar data and numerical weather predictions (NWP) models are evaluated

  9. Nonlinearly Driven Second Harmonics of Alfven Cascades

    International Nuclear Information System (INIS)

    In recent experiments on Alcator C-Mod, measurements of density fluctuations with Phase Contrast Imaging through the plasma core show a second harmonic of the basic Alfven Cascade (AC) signal. The present work describes the perturbation at the second harmonic as a nonlinear sideband produced by the Alfven Cascade eigenmode via quadratic terms in the MHD equations. (author)

  10. Design concept of Hydro cascade control system

    International Nuclear Information System (INIS)

    In this paper a design concept of the comple hydro cascade scheme is presented with the design parameters of the main technical features. The cascade control system architecture is designed considering up-to-date communication and information technology. The control algorithm is based on Pond Level Control and Economic Load Allocation concepts.

  11. Fractal dimensionality of cascades of atomic displacements

    International Nuclear Information System (INIS)

    The cascades of opening displacements, formed during irradiation of solids are the most typical process of dissipation of the energy of incident particles and the generation of radiation defects. The aim of the present work is the examination of the energy dependence of the fractal dimensionality of the cascades of atomic displacements in the solid

  12. A NOTE ON VECTOR CASCADE ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Qiu-hui Chen; Jin-zhao Liu; Wen-sheng Zhang

    2002-01-01

    The focus of this paper is on the relationship between accuracy of multivariate refinable vector and vector cascade algorithm. We show that, if the vector cascade algorithm (1.5) with isotropic dilation converges to a vector-valued function with regularity, then the initial function must satisfy the Strang-Fix conditions.

  13. Cascade Harvest’ red raspberry

    Science.gov (United States)

    Cascade Harvest’ is a new floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). ‘Cascade Harvest’ produces a high yield of large, firm fruit suited to machine harves...

  14. Cascade Error Projection: An Efficient Hardware Learning Algorithm

    Science.gov (United States)

    Duong, T. A.

    1995-01-01

    A new learning algorithm termed cascade error projection (CEP) is presented. CEP is an adaption of a constructive architecture from cascade correlation and the dynamical stepsize of A/D conversion from the cascade back propagation algorithm.

  15. MAPK Cascades in Guard Cell Signal Transduction

    Science.gov (United States)

    Lee, Yuree; Kim, Yun Ju; Kim, Myung-Hee; Kwak, June M.

    2016-01-01

    Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions. PMID:26904052

  16. MAPK cascades in guard cell signal transduction

    Directory of Open Access Journals (Sweden)

    Yuree eLee

    2016-02-01

    Full Text Available Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.

  17. Stochastic annealing simulation of cascades in metals

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L.

    1996-04-01

    The stochastic annealing simulation code ALSOME is used to investigate quantitatively the differential production of mobile vacancy and SIA defects as a function of temperature for isolated 25 KeV cascades in copper generated by MD simulations. The ALSOME code and cascade annealing simulations are described. The annealing simulations indicate that the above Stage V, where the cascade vacancy clusters are unstable,m nearly 80% of the post-quench vacancies escape the cascade volume, while about half of the post-quench SIAs remain in clusters. The results are sensitive to the relative fractions of SIAs that occur in small, highly mobile clusters and large stable clusters, respectively, which may be dependent on the cascade energy.

  18. Multiscales and cascade in isotropic turbulence

    CERN Document Server

    Ran, Zheng

    2010-01-01

    The central problem of fully developed turbulence is the energy cascading process. It has revisited all attempts at a full physical understanding or mathematical formulation. The main reason for this failure are related to the large hierarchy of scales involved, the highly nonlinear character inherent in the Navier-Stokes equations, and the spatial intermittency of the dynamically active regions. Richardson has described the interplay between large and small scales and the phenomena so described are known as the Richardson cascade. This local interplay also forms the basis of a theory by Kolmogorov. In this letter, we use the explicit map method to analyze the nonlinear dynamical behavior for cascade in isotropic turbulence. This deductive scale analysis is shown to provide the first visual evidence of the celebrated Richardson cascade, and reveals in particular its multiscale character. The results also indicate that the energy cascading process has remarkable similarities with the deterministic construction...

  19. Network reconstruction from infection cascades

    CERN Document Server

    Braunstein, Alfredo

    2016-01-01

    Reconstructing propagation networks from observations is a fundamental inverse problem, and it's crucial to understand and control dynamics in complex systems. Here we show that it is possible to reconstruct the whole structure of an interaction network and to simultaneously infer the complete time course of activation spreading, relying just on single snapshots of a small number of activity cascades. The method, that we called Inverse Dynamics Network Reconstruction (IDNR), is shown to work successfully on several synthetic and real networks, inferring the networks and the sources of infection based on sparse observations, including single snapshots. IDNR is built on a Belief Propagation approximation, that has an impressive performance in a wide variety of topological structures. The method can be applied in absence of complete time-series data by providing a detailed modeling of the posterior distribution of trajectories conditioned to the observations. Furthermore, we show by experiments that the informat...

  20. Availability Cascades & the Sharing Economy

    DEFF Research Database (Denmark)

    Netter, Sarah

    2014-01-01

    In search of a new concept that will provide answers to as to how modern societies should not only make sense but also resolve the social and environmental problems linked with our modes of production and consumption, collaborative consumption and the sharing economy are increasingly attracting...... attention. This conceptual paper attempts to explain the emergent focus on the sharing economy and associated business and consumption models by applying cascade theory. Risks associated with this behavior will be especially examined with regard to the sustainability claim of collaborative consumption....... With academics, practitioners, and civil society alike having a shared history in being rather fast in accepting new concepts that will not only provide business opportunities but also a good conscience, this study proposes a critical study of the implications of collaborative consumption, before engaging...

  1. Cascades in interdependent flow networks

    Science.gov (United States)

    Scala, Antonio; De Sanctis Lucentini, Pier Giorgio; Caldarelli, Guido; D'Agostino, Gregorio

    2016-06-01

    In this manuscript, we investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems' failure.

  2. Cascades in interdependent flow networks

    CERN Document Server

    Scala, Antonio; Caldarelli, Guido; D'Agostino, Gregorio

    2015-01-01

    We investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems' failure.

  3. Multifunctional Cascaded Metamaterials: Integrated Transmitarrays

    CERN Document Server

    Elsakka, Amr A; Faniayeu, Ihar A; Tcvetkova, Svetlana N; Tretyakov, Sergei A

    2016-01-01

    Control of electromagnetic waves using engineered materials is very important in a wide range of applications, therefore there is always a continuous need for new and more efficient solutions. Known natural and artificial materials and surfaces provide a particular functionality in the frequency range they operate but cast a "shadow" and produce reflections at other frequencies. Here, we introduce a concept of multifunctional engineered materials that possess different predetermined functionalities at different frequencies. Such response can be accomplished by cascading metasurfaces (thin composite layers) that are designed to perform a single operation at the desired frequency and are transparent elsewhere. Previously, out-of-band transparent metasurfaces for control over reflection and absorption were proposed. In this paper, to complete the full set of functionalities for wave control, we synthesize transmitarrays that tailor transmission in a desired way, being "invisible" beyond the operational band. The...

  4. Neutrino induced events in the MINOS detectors

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, Reuben Phillip [Univ. of Oxford (United Kingdom). Keble College

    2008-01-01

    The MINOS experiment is designed to study neutrino oscillations. It uses an accelerator generated beam of neutrinos and two detectors, the smaller at a distance of 1km and the larger at 735 km. By comparing the spectrum and flavour composition of the beam at the two detectors precise determinations of the oscillation parameters are possible. This thesis concentrates on the analysis of data from the larger Far Detector. By studying the spectrum of neutral current events it is possible to look for evidence of non-interacting 'sterile' neutrinos. The thesis describes how events are selected for this analysis, and a method for discriminating between charged current and neutral current events. The systematic uncertainties resulting from these cuts are evaluated. Several techniques for using Near Detector data to eliminate systematic uncertainties in the predicted Far Detector spectrum are compared. An oscillation analysis, based on the first year of MINOS data, uses the selected events to make a measurement of f{sub s}, the fraction of unseen neutrinos that are sterile. The measured value is fs = 0.07+0.32 at 68%C.L., and is consistent with the standard three-neutrino picture, which has no sterile neutrino.

  5. Neutrino induced showering from the Earth

    CERN Document Server

    Fargion, D

    2003-01-01

    Ultra High Energy, UHE, Neutrino Astronomy should be soon tested looking toward the Earth. At present High Energy Neutrino Astronomy is searched by AMANDA, ANTARES underground detectors looking for its consequent unique muons secondary track. We suggest a higher energy Tau Neutrino Astronomy based on Horizontal and Upward Tau Air-Showers escaping from the Earth. These Tau air-showers greatly amplifies the single tau track by an abundant secondary tail (billions of electron pairs, gamma and tens of millions muon bundles) spread in huge areas (kilometer size) easily observable (even partially) from high mountains, balloon or satellite array detectors. Possible early evidence of such a New Neutrino UPTAUs or HORTAUs (Upward or Horizontal Tau Air-Showers) Astronomy may be already found in rare BATSE gamma records of brief up-going gamma showers named Terrestrial Gamma Flashes (TGF). The TGF features, energy and arrival clustering are well tuned to upward tau air-showers. Future confirmation of the Neutrino Tau As...

  6. High-Speed Operation of Interband Cascade Lasers

    Science.gov (United States)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  7. Simultaneously Photoacoustic Measurement of Carbon Dioxide and Nitrous Oxide Using a Quantum Cascade Laser

    Science.gov (United States)

    Liu, Q.; Cao, Zh.; Shao, Sh.; Zhu, W.; Huang, H.; Gao, X.; Li, X.

    2016-09-01

    In this paper a photoacoustic senor for carbon dioxide and nitrous oxide detection is described which uses a quantum cascade laser. The sensor relies on a 4.43 μm continuous-wave room temperature quantum-cascade laser source and a homemade photoacoustic cell based on a cylindrical acoustic resonator. Primary laboratory tests have been performed for estimation of the achievable detection limits and possible applications for in situ and real time atmosphere measurements. It is demonstrated that the minimum detectable concentration of 13CO2 and N2O under laboratory conditions is 8 ppbv and 0.45 ppbv, respectively.

  8. Check of the accuracy of the relativity theory with atmospheric muon neutrinos from the AMANDA data of the years 2000 to 2003; Ueberpruefung der Genauigkeit der Relativitaetstheorie mit atmosphaerischen Myonneutrinos aus den AMANDA-Daten der Jahre 2000 bis 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.C.

    2006-11-08

    Atmospheric neutrinos allow one to test the principles of the Theory of Relativity in particular Lorentz invariance and the equivalence principle. Small deviations from these principles could lead, according to some theories, to detectable neutrino oscillations. Such oscillation effects are analysed in this thesis, using the data collected by the AMANDA detector. The neutrino telescope AMANDA is located at the South Pole and embedded in the Antarctic ice shield at a depth between 1500 m and 2000 m. AMANDA detects muon neutrinos via the Cherenkov light of neutrino induced muons allowing the reconstruction of the original neutrino direction. From the data of the years 2000 to 2003, which contain about seven billion recorded events and which mainly consist of the background of atmospheric muons, a sample of 3401 neutrino induced events has been selected. No indication for alternative oscillation effects has been found. For maximal mixing angles, a lower limit for parameters which violate Lorentz invariance or the equivalence principle could be set to {delta}{beta}(2 vertical stroke {phi} vertical stroke {delta}{gamma}){<=}5.15.10{sup -27}. (orig)

  9. Genetic algorithm based separation cascade optimization

    International Nuclear Information System (INIS)

    The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)

  10. Epidemic and Cascading Survivability of Complex Networks

    DEFF Research Database (Denmark)

    Manzano, Marc; Calle, Eusebi; Ripoll, Jordi;

    2014-01-01

    networks. For this reason, in this paper, we propose two measures to evaluate the vulnerability of complex networks in two different dynamic multiple failure scenarios: epidemic-like and cascading failures. Firstly, we present epidemic survivability ( ES ), a new network measure that describes...... the vulnerability of each node of a network under a specific epidemic intensity. Secondly, we propose cascading survivability ( CS ), which characterizes how potentially injurious a node is according to a cascading failure scenario. Then, we show that by using the distribution of values obtained from ES and CS...

  11. Multi-elemental analysis of atmospheric pollutants and determination of particle size using the PIXE method, a cascade impactor and a filter unit constructed in Mexico; Analisis multielemental de contaminantes atmosfericos y determinacion de tamano de particula utilizando el metodo PIXE, un impactor de cascada y una unidad de filtro construidos en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Aldape U, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1989-01-15

    This work presents: 1) The methodology and the experimental conditions of the PIXE technique so that it is used as a better option inside the analytical methods in aerosols studies, 2) The development, tests and applications of a cascade impactor of the Batelle type built to determine particle size to use it jointly with the mentioned technique in the determination of the elements concentration according to its size.By this way is fulfilled with the first goal of this extensive project. (Author)

  12. Cascading blockages in channel bundles.

    Science.gov (United States)

    Barré, C; Talbot, J

    2015-11-01

    Flow in channel networks may involve a redistribution of flux following the blockage or failure of an individual link. Here we consider a simplified model consisting of N(c) parallel channels conveying a particulate flux. Particles enter these channels according to a homogeneous Poisson process and an individual channel blocks if more than N particles are simultaneously present. The behavior of the composite system depends strongly on how the flux of entering particles is redistributed following a blockage. We consider two cases. In the first, the intensity on each open channel remains constant while in the second the total intensity is evenly redistributed over the open channels. We obtain exact results for arbitrary N(c) and N for a system of independent channels and for arbitrary N(c) and N=1 for coupled channels. For N>1 we present approximate analytical as well as numerical results. Independent channels block at a decreasing rate due to a simple combinatorial effect, while for coupled channels the interval between successive blockages remains constant for N=1 but decreases for N>1. This accelerating cascade is due to the nonlinear dependence of the mean blocking time of a single channel on the entering particle flux that more than compensates for the decrease in the number of active channels.

  13. Quantum Cascade Laser Frequency Combs

    CERN Document Server

    Faist, Jérôme; Scalari, Giacomo; Rösch, Markus; Bonzon, Christopher; Hugi, Andreas; Beck, Mattias

    2015-01-01

    It was recently demonstrated that broadband quantum cascade lasers can operate as frequency combs. As such, they operate under direct electrical pumping at both mid-infrared and THz frequencies, making them very attractive for dual-comb spectroscopy. Performance levels are continuously improving, with average powers over 100 mW and frequency coverage of 100 cm$^{-1}$ in the mid-infrared. In the THz range, 10 mW of average power and 600 GHz of frequency coverage are reported. As a result of the very short upper state lifetime of the gain medium, the mode proliferation in these sources arises from four wave mixing rather than saturable absorption. As a result, their optical output is characterized by the tendency of small intensity modulation of the output power, and the relative phases of the modes to be similar to the ones of a frequency modulated laser. Recent results include the proof of comb operation down to a metrological level, the observation of a Schawlow-Townes broadened linewidth, as well as the fir...

  14. Quantum Cascade Laser Frequency Combs

    Science.gov (United States)

    Faist, Jérôme; Villares, Gustavo; Scalari, Giacomo; Rösch, Markus; Bonzon, Christopher; Hugi, Andreas; Beck, Mattias

    2016-06-01

    It was recently demonstrated that broadband quantum cascade lasers can operate as frequency combs. As such, they operate under direct electrical pumping at both mid-infrared and THz frequencies, making them very attractive for dual-comb spectroscopy. Performance levels are continuously improving, with average powers over 100mW and frequency coverage of 100 cm-1 in the mid-infrared region. In the THz range, 10mW of average power and 600 GHz of frequency coverage are reported. As a result of the very short upper state lifetime of the gain medium, the mode proliferation in these sources arises from four-wave mixing rather than saturable absorption. As a result, their optical output is characterized by the tendency of small intensity modulation of the output power, and the relative phases of the modes to be similar to the ones of a frequency modulated laser. Recent results include the proof of comb operation down to a metrological level, the observation of a Schawlow-Townes broadened linewidth, as well as the first dual-comb spectroscopy measurements. The capability of the structure to integrate monothically nonlinear optical elements as well as to operate as a detector shows great promise for future chip integration of dual-comb systems.

  15. Aspects of the QCD cascade

    International Nuclear Information System (INIS)

    A model is proposed for the production of transverse jets from diffractively excited protons. We propose that transverse jets can be obtained from gluonic bremsstrahlung in a way similar to the emission in DIS. Qualitative agreement is obtained between the model and the uncorrected data published by the UA8 collaboration. Perturbative QCD in the MLLA approximation is applied to multiple jet production in e+e--annihilation. We propose modified evolution equations for deriving the jet cross sections, defined in the 'kt' or 'Durham' algorithm. The mean number of jets as a function of the jet resolution is studied, and analytical predictions are compared to the results of MC simulations. We also study a set of differential-difference equations for multiplicity distributions in e+e--annihilations, supplemented with appropriate boundary conditions. These equations take into account nonsingular terms in the GLAP splitting functions as well as kinematical constraints related to recoil effects. The presence of retarded terms imply that the cascade develops more slowly and reduces the fluctuations. The solutions agree well with MC simulations and experimental data. (authors)

  16. Bursting behaviours in cascaded stimulated Brillouin scattering

    Institute of Scientific and Technical Information of China (English)

    Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang

    2012-01-01

    Stimulated Brillouin scattering is studied by numerically solving the Vlasov-Maxwell system.A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma.It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light,as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction.The bursting time in the reflectivity is found to be less than half the ion acoustic period.The ion temperature can affect the stimulated Brillouin scattering cascade,which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures.For stimulated Brillouin scattering saturation,higher-harmonic generation and wave-wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter.In addition,stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light.

  17. Model for cascading failures in congested Internet

    Institute of Scientific and Technical Information of China (English)

    Jian WANG; Yan-heng LIU; Jian-qi ZHU; Yu JIAO

    2008-01-01

    Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we present a function that represents the extent of congestion on a given node. This approach is different from existing functions based on betweenness centrality. By introducing the concept of 'delay time', we designate an intergradation between permanent removal and nouremoval. We also construct an evaluation function of network efficiency, based on congestion, which measures the damage caused by cascading failures. Finally, we investigate the effects of network structure and size, delay time, processing ability and packet generation speed on congestion propagation. Also, we uncover the relationship between the cascade dynamics and some properties of the network such as structure and size.

  18. Cascade Error Projection: A New Learning Algorithm

    Science.gov (United States)

    Duong, T. A.; Stubberud, A. R.; Daud, T.; Thakoor, A. P.

    1995-01-01

    A new neural network architecture and a hardware implementable learning algorithm is proposed. The algorithm, called cascade error projection (CEP), handles lack of precision and circuit noise better than existing algorithms.

  19. Chemoenzymatic cascade processes for sustainable organic synthesis

    NARCIS (Netherlands)

    Simons, C.

    2007-01-01

    Chemical production processes often require wasteful and expensive isolation as well as purification of intermediates. Catalytic cascades offer a unique opportunity to eliminate these inefficient and polluting steps, in particular when carefully orchestrated, involving enzymes and chemocatalysts. Th

  20. Network effects, cascades and CCP interoperability

    Science.gov (United States)

    Feng, Xiaobing; Hu, Haibo; Pritsker, Matthew

    2014-03-01

    To control counterparty risk, financial regulations such as the Dodd Frank Act are increasingly requiring standardized derivatives trades to be cleared by central counterparties (CCPs). It is anticipated that in the near-term future, CCPs across the world will be linked through interoperability agreements that facilitate risk-sharing but also serve as a conduit for transmitting shocks. This paper theoretically studies a network with CCPs that are linked through interoperability arrangements, and studies the properties of the network that contribute to cascading failures. The magnitude of the cascading is theoretically related to the strength of network linkages, the size of the network, the logistic mapping coefficient, a stochastic effect and CCP's defense lines. Simulations indicate that larger network effects increase systemic risk from cascading failures. The size of the network N raises the threshold value of shock sizes that are required to generate cascades. Hence, the larger the network, the more robust it will be.

  1. A quantum cascade phonon-polariton laser

    CERN Document Server

    Ohtani, Keita; Bosco, Lorenzo; Beck, Mattias; Faist, Jérôme

    2016-01-01

    We report a laser that coherently emits phonon-polaritons, quasi-particles arising from the coupling between photons and transverse optical phonons. The gain is provided by an intersubband transition in a quantum cascade structure. The polaritons at h$\

  2. Compression limits in cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;

    2008-01-01

    Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....

  3. Innovation cascades: artefacts, organization and attributions.

    Science.gov (United States)

    Lane, David A

    2016-03-19

    Innovation cascades inextricably link the introduction of new artefacts, transformations in social organization, and the emergence of new functionalities and new needs. This paper describes a positive feedback dynamic, exaptive bootstrapping, through which these cascades proceed, and the characteristics of the relationships in which the new attributions that drive this dynamic are generated. It concludes by arguing that the exaptive bootstrapping dynamic is the principal driver of our current Innovation Society.

  4. Simulation of cascades in W-He

    OpenAIRE

    Juslin, Niklas; Jansson, Ville Bernt Christian; Nordlund, Kai

    2010-01-01

    Abstract He will be present in fusion reactor wall materials, and its effect on radiation damage must be taken into account. The effect of helium on displacement cascades in tungsten has been studied using molecular dynamics simulations. Three different W--W potentials were compared and found to differ especially for the clustering of the vacancies formed in the cascades. While there are differences in the amounts of damage depending on the potential, the overa...

  5. Cascade Textures and SUSY SO(10) GUT

    CERN Document Server

    Adulpravitchai, Adisorn; Takahashi, Ryo

    2010-01-01

    We give texture analyses of cascade hierarchical mass matrices in supersymmetric SO(10) grand unified theory. We embed cascade mass textures of the standard model fermion with right-handed neutrinos into the theory, which gives relations among the mass matrices of the fermions. The related phenomenologies, such as the lepton flavor violating processes and leptogenesis, are also investigated in addition to the PMNS mixing angles.

  6. Emergence of event cascades in inhomogeneous networks

    Science.gov (United States)

    Onaga, Tomokatsu; Shinomoto, Shigeru

    2016-09-01

    There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network.

  7. Forward and Inverse Cascades in EMHD Turbulence

    Science.gov (United States)

    Cho, Jungyeon

    2016-05-01

    Electron magnetohydrodynamics (EMHD) provides a simple fluid-like description of physics below the proton gyro-scale in collisionless plasmas, such as the solar wind. In this paper, we discuss forward and inverse cascades in EMHD turbulence in the presence of a strong mean magnetic field. Similar to Alfvén waves, EMHD waves, or EMHD perturbations, propagate along magnetic field lines. Therefore, two types of EMHD waves can exist: waves moving parallel to and waves moving anti-parallel to the the magnetic field lines. For energy cascade in EMHD turbulence, the relative amplitudes of opposite-traveling waves are important. When the amplitudes are balanced, we will see fully-developed forward cascade with a k -7/3 energy spectrum and a scale-dependent anisotropy. On the other hand, when the amplitudes are imbalanced, we will see inverse cascade, as well as (presumably not fully developed) forward cascade. The underlying physics for the inverse cascade is magnetic helicity conservation.

  8. Emergence of event cascades in inhomogeneous networks.

    Science.gov (United States)

    Onaga, Tomokatsu; Shinomoto, Shigeru

    2016-01-01

    There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network. PMID:27625183

  9. On the importance of cascading moisture recycling in South America

    Directory of Open Access Journals (Sweden)

    D. C. Zemp

    2014-06-01

    Full Text Available Continental moisture recycling is a crucial process of the South American climate system. Evapotranspiration from the Amazon river basin contributes to precipitation regionally and in the La Plata river basin. Here we present an in-depth analysis of South American moisture recycling. We quantify the importance of "cascading moisture recycling", which describes the exchange of moisture between the vegetation and the atmosphere through precipitation and re-evaporation cycles on its way between two locations on the continent. We use the Water Accounting Model 2-layers (WAM-2layers forced by precipitation from TRMM and evapotranspiration from MODIS for the period 2001 until 2010 to construct moisture recycling networks. These networks describe the direction and amount of moisture transported from its source (evapotranspiration to its destination (precipitation in South America. Model-based calculations of continental and regional recycling ratios in the Amazon basin compare well with other existing studies using different datasets and methodologies. Our results show that cascading moisture recycling contributes about 10% to the total precipitation over South America and 17% over the La Plata basin. Considering cascading moisture recycling increases the total dependency of the La Plata basin on moisture from the Amazon basin by about 25% from 23 to 29% during the wet season. Using tools from complex network analysis, we reveal the importance of the south-western part of the Amazon basin as a key intermediary region for continental moisture transport in South America during the wet season. Our results suggest that land use change in this region might have a stronger impact on downwind rainfed agriculture and ecosystem stability than previously thought.

  10. Quantum Cascade Photonic Crystal lasers

    Science.gov (United States)

    Capasso, Federico

    2004-03-01

    QC lasers have emerged in recent years as the dominant laser technology for the mid-to far infrared spectrum in light of their room temperature operation, their tunability, ultrahigh speed operation and broad range of applications to chemical sensing, spectroscopy etc. (Ref. 1-3). After briefly reviewing the latter, I will describe a new class of mid-infrared QC lasers, Quantum Cascade Photonic Crystal Surface Emitting Lasers (QCPCSELS), that combine electronic and photonic band structure engineering to achieve vertical emission from the surface (Ref. 4). Devices operating on bandedge mode and on defect modes will be discussed. Exciting potential uses of these new devices exist in nonlinear optics, microfluidics as well as novel sensors. Finally a bird's eye view of other exciting areas of QC laser research will be given including broadband QCLs and new nonlinear optical sources based on multiwavelength QCLs. 1. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Physics Today 55, 34 (May 2002) 2. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho and H. C. Liu, IEEE Journal of Selected Topics in Quantum Electronics, 6, 931 (2000). 3. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, E. A. Whittaker, IEEE J. Quantum Electron. 38, 511 (2002) 4. R. Colombelli, K. Srivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, Science 302, 1374 (2003)

  11. The Dutch N-cascade in the European perspective

    Institute of Scientific and Technical Information of China (English)

    Jan; Willem; Erisman; Nelleke; Domburg; Wim; de; Vries; Ha

    2005-01-01

    The Netherlands is "well known" for its nitrogen problems; it has one of the highest reactive nitrogen (Nr) emission densities in the world. It is a small country at the delta of several large European rivers. Ever since the industrial revolution, there has been a growing excess of nutrients and related emissions into the atmosphere (ammonia, nitrogen oxides and nitrous oxide)and into groundwater and surface water (nitrate), leading to a large range of cascading environmental impacts. Vehicular traffic, sewage and animal husbandry are the main sources of oxidized and reduced forms of Nr. This paper provides an overview of the origin and fate of nitrogen in the Netherlands, the various reported impacts of nitrogen, the Dutch and European policies to reduce nitrogen emissions and related impacts. In addition, ways are presented to go forward to potentially solve the problems in a European perspective. Solutions include the improvement of nitrogen efficiencies in different systems, technological options and education.

  12. Harmonic cascade FEL designs for LUX

    Energy Technology Data Exchange (ETDEWEB)

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  13. Cascading climate effects and related ecological consequences during past centuries

    Directory of Open Access Journals (Sweden)

    B. Naef-Daenzer

    2012-06-01

    Full Text Available The interface between climate and ecosystem structure and function is incompletely understood, partly because few ecological records start before the recent warming phase. Here, we analyse an exceptional 100-yr long record of the great tit (Parus major population in Switzerland in relation to climate and habitat phenology. Using path analysis, we demonstrate an uninterrupted cascade of significant influences of the large-scale atmospheric circulation (North-Atlantic Oscillation, NAO, and North-sea – Caspian Pattern, NCP on habitat and breeding phenology, and further on fitness-relevant life history traits within animal populations. We then apply the relationships of this analysis to reconstruct the circulation-driven component of fluctuations in great tit breeding phenology and population dynamics on the basis of new seasonal NAO and NCP indices back to 1500 AD. According to the path model, the multi-decadal oscillation of the atmospheric circulation likely led to substantial variation in habitat phenology, and consequently, tit population minima during the "Maunder Minimum" (1650–1720 and the Little Ice Age Type Event I (1810–1850. The warming since 1975 was not only related with a quick shift towards earlier breeding, but also with the highest productivity since 1500, and thus, an unprecedented increase of the population. A verification of the structural equation model against two independent data series corroborates that the retrospective model reliably depicts the major long-term NAO/NCP impact on ecosystem parameters. The results suggest a complex cascade of climate effects beginning at a global scale and ending at the level of individual life histories. This sheds light on how large scale climate conditions substantially affect major life-history parameters within a population, and thus influence key ecosystem parameters at the scale of centuries.

  14. Cascading climate effects and related ecological consequences during past centuries

    Directory of Open Access Journals (Sweden)

    B. Naef-Daenzer

    2012-10-01

    Full Text Available The interface between climate and ecosystem structure and function is incompletely understood, partly because few ecological records start before the recent warming phase. Here, we analyse an exceptional 100-yr long record of the great tit (Parus major population in Switzerland in relation to climate and habitat phenology. Using structural equation analysis, we demonstrate an uninterrupted cascade of significant influences of the large-scale atmospheric circulation (North-Atlantic Oscillation, NAO, and North-sea – Caspian Pattern, NCP on habitat and breeding phenology, and further on fitness-relevant life history traits within great tit populations. We then apply the relationships of this analysis to reconstruct the circulation-driven component of fluctuations in great tit breeding phenology and productivity on the basis of new seasonal NAO and NCP indices back to 1500 AD. According to the structural equation model, the multi-decadal oscillation of the atmospheric circulation likely led to substantial variation in habitat phenology, productivity and consequently, tit population fluctuations with minima during the "Maunder Minimum" (∼ 1650–1720 and the Little Ice Age Type Event I (1810–1850. The warming since 1975 was not only related with a quick shift towards earlier breeding, but also with the highest productivity since 1500, and thus, the impact of the NAO and NCP has contributed to an unprecedented increase of the population. A verification of the structural equation model against two independent data series (1970–2000 and 1750–1900 corroborates that the retrospective model reliably depicts the major long-term NAO/NCP impact on ecosystem parameters. The results suggest a complex cascade of climate effects beginning at a global scale and ending at the level of individual life histories. This sheds light on how large-scale climate conditions substantially affect major life history parameters within a population, and thus

  15. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...... localities of tensions between matter and the immaterial, the practical and the ideal, and subject and object. In the colloquial language there can, moreover, often seem to be something authentic or genuine about atmosphere, juxtaposing it to staging, which is implied to be something simulated or artificial....... This introduction seeks to outline how a number of scholars have addressed the relationship between staged atmospheres and experience, and thus highlight both the philosophical, social and political aspects of atmospheres...

  16. Bifurcations analysis of turbulent energy cascade

    Energy Technology Data Exchange (ETDEWEB)

    Divitiis, Nicola de, E-mail: n.dedivitiis@gmail.com

    2015-03-15

    This note studies the mechanism of turbulent energy cascade through an opportune bifurcations analysis of the Navier–Stokes equations, and furnishes explanations on the more significant characteristics of the turbulence. A statistical bifurcations property of the Navier–Stokes equations in fully developed turbulence is proposed, and a spatial representation of the bifurcations is presented, which is based on a proper definition of the fixed points of the velocity field. The analysis first shows that the local deformation can be much more rapid than the fluid state variables, then explains the mechanism of energy cascade through the aforementioned property of the bifurcations, and gives reasonable argumentation of the fact that the bifurcations cascade can be expressed in terms of length scales. Furthermore, the study analyzes the characteristic length scales at the transition through global properties of the bifurcations, and estimates the order of magnitude of the critical Taylor-scale Reynolds number and the number of bifurcations at the onset of turbulence.

  17. MAP Kinase Cascades in Plant Innate Immunity

    Directory of Open Access Journals (Sweden)

    Magnus Wohlfahrt Rasmussen

    2012-07-01

    Full Text Available Plant mitogen-activated protein kinase (MAPK cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs by host transmembrane pattern recognition receptors (PRRs which trigger MAPK-dependent innate immune responses. In the model Arabidopsis, molecular genetic evidence implicates a number of MAPK cascade components in PAMP signaling, and in responses to immunity-related phytohormones such as ethylene, jasmonate and salicylate. In a few cases, cascade components have been directly linked to the transcription of target genes or to the regulation of phytohormone synthesis. Thus MAPKs are obvious targets for bacterial effector proteins and are likely guardees of resistance (R proteins, which mediate defense signaling in response to the action of effectors, or effector-triggered immunity (ETI. This mini-review discusses recent progress in this field with a focus on the Arabidopsis MAPKs MPK3, 4, 6 and 11 in their apparent pathways.

  18. Epidemic and Cascading Survivability of Complex Networks

    CERN Document Server

    Manzano, Marc; Ripoll, Jordi; Fagertun, Anna Manolova; Torres-Padrosa, Victor; Pahwa, Sakshi; Scoglio, Caterina

    2014-01-01

    Our society nowadays is governed by complex networks, examples being the power grids, telecommunication networks, biological networks, and social networks. It has become of paramount importance to understand and characterize the dynamic events (e.g. failures) that might happen in these complex networks. For this reason, in this paper, we propose two measures to evaluate the vulnerability of complex networks in two different dynamic multiple failure scenarios: epidemic-like and cascading failures. Firstly, we present \\emph{epidemic survivability} ($ES$), a new network measure that describes the vulnerability of each node of a network under a specific epidemic intensity. Secondly, we propose \\emph{cascading survivability} ($CS$), which characterizes how potentially injurious a node is according to a cascading failure scenario. Then, we show that by using the distribution of values obtained from $ES$ and $CS$ it is possible to describe the vulnerability of a given network. We consider a set of 17 different compl...

  19. Emergence of event cascades in inhomogeneous networks

    CERN Document Server

    Onaga, Tomokatsu

    2016-01-01

    There is a commonality among contagious diseases, tweets, urban crimes, nuclear reactions, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states for the case of the weaker interaction are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, frequent crimes, or large fluctuations in nuclear reactions, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlli...

  20. Cascade enzymatic reactions for efficient carbon sequestration.

    Science.gov (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. PMID:25708541

  1. Piscivores, Trophic Cascades, and Lake Management

    Directory of Open Access Journals (Sweden)

    Ray W. Drenner

    2002-01-01

    Full Text Available The concept of cascading trophic interactions predicts that an increase in piscivore biomass in lakes will result in decreased planktivorous fish biomass, increased herbivorous zooplankton biomass, and decreased phytoplankton biomass. Though often accepted as a paradigm in the ecological literature and adopted by lake managers as a basis for lake management strategies, the trophic cascading interactions hypothesis has not received the unequivocal support (in the form of rigorous experimental testing that might be expected of a paradigm. Here we review field experiments and surveys, testing the hypothesis that effects of increasing piscivore biomass will cascade down through the food web yielding a decline in phytoplankton biomass. We found 39 studies in the scientific literature examining piscivore effects on phytoplankton biomass. Of the studies, 22 were confounded by supplemental manipulations (e.g., simultaneous reduction of nutrients or removal of planktivores and could not be used to assess piscivore effects. Of the 17 nonconfounded studies, most did not find piscivore effects on phytoplankton biomass and therefore did not support the trophic cascading interactions hypothesis. However, the trophic cascading interactions hypothesis also predicts that lake systems containing piscivores will have lower phytoplankton biomass for any given phosphorus concentration. Based on regression analyses of chlorophyll�total phosphorus relationships in the 17 nonconfounded piscivore studies, this aspect of the trophic cascading interactions hypothesis was supported. The slope of the chlorophyll vs. total phosphorus regression was lower in lakes with planktivores and piscivores compared with lakes containing only planktivores but no piscivores. We hypothesize that this slope can be used as an indicator of “functional piscivory” and that communities with extremes of functional piscivory (zero and very high represent classical 3- and 4-trophic level

  2. Dynamics of Soliton Cascades in Fiber Amplifiers

    CERN Document Server

    Arteaga-Sierra, F R; Agrawal, Govind P

    2016-01-01

    We study numerically the formation of cascading solitons when femtosecond optical pulses are launched into a fiber amplifier with less energy than required to form a soliton of equal duration. As the pulse is amplified, cascaded fundamental solitons are created at different distances, without soliton fission, as each fundamental soliton moves outside the gain bandwidth through the Raman-induced spectral shifts. As a result, each input pulse creates multiple, temporally separated, ultrashort pulses of different wavelengths at the amplifier output. The number of pulses depends not only on the total gain of the amplifier but also on the width of input pulses.

  3. Energy cascade in internal wave attractors

    CERN Document Server

    Brouzet, Christophe; Joubaud, Sylvain; Sibgatullin, Ilias; Dauxois, Thierry

    2016-01-01

    One of the pivotal questions in the dynamics of the oceans is related to the cascade of mechanical energy in the abyss and its contribution to mixing. Here, we propose internal wave attractors in the large amplitude regime as a unique self-consistent experimental and numerical setup that models a cascade of triadic interactions transferring energy from large-scale monochro-matic input to multi-scale internal wave motion. We also provide signatures of a discrete wave turbulence framework for internal waves. Finally, we show how beyond this regime, we have a clear transition to a regime of small-scale high-vorticity events which induce mixing. Introduction.

  4. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification.

    Science.gov (United States)

    Thomsen, Mads S; Wernberg, Thomas; Altieri, Andrew; Tuya, Fernando; Gulbransen, Dana; McGlathery, Karen J; Holmer, Marianne; Silliman, Brian R

    2010-08-01

    The importance of positive interactions is increasingly acknowledged in contemporary ecology. Most research has focused on direct positive effects of one species on another. However, there is recent evidence that indirect positive effects in the form of facilitation cascades can also structure species abundances and biodiversity. Here we conceptualize a specific type of facilitation cascade-the habitat cascade. The habitat cascade is defined as indirect positive effects on focal organisms mediated by successive facilitation in the form of biogenic formation or modification of habitat. Based on a literature review, we demonstrate that habitat cascades are a general phenomenon that enhances species abundance and diversity in forests, salt marshes, seagrass meadows, and seaweed beds. Habitat cascades are characterized by a hierarchy of facilitative interactions in which a basal habitat former (typically a large primary producer, e.g., a tree) creates living space for an intermediate habitat former (e.g., an epiphyte) that in turn creates living space for the focal organisms (e.g., spiders, beetles, and mites). We then present new data on a habitat cascade common to soft-bottom estuaries in which a relatively small invertebrate provides basal habitat for larger intermediate seaweeds that, in turn, generate habitat for focal invertebrates and epiphytes. We propose that indirect positive effects on focal organisms will be strongest when the intermediate habitat former is larger and different in form and function from the basal habitat former. We also discuss how humans create, modify, and destroy habitat cascades via global habitat destruction, climatic change, over-harvesting, pollution, or transfer of invasive species. Finally, we outline future directions for research that will lead to a better understanding of habitat cascades. PMID:21558196

  5. Exoplanet Atmospheres

    CERN Document Server

    Seager, S

    2010-01-01

    At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...

  6. Atmospheric Neutrinos

    OpenAIRE

    Takaaki Kajita

    2012-01-01

    Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses...

  7. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...... experience in space, presented as middle ground experience. In the field of HCI, middle ground experiences complete the unarticulated spectrum between designing for foreground of attention or background awareness. When “Articulating Atmospheres through Middle Ground Experiences in Interaction Design...

  8. Pluto's atmosphere

    International Nuclear Information System (INIS)

    Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references

  9. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  10. Defect accumulation under cascade damage conditions

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, B.N.; Woo, C.H.

    1994-01-01

    discussed in terms of this reaction kinetics taking into account cluster production, dissociation, migration and annihilation at extended sinks. Microstructural features which are characteristic of cascade damage and cannot be explained in terms of the conventional single defect reaction kinetics are...

  11. Nested Canalyzing, Unate Cascade, and Polynomial Functions.

    Science.gov (United States)

    Jarrah, Abdul Salam; Raposa, Blessilda; Laubenbacher, Reinhard

    2007-09-15

    This paper focuses on the study of certain classes of Boolean functions that have appeared in several different contexts. Nested canalyzing functions have been studied recently in the context of Boolean network models of gene regulatory networks. In the same context, polynomial functions over finite fields have been used to develop network inference methods for gene regulatory networks. Finally, unate cascade functions have been studied in the design of logic circuits and binary decision diagrams. This paper shows that the class of nested canalyzing functions is equal to that of unate cascade functions. Furthermore, it provides a description of nested canalyzing functions as a certain type of Boolean polynomial function. Using the polynomial framework one can show that the class of nested canalyzing functions, or, equivalently, the class of unate cascade functions, forms an algebraic variety which makes their analysis amenable to the use of techniques from algebraic geometry and computational algebra. As a corollary of the functional equivalence derived here, a formula in the literature for the number of unate cascade functions provides such a formula for the number of nested canalyzing functions.

  12. Impedance interactions in bidirectional cascaded converter

    DEFF Research Database (Denmark)

    Tian, Yanjun; Loh, Poh Chiang; Chen, Zhe;

    2016-01-01

    here for showing that forward and reverse interactions are prominently different in terms of dynamics and stability, even though the cascaded converter control remains unchanged. The concluded findings have been verified by simulation and experimental results, from which, important guidelines have been...

  13. Modeling and simulation of cascading contingencies

    Science.gov (United States)

    Zhang, Jianfeng

    This dissertation proposes a new approach to model and study cascading contingencies in large power systems. The most important contribution of the work involves the development and validation of a heuristic analytic model to assess the likelihood of cascading contingencies, and the development and validation of a uniform search strategy. We model the probability of cascading contingencies as a function of power flow and power flow changes. Utilizing logistic regression, the proposed model is calibrated using real industry data. This dissertation analyzes random search strategies for Monte Carlo simulations and proposes a new uniform search strategy based on the Metropolis-Hastings Algorithm. The proposed search strategy is capable of selecting the most significant cascading contingencies, and it is capable of constructing an unbiased estimator to provide a measure of system security. This dissertation makes it possible to reasonably quantify system security and justify security operations when economic concerns conflict with reliability concerns in the new competitive power market environment. It can also provide guidance to system operators about actions that may be taken to reduce the risk of major system blackouts. Various applications can be developed to take advantage of the quantitative security measures provided in this dissertation.

  14. Cascading effects of overfishing marine systems

    NARCIS (Netherlands)

    Scheffer, M.; Carpenter, S.; Young, de B.

    2005-01-01

    Profound indirect ecosystem effects of overfishing have been shown for coastal systems such as coral reefs and kelp forests. A new study from the ecosystem off the Canadian east coast now reveals that the elimination of large predatory fish can also cause marked cascading effects on the pelagic food

  15. Quantum-engineered interband cascade photovoltaic devices

    Science.gov (United States)

    Yang, Rui Q.; Lotfi, Hossein; Li, Lu; Hinkey, Robert T.; Ye, Hao; Klem, John F.; Lei, L.; Mishima, T. D.; Keay, J. C.; Santos, M. B.; Johnson, M. B.

    2013-12-01

    Quantum-engineered multiple stage photovoltaic (PV) devices are explored based on InAs/GaSb/AlSb interband cascade (IC) structures. These ICPV devices employ multiple discrete absorbers that are connected in series by widebandgap unipolar barriers using type-II heterostructure interfaces for facilitating carrier transport between cascade stages similar to IC lasers. The discrete architecture is beneficial for improving the collection efficiency and for spectral splitting by utilizing absorbers with different bandgaps. As such, the photo-voltages from each individual cascade stage in an ICPV device add together, creating a high overall open-circuit voltage, similar to conventional multi-junction tandem solar cells. Furthermore, photo-generated carriers can be collected with nearly 100% efficiency in each stage. This is because the carriers travel over only a single cascade stage, designed to be shorter than a typical diffusion length. The approach is of significant importance for operation at high temperatures where the diffusion length is reduced. Here, we will present our recent progress in the study of ICPV devices, which includes the demonstration of ICPV devices at room temperature and above with narrow bandgaps (e.g. 0.23 eV) and high open-circuit voltages.

  16. Cascaded frequency doublers for broadband laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N F; Vlasova, K V; Davydov, V S; Kulikov, S M; Makarov, A I; Sukharev, Stanislav A; Freidman, Gennadii I; Shubin, S V

    2012-10-31

    A new scheme of a cascaded converter of the first harmonic of broadband cw laser radiation into the second harmonic (SH) with compensation for the group walk-off in cascades is proposed and investigated. The conditions under which high conversion coefficients of broadband ({approx}33 cm{sup -1}) single-mode fibre laser radiation with low peak power ({approx}300 W) into the SH are determined for frequency doublers based on the most promising LBO crystal. Conversion of cw radiation with an average power of 300 W and efficiency {eta} = 4.5 % into the SH is obtained in a single LBO crystal. Effect of coherent addition of SH radiation excited in different cascades is demonstrated for two- and three-stage schemes. The expected conversion efficiencies, calculated disregarding loss but taking into account real aberrations of elements, are 18 % and 38 %, respectively. The effect of pumping depletion begins to manifest itself in the third cascade of a three-stage converter; it may reduce the latter value to {approx}30 %. (nonlinear optical phenomena)

  17. Cascaded frequency doublers for broadband laser radiation

    Science.gov (United States)

    Andreev, N. F.; Vlasova, K. V.; Davydov, V. S.; Kulikov, S. M.; Makarov, A. I.; Sukharev, Stanislav A.; Freidman, Gennadii I.; Shubin, S. V.

    2012-10-01

    A new scheme of a cascaded converter of the first harmonic of broadband cw laser radiation into the second harmonic (SH) with compensation for the group walk-off in cascades is proposed and investigated. The conditions under which high conversion coefficients of broadband (~33 cm-1) single-mode fibre laser radiation with low peak power (~300 W) into the SH are determined for frequency doublers based on the most promising LBO crystal. Conversion of cw radiation with an average power of 300 W and efficiency η = 4.5 % into the SH is obtained in a single LBO crystal. Effect of coherent addition of SH radiation excited in different cascades is demonstrated for two- and three-stage schemes. The expected conversion efficiencies, calculated disregarding loss but taking into account real aberrations of elements, are 18 % and 38 %, respectively. The effect of pumping depletion begins to manifest itself in the third cascade of a three-stage converter; it may reduce the latter value to ~30 %.

  18. Geothermal research, Oregon Cascades: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Priest, G.R.; Black, G.L.

    1988-10-27

    Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

  19. Forecasting Social Unrest Using Activity Cascades.

    Science.gov (United States)

    Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil

    2015-01-01

    Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen "on the ground." Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach. PMID:26091012

  20. Cascades with coupled map lattices in preferential attachment community networks

    Institute of Scientific and Technical Information of China (English)

    Cui Di; Gao Zi-You; Zhao Xiao-Mei

    2008-01-01

    In this paper,cascading failure is studied by coupled map lattice (CML) methods in preferential attachment community networks.It is found that external perturbation R is increasing with modularity Q growing by simulation.In particular,the large modularity Q can hold off the cascading failure dynamic process in community networks.Furthermore,different attack strategies also greatly affect the cascading failure dynamic process. It is particularly significant to control cascading failure process in real community networks.

  1. Optimization Control of Bidirectional Cascaded DC-AC Converter Systems

    DEFF Research Database (Denmark)

    Tian, Yanjun

    in bidirectional cascaded converter. This research work analyses the control strategies based on the topology of dual active bridges converter cascaded with a three phase inverter. It firstly proposed a dc link voltage and active power coordinative control method for this cascaded topology, and it can reduce dc...

  2. Albedo of photons in high energy electromagnetic and hadronic cascades

    International Nuclear Information System (INIS)

    The albedo of photons in electromagnetic cascades is simulated. A simple model of back current photons generation and propagation in electromagnetic cascades is considered which satisfactorily describes the general features of albedo behavior. The contribution to the photonic albedo of electromagnetic subshowers generated by high energy gamma-quanta from π0 decays in the hadron initiated cascade is evaluated. (orig.)

  3. Z-Scan Characteristics of Cascading Nonlinear Media

    Institute of Scientific and Technical Information of China (English)

    臧维平; 田建国; 刘智波; 周文远; 杨新江; 张春平; 张光寅

    2003-01-01

    We present a method, which combines the Gaussian decomposition method and the "distributed-lens" method,for analysing Z-scan curves of cascading nonlinear medium layers or a complicated cascading structure. A good agreement with the experimental data is obtained. The method would be useful to design optical limiters and to determine the nonlinearities of cascading medium layers.

  4. High energy electromagnetic cascades in extragalactic space: physics and features

    CERN Document Server

    Berezinsky, V

    2016-01-01

    Using the analytic modeling of the electromagnetic cascades compared with more precise numerical simulations we describe the physical properties of electromagnetic cascades developing in the universe on CMB and EBL background radiations. A cascade is initiated by very high energy photon or electron and the remnant photons at large distance have two-component energy spectrum, $\\propto E^{-2}$ ($\\propto E^{-1.9}$ in numerical simulations) produced at cascade multiplication stage, and $\\propto E^{-3/2}$ from Inverse Compton electron cooling at low energies. The most noticeable property of the cascade spectrum in analytic modeling is 'strong universality', which includes the standard energy spectrum and the energy density of the cascade $\\omega_{\\rm cas}$ as its only numerical parameter. Using numerical simulations of the cascade spectrum and comparing it with recent Fermi LAT spectrum we obtained the upper limit on $\\omega_{\\rm cas}$ stronger than in previous works. The new feature of the analysis is "$E_{\\max}$...

  5. A Sulfur Hexafluoride Sensor Using Quantum Cascade and CO2 Laser-Based Photoacoustic Spectroscopy

    Directory of Open Access Journals (Sweden)

    Helion Vargas

    2010-10-01

    Full Text Available The increase in greenhouse gas emissions is a serious environmental problem and has stimulated the scientific community to pay attention to the need for detection and monitoring of gases released into the atmosphere. In this regard, the development of sensitive and selective gas sensors has been the subject of several research programs. An important greenhouse gas is sulphur hexafluoride, an almost non-reactive gas widely employed in industrial processes worldwide. Indeed it is estimated that it has a radiative forcing of 0.52 W/m2. This work compares two photoacoustic spectrometers, one coupled to a CO2 laser and another one coupled to a Quantum Cascade (QC laser, for the detection of SF6. The laser photoacoustic spectrometers described in this work have been developed for gas detection at small concentrations. Detection limits of 20 ppbv for CO2 laser and 50 ppbv for quantum cascade laser were obtained.

  6. Study of acoustic resonance of cascades

    Science.gov (United States)

    Honjo, M.; Tominaga, T.

    Discrete sounds and vibrations from guide vanes due to acoustic resonance in the vane flow path, are experimentally investigated. Other causes of pure sounds in stationary vanes are considered, such as direct radiation from wake shedding vortices, bubble vortices or leading edges, and radial or axial modes of air columns. Two-dimensional cascade tests are performed under various conditions, and the data are compared with theoretical results of flat plate cascades. Three-dimensional ducted guide vane model tests are carried out to apply prototype guide vanes, and to confirm the resonance of the two-dimensional tests. Results show that frequency is more sensitive to chord length than pitch length, and the ratio of the fluctuation frequency to fluid sound velocity/pitch length is independent of the scale. Bubble vortices on concave surfaces or leading edges are not exciting sources; and under the limit of solidity, no exciting energy can generate acoustic resonance in correspondence to the mode.

  7. Cascade morphology transition in bcc metals

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Wahyu; Selby, A.; Juslin, Niklas; Stoller, Roger E.; Wirth, Brian D.; Kurtz, Richard J.

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, $b$, in the defect production curve as a function of cascade energy ($N_F$$ \\sim$$E_{MD}^b$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $\\mu$, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of $\\mu$ as a function of displacement threshold energy, $E_d$, is presented for bcc metals.

  8. Cascade morphology transition in bcc metals.

    Science.gov (United States)

    Setyawan, Wahyu; Selby, Aaron P; Juslin, Niklas; Stoller, Roger E; Wirth, Brian D; Kurtz, Richard J

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N(F) ~ E(MD)(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, μ, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of μ as a function of displacement threshold energy, E(d), is presented for bcc metals. PMID:25985256

  9. Cascade Apartments: Deep Energy Multifamily Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, A. [Washington State Univ. Energy Program, Olympia, WA (United States); Mattheis, L. [Washington State Univ. Energy Program, Olympia, WA (United States); Kunkle, R. [Washington State Univ. Energy Program, Olympia, WA (United States); Howard, L. [Washington State Univ. Energy Program, Olympia, WA (United States); Lubliner, M. [Washington State Univ. Energy Program, Olympia, WA (United States)

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  10. Cascade Apartments: Deep Energy Multifamily Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, A.; Mattheis, L.; Kunkle, R.; Howard, L.; Lubliner, M.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  11. Regimes of turbulence without an energy cascade

    CERN Document Server

    Barenghi, C F; Baggaley, A W

    2016-01-01

    Experiments and numerical simulations of turbulent $^4$He and $^3$He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum tu...

  12. Long-period cascaded fiber taper filters.

    Science.gov (United States)

    Martinez-Rios, A; Salceda-Delgado, G; Guerrero-Viramontes, J A

    2014-02-10

    Fiber filters based on periodic cascaded tapered fiber sections are demonstrated. The filters consist of up to seven tapered sections separated periodically by more than 3 mm from center to center, with nominal tapered sections of 1  mm×1  mm×1  mm longitudinal dimensions. The transmission spectrum consists of discrete notches, resembling those observed in long-period fiber gratings, which differs from the observed spectrum in Mach-Zender interferometers based on cascaded tapers. Its sensitivity to external perturbations, such as refractive index or mechanical stress, made the device potentially very useful as a sensor or tunable filter. PMID:24663276

  13. Cascaded trans-z-source inverters

    DEFF Research Database (Denmark)

    Li, Ding; Loh, Poh Chiang; Zhu, Miao;

    2011-01-01

    the compatibility for distributed sources. Unlike existing techniques, voltage stresses within the proposed inverters are better distributed among the passive components. Theoretical analysis for explaining these operating features has already been discussed before simulation were performed and an experimental......Z-source inverter is a recently proposed single-stage inverter with added voltage-boost capability for complementing the usual voltage-buck operation of a traditional voltage-source inverter. As long as the transformer element added in to the z-source concept, a trans-z-source inverter with one...... transformer and one capacitor is reported recently. This paper has adapted the cascaded concept into the trans-z-source and trans-quasi-z-source inverters to extend each to the cascaded topologies before combination is made with allowing more sources embedded which reduces the capacitor voltage and enhanced...

  14. Exoplanetary Atmospheres

    CERN Document Server

    Madhusudhan, Nikku; Fortney, Jonathan; Barman, Travis

    2014-01-01

    The study of exoplanetary atmospheres is one of the most exciting and dynamic frontiers in astronomy. Over the past two decades ongoing surveys have revealed an astonishing diversity in the planetary masses, radii, temperatures, orbital parameters, and host stellar properties of exoplanetary systems. We are now moving into an era where we can begin to address fundamental questions concerning the diversity of exoplanetary compositions, atmospheric and interior processes, and formation histories, just as have been pursued for solar system planets over the past century. Exoplanetary atmospheres provide a direct means to address these questions via their observable spectral signatures. In the last decade, and particularly in the last five years, tremendous progress has been made in detecting atmospheric signatures of exoplanets through photometric and spectroscopic methods using a variety of space-borne and/or ground-based observational facilities. These observations are beginning to provide important constraints...

  15. Atmospheric composition

    Science.gov (United States)

    Daniels, G. E.

    1973-01-01

    The earth's atmosphere is made up of a number of gases in different relative amounts. Near sea level and up to about 90 km, the amount of these atmospheric gases in clean, relatively dry air is practically constant. Four of these gases, nitrogen, oxygen, argon, and carbon dioxide, make up 99.99 percent by volume of the atmosphere. Two gases, ozone and water vapor, change in relative amounts, but the total amount of these two is very small compared to the amount of the other gases. The atmospheric composition shown in a table can be considered valid up to 90 km geometric altitude. Above 90 km, mainly because of molecular dissociation and diffusive separation, the composition changes.

  16. Impact of Community Structure on Cascades

    OpenAIRE

    Moharrami, Mehrdad; Subramanian, Vijay; Liu, Mingyan; Lelarge, Marc

    2016-01-01

    The threshold model is widely used to study the propagation of opinions and technologies in social networks. In this model individuals adopt the new behavior based on how many neighbors have already chosen it. We study cascades under the threshold model on sparse random graphs with community structure to see whether the existence of communities affects the number of individuals who finally adopt the new behavior. Specifically, we consider the permanent adoption model where nodes that have ado...

  17. HIV treatment cascade in tuberculosis patients

    OpenAIRE

    Lessells, Richard J; Swaminathan, Soumya; Godfrey-Faussett, Peter

    2016-01-01

    Purpose of review Globally, the number of deaths associated with tuberculosis (TB) and HIV coinfection remains unacceptably high. We review the evidence around the impact of strengthening the HIV treatment cascade in TB patients and explore recent findings about how best to deliver integrated TB/HIV services. Recent findings There is clear evidence that the timely provision of antiretroviral therapy (ART) reduces mortality in TB/HIV coinfected adults. Despite this, globally in 2013, only arou...

  18. An asymmetric pericyclic cascade approach to oxindoles

    OpenAIRE

    Richmond, Edward

    2014-01-01

    The research in this thesis describes an asymmetric pericyclic cascade approach to the synthesis of a range of enantioenriched oxindoles using enantiopure oxazolidine derived nitrones and disubstituted ketenes. Chapter 1 aims to place this work in the context of the literature, describing other commonly employed or state-of-the-art asymmetric approaches to oxindoles and related compounds. Examples of where these approaches have been used successfully in the total synthesis of related indol...

  19. Controllability of nonlinear degenerate parabolic cascade systems

    Directory of Open Access Journals (Sweden)

    Mamadou Birba

    2016-08-01

    Full Text Available This article studies of null controllability property of nonlinear coupled one dimensional degenerate parabolic equations. These equations form a cascade system, that is, the solution of the first equation acts as a control in the second equation and the control function acts only directly on the first equation. We prove positive null controllability results when the control and a coupling set have nonempty intersection.

  20. Evolution of Vertebrate Phototransduction: Cascade Activation.

    Science.gov (United States)

    Lamb, Trevor D; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C; Davies, Wayne I L; Hart, Nathan S; Collin, Shaun P; Hunt, David M

    2016-08-01

    We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. PMID:27189541

  1. Optical encryption with cascaded fractional wavelet transforms

    Institute of Scientific and Technical Information of China (English)

    BAO Liang-hua; CHEN Lin-fei; ZHAO Dao-mu

    2006-01-01

    On the basis of fractional wavelet transform, we propose a new method called cascaded fractional wavelet transform to encrypt images. It has the virtues of fractional Fourier transform and wavelet transform. Fractional orders, standard focal lengths and scaling factors are its keys. Multistage fractional Fourier transforms can add the keys easily and strengthen information security. This method can also realize partial encryption just as wavelet transform and fractional wavelet transform. Optical realization of encryption and decryption is proposed. Computer simulations confirmed its possibility.

  2. Cascade laser applications: trends and challenges

    Science.gov (United States)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  3. Prediction of Cascading Failures in Spatial Networks.

    Science.gov (United States)

    Shunkun, Yang; Jiaquan, Zhang; Dan, Lu

    2016-01-01

    Cascading overload failures are widely found in large-scale parallel systems and remain a major threat to system reliability; therefore, they are of great concern to maintainers and managers of different systems. Accurate cascading failure prediction can provide useful information to help control networks. However, for a large, gradually growing network with increasing complexity, it is often impractical to explore the behavior of a single node from the perspective of failure propagation. Fortunately, overload failures that propagate through a network exhibit certain spatial-temporal correlations, which allows the study of a group of nodes that share common spatial and temporal characteristics. Therefore, in this study, we seek to predict the failure rates of nodes in a given group using machine-learning methods. We simulated overload failure propagations in a weighted lattice network that start with a center attack and predicted the failure percentages of different groups of nodes that are separated by a given distance. The experimental results of a feedforward neural network (FNN), a recurrent neural network (RNN) and support vector regression (SVR) all show that these different models can accurately predict the similar behavior of nodes in a given group during cascading overload propagation.

  4. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  5. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  6. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  7. Cascade plant control by timer method

    International Nuclear Information System (INIS)

    The present invention relates to a method of controlling uranium flow rate through a cascaded centrifuge plant for the purpose of enriching uranium 235. Such a cascade includes multiple gas separation stage each of which consists of a plurality of centrifuges. The product gas usually includes a large amount of He gas, and a cold trap is used to eliminate the He from UF6. The cold trap is operated periodically in such a way that the mixed gas of He and UF6 is cooled to solidify only UF6 and then warmed to obtain UF6 by gasification. In order to operate the plant continuously, parallel multiple cold traps are operated alternatively. The operating conditions in such a complex cascade system are difficult to alter by conventional control methods. The present invention provides a rapid method of controlling the system when a certain percentage of the centrifuges in one stage malfunction. The control system consists of timers which are provided one for each cold trap to control the operational period of the trap. For example, if 20% of the centrifuges in a particular stage malfunction, the timer period of the cold traps attached to the normally operating centrifuge within the stage is maintained, and the period of all the other centrifuges are changed to 10/8 times that of the initial value. In this way the flow volume through all centrifuges except that in the particular stage is reduced to 80% of the initial value and the operation of the system can be continued with reduced efficiency. (Masui, R.)

  8. Dynamics of quantum cascade lasers: numerics

    Science.gov (United States)

    Van der Sande, Guy; Verschaffelt, Guy

    2016-04-01

    Since the original demonstration of terahertz quantum-cascade lasers (QCLs), the performance of these devices has shown rapid improvement. QCLs can now deliver milliwatts or more of continuous-wave radiation throughout the terahertz frequency range (300 GHz to 10 THz). Therefore, QCLs have become widely used in various applications such as spectroscopy, metrology or free-space telecommunications. For many of these applications there is a need for compact tuneable quantum cascade lasers. Nowadays most tuneable QCLs are based on a bulky external cavity configuration. We explore the possibility of tuning the operating wavelength through a fully integrated on-chip wavelength selective feedback applied to a dual wavelength QCL. Our numerical and analytical analyses are based on rate equation models describing the dynamics of QCLs extended to include delayed filtered optical feedback. We demonstrate the possibility to tune the operating wavelength by altering the absorption and/or amplification of the signal in the delayed feedback path. The tuning range of a laser is limited by the spectral width of its gain. For inter-band semiconductor lasers this spectral width is typically several tens of nm. Hence, the laser cavity supports the existence of multiple modes and on chip wavelength selective feedback has been demonstrated to be a promising tuning mechanism. We have selected a specific QCL gain structure with four energy levels and with two lasing transitions in the same cascade. In this scheme, the two lasing modes use a common upper level. Hence, the two modes compete in part for the same carriers to account for their optical gain. We have added delayed wavelength specific filtered optical feedback to the rate equation model describing these transitions. We have calculated the steady states and their stability in the absence of delay for the feedback field and studied numerically the case with non-zero delay. We have proven that wavelength tuning of a dual wavelength

  9. The current disequilibrium of North Cascade glaciers

    Science.gov (United States)

    Pelto, Mauri S.

    2006-03-01

    Three lines of evidence indicate that North Cascade (Washington, USA) glaciers are currently in a state of disequilibrium. First, annual balance measured on nine glaciers yields a mean cumulative balance for the 1984-2004 period of -8.58 m water equivalent (w.e.), a net loss of ice thickness exceeding 9.5 m. This is a significant loss for glaciers that average 30-50 m in thickness, representing 18-32% of their entire volume.Second, longitudinal profiles completed in 1984 and 2002 on 12 North Cascade glaciers confirm this volume change indicating a loss of -5.7 to -6.3 m in thickness (5.0-5.6 m w.e.) between 1984 and 2002, agreeing well with the measured cumulative balance of -5.52 m w.e. for the same period. The change in thickness on several glaciers has been equally substantial in the accumulation zone and the ablation zone, indicating that there is no point to which the glacier can retreat to achieve equilibrium. Substantial thinning along the entire length of a glacier is the key indicator that a glacier is in disequilibrium.Third, North Cascade glacier retreat is rapid and ubiquitous. All 47 glaciers monitored are currently undergoing significant retreat or, in the case of four, have disappeared. Two of the glaciers where mass balance observations were begun, Spider Glacier and Lewis Glacier, have disappeared. The retreat since 1984 of eight Mount Baker glaciers that were all advancing in 1975 has averaged 297 m. These observations indicate broad regional continuity in glacial response to climate.

  10. Fast automotive diesel exhaust measurement using quantum cascade lasers

    Science.gov (United States)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  11. OBSERVING CASCADES OF SOLAR BULLETS AT HIGH RESOLUTION. II

    Energy Technology Data Exchange (ETDEWEB)

    Scullion, E.; Engvold, O.; Lin, Y.; Voort, L. Rouppe van der, E-mail: scullie@tcd.ie [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway)

    2015-12-01

    High resolution observations from the Swedish 1-m Solar Telescope revealed bright, discrete, blob-like structures (which we refer to as solar bullets) in the Hα 656.28 nm line core that appear to propagate laterally across the solar atmosphere as clusters in active regions (ARs). These small-scale structures appear to be field aligned and many bullets become triggered simultaneously and traverse collectively as a cluster. Here, we conduct a follow-up study on these rapidly evolving structures with coincident observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly. With the co-aligned data sets, we reveal (a) an evolving multithermal structure in the bullet cluster ranging from chromospheric to at least transition region temperatures, (b) evidence for cascade-like behavior and corresponding bidirectional motions in bullets within the cluster, which indicate that there is a common source of the initial instability leading to bullet formation, and (c) a direct relationship between co-incident bullet velocities observed in Hα and He ii 30.4 nm and an inverse relationship with respect to bullet intensity in these channels. We find evidence supporting that bullets are typically composed of a cooler, higher density core detectable in Hα with a less dense, hotter, and fainter co-moving outer sheath. Bullets unequivocally demonstrate the finely structured nature of the AR corona. We have no clear evidence for bullets being associated with locally heated (or cooled), fast flowing plasma. Fast MHD pulses (such as solitons) could best describe the dynamic properties of bullets whereas the presence of a multithermal structure is new.

  12. Stopping pions in high-energy nuclear cascades.

    Science.gov (United States)

    Jones, W. V.; Johnson, D. P.; Thompson, J. A.

    1973-01-01

    Results of Monte Carlo calculations for the number and energy spectra of charged pions from nuclear-electromagnetic cascades developing in rock are presented for primary hadron energies ranging from 3 to 3000 GeV. These spectra are given as functions of the longitudinal depth in the absorber and the lateral distance from the cascade axis. The number of charged pions which stop in the absorber increases with the primary energy of the hadron initiating the cascade.

  13. Beam combining of quantum cascade laser arrays.

    Science.gov (United States)

    Lee, Benjamin G; Kansky, Jan; Goyal, Anish K; Pflügl, Christian; Diehl, Laurent; Belkin, Mikhail A; Sanchez, Antonio; Capasso, Federico A

    2009-08-31

    Wavelength beam combining was used to co-propagate beams from 28 elements in an array of distributed-feedback quantum cascade lasers (DFB-QCLs). The beam-quality product of the array, defined as the product of near-field spot size and far-field divergence for the entire array, was improved by a factor of 21 by using wavelength beam combining. To demonstrate the applicability of wavelength beam combined DFB-QCL arrays for remote sensing, we obtained the absorption spectrum of isopropanol at a distance of 6 m from the laser array.

  14. Plant MAPK cascades: Just rapid signaling modules?

    KAUST Repository

    Boudsocq, Marie

    2015-08-27

    © 2015 Taylor & Francis Group, LLC. Abscisic acid (ABA) is a major phytohormone mediating important stress-related processes. We recently unveiled an ABA-activated MAPK signaling module constituted of MAP3K17/18-MKK3-MPK1/2/7/14. Unlike classical rapid MAPK activation, we showed that the activation of the new MAPK module is delayed and relies on the MAP3K protein synthesis. In this addendum, we discuss the role of this original and unexpected activation mechanism of MAPK cascades which suggests that MAPKs can regulate both early and longterm plant stress responses.

  15. The identification of a cascade hypernucleus

    CERN Document Server

    Mondal, A S; Husain, A; Kasim, M M

    1979-01-01

    In a systematic search for rare hypernuclear species in nuclear emulsion exposed to 3.0 GeV/c K/sup -/-mesons at the CERN PS, an event with three connecting stars has been observed. The two secondary stars are most probably due to the decay of a cascade hypernucleus according to the following channel: /sub Xi //sup -13/-C to /sub Lambda //sup 8 /Be+/sub Lambda //sup 5/He+Q. The binding energy of the Xi - hypernucleus is B/sub Xi /-(/sub Xi //sup 13/-C)=(18.1+or-3.2) MeV. (11 refs).

  16. Cascaded uncoupled dual-ring modulator

    CERN Document Server

    Gu, Tingyi; Wong, Chee Wei; Dong, Po

    2014-01-01

    We demonstrate that by coherent driving two uncoupled rings in same direction, the effective photon circulating time in the dual ring modulator is reduced, with increased modulation quality. The inter-ring detuning dependent photon dynamics, Q-factor, extinction ratio and optical modulation amplitude of two cascaded silicon ring resonators are studied and compared with that of a single ring modulator. Experimentally measured eye diagrams, together with coupled mode theory simulations, demonstrate the enhancement of dual ring configuration at 20 Gbps with a Q ~ 20,000.

  17. Long-Haul TCP vs. Cascaded TCP

    OpenAIRE

    Feng, Wu-chun

    2006-01-01

    In this work, we investigate the bandwidth and transfer time of long-haul TCP versus cascaded TCP [5]. First, we discuss the models for TCP throughput. For TCP flows in support of bulk data transfer (i.e., long-lived TCP flows), the TCP throughput models have been derived [2, 3]. These models rely on the congestion-avoidance algorithm of TCP. Though these models cannot be applied with short-lived TCP connections, our interest relative to logistical networking is in longer-li...

  18. Cascade model of power lines for PLC

    OpenAIRE

    Dziura, Michal

    2012-01-01

    This bachelor´s thesis deals with studies of power-line in terms of possibilities for using grid as a transmission medium for data transmission. Theoretical part is focused on PLC technology and the parameters of high-voltage lines. In very practical part the modeling of power-line by cascade parameters of two-port network is examined. Influence of va-rious changes in network topology are included in this thesis and also their influence on transfer function. The last part outlines the method ...

  19. Photonic crystal slab quantum cascade detector

    Energy Technology Data Exchange (ETDEWEB)

    Reininger, Peter, E-mail: peter.reininger@tuwien.ac.at; Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried [Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology, Floragasse 7, Vienna 1040 (Austria)

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  20. Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking

    CERN Document Server

    Griffin, Tom; Horava, Petr; Yan, Ziqi

    2015-01-01

    Without Lorentz invariance, spontaneous global symmetry breaking can lead to multicritical Nambu-Goldstone modes with a higher-order low-energy dispersion $\\omega\\sim k^n$ ($n=2,3,\\ldots$), whose naturalness is protected by polynomial shift symmetries. Here we investigate the role of infrared divergences and the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem. We find novel cascading phenomena with large hierarchies between the scales at which the value of $n$ changes, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem.

  1. Cascaded Mach–Zehnder interferometer tunable filters

    Science.gov (United States)

    Ovvyan, A. P.; Gruhler, N.; Ferrari, S.; Pernice, W. H. P.

    2016-06-01

    By cascading compact and low-loss Mach–Zehnder interferometers (MZIs) embedded within nanophotonic circuits we realize thermo-optically tunable optical filters for the visible wavelength range. Through phase tuning in either arm of the MZI, the filter response with maximum extinction can be shifted beyond one free-spectral range with low electrical power consumption. The working wavelength of our device is aligned with the emission wavelength of the silicon vacancy color center in diamond around 740 nm where we realize a filter depth beyond 36.5 dB. Our approach allows for efficient isolation of the emitted signal intensity in future hybrid nanodiamond-nanophotonic circuits.

  2. Heat flux dynamics in dissipative cascaded systems

    OpenAIRE

    de Lorenzo, S.; Farace, A.; Ciccarello, F.; De Palma, G; Giovannetti, V.

    2014-01-01

    We study the dynamics of heat flux in the thermalization process of a pair of identical quantum system that interact dissipatively with a reservoir in a {\\it cascaded} fashion. Despite the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a non-exponential time behaviour which can gre...

  3. Cascades of Fano resonances in Mie scattering

    Science.gov (United States)

    Rybin, M. V.; Sinev, I. S.; Samusev, K. B.; Limonov, M. F.

    2014-03-01

    The interference nature of resonant Mie scattering, which is described within the Fano model, has been demonstrated. The interference is caused by interaction of an incident electromagnetic wave with reemitted waves that correspond to eigenmodes of a scattering particle. Mie scattering due to the interference can be represented in the form of cascades of resonance lines of different shapes, each of which is described by the classical Fano formula. The effect is observed in resonant light scattering by an arbitrary body of revolution and discussed in detail using the example of scattering by an infinite homogeneous dielectric cylinder.

  4. Multilevel Inverter by Cascading Industrial VSI

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Pedersen, John Kim;

    2002-01-01

    -source inverter that uses three IGBT triphase inverter modules along with an output transformer to obtain a 3 p.u. multilevel output voltage is introduced. The system yields in high-quality multistep voltage with up to 4 levels and low dv/dt, balanced operation of the inverter modules, each supplying a third...... of the motor rated kVA. The concept of using cascaded inverters is further extended to a new modular motor-modular inverter system where the motor winding connections are reconnected into several three-phase groups, either six-lead or 12-lead connection according to the voltage level, each powered...

  5. The Cascade of Non-Stationarity

    Science.gov (United States)

    Belmont, P.; Kumarasamy, K.; Kelly, S. A.; Schaffrath, K. R.; Beach, T. J.

    2014-12-01

    Landscapes and channel networks are dynamic systems, often characterized by immense variability in time and space. Systematic shifts in hydrologic, geomorphic, or ecologic drivers can cause a cascade of changes within the system, which may fundamentally alter the way the system itself functions. Due to variability in resilience and resisting forces throughout the landscape, this cascade of changes may manifest in different ways within any given system. Humans may also exert considerable influence, often amplifying or damping system response. We illustrate the cascading effects of non-stationary hydrology and geomorphology in the Minnesota River Basin (MRB), a 44,000 km2 natural laboratory in which pervasive landscape disturbance has been triggered by several well-documented events. Rapid base-level lowering 13,400 YBP along the mainstem Minnesota River created a wave of incision, which continues to propagate up tributary channel networks. Temperature and precipitation have changed significantly in the MRB over the past century with rising temperatures, shifting precipitation patterns and an increase in heavy rainfall events. Streamflow has changed drastically and variably throughout the basin with 5% exceedance flows increasing 60-100% in recent decades, as increases in precipitation have been amplified by land management and artificial drainage. Increases in channel width and depth have occurred variably in the mainstem Minnesota River, the actively incising lower (knick zone) reaches of tributaries, and the low gradient, passively meandering reaches above the knick zones. Altered hydrologic regimes and channel morphologies, combined with increased sedimentation and nutrient loading have adversely affected aquatic biota via disruption of life cycles and habitat degradation. Existing landscape, water quality, and flood risk models are poorly equipped to deal with the cascading effects of non-stationarity and therefore may grossly over- or under

  6. Atmospheric Refraction

    CERN Document Server

    Nauenberg, Michael

    2016-01-01

    Calculations of atmospheric refraction are generally based on a simplified model of atmospheric density in the troposphere which assumes that the temperature decreases at a constant lapse rate from sea level up to a height equal to eleven km, and that afterwards it remains constant. In this model, the temperature divided by the lapse rate determines the length scale in the calculations for altitudes less than this height. But daily balloon measurements across the U.S.A. reveal that in some cases the air temperature actually increases from sea level up to a height of about one km, and only after reaching a plateau, it decreases at an approximately constant lapse rate. Moreover, in three examples considered here, the temperature does not remain constant at eleven km , but continues to decreases to a minimum at about sixteen kilometers , and then increases at higher altitudes at a lower rate. Calculations of atmospheric refraction based on this atmospheric data is compared with the results of simplified models.

  7. Atmospheric Dispositifs

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2015-01-01

    as a spatial phenomenon, exploring a multiplicity of conditions that constitute their resonant origins – i.e. the production sites from and within they have emerged. The intention is also to argue that despite the fact that atmosphere as an aesthetic category has crystallised over the last few decades...

  8. Free Space Optical Communication Utilizing Mid-Infrared Interband Cascade Laser

    Science.gov (United States)

    Soibel, A.; Wright, M.; Farr, W.; Keo, S.; Hill, C.; Yang, R. Q.; Liu, H. C.

    2010-01-01

    A Free Space Optical (FSO) link utilizing mid-IR Interband Cascade lasers has been demonstrated in the 3-5 micron atmospheric transmission window with data rates up to 70 Mb/s and bit-error-rate (BER) less than 10 (exp -8). The performance of the mid-IR FSO link has been compared with the performance of a near-IR link under various fog conditions using an indoor communication testbed. These experiments demonstrated the lower attenuation and scintillation advantages of a mid-IR FSO link through fog than a 1550 nm FSO link.

  9. Dependence of the average spatial and energy characteristics of the hadron-lepton cascade on the strong interaction parameters at superhigh energies

    Science.gov (United States)

    Boyadjian, N. G.; Dallakyan, P. Y.; Garyaka, A. P.; Mamidjanian, E. A.

    1985-01-01

    A method for calculating the average spatial and energy characteristics of hadron-lepton cascades in the atmosphere is described. The results of calculations for various strong interaction models of primary protons and nuclei are presented. The sensitivity of the experimentally observed extensive air showers (EAS) characteristics to variations of the elementary act parameters is analyzed.

  10. Noise propagation in two-step series MAPK cascade.

    Directory of Open Access Journals (Sweden)

    Venkata Dhananjaneyulu

    Full Text Available Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.

  11. Cascaded Gamma Rays as a Probe of Cosmic Rays

    Science.gov (United States)

    Murase, Kohta

    2014-06-01

    Very-high-energy (VHE) and ultra-high-energy (UHE) gamma rays from extragalactic sources experience electromagnetic cascades during their propagation in intergalactic space. Recent gamma-ray data on TeV blazars and the diffuse gamma-ray background may have hints of the cascade emission, which are especially interesting if it comes from UHE cosmic rays. I show that cosmic-ray-induced cascades can be discriminated from gamma-ray-induced cascades with detailed gamma-ray spectra. I also discuss roles of structured magnetic fields, which suppress inverse-Compton pair halos/echoes but lead to guaranteed signals - synchrotron pair halos/echoes.

  12. The cascad spent fuel dry storage facility

    International Nuclear Information System (INIS)

    France has a wide variety of experimental spent fuels different from LWR spent fuel discharged from commercial reactors. Reprocessing such fuels would thus require the development and construction of special facilities. The French Atomic Energy Commission (CEA) has consequently opted for long-term interim storage of these spent fuels over a period of 50 years. Comparative studies of different storage concepts have been conducted on the basis of safety (mainly containment barriers and cooling), economic, modular design and operating flexibility criteria. These studies have shown that dry storage in a concrete vault cooled by natural convection is the best solution. A research and development program including theoretical investigations and mock-up tests confirmed the feasibility of cooling by natural convection and the validity of design rules applied for fuel storage. A facility called CASCAD was built at the CEA's Cadarache Nuclear Research Center, where it has been operational since mid-1990. This paper describes the CASCAD facility and indicates how its concept can be applied to storage of LWR fuel assemblies

  13. Power Grid Defense Against Malicious Cascading Failure

    CERN Document Server

    Shakarian, Paulo; Lindelauf, Roy

    2014-01-01

    An adversary looking to disrupt a power grid may look to target certain substations and sources of power generation to initiate a cascading failure that maximizes the number of customers without electricity. This is particularly an important concern when the enemy has the capability to launch cyber-attacks as practical concerns (i.e. avoiding disruption of service, presence of legacy systems, etc.) may hinder security. Hence, a defender can harden the security posture at certain power stations but may lack the time and resources to do this for the entire power grid. We model a power grid as a graph and introduce the cascading failure game in which both the defender and attacker choose a subset of power stations such as to minimize (maximize) the number of consumers having access to producers of power. We formalize problems for identifying both mixed and deterministic strategies for both players, prove complexity results under a variety of different scenarios, identify tractable cases, and develop algorithms f...

  14. Flow characteristics of the Cascade granular blanket

    International Nuclear Information System (INIS)

    Analysis of a single granule on a rotating cone shows that for the 350 half-angle, double-cone-shaped Cascade chamber, blanket granules will stay against the chamber wall if the rotational speed is 50 rpm or greater. The granules move axially down the wall with a slight (5-mm or less) sinusoidal oscillation in the circumferential direction. Granule chute-flow experiments confirm that two-layered flow can be obtained when the chute is inclined slightly above the granular material angle of repose. The top surface layer is thin and fast moving (supercritical flow). A thick bottom layer moves more slowly (subcritical flow controlled at the exit) with a velocity that increases with distance from the bottom of the chute. This is a desirable velocity profile because in the Cascade chamber about one-third of the fusion energy is deposited in the form of x rays and fusion-fuel-pellet debris in the top surface (inner-radius) layer

  15. Quantitative analysis of cascade impactor samples - revisited

    Science.gov (United States)

    Orlić , I.; Chiam, S. Y.; Sanchez, J. L.; Tang, S. M.

    1999-04-01

    Concentrations of aerosols collected in Singapore during the three months long haze period that affected the whole South-East Asian region in 1997 are reported. Aerosol samples were continuously collected by using a fine aerosol sampler (PM2.5) and occasionally with a single orifice cascade impactor (CI) sampler. Our results show that in the fine fraction (<2.5 μm) the concentrations of two well-known biomass burning products, i.e. K and S were generally increased by a factor 2-3 compared to the non-hazy periods. However, a discrepancy was noticed, at least for elements with lower atomic number (Ti and below) between the results obtained by the fine aerosol sampler and the cascade impactor. Careful analysis by means of Nuclear Microscopy, in particular by the Scanning Transmission Ion Microscopy (STIM) technique, revealed that thicknesses of the lower CI stages exceeded thick target limits for 2 MeV protons. Detailed depth profiles of all CI stages were therefore measured using the STIM technique and concentrations corrected for absorption and proton energy loss. After correcting results for the actual sample thickness, concentrations of all major elements (S, Cl, K, Ca) agreed much better with the PM2.5 results. The importance of implementing thick target corrections in analysis of CI samples, especially those collected in the urban environments, is emphasized. Broad beam PIXE analysis approach is certainly not adequate in these cases.

  16. Cascade Distiller System Performance Testing Interim Results

    Science.gov (United States)

    Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.

    2014-01-01

    The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.

  17. Quaternary Magmatism in the Cascades - Geologic Perspectives

    Science.gov (United States)

    Hildreth, Wes

    2007-01-01

    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  18. Updated Global Analysis of the Atmospheric Neutrino Data in terms of neutrino oscillations

    CERN Document Server

    Fornengo, N; Valle, José W F

    2000-01-01

    A global analysis of all the available atmospheric neutrino data is presentedin terms of neutrino oscillations in the nu_mu -> nu_tau and nu_mu -> nu_schannels, where nu_s denotes a sterile neutrino. We perform our analysis of thecontained events data as well as the upward-going neutrino-induced muon fluxes.In addition to the previous data samples of Frejus, Nusex, IMB and Kamiokaexperiments, we include the full data set of the 52 kton-yr ofSuper-Kamiokande, the recent 4.6 kton-yr contained events of Soudan2 and theresults on upgoing muons from the MACRO and Baksan detectors. From thestatistical analysis it emerges that the nu_mu -> nu_tau channel provides thebest agreement with the combined data, with a best fit point of sin^2(2 theta)= 0.99 and Delta m^2 = 3.0 * 10^{-3} eV^2. Although somehow disfavoured, thenu_mu -> nu_s channels cannot be ruled out on the basis of the global fit tothe full set of observables.

  19. Observed and NWP simulated rainfall uncertainty cascading into rainfall-runoff and flood inundation impact models

    Science.gov (United States)

    Souvignet, M.; Freer, J. E.; de Almeida, G. A.; Coxon, G.; Neal, J. C.; Champion, A.; Cloke, H. L.; Bates, P. D.

    2013-12-01

    Observed and numerical weather prediction (NWP) simulated precipitation products typically show differences in their spatial and temporal distribution. These differences can considerably influence the ability to predict hydrological responses. For flood inundation impact studies, as in forecast situations, an atmospheric-hydrologic-hydraulic model chain is needed to quantify the extent of flood risk. Uncertainties cascaded through the model chain are seldom explored, and more importantly, how potential input uncertainties propagate through this cascade is still poorly understood. Such a project requires a combination of modelling capabilities, the non-linear transformation of rainfall to river flow using rainfall-runoff models, and hydraulic flood wave propagation based on the runoff predictions. Accounting for uncertainty in each component is important for quantifying impacts and understanding flood risk for different return periods. In this paper, we propose to address this issue by i) exploring the effects of errors in rainfall on inundation predictive capacity within an uncertainty framework by testing inundation uncertainty against different comparable meteorological conditions (i.e. using different rainfall products) and ii) testing different techniques to cascade uncertainties (e.g. bootstrapping, PPU envelope) within the GLUE (generalised likelihood uncertainty estimation) framework. Our method cascades rainfall uncertainties into multiple rainfall-runoff model structures as part of the Framework for Understanding Structural Errors (FUSE). The resultant prediction uncertainties in upstream discharge provide uncertain boundary conditions which are cascaded into a simplified shallow water hydraulic model (LISFLOOD-FP). Rainfall data captured by three different measurement techniques - rain gauges, gridded radar data and numerical weather predictions (NWP) models are evaluated. The study is performed in the Severn catchment over summer 2007, where a series of

  20. Dark Spatial Solitary Wave Due to Cascaded x(2) Nonlinearity

    Institute of Scientific and Technical Information of China (English)

    GAO Guan-Qie; CHEN Xian-Feng; CHEN Yu-Ping; WANG Fei-Yu; XIA Yu-Xing

    2004-01-01

    The formation of the dark spatial solitary wave in cascaded second harmonic generation processes is numerically studied based on the nonlinear-coupled equations. It is shown that the solitary wave exists when the effective three-order nonlinearity induced by cascaded second-order nonlinearity is negative.

  1. Quantum cascade lasers with an integrated polarization mode converter.

    Science.gov (United States)

    Dhirhe, D; Slight, T J; Holmes, B M; Hutchings, D C; Ironside, C N

    2012-11-01

    We discuss the design, fabrication and characterization of waveguide polarization mode converters for quantum cascade lasers operating at 4.6 μm. We have fabricated a quantum cascade laser with integrated polarization mode converter that emits light of 69% Transverse Electrical (TE) polarization from one facet and 100% Transverse Magnetic (TM) polarization from the other facet. PMID:23187389

  2. Quantum cascade lasers with an integrated polarization mode converter

    OpenAIRE

    Dhirhe, D.; Slight, T.J.; Holmes, B.M.; Hutchings, D.C.; Ironside, C. N.

    2012-01-01

    We discuss the design, fabrication and characterization of waveguide polarization mode converters for quantum cascade lasers operating at 4.6 μm. We have fabricated a quantum cascade laser with integrated polarization mode converter that emits light of 69% Transverse Electrical (TE) polarization from one facet and 100% Transverse Magnetic (TM) polarization from the other facet.

  3. Impedance Coordinative Control for Cascaded Converter in Bidirectional Application

    DEFF Research Database (Denmark)

    Tian, Yanjun; Deng, Fujin; Chen, Zhe;

    2015-01-01

    difference between forward and reversed power flow. This paper addresses the analysis with the topology of cascaded dual-active-bridge converter (DAB) with inverter, and the proposed control method can also be implemented in unidirectional applications and other general cascaded converter system...

  4. Intermittent Flow Regimes in a Transonic Fan Airfoil Cascade

    Directory of Open Access Journals (Sweden)

    J. Lepicovsky

    2004-01-01

    velocity.To date, this flow behavior has only been observed in a linear transonic cascade. Further research is necessary to confirm this phenomenon occurs in actual transonic fans and is not the by-product of an endwall restricted linear cascade.

  5. Signaling cascades modulate the speed of signal propagation through space.

    Directory of Open Access Journals (Sweden)

    Christopher C Govern

    Full Text Available BACKGROUND: Cells are not mixed bags of signaling molecules. As a consequence, signals must travel from their origin to distal locations. Much is understood about the purely diffusive propagation of signals through space. Many signals, however, propagate via signaling cascades. Here, we show that, depending on their kinetics, cascades speed up or slow down the propagation of signals through space, relative to pure diffusion. METHODOLOGY/PRINCIPAL FINDINGS: We modeled simple cascades operating under different limits of Michaelis-Menten kinetics using deterministic reaction-diffusion equations. Cascades operating far from enzyme saturation speed up signal propagation; the second mobile species moves more quickly than the first through space, on average. The enhanced speed is due to more efficient serial activation of a downstream signaling module (by the signaling molecule immediately upstream in the cascade at points distal from the signaling origin, compared to locations closer to the source. Conversely, cascades operating under saturated kinetics, which exhibit zero-order ultrasensitivity, can slow down signals, ultimately localizing them to regions around the origin. CONCLUSIONS/SIGNIFICANCE: Signal speed modulation may be a fundamental function of cascades, affecting the ability of signals to penetrate within a cell, to cross-react with other signals, and to activate distant targets. In particular, enhanced speeds provide a way to increase signal penetration into a cell without needing to flood the cell with large numbers of active signaling molecules; conversely, diminished speeds in zero-order ultrasensitive cascades facilitate strong, but localized, signaling.

  6. 36 CFR 7.66 - North Cascades National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park....

  7. Anomalous dissipation and energy cascade in 3D inviscid flows

    CERN Document Server

    Dascaliuc, Radu

    2011-01-01

    Adopting the setting for the study of existence and scale locality of the energy cascade in 3D viscous flows in physical space introduced in [arXiv:1101.2193] to 3D inviscid flows, it is shown that the anomalous dissipation is indeed capable of triggering the cascade which then continues ad infinitum, confirming Onsager's predictions.

  8. A simple model of global cascades on random networks

    Science.gov (United States)

    Watts, Duncan J.

    2002-04-01

    The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascadesherein called global cascadesthat occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.

  9. Influence of blood flow on the coagulation cascade

    DEFF Research Database (Denmark)

    The influence of diffusion and convetive flows on the blood coagulation cascade is investigated for a controlled perfusion experiment. We present a cartoon model and reaction schemes for parts of the coagulation cascade with sunsequent set up of a mathematical model in two space dimensions plus one...

  10. Terahertz Quantum Cascade Laser Local Oscillator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a need for airborne or space-based observatories and remote sensors in order to penetrate the opaque atmosphere between 1 and 10 THz. For observations...

  11. Degassing cascades in a shear-thinning viscoelastic fluid

    CERN Document Server

    Vidal, Valérie; Divoux, Thibaut; Géminard, Jean-Christophe

    2011-01-01

    We report the experimental study of the degassing dynamics through a thin layer of shear-thinning viscoelastic fluid (CTAB/NaSal solution), when a constant air flow is imposed at its bottom. Over a large range of parameters, the air is periodically released through series of successive bubbles, hereafter named {\\it cascades}. Each cascade is followed by a continuous degassing, lasting for several seconds, corresponding to an open channel crossing the fluid layer. The periodicity between two cascades does not depend on the injected flow-rate. Inside one cascade, the properties of the overpressure signal associated with the successive bubbles vary continuously. The pressure threshold above which the fluid starts flowing, fluid deformation and pressure drop due to degassing through the thin fluid layer can be simply described by a Maxwell model. We point out that monitoring the evolution inside the cascades provides a direct access to the characteristic relaxation time associated with the fluid rheology.

  12. On Watts' Cascade Model with Random Link Weights

    CERN Document Server

    Hurd, T R

    2012-01-01

    We study an extension of Duncan Watts' 2002 model of information cascades in social networks where edge weights are taken to be random, an innovation motivated by recent applications of cascade analysis to systemic risk in financial networks. The main result is a probabilistic analysis that characterizes the cascade in an infinite network as the fixed point of a vector-valued mapping, explicit in terms of convolution integrals that can be efficiently evaluated numerically using the fast Fourier transform algorithm. A second result gives an approximate probabilistic analysis of cascades on "real world networks", finite networks based on a fixed deterministic graph. Extensive cross testing with Monte Carlo estimates shows that this approximate analysis performs surprisingly well, and provides a flexible microscope that can be used to investigate properties of information cascades in real world networks over a wide range of model parameters.

  13. Tolerance of edge cascades with coupled map lattices methods

    Institute of Scientific and Technical Information of China (English)

    Cui Di; Gao Zi-You; Zheng Jian-Feng

    2009-01-01

    This paper studies the cascading failure on random networks and scale-free networks by introducing the tolerance parameter of edge based on the coupled map lattices methods. The whole work focuses on investigating some indices including the number of failed edges, dynamic edge tolerance capacity and the perturbation of edge. In general, it assumes that the perturbation is attributed to the normal distribution in adopted simulations. By investigating the effectiveness of edge tolerance in scale-free and random networks, it finds that the larger tolerance parameter 位 can more efficiently delay the cascading failure process for scale-free networks than random networks. These results indicate that the cascading failure process can be effectively controlled by increasing the tolerance parameter A. Moreover, the simulations also show that, larger variance of perturbation can easily trigger the cascading failures than the smaller one. This study may be useful for evaluating efficiency of whole traffic systems, and for alleviating cascading failure in such systems.

  14. Spatio-temporal propagation of cascading overload failures

    CERN Document Server

    Zhao, Jichang; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo

    2015-01-01

    Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behavior of cascading overload failures analytically and numerically. The cascading overload failures are found to spread radially from the center of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict and mitigate the dynamics of cascading overload f...

  15. Cascading Node Failure with Continuous States in Random Geometric Networks

    CERN Document Server

    Kamran, Khashayar

    2016-01-01

    The increasing complexity and interdependency of today's networks highlight the importance of studying network robustness to failure and attacks. Many large-scale networks are prone to cascading effects where a limited number of initial failures (due to attacks, natural hazards or resource depletion) propagate through a dependent mechanism, ultimately leading to a global failure scenario where a substantial fraction of the network loses its functionality. These cascading failure scenarios often take place in networks which are embedded in space and constrained by geometry. Building on previous results on cascading failure in random geometric networks, we introduce and analyze a continuous cascading failure model where a node has an initial continuously-valued state, and fails if the aggregate state of its neighbors fall below a threshold. Within this model, we derive analytical conditions for the occurrence and non-occurrence of cascading node failure, respectively.

  16. A modeling framework for system restoration from cascading failures.

    Science.gov (United States)

    Liu, Chaoran; Li, Daqing; Zio, Enrico; Kang, Rui

    2014-01-01

    System restoration from cascading failures is an integral part of the overall defense against catastrophic breakdown in networked critical infrastructures. From the outbreak of cascading failures to the system complete breakdown, actions can be taken to prevent failure propagation through the entire network. While most analysis efforts have been carried out before or after cascading failures, restoration during cascading failures has been rarely studied. In this paper, we present a modeling framework to investigate the effects of in-process restoration, which depends strongly on the timing and strength of the restoration actions. Furthermore, in the model we also consider additional disturbances to the system due to restoration actions themselves. We demonstrate that the effect of restoration is also influenced by the combination of system loading level and restoration disturbance. Our modeling framework will help to provide insights on practical restoration from cascading failures and guide improvements of reliability and resilience of actual network systems.

  17. 3D Effects in the Formation of Zonal Jets Through Inverse Cascade

    Science.gov (United States)

    Sayanagi, K. M.; Showman, A. P.

    2006-12-01

    The atmospheric zonal jets on Jupiter and Saturn are characterized by the broad, prograde, equatorial jet and the narrower, higher-latitude jets that alternate between prograde and retrograde. The question of what controls the widths and directions of those jets remains a major unsolved problem in geophysical fluid dynamics. Past studies have shown that, in shallow flows on a rotating sphere, small random vortices can undergo inverse cascade to form zonal jets with a characteristic width called the Rhines scale. Most of the studies to date use 2D non-divergent or shallow-water models in studying this zonal jet formation mechanism. However, in the parameter ranges representative of the Jovian conditions, the flows produced by 2D non- divergent models are typically dominated by strong circumpolar jets, and the shallow-water models produce a robust retrograde equatorial jet. These models' apparent inabilities in reproducing some key Jovian jet features may suggest the importance of 3D effects in controlling the jets' large-scale horizontal structures. To date, Kitamura and Matsuda (Fluid Dynamics Research, 34, 33-57, 2004) is the only published study that analyzes the 3D effects in the zonalization of fine-scale random turbulence through the inverse cascade. Their two-layer primitive equation simulations of free-evolving flows resulted in circumpolar jet dominated flows, although slower mid-latitude jets are also present. Our study is a significant extension over that by Kitamura and Matsuda and includes substantially more layers to study the zonalization process to more fully resolve relevant 3D effects in the inverse cascade. We test the flow behavior's dependence on the deformation radius and the resulting vertical structures in both spherical and beta-plane geometries. Our study uses the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al, Icarus, 32, 221-238., 1998). The research is supported by a NASA Planetary Atmospheres grant to APS.

  18. Cascaded generation of coherent Raman dissipative solitons.

    Science.gov (United States)

    Kharenko, Denis S; Bednyakova, Anastasia E; Podivilov, Evgeniy V; Fedoruk, Mikhail P; Apolonski, Alexander; Babin, Sergey A

    2016-01-01

    The cascaded generation of a conventional dissipative soliton (at 1020 nm) together with Raman dissipative solitons of the first (1065 nm) and second (1115 nm) orders inside a common fiber laser cavity is demonstrated experimentally and numerically. With sinusoidal (soft) spectral filtering, the generated solitons are mutually coherent at a high degree and compressible down to 300 fs. Numerical simulation shows that an even higher degree of coherence and shorter pulses could be achieved with step-like (hard) spectral filtering. The approach can be extended toward a high-order coherent Raman dissipative soliton source offering numerous applications such as frequency comb generation, pulse synthesis, biomedical imaging, and the generation of a coherent mid-infrared supercontinuum. PMID:26696187

  19. Availability Cascades and the Sharing Economy

    DEFF Research Database (Denmark)

    Netter, Sarah

    2016-01-01

    As scholars search for a new concept that will provide answers on how modern societies should make sense of and resolve the social and environmental problems linked to our modes of production and consumption, the sharing economy is attracting increased attention. To better understand this emergent...... focus on a sharing economy and associated business and consumption models, this conceptual chapter applies cascade theory to some of the most pronounced narratives , suggesting a win-win scenario, especially as they relate to the claim of sustainability. Given academics, practitioners, and civil society......’s shared history of (too) rapidly embracing new concepts that enable both business opportunities and a clear conscience, this chapter proposes that the implications of the sharing economy should be critically explored before it is actively promoted as the latest best fix....

  20. High brightness angled cavity quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu [Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightest QCL to date.

  1. Including electronic effects in damage cascade simulations

    International Nuclear Information System (INIS)

    A method for including the effects of electronic losses and electron-phonon coupling in radiation damage simulations has been developed and implemented for 10 keV cascades in Fe. The MD simulations are coupled to a continuum model for the electronic energy and energy lost by the atoms, due to electronic friction and electron-phonon coupling, is gained by electronic system. Electronic energy transport is described by the heat diffusion equation and energy is returned to the lattice via a stochastic force. Thus the temperature of the atomic system is controlled by a Langevin thermostat at the local electronic temperature, which varies with time and space. The results of simulations with this inhomogeneous thermostat are compared with those of homogeneous (constant temperature) thermostat simulations for a range of electron-phonon coupling strengths. The residual defect concentration was found to have a non-monotonic variation with coupling strength.

  2. Free energy cascade in gyrokinetic turbulence

    CERN Document Server

    Navarro, A Bañón; Albrecht-Marc, M; Merz, F; Görler, T; Jenko, F; Carati, D

    2010-01-01

    In gyrokinetic theory, the quadratic nonlinearity is known to play an important role in the dynamics by redistributing (in a conservative fashion) the free energy between the various active scales. In the present study, the free energy transfer is analyzed for the case of ion temperature gradient driven turbulence. It is shown that it shares many properties with the energy transfer in fluid turbulence. In particular, one finds a forward (from large to small scales), extremely local, and self-similar cascade of free energy in the plane perpendicular to the background magnetic field. These findings shed light on some fundamental properties of plasma turbulence, and encourage the development of large eddy simulation techniques for gyrokinetics.

  3. Interface Phonon Modes in Quantum Cascade Lasers

    Institute of Scientific and Technical Information of China (English)

    YU Bing; CAO Jun-Cheng; FENG Song-Lin

    2005-01-01

    @@ We investigate the interface phonon assisted transition in GaAs/AlGaAs quantum cascade lasers (QCLs) by using the transfer matrix method based on the dielectric continuum model. Electron eigenvalues and eigenstates are calculated by solving Schrodinger equation and the Poisson equation self-consistently. The AlAs-like and upper GaAs-like interface phonon modes contribute most of the scattering rate. Interface phonon modes couple strongly with electrons at E2, and the magnitude of scattering rate between E2 and E1 is much larger than that between E3 and E1, which is helpful for the laser inversion between E3 and E2. The calculation can be easily applied to the design and simulation of QCLs.

  4. Hyperuniform disordered terahertz quantum cascade laser

    Science.gov (United States)

    Degl'Innocenti, R.; Shah, Y. D.; Masini, L.; Ronzani, A.; Pitanti, A.; Ren, Y.; Jessop, D. S.; Tredicucci, A.; Beere, H. E.; Ritchie, D. A.

    2016-01-01

    Laser cavities have been realized in various different photonic systems. One of the forefront research fields regards the investigation of the physics of amplifying random optical media. The random laser is a fascinating concept because, further to the fundamental research investigating light transport into complex media, it allows us to obtain non-conventional spectral distribution and angular beam emission patterns not achievable with conventional approaches. Even more intriguing is the possibility to engineer a priori the optical properties of a disordered distribution in an amplifying medium. We demonstrate here the realization of a terahertz quantum cascade laser in an isotropic hyperuniform disordered distribution exhibiting unique features, such as the presence of a photonic band gap, low threshold current density, unconventional angular emission and optical bistability.

  5. Influence of the condensate and inverse cascade on the direct cascade in wave turbulence

    CERN Document Server

    Korotkevich, A O

    2009-01-01

    During direct numerical simulation of the isotropic turbulence of surface gravity waves in the framework of Hamiltonian equations formation of the long wave background or condensate was observed. Exponents of the direct cascade spectra at the different levels of an artificial condensate suppression show a tendency to become closer to the prediction of the wave turbulence theory at lower levels of condensate. A simple qualitative explanation of the mechanism of this phenomenon is proposed.

  6. Geomagnetic effects on atmospheric Cerenkov images

    CERN Document Server

    Chadwick, P M; McComb, T J L; Orford, K J; Osborne, J L; Rayner, S M; Roberts, I D; Shaw, S E; Turver, K E

    1999-01-01

    Atmospheric Cerenkov telescopes are used to detect electromagnetic showers from primary gamma rays of energy ~300 GeV - ~10 TeV and to discriminate these from cascades due to hadrons using the Cerenkov images. The geomagnetic field affects the development of showers and is shown to diffuse and distort the images. When the component of the field normal to the shower axis is sufficiently large (> 0.4 G) the performance of gamma ray telescopes may be affected, although corrections should be possible.

  7. Reduce of Threshold of Laser Inducing Breakdown in Atmosphere by Introducing an Electric Spark

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-Bin; SHI Wei; LI Hua

    2005-01-01

    @@ We report laser-generated plasmas in atmosphere with electrical spark generated by a synchronization circuit.The breakdown thresholds under the conditions that the electrical spark is used and not used are compared.The breakdown threshold has a distinct decrease after the electrical spark is used. Breakdown thresholds as afunction of atmosphere pressure have also been measured at laser wavelengths 532nm and 1064 nm for the laserpulse width of 15ns. We also discuss the principle and performances of the ionized atmosphere by Nd:YAGlaser under the condition of electrical spark introduction. Multiphoton ionization and cascade ionization playimportant roles in the whole process of atmosphere ionization. The free electron induced by electrical spark cansupply the initialization free electron number for multiphoton ionization and cascade ionization. A model forbreakdown in atmosphere, which is in good agreement with the experimental results, is described.

  8. Proton Pump Inhibitors and the Prescribing Cascade.

    Science.gov (United States)

    Rababa, Mohammad; Al-Ghassani, Amal Ali; Kovach, Christine R; Dyer, Elaine M

    2016-04-01

    HOW TO OBTAIN CONTACT HOURS BY READING THIS ARTICLE Instructions 1.3 contact hours will be awarded by Villanova University College of Nursing upon successful completion of this activity. A contact hour is a unit of measurement that denotes 60 minutes of an organized learning activity. This is a learner-based activity. Villanova University College of Nursing does not require submission of your answers to the quiz. A contact hour certificate will be awarded once you register, pay the registration fee, and complete the evaluation form online at http://goo.gl/gMfXaf. To obtain contact hours you must: 1. Read the article, "Proton Pump Inhibitors and the Prescribing Cascade" found on pages 23-31, carefully noting any tables and other illustrative materials that are included to enhance your knowledge and understanding of the content. Be sure to keep track of the amount of time (number of minutes) you spend reading the article and completing the quiz. 2. Read and answer each question on the quiz. After completing all of the questions, compare your answers to those provided within this issue. If you have incorrect answers, return to the article for further study. 3. Go to the Villanova website listed above to register for contact hour credit. You will be asked to provide your name; contact information; and a VISA, MasterCard, or Discover card number for payment of the $20.00 fee. Once you complete the online evaluation, a certificate will be automatically generated. This activity is valid for continuing education credit until March 31, 2019. CONTACT HOURS This activity is co-provided by Villanova University College of Nursing and SLACK Incorporated. Villanova University College of Nursing is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. ACTIVITY OBJECTIVES 1. Describe the prescribing cascade of proton pump inhibitors (PPI) in nursing home residents. 2. Identify the statistically

  9. Probabilistic analysis of cascade failure dynamics in complex network

    Science.gov (United States)

    Zhang, Ding-Xue; Zhao, Dan; Guan, Zhi-Hong; Wu, Yonghong; Chi, Ming; Zheng, Gui-Lin

    2016-11-01

    The impact of initial load and tolerance parameter distribution on cascade failure is investigated. By using mean field theory, a probabilistic cascade failure model is established. Based on the model, the damage caused by certain attack size can be predicted, and the critical attack size is derived by the condition of cascade failure end, which ensures no collapse. The critical attack size is larger than the case of constant tolerance parameter for network of random distribution. Comparing three typical distributions, simulation results indicate that the network whose initial load and tolerance parameter both follow Weibull distribution performs better than others.

  10. Probing the energy cascade of convective turbulence.

    Science.gov (United States)

    Kunnen, R P J; Clercx, H J H

    2014-12-01

    The existence of a buoyancy-dominated scaling range in convective turbulence is a longstanding open question. We investigate this issue by considering the scale-by-scale energy budget in direct numerical simulations of Rayleigh-Bénard convection. We try to minimize the so-called Bolgiano length scale, the length scale at which buoyancy becomes dominant for scaling. Therefore, we deliberately choose modest Rayleigh numbers Ra=2.5×10(6) and 2.5×10(7). The budget reveals that buoyant forcing, turbulent energy transfer, and dissipation are contributing significantly over a wide range of scales. Thereby neither Kolmogorov-like (balance of turbulent transfer and dissipation) nor Bolgiano-Obukhov-like scaling (balance of turbulent transfer and buoyancy) is expected in the structure functions, which indeed reveal inconclusive scaling behavior. Furthermore, we consider the calculation of the Bolgiano length scale. To account for correlations between the dissipation rates of kinetic energy and thermal variance we propose to average the Bolgiano length scale directly. This gives an estimate, which is one order of magnitude larger than the previous estimate, and actually larger than the domain itself. Rather than studying the scaling of structure functions, we propose that the use of scale-by-scale energy budgets resolving anisotropic contributions is appropriate to consider the energy cascade mechanisms in turbulent convection.

  11. Inverse turbulent cascade in swarming sperm

    Science.gov (United States)

    Creppy, Adama; Praud, Olivier; Druart, Xavier; Kohnke, Philippa; Plouraboue, Franck; Inra, Cnrs, Umr, F-37380 Nouzilly, France Team; Université de Toulouse, Inpt, Ups, Imft, Umr 5502, France Team

    2014-11-01

    Collective motion of self-sustained swarming flows has recently provided examples of small scale turbulence arising where viscosity effects are dominant. We report the first observation of an universal inverse enstrophy cascade in concentrated swarming sperm consistent with a body of evidence built from various independent measurements. We found a well-defined k-3 power-law decay of velocity field power-spectrum and relative dispersion of small beads consistent with theoretical predictions in two-dimensional turbulence. Concentrated living sperm displays long-range, correlated whirlpool structures the size of which provides turbulence's integral scale. We propose a consistent explanation for this quasi-two-dimensional turbulence based on self-structured laminated flow forced by steric interaction and alignment, a state of active matter that we call ``swarming liquid crystal.'' We develop scaling arguments consistent with this interpretation. The implication of multi-scale collective dynamics of sperm's collective motility for fertility assessment is discussed. This work has been supported by the French Agence Nationale pour la Recherche (ANR) in the frame of the Contract MOTIMO (ANR-11-MONU-009-01). We thank Pierre Degond, Eric Climent, Laurent Lacaze and Frédéric Moulin for interesting discussions.

  12. Cascading reminiscence bumps in popular music.

    Science.gov (United States)

    Krumhansl, Carol Lynne; Zupnick, Justin Adam

    2013-10-01

    Autobiographical memories are disproportionately recalled for events in late adolescence and early adulthood, a phenomenon called the reminiscence bump. Previous studies on music have found autobiographical memories and life-long preferences for music from this period. In the present study, we probed young adults' personal memories associated with top hits over 5-and-a-half decades, as well as the context of their memories and their recognition of, preference for, quality judgments of, and emotional reactions to that music. All these measures showed the typical increase for music released during the two decades of their lives. Unexpectedly, we found that the same measures peaked for the music of participants' parents' generation. This finding points to the impact of music in childhood and suggests that these results reflect the prevalence of music in the home environment. An earlier peak occurred for 1960s music, which may be explained by its quality or by its transmission through two generations. We refer to this pattern of musical cultural transmission over generations as cascading reminiscence bumps. PMID:24006129

  13. Astronomical Forcing of Salt Marsh Biogeochemical Cascades

    Science.gov (United States)

    Morris, J. T.; Sundberg, K.

    2008-12-01

    Astronomically forced changes in the hydroperiod of a salt marsh affect the rate of marsh primary production leading to a biogeochemical cascade. For example, salt marsh primary production and biogeochemical cycles in coastal salt marshes are sensitive to the 18.6-year lunar nodal cycle, which alters the tidal amplitude by about 5 cm. For marshes that are perched high in the tidal frame, a relatively small increase in tidal amplitude and flooding lowers sediment salinity and stimulates primary production. Porewater sulfide concentrations are positively correlated with tidal amplitude and vary on the same cycle as primary production. Soluble reactive phosphate and ammonium concentrations in pore water also vary on this 18.6- year cycle. Phosphate likely responds to variation in the reaction of sulfide with iron-phosphate compounds, while the production of ammonium in sediments is coupled to the activity of diazotrophs that are carbon- limited and, therefore, are regulated by primary productivity. Ammonium also would accumulate when sulfides block nitrification. These dependencies work as a positive feedback between primary production and nutrient supply and are predictive of the near-term effects of sea-level rise.

  14. Cascading reminiscence bumps in popular music.

    Science.gov (United States)

    Krumhansl, Carol Lynne; Zupnick, Justin Adam

    2013-10-01

    Autobiographical memories are disproportionately recalled for events in late adolescence and early adulthood, a phenomenon called the reminiscence bump. Previous studies on music have found autobiographical memories and life-long preferences for music from this period. In the present study, we probed young adults' personal memories associated with top hits over 5-and-a-half decades, as well as the context of their memories and their recognition of, preference for, quality judgments of, and emotional reactions to that music. All these measures showed the typical increase for music released during the two decades of their lives. Unexpectedly, we found that the same measures peaked for the music of participants' parents' generation. This finding points to the impact of music in childhood and suggests that these results reflect the prevalence of music in the home environment. An earlier peak occurred for 1960s music, which may be explained by its quality or by its transmission through two generations. We refer to this pattern of musical cultural transmission over generations as cascading reminiscence bumps.

  15. Cascade category-aware visual search.

    Science.gov (United States)

    Zhang, Shiliang; Tian, Qi; Huang, Qingming; Gao, Wen; Rui, Yong

    2014-06-01

    Incorporating image classification into image retrieval system brings many attractive advantages. For instance, the search space can be narrowed down by rejecting images in irrelevant categories of the query. The retrieved images can be more consistent in semantics by indexing and returning images in the relevant categories together. However, due to their different goals on recognition accuracy and retrieval scalability, it is hard to efficiently incorporate most image classification works into large-scale image search. To study this problem, we propose cascade category-aware visual search, which utilizes weak category clue to achieve better retrieval accuracy, efficiency, and memory consumption. To capture the category and visual clues of an image, we first learn category-visual words, which are discriminative and repeatable local features labeled with categories. By identifying category-visual words in database images, we are able to discard noisy local features and extract image visual and category clues, which are hence recorded in a hierarchical index structure. Our retrieval system narrows down the search space by: 1) filtering the noisy local features in query; 2) rejecting irrelevant categories in database; and 3) preforming discriminative visual search in relevant categories. The proposed algorithm is tested on object search, landmark search, and large-scale similar image search on the large-scale LSVRC10 data set. Although the category clue introduced is weak, our algorithm still shows substantial advantages in retrieval accuracy, efficiency, and memory consumption than the state-of-the-art.

  16. Compression-absorption cascade refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Sieres, Jaime; Vazquez, Manuel [Area de Maquinas y Motores Termicos, Escuela Tecnica Superior de Ingenieros Industriales, Universidade de Vigo, Campus Lagoas-Marcosende, 9, 36200 Vigo (Spain)

    2006-04-01

    This paper describes the study carried out to analyse a refrigeration system in cascade with a compression system at the low temperature stage and an absorption system at the high temperature stage to generate cooling at low temperatures, as well as the possibility of powering it by means of a cogeneration system. CO{sub 2} and NH{sub 3} have been considered as refrigerants in the compression stage and the pair NH{sub 3}-H{sub 2}O in the absorption stage. The analysis has been realized by means of a mathematical model of the refrigeration system implemented in a computer program and taking into account the characteristic operating conditions of a cogeneration system with gas engines. The paper presents the results obtained regarding the performance of the refrigeration system and the adaptability between the power requirements of the refrigeration system and the power supplied by the cogeneration system taking into account the present Spanish Regulations about the use of cogeneration systems. [Author].

  17. Quantum cascade laser Kerr frequency comb

    CERN Document Server

    Lecaplain, Caroline; Lucas, Erwan; Jost, John D; Kippenberg, Tobias J

    2015-01-01

    The mid-infrared (mid-IR) regime (typically the wavelength regime of $\\lambda \\sim 2.5-20 \\ \\mathrm{\\mu m}$) is an important spectral range for spectroscopy as many molecules have their fundamental rotational-vibrational absorption in this band. Recently optical frequency combs based on optical microresonators ("Kerr" combs) at the onset of the mid-IR region have been generated using crystalline resonators and integrated planar silicon micro-resonators. Here we extend for the first time Kerr combs deep into the mid-IR i.e. the 'molecular fingerprint' region. This is achieved by combining an ultra high quality (Q) factor mid-IR microresonator based on crystalline $\\mathrm{MgF_{2}}$ with the quantum cascade laser (QCL) technology. Using a tapered chalgogenide (ChG) fiber and a QCL continuous wave pump laser, frequency combs at $\\lambda\\sim 4.4\\ \\mathrm{\\mu m}$ (i.e. 2270cm$^{-1}$) are generated, that span over 600nm (i.e. 300cm$^{-1}$) in bandwidth, with a mode spacing of 14.3GHz (0.5cm$^{-1}$), corresponding t...

  18. Terahertz Quantum Cascade Laser Based 3D Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — LongWave Photonics proposes a terahertz quantum-cascade laser based swept-source optical coherence tomography (THz SS-OCT) system for single-sided, 3D,...

  19. Noise properties and cascadability of SOA-EA regenerators

    DEFF Research Database (Denmark)

    Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne;

    2002-01-01

    We suggest and analyse a new device containing concatenated pairs of semiconductor optical amplifiers (SOAs) and electroabsorption modulators (EAs). The device has regenerative properties and improves the cascadability of optical fibre links....

  20. Enantiomer separation in a cascaded micellar-enhanced ultrafiltration system

    NARCIS (Netherlands)

    Overdevest, P.E.M.; Hoenders, M.H.J.; Riet, van 't K.; Padt, van der A.; Keurentjes, J.T.F.

    2002-01-01

    The increasing demand for optically pure compounds (enantiomers) stimulates the development of new enantiomer separation processes on an industrial scale. The separation of enantiomers by ultrafiltration of enantioselective micelles was studied in a cascaded system. The feasibility of this separatio

  1. Influence of Blade Chordwise Lean on Development of Cascade Losses

    Institute of Scientific and Technical Information of China (English)

    HanWanjin; HuangHongyan; 等

    1996-01-01

    An experimetal investigation was carried out on the effect of blade chordwise lean on the losse in highly loaded rectangular turbine cascades,Datailed measurements include 10 traverses from upstream to downstream of the cascades with five-hole spherical probes.Compared with the experimental data of the coventional Straight and pitchwise lean blades under the same conditions,it is shown that the effect of chordwise lean on the development of the cascade losses is similar to that of pitchwise lean.However,the chordwise lean produces smaller streamwise adverse pressure gradients near both endwalls and a smaller spanwise negative one starting from the actute angle side in the first part of the passages in chordwise lean cascade,thereby the saddle point separations and intensities of the passage vortices are weakened and the secondary vorte losses are cut down notably.

  2. Electron - positron cascades in multiple-laser optical traps

    CERN Document Server

    Vranic, Marija; Fonseca, Ricardo A; Silva, Luis O

    2016-01-01

    We present an analytical and numerical study of multiple-laser QED cascades induced with linearly polarised laser pulses. We analyse different polarisation orientations and propose a configuration that maximises the cascade multiplicity and favours the laser absorption. We generalise the analytical estimate for the cascade growth rate previously calculated in the field of two colliding linearly polarised laser pulses and account for multiple laser interaction. The estimate is verified by a comprehensive numerical study of four-laser QED cascades across a range of different laser intensities with QED PIC module of OSIRIS. We show that by using four linearly polarised 30 fs laser pulses, one can convert more than 50 % of the total energy to gamma-rays already at laser intensity $I\\simeq10^{24}\\ \\mathrm{W/cm^2}$. In this configuration, the laser conversion efficiency is higher compared with the case with two colliding lasers.

  3. On periodic orbits in discrete-time cascade systems

    Directory of Open Access Journals (Sweden)

    Huimin Li

    2006-01-01

    Full Text Available We present some results on existence, minimum period, number of periodic orbits, and stability of periodic orbits in discrete-time cascade systems. Some examples are presented to illustrate these results.

  4. Mutually independent cascades in anisotropic soap-film turbulence

    Science.gov (United States)

    Liu, Chien-Chia; Gioia, Gustavo; Chakraborty, Pinaki

    2015-03-01

    Computational, experimental and field data amassed to date indicate that in 2D turbulence the spectrum of longitudinal velocity fluctuations, E11 (k1) , and the spectrum of transverse velocity fluctuations, E22 (k1) , correspond always to the same cascade, consistent with isotropy, so that E11 (k1) ~k-α and E22 (k1) ~k-α , where the ``spectral exponent'' α is either 5/3 (for the inverse-energy cascade) or 3 (for the enstrophy cascade). Here, we carry out experiments on turbulent 2D soap-film flows in which E11 (k1) ~k - 5 / 3 and E22 (k1) ~k-3 , as if two mutually independent cascades were concurrently active within the same flow. To our knowledge, this species of spectrum has never been observed or predicted theoretically. Our finding might open up new vistas in the understanding of turbulence.

  5. The flow analysis of supercavitating cascade by linear theory

    Energy Technology Data Exchange (ETDEWEB)

    Park, E.T. [Sung Kyun Kwan Univ., Seoul (Korea, Republic of); Hwang, Y. [Seoul National Univ., Seoul (Korea, Republic of)

    1996-06-01

    In order to reduce damages due to cavitation effects and to improve performance of fluid machinery, supercavitation around the cascade and the hydraulic characteristics of supercavitating cascade must be analyzed accurately. And the study on the effects of cavitation on fluid machinery and analysis on the performances of supercavitating hydrofoil through various elements governing flow field are critically important. In this study comparison of experiment results with the computed results of linear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. 7 refs., 6 figs.

  6. Dynamic Modeling of Cascading Failure in Power Systems

    CERN Document Server

    Song, Jiajia; Ghanavati, Goodarz; Hines, Paul D H

    2014-01-01

    The modeling of cascading failure in power systems is difficult because of the many different mechanisms involved; no single model captures all of these mechanisms. Understanding the relative importance of these different mechanisms is an important step in choosing which mechanisms need to be modeled for particular types of cascading failure analysis. This work presents a dynamic simulation model of both power networks and protection systems, which can simulate a wider variety of cascading outage mechanisms, relative to existing quasi-steady state (QSS) models. The model allows one to test the impact of different load models and protections on cascading outage sizes. This paper describes each module of the developed dynamic model and demonstrates how different mechanisms interact. In order to test the model we simulated a batch of randomly selected $N-2$ contingencies for several different static load configurations, and found that the distribution of blackout sizes and event lengths from the proposed dynamic...

  7. Cascading failures in local-world evolving networks

    Institute of Scientific and Technical Information of China (English)

    Zhe-jing BAO; Yi-jia CAO

    2008-01-01

    The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in LW network models with different LW sizes were investigated using the cascading failures load model. We found that the LW size has a significant impact on the network's robustness against deliberate attacks. It is much easier to trigger cascading failures in LW evolving networks with a larger LW size. Therefore, to avoid cascading failures in real networks with local preferential attachment such as the Internet, the World Trade Web and the multi-agent system, the LW size should be as small as possible.

  8. Statistical analysis of cascading failures in power grids

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory; Pfitzner, Rene [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory

    2010-12-01

    We introduce a new microscopic model of cascading failures in transmission power grids. This model accounts for automatic response of the grid to load fluctuations that take place on the scale of minutes, when optimum power flow adjustments and load shedding controls are unavailable. We describe extreme events, caused by load fluctuations, which cause cascading failures of loads, generators and lines. Our model is quasi-static in the causal, discrete time and sequential resolution of individual failures. The model, in its simplest realization based on the Directed Current description of the power flow problem, is tested on three standard IEEE systems consisting of 30, 39 and 118 buses. Our statistical analysis suggests a straightforward classification of cascading and islanding phases in terms of the ratios between average number of removed loads, generators and links. The analysis also demonstrates sensitivity to variations in line capacities. Future research challenges in modeling and control of cascading outages over real-world power networks are discussed.

  9. Cascade Structure of Digital Predistorter for Power Amplifier Linearization

    Directory of Open Access Journals (Sweden)

    E. B. Solovyeva

    2015-12-01

    Full Text Available In this paper, a cascade structure of nonlinear digital predistorter (DPD synthesized by the direct learning adaptive algorithm is represented. DPD is used for linearization of power amplifier (PA characteristic, namely for compensation of PA nonlinear distortion. Blocks of the cascade DPD are described by different models: the functional link artificial neural network (FLANN, the polynomial perceptron network (PPN and the radially pruned Volterra model (RPVM. At synthesis of the cascade DPD there is possibility to overcome the ill conditionality problem due to reducing the dimension of DPD nonlinear operator approximation. Results of compensating nonlinear distortion in Wiener–Hammerstein model of PA at the GSM–signal with four carriers are shown. The highest accuracy of PA linearization is produced by the cascade DPD containing PPN and RPVM.

  10. Evaluating the Spatial Distribution of Toxic Air Contaminants in Multiple Ecosystem Indicators in the Sierra Nevada-Southern Cascades

    Science.gov (United States)

    Nanus, L.; Simonich, S. L.; Rocchio, J.; Flanagan, C.

    2013-12-01

    Toxic air contaminants originating from agricultural areas of the Central Valley in California threaten vulnerable sensitive receptors including surface water, vegetation, snow, sediments, fish, and amphibians in the Sierra Nevada-Southern Cascades region. The spatial distribution of toxic air contaminants in different ecosystem indicators depends on variation in atmospheric concentrations and deposition, and variation in air toxics accumulation in ecosystems. The spatial distribution of organic air toxics and mercury at over 330 unique sampling locations and sample types over two decades (1990-2009) in the Sierra Nevada-Southern Cascades region were compiled and maps were developed to further understand spatial patterns and linkages between air toxics deposition and ecological effects. Potential ecosystem impacts in the Sierra Nevada-Southern Cascades region include bioaccumulation of air toxics in both aquatic and terrestrial ecosystems, reproductive disruption, and immune suppression. The most sensitive ecological end points in the region that are affected by bioaccumulation of toxic air contaminants are fish. Mercury was detected in all fish and approximately 6% exceeded human consumption thresholds. Organic air toxics were also detected in fish yielding variable spatial patterns. For amphibians, which are sensitive to pesticide exposure and potential immune suppression, increasing trends in current and historic use pesticides are observed from north to south across the region. In other indicators, such as vegetation, pesticide concentrations in lichen increase with increasing elevation. Current and historic use pesticides and mercury were also observed in snowpack at high elevations in the study area. This study shows spatial patterns in toxic air contaminants, evaluates associated risks to sensitive receptors, and identifies data gaps. Future research on atmospheric modeling and information on sources is needed in order to predict which ecosystems are the

  11. The CCFM Monte Carlo generator CASCADE 2.2.0

    CERN Document Server

    Jung, H; Deak, M; Grebenyuk, A; Hautmann, F; Hentschinski, M; Knutsson, A; Kraemer, M; Kutak, K; Lipatov, A; Zotov, N

    2010-01-01

    CASCADE is a full hadron level Monte Carlo event generator for ep, \\gamma p and p\\bar{p} and pp processes, which uses the CCFM evolution equation for the initial state cascade in a backward evolution approach supplemented with off - shell matrix elements for the hard scattering. A detailed program description is given, with emphasis on parameters the user wants to change and variables which completely specify the generated events.

  12. Phase seeding of a terahertz quantum cascade laser

    OpenAIRE

    Oustinov, Dimitri; Jukam, Nathan; Rungsawang, Rakchanok; Madéo, Julien; Barbieri, Stefano; Filloux, Pascal; Sirtori, Carlo; Marcadet, Xavier; Tignon, Jérôme; Dhillon, Sukhdeep

    2010-01-01

    International audience The amplification of spontaneous emission is used to initiate laser action. Since the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase resolved detection of the laser field. Here, we demonstrate how the carrierphase can be fixed in a semiconductor laser: a quantum cascade laser. This is performed by injection seeding a quantum cascade laser with...

  13. Hydrothermal monitoring data from the Cascade Range, northwestern United States

    Science.gov (United States)

    Ingebritsen, Steven E.; Gelwick, Katrina D.; Randolph-Flagg, Noah G.; Crankshaw, Ilana M.; Lundstrom, Elizabeth A.; McCulloch, Callum L.; Murveit, Anna M.; Newman, Alice C.; Mariner, Robert H.; Bergfeld, D.; Tucker, Dave S.; Schmidt, Mariek E.; Spicer, Kurt R.; Mosbrucker, Adam; Evans, William C.

    2013-01-01

    This database serves as a repository for hydrothermal-monitoring data collected at 25 sites in the U.S. portion of the Cascade Range volcanic arc. These data are intended to quantify baseline hydrothermal variability at most (10 of 12) of the highest-risk volcanoes in the Cascades, as defined by the U.S. Geological Survey’s (USGS’) National Volcanic Early Warning System (NVEWS) report (Ewert and others, 2005).

  14. Cascade Decays of Triplet Higgs Bosons at LEP2

    CERN Document Server

    Akeroyd, A G

    1998-01-01

    We study the Georgi-Machacek two triplet, one doublet model in the context of LEP2, and show that cascade decays of Higgs bosons to lighter Higgs bosons and a virtual vector boson may play a major role. Such decays would allow the Higgs bosons of this model to escape current searches, and in particular are of great importance for the members of the five-plet which will always decay to the three-plet giving rise to cascade signatures.

  15. Pair cascades in the magnetospheres of strongly magnetized neutron stars

    Science.gov (United States)

    Medin, Zach; Lai, Dong

    2010-08-01

    We present numerical simulations of electron-positron pair cascades in the magnetospheres of magnetic neutron stars for a wide range of surface fields (Bp = 1012-1015 G), rotation periods (0.1-10 s) and field geometries. This has been motivated by the discovery in recent years of a number of radio pulsars with inferred magnetic fields comparable to those of magnetars. Evolving the cascade generated by a primary electron or positron after it has been accelerated in the inner gap of the magnetosphere, we follow the spatial development of the cascade until the secondary photons and electron-positron pairs leave the magnetosphere, and we obtain the pair multiplicity and the energy spectra of the cascade pairs and photons under various conditions. Going beyond previous works, which were restricted to weaker fields (B crudely treated before, including photon splitting with the correct selection rules for photon polarization modes, one-photon pair production into low Landau levels for the e+/-, and resonant inverse Compton scattering from polar cap hotspots. We find that even for B >> BQ = 4 × 1013 G, photon splitting has a small effect on the multiplicity of the cascade since a majority of the photons in the cascade cannot split. One-photon decay into e+ e- pairs at low Landau levels, however, becomes the dominant pair production channel when B >~ 3 × 1012 G; this tends to suppress synchrotron radiation so that the cascade can develop only at a larger distance from the stellar surface. Nevertheless, we find that the total number of pairs and their energy spectrum produced in the cascade depend mainly on the polar cap voltage BpP-2, and are weakly dependent on Bp (and P) alone. We discuss the implications of our results for the radio pulsar death line and for the hard X-ray emission from magnetized neutron stars.

  16. Cascaded Soliton Compression of Energetic Femtosecond Pulses at 1030 nm

    DEFF Research Database (Denmark)

    Bache, Morten; Zhou, Binbin

    2012-01-01

    We discuss soliton compression with cascaded second-harmonic generation of energetic femtosecond pulses at 1030 nm. We discuss problems encountered with soliton compression of long pulses and show that sub-10 fs compressed pulses can be achieved.......We discuss soliton compression with cascaded second-harmonic generation of energetic femtosecond pulses at 1030 nm. We discuss problems encountered with soliton compression of long pulses and show that sub-10 fs compressed pulses can be achieved....

  17. INFORMATION CASCADES WITH FINANCIAL MARKET PROFESSIONALS: AN EXPERIMENTAL STUDY

    OpenAIRE

    Jonathan E. Alevy; Haigh, Michael S.; List, John A

    2003-01-01

    In settings where there is imperfect information about an underlying state of nature, but where inferences are made sequentially and are publicly observable, information cascades can lead to rational herding. Cascade phenomena may be seen in a variety of areas including technology adoption, financial market behavior, as well as in social processes such as mate selection or fads and fashions. Theories of rational herding have found a natural testing ground in experimental environments since th...

  18. Linewidth and tuning characteristics of terahertz quantum cascade lasers.

    Science.gov (United States)

    Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A

    2004-03-15

    We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.

  19. Analysis of noise suppression in cascaded all-optical regenerators

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Bischoff, Svend

    2002-01-01

    We derive an approximate analytical expression for the BER of cascaded links with all-optical regenerators and use it for performing a general analysis of the interplay between noise and the non-linearity of the regenerator characteristic.......We derive an approximate analytical expression for the BER of cascaded links with all-optical regenerators and use it for performing a general analysis of the interplay between noise and the non-linearity of the regenerator characteristic....

  20. Critical Boundary of Cascaded Quadratic Soliton Compression in PPLN

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin;

    2012-01-01

    Cascaded quadratic soliton compression in PPLN is investigated and a general critical soliton number is found as the compression boundary. An optimal-parameter diagram for compression at 1550 nm is presented.......Cascaded quadratic soliton compression in PPLN is investigated and a general critical soliton number is found as the compression boundary. An optimal-parameter diagram for compression at 1550 nm is presented....

  1. Physics at the AGS with a relativistic cascade

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.H.; Pang, Yang; Schlagel, T.J.

    1993-02-01

    The relativistic cascade code ARC is applied to the results from heavy ion collisions, at a laboratory energy of 14.6 GeV/c per nucleon, for a variety of projectiles and targets. A detailed discussion is given of the physics and inputs of this cascade. No deviation between ARC and experiment has yet been identified as a possible signal of collective hadronic behaviour.

  2. Threshold cascades with response heterogeneity in multiplex networks

    Science.gov (United States)

    Lee, Kyu-Min; Brummitt, Charles D.; Goh, K.-I.

    2014-12-01

    Threshold cascade models have been used to describe the spread of behavior in social networks and cascades of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different ways to influence from their neighbors of multiple types. To start to capture such settings in a stylized way, we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors is active, while the other nodes activate when, in all layers, a large enough fraction of neighbors is active. Varying the fractions of nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear discontinuously as the network density increases; however, the cascade grows more slowly over time. This behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet slowly.

  3. Cascade of negative muons in atoms

    International Nuclear Information System (INIS)

    A study is made of the evolution of a negative muon captured in an atom and the formalism of energy loss associated with the muonic atom. The principal goals are to calculate reliability the muon x-ray intensities, given the initial population of the muonic orbits, to invert the problem and deduce the initial distribution from the x-ray intensities, to provide a reasonably simple and convenient tool to correlate observations, and finally, to systematize some questions of theoretical interest. The early part of the history of the muon in matter, including the atomic capture and classical phase of the atomic cascade are reviewed. In the quantal treatment of the transition rates, both radiative and electron Auger transitions are considered. In general, multipolarities up to E3 and K, L, and M electronic shells are fully investigated. Multipole radiation is treated in the conventinal way and pesents no special problems. Magnetic type transitions between states with different principal quantum numbers are shown to be small. Auger electron ejection rates are more complicated and several approximations have been adopted. The basic results have been computed in terms of elemetary functions. In the Auger transitions we have shown that magnetic multipoles can be safety neglected. The relative sizes of the rates corresponding to different multipoles are systematically studied. A comparison of results is made with atomic photoelectric effect data and with the nuclear internal conversion coefficients. A general agreement is found, except around shell thresholds. The existing data of muonic x-ray intensities in iron and thallium are analyzed in a systematic way. It is found that for Fe the initial l-distribution is almost flat, whereas that for T1 is weighted towards the high l values, sharper than statistical. As a result of the investigations and in order to make our findings usable, a computer program has been developed. 36 references

  4. Modal character of atmospheric black carbon size distributions

    Science.gov (United States)

    Berner, A.; Sidla, S.; Galambos, Z.; Kruisz, C.; Hitzenberger, R.; ten Brink, H. M.; Kos, G. P. A.

    1996-08-01

    Samples of atmospheric aerosols, collected with cascade impactors in the urban area of Vienna (Austria) and at a coastal site on the North Sea, were investigated for black carbon (BC) as the main component of absorbing material and for mass. The size distributions are structured. The BC distributions of these samples show a predominant mode, the accumulation aerosol, in the upper submicron size range, a less distinct finer mode attributable to fresh emissions from combustion sources, and a distinct coarse mode of unclear origin. It is important to note that some parameters of the accumulation aerosol are related statistically, indicating the evolution of the atmospheric accumulation aerosol.

  5. Trace-gas sensing using the compliance voltage of an external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Taubman, Matthew S.

    2013-06-04

    Quantum cascade lasers (QCLs) are increasingly being used to detect, identify, and measure levels of trace gases in the air. External cavity QCLs (ECQCLs) provide a broadly-tunable infrared source to measure absorption spectra of chemicals and provide high detection sensitivity and identification confidence. Applications include detecting chemical warfare agents and toxic industrial chemicals, monitoring building air quality, measuring greenhouse gases for atmospheric research, monitoring and controlling industrial processes, analyzing chemicals in exhaled breath for medical diagnostics, and many more. Compact, portable trace gas sensors enable in-field operation in a wide range of platforms, including handheld units for use by first responders, fixed installations for monitoring air quality, and lightweight sensors for deployment in unmanned aerial vehicles (UAVs). We present experimental demonstration of a new chemical sensing technique based on intracavity absorption in an external cavity quantum cascade laser (ECQCL). This new technique eliminates the need for an infrared photodetector and gas cell by detecting the intracavity absorption spectrum in the compliance voltage of the laser device itself. To demonstrate and characterize the technique, we measure infrared absorption spectra of chemicals including water vapor and Freon-134a. Sub-ppm detection limits in one second are achieved, with the potential for increased sensitivity after further optimization. The technique enables development of handheld, high-sensitivity, and high-accuracy trace gas sensors for in-field use.

  6. Forest Vegetation Monitoring Protocol for National Parks in the North Coast and Cascades Network

    Science.gov (United States)

    Woodward, Andrea; Hutten, Karen M.; Boetsch, John R.; Acker, Steven A.; Rochefort, Regina M.; Bivin, Mignonne M.; Kurth, Laurie L.

    2009-01-01

    Plant communities are the foundation for terrestrial trophic webs and animal habitat, and their structure and species composition are an integrated result of biological and physical drivers (Gates, 1993). Additionally, they have a major role in geologic, geomorphologic and soil development processes (Jenny, 1941; Stevens and Walker, 1970). Throughout most of the Pacific Northwest, environmental conditions support coniferous forests as the dominant vegetation type. In the face of anthropogenic climate change, forests have a global role as potential sinks for atmospheric carbon (Goodale and others, 2002). Consequently, knowledge of the status of forests in the three large parks of the NCCN [that is, Mount Rainier (MORA), North Cascades (NOCA), and Olympic (OLYM) National Parks] is fundamental to understanding the condition of Pacific Northwest ecosystems. Diverse climate and soil properties across the Pacific Northwest result in a variety of forest types (Franklin and Dyrness, 1973; Franklin and others, 1988; Henderson and others, 1989, 1992). The mountainous terrain of Mount Rainier, North Cascades, and Olympic National Parks create steep elevational and precipitation gradients within and among the parks: collectively, these parks span from sea level to more than 4,200 m; and include areas with precipitation from 90 to more than 500 cm. The resulting forests range from coastal rainforests with dense understories and massive trees draped with epiphytes; to areas with drought-adapted Ponderosa pines; to high-elevation subalpine fir forests interspersed with meadows just below treeline (table 1). These forests, in turn, are the foundation for other biotic communities constituting Pacific Northwest ecosystems.

  7. Neutrino induced vorticity, Alfven waves and the normal modes

    CERN Document Server

    Bhatt, Jitesh R

    2016-01-01

    We consider plasma consisting of electrons and ions in presence of a background neutrino gas and develop the magneto hydrodynamic equations for the system. We show that electron neutrino interaction can induce vorticity in the plasma even in the absence of any electromagnetic perturbations if the background neutrino density is left-right asymmetric. This induced vorticity support a new kind of mode which will vanish when the background neutrino asymmetry vanishes. The normal mode analysis of the equations is done to show that, in the presence of neutrino back-ground, the normal modes get modified and the corrections are proportional to the neutrino asymmetry parameter.

  8. Neutrino induced charged-current coherent $\\rho$ production

    CERN Document Server

    ,

    2013-01-01

    We present the latest results of coherent $\\rho$ (Coh$\\rho$) production using the large data set collected by the NOMAD detector in which the momenta, charges, and photons are precisely measured. We discuss the application of using Coh$\\rho$ process to constrain the neutrino flux with the proposed Long-Baseline Neutrino Experiment Near Detector, the high resolution Straw Tube Tracker.

  9. Reconstruction of neutrino-induced showers with ANTARES

    NARCIS (Netherlands)

    Dorosti Hasankiadeh, Qader

    2013-01-01

    Op aarde zijn kosmische deeltjes gemeten met extreem hoge energieën. De bijbehorende bronnen we kennen niet, we weten zelfs niet of die misschien binnen ons melkwegstelsel liggen. Wel weten we dat in uitbarstingen van kosmische energie ook neutrino's worden geproduceerd. Boven alle andere deeltjes h

  10. Neutrino induced showers from gamma-ray bursts

    NARCIS (Netherlands)

    E. Presani

    2011-01-01

    Neutrino’s (ongeladen, elementaire deeltjes) komen voor in drie gedaantes. Elk van dit soort neutrino’s interageert op zijn eigen manier op de materie. Bij de interactie kan een geladen zwak boson worden uitgewisseld. De neutrino’s veranderen daarbij in hun geladen partner (muon-neutrino naar muon,

  11. Cascaded systems analysis of photon counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lundqvist, M.; Fredenberg, E. [Philips Healthcare, Solna 171 41 (Sweden); Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  12. Parallel-cascade-based mechanisms for heating solar coronal loops: test against observations

    CERN Document Server

    Li, Bo; Li, Xing; Xia, Li-Dong

    2014-01-01

    The heating of solar coronal loops is at the center of the problem of coronal heating. Given that the origin of the fast solar wind has been tracked down to atmospheric layers with transition region or even chromospheric temperatures, it is worthy attempting to address whether the mechanisms proposed to provide the basal heating of the solar wind apply to coronal loops as well. We extend the loop studies based on a classical parallel-cascade scenario originally proposed in the solar wind context by considering the effects of loop expansion, and perform a parametric study to directly contrast the computed loop densities and electron temperatures with those measured by TRACE and YOHKOH/SXT. This comparison yields that with the wave amplitudes observationally constrained by SUMER measurements, while the computed loops may account for a significant fraction of SXT loops, they seem too hot when compared with TRACE loops. Lowering the wave amplitudes does not solve this discrepancy, introducing magnetic twist will ...

  13. Quantum cascade laser-based multipass absorption system for hydrogen peroxide detection

    Science.gov (United States)

    Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Ren, Wei; Lewicki, Rafal; Jiang, Dongfang; Griffin, Robert J.; Tittel, Frank K.

    2015-01-01

    Hydrogen peroxide (H2O2) is a relevant molecular trace gas species, that is related to the oxidative capacity of the atmosphere, the production of radical species such as OH, the generation of sulfate aerosol via oxidation of S(IV) to S(VI), and the formation of acid rain. The detection of atmospheric H2O2 involves specific challenges due to its high reactivity and low concentration (ppbv to sub-ppbv level). Traditional methods for measuring atmospheric H2O2 concentration are often based on wet-chemistry methods that require a transfer from the gas- to liquid-phase for a subsequent determination by techniques such as fluorescence spectroscopy, which can lead to problems such as sampling artifacts and interference by other atmospheric constituents. A quartz-enhanced photoacoustic spectroscopy-based system for the measurement of atmospheric H2O2 with a detection limit of 75 ppb for 1-s integration time was previously reported. In this paper, an updated H2O2 detection system based on long-optical-path-length absorption spectroscopy by using a distributed feedback quantum cascade laser (DFB-QCL) will be described. A 7.73-μm CW-DFB-QCL and a thermoelectrically cooled infrared detector, optimized for a wavelength of 8 μm, are employed for theH2O2 sensor system. A commercial astigmatic Herriott multi-pass cell with an effective optical path-length of 76 m is utilized for the reported QCL multipass absorption system. Wavelength modulation spectroscopy (WMS) with second harmonic detection is used for enhancing the signal-to-noise-ratio. A minimum detection limit of 13.4 ppb is achieved with a 2 s sampling time. Based on an Allan-Werle deviation analysis the minimum detection limit can be improved to 1.5 ppb when using an averaging time of 300 s.

  14. Critical assessment and ramifications of a purported marine trophic cascade

    Science.gov (United States)

    Grubbs, R. Dean; Carlson, John K; Romine, Jason G.; Curtis, Tobey H; McElroy, W. David; McCandless, Camilla T; Cotton, Charles F; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  15. Critical assessment and ramifications of a purported marine trophic cascade.

    Science.gov (United States)

    Grubbs, R Dean; Carlson, John K; Romine, Jason G; Curtis, Tobey H; McElroy, W David; McCandless, Camilla T; Cotton, Charles F; Musick, John A

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the "Save the Bay, Eat a Ray" fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions. PMID:26876514

  16. Critical assessment and ramifications of a purported marine trophic cascade

    Science.gov (United States)

    Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.

    2016-02-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  17. Positional information generated by spatially distributed signaling cascades.

    Directory of Open Access Journals (Sweden)

    Javier Muñoz-García

    2009-03-01

    Full Text Available The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes, such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial guidance for multiple cellular processes and conveys information about the cell size to the nucleus.

  18. Trend-driven information cascades on random networks

    Science.gov (United States)

    Kobayashi, Teruyoshi

    2015-12-01

    Threshold models of global cascades have been extensively used to model real-world collective behavior, such as the contagious spread of fads and the adoption of new technologies. A common property of those cascade models is that a vanishingly small seed fraction can spread to a finite fraction of an infinitely large network through local infections. In social and economic networks, however, individuals' behavior is often influenced not only by what their direct neighbors are doing, but also by what the majority of people are doing as a trend. A trend affects individuals' behavior while individuals' behavior creates a trend. To analyze such a complex interplay between local- and global-scale phenomena, I generalize the standard threshold model by introducing a type of node called global nodes (or trend followers), whose activation probability depends on a global-scale trend, specifically the percentage of activated nodes in the population. The model shows that global nodes play a role as accelerating cascades once a trend emerges while reducing the probability of a trend emerging. Global nodes thus either facilitate or inhibit cascades, suggesting that a moderate share of trend followers may maximize the average size of cascades.

  19. TOPOLOGY AND CASCADING LINE OUTAGES IN POWER GRIDS

    Institute of Scientific and Technical Information of China (English)

    David L. PEPYNE

    2007-01-01

    Motivated by the small world network research of Watts & Strogatz, this paper studies relationships between topology and cascading line outages in electric power grids. Cascading line outages are a type of cascading collapse that can occur in power grids when the transmission network is congested. It is characterized by a self-sustaining sequence of line outages followed by grid breakup, which generally leads to widespread blackout. The main findings of this work are twofold: On one hand, the work suggests that topologies with more disorder in their interconnection topology tend to be robust with respect to cascading line outages in the sense of being able to support greater generation and demand levels than more regularly interconnected topologies. On the other hand, the work suggests that topologies with more disorder tend to be more fragile in that should a cascade get started, they tend to break apart after fewer outages than more regularly interconnected topologies. Thus, as has been observed in other complex networks, there appears to be a tradeoff between robustness and fragility.These results were established using synthetically generated power grid topologies and verified using the IEEE 57 bus and 188 bus power grid test cases.

  20. Cascaded Photoenhancement: Implications for Photonic Chemical and Biological Sensors

    Science.gov (United States)

    Fuller, Kirk A.; Smith, David D.

    2006-01-01

    Our analysis shows that coupling of gold nanoparticles to microspheres will evoke a cascading effect from the respective photoenhancement mechanisms. We refer to this amplification process as cascaded photoenhancement, and the resulting cavity amplification of surface-enhanced Raman scattering (SERS) and fluorescence as CASERS and CAF, respectively. Calculations, based on modal analysis of scattering and absorption by compound spheres, presented herein indicate that the absorption cross sections of metal nanoparticles immobilized onto dielectric microspheres can be greatly enhanced by cavity resonances in the microspheres without significant degradation of the resonators. Gain factors associated with CSP of 10(exp 3) - 10(exp 4) are predicted for realistic experimental conditions using homogenous microspheres. Cascaded surface photoenhancement thus has the potential of dramatically increasing the sensitivities of fluorescence and vibrational spectroscopies.

  1. Robustness of Power-law Behavior in Cascading Failure Models

    CERN Document Server

    Sloothaak, F; Zwart, A P

    2016-01-01

    Inspired by reliability issues in electric transmission networks, we use a probabilistic approach to study the occurrence of large failures in a stylized cascading failure model. In this model, lines have random capacities that initially meet the load demands imposed on the network. Every single line failure changes the load distribution in the surviving network, possibly causing further lines to become overloaded and trip as well. An initial single line failure can therefore potentially trigger massive cascading effects, and in this paper we measure the risk of such cascading events by the probability that the number of failed lines exceeds a certain large threshold. Under particular critical conditions, the exceedance probability follows a power-law distribution, implying a significant risk of severe failures. We examine the robustness of the power-law behavior by exploring under which assumptions this behavior prevails.

  2. Bearing-Only Formation Control for Cascade Multirobots

    Directory of Open Access Journals (Sweden)

    Qing Han

    2016-01-01

    Full Text Available A new formation control method is proposed, which is used to queue multirobots in a single-direction cascade structure. In the cascade formation, each robot is a follower for the previous robot and a leader for the next robot, and the robots in the middle act as both leader and follower. The follower robot can only observe the bearing information of the leader robot. The observability of the cascade leader-follower formation is studied, which shows that the bearing-only observation meets the observability conditions required for the nonlinear system. Based on the bearing-only observations, the unscented Kalman filter (UKF is employed for the state estimation of the leader and the follower robots at all levels, which enables the real-time movement control of the follower robots via the input-output feedback control. Simulation results demonstrate that the proposed approach can efficiently control the formation of multirobots as desired.

  3. A trio of dualities: walls, trees and cascades

    Energy Technology Data Exchange (ETDEWEB)

    Franco, S. [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hanany, A. [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Institute for Advanced Study, Princeton, NJ 08540 (United States); He, Y.H. [Department of Physics and Math/Physics RG, The University of Pennsylvania, Philadelphia, PA 19104-6396 (United States)

    2004-06-01

    We study the RG flow of N=1 world-volume gauge theories of D3-brane probes on certain singular Calabi-Yau threefolds. Taking the gauge theories out of conformality by introducing fractional branes, we compute the NSVZ beta-function and follow the subsequent RG flow in the cascading manner of Klebanov-Strassler. We study the duality trees that blossom from various Seiberg dualities and encode possible cascades. We observe the appearance of duality walls, a finite limit energy scale in the UV beyond which the dualization cascade cannot proceed. Diophantine equations of the Markov type characterize the dual phases of these theories. We discuss how the classification of Markov equations for different geometries into families relates the RG flows of the corresponding gauge theories. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  4. Cascaded VLSI Chips Help Neural Network To Learn

    Science.gov (United States)

    Duong, Tuan A.; Daud, Taher; Thakoor, Anilkumar P.

    1993-01-01

    Cascading provides 12-bit resolution needed for learning. Using conventional silicon chip fabrication technology of VLSI, fully connected architecture consisting of 32 wide-range, variable gain, sigmoidal neurons along one diagonal and 7-bit resolution, electrically programmable, synaptic 32 x 31 weight matrix implemented on neuron-synapse chip. To increase weight nominally from 7 to 13 bits, synapses on chip individually cascaded with respective synapses on another 32 x 32 matrix chip with 7-bit resolution synapses only (without neurons). Cascade correlation algorithm varies number of layers effectively connected into network; adds hidden layers one at a time during learning process in such way as to optimize overall number of neurons and complexity and configuration of network.

  5. Cascaded Parametric Amplification for Highly Efficient Terahertz Generation

    CERN Document Server

    Ravi, Koustuban; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Muecke, Oliver D; Kaertner, Franz X

    2016-01-01

    A highly efficient, practical approach to high-energy terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. The THz wave initially generated by difference frequency generation between a strong narrowband optical pump and optical seed (0.1-10% of pump energy) kick-starts a repeated or cascaded energy down-conversion of pump photons. This helps to greatly surpass the quantum-defect efficiency and results in exponential growth of THz energy over crystal length. In cryogenically cooled periodically poled lithium niobate, energy conversion efficiencies >8% for 100 ps pulses are predicted. The calculations account for cascading effects, absorption, dispersion and laser-induced damage. Due to the coupled nonlinear interaction of multiple triplets of waves, THz-COPA exhibits physics distinct from conventional three-wave mixing parametric amplifiers. This in turn governs optimal phase-matching conditions, evolution of optical spectra as well as limitations o...

  6. Irreversibility of the two-dimensional enstrophy cascade

    CERN Document Server

    Piretto,; Boffetta, G

    2016-01-01

    We study the time irreversibility of the direct cascade in two-dimensional turbulence by looking at the time derivative of the square vorticity along Lagrangian trajectories, a quantity which we call metenstrophy. By means of extensive numerical simulations we measure the time irreversibility from the asymmetry of the PDF of the metenstrophy and we find that it increases with the Reynolds number of the cascade, similarly to what found in three-dimensional turbulence. A detailed analysis of the different contributions to the enstrophy budget reveals a remarkable difference with respect to what observed for the direct cascade, in particular the role of the statistics of the forcing to determine the degree of irreversibility.

  7. Distributed flow optimization and cascading effects in weighted complex networks

    CERN Document Server

    Asztalos, Andrea; Szymanski, Boleslaw K; Korniss, G

    2011-01-01

    We investigate the effect of a specific edge weighting scheme $\\sim (k_i k_j)^{\\beta}$ on distributed flow efficiency and robustness to cascading failures in scale-free networks. In particular, we analyze a simple, yet fundamental distributed flow model: current flow in random resistor networks. By the tuning of control parameter $\\beta$ and by considering two general cases of relative node processing capabilities as well as the effect of bandwidth, we show the dependence of transport efficiency upon the correlations between the topology and weights. By studying the severity of cascades for different control parameter $\\beta$, we find that network resilience to cascading overloads and network throughput is optimal for the same value of $\\beta$ over the range of node capacities and available bandwidth.

  8. Spatially Organized Enzymes Drive Cofactor-Coupled Cascade Reactions.

    Science.gov (United States)

    Ngo, Tien Anh; Nakata, Eiji; Saimura, Masayuki; Morii, Takashi

    2016-03-01

    We report the construction of an artificial enzyme cascade based on the xylose metabolic pathway. Two enzymes, xylose reductase and xylitol dehydrogenase, were assembled at specific locations on DNA origami by using DNA-binding protein adaptors with systematic variations in the interenzyme distances and defined numbers of enzyme molecules. The reaction system, which localized the two enzymes in close proximity to facilitate transport of reaction intermediates, resulted in significantly higher yields of the conversion of xylose into xylulose through the intermediate xylitol with recycling of the cofactor NADH. Analysis of the initial reaction rate, regenerated amount of NADH, and simulation of the intermediates' diffusion indicated that the intermediates diffused to the second enzyme by Brownian motion. The efficiency of the cascade reaction with the bimolecular transport of xylitol and NAD(+) likely depends more on the interenzyme distance than that of the cascade reaction with unimolecular transport between two enzymes. PMID:26881296

  9. Cascading failure analysis and restoration strategy in an interdependent network

    Science.gov (United States)

    Hong, Sheng; Lv, Chuan; Zhao, Tingdi; Wang, Baoqing; Wang, Jianghui; Zhu, Juxing

    2016-05-01

    In modern society, many infrastructures are interdependent owing to functional and logical relations among components in different systems. These networked infrastructures can be modeled as interdependent networks. In the real world, different networks carry different traffic loads whose values are dynamic and stem from the load redistribution in the same network and disturbance from the interdependent network. Interdependency makes interdependent networks so fragile that even a slight initial disturbance may lead to a cascading failure of the entire systems. In this paper, interdependencies among networks are modeled and a failure cascade process is studied considering their effects on failure propagation. Meanwhile, an in-process restoration strategy after the initial failure is investigated. The restoration effects depend strongly on the trigger timing, restoration probability and priority of the restoration actions along with the additional disturbances. Our findings highlight the necessity to decrease the large-scale cascading failure by structuring and managing an interdependent network reasonably.

  10. Pair Cascades and Deathlines in Offset Magnetic Dipole Fields

    Science.gov (United States)

    Harding, Alice; Muslimov, Alex

    2010-01-01

    We investigate electron-positron pair cascades in a dipole magnetic field whose axis is offset from the neutron star center. In such a field geometry, the polar cap is displaced from the neutron star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the polar cap of an offset dipole, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset parameter. We find that the pair multiplicity can change dramatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity.

  11. Cascade Source Coding with a Side Information "Vending Machine"

    OpenAIRE

    Ahmadi, Behzad; Choudhuri, Chiranjib; Simeone, Osvaldo; Mitra, Urbashi

    2012-01-01

    The model of a side information "vending machine" (VM) accounts for scenarios in which the measurement of side information sequences can be controlled via the selection of cost-constrained actions. In this paper, the three-node cascade source coding problem is studied under the assumption that a side information VM is available and the intermediate and/or at the end node of the cascade. A single-letter characterization of the achievable trade-off among the transmission rates, the distortions ...

  12. TEMPORAL OPTICAL SOLITONS VIA MULTISTEP x(2) CASCADING

    Institute of Scientific and Technical Information of China (English)

    HUANG GUO-XIANG

    2001-01-01

    We consider a multistep X(2) cascading for light pulses with the dispersion of the system taken into account. Using the method of multiple scales we derive a set of coupled envelope equations governing the nonlinear evolution of the fundamental, second and third harmonic waves involved simultaneously in two nonlinear optical processes, i.e. second harmonic generation and sum frequency mixing. We show that three-wave temporal optical solitons are possible in three- and four-step cascading in the presence of a group-velocity mismatch between different pulses.

  13. Maximizing the Spread of Cascades Using Network Design

    CERN Document Server

    Sheldon, Daniel; Elmachtoub, Adam N; Finseth, Ryan; Sabharwal, Ashish; Conrad, Jon; Gomes, Carla P; Shmoys, David; Allen, William; Amundsen, Ole; Vaughan, William

    2012-01-01

    We introduce a new optimization framework to maximize the expected spread of cascades in networks. Our model allows a rich set of actions that directly manipulate cascade dy- namics by adding nodes or edges to the net- work. Our motivating application is one in spatial conservation planning, where a cas- cade models the dispersal of wild animals through a fragmented landscape. We propose a mixed integer programming (MIP) formu- lation that combines elements from network design and stochastic optimization. Our ap- proach results in solutions with stochastic op- timality guarantees and points to conserva- tion strategies that are fundamentally dier- ent from naive approaches.

  14. Cascade adaptive control of uncertain unified chaotic systems

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Li Dong-Hai; Wang Jing

    2011-01-01

    The chaos control of uncertain unified chaotic systems is considered. Cascade adaptive control approach with only one control input is presented to stabilize states of the uncertain unified chaotic system at the zero equilibrium point.Since an adaptive controller based on dynamic compensation mechanism is employed, the exact model of the unified chaotic system is not necessarily required.By choosing appropriate controller parameters, chaotic phenomenon can be suppressed and the response speed is tunable. Sufficient condition for the asymptotic stability of the approach is derived. Numerical simulation results confirm that the cascade adaptive control approach with only one control signal is valid in chaos control of uncertain unified chaotic systems.

  15. Cascade Control of Magnetic Levitation with Sliding Modes

    Directory of Open Access Journals (Sweden)

    Eroğlu Yakup

    2016-01-01

    Full Text Available The effectiveness and applicability of magnetic levitation systems need precise feedback control designs. A cascade control approach consisting of sliding mode control plus sliding mode control (SMC plus SMC is designed to solve position control problem and to provide a high control performance and robustness to the magnetic levitation plant. It is shown that the SMC plus SMC cascade controller is able to eliminate the effects of the inductance related uncertainties of the electromagnetic coil of the plant and achieve a robust and precise position control. Experimental and numerical results are provided to validate the effectiveness and feasibility of the method.

  16. Cascade: a high-efficiency ICF power reactor

    International Nuclear Information System (INIS)

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  17. Quantifying efficient information transduction of biochemical signaling cascades

    CERN Document Server

    Tsuruyama, Tatsuaki

    2016-01-01

    Cells can be considered as systems that utilize changes in thermodynamic entropy as information. Therefore, they serve as useful models for investigating the relationships between entropy production and information transmission, i.e., signal transduction. Based on the hypothesis that cells apply a chemical reaction cascade for the most efficient transduction of information, we adopted a coding design that minimizes the number of bits per concentration of molecules that are employed for information transduction. As a result, the average rate of entropy production is uniform across all cycles in a cascade reaction. Thus, the entropy production rate can be a valuable measure for the quantification of intracellular signal transduction.

  18. Stability and Stabilization of Block-cascading Switched Linear Systems

    Institute of Scientific and Technical Information of China (English)

    Ya-Hong Zhu; Dai-Zhan Cheng

    2006-01-01

    The main purpose of this paper is to investigate the problem of quadratic stability and stabilization in switched linear systems using reducible Lie algebra. First, we investigate the structure of all real invariant subspaces for a given linear system. The result is then used to provide a comparable cascading form for switching models. Using the commoncascading form, a common quadratic Lyapunov function is (QLFs) is explored by finding common QLFs of diagonal blocks.In addition, a cascading Quaker Lemma is proved. Combining it with stability results, the problem of feedback stabilization for a class of switched linear systems is solved.

  19. Feigenbaum Cascade of Discrete Breathers in a Model of DNA

    CERN Document Server

    Maniadis, P; Bishop, A R; Rasmussen, K \\O

    2010-01-01

    We demonstrate that period-doubled discrete breathers appear from the anti-continuum limit of the driven Peyrard-Bishop-Dauxois model of DNA. These novel breathers result from a stability overlap between sub-harmonic solutions of the driven Morse oscillator. Sub-harmonic breathers exist whenever a stability overlap is present within the Feigenbaum cascade to chaos and therefore an entire cascade of such breathers exists. This phenomenon is present in any driven lattice where the on-site potential admits sub-harmonic solutions. In DNA these breathers may have ramifications for cellular gene expression.

  20. Substrate channelling as an approach to cascade reactions

    Science.gov (United States)

    Wheeldon, Ian; Minteer, Shelley D.; Banta, Scott; Barton, Scott Calabrese; Atanassov, Plamen; Sigman, Matthew

    2016-04-01

    Millions of years of evolution have produced biological systems capable of efficient one-pot multi-step catalysis. The underlying mechanisms that facilitate these reaction processes are increasingly providing inspiration in synthetic chemistry. Substrate channelling, where intermediates between enzymatic steps are not in equilibrium with the bulk solution, enables increased efficiencies and yields in reaction and diffusion processes. Here, we review different mechanisms of substrate channelling found in nature and provide an overview of the analytical methods used to quantify these effects. The incorporation of substrate channelling into synthetic cascades is a rapidly developing concept, and recent examples of the fabrication of cascades with controlled diffusion and flux of intermediates are presented.

  1. Primary defect production by high energy displacement cascades in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Selby, Aaron P. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Xu, Donghua, E-mail: xudh@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Juslin, Niklas; Capps, Nathan A. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, P.O. Box 2008, MS6003, Oak Ridge, TN 37831 (United States)

    2013-06-15

    We report molecular dynamics simulations of primary damage in molybdenum produced by high energy displacement cascades on the femto- to pico-second and Angstrom to nanometer scales. Clustering directly occurred for both interstitials and vacancies in the 1–50 keV cascade energy range explored. Point defect survival efficiency and partitioning probabilities into different sized clusters were quantified. The results will provide an important reference for kinetic models to describe the microstructural evolution in Mo under ion or neutron irradiations over much longer time and length scales.

  2. Rate equation modelling and investigation of quantum cascade detector characteristics

    Science.gov (United States)

    Saha, Sumit; Kumar, Jitendra

    2016-10-01

    A simple precise transport model has been proposed using rate equation approach for the characterization of a quantum cascade detector. The resonant tunneling transport is incorporated in the rate equation model through a resonant tunneling current density term. All the major scattering processes are included in the rate equation model. The effect of temperature on the quantum cascade detector characteristics has been examined considering the temperature dependent band parameters and the carrier scattering processes. Incorporation of the resonant tunneling process in the rate equation model improves the detector performance appreciably and reproduces the detector characteristics within experimental accuracy.

  3. One-dimensional hydrodynamic model generating turbulent cascade

    CERN Document Server

    Matsumoto, Takeshi

    2016-01-01

    As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analogue (enstrophy) in the inviscid case. With a large-scale forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency and self-similarity in the dynamical system structure.

  4. Aerodynamic Optimum Design of Transonic Turbine Cascades Using Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler Solver and the boundary-layer calculation.The Genetic Algorithms control the evolution of a population of cascades towards an optimum design.The fitness value of each string is evaluated using the flow solver.The design procedure has been developed and the behavior of the genetic algorithms has been tested.The objective functions of the design examples are the minimum mean-square deviation between the aimed pressure and computed pressure and the minimum amount of user expertise.

  5. Major disruptions, inverse cascades, and the Strauss equations

    International Nuclear Information System (INIS)

    Current-carrying plasmas in a strong dc magnetic field are subject to violent disruptions above certain thresholds. At present difficult to verify, explanations are typically sought in terms of tearing modes. An alternative explanation is in terms of inverse magnetic helicity cascades, generated from a variety of possible sources of small-scale MHD turbulence. Strongly anisotropic MHD plasmas may be described by the Strauss equations. Indications of turbulent inverse cascade behavior for the Strauss equations are sought, in parallel with earlier examples from MHD and fluid mechanics

  6. Modeling of Bit Error Rate in Cascaded 2R Regenerators

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper

    2006-01-01

    This paper presents a simple and efficient model for estimating the bit error rate in a cascade of optical 2R-regenerators. The model includes the influences of of amplifier noise, finite extinction ratio and nonlinear reshaping. The interplay between the different signal impairments...... and the regenerating nonlinearity is investigated. It is shown that an increase in nonlinearity can compensate for an increase in noise figure or decrease in signal power. Furthermore, the influence of the improvement in signal extinction ratio along the cascade and the importance of choosing the proper threshold...

  7. Modified Smith Predictor Based Control Of Cascaded Chemical Reactor

    Directory of Open Access Journals (Sweden)

    Binu P. Mathew

    2014-04-01

    Full Text Available A cascade control with modified smith predictor is used for controlling an open loop unstable time delay process. It has three controllers, one is for servo response other two are for regulatory response. For two disturbance rejection controllers an analytical design method is used by proposing closed loop complementary sensitivity function. These two controllers are PID controller cascaded with second order lead/lag filter. Setpoint tracking controller is designed by using direct synthesis method. The main advantage of this control scheme is that the servo response can be decoupled from the regulatory response.

  8. One-dimensional hydrodynamic model generating a turbulent cascade

    Science.gov (United States)

    Matsumoto, Takeshi; Sakajo, Takashi

    2016-05-01

    As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analog (enstrophy) in the inviscid case. With a large-scale random forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency, and self-similarity in the dynamical system structure.

  9. General introduction to microstructural evolution under cascade damage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wiedersich, H.

    1993-06-01

    A short overview of the processes that affect the evolution of the microstructure during irradiation is given. The processes include defect production with an emphasis on the effects of the dynamic cascade events, defect clustering, irradiation-enhanced diffusion, radiation-induced segregation, phase decompositions and phase transformations. A simple model for the description of the development of the defect microstructure in a pure metal during cascade producing irradiation is also outlined which can provide, in principle, defect fluxes required for the description of the microstructural processes such as phase decomposition and irradiation-induced precipitation.

  10. On the trajectories of CRL...LR...R orbits, their period-doubling cascades and saddle-node bifurcation cascades

    Energy Technology Data Exchange (ETDEWEB)

    Cerrada, Lucia [Departamento de Matematica Aplicada, EUITI, Universidad Politecnica de Madrid, Ronda de Valencia 3, 28012 Madrid (Spain); ETS de Ingenieria ICAI, Universidad Pontificia Comillas de Madrid, Alberto Aguilera 25, 28015 Madrid (Spain); San Martin, Jesus, E-mail: jsm@dfmf.uned.e [Departamento de Matematica Aplicada, EUITI, Universidad Politecnica de Madrid, Ronda de Valencia 3, 28012 Madrid (Spain); Departamento de Fisica Matematica y Fluidos, UNED, Senda del Rey 9, 28040 Madrid (Spain)

    2011-04-25

    In this Letter, it is shown that from a two region partition of the phase space of a one-dimensional dynamical system, a p-region partition can be obtained for the CRL...LR...R orbits. That is, permutations associated with symbolic sequences are obtained. As a consequence, the trajectory in phase space is directly deduced from permutation. From this permutation other permutations associated with period-doubling and saddle-node bifurcation cascades are derived, as well as other composite permutations. - Research highlights: Symbolic sequences are the usual topological approach to dynamical systems. Permutations bear more physical information than symbolic sequences. Period-doubling cascade permutations associated with original sequences are obtained. Saddle-node cascade permutations associated with original sequences are obtained. Composite permutations are derived.

  11. Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo simulation of tungsten cascade aging

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar, E-mail: giridhar.nandipati@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA (United States); Setyawan, Wahyu; Heinisch, Howard L. [Pacific Northwest National Laboratory, Richland, WA (United States); Roche, Kenneth J. [Pacific Northwest National Laboratory, Richland, WA (United States); Department of Physics, University of Washington, Seattle, WA 98195 (United States); Kurtz, Richard J. [Pacific Northwest National Laboratory, Richland, WA (United States); Wirth, Brian D. [University of Tennessee, Knoxville, TN (United States)

    2015-07-15

    The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.

  12. Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo Simulation of Tungsten Cascade Aging

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-07-01

    The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.

  13. CASCADIC MULTIGRID METHOD FOR THE MORTAR ELEMENT METHOD FOR P1 NONCONFORMING ELEMENT

    Institute of Scientific and Technical Information of China (English)

    Chun-jia Bi; Dan-hui Hong

    2005-01-01

    In this paper, we consider the cascadic multigrid method for the mortar P1 nonconforming element which is used to solve the Poisson equation and prove that the cascadic conjugate gradient method is accurate with optimal complexity.

  14. Whistler turbulence forward vs. inverse cascade. Three-dimensional particle-in-cell simulations

    International Nuclear Information System (INIS)

    In this study, we present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta βe = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime

  15. Exciton management in organic photovoltaic multidonor energy cascades.

    Science.gov (United States)

    Griffith, Olga L; Forrest, Stephen R

    2014-05-14

    Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures. PMID:24702468

  16. Vortex merging and spectral cascade in two-dimensional flows

    DEFF Research Database (Denmark)

    Nielsen, A.H.; He, X.; Juul Rasmussen, J.;

    1996-01-01

    The merging of two identical vortices is studied numerically using a spectral code. It is noted that the enstrophy cascade is most active on the distorted vortex boundaries, with a Kolmogorov-like spectrum E(k) approximate to k(-alpha), alpha less than or equal to 4, developed at high wave numbers...

  17. Crosstalk Cascades for Frame-rate Pedestrian Detection

    OpenAIRE

    Dollár, Piotr; Appel, Ron; Kienzle, Wolf

    2012-01-01

    Cascades help make sliding window object detection fast, nevertheless, computational demands remain prohibitive for numerous applications. Currently, evaluation of adjacent windows proceeds independently; this is suboptimal as detector responses at nearby locations and scales are correlated. We propose to exploit these correlations by tightly coupling detector evaluation of nearby windows. We introduce two opposing mechanisms: detector excitation of promising neighbors and inhibition of...

  18. Successful Treatment Of Homozygous Familial Hypercholesterolemia Using Cascade Filtration Plasmapheresis

    Directory of Open Access Journals (Sweden)

    Fatih Kardas

    2012-12-01

    Full Text Available OBJECTIVE: The aim of our study is to discuss the efficacy of low-density lipoprotein-cholesterol (LDL-C apheresis procedure using the cascade filtration system for pediatric patients with homozygous familial hypercholesterolemia (FH, and to clarify the adverse effects and difficulties. METHODS: LDL apheresis using the cascade filtration system was performed in 3 pediatric patients with homozygous FH. In total, 120 apheresis sessions were performed for all patients. RESULTS: Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dl to 145 ± 43 mg/dl (p<0.05. We determined an acute mean reduction in the plasma levels of total cholesterol (57.9%, LDL cholesterol (70.8%, and high-density lipoprotein (HDL cholesterol (40.7%. Treatments were well tolerated. The most frequent clinical adverse effects were hypotension in 3 sessions (2.5%, chills/feeling cold (1.7% in 2 sessions, and nausea and vomiting in 3 sessions (2.5%. CONCLUSION: Our experience with three patients using the cascade filtration system were, good clinical outcomes, laboratory findings, safety of usage, minor adverse effects and technical problems.

  19. Cascaded Construction of Semi-Bent and Bent Functions

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-peng; WU Xiao-xiong; YU Xin-hua

    2009-01-01

    Based on the theory of quadratic forms over finite fields,a new construction of semi-bent and bent functions is presented.The proposed construction has a cascaded characteristic.Some previously known constructions of semi-bent and bent functions are special cases of the new construction.

  20. Calculating Node Importance Considering Cascading Failure in Traffic Networks

    Directory of Open Access Journals (Sweden)

    Zhengwu Wang

    2013-01-01

    Full Text Available The traffic network is a scale-free network. In selective attack, invalidation of few key nodes may lead to network failure so it is important to find these key nodes. In this study, the key nodes are determined by establishing calculating methods of node importance based on cascading failure behaviors. First, a cascading failure model of traffic network is posed. Its differences from current models are as follows: 1 The upper travel network and lower road network are influenced each other, 2 Capacity of nodes and links are given at first but not in direct proportion to initial flow that is related to initial capacity, 3 Travel time is used to describe status of links, 4 Capacity of links may change. The evaluation method of node importance of traffic network considering cascading failure is proposed then based on node deletion. It uses congestion status of cascading failure network to describe the node importance and algorithm procedures are designed to estimate importance of all nodes. At the end, the experiment analysis shows that network structure and traveler behaviors have in significant influence on node importance.

  1. CASCADIC MULTIGRID FOR FINITE VOLUME METHODS FOR ELLIPTIC PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Zhong-ci Shi; Xue-jun Xu; Hong-ying Man

    2004-01-01

    In this paper, some effective cascadic multigrid methods are proposed for solving the large scale symmetric or nonsymmetric algebraic systems arising from the finite volumemethods for second order elliptic problems. Its is shown that these algorithms are optimal in both accuracy and computational complexity. Numerical expermients are repored to support out theory.

  2. Network protection against worms and cascading failures using modularity partitioning

    NARCIS (Netherlands)

    Omic, J.; Hernandez, J.M.; Van Mieghem, P.

    2010-01-01

    Communication networks are prone to virus and worms spreading and cascading failures. Recently, a number of social networking worms have spread over public Web sites. Another example is error propagation in routing tables, such as in BGP tables. The immunization and error curing applied to these sce

  3. Red-green-blue laser emission from cascaded polymer membranes

    Science.gov (United States)

    Zhai, Tianrui; Wang, Yonglu; Chen, Li; Wu, Xiaofeng; Li, Songtao; Zhang, Xinping

    2015-11-01

    Red-green-blue polymer laser emission is achieved in a free-standing membrane device consisting of three distributed feedback cavities. The polymer membrane is fabricated via interference lithography and a simple lift-off process. Multilayer structures can be assembled by cascading several polymer membranes. Thus optically pumped, simultaneous, red-green-blue laser emission is obtained from a three-layer cascaded membrane structure. This simple and low-cost fabrication technique can be used for compact, integrated laser sources.Red-green-blue polymer laser emission is achieved in a free-standing membrane device consisting of three distributed feedback cavities. The polymer membrane is fabricated via interference lithography and a simple lift-off process. Multilayer structures can be assembled by cascading several polymer membranes. Thus optically pumped, simultaneous, red-green-blue laser emission is obtained from a three-layer cascaded membrane structure. This simple and low-cost fabrication technique can be used for compact, integrated laser sources. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05965h

  4. Terahertz heterodyne spectrometer using a quantum cascade laser

    NARCIS (Netherlands)

    Ren, Y.; Hovenier, J.N.; Higgins, R.; Gao, J.R.; Klapwijk, T.M.; Shi, S.C.; Bell, A.; Klein, B.; Williams, B.S.; Kumar, S.; Hu, Q.; Reno, J.L.

    2010-01-01

    A terahertz (THz) heterodyne spectrometer is demonstrated based on a quantum cascade laser (QCL) as a local oscillator (LO) and an NbN hot electron bolometer as a mixer, and it is used to measure high-resolution molecular spectral lines of methanol (CH3OH) between 2.913–2.918 THz. The spectral lines

  5. Experimental investigation on a high subsonic compressor cascade flow

    Directory of Open Access Journals (Sweden)

    Zhang Haideng

    2015-08-01

    Full Text Available With the aim of deepening the understanding of high-speed compressor cascade flow, this paper reports an experimental study on NACA-65 K48 compressor cascade with high subsonic inlet flow. With the increase of passage pressurizing ability, endwall boundary layer behavior is deteriorated, and the transition zone is extended from suction surface to the endwall as the adverse pressure gradient increases. Cross flow from endwall to midspan, mixing of corner boundary layer and the main stream, and reversal flow on the suction surface are caused by corner separation vortex structures. Passage vortex is the main corner separation vortex. During its movement downstream, the size grows bigger while the rotating direction changes, forming a limiting circle. With higher incidence, corner separation is further deteriorated, leading to higher flow loss. Meanwhile, corner separation structure, flow mixing characteristics and flow loss distribution vary a lot with the change of incidence. Compared with low aspect-ratio model, corner separation of high aspect-ratio model moves away from the endwall and is more sufficiently developed downstream the cascade. Results obtained present details of high-speed compressor cascade flow, which is rare in the relating research fields and is beneficial to mechanism analysis, aerodynamic optimization and flow control design.

  6. Production and Searches for Cascade Baryons with CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Elton

    2010-01-01

    We present the results of photoproduction cross sections of the ground state cascade $\\Xi^-$ and the first excited state $\\Xi^{*-}(1530)$ measured with the CLAS detector. The photoproduction of the cascade resonances has been investigated in the reactions $\\gamma p \\rightarrow K^+K^+(X)$ and $\\gamma p \\rightarrow K^+K^+\\pi^-(X)$. The differential and total cross sections of the $\\Xi^{-}$ were determined for photon beam energies from 2.75 to 4.75 GeV and are consistent with a production mechanism of $Y^* \\rightarrow K^+ \\Xi^-$ through a t-channel process. The cross-section of the $\\Xi^{*-}(1530)$ has been determined for photon beam energies from 3.35 to 4.75 GeV. The reaction $\\gamma p \\rightarrow K^+K^+ \\pi^- (\\Xi^0)$ has also been investigated to search for excited cascade resonances decaying to $\\pi^- \\Xi^0$. No significant signal of excited cascade states other than the well-known $\\Xi^{*-}(1530)$ is observed. We also present the latest results of a search for the $\\Phi^{--}$(1862) exotic pentaquark state in a photoproduction experiment on a deuterium target. A high-statistics sample of $\\pi^-\\Xi^-$ events have been collected and analyzed. A preliminary invariant mass spectrum of the $\\pi^-\\Xi^-$ system is presented, which is used to set upper limits on the photoproduction of the $\\Phi^{--}$ pentaquark state.

  7. A novel information cascade model in online social networks

    Science.gov (United States)

    Tong, Chao; He, Wenbo; Niu, Jianwei; Xie, Zhongyu

    2016-02-01

    The spread and diffusion of information has become one of the hot issues in today's social network analysis. To analyze the spread of online social network information and the attribute of cascade, in this paper, we discuss the spread of two kinds of users' decisions for city-wide activities, namely the "want to take part in the activity" and "be interested in the activity", based on the users' attention in "DouBan" and the data of the city-wide activities. We analyze the characteristics of the activity-decision's spread in these aspects: the scale and scope of the cascade subgraph, the structure characteristic of the cascade subgraph, the topological attribute of spread tree, and the occurrence frequency of cascade subgraph. On this basis, we propose a new information spread model. Based on the classical independent diffusion model, we introduce three mechanisms, equal probability, similarity of nodes, and popularity of nodes, which can generate and affect the spread of information. Besides, by conducting the experiments in six different kinds of network data set, we compare the effects of three mechanisms above mentioned, totally six specific factors, on the spread of information, and put forward that the node's popularity plays an important role in the information spread.

  8. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....

  9. Advanced dementia research in the nursing home: the CASCADE study.

    Science.gov (United States)

    Mitchell, Susan L; Kiely, Dan K; Jones, Richard N; Prigerson, Holly; Volicer, Ladislav; Teno, Joan M

    2006-01-01

    Despite the growing number of persons with advanced dementia, and the need to improve their end-of-life care, few studies have addressed this important topic. The objectives of this report are to present the methodology established in the CASCADE (Choices, Attitudes, and Strategies for Care of Advanced Dementia at the End-of-Life) study, and to describe how challenges specific to this research were met. The CASCADE study is an ongoing, federally funded, 5-year prospective cohort study of nursing [nursing home (NH)] residents with advanced dementia and their health care proxies (HCPs) initiated in February 2003. Subjects were recruited from 15 facilities around Boston. The recruitment and data collection protocols are described. The demographic features, ownership, staffing, and quality of care of participant facilities are presented and compared to NHs nationwide. To date, 189 resident/HCP dyads have been enrolled. Baseline data are presented, demonstrating the success of the protocol in recruiting and repeatedly assessing NH residents with advanced dementia and their HCPs. Factors challenging and enabling implementation of the protocol are described. The CASCADE experience establishes the feasibility of conducting rigorous, multisite dementia NH research, and the described methodology serves as a detailed reference for subsequent CASCADE publications as results from the study emerge. PMID:16917187

  10. The CASCAD system: An SGN spent fuel dry storage facility

    International Nuclear Information System (INIS)

    This paper will present SGN's dry vault spent storage system. This concept is based on the CASCAD facility, designed and built by SGN for the French Atomic Energy Commission (CEA) at Cadarache, France. Cascade has been in operation since 1990 since which time SGN has customized its storage system. Because of its extensive experience in both spent fuel assembly and dry storage of high level waste, SGN is able to design solutions fully customized to fit customers' storage requirements using proven technology. Its modular approach allows for staggered investment over a period of several years for maximum flexibility. The Cascad system meets site-specific constraints and safety requirements and is able to receive a wide range of fuels and shipping casks. Since spent fuel assemblies are stored in passive cooled pits, the system is entirely passive and therefore inherently safe. Moreover, the Cascad system allows total retrievability of spent fuel after a 50-year storage period even if the reactor building no longer exists

  11. Intranuclear cascade description of relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    A microscopic theory of heavy ion reactions based on the intranuclear cascade model is briefly discussed in an attempt to study the compression of nuclear matter. Double differential cross sections of 20Ne + 238U are shown as functions of impact parameter and bombarding energy for energies between 100 and 900 MeV/nucleon

  12. CASCADED MULTILEVEL INVERTER BASED HARMONIC REDUCTION IN STATCOM

    Directory of Open Access Journals (Sweden)

    T. MANOKARAN,

    2010-10-01

    Full Text Available This paper deals with simulation of STATCOM used for harmonic reduction with the help of multilevel VSI circuit. Cascaded converter based multilevel inverters are used for medium to high power reactivecompensation application. Voltage unbalance is one of the main limitations of cascaded based multilevel STATCOM. A simple control strategy is proposed for the volt-age balance of a cascaded two level inverter based STATCOM. The topology consists of two conventional three phase two level inverters connected in cascade. The two inverters operate at two different dc link voltages to obtain four level operation at STATCOM out-put. Simulation studies are carried out to predict the performance of the proposed control strategy.The harmonics in STATCOM due to the voltage ripple are reduced. As a result, the size of inductor and DC capacitor can be reduced. The STATCOM has the great advantage of a fewer number of devices. The VSI is extremely fast in response to reactive power change. The simulation of the STATCOM is performed in the Simulink environment and the results are presented.

  13. Dispersive waves in fs cascaded second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;

    2009-01-01

    Dispersive waves are observed in simulations of cascaded (phase-mismatched) second-harmonic generation. When generating ultra-short fs compressed near-IR solitons the dispersive waves are strongly red-shifted, depending on the soliton wavelength. Semi-analytical calculations predict the wavelengths....

  14. Efficient Design of Multi-stage Cascade Waveband Separator

    Institute of Scientific and Technical Information of China (English)

    Samrat Ganguly; Rauf Izmailov; Nan Tu; Ting Wang

    2003-01-01

    We propose a cascade system of filters for realizing a non-uniform waveband separation for optical networks. The use of such separation is required at the DEMUX stage in a optical OXC switching wavebands. The design of the system is based on optimized balanced tree, which minimizes the overall optical loss.

  15. Applications of cascading nonlinear optics to all-optical devices

    NARCIS (Netherlands)

    Stegeman, G.I.; Schiek, R.; Baek, Y.; Krijnen, G.J.M.; Baumann, I.; Sohler, W.

    1996-01-01

    The application of a cascaded phase shift to a fully integrated nonlinear directional coupler (NLDC) and Mach-Zehnder interferometer (MZI) is presented. It shows that for MZI, the input power was increased and the throughput was modulated between 80% and 20% of the input. For the NLDC, the switching

  16. DNA binding properties of the small cascade subunit Csa5.

    Directory of Open Access Journals (Sweden)

    Michael Daume

    Full Text Available CRISPR-Cas systems provide immunity against viral attacks in archaeal and bacterial cells. Type I systems employ a Cas protein complex termed Cascade, which utilizes small CRISPR RNAs to detect and degrade the exogenic DNA. A small sequence motif, the PAM, marks the foreign substrates. Previously, a recombinant type I-A Cascade complex from the archaeon Thermoproteus tenax was shown to target and degrade DNA in vitro, dependent on a native PAM sequence. Here, we present the biochemical analysis of the small subunit, Csa5, of this Cascade complex. T. tenax Csa5 preferentially bound ssDNA and mutants that showed decreased ssDNA-binding and reduced Cascade-mediated DNA cleavage were identified. Csa5 oligomerization prevented DNA binding. Specific recognition of the PAM sequence was not observed. Phylogenetic analyses identified Csa5 as a universal member of type I-A systems and revealed three distinct groups. A potential role of Csa5 in R-loop stabilization is discussed.

  17. Impedance Interaction Modeling and Analysis for Bidirectional Cascaded Converters

    DEFF Research Database (Denmark)

    Tian, Yanjun; Deng, Fujin; Chen, Zhe;

    2015-01-01

    For the cascaded converter system, the output impedance of source converter interacts with the input impedance of load converter, and the interaction may cause the system instability. In bidirectional applications, when the power flow is reversed, the impedance interaction also varies, which brin...

  18. Atmospheric composition change: Ecosystems-Atmosphere interactions

    NARCIS (Netherlands)

    Fowler, D.; Pilegaard, K.; Sutton, M.A.; Ambus, P.; Raivonen, M.; Duyzer, J.; Simpson, D.; Fagerli, H.; Fuzzi, S.; Schjoerring, J.K.; Granier, C.; Neftel, A.; Isaksen, I.S.A.; Laj, P.; Maione, M.; Monks, P.S.; Burkhardt, J.; Daemmgen, U.; Neirynck, J.; Personne, E.; Wichink Kruit, R.J.; Butterbach-Bahl, K.; Flechard, C.; Tuovinen, J.P.; Coyle, M.; Gerosa, G.; Loubet, B.; Altimir, N.; Gruenhage, L.; Ammann, C.; Cieslik, S.; Paoletti, E.; Mikkelsen, T.N.; Ro-Poulsen, H.; Cellier, P.; Cape, J.N.; Horvath, L.; Loreto, F.; Niinemets, U.; Palmer, P.I.; Rinne, J.; Misztal, P.; Nemitz, E.; Nilsson, D.; Pryor, S.; Gallagher, M.W.; Vesala, T.; Skiba, U.; Brueggemann, N.; Zechmeister-Boltenstern, S.; Williams, J.; O'Dowd, C.; Facchini, M.C.; Leeuw, de G.; Flossman, A.; Chaumerliac, N.; Erisman, J.W.

    2009-01-01

    Ecosystems and the atmosphere: This review describes the state of understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere. The gases covered include NO, NO2, HONO, HNO3, NH3, SO2, DMS, Biogenic VOC, O-3, CH4, N2O and particles i

  19. Numerical integration of electromagnetic cascade equations, discussion of results for air, copper, iron, and lead

    International Nuclear Information System (INIS)

    The longitudinal development of electromagnetic cascades in air, copper, iron, and lead is studied on the basis of results derived recently by numerical integration of the cascade equations applying rather accurate expressions for the cross-sections involved with the interactions of high energy electrons, positrons, and photons in electromagnetic cascades. Special attention is given to scaling properties of transition curves. It is demonstrated that a good scaling may be achieved by means of the depth of maximum cascade development. (author)

  20. Hydrothermal heat discharge in the Cascade Range, northwestern United States

    Science.gov (United States)

    Ingebritsen, S.E.; Mariner, R.H.

    2010-01-01

    Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than ambient temperature, and by fumaroles. Thermal-spring heat discharge is calculated on the basis of chloride-flux measurements and geothermometer temperatures and totals ~ 240 MW in the U.S. part of the Cascade Range, excluding the transient post-1980 discharge at Mount St. Helens (~80 MW as of 2004-5). Heat discharge from "slightly thermal" springs is based on the degree of geothermal warming (after correction for gravitational potential energy effects) and totals ~. 660. MW. Fumarolic heat discharge is calculated by a variety of indirect and direct methods and totals ~160 MW, excluding the transient mid-1970s discharge at Mount Baker (~80 MW) and transient post-1980 discharge at Mount St. Helens (>. 230. MW as of 2005). Other than the pronounced transients at Mount St. Helens and Mount Baker, hydrothermal heat discharge in the Cascade Range appears to be fairly steady over a ~25-year period of measurement. Of the total of ~. 1050. MW of "steady" hydrothermal heat discharge identified in the U.S. part of the Cascade Range, less than 50. MW occurs north of latitude 45??15' N (~0.1 MW per km arc length from 45??15' to 49??N). Much greater rates of hydrothermal heat discharge south of 45??15'N (~1.7 MW per km arc length from 40?? to 45??15'N) may reflect the influence of Basin and Range-style extensional tectonics (faulting) that impinges on the Cascades as far north as Mount Jefferson but is not evident farther north. ?? 2010.

  1. Development of open-path interband cascade laser-based ethane sensor

    Science.gov (United States)

    Golston, L.; Pan, D.; Caulton, D.; Tao, L.; Zondlo, M. A.

    2015-12-01

    We present development of an open-path, fast response, laser spectrometer for sensing atmospheric ethane on ground-based and mobile laboratory platforms. A 3336.8 nm interband cascade laser probes a fundamental infrared absorption band for sensitivity to ethane under ambient conditions, as enabled by employing wavelength modulation spectroscopy. Simultaneous measurement of methane on an adjacent line corrects for cross-sensitivity with ethane in the air-broadened second harmonic spectrum. The sensor has an average power consumption of 20 W with an optical pathlength of 60 m and has been mounted alongside CO2 and CH4 analyzers on our mobile laboratory. With a noise equivalent absorbance of 2 x 10-5, precision and sensitivity are expected to be better than 1 ppbv, comparable to background levels away from localized ethane sources. Results are presented using the sensor for identification of fugitive methane leakage from natural gas production in the Marcellus Shale, helping to exclude other potentially collocated sources including wetlands and small-scale animal feeding operations. Ethane is applied as a highly effective tracer for distinguishing biologically produced methane from the thermogenic methane of interest. For medium- to high- emitting wells, we also obtain information about natural gas composition. Finally, performance of the instrument for measuring ethane and methane under varying regimes (enhancement over ambient atmospheric levels, methane/ethane ratios) is discussed along with future applications enabled by the reduced power and weight specifications and 10 Hz time response.

  2. Interband cascade light emitting devices based on type-II quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui Q.; Lin, C.H.; Murry, S.J. [Univ. of Houston, TX (United States). Space Vacuum Epitaxy Center] [and others

    1997-06-01

    The authors discuss physical processes in the newly developed type-II interband cascade light emitting devices, and review their recent progress in the demonstration of the first type-II interband cascade lasers and the observation of interband cascade electroluminescence up to room temperature in a broad mid-infrared wavelength region (extended to 9 {mu}m).

  3. 77 FR 73651 - Cascade Energy Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2012-12-11

    ... Federal Energy Regulatory Commission Cascade Energy Storage, LLC; Notice of Preliminary Permit Application..., 2012, Cascade Energy Storage, LLC, filed an application for a preliminary permit, pursuant to section 4.... Matthew Shapiro, Chief Executive Officer, Cascade Energy Storage, LLC, 1210 W. Franklin Street, Ste....

  4. Experimental investigation of gas turbine airfoil aerodynamic performance without and with film cooling in an annular sector cascade

    Energy Technology Data Exchange (ETDEWEB)

    Wiers, S.H.

    2002-02-01

    The steady growing of industrialization, the densification of the anthroposphere, the increasing concern over the effects of gas turbine cruise emissions on the atmosphere threaten the growth of air transportation, and the perception about the possible climatic impact of CO{sub 2} emissions causes a public distinctive sense of responsibility. The conventional energy production techniques, which are based on fossil fuel, will keep its central importance within the global energy production. Forecasts about the increasing air transportation give duplication in the next 10-15 years. The optimization of the specific fuel consumption is necessary to decrease the running costs and the pollution emissions in the atmosphere, which makes an increased process efficiency of stationary turbines as well as of jet engines essential. This leads to the necessity of an increased thermodynamic efficiency of the overall process and the optimization of the aerodynamic components. Due to the necessity of more detailed three-dimensional data on the behavior of film cooled blades an annular sector cascade turbine test facility has gone into service. The annular sector cascade facility is a relative cost efficient solution compared to a full annular facility to investigate three-dimensional effects on a non cooled and cooled turbine blade. The aerodynamic investigations on the annular sector cascade facility are part of a broad perspective where experimental data from a hot annular sector cascade facility and the cold annular sector facility are used to verify, calibrate and understand the physics for both internal and external calculation methods for flow and heat transfer prediction. The objective of the present study is the design and validation of a cold flow annular sector cascade facility, which meets the flow conditions in a modem turbine as close as possible, with emphasis on achieving periodic flow conditions. The first part of this study gives the necessary background on this

  5. Atmospheric neutrinos observed in underground detectors

    Science.gov (United States)

    Gaisser, T. K.; Stanev, T.

    1985-01-01

    Atmospheric neutrinos are produced when the primary cosmic ray beam hits the atmosphere and initiates atmospheric cascades. Secondary mesons decay and give rise to neutrinos. The neutrino production was calculated and compared with the neutrino fluxes detected in underground detectors. Contained neutrino events are characterized by observation of an interaction within the fiducial volume of the detector when the incoming particle is not observed. Both the neutrino flux and the containment requirement restrict the energy of the neutrinos observed in contained interactions to less than several GeV. Neutrinos interact with the rock surrounding the detector but only muon neutrino interactions can be observed, as the electron energy is dissipated too fast in the rock. The direction of the neutrino is preserved in the interaction and at energies above 1 TeV the angular resolution is restricted by the scattering of the muon in the rock. The muon rate reflects the neutrino spectrum above some threshold energy, determined by the detector efficiency for muons.

  6. Prediction and Control of Network Cascade: Example of Power Grid or Networking Adaptability from WMD Disruption and Cascading Failures

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory

    2012-07-24

    The goal of the DTRA project is to develop a mathematical framework that will provide the fundamental understanding of network survivability, algorithms for detecting/inferring pre-cursors of abnormal network behaviors, and methods for network adaptability and self-healing from cascading failures.

  7. DECREASING OF WATER TROPHY IN CASCADE SYSTEMS, ON EXAMPLE OF THE SOŁA RIVER DAM CASCADE (SOUTHERN POLAND

    Directory of Open Access Journals (Sweden)

    Ewa Jachniak

    2014-10-01

    Full Text Available In this thesis the subject of water self-purification in cascade systems of water reservoirs was engaged. The results of hydrobiological research of three dam reservoirs (Tresna, Porąbka and Czaniec, creating the Soła river dam cascade were presented. The trophic status of these reservoirs was defined on the grounds of the concentration of chlorophyll a, biomass of phytoplankton and occurrence of indicating species of planktonic algae. The results of research indicated on decreasing of water trophy in the layout from the highest into the lowest reservoir of the cascade. The average concentrations of chlorophyll a amounted appropriately 19,99 μg·dm-3, 8,74 μg·dm-3 and 4,29 μg·dm-3, instead the average biomass of phytoplankton amounted appropriately 4,1 mg·dm-3, 3,4 mg·dm-3 and 0,1 mg·dm-3. The observed species of algae confirmed occurrence of differences between reservoirs. In Tresna reservoir more species of phytoplankton indicating for eutrophy were thrived, instead in Porąbka and Czaniec reservoirs the species occurring in oligomesotrophic water thrived. Water self-purification in the Soła river dam cascade expressed decreasing of their fertility is important for water management of the region, because the Czaniec reservoir fulfill a function of water-supply reservoir.

  8. Statistics in Atmospheric Science

    OpenAIRE

    Solow, Andrew R.

    2003-01-01

    This paper reviews the use of statistical methods in atmospheric science. The applications covered include the development, assessment and use of numerical physical models of the atmosphere and more empirical analysis unconnected to physical models.

  9. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  10. Atmospheric Lepton Fluxes

    CERN Document Server

    Gaisser, Thomas K

    2014-01-01

    This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric $\

  11. Mirador - Atmospheric Composition

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. Atmospheric Composition is focused on the composition of Earth's atmosphere in relation to climate prediction, solar effects,...

  12. Our shared atmosphere

    Science.gov (United States)

    Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...

  13. Atmospheric refraction : a history

    NARCIS (Netherlands)

    Lehn, WH; van der Werf, S

    2005-01-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of un

  14. Analysis of cascade systems for oxygen isotope separation

    International Nuclear Information System (INIS)

    Full text: Membrane permeation is a useful method employed in nuclear technologies for liquid radioactive waste processing, boric acid recovery and separation of isotopes. Big progress concerning the application of membrane methods was done by Institute of Nuclear Chemistry and Technology, Warsaw, in which such processes like ultrafiltration, reverse osmosis and membrane distillation were intensively studied. Implementation of reverse osmosis for concentration of low-level radioactive wastes processed at Institute of Atomic Energy was a first step for testing the process feasibility and its further applications. Separation of liquids with close boiling points (e.g. mixture of water isotopomers) by fractional distillation or chemical isotope exchange exhibits many problems, which do not exist in most industrial processes. The reasons are very low concentrations of heavy isotopes: 18O and 17O, in the raw material (water), coupled with small separation factors, which characterize all processes used for enrichment. As a consequence large amounts of material must be processed over long times. In spite of low separation factor (α=1,0032 at 100 deg C) fractional distillation seems to be the main method used for heavy-oxygen water production. Because of increasing medical applications (PET diagnosis) there is a severe shortage of heavy oxygen water on the market at present. The price of H218O purchased from one of the producers present on the market is high and delivery time is long. The theory of separation cascade elaborated in 40-ties of XX century for 235U enrichment in natural uranium, by gas diffusion is until now an usable tool for all the separating isotope systems. It can be applied for description of all the units with complicated cascade schemes regardless of separation process used. Application of membrane method, namely membrane distillation (MD), for production of 18O isotope and the possibility of conducting the process in cascade units, what may be of

  15. Appoximation of individual cascades with energies above the GZK cut-off

    Science.gov (United States)

    Kirillov, A.; Kirillov, I.

    Approximation of individual cascades of gigantic energies is the essential part of prime particle energy determination methods. Fluctuation of cascades and their distribution shapes were investigated on the base of sufficient number of MK simulated showers, as dependent on prime energy, zenit angle and registration method. Individual cascades were approximated with high accuracy using some special parameters. It enables to create convenient formulae for approximation of individual cascades. Quality of this approximation and applicability of the traditional approximation of mean cascades for estimation of individual giganticcascades are discussed.

  16. Model of quasi-ideal cascade with an additional feed flow and losses of working substances

    International Nuclear Information System (INIS)

    A mathematical model for the quasi-ideal cascade with an additional feed flow and losses of' working substances was established. Analytical relations to calculate the relative product and waste flows, component concentrations in the product and waste flows and the total substance flow in this cascade model were obtained by solving cascade equations. Cascade calculations were performed for separation of the recycled uranium. It was analyzed that the effects of loss factor and ratio between base and additional flows on the product concentration of cascade, in which the natural uranium was fed as a base feed flow and the recycled uranium as an additional one. (authors)

  17. Nonisothermal Pluto atmosphere models

    International Nuclear Information System (INIS)

    The present thermal profile calculation for a Pluto atmosphere model characterized by a high number fraction of CH4 molecules encompasses atmospheric heating by solar UV flux absorption and conductive transport cooling to the surface of Pluto. The stellar occultation curve predicted for an atmosphere of several-microbar surface pressures (which entail the existence of a substantial temperature gradient close to the surface) agrees with observations and implies that the normal and tangential optical depth of the atmosphere is almost negligible. The minimum period for atmospheric methane depletion is calculated to be 30 years. 29 refs

  18. Theoretical comparison of subgrid turbulence in the atmosphere and ocean

    Directory of Open Access Journals (Sweden)

    V. Kitsios

    2015-12-01

    Full Text Available Due to the massive disparity between the largest and smallest eddies in the atmosphere and ocean, it is not possible to simulate these flows by explicitly resolving all scales on a computational grid. Instead the large scales are explicitly resolved, and the interactions between the unresolved subgrid turbulence and large resolved scales are parameterised. If these interactions are not properly represented then an increase in resolution will not necessarily improve the accuracy of the large scales. This has been a significant and long standing problem since the earliest climate simulations. Historically subgrid models for the atmosphere and ocean have been developed in isolation, with the structure of each motivated by different physical phenomena. Here we solve the turbulence closure problem by determining the parameterisation coefficients (eddy viscosities from the subgrid statistics of high resolution quasi-geostrophic atmospheric and oceanic simulations. These subgrid coefficients are characterised into a set of simple unifying scaling laws, for truncations made within the enstrophy cascading inertial range. The ocean additionally has an inverse energy cascading range, within which the subgrid model coefficients have alternative scaling properties. Simulations adopting these scaling laws are shown to reproduce the statistics of the reference benchmark simulations across resolved scales, with orders of magnitude improvement in computational efficiency. This reduction in both resolution dependence and computational effort will improve the efficiency and accuracy of geophysical research and operational activities that require data generated by general circulation models, including: weather, seasonal and climate prediction; transport studies; and understanding natural variability and extreme events.

  19. Development of a Quantum Cascade Laser-Based Detector for Ammonia and Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Zahniser, Mark S.; Nelson, David D.; McManus, J. Barry; Shorter, Joanne H.; Herndon, Scott C.; Jimenez, Rodrigo

    2005-12-31

    We have developed a compact, robust, atmospheric trace gas detector based on mid-infrared absorption spectroscopy using pulsed quantum cascade (QC) lasers. The spectrometer is suitable for airborne measurements of ammonia, nitric acid, formaldehyde, formic acid, methane, nitrous oxide, carbon monoxide, nitrogen dioxide and other gases that have line-resolved absorption spectra in the mid-infrared spectral region. The QC laser light source operates near room temperature with thermal electric cooling instead of liquid nitrogen which has been previously required for semiconductor lasers in the mid-infrared spectral region. The QC lasers have sufficient output power so that thermal electric cooled detectors may be used in many applications with lower precision requirements. The instrument developed in this program has been used in several field campaigns from both the Aerodyne Mobile Laboratory and from the NOAA WP3 aircraft. The Phase II program has resulted in more than 10 archival publications describing the technology and its applications. Over 12 instruments based on this design have been sold to research groups in Europe and the United States making the program both a commercial as well as a technological success. Anticipated Benefits The development of a sensitive, cryogen-free, mid-infrared absorption method for atmospheric trace gas detection will have wide benefits for atmospheric and environmental research and broader potential commercial applications in areas such as medical diagnostic and industrial process monitoring of gaseous compounds. Examples include air pollution monitoring, breath analysis, combustion exhaust diagnostics, and plasma diagnostics for semi-conductor fabrication. The substitution of near-room temperature QC lasers for cryogenic lead salt TDLs and the resulting simplifications in instrument design and operation will greatly expand the range of applications.

  20. The effects of self-interstitial clusters on cascade defect evolution beyond the primary damage state

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparent only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies.

  1. Cascading Power Outages Propagate Locally in an Influence Graph that is not the Actual Grid Topology

    CERN Document Server

    Hines, Paul D H; Rezaei, Pooya

    2015-01-01

    In a cascading power transmission outage, component outages propagate non-locally; after one component outages, the next failure may be very distant, both topologically and geographically. As a result, simple models of topological contagion do not accurately represent the propagation of cascades in power systems. However, cascading power outages do follow patterns, some of which are useful in understanding and reducing blackout risk. This paper describes a method by which the data from many cascading failure simulations can be transformed into a graph-based model of influences that provides actionable information about the many ways that cascades propagate in a particular system. The resulting "influence graph" model is Markovian, since component outage probabilities depend only on the outages that occurred in the prior generation. To validate the model we compare the distribution of cascade sizes resulting from n-2 contingencies in a 2896 branch test case to cascade sizes in the influence graph. The two dist...

  2. 2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach-Zehnder interferometer and spatial mode beating effect

    Science.gov (United States)

    Wang, Shun; Lu, Ping; Zhao, Shui; Liu, Deming; Yang, Wei; Zhang, Jiangshan

    2014-06-01

    We demonstrated a 2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach-Zehnder interferometer and spatial mode beating effect. Few-mode fiber-embedded Sagnac ring configuration and a Mach-Zehnder interferometer are cascaded to form a multiwavelength filter for our previous 2-μm fiber laser. By adopting suitable fiber length and adjusting the polarization controller, we obtained a 2-μm dual-wavelength fiber laser with switchable wavelength interval. Experimental results revealed that the proposed laser shows higher quality and better stability compared with our previous work and it has potential applications in the fields of atmospheric propagation and microwave photonics.

  3. Cascade Protector for Hardening Electronic Devices against High Power Microwaves

    Directory of Open Access Journals (Sweden)

    Geng Yang

    2009-01-01

    Full Text Available Since the increasing front part of incident microwave pulses may pass through plasma limiter before it generates plasma (the breakdown time of low pressure Xe in plasma limiter is 10 ns, single plasma limiters are not adequate for protecting sensitive electronic components against high power microwaves (HPM. A cascade protector, which consists of a plasma limiter and a PIN limiter in waveguide, is proposed. The numerical results show that under HPM attack (10 GW, 1GHz, and 100 ns pulse width, the microwave power leakage through the cascade protector is about 0.4 W. In the same electromagnetic environment, the power leakage through single plasma limiter is approximate 347 W.Defence Science Journal, 2009, 59(1, pp.55-57, DOI:http://dx.doi.org/10.14429/dsj.59.1485

  4. Hawking evaporation cascade in presence of back reaction effect

    CERN Document Server

    Paul, Avik

    2016-01-01

    We study the cascade of Hawking emission spectrum from the event horizon in presence of back reaction in a black hole background. The framework, adopted here, is that given in [arXiv:1506.03975] and the spacetime is the modified Schwarzschild one. The analysis shows that it is possible to decrease the sparsity with the decrease in black hole mass. Moreover, at some particular value of mass one has a continuous radiation cascade. This result is completely new and quite different from the usual one. An estimation of the mass for continuous one is also found. We see that the value is of the Plank mass order. In this process it is observed that under a physical background, below a particular value of the mass the Hawking radiation must stop and we have a remnant. This was absent in the earlier analysis.

  5. EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TURBULENT AIR-CUSHION-CASCADE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Experimental and numerical studies of air-cushion-cascade were conducted and described. The SIMPLE algorithm combined with the normal k-ε turbulence model was adopted to simulate the air-phase flow. The experiment was carried out an IFA 300 anemometer. The flow field was measured for different ratios of main-stream velocity to jet velocity, different numbers of gaps and a couple of gap widths. The contur of the air-cushion was obtained, and the numerical calculations gave a closed-form result. The results show that the air-cushion thickness would increase with the increase of the jet volcoity, gap width and gap number mainly determined by the jet in the former half cascade. The possibility to achieve anti-erosion by the turbulent jet was examined and confirmed.

  6. Multi Agent System Based Wide Area Protection against Cascading Events

    DEFF Research Database (Denmark)

    Liu, Zhou; Chen, Zhe; Liu, Leo;

    2012-01-01

    In this paper, a multi-agent system based wide area protection scheme is proposed in order to prevent long term voltage instability induced cascading events. The distributed relays and controllers work as a device agent which not only executes the normal function automatically but also can...... the effectiveness of proposed protection strategy. The simulation results indicate that the proposed multi agent control system can effectively coordinate the distributed relays and controllers to prevent the long term voltage instability induced cascading events....... be modified to fulfill the extra function according to external requirements. The control center is designed as a highest level agent in MAS to coordinate all the lower agents to prevent the system wide voltage disturbance. A hybrid simulation platform with MATLAB and RTDS is set up to demonstrate...

  7. InAs based terahertz quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Brandstetter, Martin, E-mail: martin.brandstetter@tuwien.ac.at; Kainz, Martin A.; Krall, Michael; Schönhuber, Sebastian; Unterrainer, Karl [Photonics Institute and Center for Micro- and Nanostructures, Technische Universität Wien, Gusshausstrasse 27-29, 1040 Vienna (Austria); Zederbauer, Tobias; Schrenk, Werner; Andrews, Aaron Maxwell; Strasser, Gottfried [Institute for Solid State Electronics and Center for Micro- and Nanostructures, Technische Universität Wien, Floragasse 7, 1040 Vienna (Austria); Detz, Hermann [Austrian Academy of Sciences, Dr. Ignaz Seipel-Platz 2, 1010 Vienna (Austria)

    2016-01-04

    We demonstrate terahertz lasing emission from a quantum cascade structure, realized with InAs/AlAs{sub 0.16}Sb{sub 0.84} heterostructures. Due to the lower effective electron mass, InAs based active regions are expected to provide a higher optical gain compared to structures consisting of GaAs or InGaAs. The growth by molecular beam epitaxy enabled the fabrication of monolayer-thick barriers, required for the active region, which is based on a 3-well resonant phonon depletion design. Devices were processed in a double-metal waveguide geometry to ensure high mode confinement and low optical losses. Lasing emission at 3.8 THz was observed at liquid helium temperatures by applying a magnetic field perpendicular to the layered structure in order to suppress parasitic scattering channels. These results demonstrate the feasibility of InAs based active regions for terahertz quantum cascade lasers, potentially enabling higher operating temperatures.

  8. Forward design of a complex enzyme cascade reaction

    Science.gov (United States)

    Hold, Christoph; Billerbeck, Sonja; Panke, Sven

    2016-01-01

    Enzymatic reaction networks are unique in that one can operate a large number of reactions under the same set of conditions concomitantly in one pot, but the nonlinear kinetics of the enzymes and the resulting system complexity have so far defeated rational design processes for the construction of such complex cascade reactions. Here we demonstrate the forward design of an in vitro 10-membered system using enzymes from highly regulated biological processes such as glycolysis. For this, we adapt the characterization of the biochemical system to the needs of classical engineering systems theory: we combine online mass spectrometry and continuous system operation to apply standard system theory input functions and to use the detailed dynamic system responses to parameterize a model of sufficient quality for forward design. This allows the facile optimization of a 10-enzyme cascade reaction for fine chemical production purposes. PMID:27677244

  9. GEOLOGIC FRAMEWORK FOR GEOTHERMAL ENERGY IN THE CASCADE RANGE.

    Science.gov (United States)

    Duffield, W.A.

    1983-01-01

    Quaternary volcanoes of the Cascade Range form a 1200-km-long belt from northern California to southwest British Columbia and lie above the subduction zone formed as the Juan de Fuca plate is consumed beneath North America. Volcanoes throughout this belt may have been active during Quaternary time, and many have erupted within Holocene time. Thermal springs are few and inconspicuous. Surface expression of hydrothermal systems possibly is masked by infiltration of abundant rainwater and snowmelt. Several geologic and geophysical features suggest that the Oregon and California parts of the Cascades are characterized by moderate east-west crustal extension, tectonic regime conducive to relatively widespread volcanism and to the formation of normal fault zones of potentially high permeability. Refs.

  10. Faltung formulation of hadron halo event cascade at Mt. Chacaltaya

    CERN Document Server

    Tsui, K H; Navia, C E; Shigueoka, H; De Oliveira, L C S

    2007-01-01

    It is shown that the fundamental standard hadron cascade diffusion equation in the Mellin transform space is not rigorously correct because of the inconsistent double energy integral evaluation which generates the function $$ with its associated parametizations. To ensure an exact basic working equation, the Faltung integral representation is introduced which has the elasticity distribution function $u(\\eta)$ as the only fundamental input function and $$ is just the Mellin transform of $u(\\eta)$. This Faltung representation eliminates standard phenomenological parameters which serve only to mislead the physics of cascade. The exact flux transform equation is solved by the method of characteristics, and the hadron flux in real space is obtained by the inverse transform in terms of the simple and essential residues. Since the essential residues are given by the singularities in the elasticity distribution and particle production transforms that appear in the exponentials, these functions should not be parametiz...

  11. Molecular dynamics simulation of radiation damage cascades in diamond

    International Nuclear Information System (INIS)

    Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%

  12. Molecular dynamics simulation of radiation damage cascades in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Buchan, J. T. [Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6845 (Australia); Robinson, M. [Nanochemistry Research Institute, Curtin University, Perth, Western Australia 6845 (Australia); Christie, H. J.; Roach, D. L.; Ross, D. K. [Physics and Materials Research Centre, School of Computing, Science and Engineering, University of Salford, Salford, Greater Manchester M5 4WT (United Kingdom); Marks, N. A. [Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6845 (Australia); Nanochemistry Research Institute, Curtin University, Perth, Western Australia 6845 (Australia)

    2015-06-28

    Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.

  13. Hybrid-source impedance network and its generalized cascading concepts

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang;

    2009-01-01

    current-type inverters. These impedance networks can in principle be combined into a single generic network entity, before generalized cascading concepts are proposed for connecting multiple of them together to form energy converters with a higher output voltage gain and other unique advantages. It is...... anticipated that these concepts and their formed inverters can find applications in photovoltaic and other renewable systems, which in turn motivate the investigation initiated here on two-level and three-level generalized cascading concepts. In addition to their theoretical performance merits, practical...... shortcomings and relevant transient phenomena exhibited by the generalized concepts are discussed to provide a comprehensive knowledge base needed for weighing relevant tradeoffs before deciding on a particular application....

  14. Magnetohydrodynamic turbulent cascade of coronal loop magnetic fields.

    Science.gov (United States)

    Rappazzo, A F; Velli, M

    2011-06-01

    The Parker model for coronal heating is investigated through a high resolution simulation. An inertial range is resolved where fluctuating magnetic energy EMk[Please see symbol]) [Please see symbol] k[Please see symbol](-2.7) exceeds kinetic energy EK(k[Please see symbol])[Please see symbol]k[Please see symbol](-0.6). Increments scale as δbℓ ~/= ℓ(-0.85) and δuℓ ~/= ℓ(+0.2) with velocity increasing at small scales, indicating that magnetic reconnection plays a prime role in this turbulent system. We show that spectral energy transport is akin to standard magnetohydrodynamic (MHD) turbulence even for a system of reconnecting current sheets sustained by the boundary. In this new MHD turbulent cascade, kinetic energy flows are negligible while cross-field flows are enhanced, and through a series of "reflections" between the two fields, cascade more than half of the total spectral energy flow.

  15. Exploring percolative landscapes: Infinite cascades of geometric phase transitions

    Science.gov (United States)

    Timonin, P. N.; Chitov, Gennady Y.

    2016-01-01

    The evolution of many kinetic processes in 1+1 (space-time) dimensions results in 2 D directed percolative landscapes. The active phases of these models possess numerous hidden geometric orders characterized by various types of large-scale and/or coarse-grained percolative backbones that we define. For the patterns originated in the classical directed percolation (DP) and contact process we show from the Monte Carlo simulation data that these percolative backbones emerge at specific critical points as a result of continuous phase transitions. These geometric transitions belong to the DP universality class and their nonlocal order parameters are the capacities of corresponding backbones. The multitude of conceivable percolative backbones implies the existence of infinite cascades of such geometric transitions in the kinetic processes considered. We present simple arguments to support the conjecture that such cascades of transitions are a generic feature of percolation as well as of many other transitions with nonlocal order parameters.

  16. Medium-Induced QCD Cascade: Democratic Branching and Wave Turbulence

    Science.gov (United States)

    Blaizot, J.-P.; Iancu, E.; Mehtar-Tani, Y.

    2013-08-01

    We study the average properties of the gluon cascade generated by an energetic parton propagating through a quark-gluon plasma. We focus on the soft, medium-induced emissions which control the energy transport at large angles with respect to the leading parton. We show that the effect of multiple branchings is important. In contrast with what happens in a usual QCD cascade in vacuum, medium-induced branchings are quasidemocratic, with offspring gluons carrying sizable fractions of the energy of their parent gluon. This results in an efficient mechanism for the transport of energy toward the medium, which is akin to wave turbulence with a scaling spectrum ˜1/ω. We argue that the turbulent flow may be responsible for the excess energy carried by very soft quanta, as revealed by the analysis of the dijet asymmetry observed in Pb-Pb collisions at the LHC.

  17. Laser absorption via QED cascades in counter propagating laser pulses

    CERN Document Server

    Grismayer, Thomas; Martins, Joana L; Fonseca, Ricardo A; Silva, Luis O

    2015-01-01

    A model for laser light absorption in electron-positron plasmas self-consistently created via QED cascades is described. The laser energy is mainly absorbed due to hard photon emission via nonlinear Compton scattering. The degree of absorption depends on the laser intensity and the pulse duration. The QED cascades are studied with multi-dimensional particle-in-cell simulations complemented by a QED module and a macro-particle merging algorithm that allows to handle the exponential growth of the number of particles. Results range from moderate-intensity regimes ($\\sim$ 10 PW) where the laser absorption is negligible, to extreme intensities (> 100 PW) where the degree of absorption reaches 80%. Our study demonstrates good agreement between the analytical model and simulations. The expected properties of the hard photon emission and the generated pair-plasma are investigated, and the experimental signatures for near-future laser facilities are discussed.

  18. Aerodynamic performance of an annular classical airfoil cascade

    Science.gov (United States)

    Bergsten, D. E.; Stauter, R. C.; Fleeter, S.

    1983-01-01

    Results are presented for a series of experiments that were performed in a large-scale subsonic annular cascade facility that was specifically designed to provide three-dimensional aerodynamic data for the verification of numerical-calculation codes. In particular, the detailed three-dimensional aerodynamic performance of a classical flat-plate airfoil cascade is determined for angles of incidence of 0, 5, and 10 deg. The resulting data are analyzed and are correlated with predictions obtained from NASA's MERIDL and TSONIC numerical programs. It is found that: (1) at 0 and 5 deg, the airfoil surface data show a good correlation with the predictions; (2) at 10 deg, the data are in fair agreement with the numerical predictions; and (3) the two-dimensional Gaussian similarity relationship is appropriate for the wake velocity profiles in the mid-span region of the airfoil.

  19. Cascaded forward Brillouin scattering to all Stokes orders

    CERN Document Server

    Wolff, Christian; Eggleton, Benjamin J; Steel, Michael J; Poulton, Christopher G

    2016-01-01

    Inelastic scattering processes such as Brillouin scattering can often function in cascaded regimes and this is likely to occur in certain integrated opto-acoustic devices. We develop a Hamiltonian formalism for cascaded Brillouin scattering valid for both quantum and classical regimes. By regarding Brillouin scattering as the interaction of a single acoustic envelope and a single optical envelope that covers all Stokes and anti-Stokes orders, we obtain a compact model that is well suited for numerical implementation, extension to include other optical nonlinearities or short pulses, and application in the quantum-optics domain. We then theoretically analyze intra-mode forward Brillouin scattering (FBS) for arbitrary waveguides with and without optical dispersion. In the absence of optical dispersion, we find an exact analytical solution. With a perturbative approach, we furthermore solve the case of weak optical dispersion. Our work leads to several key results on intra-mode FBS. For negligible dispersion, we...

  20. Cascading failures in congested complex networks with feedback

    Institute of Scientific and Technical Information of China (English)

    Zheng Jian-Feng; Gao Zi-You; Fu Sai-Bai; Li Feng

    2009-01-01

    In this article, we investigate cascading failures in complex networks by introducing a feedback. To characterize the effect of the feedback, we define a procedure that involves a self-organization of trip distribution during the process of cascading failures. For this purpose, user equilibrium with variable demand is used as an alternative way to determine the traffic flow pattern throughout the network. Under the attack, cost function dynamics are introduced to discuss edge overload in complex networks, where each edge is assigned a finite capacity (controlled by parameter α). We find that scale-free networks without considering the effect of the feedback are expected to be very sensitive to a as compared with random networks, while this situation is largely improved after introducing the feedback.

  1. Cascade Apartments - Deep Energy Multifamily Retrofit , Kent, Washington (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  2. The critical tension in the 6D Cascading DGP model

    CERN Document Server

    Sbisa', Fulvio

    2014-01-01

    We investigate the presence of ghosts in the Cascading DGP model. We start by discussing the problem of the cosmological late time acceleration, and we introduce the modified gravity approach. We then focus on brane induced gravity models and in particular on the Cascading DGP model. We consider a specific realization of the latter model, and we study first order perturbations around pure tension solutions. In the scalar sector of a 4D scalar-vector-tensor decomposition, the dynamics on the 4D brane can be described by a master equation where a critical tension emerges in a suitable 4D limit. We give a geometrical interpretation of this critical tension, and explain its relevance for the presence of ghosts in the theory. We comment on the difference between our result and the one present in the literature, and stress its importance regarding the phenomenological viability of the model. We finally provide a numerical check which confirms the validity of our analysis.

  3. Terahertz Quantum Cascade Laser at 3.39 THz

    Institute of Scientific and Technical Information of China (English)

    CAO Jun-Cheng; LI Hua; HAN Ying-Jun; TAN Zhi-Yong; L(U) Jing-Tao; LUO Hui; LAFRAMBOISE Sylvain; LIU Hui-Chun

    2008-01-01

    @@ We demonstrate the growth of terahertz quantum cascade laser (THz QCL) by gas source molecular beam epitaxy.X-ray diffraction and cross-sectional transmission electron microscopic measurements show the high crystalline quality of the THz QCL active region.From the cross-sectional transmission electron microscopy image,sharp interfaces are observed and the deduced cascade period thickness is consistent with the result of x-ray diffraction.The test device is lasing at 3.39 THz and operating up to 100K in pulsed mode.At 10 K,the maximum output power is greater than 1 mW with a threshold current density of 738 A/cm2.

  4. Fragmentation calculation by intranuclear-cascade-evaporation code

    Energy Technology Data Exchange (ETDEWEB)

    Shigyo, Nobuhiro; Iga, Kiminori; Ishibashi, Kenji [Kyushu Univ., Fukuoka (Japan)

    1997-03-01

    High Energy Transport Code (HETC) based on the intranuclear-cascade-evaporation model is modified for calculating the fragmentation cross section. For the intranuclear-cascade process, nucleon-nucleon cross sections are used for collision computation; effective in-medium-corrected cross sections are adopted instead of the original free-nucleon collision. The exciton model is adopted for improvement of backward nucleon-emission cross section for low-energy nucleon-incident events. The fragmentation reaction is incorporated into the original HETC as a subroutine set by the use of the systematics of the reaction. The modified HETC (HETC-3STEP/FRG) reproduces experimental fragment yields to a reasonable degree. (author)

  5. Heavy Flavour Cascade Production in a Beam Dump

    CERN Document Server

    2015-01-01

    SHiP will use a 400~GeV/c proton beam impinging on a several interaction length long Molybdenum target. Heavy flavour hadrons produced in the dump can decay semi-leptonically, which can produce both the Heavy Neutral Leptons as signal, but also potential background from muons and neutrinos. The absolute rate of heavy flavour production is taken from measurements. Pythia is used to predict the phase space distribution of the charm and beauty hadrons which are produced both in the primary interaction of the 400~GeV/c proton and in interactions of the secondaries produced in the cascade. The full cascade production of both HNL and background is compared to that reported in the SHiP Technical Proposal, where only the primary $pN$ interactions were taken into account.

  6. Medium-induced QCD cascade: democratic branching and wave turbulence

    CERN Document Server

    Blaizot, Jean-Paul; Mehtar-Tani, Yacine

    2013-01-01

    We study the average properties of the cascade of gluons that is generated by an energetic parton propagating through a quark-gluon plasma. We focus on the soft, medium-induced, emissions which control the energy transport at large angles with respect to the leading parton. We show that the effect of multiple branchings are important. In contrast to what happens in a usual QCD cascade in vacuum, medium-induced branchings are quasi-democratic, with offspring gluons carrying sizable fractions of the energy of their parent gluon. This results in a new mechanism for the transport of energy towards the medium, which is akin to wave turbulence with a scaling spectrum $\\sim 1/\\sqrt{\\omega}$. We argue that the turbulent flow may be responsible for the excess energy carried by very soft quanta, as revealed by the analysis of the di-jet asymmetry observed in Pb-Pb collisions at the LHC.

  7. Deep Feature Learning and Cascaded Classifier for Large Scale Data

    DEFF Research Database (Denmark)

    Prasoon, Adhish

    allows usage of such classifiers in large scale problems. We demonstrate its application for segmenting tibial articular cartilage in knee MRI scans, with number of training voxels being more than 2 million. In the next phase of the study we apply the cascaded classifier to a similar but even more......This thesis focuses on voxel/pixel classification based approaches for image segmentation. The main application is segmentation of articular cartilage in knee MRIs. The first major contribution of the thesis deals with large scale machine learning problems. Many medical imaging problems need huge...... image, respectively and this system is referred as triplanar convolutional neural network in the thesis. We applied the triplanar CNN for segmenting articular cartilage in knee MRI and compared its performance with the same state-of-the-art method which was used as a benchmark for cascaded classifier...

  8. Zone 3 Relay Blocking Scheme to Prevent Cascaded Events

    Institute of Scientific and Technical Information of China (English)

    LIM Seong-Il

    2008-01-01

    Defense systems are needed to prevent catastrophic failures of a power grid due to cas- caded events. Cascaded events can be attributed to improper operations of protective relays. The most challenging problem for the design and implementation of a defense system is the perform- ance in accuracy and speed in a real time environment. Protective devices are normally designed to operate fast in order to isolate the fault(s). This paper proposes a new methodology to distin- guish line overloads from actual faults for distance relays. In order to distinguish between line flow transfers from a line outage and an actual fault, the line outage distribution factor (LODF) and gen-eration shift factor (GSF) based power flow estimation method, and a secure peer to peer (P2P) communication structure are adopted. Computer simulations of cascaded events for a 6-bus sys- tem and the Korean power grid have been performed to establish the feasibility of the proposed scheme.

  9. Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation.

    Science.gov (United States)

    Guo, Changlei; Che, Kaijun; Cai, Zhiping; Liu, Shuai; Gu, Guoqiang; Chu, Chengxu; Zhang, Pan; Fu, Hongyan; Luo, Zhengqian; Xu, Huiying

    2015-11-01

    We experimentally demonstrate an ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation in a high-Q silica microsphere resonator. The threshold of the Brillouin microlaser is as low as 8 μW, which is close to the theoretical prediction. Moreover, the fifth-order Stokes line with a frequency shift up to 55 GHz is achieved with a coupled pump power of less than 0.6 mW. Benefiting from resonant wavelength shifts driven by thermal dynamics in the microsphere, we further realized tunable microwave signals with tuning ranges of 40 MHz at an 11 GHz band and 20 MHz at a 22 GHz band. To the best of our knowledge, it was the first attempt for tunable microwave source based on the whispering-gallery-mode Brillouin microlaser. Such a tunable microwave source from a cascaded Brillouin microlaser could find significant applications in aerospace, communication engineering, and metrology.

  10. Predictions via large {theta}{sub 13} from cascades

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki, E-mail: haba@phys.sci.osaka-u.ac.jp [Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Takahashi, Ryo, E-mail: ryo.takahashi@mpi-hd.mpg.de [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2011-08-26

    We investigate a relation among neutrino observables, three mixing angles and two mass squared differences, from a cascade texture of neutrino mass matrix. We show an allowed region of the correlation by use of current data of neutrino oscillation experiments. The relation predicts sharp correlations among neutrino mixing angles as 0.315{<=}sin{sup 2}{theta}{sub 12}{<=}0.332 and 0.480{<=}sin{sup 2}{theta}{sub 23}{<=}0.500 with a large {theta}{sub 13} (0.03cascade form.

  11. Preliminary Results of the CASCADE Hidden Sector Photon Search

    CERN Document Server

    Woollett, Nathan; Burt, Graeme; Chattopadhyay, Swapan; Dainton, John; Dexter, Amos; Goudket, Phillipe; Jenkins, Michael; Kalliokoski, Matti; Moss, Andrew; Pattalwar, Shrikant; Thakker, Trina; Williams, Peter

    2015-01-01

    Light shining through a wall experiments can be used to make measurements of photon-WISP couplings. The first stage of the CASCADE experiment at the Cockcroft Institute of Accelerator Science and Technology is intended to be a proof-of-principle experiment utilising standard microwave technologies to make a modular, cryogenic HSP detector to take advantage of future high-power superconducting cavity tests. In these proceedings we will be presenting the preliminary results of the CASCADE LSW experiment showing a peak expected exclusion of $1.10 \\times 10^{-8}$ in the mass range from 1.96$\\mu$eV to 5.38$\\mu$eV, exceeding current limits.

  12. Emergence of a Turbulent Cascade in a Quantum Gas

    CERN Document Server

    Navon, Nir; Smith, Robert P; Hadzibabic, Zoran

    2016-01-01

    In the modern understanding of turbulence, a central concept is the existence of cascades of excitations from large to small lengthscales, or vice-versa. This concept was introduced in 1941 by Kolmogorov and Obukhov, and the phenomenon has since been observed in a variety of systems, including interplanetary plasmas, supernovae, ocean waves, and financial markets. Despite a lot of progress, quantitative understanding of turbulence remains a challenge due to the interplay of many lengthscales that usually thwarts theoretical simulations of realistic experimental conditions. Here we observe the emergence of a turbulent cascade in a weakly interacting homogeneous Bose gas, a quantum fluid that is amenable to a theoretical description on all relevant lengthscales. We prepare a Bose-Einstein condensate (BEC) in an optical box, drive it out of equilibrium with an oscillating force that pumps energy into the system at the largest lengthscale, study the BEC's nonlinear response to the periodic drive, and observe a gr...

  13. Cascades of popping bubbles along air/foam interfaces.

    Science.gov (United States)

    Vandewalle, N; Lentz, J F

    2001-08-01

    We report image analysis of popping bubbles during the collapsing of two-dimensional (2D) and 3D aqueous foams. Although temporal and spatial correlations between successive popping bubbles within avalanches are emphasized, the breaking of a soap film at the air/foam interface seems to be independent of (i) the topology, (ii) the local curvature, and (iii) the size of the popping bubble. Possible mechanisms for cascades of pops are proposed and discussed. PMID:11497589

  14. Heterogeneously Integrated Distributed Feedback Quantum Cascade Lasers on Silicon

    OpenAIRE

    Alexander Spott; Jon Peters; Davenport, Michael L; Eric J. Stanton; Chong Zhang; Merritt, Charles D.; William W. Bewley; Igor Vurgaftman; Chul Soo Kim; Jerry R. Meyer; Jeremy Kirch; Mawst, Luke J; Dan Botez; Bowers, John E

    2016-01-01

    Silicon integration of mid-infrared (MIR) photonic devices promises to enable low-cost, compact sensing and detection capabilities that are compatible with existing silicon photonic and silicon electronic technologies. Heterogeneous integration by bonding III-V wafers to silicon waveguides has been employed previously to build integrated diode lasers for wavelengths from 1310 to 2010 nm. Recently, Fabry-Pérot Quantum Cascade Lasers integrated on silicon provided a 4800 nm light source for mid...

  15. Finding a missing link in MAP kinase cascade

    OpenAIRE

    Chung, Kwi-Mi; Sano, Hiroshi

    2008-01-01

    Mitogen-activated protein kinase (MAPK) cascade is one of the major signaling systems in eukaryotes. External signals are tranduced through three protein kinases, which successively relay phosphorylation to finally activate target genes/proteins. However, few information on targets of MAPK have so far been available. In this study, we identified a novel transcription factor, NtWIF, which is directly phosphorylated by a wound-induced protein kinase (WIPK), a typical MAPK from tobacco plants. P...

  16. Modeling Cascading Failures in the North American Power Grid

    OpenAIRE

    Kinney, Ryan; Crucitti, Paolo; Albert, Reka; Latora, Vito

    2004-01-01

    The North American power grid is one of the most complex technological networks, and its interconnectivity allows both for long-distance power transmission and for the propagation of disturbances. We model the power grid using its actual topology and plausible assumptions about the load and overload of transmission substations. Our results indicate that the loss of a single substation can lead to a 25% loss of transmission efficiency by triggering an overload cascade in the network. We system...

  17. AEROELASTIC INVESTIGATION OF AN ANNULAR TRANSONIC COMPRESSOR CASCADE: EXPERIMENTAL RESULTS

    OpenAIRE

    Chenaux, Virginie Anne; Ott, Peter; Zanker, Achim

    2015-01-01

    A reliable determination of the unsteady aerodynamic loads acting on the blades is essential to predict the aeroelastic stability of vibrating compressor cascades with accuracy. At transonic flow conditions, the vibration of the shock may change the blade aeroelastic behavior. Numerical tools still have difficulties to capture the physics associated to this effect. In order to increase the prediction’s accuracy, high quality experimental data at high spatial resolution is therefore required t...

  18. PLAIN CASCADE RESEARCH ON A REVERSIBLE COMBINED BLADE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new type fully reversible combined blade is presented, which can fully reverse airflow during the inverse ventilation by simply reversion. It is suitable for reversible axial flow fans used in tunnel and mine ventilation. The optimal parameters such as overlap ratio and pitch ratio are determined through cascade experiment. Experiment results also show a big promotion of maximum lift coefficient Cl,max and stall attack angle (l,max compared to the existing bi-directional symmetry airfoils.

  19. SEWAGE SLUDGE COMBUSTION IN A SPOUTED BED CASCADE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Mirko Barz

    2003-01-01

    @@ In modern society, sewage is disposed of in a two-step process: it is first made into granules and the sewage sludge granules are then burned in an appropriate combustor. The present paper describes a spouted bed cascade system for sewage sludge combustion developed at the Technical University of Berlin at the turn of the present century. Combustion results in the recovery of the combustible matters of the sewage in the form of thermal energy.

  20. A New Phase-Shifted Cascade High Voltage Inverter

    Institute of Scientific and Technical Information of China (English)

    Lau Eng Tin

    2005-01-01

    This paper presents a unique novel design of the phase-shifted cascade high voltage inverter. Thehigh voltage inverter utilizes fewer power switches and supplies a balance load. The usage of phase shifttransformer and phase shifting SPWM ensures that input and output harmonic wave content is low and outputvoltage change (du/dt) has a low rate, meeting all the requirements of the power authorities. The most out-standing feature is the energy saving with very fast cost recovery.

  1. Off-design loss measurements in a compressor cascade

    OpenAIRE

    Classick, Michael A.

    1989-01-01

    Approved for public release; distribution is unlimited Data acquisition software was written to recover the ability to make loss measurements using a five-hole pneumatic probe in a wind tunnel facility currently containing a modeled subsonic cascade of controlled diffusion (CD) stator blades. Acquisition, reduction and ancillary programs were written for a Hewlett-Packard 9000 Series 300 computer/HP3052 Data Acquisition System in HP BASIC 5.0/ The new software was demonstrated and valida...

  2. Overconfident Behavior In Informational Cascades: An Eye-Tracking Study

    OpenAIRE

    Alessandro Innocenti; Alessandra Rufa; Jacopo Semmoloni

    2009-01-01

    This paper investigates the validity of the Dual Process theory by using eye-tracking methods to trace the process of attention during a non-preference-based problem solving task, i.e. informational cascades. In this setting, gaze direction may convey evidence on how automatic detection is modified or sustained by controlled search. We provide laboratory evidence that gaze direction is driven by cognitive biases, such as overconfidence. In particular, we find a significant statistical correla...

  3. Distinguishing Informational Cascades from Herd Behavior in the Laboratory

    OpenAIRE

    Bogaçhan Çelen; Shachar Kariv

    2004-01-01

    This paper reports an experimental test of how individuals learn from the behavior of others. By using techniques only available in the laboratory, we elicit subjects' beliefs. This allows us to distinguish informational cascades from herd behavior. By adding a setup with continuous signal and discrete action, we enrich the ball-andurn observational learning experiments paradigm of Lisa R. Anderson and Charles Holt (1997). We attempt to understand subjects' behavior by estimating a model that...

  4. Mie scattering as a cascade of Fano resonances.

    Science.gov (United States)

    Rybin, Mikhail V; Samusev, Kirill B; Sinev, Ivan S; Semouchkin, George; Semouchkina, Elena; Kivshar, Yuri S; Limonov, Mikhail F

    2013-12-01

    We reveal that the resonant Mie scattering by high-index dielectric nanoparticles can be presented through cascades of Fano resonances. We employ the exact solution of Maxwell's equations and demonstrate that the Lorenz-Mie coefficients of the Mie problem can be expressed generically as infinite series of Fano functions as they describe interference between the background radiation originated from an incident wave and narrow-spectrum Mie scattering modes that lead to Fano resonances. PMID:24514559

  5. High Performance Information Reconciliation for QKD with CASCADE

    OpenAIRE

    Pedersen, Thomas Brochmann; Toyran, Mustafa

    2013-01-01

    It is widely accepted in the quantum cryptography community that interactive information reconciliation protocols, such as cascade, are ineffcient due to the communication overhead. Instead, non-interactive information reconciliation protocols based on i.e. LDPC codes or, more recently, polar codes have been proposed. In this work, we argue that interactive protocols should be taken into consideration in modern quantum key distribution systems. In particular, we demonstrate how to improve the...

  6. Unconditional preparation of entanglement between atoms in cascaded optical cavities

    CERN Document Server

    Clark, S; Gu, M; Parkins, S; Clark, Stephen; Peng, Amy; Gu, Mile; Parkins, Scott

    2003-01-01

    We propose a scheme to unconditionally entangle the internal states of atoms trapped in separate high finesse optical cavities. The scheme uses the technique of quantum reservoir engineering in a cascaded cavity QED setting, and for ideal (lossless) coupling between the cavities generates an entangled pure state. Highly entangled states are also shown to be possible for realizable cavity QED parameters and with nonideal coupling.

  7. On Cascade Source Coding with A Side Information "Vending Machine"

    OpenAIRE

    Ahmadi, Behzad; Simeone, Osvaldo; Choudhuri, Chiranjib; Mitra, Urbashi

    2012-01-01

    The model of a side information "vending machine" accounts for scenarios in which acquiring side information is costly and thus should be done efficiently. In this paper, the three-node cascade source coding problem is studied under the assumption that a side information vending machine is available either at the intermediate or at the end node. In both cases, a single-letter characterization of the available trade-offs among the rate, the distortions in the reconstructions at the intermediat...

  8. Cascaded parametric amplification for highly efficient terahertz generation.

    Science.gov (United States)

    Ravi, Koustuban; Hemmer, Michael; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Mücke, Oliver D; Kärtner, Franz X

    2016-08-15

    A highly efficient, practical approach to high-energy multi-cycle terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. Feasible designs are presented that enable the THz wave, initially generated by difference frequency generation between a narrowband optical pump and optical seed (0.1-10% of pump energy), to self-start a cascaded (or repeated) energy downconversion of pump photons in a single pass through a single crystal. In cryogenically cooled, periodically poled lithium niobate, unprecedented energy conversion efficiencies >8% achievable with existing pump laser technology are predicted using realistic simulations. The calculations account for cascading effects, absorption, dispersion, and laser-induced damage. Due to the simultaneous, coupled nonlinear evolution of multiple phase-matched three-wave mixing processes, THz-COPA exhibits physics distinctly different from conventional three-wave mixing parametric amplifiers. This, in turn, governs optimal phase-matching conditions, evolution of optical spectra, and limitations of the nonlinear process. Circumventing these limitations is shown to yield conversion efficiencies ≫10%. PMID:27519094

  9. Damped trophic cascades driven by fishing in model marine ecosystems

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Pedersen, Martin

    2010-01-01

    The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic c...... as it comes further away from the perturbed trophic level. Fishing on several trophic levels leads to a disappearance of the signature of the trophic cascade. Differences in fishing patterns among ecosystems might influence whether a trophic cascade is observed.......The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic...... cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show...

  10. Optimization of operating regime of mass-diffusion cascades

    International Nuclear Information System (INIS)

    This work deals with questions of the optimization of mass diffusion elements (columns or pumps) in cascades. Since the establishment and operation of real diffusion plants involves substantial outlays of material resources and energy, cascade optimization should be conducted in accordance with the criterion of the possibility of realizing further economies on the method and diffusion process. One of these indicators is the cost of the end product. Formulas are given for calculating the basic expenditures required for the production of an isotope in a cascade, and an analytical formula is obtained for assessing the cost of an enriched isotope mixture. Calculations are made of the influence of the steam flow rate on the cost of 99% 13CH4 and its constitutents, taking into account capital and power outlay on the construction and operation of the installation. It is demonstrated that as the result of a discrepancy between optimum power and capital outlays, the steam flow rate corresponding to the minimum cost is less than that corresponding to the maximum fractionating capacity of the column. In each specific case, optimization parameters should be selected having regard to the special features of the fractionating method and the fractionating apparatus. The results may be used in calculations of mass-diffusion fractionating installations, and also in comparisons of the effectiveness of the various methods used in the separation of these and other isotopes. (author)

  11. Is current disruption associated with an inverse cascade?

    Directory of Open Access Journals (Sweden)

    Z. Vörös

    2010-06-01

    Full Text Available Current disruption (CD and the related kinetic instabilities in the near-Earth magnetosphere represent physical mechanisms which can trigger multi-scale substorm activity including global reorganizations of the magnetosphere. Lui et al. (2008 proposed a CD scenario in which the kinetic scale linear modes grow and reach the typical dipolarization scales through an inverse cascade. The experimental verification of the inverse nonlinear cascade is based on wavelet analysis. In this paper the Hilbert-Huang transform is used which is suitable for nonlinear systems and allows to reconstruct the time-frequency representation of empirical decomposed modes in an adaptive manner. It was found that, in the Lui et al. (2008 event, the modes evolve globally from high-frequencies to low-frequencies. However, there are also local frequency evolution trends oriented towards high-frequencies, indicating that the underlying processes involve multi-scale physics and non-stationary fluctuations for which the simple inverse cascade scenario is not correct.

  12. THz quantum cascade lasers for standoff molecule detection.

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Weng Wah; Wanke, Michael Clement; Lerttamrab, Maytee; Waldmueller, Ines

    2007-10-01

    Remote optical detection of molecules, agents, and energetic materials has many applications to national security interests. Currently there is significant interest in determining under what circumstances THz frequency coverage will aid in a complete sensing package. Sources of coherent THz frequency (i.e. 0.1 to 10 THz) electromagnetic radiation with requisite power levels, frequency agility, compactness and reliability represent the single greatest obstacle in establishing a THz technology base, but recent advances in semiconductor-based quantum cascade lasers (QCLs) offer huge improvements towards the ultimate THz source goals. This project advanced the development of narrow-linewidth THz quantum cascade lasers. We developed theoretical tools to guide the improvement of standard THz quantum cascade lasers, the investigation of nonlinear optics employing infrared QCLs, and the exploration of quantum coherence to improve QCL performance. The latter was aimed especially towards achieving high temperature operation. In addition we developed a computer algorithm capable of shifting the frequencies of an existing THz QCL to a different frequency and invented a new type of laser that may enable room temperature THz generation in a electrically driven solid-state source.

  13. Boolean Models of Biological Processes Explain Cascade-Like Behavior.

    Science.gov (United States)

    Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen

    2016-01-01

    Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either "on" or "off" and along with the molecules interact with each other, their individual status changes from "on" to "off" or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes.

  14. Light Space Cascaded Shadow Maps Algorithm for Real Time Rendering

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hui Liang; Shang Ma; Li-Xia Cen; Zhuo Yu

    2011-01-01

    Owing to its generality and efficiency, Cascaded Shadow Maps (CSMs) has an important role in real-time shadow rendering in large scale and complex virtual environments. However, CSMs suffers from redundant rendering problem --objects are rendered undesirably to different shadow map textures when view direction and light direction are not perpendicular. In this paper, we present a light space cascaded shadow maps algorithm. The algorithm splits a scene into non-intersecting layers in light space, and generates one shadow map for each layer through irregular frustum clipping and scene organization, ensuring that any shadow sample point never appears in multiple shadow maps. A succinct shadow determination method is given to choose the optimal shadow map when rendering scenes. We also combine the algorithm with stable cascaded shadow maps and soft shadow algorithm to avoid shadow flicking and produce soft shadows. The results show that the algorithm effectively improves the efficiency and shadow quality of CSMs by avoiding redundant rendering, and can produce high-quality shadow rendering in large scale dynamic environments with real-time performance.

  15. Boolean Models of Biological Processes Explain Cascade-Like Behavior.

    Science.gov (United States)

    Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen

    2016-01-01

    Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either "on" or "off" and along with the molecules interact with each other, their individual status changes from "on" to "off" or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes. PMID:26821940

  16. Optimization of Dynamic Range of Cascade Filter Realization

    Directory of Open Access Journals (Sweden)

    J. Hospodka

    2006-09-01

    Full Text Available This paper deals with a dynamic range optimization procedure for active filters based on the cascade realization. Dynamic characteristics of the cascade filter depend on many factors, mainly on pole-zero pairing, section ordering and gain assignment. Just the procedure for an optimal gain assignment for particular biquadratic sections is discussed in this paper. The input parameters of the procedure are parameters of particular biquads i.e. pole frequency ω0, quality factor Q, eventually zero frequency ωn for elliptic section and the transfer function type of the section. The gain is distributed so that output signal limitation of particular biquads occurs for the same level of the filter input signal. The procedure is versatile - can be used for analog as well as for digital filters with the cascade structure. The presented algorithm is fully universal (does not suppose any simplification. It has been used in Syntfil package for the filter design in the mathematical program Maple.

  17. Two terminal CuInSe2 based cascade cells

    Science.gov (United States)

    Baron, B. N.; Birkmire, R. W.; McCandless, B. E.; Phillips, J. E.

    1990-07-01

    This report presents results and conclusions of a two-year research program on multijunction thin-film solar cells using a CuInSe2 heterojunction for the low-band-gap bottom cell and either an a-Si:H (E(sub g) = 1.8 eV) or a CdTe (E(sub g) = 1.5 eV) heterojunction for the high-band-gap top cell in a monolithic two-terminal cascade structure. Photochemical vapor deposition was used to deposit a-Si cells. The presence of a CuInSe2/(CdZn)S cell in the a-Si deposition reactor did not introduce contaminants or adversely affect the performance of conventional p-i-n cells. Procedures were developed for fabricating monolithic cascade devices with the configuration ITO/a-Si(n-i-p)/ZnO/(CdZn)S/CuInSe2/Mo/glass. A prototype two-terminal a-Si/CuInSe2 cascade cell had an open-circuit voltage over IV and an efficiency of 5.8 percent. Physical vapor deposition with extrinsic doping was studied as a preparation technique for depositing low-resistivity p-type CdTe on transparent contact materials at low temperatures.

  18. Cascading failures of interdependent modular small-world networks

    Science.gov (United States)

    Zhu, Guowei; Wang, Xianpei; Tian, Meng; Dai, Dangdang; Long, Jiachuan; Zhang, Qilin

    2016-07-01

    Much empirical evidence shows that many real-world networks fall into the broad class of small-world networks and have a modular structure. The modularity has been revealed to have an important effect on cascading failure in isolated networks. However, the corresponding results for interdependent modular small-world networks remain missing. In this paper, we investigate the relationship between cascading failures and the intra-modular rewiring probabilities and inter-modular connections under different coupling preferences, i.e. random coupling with modules (RCWM), assortative coupling in modules (ACIM) and assortative coupling with modules (ACWM). The size of the largest connected component is used to evaluate the robustness from global and local perspectives. Numerical results indicate that increasing intra-modular rewiring probabilities and inter-modular connections can improve the robustness of interdependent modular small-world networks under intra-attacks and inter-attacks. Meanwhile, experiments on three coupling strategies demonstrate that ACIM has a better effect on preventing the cascading failures compared with RCWM and ACWM. These results can be helpful to allocate and optimize the topological structure of interdependent modular small-world networks to improve the robustness of such networks.

  19. A cascaded three-phase symmetrical multistage voltage multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Shahid [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia); Singh, G K [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia); Besar, R [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia); Muhammad, G [Faculty of Information Science and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2006-10-15

    A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM.

  20. Failure cascade in interdependent network with traffic loads

    International Nuclear Information System (INIS)

    Complex networks have been widely studied recent years, but most researches focus on the single, non-interacting networks. With the development of modern systems, many infrastructure networks are coupled together and therefore should be modeled as interdependent networks. For interdependent networks, failure of nodes in one network may lead to failure of dependent nodes in the other networks. This may happen recursively and lead to a failure cascade. In the real world, different networks carry different traffic loads. Overload and load redistribution may lead to more nodes’ failure. Considering the dependency between the interdependent networks and the traffic load, a small fraction of fault nodes may lead to complete fragmentation of a system. Based on the robust analysis of interdependent networks, we propose a costless defense strategy to suppress the failure cascade. Our findings highlight the need to consider the load and coupling preference when designing robust interdependent networks. And it is necessary to take actions in the early stage of the failure cascade to decrease the losses caused by the large-scale breakdown of infrastructure networks. (paper)

  1. US geothermal database and Oregon cascade thermal studies: (Final report)

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, D.D.; Steele, J.L.; Carter, L.

    1988-05-01

    This report describes two tasks of different nature. The first of these tasks was the preparation of a data base for heat flow and associated ancillary information for the United States. This data base is being used as the basis for preparation of the United States portion of a geothermal map of North America. The ''Geothermal Map of North America'' will be published as part of the Decade of North American Geology (DNAG) series of the Geological Society of America. The second of these tasks was to make a geothermal evaluation of holes drilled in the Cascade Range as part of a Department of Energy (DOE)/Industry co-sponsored deep drilling project. This second task involved field work, making temperature logs in the holes, and laboratory work, measuring thermal conductivity measurements on an extensive set of samples from these holes. The culmination of this task was an interpretation of heat flow values in terms of the regional thermal conditions; implications for geothermal systems in the Cascade Range; evaluation of the effect of groundwater flow on the depths that need to be drilled for successful measurements in the Cascade Range; and investigation of the nature of the surface groundwater effects on the temperature-depth curves. 40 refs., 7 figs., 7 tabs.

  2. Cascades in the Threshold Model for varying system sizes

    Science.gov (United States)

    Karampourniotis, Panagiotis; Sreenivasan, Sameet; Szymanski, Boleslaw; Korniss, Gyorgy

    2015-03-01

    A classical model in opinion dynamics is the Threshold Model (TM) aiming to model the spread of a new opinion based on the social drive of peer pressure. Under the TM a node adopts a new opinion only when the fraction of its first neighbors possessing that opinion exceeds a pre-assigned threshold. Cascades in the TM depend on multiple parameters, such as the number and selection strategy of the initially active nodes (initiators), and the threshold distribution of the nodes. For a uniform threshold in the network there is a critical fraction of initiators for which a transition from small to large cascades occurs, which for ER graphs is largerly independent of the system size. Here, we study the spread contribution of each newly assigned initiator under the TM for different initiator selection strategies for synthetic graphs of various sizes. We observe that for ER graphs when large cascades occur, the spread contribution of the added initiator on the transition point is independent of the system size, while the contribution of the rest of the initiators converges to zero at infinite system size. This property is used for the identification of large transitions for various threshold distributions. Supported in part by ARL NS-CTA, ARO, ONR, and DARPA.

  3. Integrated energy systems based on cascade utilization of energy

    Energy Technology Data Exchange (ETDEWEB)

    Jin Hongguang; Gao Lin; Han Wei; Li Bingyu; Feng Zhibing [Chinese Academy of Sciences, Beijing (China). Institute of Engineering Thermophysics

    2007-02-15

    Focusing on the traditional principle of physical energy utilization, new integration concepts for combined cooling, heating and power (CCHP) system were identified, and corresponding systems were investigated. Furthermore, the principle of cascade utilization of both chemical and physical energy in energy systems with the integration of chemical processes and thermal cycles was introduced, along with a general equation describing the interrelationship among energy levels of substance, Gibbs free energy of chemical reaction and physical energy. On the basis of this principle, a polygeneration system for power and liquid fuel (methanol) production has been presented and investigated. This system innovatively integrates a fresh gas preparation subsystem without composition adjustment process (NA) and a methanol synthesis subsystem with partial-recycle scheme (PR). Meanwhile, a multi-functional energy system (MES) that consumes coal and natural gas as fuels simultaneously, and co-generates methanol and power, has been presented. In the MES, coal and natural gas are utilized synthetically based on the method of dual-fuel reforming, which integrates methane/steam reforming and coal combustion. Compared with conventional energy systems that do not consider cascade utilization of chemical energy, both of these systems provide superior performance, whose energy saving ratio can be as high as 10%-15%. With special attention paid to chemical energy utilization, the integration features of these two systems have been revealed, and the important role that the principle of cascade utilization of both chemical and physical energy plays in system integration has been identified.

  4. EXPERIMENTAL INVESTIGATION OF THE FAILURE OF CASCADE LANDSLIDE DAMS

    Institute of Scientific and Technical Information of China (English)

    NIU Zhi-pan; XU Wei-lin; LI Nai-wen; XUE Yang; CHEN Hua-yong

    2012-01-01

    This paper preseuts results of model tests for the landslide dam failure of a single dam and cascade dams in a sloping channel.The dams were designed to be regular trapezoid with fine sand.A new measuring method named the labeled line locating method was used to digitalize the captured instantaneous pictures.Under two differem inflow discharges,the morphological evolution and the flow patterns during one dam failure and the failure of cascade dams were investigated.The results indicate that when the inflow discharge is large,the deformation pattern of the downstream dam is similar to that of the upstream dam,and both dams are characterized with the overtopping scour throughout the dam failure process.When the inflow discharge is small,the upstream dam is scoured mainly through a sluice slot formed by the longitudinal incision,and the downstream dam is characterized with the overtopping scour.The data set presented in this paper can be used for the validation of numerical models and provide a reference for the flood risk management of cascade landslide dams.

  5. CP-violation in cascade decays at the LHC

    CERN Document Server

    Tattersall, Jamie

    We study the potential to observe CP-violating effects in various supersymmetric cascade decay chains at the LHC. Asymmetries composed by triple products of momenta of the final state particles are sensitive to CP-violating effects. We analytically calculate the cascade decays including the relevant spin correlations to compute the parton level asymmetry. In addition, we use Monte Carlo simulations to estimate the sensitivity of the LHC to the CP-violating observables. Due to large boosts that dilute the asymmetries, these can be difficult to observe at the LHC. However, if all particle masses in a cascade decay are known, it may be possible to reconstruct all momenta in the decay chains. We can then recover the full asymmetry on an event-by-event basis even when we have missing momentum due to a stable lightest supersymmetric particle. After the reconstruction, the non-diluted CP-violating signal gets significantly enhanced so that an observation may become feasible. A fully hadronic study has also been co...

  6. Direct Measurements of the Surface-Atmosphere Exchange of Ammonia

    Science.gov (United States)

    Tevlin, A.; Murphy, J. G.; Wentworth, G.; Gregoire, P.

    2012-12-01

    As the dominant atmospheric base, ammonia plays an important role in the formation and growth of inorganic aerosols. Surface-atmosphere exchange of ammonia has been observed to occur as a bidirectional flux governed by the relative magnitudes of atmospheric gas phase concentration and a temperature-dependent surface compensation point. In order to better characterise the links between gas-particle and surface-atmosphere exchanges, more direct measurements of these exchanges are necessary. Eddy Covariance (EC) can provide the most direct surface-atmosphere flux measurements, but its requirement for high frequency data combined with the reactive nature of ammonia have limited its application for this species. In order to address this lack, an investigation into the instrumental sensitivity and time response requirements for EC ammonia flux measurements was carried out using a Quantum Cascade-Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) capable of measuring ammonia concentration at 10 Hz. Time response was additionally improved through the use of a heated sample line and custom glass inlet, and the system was deployed over a short grass field in rural Ontario. The ammonia measurements were used along with three dimensional sonic anemometer wind speed data to calculate EC ammonia fluxes. When combined with simultaneous measurements of the inorganic composition of gas and particle phases made by Ambient Ion Monitor - Ion Chromatography (AIM-IC), these flux measurements can provide insight into the links between gas-particle and surface-atmosphere exchange.

  7. Pluto's atmosphere near perihelion

    International Nuclear Information System (INIS)

    A recent stellar occultation has confirmed predictions that Pluto has an atmosphere which is sufficiently thick to uniformly envelope the planet and to extend far above the surface. Pluto's atmosphere consists of methane and perhaps other volatile gases at temperatures below their freezing points; it should regulate the surface temperature of its volatile ices to a globally uniform value. As Pluto approaches and passes through perihelion, a seasonal maximum in the atmospheric bulk and a corresponding minimum in the exposed volatile ice abundance is expected to occur. The lag in maximum atmospheric bulk relative to perihelion will be diagnostic of the surface thermal properties. An estimate of Pluto's atmospheric bulk may result if a global darkening (resulting from the disappearance of the seasonally deposited frosts) occurs before the time of maximum atmospheric bulk. The ice deposited shortly after perihelion may be diagnostic of the composition of Pluto's volatile reservoir

  8. Atmospheric Circulation of Exoplanets

    CERN Document Server

    Showman, Adam P; Menou, Kristen

    2009-01-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric d...

  9. Excitation and diagnosis of cascading Langmuir waves in ionospheric plasmas at Gakona, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Burton, L M; Cohen, J A; Pradipta, R; Labno, A; Lee, M C; Batishchev, O; Rokusek, D L [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Kuo, S P [Polytechnic University, Brooklyn, NY 11201 (United States); Watkins, B J; Oyama, S [University of Alaska Fairbanks, Fairbanks, AK 99775 (United States)], E-mail: mclee@mit.edu

    2008-12-15

    Ionospheric plasma heating experiments were conducted at Gakona, Alaska to investigate cascading spectra of Langmuir wave turbulence, excited by parametric instabilities diagnosed by Modular UHF Ionospheric Radar (MUIR). This work is aimed at testing the recent theory of Kuo and Lee (2005 J. Geophys. Res. 110 A01309) that addresses how the cascade of Langmuir waves can distribute spatially via the resonant and non-resonant decay processes. The non-resonant cascade proceeds at the location where parametric decay instability (PDI) or oscillating two-stream instability (OTSI) is excited and severely hampered by the frequency mismatch effect. By contrast, the resonant cascade, which takes place at lower matching heights, has to overcome the propagation loss of the Langmuir pump waves in each cascade step. Our experimental results have corroborated these predictions about the generation of cascading Langmuir waves by the HAARP heater.

  10. Excitation and diagnosis of cascading Langmuir waves in ionospheric plasmas at Gakona, Alaska

    International Nuclear Information System (INIS)

    Ionospheric plasma heating experiments were conducted at Gakona, Alaska to investigate cascading spectra of Langmuir wave turbulence, excited by parametric instabilities diagnosed by Modular UHF Ionospheric Radar (MUIR). This work is aimed at testing the recent theory of Kuo and Lee (2005 J. Geophys. Res. 110 A01309) that addresses how the cascade of Langmuir waves can distribute spatially via the resonant and non-resonant decay processes. The non-resonant cascade proceeds at the location where parametric decay instability (PDI) or oscillating two-stream instability (OTSI) is excited and severely hampered by the frequency mismatch effect. By contrast, the resonant cascade, which takes place at lower matching heights, has to overcome the propagation loss of the Langmuir pump waves in each cascade step. Our experimental results have corroborated these predictions about the generation of cascading Langmuir waves by the HAARP heater.

  11. Cascade diffusion theory of displacement-induced point defect concentration and flux fluctuations

    International Nuclear Information System (INIS)

    A theoretical approach, which has been developed to assess the fluctuations in point defect concentrations and fluxes to sinks that are induced by the production of point defects in spatially and temporally discrete cascades, is summarized. Solutions for cascade dissipation are outlined for the case where cascades occur in a homogeneous lossy medium as well as for the more involved geometries where cascades occur in the presence of a nearby dislocation or cavity. By superposition of solutions representing discrete cascades under conditions of interest, time profiles of point defect concentrations and fluxes are generated. The profiles exhibit extreme fluctuations. Continuum rate theory results arise by applying limits and approximations to cascade diffusion theory. Application of the theory to microstructural processes shows that property changes, especially creep are affected by the fluctuations

  12. Numerical study of improving aerodynamic performance of low solidity LPT cascade through increasing trailing edge thickness

    Science.gov (United States)

    Li, Chao; Yan, Peigang; Wang, Xiangfeng; Han, Wanjin; Wang, Qingchao

    2016-08-01

    This paper presents a new idea to reduce the solidity of low-pressure turbine (LPT) blade cascades, while remain the structural integrity of LPT blade. Aerodynamic performance of a low solidity LPT cascade was improved by increasing blade trailing edge thickness (TET). The solidity of the LPT cascade blade can be reduced by about 12.5% through increasing the TET of the blade without a significant drop in energy efficiency. For the low solidity LPT cascade, increasing the TET can decrease energy loss by 23.30% and increase the flow turning angle by 1.86% for Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 2.35%. The flow control mechanism governing behavior around the trailing edge of an LPT cascade is also presented. The results show that appropriate TET is important for the optimal design of high-lift load LPT blade cascades.

  13. Designing Dynamic Atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2012-01-01

    This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful...

  14. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...

  15. Update on Atmospheric Neutrinos

    CERN Document Server

    González-Garciá, M Concepción; Peres, O L G; Stanev, T; Valle, José W F

    1998-01-01

    We discuss the impact of recent experimental results on the determination of atmospheric neutrino oscillation parameters. We use all published results on atmospheric neutrinos, including the preliminary large statistics data of Super-Kamiokande. We re-analyze the data in terms of both $\

  16. Characterization of size distributions of elemental mass concentrations in atmospheric aerosols derived from different sources

    International Nuclear Information System (INIS)

    The atmospheric aerosol samples were collected at six representative sites with an 8-stage cascade impactor sampler and analyzed for their elemental mass concentrations by the PIXE analytic method. Based on some indicator elements, the characteristic of size distributions of particles from different sources were obtained. According to these characteristics, we inferred the origins of the ultrafine particles around the Great Wall Station in the Antarctic. (orig.)

  17. Lack of plasma kallikrein-kinin system cascade in teleosts.

    Science.gov (United States)

    Wong, Marty Kwok-Shing; Takei, Yoshio

    2013-01-01

    The kallikrein-kinin system (KKS) consists of two major cascades in mammals: "plasma KKS" consisting of high molecular-weight (HMW) kininogen (KNG), plasma kallikrein (KLKB1), and bradykinin (BK); and "tissue KKS" consisting of low molecular-weight (LMW) KNG, tissue kallikreins (KLKs), and [Lys(0)]-BK. Some components of the KKS have been identified in the fishes, but systematic analyses have not been performed, thus this study aims to define the KKS components in teleosts and pave a way for future physiological and evolutionary studies. Through a combination of genomics, molecular, and biochemical methods, we showed that the entire plasma KKS cascade is absent in teleosts. Instead of two KNGs as found in mammals, a single molecular weight KNG was found in various teleosts, which is homologous to the mammalian LMW KNG. Results of molecular phylogenetic and synteny analyses indicated that the all current teleost genomes lack KLKB1, and its unique protein structure, four apple domains and one trypsin domain, could not be identified in any genome or nucleotide databases. We identified some KLK-like proteins in teleost genomes by synteny and conserved domain analyses, which could be the orthologs of tetrapod KLKs. A radioimmunoassay system was established to measure the teleost BK and we found that [Arg(0)]-BK is the major circulating form instead of BK, which supports that the teleost KKS is similar to the mammalian tissue KKS. Coincidently, coelacanths are the earliest vertebrate that possess both HMW KNG and KLKB1, which implies that the plasma KKS could have evolved in the early lobe-finned fish and descended to the tetrapod lineage. The co-evolution of HMW KNG and KLKB1 in lobe-finned fish and early tetrapods may mark the emergence of the plasma KKS and a contact activation system in blood coagulation, while teleosts may have retained a single KKS cascade. PMID:24278376

  18. Lack of plasma kallikrein-kinin system cascade in teleosts.

    Directory of Open Access Journals (Sweden)

    Marty Kwok-Shing Wong

    Full Text Available The kallikrein-kinin system (KKS consists of two major cascades in mammals: "plasma KKS" consisting of high molecular-weight (HMW kininogen (KNG, plasma kallikrein (KLKB1, and bradykinin (BK; and "tissue KKS" consisting of low molecular-weight (LMW KNG, tissue kallikreins (KLKs, and [Lys(0]-BK. Some components of the KKS have been identified in the fishes, but systematic analyses have not been performed, thus this study aims to define the KKS components in teleosts and pave a way for future physiological and evolutionary studies. Through a combination of genomics, molecular, and biochemical methods, we showed that the entire plasma KKS cascade is absent in teleosts. Instead of two KNGs as found in mammals, a single molecular weight KNG was found in various teleosts, which is homologous to the mammalian LMW KNG. Results of molecular phylogenetic and synteny analyses indicated that the all current teleost genomes lack KLKB1, and its unique protein structure, four apple domains and one trypsin domain, could not be identified in any genome or nucleotide databases. We identified some KLK-like proteins in teleost genomes by synteny and conserved domain analyses, which could be the orthologs of tetrapod KLKs. A radioimmunoassay system was established to measure the teleost BK and we found that [Arg(0]-BK is the major circulating form instead of BK, which supports that the teleost KKS is similar to the mammalian tissue KKS. Coincidently, coelacanths are the earliest vertebrate that possess both HMW KNG and KLKB1, which implies that the plasma KKS could have evolved in the early lobe-finned fish and descended to the tetrapod lineage. The co-evolution of HMW KNG and KLKB1 in lobe-finned fish and early tetrapods may mark the emergence of the plasma KKS and a contact activation system in blood coagulation, while teleosts may have retained a single KKS cascade.

  19. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    Science.gov (United States)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  20. Cascade Analysis of a Floating Wind Turbine Rotor

    International Nuclear Information System (INIS)

    Mounting a wind turbine on a floating foundation introduces more complexity to the aerodynamic loading. The floater motion contains a wide range of frequencies. To study some of the basic dynamic load effect on the blades due to these motions, a two-dimensional cascade approach, combined with a potential vortex method, is used. This is an alternative method to study the aeroelastic behavior of wind turbines that is different from the traditional blade element momentum method. The analysis tool demands little computational power relative to a full three dimensional vortex method, and can handle unsteady flows. When using the cascade plane, a ''cut'' is made at a section of the wind turbine blade. The flow is viewed parallel to the blade axis at this cut. The cascade model is commonly used for analysis of turbo machineries. Due to the simplicity of the code it requires little computational resources, however it has limitations in its validity. It can only handle two-dimensional potential flow, i.e. including neither three-dimensional effects, such as the tip loss effect, nor boundary layers and stall effects are modeled. The computational tool can however be valuable in the overall analysis of floating wind turbines, and evaluation of the rotor control system. A check of the validity of the vortex panel code using an airfoil profile is performed, comparing the variation of the lift force, to the theoretically derived Wagner function. To analyse the floating wind turbine, a floating structure with hub height 90 m is chosen. An axial motion of the rotor is considered