An improved Kalman Smoother for atmospheric inversions
Directory of Open Access Journals (Sweden)
L. M. P. Bruhwiler
2005-03-01
Full Text Available We explore the use of a fixed-lag Kalman smoother for sequential estimation of atmospheric carbon dioxide fluxes. This technique takes advantage of the fact that most of the information about the spatial distribution of sources and sinks is observable within a 5 few months to half of a year of emission. After this period, the spatial structure of sources is diluted by transport and cannot significantly constrain flux estimates. We therefore describe an estimation technique that steps through the observations sequentially, using only the subset of observations and modeled transport fields that most strongly constrain the fluxes at a particular time step. Estimates of each set of fluxes 10 are sequentially updated multiple times, using measurements taken at different times, and the estimates and their uncertainties are shown to quickly converge. Final flux estimates are incorporated into the background state of CO_{2} and transported forward in time, and the final flux uncertainties and covariances are taken into account when estimating the covariances of the fluxes still being estimated. The computational demands 15 of this technique are greatly reduced in comparison to the standard Bayesian synthesis technique where all observations are used at once with transport fields spanning the entire period of the observations. It therefore becomes possible to solve larger inverse problems with more observations and for fluxes discretized at finer spatial scales. We also discuss the differences between running the inversion simultaneously with the 20 transport model and running it entirely off-line with pre-calculated transport fields. We find that the latter can be done with minimal error if time series of transport fields of adequate length are pre-calculated.
An improved Kalman Smoother for atmospheric inversions
Directory of Open Access Journals (Sweden)
L. M. P. Bruhwiler
2005-01-01
Full Text Available We explore the use of a fixed-lag Kalman smoother for sequential estimation of atmospheric carbon dioxide fluxes. This technique takes advantage of the fact that most of the information about the spatial distribution of sources and sinks is observable within a few months to half of a year of emission. After this period, the spatial structure of sources is diluted by transport and cannot significantly constrain flux estimates. We therefore describe an estimation technique that steps through the observations sequentially, using only the subset of observations and modeled transport fields that most strongly constrain the fluxes at a particular time step. Estimates of each set of fluxes are sequentially updated multiple times, using measurements taken at different times, and the estimates and their uncertainties are shown to quickly converge. Final flux estimates are incorporated into the background state of CO2 and transported forward in time, and the final flux uncertainties and covariances are taken into account when estimating the covariances of the fluxes still being estimated. The computational demands of this technique are greatly reduced in comparison to the standard Bayesian synthesis technique where all observations are used at once with transport fields spanning the entire period of the observations. It therefore becomes possible to solve larger inverse problems with more observations and for fluxes discretized at finer spatial scales. We also discuss the differences between running the inversion simultaneously with the transport model and running it entirely off-line with pre-calculated transport fields. We find that the latter can be done with minimal error if time series of transport fields of adequate length are pre-calculated.
Evaluating atmospheric methane inversion model results for Pallas, northern Finland
Tsuruta, Aki; Aalto, Tuula; Backman, Leif; Peters, Wouter; Krol, Maarten; van der Laan-Luijkx, Ingrid T.; Hatakka, Juha; Heikkinen, Pauli; Dlugokencky, Edward J.; Spahni, Renato; Paramonova, Nina N.
2015-01-01
A state-of-the-art inverse model, CarbonTracker Data Assimilation Shell (CTDAS), was used to optimize estimates of methane (CH4) surface fluxes using atmospheric observations of CH4 as a constraint. The model consists of the latest version of the TM5 atmospheric chemistry-transport model and an ensemble Kalman filter based data assimilation system. The model was constrained by atmospheric methane surface concentrations, obtained from the World Data Centre for Greenhouse Gases (WDCGG). Pri...
An improved Kalman Smoother for atmospheric inversions
Bruhwiler, L.; Michalak, A.; Peters, W.; Baker, D.; Tans, P.P.
2005-01-01
We explore the use of a fixed-lag Kalman smoother for sequential estimation of atmospheric carbon dioxide fluxes. This technique takes advantage of the fact that most of the information about the spatial distribution of sources and sinks is observable within a few months to half of a year of emissio
Objectified quantification of uncertainties in Bayesian atmospheric inversions
Directory of Open Access Journals (Sweden)
A. Berchet
2014-07-01
Full Text Available Classical Bayesian atmospheric inversions process atmospheric observations and prior emissions, the two being connected by an observation operator picturing mainly the atmospheric transport. These inversions rely on prescribed errors in the observations, the prior emissions and the observation operator. At the meso-scale, inversion results are very sensitive to the prescribed error distributions, which are not accurately known. The classical Bayesian framework experiences difficulties in quantifying the impact of mis-specified error distributions on the optimized fluxes. In order to cope with this issue, we rely on recent research results and enhance the classical Bayesian inversion framework through a marginalization on all the plausible errors that can be prescribed in the system. The marginalization consists in computing inversions for all possible error distributions weighted by the probability of occurence of the error distributions. The posterior distribution of the fluxes calculated by the marginalization is complicated and not explicitly describable. We then carry out a Monte-Carlo sampling relying on an approximation of the probability of occurence of the error distributions. This approximation is deduced from the well-tested algorithm of the Maximum of Likelihood. Thus, the marginalized inversion relies on an automatic objectified diagnosis of the error statistics, without any prior knowledge about the matrices. It robustly includes the uncertainties on the error distributions, contrary to what is classically done with frozen expert-knowledge error statistics. Some expert knowledge is still used in the method for the choice of emission aggregation pattern and sampling protocol in order to reduce the computation costs of the method. The relevance and the robustness of the method is tested on a case study: the inversion of methane surface fluxes at the meso-scale with real observation sites in Eurasia. Observing System Simulation
Inversion for atmosphere duct parameters using real radar sea clutter
International Nuclear Information System (INIS)
This paper addresses the problem of estimating the lower atmospheric refractivity (M profile) under nonstandard propagation conditions frequently encountered in low altitude maritime radar applications. The vertical structure of the refractive environment is modeled using five parameters and the horizontal structure is modeled using five parameters. The refractivity model is implemented with and without a priori constraint on the duct strength as might be derived from soundings or numerical weather-prediction models. An electromagnetic propagation model maps the refractivity structure into a replica field. Replica fields are compared with the observed clutter using a squared-error objective function. A global search for the 10 environmental parameters is performed using genetic algorithms. The inversion algorithm is implemented on the basis of S-band radar sea-clutter data from Wallops Island, Virginia (SPANDAR). Reference data are from range-dependent refractivity profiles obtained with a helicopter. The inversion is assessed (i) by comparing the propagation predicted from the radar-inferred refractivity profiles with that from the helicopter profiles, (ii) by comparing the refractivity parameters from the helicopter soundings with those estimated. This technique could provide near-real-time estimation of ducting effects. (geophysics, astronomy, and astrophysics)
Inversion for atmosphere duct parameters using real radar sea clutter
Institute of Scientific and Technical Information of China (English)
Sheng Zheng; Fang Han-Xian
2012-01-01
This paper addresses the problem of estimating the lower atmospheric refractivity (M profile) under nonstandard propagation conditions frequently encountered in low altitude maritime radar applications.The vertical structure of the refractive environment is modeled using five parameters and the horizontal structure is modeled using five parameters.The refractivity model is implemented with and without a priori constraint on the duct strength as might be derived from soundings or numerical weather-prediction models.An electromagnetic propagation model maps the refractivity structure into a replica field.Replica fields are compared with the observed clutter using a squared-error objective function.A global search for the 10 environmental parameters is performed using genetic algorithms.The inversion algorithm is implemented on the basis of S-band radar sea-clutter data from Wallops Island,Virginia (SPANDAR).Reference data are from range-dependent refractivity profiles obtained with a helicopter. The inversion is assessed (i) by comparing the propagation predicted from the radar-inferred refractivity profiles with that from the helicopter profiles,(ii) by comparing the refractivity parameters from the helicopter soundings with those estimated.This technique could provide near-real-time estimation of ducting effects.
Atmospheric Inverse Estimates of Methane Emissions from Central California
Energy Technology Data Exchange (ETDEWEB)
Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.
2008-11-21
Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.
Inversion of Atmospheric Tracer Measurements, Localization of Sources
Issartel, J.-P.; Cabrit, B.; Hourdin, F.; Idelkadi, A.
When abnormal concentrations of a pollutant are observed in the atmosphere, the question of its origin arises immediately. The radioactivity from Tchernobyl was de- tected in Sweden before the accident was announced. This situation emphasizes the psychological, political and medical stakes of a rapid identification of sources. In tech- nical terms, most industrial sources can be modeled as a fixed point at ground level with undetermined duration. The classical method of identification involves the cal- culation of a backtrajectory departing from the detector with an upstream integration of the wind field. We were first involved in such questions as we evaluated the ef- ficiency of the international monitoring network planned in the frame of the Com- prehensive Test Ban Treaty. We propose a new approach of backtracking based upon the use of retroplumes associated to available measurements. Firstly the retroplume is related to inverse transport processes, describing quantitatively how the air in a sam- ple originates from regions that are all the more extended and diffuse as we go back far in the past. Secondly it clarifies the sensibility of the measurement with respect to all potential sources. It is therefore calculated by adjoint equations including of course diffusive processes. Thirdly, the statistical interpretation, valid as far as sin- gle particles are concerned, should not be used to investigate the position and date of a macroscopic source. In that case, the retroplume rather induces a straightforward constraint between the intensity of the source and its position. When more than one measurements are available, including zero valued measurements, the source satisfies the same number of linear relations tightly related to the retroplumes. This system of linear relations can be handled through the simplex algorithm in order to make the above intensity-position correlation more restrictive. This method enables to manage in a quantitative manner the
Allaerts, Dries; Meyers, Johan
2014-06-01
In this study we consider large wind farms in a conventionally neutral atmospheric boundary layer. In large wind farms the energy extracted by the turbines is dominated by downward vertical turbulent transport of kinetic energy from the airflow above the farm. However, atmospheric boundary layers are almost always capped by an inversion layer which slows down the entrainment rate and counteracts boundary layer growth. In a suite of large eddy simulations the effect of the strength of the capping inversion on the boundary layer and on the performance of a large wind farm is investigated. For simulations with and without wind turbines the results indicate that the boundary layer growth is effectively limited by the capping inversion and that the entrainment rate depends strongly on the inversion strength. The power output of wind farms is shown to decrease for increasing inversions.
Sparse optimization for inverse problems in atmospheric modelling
Czech Academy of Sciences Publication Activity Database
Adam, Lukáš; Branda, Martin
2016-01-01
Roč. 79, č. 3 (2016), s. 256-266. ISSN 1364-8152 R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Inverse modelling * Sparse optimization * Integer optimization * Least squares * European tracer experiment * Free Matlab codes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.420, year: 2014 http://library.utia.cas.cz/separaty/2016/MTR/adam-0457037.pdf
Directory of Open Access Journals (Sweden)
J. F. Meirink
2008-11-01
Full Text Available A four-dimensional variational (4D-Var data assimilation system for inverse modelling of atmospheric methane emissions is presented. The system is based on the TM5 atmospheric transport model. It can be used for assimilating large volumes of measurements, in particular satellite observations and quasi-continuous in-situ observations, and at the same time it enables the optimization of a large number of model parameters, specifically grid-scale emission rates. Furthermore, the variational method allows to estimate uncertainties in posterior emissions. Here, the system is applied to optimize monthly methane emissions over a 1-year time window on the basis of surface observations from the NOAA-ESRL network. The results are rigorously compared with an analogous inversion by Bergamaschi et al. (2007, which was based on the traditional synthesis approach. The posterior emissions as well as their uncertainties obtained in both inversions show a high degree of consistency. At the same time we illustrate the advantage of 4D-Var in reducing aggregation errors by optimizing emissions at the grid scale of the transport model. The full potential of the assimilation system is exploited in Meirink et al. (2008, who use satellite observations of column-averaged methane mixing ratios to optimize emissions at high spatial resolution, taking advantage of the zooming capability of the TM5 model.
Daily European CO2 fluxes inferred by inversion of atmospheric transport
Bousquet, P.; Peylin, P.; Rayner, P.; Carouge, C.; Rivier, L.; Ciais, P.; Heinrich, P.; Hourdin, F.
2002-12-01
Continuous measurements of atmospheric CO2 over continental areas offer the potential to better understand the carbon fluxes between the terrestrial biosphere and the atmosphere. Up to now, most atmospheric inversions have provided monthly fluxes averaged over large sub continental regions. Refining space and time resolution of European fluxes calculated by inversion of atmospheric transport requires i) continuous CO2 measurements over Europe, ii) a high resolution transport model that can reproduce the variability of CO2 over continents and provide continuous response functions at model resolution, and iii) an updated inverse procedure that can use the increased associated information. We use here continuous CO2 measurements obtained through AEROCARB EU project (part of CARBOEUROPE cluster) for year 1998 at 10 continental stations to retrieve daily fluxes over Europe at model resolution with LMDZ transport model. LMDZ model is a global transport model with zoom and back-transport capabilities. A zoom was defined over Europe, with 0.4° maximum resolution. Back transport is based on self-adjoint property of atmospheric transport that makes it possible to get model daily response functions at model resolution and at low computing cost. In this talk, we present the new features of the inverse procedure and we detail the LMDZ back transport. First results obtained for daily European fluxes of the two last months of 1998 are presented and analysed. The question of retrieving fossil emissions from continuous measurements is also developed.
S. M. Burrows; Rayner, P. J.; Butler, T; M. G. Lawrence
2013-01-01
Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, using as a case study the estimation of bacteria emissio...
Time-dependent atmospheric CO2 inversions based on interannually varying tracer transport
International Nuclear Information System (INIS)
The use of inverse calculations to estimate surface CO2 fluxes from atmospheric concentration measurements has gained large attention in recent years. The success of an inversion will, among other factors, depend strongly on how realistically atmospheric tracer transport is represented by the employed transport model, as it links surface CO2 fluxes to modelled concentrations at the location of measurement stations. We present sensitivity studies demonstrating that transport modelling should be based on interannually varying meteorology, as compared to the traditional use of repeating a single year's winds only. Moreover, we propose an improved procedure of representing the concentration sampling in the model, which allows consistency with the measurements and uses their information content more efficiently. In further sensitivity tests, we estimate the effect of different spatial transport model resolutions and different meteorological driver data sets. Finally, we assess the quality of the inversion results with the help of independent measurements and flux estimates, and preliminarily discuss some of the resulting features
Nested atmospheric inversion for the terrestrial carbon sources and sinks in China
Jiang, F.; Wang, H. W.; Chen, J. M.; Zhou, L. X.; Ju, W. M.; Ding, A. J.; Liu, L. X.; Peters, W.
2013-01-01
In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additi
Czech Academy of Sciences Publication Activity Database
Branda, Martin; Adam, Lukáš
Vienna: CTBTO, 2015. [CTBT: Science and Technology 2015. 22.06.2015-26.06.2015, Vienna] R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Sparse Optimization * Inverse Modelling * Atmospheric Modelling http://library.utia.cas.cz/separaty/2015/E/branda-0448985.pdf
Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions
Directory of Open Access Journals (Sweden)
S. M. Miller
2013-09-01
Full Text Available Many inverse problems in the atmospheric sciences involve parameters with known physical constraints. Examples include non-negativity (e.g., emissions of some urban air pollutants or upward limits implied by reaction or solubility constants. However, probabilistic inverse modeling approaches based on Gaussian assumptions cannot incorporate such bounds and thus often produce unrealistic results. The atmospheric literature lacks consensus on the best means to overcome this problem, and existing atmospheric studies rely on a limited number of the possible methods with little examination of the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems and is also the first application of Markov chain Monte Carlo (MCMC to estimation of atmospheric trace gas fluxes. The approaches discussed here are broadly applicable. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two MCMC methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing alternative for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.
Directory of Open Access Journals (Sweden)
C. Mukherjee
2011-01-01
Full Text Available Inverse modeling applications in atmospheric chemistry are increasingly addressing the challenging statistical issues of data synthesis by adopting refined statistical analysis methods. This paper advances this line of research by addressing several central questions in inverse modeling, focusing specifically on Bayesian statistical computation. Motivated by problems of refining bottom-up estimates of source/sink fluxes of trace gas and aerosols based on increasingly high-resolution satellite retrievals of atmospheric chemical concentrations, we address head-on the need for integrating formal spatial statistical methods of residual error structure in global scale inversion models. We do this using analytically and computationally tractable spatial statistical models, know as conditional autoregressive spatial models, as components of a global inversion framework. We develop Markov chain Monte Carlo methods to explore and fit these spatial structures in an overall statistical framework that simultaneously estimates source fluxes. Additional aspects of the study extend the statistical framework to utilize priors in a more physically realistic manner, and to formally address and deal with missing data in satellite retrievals. We demonstrate the analysis in the context of inferring carbon monoxide (CO sources constrained by satellite retrievals of column CO from the Measurement of Pollution in the Troposphere (MOPITT instrument on the TERRA satellite, paying special attention to evaluating performance of the inverse approach using various statistical diagnostic metrics. This is developed using synthetic data generated to resemble MOPITT data to define a~proof-of-concept and model assessment, and then in analysis of real MOPITT data.
International Nuclear Information System (INIS)
As a part of resolving optical properties in atmosphere radiative transfer calculations, this paper focuses on obtaining aerosol optical thicknesses (AOTs) in the visible and near infrared wave band through indirect method by gleaning the values of aerosol particle size distribution parameters. Although various inverse techniques have been applied to obtain values for these parameters, we choose a stochastic particle swarm optimization (SPSO) algorithm to perform an inverse calculation. Computational performances of different inverse methods are investigated and the influence of swarm size on the inverse problem of computation particles is examined. Next, computational efficiencies of various particle size distributions and the influences of the measured errors on computational accuracy are compared. Finally, we recover particle size distributions for atmospheric aerosols over Beijing using the measured AOT data (at wavelengths λ=0.400, 0.690, 0.870, and 1.020 μm) obtained from AERONET at different times and then calculate other AOT values for this band based on the inverse results. With calculations agreeing with measured data, the SPSO algorithm shows good practicability.
New analysis indicates no thermal inversion in the atmosphere of HD 209458b
International Nuclear Information System (INIS)
An important focus of exoplanet research is the determination of the atmospheric temperature structure of strongly irradiated gas giant planets, or hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal inversions, but this assertion does not take into account recently obtained data or newer data reduction techniques. We reexamine this claim by investigating all publicly available Spitzer Space Telescope secondary-eclipse photometric data of HD 209458b and performing a self-consistent analysis. We employ data reduction techniques that minimize stellar centroid variations, apply sophisticated models to known Spitzer systematics, and account for time-correlated noise in the data. We derive new secondary-eclipse depths of 0.119% ± 0.007%, 0.123% ± 0.006%, 0.134% ± 0.035%, and 0.215% ± 0.008% in the 3.6, 4.5, 5.8, and 8.0 μm bandpasses, respectively. We feed these results into a Bayesian atmospheric retrieval analysis and determine that it is unnecessary to invoke a thermal inversion to explain our secondary-eclipse depths. The data are well fitted by a temperature model that decreases monotonically between pressure levels of 1 and 0.01 bars. We conclude that there is no evidence for a thermal inversion in the atmosphere of HD 209458b.
Nested atmospheric inversion for the terrestrial carbon sources and sinks in China
Jiang, F; Wang, H. W.; Chen, J M; L. X. Zhou; W. M. Ju; Peters, W.
2013-01-01
In this study, we establish a~nested atmospheric inversion system with a focus on China using the Bayes theory. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and a Hong Kong site are used in this system. The core component of this system is atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes...
Inverse diffraction for the Atmospheric Imaging Assembly in the Solar Dynamics Observatory
Torre, Gabriele; Schwartz, Richard A.; Benvenuto, Federico; Massone, Anna Maria; Piana, Michele
2015-01-01
The Atmospheric Imaging Assembly in the Solar Dynamics Observatory provides full Sun images every 1 seconds in each of 7 Extreme Ultraviolet passbands. However, for a significant amount of these images, saturation affects their most intense core, preventing scientists from a full exploitation of their physical meaning. In this paper we describe a mathematical and automatic procedure for the recovery of information in the primary saturation region based on a correlation/inversion analysis of t...
Variational approach to direct and inverse problems of atmospheric pollution studies
Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey
2016-04-01
We present the development of a variational approach for solving interrelated problems of atmospheric hydrodynamics and chemistry concerning air pollution transport and transformations. The proposed approach allows us to carry out complex studies of different-scale physical and chemical processes using the methods of direct and inverse modeling [1-3]. We formulate the problems of risk/vulnerability and uncertainty assessment, sensitivity studies, variational data assimilation procedures [4], etc. A computational technology of constructing consistent mathematical models and methods of their numerical implementation is based on the variational principle in the weak constraint formulation specifically designed to account for uncertainties in models and observations. Algorithms for direct and inverse modeling are designed with the use of global and local adjoint problems. Implementing the idea of adjoint integrating factors provides unconditionally monotone and stable discrete-analytic approximations for convection-diffusion-reaction problems [5,6]. The general framework is applied to the direct and inverse problems for the models of transport and transformation of pollutants in Siberian and Arctic regions. The work has been partially supported by the RFBR grant 14-01-00125 and RAS Presidium Program I.33P. References: 1. V. Penenko, A.Baklanov, E. Tsvetova and A. Mahura . Direct and inverse problems in a variational concept of environmental modeling //Pure and Applied Geoph.(2012) v.169: 447-465. 2. V. V. Penenko, E. A. Tsvetova, and A. V. Penenko Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 3, p. 311-319, DOI: 10.1134/S0001433815030093. 3. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Methods based on the joint use of models and observational data in the framework of variational approach to forecasting weather and atmospheric composition
Energy Technology Data Exchange (ETDEWEB)
Broquet, G.; Chevallier, F.; Breon, F.M.; Yver, C.; Ciais, P.; Ramonet, M.; Schmidt, M. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette (France); Alemanno, M. [Servizio Meteorologico dell' Aeronautica Militare Italiana, Centro Aeronautica Militare di Montagna, Monte Cimone/Sestola (Italy); Apadula, F. [Research on Energy Systems, RSE, Environment and Sustainable Development Department, Milano (Italy); Hammer, S. [Universitaet Heidelberg, Institut fuer Umweltphysik, Heidelberg (Germany); Haszpra, L. [Hungarian Meteorological Service, Budapest (Hungary); Meinhardt, F. [Federal Environmental Agency, Kirchzarten (Germany); Necki, J. [AGH University of Science and Technology, Krakow (Poland); Piacentino, S. [ENEA, Laboratory for Earth Observations and Analyses, Palermo (Italy); Thompson, R.L. [Max Planck Institute for Biogeochemistry, Jena (Germany); Vermeulen, A.T. [Energy research Centre of the Netherlands ECN, EEE-EA, Petten (Netherlands)
2013-07-01
The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5{sup 0} resolution are applied for the western European domain where {approx}50 eddy covariance sites are operated. These inversions are conducted for the period 2002-2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38 %. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than
Miller, Scot M.; Commane, Roisin; Melton, Joe R.; Andrews, Arlyn E.; Benmergui, Joshua; Dlugokencky, Edward J.; Janssens-Maenhout, Greet; Michalak, Anna M.; Sweeney, Colm; Worthy, Doug E. J.
2016-03-01
Existing estimates of methane (CH4) fluxes from North American wetlands vary widely in both magnitude and distribution. In light of these differences, this study uses atmospheric CH4 observations from the US and Canada to analyze seven different bottom-up, wetland CH4 estimates reported in a recent model comparison project. We first use synthetic data to explore whether wetland CH4 fluxes are detectable at atmospheric observation sites. We find that the observation network can detect aggregate wetland fluxes from both eastern and western Canada but generally not from the US. Based upon these results, we then use real data and inverse modeling results to analyze the magnitude, seasonality, and spatial distribution of each model estimate. The magnitude of Canadian fluxes in many models is larger than indicated by atmospheric observations. Many models predict a seasonality that is narrower than implied by inverse modeling results, possibly indicating an oversensitivity to air or soil temperatures. The LPJ-Bern and SDGVM models have a geographic distribution that is most consistent with atmospheric observations, depending upon the region and season. These models utilize land cover maps or dynamic modeling to estimate wetland coverage while most other models rely primarily on remote sensing inundation data.
Towards better error statistics for atmospheric inversions of methane surface fluxes
Directory of Open Access Journals (Sweden)
A. Berchet
2013-07-01
Full Text Available We adapt general statistical methods to estimate the optimal error covariance matrices in a regional inversion system inferring methane surface emissions from atmospheric concentrations. Using a minimal set of physical hypotheses on the patterns of errors, we compute a guess of the error statistics that is optimal in regard to objective statistical criteria for the specific inversion system. With this very general approach applied to a real-data case, we recover sources of errors in the observations and in the prior state of the system that are consistent with expert knowledge while inferred from objective criteria and with affordable computation costs. By not assuming any specific error patterns, our results depict the variability and the inter-dependency of errors induced by complex factors such as the misrepresentation of the observations in the transport model or the inability of the model to reproduce well the situations of steep gradients of concentrations. Situations with probable significant biases (e.g., during the night when vertical mixing is ill-represented by the transport model can also be diagnosed by our methods in order to point at necessary improvement in a model. By additionally analysing the sensitivity of the inversion to each observation, guidelines to enhance data selection in regional inversions are also proposed. We applied our method to a recent significant accidental methane release from an offshore platform in the North Sea and found methane fluxes of the same magnitude than what was officially declared.
Atmospheric inversion for cost effective quantification of city CO2 emissions
Wu, L.; Broquet, G.; Ciais, P.; Bellassen, V.; Vogel, F.; Chevallier, F.; Xueref-Remy, I.; Wang, Y.
2015-11-01
Cities, currently covering only a very small portion (CO2, and are associated with 71-76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by Monitoring, Reporting and Verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we propose a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. We examine the cost-effectiveness and the performance of such a tool. The instruments presently used to measure CO2 concentrations at research stations are expensive. However, cheaper sensors are currently developed and should be useable for the monitoring of CO2 emissions from a megacity in the near-term. Our assessment of the inversion method is thus based on the use of several types of hypothetical networks, with a range of numbers of sensors sampling at 25 m a.g.l. The study case for this assessment is the monitoring of the emissions of the Paris metropolitan area (~ 12 million inhabitants and 11.4 Tg C emitted in 2010) during the month of January 2011. The performance of the inversion is evaluated in terms of uncertainties in the estimates of total and sectoral CO2 emissions. These uncertainties are compared to a notional ambitious target to diagnose annual total city emissions with an uncertainty of 5 % (2-sigma). We find that, with 10 stations only, which is the typical size of current pilot networks that are deployed in some cities, the uncertainty for the 1-month total city CO2 emissions is significantly reduced by the inversion by ~ 42 % but still corresponds to an annual uncertainty that is two times larger than the target of 5 %. By extending the network from 10 to 70 stations, the
Atmospheric inversion for cost effective quantification of city CO2 emissions
Directory of Open Access Journals (Sweden)
L. Wu
2015-11-01
Full Text Available Cities, currently covering only a very small portion (2, and are associated with 71–76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by Monitoring, Reporting and Verification (MRV procedures that play a key role for market- or policy-based mitigation actions. Here we propose a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. We examine the cost-effectiveness and the performance of such a tool. The instruments presently used to measure CO2 concentrations at research stations are expensive. However, cheaper sensors are currently developed and should be useable for the monitoring of CO2 emissions from a megacity in the near-term. Our assessment of the inversion method is thus based on the use of several types of hypothetical networks, with a range of numbers of sensors sampling at 25 m a.g.l. The study case for this assessment is the monitoring of the emissions of the Paris metropolitan area (~ 12 million inhabitants and 11.4 Tg C emitted in 2010 during the month of January 2011. The performance of the inversion is evaluated in terms of uncertainties in the estimates of total and sectoral CO2 emissions. These uncertainties are compared to a notional ambitious target to diagnose annual total city emissions with an uncertainty of 5 % (2-sigma. We find that, with 10 stations only, which is the typical size of current pilot networks that are deployed in some cities, the uncertainty for the 1-month total city CO2 emissions is significantly reduced by the inversion by ~ 42 % but still corresponds to an annual uncertainty that is two times larger than the target of 5 %. By extending the network from 10 to
Directory of Open Access Journals (Sweden)
C. Mukherjee
2011-06-01
Full Text Available We present and discuss the use of Bayesian modeling and computational methods for atmospheric chemistry inverse analyses that incorporate evaluation of spatial structure in model-data residuals. Motivated by problems of refining bottom-up estimates of source/sink fluxes of trace gas and aerosols based on satellite retrievals of atmospheric chemical concentrations, we address the need for formal modeling of spatial residual error structure in global scale inversion models. We do this using analytically and computationally tractable conditional autoregressive (CAR spatial models as components of a global inversion framework. We develop Markov chain Monte Carlo methods to explore and fit these spatial structures in an overall statistical framework that simultaneously estimates source fluxes. Additional aspects of the study extend the statistical framework to utilize priors on source fluxes in a physically realistic manner, and to formally address and deal with missing data in satellite retrievals. We demonstrate the analysis in the context of inferring carbon monoxide (CO sources constrained by satellite retrievals of column CO from the Measurement of Pollution in the Troposphere (MOPITT instrument on the TERRA satellite, paying special attention to evaluating performance of the inverse approach using various statistical diagnostic metrics. This is developed using synthetic data generated to resemble MOPITT data to define a proof-of-concept and model assessment, and then in analysis of real MOPITT data. These studies demonstrate the ability of these simple spatial models to substantially improve over standard non-spatial models in terms of statistical fit, ability to recover sources in synthetic examples, and predictive match with real data.
A New Concept for Atmospheric Reentry Optimal Guidance: An Inverse Problem Inspired Approach
Directory of Open Access Journals (Sweden)
Davood Abbasi
2013-01-01
Full Text Available This paper presents a new concept for atmospheric reentry online optimal guidance and control using a method called MARE G&C that exploits the different time scale featured by reentry dynamics. The new technique reaches a quasi-analytical solution and simplified computations, even considering both lift-to-drag ratio and aerodynamic roll as control variables; in addition, the paper offers a solution for the challenging path constraints issue, getting inspiration from the inverse problem methodology. The final resulting algorithm seems suitable for onboard predictive guidance, a new need for future space missions.
Inverse diffraction for the Atmospheric Imaging Assembly in the Solar Dynamics Observatory
Torre, Gabriele; Benvenuto, Federico; Massone, Anna Maria; Piana, Michele
2015-01-01
The Atmospheric Imaging Assembly in the Solar Dynamics Observatory provides full Sun images every 1 seconds in each of 7 Extreme Ultraviolet passbands. However, for a significant amount of these images, saturation affects their most intense core, preventing scientists from a full exploitation of their physical meaning. In this paper we describe a mathematical and automatic procedure for the recovery of information in the primary saturation region based on a correlation/inversion analysis of the diffraction pattern associated to the telescope observations. Further, we suggest an interpolation-based method for determining the image background that allows the recovery of information also in the region of secondary saturation (blooming).
Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling
Henne, Stephan; Brunner, Dominik; Oney, Brian; Leuenberger, Markus; Eugster, Werner; Bamberger, Ines; Meinhardt, Frank; Steinbacher, Martin; Emmenegger, Lukas
2016-03-01
Atmospheric inverse modelling has the potential to provide observation-based estimates of greenhouse gas emissions at the country scale, thereby allowing for an independent validation of national emission inventories. Here, we present a regional-scale inverse modelling study to quantify the emissions of methane (CH4) from Switzerland, making use of the newly established CarboCount-CH measurement network and a high-resolution Lagrangian transport model. In our reference inversion, prior emissions were taken from the "bottom-up" Swiss Greenhouse Gas Inventory (SGHGI) as published by the Swiss Federal Office for the Environment in 2014 for the year 2012. Overall we estimate national CH4 emissions to be 196 ± 18 Gg yr-1 for the year 2013 (1σ uncertainty). This result is in close agreement with the recently revised SGHGI estimate of 206 ± 33 Gg yr-1 as reported in 2015 for the year 2012. Results from sensitivity inversions using alternative prior emissions, uncertainty covariance settings, large-scale background mole fractions, two different inverse algorithms (Bayesian and extended Kalman filter), and two different transport models confirm the robustness and independent character of our estimate. According to the latest SGHGI estimate the main CH4 source categories in Switzerland are agriculture (78 %), waste handling (15 %) and natural gas distribution and combustion (6 %). The spatial distribution and seasonal variability of our posterior emissions suggest an overestimation of agricultural CH4 emissions by 10 to 20 % in the most recent SGHGI, which is likely due to an overestimation of emissions from manure handling. Urban areas do not appear as emission hotspots in our posterior results, suggesting that leakages from natural gas distribution are only a minor source of CH4 in Switzerland. This is consistent with rather low emissions of 8.4 Gg yr-1 reported by the SGHGI but inconsistent with the much higher value of 32 Gg yr-1 implied by the EDGARv4.2 inventory for
International Nuclear Information System (INIS)
In this study, the 222Rn flux density distribution at surface was estimated in East Asia with the Bayesian synthesis inversion using measurement data and a long-range atmospheric 222Rn transport model. Surface atmospheric 222Rn concentrations measured at Hateruma Island in January 2008 were used. The estimated 222Rn flux densities were generally higher than the prior ones. The area-weighted mean 222Rn flux density for East Asia in January 2008 was estimated to be 44.0 mBq m-2 s-1. The use of the estimated 222Rn flux density improved the discrepancy of the model-calculated concentrations with the measurements at Hateruma Island. (authors)
Methane fluxes in the high northern latitudes estimated using a Bayesian atmospheric inversion
Thompson, Rona; Stohl, Andreas; Myhre, Cathrine Lund; Sasakawa, Motoki; Machida, Toshinobu; Aalto, Tuula; Dlugokencky, Edward; Worthy, Douglas; Skorokhod, Andrey
2016-04-01
Methane (CH4) is the second most important anthropogenic greenhouse gas after CO2. Atmospheric CH4 increased from pre-industrial concentrations of around 850 ppb (parts-per-billion) to 1773 ppb in the late 1990s and then remained approximately stable until the mid 2000s. However, since 2006 atmospheric CH4 has begun to increase again. The reasons for the stabilization and subsequent increase are likely to be a combination of changes in anthropogenic emissions such as from fossil fuels, as well as natural wetland sources. While global atmospheric inversions indicate that natural wetland sources in the tropics and subtropics have contributed to the recent increase, land surface and ecosystem models generally indicate no increase in these sources. Another potential source for the change in CH4 concentration could be wetlands in the high northern latitudes, which comprise about 44% of global wetland area. These latitudes are also undergoing rapid warming, which will impact wetland emissions of CH4. We present CH4 fluxes for the high northern latitudes (>50°N) from 2005 to 2012 estimated from a Bayesian atmospheric inversion. The inversion incorporates observations from 17 in-situ and 6 discrete-sample sites across North America and Northern Eurasia. Atmospheric transport is based on the Lagrangian particle dispersion model, FLEXPART, run with ECMWF meteorological analyses. Emissions were optimized monthly and on a spatial grid of variable resolution (from 1°×1° to 4°×4°). Background concentrations were estimated by coupling FLEXPART to monthly global 2-D fields of CH4 concentration from a bivariate interpolation of smoothed data from the NOAA ESRL network. We estimate the total mean North American flux (>50°N) to be 18 -- 27 Tg y-1, and the total mean Northern Eurasian flux (>50°N) to be 55 -- 66 Tg y-1, both substantially higher than the prior (based on LPX-Bern for wetland and EDGAR-4.2FT2010 for anthropogenic fluxes). We also find a small trend in the
DEFF Research Database (Denmark)
Pedersen, Jesper Grønnegaard; Gryning, Sven-Erik; Kelly, Mark C.
2014-01-01
A range of large-eddy simulations, with differing free atmosphere stratification and zero or slightly positive surface heat flux, is investigated to improve understanding of the neutral and near-neutral, inversion-capped, horizontally homogeneous, barotropic atmospheric boundary layer with emphas...
Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5
Directory of Open Access Journals (Sweden)
P. Bergamaschi
2005-01-01
Full Text Available A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1° × 1° resolution that is two-way nested into the global model domain (with resolution of 6° × 4°. This approach ensures consistent boundary conditions for the zoom domain and thus European top-down estimates consistent with global CH4 observations. The TM5 model, driven by ECMWF analyses, simulates synoptic scale events at most European and global sites fairly well, and the use of high-frequency observations allows exploiting the information content of individual synoptic events. A detailed source attribution is presented for a comprehensive set of 56 monitoring sites, assigning the atmospheric signal to the emissions of individual European countries and larger global regions. The available observational data put significant constraints on emissions from different regions. Within Europe, in particular several Western European countries are well constrained. The inversion results suggest up to 50-90% higher anthropogenic CH4 emissions in 2001 for Germany, France and UK compared to reported UNFCCC values (EEA, 2003. A recent revision of the German inventory, however, resulted in an increase of reported CH4 emissions by 68.5% (EEA, 2004, being now in very good agreement with our top-down estimate. The top-down estimate for Finland is distinctly smaller than the a priori estimate, suggesting much smaller CH4 emissions from Finnish wetlands than derived from the bottom-up inventory. The EU-15 totals are relatively close to UNFCCC values (within 4-30% and appear very robust for different inversion scenarios.
Decadal trends of ocean and land carbon fluxes from a regional joint ocean-atmosphere inversion
Steinkamp, K.; Gruber, N.
2015-12-01
From 1980 until 2010, the combined CO2 sink strengths of ocean and land increased by nearly 50% (-0.55 Pg C yr-1 decade-1), but the spatial distribution of this trend is not well known. We address this by performing a joint cyclostationary ocean-atmosphere inversion for the three decades 1980-1989, 1990-1999, and 2000-2008, using only carbon data from the ocean and atmosphere as constraints, i.e., without applying any prior information about the land fluxes. We find that in the inversion, most of the 30 year sink trend stems from the ocean (-0.44 Pg C yr-1 decade-1). The contribution of the terrestrial biosphere is commensurably smaller but has more decadal variability. First, the land sink strength intensified in the 1990s by 0.4 (±0.3) Pg C yr-1 compared to the 1980s but then weakened slightly by 0.2 (±0.4) Pg C yr-1 in the 2000s. The different land regions contributed very variedly to these global trends. While the northern extratropical land acted as an increasing carbon sink throughout the examined period primarily driven by boreal regions, the tropical land is estimated to have acted as an increasing source of CO2, with source magnitude and trend dominated by enhanced release in tropical America during the Amazon mean wet season. This pattern is largely unchanged if the oceanic inversion constraint, which is based on a stationary ocean circulation, is replaced by an estimate based on simulation results from an ocean biogeochemical general circulation model that includes year-to-year variability in the air-sea CO2 fluxes and also has a trend (-0.07 Pg C yr-1 decade-1) that is at the very low end of current estimates. However, the land/ocean partitioning of the trend contribution is adjusted accordingly. Oceanic carbon data has a major impact on carbon exchange for all tropical regions and southern Africa but also for observationally better constrained regions in North America and temperate Asia. The European trend exhibits a strong sensitivity to the choice
Fang, X.; Thompson, R.; Saito, T.; Yokouchi, Y.; Li, S.; Kim, J.; Kim, K.; Park, S.; Graziosi, F.; Stohl, A.
2013-12-01
With a global warming potential of around 22800 over a 100-year time horizon, sulfur hexafluoride (SF6) is one of the greenhouse gases regulated under the Kyoto Protocol. Global SF6 emissions have been increasing since circa the year 2000. The reason for this increase has been inferred to be due to rapidly increasing emissions in developing countries that are not obligated to report their annual emissions to the United Nations Framework Convention on Climate Change, notably China. In this study, SF6 emissions during the period 2006-2012 for China and other East Asian countries were determined using in-situ atmospheric measurements and inverse modeling. We performed various inversion sensitivity tests, which show the largest uncertainties in the a posteriori Chinese emissions are associated with the a priori emissions used and their uncertainty, the station network, as well as the meteorological input data. The overall relative uncertainty of the a posteriori emissions in China is estimated to be 17% in 2008. Based on sensitivity tests, we employed the optimal parameters in our inversion setup and performed yearly inversions for the study period. Inversion results show that the total a posteriori SF6 emissions from China increased from 1420 × 245 Mg/yr in 2006 to 2741 × 472 Mg/yr in 2009 and stabilized thereafter. The rapid increase in emissions reflected a fast increase in SF6 consumption in China, a result also found in bottom-up estimates. The a posteriori emission map shows high emissions concentrated in populated parts of China. During the period 2006-2012, emissions in northwestern and northern China peaked around the year 2009, while emissions in eastern, central and northeastern China grew gradually during almost the whole period. Fluctuating emissions are observed for southwestern China. These regional differences should be caused by changes of provincial SF6 usage and by shifts of usage among different sectors. Fig. 1. Footprint emission sensitivity
Directory of Open Access Journals (Sweden)
C. Yver
2010-11-01
Full Text Available This paper presents an analysis of the recent tropospheric molecular hydrogen (H_{2} budget with a particular focus on soil uptake and surface emissions. A variational inversion scheme is combined with observations from the RAMCES and EUROHYDROS atmospheric networks, which include continuous measurements performed between mid-2006 and mid-2009. Net H_{2} surface flux, soil uptake distinct from surface emissions and finally, soil uptake, biomass burning, anthropogenic emissions and N_{2} fixation-related emissions separately were inverted in several scenarios. The various inversions generate an estimate for each term of the H_{2} budget. The net H_{2} flux per region (High Northern Hemisphere, Tropics and High Southern Hemisphere varies between −8 and 8 Tg yr^{−1}. The best inversion in terms of fit to the observations combines updated prior surface emissions and a soil deposition velocity map that is based on soil uptake measurements. Our estimate of global H_{2} soil uptake is −59 ± 4.0 Tg yr^{−1}. Forty per cent of this uptake is located in the High Northern Hemisphere and 55% is located in the Tropics. In terms of surface emissions, seasonality is mainly driven by biomass burning emissions. The inferred European anthropogenic emissions are consistent with independent H_{2} emissions estimated using a H_{2}/CO mass ratio of 0.034 and CO emissions considering their respective uncertainties. To constrain a more robust partition of H_{2} sources and sinks would need additional constraints, such as isotopic measurements.
Directory of Open Access Journals (Sweden)
C. E. Yver
2011-04-01
Full Text Available This paper presents an analysis of the recent tropospheric molecular hydrogen (H_{2} budget with a particular focus on soil uptake and European surface emissions. A variational inversion scheme is combined with observations from the RAMCES and EUROHYDROS atmospheric networks, which include continuous measurements performed between mid-2006 and mid-2009. Net H_{2} surface flux, then deposition velocity and surface emissions and finally, deposition velocity, biomass burning, anthropogenic and N_{2} fixation-related emissions were simultaneously inverted in several scenarios. These scenarios have focused on the sensibility of the soil uptake value to different spatio-temporal distributions. The range of variations of these diverse inversion sets generate an estimate of the uncertainty for each term of the H_{2} budget. The net H_{2} flux per region (High Northern Hemisphere, Tropics and High Southern Hemisphere varies between −8 and +8 Tg yr^{−1}. The best inversion in terms of fit to the observations combines updated prior surface emissions and a soil deposition velocity map that is based on bottom-up and top-down estimations. Our estimate of global H_{2} soil uptake is −59±9 Tg yr^{−1}. Forty per cent of this uptake is located in the High Northern Hemisphere and 55% is located in the Tropics. In terms of surface emissions, seasonality is mainly driven by biomass burning emissions. The inferred European anthropogenic emissions are consistent with independent H_{2} emissions estimated using a H_{2}/CO mass ratio of 0.034 and CO emissions within the range of their respective uncertainties. Additional constraints, such as isotopic measurements would be needed to infer a more robust partition of H_{2} sources and sinks.
Fymat, A. L.
1976-01-01
The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.
Directory of Open Access Journals (Sweden)
M. Martinez-Camara
2014-05-01
Full Text Available Emissions of harmful substances into the atmosphere are a serious environmental concern. In order to understand and predict their effects, it is necessary to estimate the exact quantity and timing of the emissions, from sensor measurements taken at different locations. There exists a number of methods for solving this problem. However, these existing methods assume Gaussian additive errors, making them extremely sensitive to outlier measurements. We first show that the errors in real-world measurement datasets come from a heavy-tailed distribution, i.e., include outliers. Hence, we propose to robustify the existing inverse methods by adding a blind outlier detection algorithm. The improved performance of our method is demonstrated on a real dataset and compared to previously proposed methods. For the blind outlier detection, we first use an existing algorithm, RANSAC, and then propose a modification called TRANSAC, which provides a further performance improvement.
International Nuclear Information System (INIS)
Time-dependent stochastic inversion (TDSI) was recently developed for acoustic travel-time tomography of the atmosphere. This type of tomography allows reconstruction of temperature and wind-velocity fields given the location of sound sources and receivers and the travel times between all source–receiver pairs. The quality of reconstruction provided by TDSI depends on the geometry of the transducer array. However, TDSI has not been studied for the geometry with reciprocal sound transmission. This paper is focused on three aspects of TDSI. First, the use of TDSI in reciprocal sound transmission arrays is studied in numerical and physical experiments. Second, efficiency of time-dependent and ordinary stochastic inversion (SI) algorithms is studied in numerical experiments. Third, a new model of noise in the input data for TDSI is developed that accounts for systematic errors in transducer positions. It is shown that (i) a separation of the travel times into temperature and wind-velocity components in tomography with reciprocal transmission does not improve the reconstruction, (ii) TDSI yields a better reconstruction than SI and (iii) the developed model of noise yields an accurate reconstruction of turbulent fields and estimation of errors in the reconstruction
Huestis, D. L.
Forward integration calculation of air mass, refraction, and time delay requires care even for very smooth model atmospheres. The literature abounds in examples of injudicious approximations, assumptions, transformations, variable substitutions, and failures to verify that the formulas work with unlimited accuracy for simple cases and also survive challenges from mathematically pathological but physically realizable cases. A few years ago we addressed the problem of evaluation of the Chapman function for attenuation along a straight line path in an exponential atmosphere. In this presentation we will describe issues and approaches for integration over light paths curved by refraction. The inverse problem, determining the altitude profile of mass density (index of refraction) or the concentration of an individual chemical species (absorption), from occultation data, also has its mathematically interesting (i.e., difficult) aspects. Now we automatically have noise and thus statistical analysis is just as important as calculus and numerical analysis. Here we will describe a new approach of least-squares fitting occultation data to an expansion over compact basis functions. This approach, which avoids numerical differentiation and singular integrals, was originally developed to analyze laboratory imaging data.Forward integration calculation of air mass, refraction, and time delay requires care even for very smooth model atmospheres. The literature abounds in examples of injudicious approximations, assumptions, transformations, variable substitutions, and failures to verify that the formulas work with unlimited accuracy for simple cases and also survive challenges from mathematically pathological but physically realizable cases. A few years ago we addressed the problem of evaluation of the Chapman function for attenuation along a straight line path in an exponential atmosphere. In this presentation we will describe issues and approaches for integration over light paths
A new method for the inversion of atmospheric parameters of A/Am stars
Gebran, M.; Farah, W.; Paletou, F.; Monier, R.; Watson, V.
2016-05-01
Context. We present an automated procedure that simultaneously derives the effective temperature Teff, surface gravity log g, metallicity [Fe/H], and equatorial projected rotational velocity vsini for "normal" A and Am stars. The procedure is based on the principal component analysis (PCA) inversion method, which we published in a recent paper . Aims: A sample of 322 high-resolution spectra of F0-B9 stars, retrieved from the Polarbase, SOPHIE, and ELODIE databases, were used to test this technique with real data. We selected the spectral region from 4400-5000 Å as it contains many metallic lines and the Balmer Hβ line. Methods: Using three data sets at resolving powers of R = 42 000, 65 000 and 76 000, about ~6.6 × 106 synthetic spectra were calculated to build a large learning database. The online power iteration algorithm was applied to these learning data sets to estimate the principal components (PC). The projection of spectra onto the few PCs offered an efficient comparison metric in a low-dimensional space. The spectra of the well-known A0- and A1-type stars, Vega and Sirius A, were used as control spectra in the three databases. Spectra of other well-known A-type stars were also employed to characterize the accuracy of the inversion technique. Results: We inverted all of the observational spectra and derived the atmospheric parameters. After removal of a few outliers, the PCA-inversion method appeared to be very efficient in determining Teff, [Fe/H], and vsini for A/Am stars. The derived parameters agree very well with previous determinations. Using a statistical approach, deviations of around 150 K, 0.35 dex, 0.15 dex, and 2 km s-1 were found for Teff, log g, [Fe/H], and vsini with respect to literature values for A-type stars. Conclusions: The PCA inversion proves to be a very fast, practical, and reliable tool for estimating stellar parameters of FGK and A stars and for deriving effective temperatures of M stars. Based on data retrieved from the
Directory of Open Access Journals (Sweden)
A. Devasthale
2011-05-01
Full Text Available An accurate characterization of the vertical structure of the Arctic atmosphere is useful in climate change and attribution studies as well as for the climate modelling community to improve projections of future climate over this highly sensitive region. Here, we investigate one of the dominant features of the vertical structure of the Arctic atmosphere, i.e. water-vapour inversions, using eight years of Atmospheric Infrared Sounder data (2002–2010 and radiosounding profiles released from the two Arctic locations (North Slope of Alaska at Barrow and during SHEBA. We quantify the characteristics of clear-sky water vapour inversions in terms of their frequency of occurrence, strength and height covering the entire Arctic for the first time.
We found that the frequency of occurrence of water-vapour inversions is highest during winter and lowest during summer. The inversion strength is, however, higher during summer. The observed peaks in the median inversion-layer heights are higher during the winter half of the year, at around 850 hPa over most of the Arctic Ocean, Siberia and the Canadian Archipelago, while being around 925 hPa during most of the summer half of the year over the Arctic Ocean. The radiosounding profiles agree with the frequency, location and strength of water-vapour inversions in the Pacific sector of the Arctic. In addition, the radiosoundings indicate that multiple inversions are the norm with relatively few cases without inversions. The amount of precipitable water within the water-vapour inversion structures is estimated and we find a distinct, two-mode contribution to the total column precipitable water. These results suggest that water-vapour inversions are a significant source to the column thermodynamics, especially during the colder winter and spring seasons. We argue that these inversions are a robust metric to test the reproducibility of thermodynamics within climate models. An accurate statistical
Locatelli, R.; Bousquet, P.; Hourdin, F.; Saunois, M.; COZIC A.; Couvreux, F; Grandpeix, J.-Y.; Lefebvre, M.-P.; C. Rio; Bergamaschi, P.; Chambers, S. D.; U. Karstens; Kazan, V.; S. Van der Laan; Meijer, H. A. J.
2015-01-01
Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterizations recently implemented in the atmospheric global climate model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL), and deep convection in the troposphere. At the same time, the horizontal ...
Bergamaschi, Peter; Karstens, Ute; Koffi, Ernest; Saunois, Marielle; Arnold, Timothy; Manning, Alistair; Tsuruta, Aki; Berchet, Antoine; Vermeulen, Alex; Janssens-Maenhout, Greet; Hammer, Samuel; Levin, Ingeborg; Schmidt, Martina
2016-04-01
We present top-down estimates of European CH4 and N2O emissions for 2006-2012, based on the new quality controlled and harmonized data set from 18 European atmospheric monitoring stations generated within the European FP7 project InGOS ("Integrated non-CO2 Greenhouse gas Observing System"). We applied an ensemble of 7 different inverse models for CH4 (and 4 for N2O), and performed four different inversion experiments, investigating the impact of different sets of stations and the use of 'a priori' information on emissions. The inverse models infer total CH4 emissions of 28.4 ± 6.4 (2σ) Tg CH4 yr‑1 for the EU-28 for 2006-2012 from the 4 inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC ('bottom-up', based on statistical data and emissions factors) amount to only 19.0 - 20.9 Tg CH4 yr‑1 for the same period. A potential explanation for the discrepancy between the 'bottom-up' and 'top-down' estimates could be the contribution of natural sources, such as peatlands, wetlands, and wet soils, which might have been underestimated in previous analyses. The hypothesis of significant natural emissions is supported by the finding that the inversions yield significant seasonal cycles of derived CH4 emissions with maximum in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Furthermore we investigate potential biases of the flux inversions by comparing model simulations with regular aircraft profiles at 4 European sites and the 'Infrastructure for Measurement of the European Carbon Cycle (IMECC)' aircraft campaign. For N2O, for which uncertainties of bottom-up inventories are very large - typically on the order of 100% for the total N2O emissions per country (mainly due to N2O emissions from agricultural soils) - our results demonstrate that atmospheric measurements and inverse modelling can significantly reduce the uncertainties. Despite the large uncertainties in the bottom
Reducing Uncertainty in Life Cycle CH4 Emissions from Natural Gas using Atmospheric Inversions
Schwietzke, S.; Griffin, W.; Matthews, S.
2012-12-01
Methane emissions associated with the production and use of natural gas (NG) are highly uncertain because of challenges to accurately measure fugitive CH4 emissions from NG leaks and venting throughout a large and complex industry. Better understanding the CH4 emissions from the NG life cycle is important for two reasons. First, the rising interest in NG use associated with the recent development of unconventional sources, such as shale gas, may cause a shift in the future energy system from coal towards more NG. Given its relatively high greenhouse gas potency, fugitive CH4 emissions from the NG life cycle have the potential to outweigh lower CO2 emissions compared to coal use in terms of their climate impacts over the next few decades. Second, worldwide NG related CH4 emissions play a key role in understanding the global CH4 budget. According to current atmospheric inversion studies, NG and oil production account for about 12% of global CH4 emissions. However, these results largely depend on prior emissions estimates whose uncertainties are poorly documented. The objective of this research is to analyze which ranges of global fugitive CH4 emissions from the NG life cycle are reasonable given atmospheric observations as a constraint. We establish a prior global CH4 inventory for NG, oil, and coal using emissions data from the life cycle assessment (LCA) literature. This inventory includes uncertainty estimates for different fuels, world regions, and time periods based on LCA literature, which existing inventories do not account for. Furthermore, global CH4 inversion modeling will be used to test bottom-up hypotheses of high NG leakage and venting associated with the upper bound of the prior inventory. Given the use of detailed LCA emissions factors, we will test bottom-up scenarios regarding management and technology improvements over time. The emissions inventory will be established for the past decade, and inversion modeling will be carried out using NOAA
Directory of Open Access Journals (Sweden)
Qixiang Liao
2016-01-01
Full Text Available In this paper, we present a new estimation of the atmospheric refractivity profile combining the scattering signal (electromagnetic wave propagation loss and the direct signal (phase delay. The refractivity profile is modeled using four parameters, i.e., the gradient of the refractivity profile (c1, c2 and the vertical altitude (h1, h2. We apply the NSGA-II (Non-dominated Sorting Genetic Algorithm II, a multiobjective optimization algorithm, to achieve the goals of joint optimization inversion in the inverting process, and compare this method with traditional individual inversion methods. The anti-noise ability of joint inversion is investigated under the noiseless condition and adding noise condition, respectively. The numerical experiments demonstrate that joint inversion is superior to individual inversion. The adding noise test further suggests that this method can estimate synthesized parameters more efficiently and accurately in different conditions. Finally, a set of measured data is tested in the new way and the consequence of inversion shows the joint optimization inversion algorithm has feasibility, effectiveness and superiority in the retrieval of the refractivity profile.
On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia
Directory of Open Access Journals (Sweden)
L. Molina
2015-01-01
Full Text Available The exchanges of carbon, water, and energy between the atmosphere and the Amazon Basin have global implications for current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate service (MACC was used to further study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia. The system assimilated surface measurements of atmospheric CO2 mole fractions made over more than 100 sites over the globe into an atmospheric transport model. This study added four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE optimized by the inversion were compared to independent estimates of NEE upscaled from eddy-covariance flux measurements in Amazonia, and against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We focused on the impact of the interannual variation of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons, and of the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE were also investigated. While the inversion supported the assumption of strong spatial heterogeneity of these variations, the results revealed critical limitations that prevent global inversion frameworks from capturing the data-driven seasonal patterns of fluxes across Amazonia. In particular, it highlighted issues due to the configuration of the observation network in South America and the lack of continuity of the measurements. However, some robust patterns from the inversion seemed consistent with the abnormal moisture conditions in 2009.
Nested atmospheric inversion for the terrestrial carbon sources and sinks in China
Jiang, F.; Wang, H. W.; Chen, J. M.; Zhou, L. X.; Ju, W. M.; Ding, A. J.; Liu, L. X.; Peters, W.
2013-08-01
In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV) of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO). The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002-2008 are -3.20 ± 0.63 and -0.28 ± 0.18 PgC yr-1, respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs) and from the import of wood and food, we further estimate that China's land sink is about -0.31 PgC yr-1.
Nested atmospheric inversion for the terrestrial carbon sources and sinks in China
Directory of Open Access Journals (Sweden)
F. Jiang
2013-08-01
Full Text Available In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO. The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002–2008 are −3.20 ± 0.63 and −0.28 ± 0.18 PgC yr−1, respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs and from the import of wood and food, we further estimate that China's land sink is about −0.31 PgC yr−1.
Nested atmospheric inversion for the terrestrial carbon sources and sinks in China
Directory of Open Access Journals (Sweden)
F. Jiang
2013-01-01
Full Text Available In this study, we establish a~nested atmospheric inversion system with a focus on China using the Bayes theory. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO_{2} concentrations from 130 GlobalView sites and a Hong Kong site are used in this system. The core component of this system is atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2009. The inverted global terrestrial carbon sinks mainly occur in Boreal Asia, South and Southeast Asia, eastern US and southern South America (SA. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2009, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO. However, no obvious trend is found for the terrestrial carbon sinks in China. The IAVs of carbon sinks in China show strong relationship with drought and temperature. The mean global and China terrestrial carbon sinks over the period 2002–2009 are −3.15 ± 1.48 and −0.21 ± 0.23 Pg C yr^{−1}, respectively. The uncertainties in the posterior carbon flux of China are still very large, mostly due to the lack of CO_{2} measurement data in China.
International Nuclear Information System (INIS)
Air pollution episodes have been recorded in Cairo, during the fall season, since 1999, as a result of specific meteorological conditions combined with large quantity of pollutants created by several ground-based sources. The main reason for the smog-like episodes (black clouds) is adverse weather conditions with low and variable winds, high humidity and strong temperature inversions in the few-hundred meters above the ground. The two important types of temperature inversion affecting the air pollution are surface or ground (radiation) inversion and subsidence (elevated) inversion. The surface temperature inversion is associated with a rapid decrease in the ground surface temperature with the simultaneous existence of warm air in the lower troposphere. The inversion develops at dusk and continues until the surface warms again the following day. Pollutants emitted during the night are caught under this inversion lid.Subsidence inversion forms when warm air masses move over colder air masses. The inversion develops with a stagnating high-pressure system (generally associated with fair weather). Under these conditions, the pressure gradient becomes progressively weaker so that winds become light. These light winds greatly reduce the horizontal transport and dispersion of pollutants. At the same time, the subsidence inversion acts as a barrier to the vertical dispersion of the pollutants. In this study, the Penn State/NCAR meso -scale model (MM5) is used to simulate the temperature inversion phenomenon over Greater Cairo region during the fall season of 2004. Accurate computations of the heat transfer at the surface are needed to capture this phenomenon. This can only be achieved by high-resolution simulations in both horizontal and vertical directions. Hence, for accurate simulation of the temperature inversion over Greater Cairo, four nested domains of resolutions of 27 km, 9 km, 3 km and 1 km, respectively, were used in the horizontal planes. Furthermore, 42 levels
Allende-Prieto, C; Asplund, M; Cobo, B R; Prieto, Carlos Allende; Barklem, Paul S.; Asplund, Martin; Cobo, Basilio Ruiz
2001-01-01
Spectra of late-type stars are usually analyzed with static model atmospheres in local thermodynamic equilibrium (LTE) and a homogeneous plane-parallel or spherically symmetric geometry. The energy balance requires particular attention, as two elements which are particularly difficult to model play an important role: line blanketing and convection. Inversion techniques are able to bypass the difficulties of a detailed description of the energy balance. Assuming that the atmosphere is in hydrostatic equilibrium and LTE, it is possible to constrain its structure from spectroscopic observations. Among the most serious approximations still implicit in the method is a static and homogeneous geometry. In this paper, we take advantage of a realistic three-dimensional radiative hydrodynamical simulation of the solar surface to check the systematic errors incurred by an inversion assuming a plane-parallel horizontally-homogeneous atmosphere. The thermal structure recovered resembles the spatial and time average of the...
Breidt, F. J.; Cooley, D. S.; Thurier, Q.; Wang, Y.; Schuh, A. E.; Denning, A.; Davis, K. J.; West, T. O.; Ogle, S. M.
2009-12-01
Atmospheric inversions and inventories provide two distinct data sources for describing regional carbon budgets in the Mid-Continent Intensive (MCI) study of the North American Carbon Program (NACP). Inversions rely on temporally rich CO2 concentration measurements to infer fluxes between the terrestrial surface and atmosphere. Since towers from which concentration measurements are obtained are sparsely distributed on the landscape, inversion data tend to be temporally rich and spatially poor. Inventories are typically conducted using models for which the inputs are driving variables that influence uptake and release of CO2 from the terrestrial surface, and the outputs are predicted changes in C pools, or CO2 fluxes directly. In contrast to inversions, the inventory data tend to be spatially rich and temporally poor. A statistical methodology based on a state-space model and the Kalman recursions is proposed to combine the inversion and inventory data for optimal estimation of CO2 fluxes. The methodology trades off the strengths and weaknesses of the two data streams. This synthesis activity provides the most rigorous estimates of CO2 flux for the MCI, along with estimated uncertainties. In particular, it identifies portions of the region and time series, as well as sources and C pools, with the largest uncertainties.
Inner Structure of Atmospheric Inversion Layers over Haifa Bay in the Eastern Mediterranean
Haikin, N.; Galanti, E.; Reisin, T. G.; Mahrer, Y.; Alpert, P.
2015-09-01
Capping inversions act as barriers to the vertical diffusion of pollutants, occasionally leading to significant low-level air pollution episodes in the lower troposphere. Here, we conducted two summer campaigns where global positioning system radiosondes were operated in Haifa Bay on the eastern Mediterranean coast, a region of steep terrain with significant pollution. The campaigns provided unique high resolution measurements related to capping inversions. It was found that the classical definition of a capping inversion was insufficient for an explicit identification of a layer; hence additional criteria are required for a complete spatial analysis of inversion evolution. Based on the vertical temperature derivative, an inner fine structure of inversion layers was explored, and was then used to track inversion layers spatially and to investigate their evolution. The exploration of the inner structure of inversion layers revealed five major patterns: symmetric peak, asymmetric peak, double peak, flat peak, and the zig-zag pattern. We found that the symmetric peak is related to the strongest inversions, double peak inversions tended to break apart into two layers, and the zig-zag pattern was related to the weakest inversions. Employing this classification is suggested for assistance in following the evolution of inversion layers.
An Assessment of Biases in Satellite CO2 Measurements Using Atmospheric Inversion
Baker, D. F.; O'Dell, C.
2014-12-01
Column-integrated CO2 mixing ratio measurements from satellite should provide a new view of the global carbon cycle, thanks to their ability to measure with great coverage in places that are poorly sampled by the in situ network (e.g. the tropics) using a new approach (full-column averages rather than point measurements). For this new insight to be useful, however, systematic errors in these data must first be identified and removed. Here we use atmospheric transport modeling to perform a global comparison of satellite CO2 measurements to higher-quality reference data (in situ data from flasks and aircraft, column CO2 data from the upward-looking spectrometers of the TCCON network) to assess systematic errors in the satellite data. This broad comparison is meant to complement the more direct validation done at specific TCCON sites. A suite of 3-D CO2 mixing ratio histories are generated across 2009-2014 using combinations of several different a priori fossil fuel, land biospheric, and oceanic CO2 fluxes run through the PCTM off-line atmospheric transport model driven by MERRA 1°x1.25° winds and vertical mixing parameters. Each member of the suite is forced to agree with in situ CO2 measurements (flask, tall tower, and routine light aircraft profiles) through use of a variational carbon data assimilation (4Dvar) system. The optimized 3-D CO2 fields are then compared to ACOS column CO2 retrievals of GOSAT data, with the differences being fit to different independent variables (aerosol optical depth, atmospheric path length, surface albedo, etc.) to derive a GOSAT bias correction. ACOS-GOSAT CO2 retrievals, corrected by this scheme, as well as with the "official" ACOS bias correction, will then be assimilated using the same 4Dvar approach. The benefit of the GOSAT data with and without the bias corrections will then be assessed by comparing the optimized CO2 fields to independent data (TCCON column data, as well as aircraft data left out of the in situ inversions
Evangeliou, Nikolaos; Thompson, Rona; Stohl, Andreas; Shevchenko, Vladimir P.
2016-04-01
Black carbon (BC) is the main light absorbing aerosol species and it has important impacts on air quality, weather and climate. The major source of BC is incomplete combustion of fossil fuels and the burning of biomass or bio-fuels (soot). Therefore, to understand to what extent BC affects climate change and pollutant dynamics, accurate knowledge of the emissions, distribution and variation of BC is required. Most commonly, BC emission inventory datasets are built by "bottom up" approaches based on activity data and emissions factors, but these methods are considered to have large uncertainty (Cao et al, 2006). In this study, we have used a Bayesian Inversion to estimate spatially resolved BC emissions. Emissions are estimated monthly for 2014 and over the domain from 180°W to 180°E and 50°N to 90°N. Atmospheric transport is modeled using the Lagrangian Particle Dispersion Model, FLEXPART (Stohl et al., 1998; 2005), and the inversion framework, FLEXINVERT, developed by Thompson and Stohl, (2014). The study domain is of particular interest concerning the identification and estimation of BC sources. In contrast to Europe and North America, where BC sources are comparatively well documented as a result of intense monitoring, only one station recording BC concentrations exists in the whole of Siberia. In addition, emissions from gas flaring by the oil industry have been geographically misplaced in most emission inventories and may be an important source of BC at high latitudes since a significant proportion of the total gas flared occurs at these high latitudes (Stohl et al., 2013). Our results show large differences with the existing BC inventories, whereas the estimated fluxes improve modeled BC concentrations with respect to observations. References Cao, G. et al. Atmos. Environ., 40, 6516-6527, 2006. Stohl, A. et al. Atmos. Environ., 32(24), 4245-4264, 1998. Stohl, A. et al. Atmos. Chem. Phys., 5(9), 2461-2474, 2005. Stohl, A. et al. Atmos. Chem. Phys., 13
International Nuclear Information System (INIS)
Scalar dispersion in the atmosphere is an important area wherein different approaches are followed in development of good analytical model. The analyses based on Computational Fluid Dynamics (CFD) codes offer an opportunity of model development based on first principles of physics and hence such models have an edge over the existing models. Both forward and backward calculation methods are being developed for atmospheric dispersion around NPPs at BARC Forward modeling methods, which describe the atmospheric transport from sources to receptors, use forward-running transport and dispersion models or computational fluid dynamics models which are run many times, and the resulting dispersion field is compared to observations from multiple sensors. Backward or inverse modeling methods use only one model run in the reverse direction from the receptors to estimate the upwind sources. Inverse modeling methods include adjoint and tangent linear models, Kalman filters, and variational data assimilation, and neural network. The present paper is aimed at developing a new approach where the identified specific signatures at receptor points form the basis for source estimation or inversions. This approach is expected to reduce the large transient data sets to reduced and meaningful data sets. In fact this reduces the inherently transient data set into a time independent mean data set. Forward computation were carried out with CFD code for various case to generate a large set of data to train the ANN. Specific signature analysis was carried out to find the parameters of interest for ANN training like peak concentration, time to reach peak concentration and time to fall, the ANN was trained with data and source strength and location were predicted from ANN. Inverse problem was performed using ANN approach in long range atmospheric dispersion. An illustration of application of CFD code for atmospheric dispersion studies for a hypothetical case is also included in the paper. (author)
Hain, C.; Mecikalski, J. R.; Schultz, L. A.
2009-12-01
The Atmosphere-Land Exchange Inverse (ALEXI) model was developed as an auxiliary means for estimating surface fluxes over large regions primarily using remote-sensing data. The model is unique in that no information regarding antecedent precipitation or moisture storage capacity is required - the surface moisture status is deduced from a radiometric temperature change signal. ALEXI uses the available water fraction (fAW) as a proxy for soil moisture conditions. Combining fAW with ALEXI’s ability to provide valuable information about the partitioning of the surface energy budget, which can dictated largely by soil moisture conditions, accommodates the retrieval of an average fAW from the surface to the rooting depth of the active vegetation. Using this approach has many advantages over traditional energy flux and soil moisture measurements (towers with limited range and large monetary/personnel costs) or approximation methods (parametrization of the relationship between available water and soil moisture) in that data is available both spatially and temporal over a large, non-homogeneous, sometimes densely vegetated area. Being satellite based, the model can be run anywhere thermal infrared satellite information is available. The current ALEXI climatology dates back to March 2000 and covers the continental U.S. Examples of projects underway using the ALEXI soil moisture retrieval tools include the Southern Florida Water Management Project; NASA’s Project Nile, which proposes to acquire hydrological information for the water management in the Nile River basin; and a USDA pro ject to expand the ALEXI framework to include Europe and parts of northern Africa using data from the European geostationary satellites, specifically the Meteosat Second Generation (MSG) Series.
Energy Technology Data Exchange (ETDEWEB)
Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque, NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin 15, Ireland
2013-04-01
The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.
Directory of Open Access Journals (Sweden)
R. Locatelli
2014-07-01
Full Text Available Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterisations recently implemented in the Atmospheric Global Climate Model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL, and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of greenhouse gas emissions using such an updated model. Comparison of a one-dimensional version of LMDz with large eddy simulations shows that the thermal scheme simulates shallow convective tracer transport in the PBL over land very efficiently, and much better than previous versions of the model. This result is confirmed in three dimensional simulations, by a much improved reproduction of the Radon-222 diurnal cycle. However, the enhanced dynamics of tracer concentrations induces a stronger sensitivity of the new LMDz configuration to external meteorological forcings. At larger scales, the inter-hemispheric exchange is slightly slower when using the new version of the model, bringing them closer to observations. The increase in the vertical resolution (from 19 to 39 layers significantly improves the representation of stratosphere/troposphere exchange. Furthermore, changes in atmospheric thermodynamic variables, such as temperature, due to changes in the PBL mixing, significantly modify chemical reaction rates and the equilibrium value of reactive trace gases. One implication of LMDz model developments for future inversions of greenhouse gas emissions is the ability of the updated system to assimilate a larger
McGuire, A.D.; Christensen, T.R.; Hayes, D.; Heroult, A.; Euskirchen, E.; Yi, Y.; Kimball, J.S.; Koven, C.; Lafleur, P.; Miller, P.A.; Oechel, W.; Peylin, P.; Williams, M.
2012-01-01
Although arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases in the form of both CO2 and CH4 could amplify global warming. Given the potential sensitivity of these ecosystems to climate change and the expectation that the Arctic will experience appreciable warming over the next century, it is important to assess whether responses of C exchange in tundra regions are likely to enhance or mitigate warming. In this study we compared analyses of C exchange of Arctic tundra between 1990–1999 and 2000–2006 among observations, regional and global applications of process-based terrestrial biosphere models, and atmospheric inversion models. Syntheses of the compilation of flux observations and of inversion model results indicate that the annual exchange of CO2 between arctic tundra and the atmosphere has large uncertainties that cannot be distinguished from neutral balance. The mean estimate from an ensemble of process-based model simulations suggests that arctic tundra acted as a sink for atmospheric CO2 in recent decades, but based on the uncertainty estimates it cannot be determined with confidence whether these ecosystems represent a weak or a strong sink. Tundra was 0.6 °C warmer in the 2000s compared to the 1990s. The central estimates of the observations, process-based models, and inversion models each identify stronger sinks in the 2000s compared with the 1990s. Similarly, the observations and the applications of regional process-based models suggest that CH4 emissions from arctic tundra have increased from the 1990s to 2000s. Based on our analyses of the estimates from observations, process-based models, and inversion models, we estimate that arctic tundra was a sink for atmospheric CO2 of 110 Tg C yr-1 (uncertainty between a
Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions
Directory of Open Access Journals (Sweden)
S. M. Miller
2014-02-01
the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two Markov chain Monte Carlo (MCMC methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing option for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.
International Nuclear Information System (INIS)
Since the end of the 1980's, measurements of atmospheric carbon dioxide have been used to estimate global and regional fluxes of CO2. This is possible because CO2 concentration variation is directly linked to flux variation by atmospheric transport. We can find the spatial and temporal distribution of fluxes from concentration measurements by 'inverting' the atmospheric transport. Until recently, most CO2 inversions have used monthly mean CO2 atmospheric concentration measurements to infer monthly fluxes. Considering the sparseness of the global CO2 measurement network, fluxes were a priori aggregated on sub-continental regions and distributed on a fixed spatial pattern within these regions. Only one flux coefficient per month for each region was optimized. With this strong constraint, estimated fluxes can be biased by non-perfect distribution of fluxes within each region (aggregation error). Therefore, flux estimation at model resolution is being developed where the hard constraint of a fixed distribution within a region is replaced by a soft constraint of covariances between flux uncertainties. The use of continuous observations from an increasing number of measurement sites offers a new challenge for inverse modelers. We investigate the use of daily averaged observations to infer daily CO2 fluxes at model resolution over Europe. We have developed a global synthesis Bayesian inversion to invert daily fluxes at model resolution (50 x 50 km over Europe) from daily averaged CO2 concentrations. We have obtained estimated fluxes for the year 2001 over Europe using the 10 European continuous sites from the AEROCARB network. The global atmospheric model LMDZt is used with a nested grid over Europe. It is necessary to add a priori spatial and temporal correlations between flux errors to constrain the Bayesian inversion. We present the impact on estimated fluxes of three different spatial correlations based on distance between pixels, climate and vegetation distribution
Sensitivity of earthquake source inversions to atmospheric noise and corrections of InSAR data
Scott, Chelsea Phipps; Lohman, Rowena Benfer
2016-05-01
Tropospheric phase delays pose a major challenge to InSAR (interferometric synthetic aperture radar)-based studies of tectonic deformation. One approach to the mitigation of effects from tropospheric noise is the application of elevation-dependent corrections based on empirical fits between elevation and interferometric phase. We quantify the effects of corrections with a range of complexity on inferred earthquake source parameters using synthetic interferograms with known atmospheric characteristics. We infer statistical properties of the stratified component of the atmosphere using pressure, temperature, and water vapor data from the North America Regional Reanalysis model over our region of interest in the Basin and Range province of the western United States. The statistics of the simulated atmospheric turbulence are estimated from InSAR and Global Positioning System data. We demonstrate potentially significant improvements in the precision of earthquake magnitude, depth, and dip estimates for several synthetic earthquake focal mechanisms following a correction for spatially variable atmospheric characteristics, relative to cases where the correction is based on a uniform delay versus elevation relationship or where no correction is applied. We apply our approach to the 1992 M5.6 Little Skull Mountain, Nevada, earthquake and demonstrate that the earthquake source parameter error bounds decrease in size after applying the atmospheric corrections. Our approach for evaluating the impact of atmospheric noise on inferred fault parameters is easily adaptable to other regions and source mechanisms.
Cheung, Mark C M; Schrijver, C J; Testa, P; Chen, F; Peter, H; Malanushenko, A
2015-01-01
We present a new method for performing differential emission measure (DEM) inversions on narrow-band EUV images from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The method yields positive definite DEM solutions by solving a linear program. This method has been validated against a diverse set of thermal models of varying complexity and realism. These include (1) idealized gaussian DEM distributions, (2) 3D models of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a non-linear force-free field, and (3) thermodynamic models from a fully-compressible, 3D MHD simulation of AR corona formation following magnetic flux emergence. We then present results from the application of the method to AIA observations of Active Region 11158, comparing the region's thermal structure on two successive solar rotations. Additionally, we show how the DEM inversion method can be adapted to simultaneously invert AIA and XRT data, and how supplementing AIA data with the latt...
Garbarino, Sara; Massone, Anna Maria; Sannino, Alessia; Boselli, Antonella; Wang, Xuan; Spinelli, Nicola; Piana, Michele
2016-01-01
We consider the problem of retrieving the aerosol extinction coefficient from Raman lidar measurements. This is an ill--posed inverse problem that needs regularization, and we propose to use the Expectation--Maximization (EM) algorithm to provide stable solutions. Indeed, EM is an iterative algorithm that imposes a positivity constraint on the solution, and provides regularization if iterations are stopped early enough. We describe the algorithm and propose a stopping criterion inspired by a statistical principle. We then discuss its properties concerning the spatial resolution. Finally, we validate the proposed approach by using both synthetic data and experimental measurements; we compare the reconstructions obtained by EM with those obtained by the Tikhonov method, by the Levenberg-Marquardt method, as well as those obtained by combining data smoothing and numerical derivation.
Directory of Open Access Journals (Sweden)
Widawski Artur
2015-06-01
Full Text Available Sosnowiec is located in the Katowice Region, which is the most urbanized and industrialized region in Poland. Urban areas of such character favor enhancement of pollution concentration in the atmosphere and the consequent emergence of smog. Local meteorological and circulation conditions significantly influence not only on the air pollution level but also change air temperature considerably in their centers and immediate vicinities. The synoptic situation also plays the major role in dispersal and concentration of air pollutants and changes in temperature profile. One of the most important are the near-ground (100 m inversions of temperature revealed their highest values on clear winter days and sometimes stay still for the whole day and night. Air temperature inversions in Sosnowiec occur mainly during anticyclone stagnation (Ca-anticyclone centre and Ka-anticyclonic ridge and in anticyclones with air advection from the south and southwest (Sa and SWa which cause significantly increase of air pollution values. The detailed evaluation of the influence of circulation types on the appearance of a particular concentration of pollutants carried out in this work has confirmed the predominant influence of individual circulation types on the development of air pollution levels at the Katowice region. This paper presents research case study results of the thermal structure of the near-ground atmospheric layer (100 m and air pollution parameters (PM10, SO2, NO, NO2 changes in selected days of 2005 year according to regional synoptic circulation types. The changes in urban environment must be taken into account in analyses of multiyear trends of air temperature and air conditions on the regional and global scales.
Atmospheric inversion of SO2 and primary aerosol emissions for the year 2010
Directory of Open Access Journals (Sweden)
N. Huneeus
2013-07-01
Full Text Available Natural and anthropogenic emissions of primary aerosols and sulphur dioxide (SO2 are estimated for the year 2010 by assimilating daily total and fine mode aerosol optical depth (AOD at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS satellite instrument into a global aerosol model of intermediate complexity. The system adjusts monthly emission fluxes over a set of predefined regions tiling the globe. The resulting aerosol emissions improve the model performance, as measured from usual skill scores, both against the assimilated observations and a set of independent ground-based measurements. The estimated emission fluxes are 67 Tg S yr−1 for SO2, 12 Tg yr−1 for black carbon (BC, 87 Tg yr−1 for particulate organic matter (POM, 17 000 Tg yr−1 for sea salt (SS, estimated at 80 % relative humidity and 1206 Tg yr−1 for desert dust (DD. They represent a difference of +53, +73, +72, +1 and −8%, respectively, with respect to the first guess (FG values. Constant errors throughout the regions and the year were assigned to the a priori emissions. The analysis errors are reduced with respect to the a priori ones for all species and throughout the year, they vary between 3 and 18% for SO2, 1 and 130% for biomass burning, 21 and 90 % for fossil fuel, 1 and 200% for DD and 1 and 5% for SS. The maximum errors on the global-yearly scale for the estimated fluxes (considering temporal error dependence are 3% for SO2, 14% for BC, 11% for POM, 14% for DD and 2% for SS. These values represent a decrease as compared to the global-yearly errors from the FG of 7% for SO2, 40% for BC, 55% for POM, 81% for DD and 300% for SS. The largest error reduction, both monthly and yearly, is observed for SS and the smallest one for SO2. The sensitivity and robustness of the inversion system to the choice of the first guess emission inventory is investigated by using different combinations of inventories for industrial, fossil fuel and biomass burning
Analysis of atmospheric CO2 growth rates at Mauna Loa using CO2 fluxes derived from an inverse model
International Nuclear Information System (INIS)
Carbon dioxide (CO2) growth rates are estimated for a period 1959-2004 from atmospheric CO2 measurements at Mauna Loa by the Scripps Institute of Oceanography. Only during a few short periods, 1965-1966, 1972-1973, 1987-1988 and 1997-1998, in the last 45 yr have growth rates of atmospheric CO2 been of a similar magnitude or higher than that due to the total emission from burning of fossil fuels. Using results from a time-dependent inverse (TDI) model, based on observations of atmospheric CO2 at 87 stations, we establish that El Nino-induced climate variations in the tropics and large-scale forest fires in the boreal regions are the main causes of anomalous growth rates of atmospheric CO2. The high growth rate of 2.8 ppm/yr in 2002 can be predicted fairly successfully by using the correlations between (1) the peak-to-trough amplitudes in the El Nino Southern Oscillation (ENSO) index and tropical flux anomaly, and (2) anomalies in CO2 flux and area burned by fire from the boreal regions. We suggest that the large interannual changes in CO2 growth rates can mostly be explained by natural climate variability. Our analysis also shows that the decadal average growth rate, linked primarily to human activity, has fluctuated around an all-time high value of 1.5 ppm/yr over the past 20 yr. A statistical model analysis is performed to identify the regions which have the maximum influence on the observed growth rate anomaly at Mauna Loa
Directory of Open Access Journals (Sweden)
X. Xiao
2010-11-01
Full Text Available Carbon tetrachloride (CCl_{4} has substantial stratospheric ozone depletion potential and its consumption is controlled under the Montreal Protocol and its amendments. We implement a Kalman filter using atmospheric CCl_{4} measurements and a 3-dimensional chemical transport model to estimate the interannual regional industrial emissions and seasonal global oceanic uptake of CCl_{4} for the period of 1996–2004. The Model of Atmospheric Transport and Chemistry (MATCH, driven by offline National Center for Environmental Prediction (NCEP reanalysis meteorological fields, is used to simulate CCl_{4} mole fractions and calculate their sensitivities to regional sources and sinks using a finite difference approach. High frequency observations from the Advanced Global Atmospheric Gases Experiment (AGAGE and the Earth System Research Laboratory (ESRL of the National Oceanic and Atmospheric Administration (NOAA and low frequency flask observations are together used to constrain the source and sink magnitudes, estimated as factors that multiply the a priori fluxes. Although industry data imply that the global industrial emissions were substantially declining with large interannual variations, the optimized results show only small interannual variations and a small decreasing trend. The global surface CCl_{4} mole fractions were declining in this period because the CCl_{4} oceanic and stratospheric sinks exceeded the industrial emissions. Compared to the a priori values, the inversion results indicate substantial increases in industrial emissions originating from the South Asian/Indian and Southeast Asian regions, and significant decreases in emissions from the European and North American regions.
A new method for the inversion of atmospheric parameters of A/Am stars
Gebran, M; Paletou, F; Monier, R; Watson, V
2016-01-01
We present an automated procedure that derives simultaneously the effective temperature $T_{eff}$, the surface gravity logg, the metallicity [Fe/H], and the equatorial projected rotational velocity vsini for "normal" A and Am stars. The procedure is based on the principal component analysis inversion method of Paletou et al. (2015a). A sample of 322 high resolution spectra of F0-B9 stars, retrieved from the Polarbase, SOPHIE, and ELODIE databases, were used to test this technique with real data. We have selected the spectral region from 4400-5000\\AA\\ as it contains many metallic lines and the Balmer H$\\beta$ line. Using 3 datasets at resolving powers of R=42000, 65000 and 76000, about 6.6x$10^6$ synthetic spectra were calculated to build a large learning database. The Online Power Iteration algorithm was applied to these learning datasets to estimate the principal components (PC). The projection of spectra onto the few PCs offered an efficient comparison metric in a low dimensional space. The spectra of the w...
Aires, F.; Rossow, W. B.; Scott, N. A.; Chedin, A.; Hansen, James E. (Technical Monitor)
2001-01-01
A fast temperature water vapor and ozone atmospheric profile retrieval algorithm is developed for the high spectral resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. Compression and de-noising of IASI observations are performed using Principal Component Analysis. This preprocessing methodology also allows, for a fast pattern recognition in a climatological data set to obtain a first guess. Then, a neural network using first guess information is developed to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a large diversified data set of radiosondes atmospheres including rare events.
Wu, Xueran; Jacob, Birgit
2015-01-01
The controllability of advection-diffusion systems, subject to uncertain initial values and emission rates, is estimated, given sparse and error affected observations of prognostic state variables. In predictive geophysical model systems, like atmospheric chemistry simulations, different parameter families influence the temporal evolution of the system.This renders initial-value-only optimisation by traditional data assimilation methods as insufficient. In this paper, a quantitative assessment method on validation of measurement configurations to optimize initial values and emission rates, and how to balance them, is introduced. In this theoretical approach, Kalman filter and smoother and their ensemble based versions are combined with a singular value decomposition, to evaluate the potential improvement associated with specific observational network configurations. Further, with the same singular vector analysis for the efficiency of observations, their sensitivity to model control can be identified by deter...
Directory of Open Access Journals (Sweden)
X. Xiao
2010-05-01
Full Text Available Carbon tetrachloride (CCl_{4} has substantial stratospheric ozone depletion potential and its consumption is controlled under the Montreal Protocol and its amendments. We implement a Kalman filter using atmospheric CC1_{4} measurements and a 3-dimensional chemical transport model to estimate the interannual regional industrial emissions and seasonal global oceanic uptake of CCl_{4} for the period of 1996–2004. The Model of Atmospheric Transport and Chemistry (MATCH, driven by offline National Center for Environmental Prediction (NCEP reanalysis meteorological fields, is used to simulate CCl_{4} mole fractions and calculate their sensitivities to regional sources and sinks using a finite difference approach. High frequency observations from the Advanced Global Atmospheric Gases Experiment (AGAGE and NOAA Earth System Research Laboratory (ESRL and low frequency flask observations are together used to constrain the source and sink magnitudes, estimated as factors that multiply the a priori fluxes. Although industry data imply that the global industrial emissions were substantially declining with large interannual variations, the optimized results show only small interannual variations and a small decreasing trend. The global surface CCl_{4} mole fractions were declining in this period because the CCl_{4} oceanic and stratospheric sinks exceeded the industrial emissions. Compared to the a priori values, the inversion results indicate substantial increases in industrial emissions originating from the South Asian/Indian and Southeast Asian regions, and significant decreases in emissions from the European and North American regions.
Boucher, É.; Guiot, J.; Hatté, C.; Daux, V.; Danis, P.-A.; Dussouillez, P.
2013-11-01
Over the last decades, dendroclimatologists have relied upon linear transfer functions to reconstruct historical climate. Transfer functions need to be calibrated using recent data from periods where CO2 concentrations reached unprecedented levels (near 400 ppm). Based on these transfer functions, dendroclimatologists must then reconstruct a different past, a past where CO2 concentrations were much below 300 ppm. However, relying upon transfer functions calibrated in this way may introduce an unanticipated bias in the reconstruction of past climate, particularly if CO2 levels have had a noticeable fertilizing effect since the beginning of the industrial era. As an alternative to the transfer function approach, we run the MAIDENiso ecophysiological model in an inverse mode to link together climatic variables, atmospheric CO2 concentrations and tree growth parameters. Our approach endeavors to find the optimal combination of meteorological conditions that best simulate observed tree ring patterns. We test our approach in the Fontainebleau forest (France). By comparing two different CO2 scenarios, we present evidence that increasing CO2 concentrations have had a slight, yet significant, effect on reconstruction results. We demonstrate that higher CO2 concentrations augment the efficiency of water use by trees, therefore favoring the reconstruction of a warmer and drier climate. Under elevated CO2 concentrations, trees close their stomata and need less water to produce the same amount of wood. Inverse process-based modeling represents a powerful alternative to the transfer function technique, especially for the study of divergent tree-ring-to-climate relationships. The approach has several advantages, most notably its ability to distinguish between climatic effects and CO2 imprints on tree growth. Therefore our method produces reconstructions that are less biased by anthropogenic greenhouse gas emissions and that are based on sound ecophysiological knowledge.
Graziosi, F.; Arduini, J.; Furlani, F.; Giostra, U.; Kuijpers, L. J. M.; Montzka, S. A.; Miller, B. R.; O'Doherty, S. J.; Stohl, A.; Bonasoni, P.; Maione, M.
2015-07-01
HCFC-22 (CHClF2), a stratospheric ozone depleting substance and a powerful greenhouse gas, is the third most abundant anthropogenic halocarbon in the atmosphere. Primarily used in refrigeration and air conditioning systems, its global production and consumption have increased during the last 60 years, with the global increases in the last decade mainly attributable to developing countries. In 2007, an adjustment to the Montreal Protocol for Substances that Deplete the Ozone Layer called for an accelerated phase out of HCFCs, implying a 75% reduction (base year 1989) of HCFC production and consumption by 2010 in developed countries against the previous 65% reduction. In Europe HCFC-22 is continuously monitored at the two sites Mace Head (Ireland) and Monte Cimone (Italy). Combining atmospheric observations with a Bayesian inversion technique, we estimated fluxes of HCFC-22 from Europe and from eight macro-areas within it, over an 11-year period from January 2002 to December 2012, during which the accelerated restrictions on HCFCs production and consumption have entered into force. According to our study, the maximum emissions over the entire domain was in 2003 (38.2 ± 4.7 Gg yr-1), and the minimum in 2012 (12.1 ± 2.0 Gg yr-1); emissions continuously decreased between these years, except for secondary maxima in the 2008 and 2010. Despite such a decrease in regional emissions, background values of HCFC-22 measured at the two European stations over 2002-2012 are still increasing as a consequence of global emissions, in part from developing countries, with an average trend of ca 7.0 ppt yr-1. However, the observations at the two European stations show also that since 2008 a decrease in the global growth rate has occurred. In general, our European emission estimates are in good agreement with those reported by previous studies that used different techniques. Since the currently dominant emission source of HCFC-22 is from banks, we assess the banks' size and their
Directory of Open Access Journals (Sweden)
R. Parker
2013-02-01
Full Text Available We analyze an ensemble of seven XCO2 retrieval algorithms for SCIAMACHY (scanning imaging absorption spectrometer of atmospheric chartography and GOSAT (greenhouse gases observing satellite. The ensemble spread can be interpreted as regional uncertainty and can help to identify locations for new TCCON (total carbon column observing network validation sites. Additionally, we introduce the ensemble median algorithm EMMA combining individual soundings of the seven algorithms into one new data set. The ensemble takes advantage of the algorithms' independent developments. We find ensemble spreads being often < 1 ppm but rising up to 2 ppm especially in the tropics and East Asia. On the basis of gridded monthly averages, we compare EMMA and all individual algorithms with TCCON and CarbonTracker model results (potential outliers, north/south gradient, seasonal (peak-to-peak amplitude, standard deviation of the difference. Our findings show that EMMA is a promising candidate for inverse modeling studies. Compared to CarbonTracker, the satellite retrievals find consistently larger north/south gradients (by 0.3–0.9 ppm and seasonal amplitudes (by 1.5–2.0 ppm.
S. Eckhardt; A. J. Prata; Seibert, P.; K. Stebel; Stohl, A.
2008-01-01
An analytical inversion method has been developed to estimate the vertical profile of SO_{2} emissions from volcanic eruptions. The method uses satellite-observed total SO_{2} columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude – thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes t...
Energy Technology Data Exchange (ETDEWEB)
Carouge, C
2006-04-15
Since the end of the 1980's, measurements of atmospheric carbon dioxide have been used to estimate global and regional fluxes of CO{sub 2}. This is possible because CO{sub 2} concentration variation is directly linked to flux variation by atmospheric transport. We can find the spatial and temporal distribution of fluxes from concentration measurements by 'inverting' the atmospheric transport. Until recently, most CO{sub 2} inversions have used monthly mean CO{sub 2} atmospheric concentration measurements to infer monthly fluxes. Considering the sparseness of the global CO{sub 2} measurement network, fluxes were a priori aggregated on sub-continental regions and distributed on a fixed spatial pattern within these regions. Only one flux coefficient per month for each region was optimized. With this strong constraint, estimated fluxes can be biased by non-perfect distribution of fluxes within each region (aggregation error). Therefore, flux estimation at model resolution is being developed where the hard constraint of a fixed distribution within a region is replaced by a soft constraint of covariances between flux uncertainties. The use of continuous observations from an increasing number of measurement sites offers a new challenge for inverse modelers. We investigate the use of daily averaged observations to infer daily CO{sub 2} fluxes at model resolution over Europe. We have developed a global synthesis Bayesian inversion to invert daily fluxes at model resolution (50 x 50 km over Europe) from daily averaged CO{sub 2} concentrations. We have obtained estimated fluxes for the year 2001 over Europe using the 10 European continuous sites from the AEROCARB network. The global atmospheric model LMDZt is used with a nested grid over Europe. It is necessary to add a priori spatial and temporal correlations between flux errors to constrain the Bayesian inversion. We present the impact on estimated fluxes of three different spatial correlations based on
Cheung, Mark C. M.; Boerner, P.; Schrijver, C. J.; Testa, P.; Chen, F.; Peter, H.; Malanushenko, A.
2015-07-01
We present a new method for performing differential emission measure (DEM) inversions on narrow-band EUV images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. The method yields positive definite DEM solutions by solving a linear program. This method has been validated against a diverse set of thermal models of varying complexity and realism. These include (1) idealized Gaussian DEM distributions, (2) 3D models of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a nonlinear force-free field, and (3) thermodynamic models from a fully compressible, 3D MHD simulation of active region (AR) corona formation following magnetic flux emergence. We then present results from the application of the method to AIA observations of Active Region 11158, comparing the region's thermal structure on two successive solar rotations. Additionally, we show how the DEM inversion method can be adapted to simultaneously invert AIA and Hinode X-ray Telescope data, and how supplementing AIA data with the latter improves the inversion result. The speed of the method allows for routine production of DEM maps, thus facilitating science studies that require tracking of the thermal structure of the solar corona in time and space.
Study of a Vegetation Index Based on HJ CCD Data's top-of-atmosphere reflectance and FPAR Inversion
International Nuclear Information System (INIS)
The Fraction of Photosynthetically Active Radiation (FPAR)absorbed by plant canopies is a key parameter for monitoring crop condition and estimating crop yield. In general, it is necessary to obtain Top of Canopy (TOC) reflectance from optical remote sensing data in digital number through atmospheric correction procedures before retrieving FPAR. However, there are a few of uncertainties that existe in the process of atmosphere correction and reduced the quality of TOC. This paper presents a vegetation index based on Top-of-Atmosphere (TOA) reflectance derived from HJ-1 CCD satellite for estimating direct crop FPAR. The vegetation index (HJVI) was designed based on the simulated results of a canopy-atmosphere radiative transfer model, including TOA reflectance and corresponded FPAR. The HJVI had taken the advantages of information in the green, the red and the near-infrared spectral domainswith with a aim of reducing the atmospheric effect and enhancing the sensitive to green vegetation. The HJVI was used to estimate soybean FPAR directly and validated using field measurements. The result indicated that the inversion algorithm produced a good relationship between the prediction and measurement (R2 = 0.546, RMSE = 0.083) and the HJVI showed high potential for estimating FPAR based on the HJ-1 TOA reflectance directly
Welp, Lisa R.; Patra, Prabir K.; Rödenbeck, Christian; Nemani, Rama; Bi, Jian; Piper, Stephen C.; Keeling, Ralph F.
2016-07-01
Warmer temperatures and elevated atmospheric CO2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changes are unclear. Here, we examine CO2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60° N excluding Europe (10° W-63° E), neither inversion finds a significant long-term trend in annual CO2 balance. The boreal zone, the latitude region from approximately 50-60° N, again excluding Europe, showed a trend of 8-11 Tg C yr-2 over the common period of validity from 1986 to 2006, resulting in an annual CO2 sink in 2006 that was 170-230 Tg C yr-1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO2 uptake, consistent with strong greening trends, is offset by increased fall CO2 release, resulting in a net neutral
International Nuclear Information System (INIS)
Full text: An account on recent progress in the inverse modelling of pollutants with first order chemistry (tracers, radionuclides, etc.) is given. The methods, which are variational and whose general principles have been presented in earlier EGU assemblies, are fundamentally nonlinear. They are meant to perform efficiently on the reconstruction of sources of accidental type (typically ETEX, Chernobyl.) In this report, the emphasis is put on two recent developments: First, the problem of finding the total released mass through nonlinear methods is first studied. Because the positivity of sources is taken into account, a non-zero prior mass scale appears in the background term. The cost function has a nonquadratic dependence on this parameter. This rules out many known parameter estimation techniques, when one has to choose this parameter prior to the inversion. Secondly, a posterior analysis of the retrieved source and retrieved errors is then conducted. It generalizes well-known data assimilation results that make use of the Hessian of the cost function. Closely related is the second order sensitivity analysis on the source and retrieved errors, of special significance for inverse modelling. (author)
Eckhardt, S.; Prata, A. J.; Seibert, P.; Stebel, K.; Stohl, A.
2008-07-01
An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair, Yemen, on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (a.s.l.), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude agrees with CALIPSO aerosol observations to within 1 2 km. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.
Directory of Open Access Journals (Sweden)
S. Pfeifer
2012-09-01
Full Text Available We analyze an ensemble of seven XCO2 retrieval algorithms for SCIAMACHY and GOSAT. The ensemble spread can be interpreted as regional uncertainty and can help to identify locations for new TCCON validation sites. Additionally, we introduce the ensemble median algorithm EMMA combining individual soundings of the seven algorithms into one new dataset. The ensemble takes advantage of the algorithms' independent developments. We find ensemble spreads being often <1 ppm but rising up to 2 ppm especially in the tropics and East Asia. On the basis of gridded monthly averages, we compare EMMA and all individual algorithms with TCCON and CarbonTracker model results (potential outliers, north/south gradient, seasonal (peak-to-peak amplitude, standard deviation of the difference. Our findings show that EMMA is a promising candidate for inverse modeling studies. Compared to CarbonTracker, the satellite retrievals find consistently larger north/south gradients (by 0.3 ppm–0.9 ppm and seasonal amplitudes (by 1.5 ppm–2.0 ppm.
Haynes, Korey; Madhusudhan, Nikku; Deming, Drake; Knutson, Heather
2015-01-01
We present observations of two occultations of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the HST, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is the most highly irradiated hot Jupiter discovered to date, and the only exoplanet known to orbit a delta-Scuti star. We observed in spatial scan mode to decrease instrument systematic effects in the data, and removed fluctuations in the data due to stellar pulsations. The RMS for our final, binned spectrum is approximately 1.05 times the photon noise. We compare our final spectrum, along with previously published photometric data, to atmospheric models of WASP-33b spanning a wide range in temperature profiles and chemical compositions. We find that the data require models with an oxygen-rich chemical composition and a temperature profile that increases at high altitude. We also find that our spectrum displays an excess in the measured flux towards short wavelengths that is best...
Basu, Sourish; Bharat Miller, John; Lehman, Scott
2016-05-01
National annual total CO2 emissions from combustion of fossil fuels are likely known to within 5-10 % for most developed countries. However, uncertainties are inevitably larger (by unknown amounts) for emission estimates at regional and monthly scales, or for developing countries. Given recent international efforts to establish emission reduction targets, independent determination and verification of regional and national scale fossil fuel CO2 emissions are likely to become increasingly important. Here, we take advantage of the fact that precise measurements of 14C in CO2 provide a largely unbiased tracer for recently added fossil-fuel-derived CO2 in the atmosphere and present an atmospheric inversion technique to jointly assimilate observations of CO2 and 14CO2 in order to simultaneously estimate fossil fuel emissions and biospheric exchange fluxes of CO2. Using this method in a set of Observation System Simulation Experiments (OSSEs), we show that given the coverage of 14CO2 measurements available in 2010 (969 over North America, 1063 globally), we can recover the US national total fossil fuel emission to better than 1 % for the year and to within 5 % for most months. Increasing the number of 14CO2 observations to ˜ 5000 per year over North America, as recently recommended by the National Academy of Science (NAS) (Pacala et al., 2010), we recover monthly emissions to within 5 % for all months for the US as a whole and also for smaller, highly emissive regions over which the specified data coverage is relatively dense, such as for the New England states or the NY-NJ-PA tri-state area. This result suggests that, given continued improvement in state-of-the art transport models, a measurement program similar in scale to that recommended by the NAS can provide for independent verification of bottom-up inventories of fossil fuel CO2 at the regional and national scale. In addition, we show that the dual tracer inversion framework can detect and minimize biases in
Energy Technology Data Exchange (ETDEWEB)
Pison, I.
2005-12-15
Atmospheric pollution at a regional scale is the result of various interacting processes: emissions, chemistry, transport, mixing and deposition of gaseous species. The forecast of air quality is then performed by models, in which the emissions are taken into account through inventories. The simulated pollutant concentrations depend highly on the emissions that are used. Now inventories that represent them have large uncertainties. Since it would be difficult today to improve their building methodologies, there remains the possibility of adding information to existing inventories. The optimization of emissions uses the information that is available in measurements to get the inventory that minimizes the difference between simulated and measured concentrations. A method for the inversion of anthropogenic emissions at a regional scale, using network measurements and based on the CHIMERE model and its adjoint, was developed and validated. A kriging technique allows us to optimize the use of the information available in the concentration space. Repeated kriging-optimization cycles increase the quality of the results. A dynamical spatial aggregation technique makes it possible to further reduce the size of the problem. The NO{sub x} emissions from the inventory elaborated by AIRPARIF for the Paris area were inverted during the summers of 1998 and 1999, the events of the ESQUIF campaign being studied in detail. The optimization reduces large differences between simulated and measured concentrations. Generally, however, the confidence level of the results decreases with the density of the measurement network. Therefore, the results with the higher confidence level correspond to the most intense emission fluxes of the Paris area. On the whole domain, the corrections to the average emitted mass and to the matching time profiles are consistent with the estimate of 15% obtained during the ESQUIF campaign. (author)
Piper, Stephen C; Keeling, Charles D.; HEIMANN Martin; Stewart, Elisabeth F
2001-01-01
A three-dimensional tracer inversion model is described that couples atmospheric CO2 transport with prescribed and adjustable source/sink components of the global car- bon cycle to predict atmospheric CO2 concentration and 13C/12C isotopic ratio taking account of exchange fluxes of atmospheric CO2 with the terrestrial biosphere and the oceans. Industrial CO2 emissions are prescribed from fuel production data. Transport of CO2 is prescribed by a model, TM2, that employs 9 vertical levels from ...
NICOLE: NLTE Stokes Synthesis/Inversion Code
Socas-Navarro, H.
2015-08-01
NICOLE, written in Fortran 90, seeks the model atmosphere that provides the best fit to the Stokes profiles (in a least-squares sense) of an arbitrary number of simultaneously-observes spectral lines from solar/stellar atmospheres. The inversion core used for the development of NICOLE is the LORIEN engine (the Lovely Reusable Inversion ENgine), which combines the SVD technique with the Levenberg-Marquardt minimization method to solve the inverse problem.
Directory of Open Access Journals (Sweden)
J. Haase
Full Text Available Radio occultation measurements made with a receiver inside the Earth’s atmosphere can be inverted, assuming local spherical symmetry, with an Abel transform to provide an estimate of the atmospheric refractive index profile. The measurement geometry is closely related to problems encountered when inverting seismic time-travel data and solar occultation measurements, where the Abel solution is well known. The method requires measuring both rays that originate from above and below the local horizon of the receiver. The Abel transform operates on a profile of "partial bending angles" found by subtracting the positive elevation measurement from the negative elevation value with the same impact parameter. In principle, the refractive index profile can be derived from measurements with a single frequency GPS receiver because the ionospheric bending is removed when the partial bending angle is evaluated.Key words. Atmospheric composition and structure (pressure, density and temperature – Radio science (remote sensing
2007-01-01
This media offers the student a chance to review how to exploit differential flatness of the system and emply inverse dynamics in the virtual domain to compute the states and controls that were not approximated with the reference functions. Last modified: 5/18/2009
DEFF Research Database (Denmark)
Pedersen, Jesper Grønnegaard
The largest wind turbines today often reach heights where traditional models of the wind speed and how it varies with height no longer can be expected to apply. For accurate assessment of wind energy resources and loads on wind turbines, there is a need for better understanding of the flow of air...... above the atmospheric surface layer. Continuous and detailed measurements of mean winds and turbulence above the surface layer are expensive and difficult to obtain. Computational fluid dynamics modelling of the atmospheric flow can be an attractive alternative or supplement to field experiments. In...
Energy Technology Data Exchange (ETDEWEB)
Hayes, Daniel J [ORNL; Turner, David P [Oregon State University, Corvallis; Stinson, Graham [Pacific Forestry Centre, Canadian Forest Service; Mcguire, David [University of Alaska; Wei, Yaxing [ORNL; West, Tristram O. [Joint Global Change Research Institute, PNNL; Heath, Linda S. [USDA Forest Service; De Jong, Bernardus [ECOSUR; McConkey, Brian G. [Agriculture and Agri-Food Canada; Birdsey, Richard A. [U.S. Department of Agriculture Forest Service; Kurz, Werner [Canadian Forest Service; Jacobson, Andrew [NOAA ESRL and CIRES; Huntzinger, Deborah [University of Michigan; Pan, Yude [U.S. Department of Agriculture Forest Service; Post, Wilfred M [ORNL; Cook, Robert B [ORNL
2012-01-01
We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000 2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a 327 252 TgC yr1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (248 TgC yr1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (297 TgC yr1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated tobe a small net source (+18 TgC yr1) due to land use change between 1993 and 2002. We compare these inventorybased estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is 511 TgC yr1 and 931 TgC yr1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional 239 TgC yr1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.
Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.
2012-01-01
We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.
Inversion of GPS meteorology data
Directory of Open Access Journals (Sweden)
K. Hocke
Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically
Inverse problems of geophysics
International Nuclear Information System (INIS)
This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given
Mesoscale inversion of carbon sources and sinks
International Nuclear Information System (INIS)
Inverse methods at large scales are used to infer the spatial variability of carbon sources and sinks over the continents but their uncertainties remain large. Atmospheric concentrations integrate the surface flux variability but atmospheric transport models at low resolution are not able to simulate properly the local atmospheric dynamics at the measurement sites. However, the inverse estimates are more representative of the large spatial heterogeneity of the ecosystems compared to direct flux measurements. Top-down and bottom-up methods that aim at quantifying the carbon exchanges between the surface and the atmosphere correspond to different scales and are not easily comparable. During this phD, a mesoscale inverse system was developed to correct carbon fluxes at 8 km resolution. The high resolution transport model MesoNH was used to simulate accurately the variability of the atmospheric concentrations, which allowed us to reduce the uncertainty of the retrieved fluxes. All the measurements used here were observed during the intensive regional campaign CERES of May and June 2005, during which several instrumented towers measured CO2 concentrations and fluxes in the South West of France. Airborne measurements allowed us to observe concentrations at high altitude but also CO2 surface fluxes over large parts of the domain. First, the capacity of the inverse system to correct the CO2 fluxes was estimated using pseudo-data experiments. The largest fraction of the concentration variability was attributed to regional surface fluxes over an area of about 300 km around the site locations depending on the meteorological conditions. Second, an ensemble of simulations allowed us to define the spatial and temporal structures of the transport errors. Finally, the inverse fluxes at 8 km resolution were compared to direct flux measurements. The inverse system has been validated in space and time and showed an improvement of the first guess fluxes from a vegetation model
Inverse Quadratic Transportation Problem
Jalilzadeh, Afrooz; Hamedani, Erfan Yazdandoost
2014-01-01
Many research has been conducted about quadratic programming and inverse optimization. In this paper we present the combination aspect of these subjects, applying on transportation problem. First, we obtain the inverse form of quadratic tranportation problem under $L_1$ norm by using duality as well as introducing the optimal value. Then, we do the same process for inverse quadratic transportation problem (IQTP) under $L_\\infty$ norm.
Acute puerperal uterine inversion
International Nuclear Information System (INIS)
Objective: To determine the frequency, causes, clinical presentations, management and maternal mortality associated with acute puerperal inversion of the uterus. Materials and Methods: All the patients who developed acute puerperal inversion of the uterus either in or outside the JPMC were included in the study. Patients of chronic uterine inversion were not included in the present study. Abdominal and vaginal examination was done to confirm and classify inversion into first, second or third degrees. Results: 57036 deliveries and 36 acute uterine inversions occurred during the study period, so the frequency of uterine inversion was 1 in 1584 deliveries. Mismanagement of third stage of labour was responsible for uterine inversion in 75% of patients. Majority of the patients presented with shock, either hypovolemic (69%) or neurogenic (13%) in origin. Manual replacement of the uterus under general anaesthesia with 2% halothane was successfully done in 35 patients (97.5%). Abdominal hysterectomy was done in only one patient. There were three maternal deaths due to inversion. Conclusion: Proper education and training regarding placental delivery, diagnosis and management of uterine inversion must be imparted to the maternity care providers especially to traditional birth attendants and family physicians to prevent this potentially life-threatening condition. (author)
Gladwell, Graham ML
2011-01-01
The papers in this volume present an overview of the general aspects and practical applications of dynamic inverse methods, through the interaction of several topics, ranging from classical and advanced inverse problems in vibration, isospectral systems, dynamic methods for structural identification, active vibration control and damage detection, imaging shear stiffness in biological tissues, wave propagation, to computational and experimental aspects relevant for engineering problems.
Labouze, Xavier
2013-01-01
The Inverse 3-SAT problem is known to be coNP Complete. This article shows a new interesting way to solve directly the problem by using closure under resolution and partial assignment properties. An algorithm is proposed which lets solve the (co)Inverse 3-SAT problem.
Inverse Kinematics using Quaternions
DEFF Research Database (Denmark)
Henriksen, Knud; Erleben, Kenny; Engell-Nørregård, Morten
In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection....
0-Semidistributive Inverse Semigroups
Institute of Scientific and Technical Information of China (English)
田振际
2004-01-01
@@ For an inverse semigroup S, the set L(S) of all inverse subsemigroups (including the empty set) of S forms a lattice with respect to intersection denoted as usual by ∩ and union, where the union is the inverse subsemigroup generated by inverse subsemigroups A, B of S. The set LF(S) of all full inverse subsemigroups of S forms a complete sublattice of L(S), with Es as zero element (Es is the set of all idempotent of S)(see [3,5,6]). Note, that if S a group, then LF(S)=L(S), its lattice of all subgroups of S. If S = G0 is a group with adjoined zero, then clearly LF(S) ≌ L(G).
Analysis of Temperature Distributions in Nighttime Inversions
Telyak, Oksana; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei
2015-04-01
Adequate prediction of temperature inversion in the atmospheric boundary layer is one of prerequisites for successful forecasting of meteorological parameters and severe weather events. Examples include surface air temperature and precipitation forecasting as well as prediction of fog, frosts and smog with hazardous levels of atmospheric pollution. At the same time, reliable forecasting of temperature inversions remains an unsolved problem. For prediction of nighttime inversions over some specific territory, it is important to study characteristic features of local circulation cells formation and to properly take local factors into account to develop custom modeling techniques for operational use. The present study aims to investigate and analyze vertical temperature distributions in tropospheric inversions (isotherms) over the territory of Belarus. We study several specific cases of formation, evolution and decay of deep nighttime temperature inversions in Belarus by means of mesoscale numerical simulations with WRF model, considering basic mechanisms of isothermal and inverse temperature layers formation in the troposphere and impact of these layers on local circulation cells. Our primary goal is to assess the feasibility of advance prediction of inversions formation with WRF. Modeling results reveal that all cases under consideration have characteristic features of radiative inversions (e.g., their formation times, development phases, inversion intensities, etc). Regions of "blocking" layers formation are extensive and often spread over the entire territory of Belarus. Inversions decay starts from the lowermost (near surface) layer (altitudes of 5 to 50 m). In all cases, one can observe formation of temperature gradients that substantially differ from the basic inversion gradient, i.e. the layer splits into smaller layers, each having a different temperature stratification (isothermal, adiabatic, etc). As opposed to various empirical techniques as well as
Inversion flachseismischer Wellenfeldspektren
Forbriger, Thomas
2001-01-01
In dieser Arbeit stelle ich ein neues Verfahren zur Inversion flachseismischer Wellenfelder vor. Die Inversion erfolgt in zwei Schritten. Zunächst wird ein Phasenslowness-Frequenz-Spektrum (omega,p-Spektrum) der Seismogramme bestimmt. In einem zweiten Schritt werden dieses Spektrum und die Laufzeiten der Ersteinsätze gemeinsam zu einem rein Tiefen-abhängigen Modell der seismischen Geschwindigkeiten und der Diskontinuitäten des untersuchten Mediums invertiert. Typische flachseismische Messunge...
Inversion of Stokes Profiles with Systematic Effects
Ramos, A Asensio; Gonzalez, M J Martinez; Yabar, A Pastor
2016-01-01
Quantitative thermodynamical, dynamical and magnetic properties of the solar and stellar plasmas are obtained by interpreting their emergent non-polarized and polarized spectrum. This inference requires the selection of a set of spectral lines particularly sensitive to the physical conditions in the plasma and a suitable parametric model of the solar/stellar atmosphere. Nonlinear inversion codes are then used to fit the model to the observations. However, the presence of systematic effects like nearby or blended spectral lines, telluric absorption or incorrect correction of the continuum, among others, can strongly affect the results. We present an extension to current inversion codes that can deal with these effects in a transparent way. The resulting algorithm is very simple and can be applied to any existing inversion code with the addition of a few lines of code as an extra step in each iteration.
Sharp spatially constrained inversion
DEFF Research Database (Denmark)
Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.; Kirkegaard, Casper C.; Auken, Esben
We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted by...... using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes this by......, the results are compatible with the data and, at the same time, favor sharp transitions. The focusing strategy can also be used to constrain the 1D solutions laterally, guaranteeing that lateral sharp transitions are retrieved without losing resolution. By means of real and synthetic datasets, sharp...
DEFF Research Database (Denmark)
Mosegaard, Klaus
For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on ou...
Calculation of the inverse data space via sparse inversion
Saragiotis, Christos
2011-01-01
The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function by constraining the $ell_1$ norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal.
Bayesian seismic AVO inversion
Energy Technology Data Exchange (ETDEWEB)
Buland, Arild
2002-07-01
A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S
Intersections, ideals, and inversion
Energy Technology Data Exchange (ETDEWEB)
Vasco, D.W.
1998-10-01
Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly onedimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons.
Intersections, ideals, and inversion
International Nuclear Information System (INIS)
Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly one dimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons
Iterative image restoration using approximate inverse preconditioning.
Nagy, J G; Plemmons, R J; Torgersen, T C
1996-01-01
Removing a linear shift-invariant blur from a signal or image can be accomplished by inverse or Wiener filtering, or by an iterative least-squares deblurring procedure. Because of the ill-posed characteristics of the deconvolution problem, in the presence of noise, filtering methods often yield poor results. On the other hand, iterative methods often suffer from slow convergence at high spatial frequencies. This paper concerns solving deconvolution problems for atmospherically blurred images by the preconditioned conjugate gradient algorithm, where a new approximate inverse preconditioner is used to increase the rate of convergence. Theoretical results are established to show that fast convergence can be expected, and test results are reported for a ground-based astronomical imaging problem. PMID:18285203
Inverse Degree and Connectivity
Institute of Scientific and Technical Information of China (English)
MA Xiao-ling; TIAN Ying-zhi
2013-01-01
Let G be a connected graph with vertex set V(G),order n =丨V(G)丨,minimum degree δ(G) and connectivity κ(G).The graph G is called maximally connected if κ(G) =δ(G).Define the inverse degree of G with no isolated vertices as R(G) =Σv∈V(G)1/d(v),where d(v) denotes the degree of the vertex v.We show that G is maximally connected if R(G) ＜ 1 + 2/δ + n-2δ+1/(n-1)(n-3).
Directory of Open Access Journals (Sweden)
Jingyun Yang
2011-01-01
Full Text Available Cohen's kappa and weighted kappa statistics are the conventional methods used frequently in measuring agreement for categorical responses. In this paper, through the perspective of a generalized inverse, we propose an alternative general framework of the fixed-effects modeling of Cohen's weighted kappa, proposed by Yang and Chinchilli (2011. Properties of the proposed method are provided. Small sample performance is investigated through bootstrap simulation studies, which demonstrate good performance of the proposed method. When there are only two categories, the proposed method reduces to Cohen's kappa.
DEFF Research Database (Denmark)
Mosegaard, Klaus
2012-01-01
For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our...... ability to produce efficient search algorithms. Such algorithms may be completely problem-independent (which is the case for the so-called 'meta-heuristics' or 'blind-search' algorithms), or they may be designed with the structure of the concrete problem in mind. We show that pure meta-heuristics are...
Multiscale full waveform inversion
Fichtner, Andreas; Trampert, Jeannot; Cupillard, Paul; Saygin, Erdinc; Taymaz, Tuncay; Capdeville, Yann; Villaseñor, Antonio
2013-07-01
We develop and apply a full waveform inversion method that incorporates seismic data on a wide range of spatio-temporal scales, thereby constraining the details of both crustal and upper-mantle structure. This is intended to further our understanding of crust-mantle interactions that shape the nature of plate tectonics, and to be a step towards improved tomographic models of strongly scale-dependent earth properties, such as attenuation and anisotropy. The inversion for detailed regional earth structure consistently embedded within a large-scale model requires locally refined numerical meshes that allow us to (1) model regional wave propagation at high frequencies, and (2) capture the inferred fine-scale heterogeneities. The smallest local grid spacing sets the upper bound of the largest possible time step used to iteratively advance the seismic wave field. This limitation leads to extreme computational costs in the presence of fine-scale structure, and it inhibits the construction of full waveform tomographic models that describe earth structure on multiple scales. To reduce computational requirements to a feasible level, we design a multigrid approach based on the decomposition of a multiscale earth model with widely varying grid spacings into a family of single-scale models where the grid spacing is approximately uniform. Each of the single-scale models contains a tractable number of grid points, which ensures computational efficiency. The multi-to-single-scale decomposition is the foundation of iterative, gradient-based optimization schemes that simultaneously and consistently invert data on all scales for one multi-scale model. We demonstrate the applicability of our method in a full waveform inversion for Eurasia, with a special focus on Anatolia where coverage is particularly dense. Continental-scale structure is constrained by complete seismic waveforms in the 30-200 s period range. In addition to the well-known structural elements of the Eurasian mantle
Directory of Open Access Journals (Sweden)
Markus Spiliotis
Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.
Inversion amalgam chronopotentiometry
International Nuclear Information System (INIS)
The review deals with the theoretical principles of the method of inversion amalgam chronopotentiometry. The transition times and the potential-time relations for the electrochemical dissolution of amalgams under galvanostatic conditions are analysed and the applications of the method in electroanalytical practise, in the study of the kinetics of electrode processes and adsorption, in the determination of the numbers of electrons involved in the reaction and diffusion coefficients, and in the study of complex formation, corrosion of amalgams, etc. are examined in detail. The fundamentals of the theory of electrode processes complicated by preceding, subsequent, and simultaneous chemical reactions are described. The possibilities and advantages of the method of amalgam chronopotentiometry in relation to other electrochemical procedures are indicated
Ahriche, Amine; Nasri, Salah
2016-01-01
We present a minimal model that simultaneously accounts for neutrino masses and the origin of dark matter (DM) and where the electroweak phase transition is strong enough to allow for electroweak baryogenesis. The Standard Model is enlarged with a Majorana fermion, three generations of chiral fermion pairs, and a single complex scalar that plays a central role in DM production and phenomenology, neutrino masses, and the strength of the phase transition. All the new fields are singlets under the SM gauge group. Neutrino masses are generated via a new variant of radiative inverse seesaw where the required small mass term is generated via loops involving DM and no large hierarchy is assumed among the mass scales. The model offers all the advantage of low-scale neutrino mass models as well as a viable dark matter candidate that is testable with direct detection experiments.
International Nuclear Information System (INIS)
It is about the levels of contamination in center America, the population's perception on the problem, effects of the atmospheric contamination, effects in the environment, causes of the atmospheric contamination, possibilities to reduce the atmospheric contamination and list of Roeco Swisscontac in atmospheric contamination
Wavelet Sparse Approximate Inverse Preconditioners
Chan, Tony F.; Tang, W.-P.; Wan, W. L.
1996-01-01
There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.
Holocaust inversion and contemporary antisemitism.
Klaff, Lesley D
2014-01-01
One of the cruellest aspects of the new antisemitism is its perverse use of the Holocaust as a stick to beat 'the Jews'. This article explains the phenomenon of 'Holocaust Inversion', which involves an 'inversion of reality' (the Israelis are cast as the 'new' Nazis and the Palestinians as the 'new' Jews) and an 'inversion of morality' (the Holocaust is presented as a moral lesson for, or even a moral indictment of, 'the Jews'). Holocaust inversion is a form of soft-core Holocaust denial, yet...
Generating Generalized Inverse Gaussian Random Variates by Fast Inversion
Leydold, Josef; Hörmann, Wolfgang
2009-01-01
We demonstrate that for the fast numerical inversion of the (generalized) inverse Gaussian distribution two algorithms based on polynomial interpolation are well-suited. Their precision is close to machine precision and they are much faster than the bisection method recently proposed by Y. Lai. (author´s abstract)
Waveform inversion of acoustic waves for explosion yield estimation
Kim, K.; Rodgers, A.
2016-07-01
We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.
Lidar measurements of mesospheric temperature inversion at a low latitude
Directory of Open Access Journals (Sweden)
V. Siva Kumar
Full Text Available The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5° N, 79.2° E, India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms.
Key words. Atmospheric composition and structure (pressure, density and temperature. Meterology and atmospheric dynamics (climatology
Inverse problem in hydrogeology
Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.
2005-03-01
The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. L'état du problème inverse des eaux souterraines est synthétisé. L'accent est placé sur la caractérisation de l'aquifère, où les modélisateurs doivent jouer avec l'incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d'échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d'état (charges hydrauliques, concentrations) des propriétés de l'aquifère. A cause de ces difficultés, le calibrage ne peut êtreséparé du processus de modélisation, comme c'est le
Zhang, D. L.
2013-01-01
To increase the illumination of the subsurface and to eliminate the dependency of FWI on the source wavelet, we propose multiples waveform inversion (MWI) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. These virtual sources are used to numerically generate downgoing wavefields that are correlated with the backprojected surface-related multiples to give the migration image. Since the recorded data are treated as the virtual sources, knowledge of the source wavelet is not required, and the subsurface illumination is greatly enhanced because the entire free surface acts as an extended source compared to the radiation pattern of a traditional point source. Numerical tests on the Marmousi2 model show that the convergence rate and the spatial resolution of MWI is, respectively, faster and more accurate then FWI. The potential pitfall with this method is that the multiples undergo more than one roundtrip to the surface, which increases attenuation and reduces spatial resolution. This can lead to less resolved tomograms compared to conventional FWI. The possible solution is to combine both FWI and MWI in inverting for the subsurface velocity distribution.
Inverse fracture network modelling
International Nuclear Information System (INIS)
The basic problem in analyzing flow and transport in fractured rock is that the flow may be largely governed by a poorly connected network of fractures. Flow in such a system cannot be modeled with traditional modelling techniques. Fracture network models also have a limitation, in that they are based on geological data on fracture geometry even though it is known that only a small portion of fractures observed is hydraulically active. This paper discusses a new technique developed for treating the problem as well as presents a modelling example carried out to apply it. The approach is developed in Lawrence Berkeley Laboratory and it treats the fracture zone as an 'equivalent discontinuum'. The discontinuous nature of the problem is represented through flow on a partially filled lattice. An equivalent discontinuum model is constructed by adding and removing conductive elements through a statistical inverse technique called 'simulated annealing'. The fracture network model is 'annealed' until the modified systems behaves like the observed. The further development of the approach continues at LBL and in a joint LBL/VTT collaboration project the possibilities to apply the technique in Finnish conditions are investigated
Inverse Problems of Thermoelectricity
Anatychuk, L. I.; Luste, O. J.; Kuz, R. V.; Strutinsky, M. N.
2011-05-01
Classical thermoelectricity is based on the use of the Seebeck and Thomson effects that occur in the near-contact areas between n- and p-type materials. A conceptually different approach to thermoelectric power converter design that is based on the law of thermoelectric induction of currents is also known. The efficiency of this approach has already been demonstrated by its first applications. More than 10 basically new types of thermoelements were discovered with properties that cannot be achieved by thermocouple power converters. Therefore, further development of this concept is of practical interest. This paper provides a classification and theory for solving the inverse problems of thermoelectricity that form the basis for devising new thermoelement types. Computer methods for their solution for anisotropic and inhomogeneous media are elaborated. Regularities related to thermoelectric current excitation in anisotropic and inhomogeneous media are established. The possibility of obtaining eddy currents of a particular configuration through control of the temperature field and material parameters for the creation of new thermo- element types is demonstrated for three-dimensional (3D) models of anisotropic and inhomogeneous media.
Multiscale Modelling and Inverse Problems
Nolen, J; Stuart, A M
2010-01-01
The need to blend observational data and mathematical models arises in many applications and leads naturally to inverse problems. Parameters appearing in the model, such as constitutive tensors, initial conditions, boundary conditions, and forcing can be estimated on the basis of observed data. The resulting inverse problems are often ill-posed and some form of regularization is required. These notes discuss parameter estimation in situations where the unknown parameters vary across multiple scales. We illustrate the main ideas using a simple model for groundwater flow. We will highlight various approaches to regularization for inverse problems, including Tikhonov and Bayesian methods. We illustrate three ideas that arise when considering inverse problems in the multiscale context. The first idea is that the choice of space or set in which to seek the solution to the inverse problem is intimately related to whether a homogenized or full multiscale solution is required. This is a choice of regularization. The ...
Multidimensional NMR Inversion without Kronecker Products: Multilinear Inversion
Medellín, David; Torres-Verdín, Carlos
2016-01-01
Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required...
Parameter estimation and inverse problems
Aster, Richard C; Thurber, Clifford H
2011-01-01
Parameter Estimation and Inverse Problems, 2e provides geoscience students and professionals with answers to common questions like how one can derive a physical model from a finite set of observations containing errors, and how one may determine the quality of such a model. This book takes on these fundamental and challenging problems, introducing students and professionals to the broad range of approaches that lie in the realm of inverse theory. The authors present both the underlying theory and practical algorithms for solving inverse problems. The authors' treatment is approp
Inverse Doppler Effects in Flute
Zhao, Xiao P; Liu, Song; Shen, Fang L; Li, Lin L; Luo, Chun R
2015-01-01
Here we report the observation of the inverse Doppler effects in a flute. It is experimentally verified that, when there is a relative movement between the source and the observer, the inverse Doppler effect could be detected for all seven pitches of a musical scale produced by a flute. Higher tone is associated with a greater shift in frequency. The effect of the inverse frequency shift may provide new insights into why the flute, with its euphonious tone, has been popular for thousands of years in Asia and Europe.
On the feasibility of inversion methods based on models of urban sky glow
International Nuclear Information System (INIS)
Multi-wavelength imaging luminance photometry of sky glow provides a huge amount of information on light pollution. However, the understanding of the measured data involves the combination of different processes and data of radiation transfer, atmospheric physics and atmospheric constitution. State-of-the-art numerical radiation transfer models provide the possibility to define an inverse problem to obtain information on the emission intensity distribution of a city and perhaps the physical properties of the atmosphere. We provide numerical tests on the solvability and feasibility of such procedures. - Highlights: • A method of urban sky glow inversion is introduced based on Monte-Carlo calculations. • Imaging photometry can provide enough information for basic inversions. • The inversion technique can be used to construct maps of light pollution. • The inclusion of multiple scattering in the models plays an important role
Uterine Inversion; A case report.
Bouchikhi, C; Saadi, H; Fakhir, B; Chaara, H; Bouguern, H; Banani, A; Melhouf, Ma
2008-01-01
The puerperal uterine inversion is a rare and severe complication occurring in the third stage of labour. The mechanisms are not completely known. However, extrinsic factors such as oxytocic arrests after a prolonged labour, umbilical cord traction or abdominal expression are pointed. Other intrinsic factors such as primiparity, uterine hypotonia, various placental localizations, fundic myoma or short umbilical cord were also reported. The diagnosis of the uterine inversion is mainly supported by clinical symptoms. It is based on three elements: haemorrhage, shock and a strong pelvic pain. The immediate treatment of the uterine inversion is required. It is based on a medical reanimation associated with firstly a manual reduction then surgical treatment using various techniques. We report an observation of a 25 years old grand multiparous patient with a subacute uterine inversion after delivery at home. PMID:21516244
Statistical perspectives on inverse problems
DEFF Research Database (Denmark)
Andersen, Kim Emil
interior of an object from electrical boundary measurements. One part of this thesis concerns statistical approaches for solving, possibly non-linear, inverse problems. Thus inverse problems are recasted in a form suitable for statistical inference. In particular, a Bayesian approach for regularisation is...... obtained by assuming that the a priori beliefs about the solution before having observed any data can be described by a prior distribution. The solution to the statistical inverse problem is then given by the posterior distribution obtained by Bayes' formula. Hence the solution of an ill-posed inverse...... problem is given in terms of probability distributions. Posterior inference is obtained by Markov chain Monte Carlo methods and new, powerful simulation techniques based on e.g. coupled Markov chains and simulated tempering is developed to improve the computational efficiency of the overall simulation...
Testing earthquake source inversion methodologies
Page, Morgan T.
2011-01-01
Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.
Parameter estimation and inverse problems
Aster, Richard C; Thurber, Clifford H
2005-01-01
Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...
Uterine Inversion; A case report
C, Bouchikhi; H, Saadi; B, Fakhir; H, Chaara; H, Bouguern; A, Banani; Melhouf MA
2008-01-01
The puerperal uterine inversion is a rare and severe complication occurring in the third stage of labour. The mechanisms are not completely known. However, extrinsic factors such as oxytocic arrests after a prolonged labour, umbilical cord traction or abdominal expression are pointed. Other intrinsic factors such as primiparity, uterine hypotonia, various placental localizations, fundic myoma or short umbilical cord were also reported. The diagnosis of the uterine inversion is mainly supporte...
-Colour Self-Inverse Compositions
Indian Academy of Sciences (India)
Geetika Narang; A K Agarwal
2006-08-01
MacMahon’s definition of self-inverse composition is extended to -colour self-inverse composition. This introduces four new sequences which satisfy the same recurrence relation with different initial conditions like the famous Fibonacci and Lucas sequences. For these new sequences explicit formulas, recurrence relations, generating functions and a summation formula are obtained. Two new binomial identities with combinatorial meaning are also given.
Thermal measurements and inverse techniques
Orlande, Helcio RB; Maillet, Denis; Cotta, Renato M
2011-01-01
With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phe
Chromatid Painting for Chromosomal Inversion Detection Project
National Aeronautics and Space Administration — We propose a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and inversions) have profound genetic...
The mesospheric inversion layer and sprites
Fadnavis, S; Singh, R P
2009-01-01
The vertical structure of temperature observed by SABER (Sounding of Atmosphere using Broadband Emission Radiometry) aboard TIMED (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics) and sprites observations made during the Eurosprite 2003 to 2007 observational campaign were analyzed. Sprite observations were made at two locations in France, namely Puy de Dome in the French Massif Central and at the Pic du Midi in the French Pyrenees. It is observed that the vertical structure of temperature shows evidence for a Mesospheric Inversion Layer (MIL) on those days on which sprites were observed. A few events are also reported in which sprites were not recorded, although there is evidence of a MIL in the vertical structure of the temperature. It is proposed that breaking gravity waves produced by convective thunderstorms facilitate the production of (a) sprites by modulating the neutral air-density and (b) MILs via the deposition of energy. The same proposition has been used to explain observations of lig...
Multidimensional NMR inversion without Kronecker products: Multilinear inversion
Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos
2016-08-01
Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.
Seager, S
2010-01-01
At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...
Cloud detection by inversion of MAX-DOAS measurements
Nasse, Jan-Marcus; Zielcke, Johannes; Friess, Udo; Lampel, Johannes; König-Langlo, Gert; Platt, Ulrich
2015-01-01
Multi-Axis Differential Optical Absorption Spectroscopy (MAXDOAS)is a widely used technique for the detection of atmospheric trace gases, e.g. NO2, SO2, but also for the oxygen collision complex O4, whose atmospheric distribution is well known. By comparing measured O4 differential slant column densities (dSCDs) with modelled ones, information on aerosol distributions and optical properties can be gained. In combination with a radiative transfer model, an inversion of measured dSCDs allows th...
International Nuclear Information System (INIS)
Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references
Chalmers, J Alan
1957-01-01
Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d
Global CO2 flux estimation using GOSAT: An inter-comparison of inversion results
Houweling, S.; Basu, S.; Chevallier, F.; Feng, L.; Ganshin, A.; Maksyutov, S.; Palmer, P. I.; Peylin, P.; Poussi, Z.; Takagi, H.; Zhuravlev, R.
2012-12-01
A unique global data archive is under construction of total column CO2 measurements retrieved from the Greenhouse gas Observing SATellite, currently spanning more than three years of data. Several groups are investigating the application of these data to global atmospheric inverse modelling for studying the global carbon cycle. It is known from inverse modeling using surface measurements that the robustness of the inversion-estimated fluxes is best analyzed using a multi-model approach. So far, this has not been demonstrated for inversions using satellite data, but but some of the known sources of uncertainty are difficult to account for in a single inversion, such as transport model uncertainties and differences between retrieval methods. We have organized an inversion inter-comparison experiment to investigate whether, despite these uncertainties, robust signals of sources and sinks can be inferred from the GOSAT data. The current experiment allows full freedom in inversion set-up in order to avoid limiting the range of possible outcomes. Each participating group is free to use their preferred inversion set-up, transport model, and measurements, but is asked to report in a common format and for a common time period of one year to allow one-to-one comparison. We will present an overview of the status of the experiment, including a preliminary synthesis of large-scale CO2 fluxes from a statistical analysis of the ensemble of inversion results and verification of the performance of the inversions using independent measurements.
Global inversion for anisotropy during full-waveform inversion
Debens, H. A.; Warner, M.; Umpleby, A.
2015-12-01
Full-waveform inversion (FWI) is a powerful tool for quantitative estimation of high-resolution high-fidelity models of subsurface seismic parameters, typically P-wave velocity. The solution to FWI's posed nonlinear inverse problem is obtained via an iterative series of linearized local updates to a start model, assuming this model lies within the basin of attraction to the global minimum. Thanks to many successful published applications to three-dimensional (3D) field datasets, its advance has been rapid and driven in large-part by the oil and gas industry. The consideration of seismic anisotropy during FWI is of vital importance, as it holds influence over both the kinematics and dynamics of seismic waveforms. If not appropriately taken into account then inadequacies in the anisotropy model are likely to manifest as significant error in the recovered velocity model. Conventionally, anisotropic FWI employs either an a priori anisotropy model, held fixed during FWI, or it uses a multi-parameter local inversion scheme to recover the anisotropy as part of the FWI; both of these methods can be problematic. Constructing an anisotropy model prior to FWI often involves intensive (and hence expensive) iterative procedures, such as travel-time tomography or moveout velocity analysis. On the other hand, introducing multiple parameters to FWI itself increases the complexity of what is already an underdetermined inverse problem. We propose that global rather than local FWI can be used to recover the long-wavelength acoustic anisotropy model, and that this can then be followed by more-conventional local FWI to recover the detailed model. We validate this approach using a full 3D field dataset, demonstrating that it avoids problems associated to crosstalk that can bedevil local inversion schemes, and reconciles well with in situ borehole measurements. Although our approach includes a global inversion for anisotropy, it is nonetheless affordable and practical for 3D field data.
Evaluation of simplified evaporation duct refractivity models for inversion problems
Saeger, J. T.; Grimes, N. G.; Rickard, H. E.; Hackett, E. E.
2015-10-01
To assess a radar system's instantaneous performance on any given day, detailed knowledge of the meteorological conditions is required due to the dependency of atmospheric refractivity on thermodynamic properties such as temperature, water vapor, and pressure. Because of the significant challenges involved in obtaining these data, recent efforts have focused on development of methods to obtain the refractivity structure inversely using radar measurements and radar wave propagation models. Such inversion techniques generally use simplified refractivity models in order to reduce the parameter space of the solution. Here the accuracy of three simple refractivity models is examined for the case of an evaporation duct. The models utilize the basic log linear shape classically associated with evaporation ducts, but each model depends on various parameters that affect different aspects of the profile, such as its shape and duct height. The model parameters are optimized using radiosonde data, and their performance is compared to these atmospheric measurements. The optimized models and data are also used to predict propagation using a parabolic equation code with the refractivity prescribed by the models and measured data, and the resulting propagation patterns are compared. The results of this study suggest that the best log linear model formulation for an inversion problem would be a two-layer model that contains at least three parameters: duct height, duct curvature, and mixed layer slope. This functional form permits a reasonably accurate fit to atmospheric measurements as well as embodies key features of the profile required for correct propagation prediction with as few parameters as possible.
Optimization and geophysical inverse problems
Energy Technology Data Exchange (ETDEWEB)
Barhen, J.; Berryman, J.G.; Borcea, L.; Dennis, J.; de Groot-Hedlin, C.; Gilbert, F.; Gill, P.; Heinkenschloss, M.; Johnson, L.; McEvilly, T.; More, J.; Newman, G.; Oldenburg, D.; Parker, P.; Porto, B.; Sen, M.; Torczon, V.; Vasco, D.; Woodward, N.B.
2000-10-01
A fundamental part of geophysics is to make inferences about the interior of the earth on the basis of data collected at or near the surface of the earth. In almost all cases these measured data are only indirectly related to the properties of the earth that are of interest, so an inverse problem must be solved in order to obtain estimates of the physical properties within the earth. In February of 1999 the U.S. Department of Energy sponsored a workshop that was intended to examine the methods currently being used to solve geophysical inverse problems and to consider what new approaches should be explored in the future. The interdisciplinary area between inverse problems in geophysics and optimization methods in mathematics was specifically targeted as one where an interchange of ideas was likely to be fruitful. Thus about half of the participants were actively involved in solving geophysical inverse problems and about half were actively involved in research on general optimization methods. This report presents some of the topics that were explored at the workshop and the conclusions that were reached. In general, the objective of a geophysical inverse problem is to find an earth model, described by a set of physical parameters, that is consistent with the observational data. It is usually assumed that the forward problem, that of calculating simulated data for an earth model, is well enough understood so that reasonably accurate synthetic data can be generated for an arbitrary model. The inverse problem is then posed as an optimization problem, where the function to be optimized is variously called the objective function, misfit function, or fitness function. The objective function is typically some measure of the difference between observational data and synthetic data calculated for a trial model. However, because of incomplete and inaccurate data, the objective function often incorporates some additional form of regularization, such as a measure of smoothness
Optimization for nonlinear inverse problem
International Nuclear Information System (INIS)
The nonlinear inversion of geophysical data in general does not yield a unique solution, but a single model, representing the investigated field, is preferred for an easy geological interpretation of the observations. The analyzed region is constituted by a number of sub-regions where the multi-valued nonlinear inversion is applied, which leads to a multi-valued solution. Therefore, combining the values of the solution in each sub-region, many acceptable models are obtained for the entire region and this complicates the geological interpretation of geophysical investigations. In this paper are presented new methodologies, capable to select one model, among all acceptable ones, that satisfies different criteria of smoothness in the explored space of solutions. In this work we focus on the non-linear inversion of surface waves dispersion curves, which gives structural models of shear-wave velocity versus depth, but the basic concepts have a general validity. (author)
The Transmuted Inverse Exponential Distribution
Directory of Open Access Journals (Sweden)
Pelumi Oguntunde
2014-12-01
Full Text Available This article introduces a two-parameter probability model which represents another generalization of the Inverse Exponential distribution by using the quadratic rank transmuted map. The proposed model is named Transmuted Inverse Exponential (TIE distribution and its statistical properties are systematically studied. We provide explicit expressions for its moments, moment generating function, quantile function, reliability function and hazard function. We estimate the parameters of the TIE distribution using the method of maximum likelihood estimation (MLE. The hazard function of the model has an inverted bathtub shape and we propose the usefulness of the TIE distribution in modeling breast cancer and bladder cancer data sets.
Inverse Interval Matrix: A Survey
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří; Farhadsefat, R.
2011-01-01
Roč. 22, - (2011), s. 704-719. E-ISSN 1081-3810 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval matrix * inverse interval matrix * NP-hardness * enclosure * unit midpoint * inverse sign stability * nonnegative invertibility * absolute value equation * algorithm Subject RIV: BA - General Math ematics Impact factor: 0.808, year: 2010 http://www. math .technion.ac.il/iic/ela/ela-articles/articles/vol22_pp704-719.pdf
-Dimensional Fractional Lagrange's Inversion Theorem
Directory of Open Access Journals (Sweden)
F. A. Abd El-Salam
2013-01-01
Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.
Inverse problems Tikhonov theory and algorithms
Ito, Kazufumi
2014-01-01
Inverse problems arise in practical applications whenever one needs to deduce unknowns from observables. This monograph is a valuable contribution to the highly topical field of computational inverse problems. Both mathematical theory and numerical algorithms for model-based inverse problems are discussed in detail. The mathematical theory focuses on nonsmooth Tikhonov regularization for linear and nonlinear inverse problems. The computational methods include nonsmooth optimization algorithms, direct inversion methods and uncertainty quantification via Bayesian inference. The book offers a c
A General Systems Theory for Atmospheric Flows and Atmospheric Aerosol Size Distribution
Selvam, A. M.
2009-01-01
Atmospheric flows exhibit selfsimilar fractal spacetime fluctuations manifested as the fractal geometry to global cloud cover pattern and inverse power law form for power spectra of meteorological parameters such as windspeed, temperature, rainfall etc. Inverse power law form for power spectra indicate long-range spacetime correlations or non-local connections and is a signature of selforganised criticality generic to dynamical systems in nature such as river flows, population dynamics, heart...
The inverse electro-oculogram.
Doft, B H; Burns, S A; Elsner, A.
1982-01-01
An electro-oculogram ratio of less than one was found to be caused by limited ocular excursions under photopic conditions in a patient with a rod-cone dystrophy. Because this inverse electro-oculogram ratio was not caused by a decrease in standing potential under photopic conditions, it should be considered an artefact.
Exponential family and inverse problems
Czech Academy of Sciences Publication Activity Database
Gottvald, Aleš
Dordrecht: Kluwer Academic Publishers, 2003 - (Rudnicki, M.; Wiak, S.), s. - ISBN 1-4020-1506-2 R&D Projects: GA MŠk ME 526 Institutional research plan: CEZ:AV0Z2065902 Keywords : exponential family * inverse problems * Bayes' theorem Subject RIV: BD - Theory of Information
Topological evolution and inverse problems
Czech Academy of Sciences Publication Activity Database
Gottvald, Aleš
Dordrecht: Kluwer Academic Publishers, 2003 - (Rudnicki, M.; Wiak, S.), s. - ISBN 1-4020-1506-2 R&D Projects: GA MŠk ME 526 Institutional research plan: CEZ:AV0Z2065902 Keywords : topological evolution * inverse problems * Cartan's exterior calculus Subject RIV: BD - Theory of Information
Topological evolution and inverse problems
Czech Academy of Sciences Publication Activity Database
Gottvald, Aleš
Lodz: IMET, 2002, s. 12. [OIPE. LODZ (PL), 12.09.2002-14.09.2002] R&D Projects: GA MŠk ME 526 Grant ostatní: AIP(XC) KONTAKT 57/2000 Institutional research plan: CEZ:AV0Z2065902 Keywords : topological evolution * inverse problems Subject RIV: BD - Theory of Information
On Inverse Methodologies of ECT
Czech Academy of Sciences Publication Activity Database
Gottvald, Aleš
Brno: Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, 1996. s. 29. [Optimization and Inverse Problems in Electromagnetism /4./. 19.06.1996-21.06.1996, Brno] R&D Projects: GA ČR GA102/95/0282
Exponential family and inverse problems
Czech Academy of Sciences Publication Activity Database
Gottvald, Aleš
Lodz: IMET, 2002, s. 13. [OIPE. LODZ (PL), 12.09.2002-14.09.2002] R&D Projects: GA MŠk ME 526 Grant ostatní: AIP(XC) KONTAKT 57/2000 Institutional research plan: CEZ:AV0Z2065902 Keywords : exponential family * inverse problems Subject RIV: BD - Theory of Information
Inverse Problems in Data Analysis
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra
2006-01-01
Roč. 82, č. 4 (2006), s. 41-48. ISSN 0033-2097 R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : learning from data * inverse problem * regularization * reproducing kernel Hilbert spaces Subject RIV: IN - Informatics, Computer Science
Zhu, Q.; Zhuang, Q.; D. Henze; Bowman, K.; M. Chen; Liu, Y.; He, Y.; Matsueda, H.; Machida, T.; Sawa, Y.; W. Oechel
2014-01-01
Regional net carbon fluxes of terrestrial ecosystems could be estimated with either biogeochemistry models by assimilating surface carbon flux measurements or atmospheric CO2 inversions by assimilating observations of atmospheric CO2 concentrations. Here we combine the ecosystem biogeochemistry modeling and atmospheric CO2 inverse modeling to investigate the magnitude and spatial distribution of the terrestrial ecosystem CO2 sources and sinks. First, we constrain a terrestri...
Wilson, Chris; Chipperfield, Martyn; Gloor, Emanuel
2010-05-01
Knowledge of fluxes from terrestrial carbon reservoirs is currently uncertain. While the atmospheric burden and oceanic uptake of carbon are well understood, evidence points to a large land sink, equivalent in size to the atmospheric sink. However, neither the nature nor the location of this land reservoir is well known. Atmospheric transport models, such as the CTM TOMCAT, predict the forward transport of carbon in the atmosphere by numerically solving tracer transport equations with respect to conditions based upon observed data. However, if an 'adjoint' to the CTM is created, it can be used to solve the inverse problem of investigating the nature of carbon sources and sinks using information about atmospheric carbon patterns i.e. inverse transport modelling. Due to recent and imminent improvements in remote sensing of atmospheric CO2, there will soon be thorough high-resolution data available which can be used in order to constrain the results from inverse transport modelling. In this work we describe the creation of the adjoint of the TOMCAT CTM and its application to the inverse modeling of carbon fluxes. The inverse model is created through methods involving matrix inversion and iterative minimisation of a cost function involving surface carbon fluxes.
DEFF Research Database (Denmark)
Kinch, Sofie
2011-01-01
This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...... experience in space, presented as middle ground experience. In the field of HCI, middle ground experiences complete the unarticulated spectrum between designing for foreground of attention or background awareness. When “Articulating Atmospheres through Middle Ground Experiences in Interaction Design......” implications and qualities of the approach are identified through concrete examples of a design case, which also investigates the qualities and implications of addressing atmospheres both as design concern and user experience....
Madhusudhan, Nikku; Fortney, Jonathan; Barman, Travis
2014-01-01
The study of exoplanetary atmospheres is one of the most exciting and dynamic frontiers in astronomy. Over the past two decades ongoing surveys have revealed an astonishing diversity in the planetary masses, radii, temperatures, orbital parameters, and host stellar properties of exoplanetary systems. We are now moving into an era where we can begin to address fundamental questions concerning the diversity of exoplanetary compositions, atmospheric and interior processes, and formation histories, just as have been pursued for solar system planets over the past century. Exoplanetary atmospheres provide a direct means to address these questions via their observable spectral signatures. In the last decade, and particularly in the last five years, tremendous progress has been made in detecting atmospheric signatures of exoplanets through photometric and spectroscopic methods using a variety of space-borne and/or ground-based observational facilities. These observations are beginning to provide important constraints...
DEFF Research Database (Denmark)
Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr
2015-01-01
. Nevertheless, people’s experience of the environment is sought manipulated in a variety of contexts, often without offering a less ‘true’ experience of a situation than if it had not been manipulated by people. In fact, orchestrations of space are often central to sociality, politics and aesthetics. This...... introduction seeks to outline how a number of scholars have addressed the relationship between staged atmospheres and experience, and thus highlight both the philosophical, social and political aspects of atmospheres...
Neural-estimator for the surface emission rate of atmospheric gases
Paes, F. F.; Velho, H. F. Campos
2009-01-01
The emission rate of minority atmospheric gases is inferred by a new approach based on neural networks. The neural network applied is the multi-layer perceptron with backpropagation algorithm for learning. The identification of these surface fluxes is an inverse problem. A comparison between the new neural-inversion and regularized inverse solution id performed. The results obtained from the neural networks are significantly better. In addition, the inversion with the neural netwroks is fster...
Determination of evaporation duct heights by an inverse method
Douvenot, R.; Fabbro, V.; Bourlier, C.; Saillard, J.; Fuchs, H.-H.; Essen, H.; Förster, J.
2007-10-01
The detection and tracking of naval targets, including low RCS objects like inflatable boats requires a thorough knowledge of the propagation properties of the maritime boundary layer. Models are in existence, which allow a prediction of the propagation factor using the parabolic equation algorithm. As a necessary input the refractive index of the atmosphere has to be known. This parameter, however, is strongly influenced by the actual atmospheric conditions, characterized mainly by air-sea temperature difference, humidity and air pressure. An approach was initiated to retrieve the vertical profile of the refractive index from sea clutter data. The method is based on the LS-SVM (Least-Squares Support Vector Machines) theory and has already been validated on simulated data. Here an inversion method to determine propagation factors is presented based upon data measured during the Vampira campaign conducted as a multinational approach over a transmission path across the Baltic Sea. As the propagation factor has been measured on two reference reflectors mounted onboard a naval vessel at different heights, the results can be combined in order to increase the accuracy of the inversion system. The paper discusses results achieved with the inversion method.
Hedland, D. A.; Degonia, P. K.
1974-01-01
The RAE-1 spacecraft inversion performed October 31, 1972 is described based upon the in-orbit dynamical data in conjunction with results obtained from previously developed computer simulation models. The computer simulations used are predictive of the satellite dynamics, including boom flexing, and are applicable during boom deployment and retraction, inter-phase coast periods, and post-deployment operations. Attitude data, as well as boom tip data, were analyzed in order to obtain a detailed description of the dynamical behavior of the spacecraft during and after the inversion. Runs were made using the computer model and the results were analyzed and compared with the real time data. Close agreement between the actual recorded spacecraft attitude and the computer simulation results was obtained.
Novel approach to Abel inversion
International Nuclear Information System (INIS)
Simple yet versatile, physically valid emissivity functions for peaked and hollow profiles with only two determinable parameters are proposed for performing Abel inversion. The advantages of the proposed functions have been explored. The inversion is very fast, accurate, convenient, and viable, in contrast to the existing methods. The validation of these functions has been confirmed by using simulated data under various conditions. The error in the process has been computed and found to depend on the functional form of the model emissivity. A comprehensive comparison has been drawn with the existing method and it has been found to offer a definite advantage over the existing technique in some respects, especially for real time applications. Limitation of this technique has also been discussed. The soft x-ray and visible light emissivity profile of SINP tokamak has been successfully obtained by using this method
Southern California Adjoint Source Inversions
Tromp, J.; Kim, Y.
2007-12-01
Southern California Centroid-Moment Tensor (CMT) solutions with 9 components (6 moment tensor elements, latitude, longitude, and depth) are sought to minimize a misfit function computed from waveform differences. The gradient of a misfit function is obtained based upon two numerical simulations for each earthquake: one forward calculation for the southern California model, and an adjoint calculation that uses time-reversed signals at the receivers. Conjugate gradient and square-root variable metric methods are used to iteratively improve the earthquake source model while reducing the misfit function. The square-root variable metric algorithm has the advantage of providing a direct approximation to the posterior covariance operator. We test the inversion procedure by perturbing each component of the CMT solution, and see how the algorithm converges. Finally, we demonstrate full inversion capabilities using data for real Southern California earthquakes.
Tiling Spaces are Inverse Limits
Sadun, Lorenzo
2002-01-01
Let M be an arbitrary Riemannian homogeneous space, and let Omega be a space of tilings of M, with finite local complexity (relative to some symmetry group Gamma) and closed in the natural topology. Then Omega is the inverse limit of a sequence of compact finite-dimensional branched manifolds. The branched manifolds are (finite) unions of cells, constructed from the tiles themselves and the group Gamma. This result extends previous results of Anderson and Putnam, of Ormes, Radin and Sadun, of...
On the Inverse Radon Transform
Czech Academy of Sciences Publication Activity Database
Chvála, František
Praha : Humusoft, 2007, s. 1-6. ISBN 978-80-7080-658-6. [Annual Conference Proceedings - Technical Computing Prague 2007 /15./. Prague (CZ), 14.11.2007] R&D Projects: GA ČR(CZ) GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : inverse Radon transform * Radon transform Subject RIV: BA - General Mathematics www.humusoft.cz/akce/matlab07
ISIR: Independent Sliced Inverse Regression
Li, Kevin
2013-01-01
International audience In this paper we consider a semiparametric regression model involving a $p$-dimensional explanatory variable ${\\mathbf{x}}$ and including a dimension reduction of ${\\mathbf{x}}$ via an index $B'{\\mathbf{x}}$. In this model, the main goal is to estimate $B$ and to predict the real response variable $Y$ conditionally to ${\\mathbf{x}}$. A standard approach is based on sliced inverse regression (SIR). We propose a new version of this method: the independent sliced invers...
Inverse Design of Electron Lens
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The inverae design of electron lens is reelized by two different methods in this paper. One isdamped leastsquare method and the other is the artificial neural network method. Their merits and defects are discussed accordingto our calculation results in the psper. In the condition of selecting the learning samples properly, the artificial neuralnetwork has obvious advantages in the inverse design of electron lens. It is an effective method to solve the inversedesign problem in the electron optic system.
Iribarne, J V
1973-01-01
The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...
DEFF Research Database (Denmark)
Stenslund, Anette
awareness. Subsequently, visitor interviews revealed how a museum-staged hospital atmosphere of an art installation was directly addressed owing to its smell. Curiously, this observation speaks against prevailing literature portraying smell as the ‘mute sense’, and what is more, the museum display did not...... alter smell curatorially. Rather, smell was gestured through non-olfactory effects and it was put in words metonymically, gesturing a reversibly synaesthetic atmosphere of a hospital. Visitor conversations revealed how smell could be poignantly picked up in situ, yet not until frequenting the museum...
Generalized Inverses of Matrices over Rings
Institute of Scientific and Technical Information of China (English)
韩瑞珠; 陈建龙
1992-01-01
Let R be a ring,*be an involutory function of the set of all finite matrices over R. In this pa-per,necessary and sufficient conditions are given for a matrix to have a (1,3)-inverse,(1,4)-inverse,or Morre-Penrose inverse,relative to *.Some results about generalized inverses of matrices over division rings are generalized and improved.
An elegant 3-basis for inverse semigroups
Araujo, Joao
2010-01-01
It is well known that in every inverse semigroup the binary operation and the unary operation of inversion satisfy the following three identities: \\[ \\quad x=(xx')x \\qquad \\quad (xx')(y'y)=(y'y)(xx') \\qquad \\quad (xy)z=x(yz'')\\,. \\] The goal of this note is to prove the converse, that is, we prove that every unary semigroup satisfying these three identities is an inverse semigroup and the unary operation coincides with the usual inversion on such semigroups.
From time inversion to nonlinear QED
Jin, Wei Min
2000-01-01
In Minkowski flat space-time, it is perceived that time inversion is unitary rather than antiunitary, with energy being a time vector changing sign under time inversion. The Dirac equation, in the case of electromagnetic interaction, is not invariant under unitary time inversion, giving rise to a ``Klein paradox''. To render unitary time inversion invariance, a nonlinear wave equation is constructed, in which the ``Klein paradox'' disappears. In the case of Coulomb interaction, the revised no...
An elegant 3-basis for inverse semigroups
Araujo, Joao; Kinyon, Michael
2010-01-01
It is well known that in every inverse semigroup the binary operation and the unary operation of inversion satisfy the following three identities: [\\quad x=(xx')x \\qquad \\quad (xx')(y'y)=(y'y)(xx') \\qquad \\quad (xy)z=x(yz"). ] The goal of this note is to prove the converse, that is, we prove that an algebra of type $$ satisfying these three identities is an inverse semigroup and the unary operation coincides with the usual inversion on such semigroups.
-Colour even Self-Inverse Compositions
Indian Academy of Sciences (India)
Yu-hong Guo
2010-02-01
An -colour even self-inverse composition is defined as an -colour self-inverse composition with even parts. In this paper, we get generating functions, explicit formulas and recurrence formulas for -colour even self-inverse compositions. One new binomial identity is also obtained.
Inverse Computation and the Universal Resolving Algorithm
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
We survey fundamental concepts for inverse programming and thenpresent the Uni v ersal Resolving Algorithm, an algorithm for inverse computation in a first-orde r , functional programming language. We discuss the key concepts of the algorithm, including a three-step approach based on the notion of a perfect process tree, and demonstrate our implementation with several examples of inverse computation.
SIAM conference on inverse problems: Geophysical applications. Final technical report
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-31
This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.
Directory of Open Access Journals (Sweden)
R. Locatelli
2013-04-01
Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on the methane emissions estimated by an atmospheric inversion system. Synthetic methane observations, given by 10 different model outputs from the international TransCom-CH4 model exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the PYVAR-LMDZ-SACS inverse system to produce 10 different methane emission estimates at the global scale for the year 2005. The same set-up has been used to produce the synthetic observations and to compute flux estimates by inverse modelling, which means that only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg CH4 per year at the global scale, representing 5% of the total methane emissions. At continental and yearly scales, transport model errors have bigger impacts depending on the region, ranging from 36 Tg CH4 in north America to 7 Tg CH4 in Boreal Eurasian (from 23% to 48%. At the model gridbox scale, the spread of inverse estimates can even reach 150% of the prior flux. Thus, transport model errors contribute to significant uncertainties on the methane estimates by inverse modelling, especially when small spatial scales are invoked. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher resolution models. The analysis of methane estimated fluxes in these different configurations questions the consistency of transport model errors in current inverse systems. For future methane inversions, an improvement in the modelling of the atmospheric transport would make the estimations more accurate. Likewise, errors of the observation covariance matrix should be more consistently prescribed in future inversions in order to limit the impact of transport model errors on estimated methane
DEFF Research Database (Denmark)
Højlund, Marie; Kinch, Sofie
2014-01-01
. As a response to this situation, our design artefact, the interactive furniture Kidkit, invites children to become accustomed to the alarming sounds sampled from the ward while they are waiting in the waiting room. Our design acknowledges how atmospheres emerge as temporal negotiations between the...
Simultaneous time-lapse electrical resistivity inversion
Hayley, Kevin; Pidlisecky, A.; Bentley, L. R.
2011-10-01
Time-lapse monitoring is a powerful tool for observing dynamic changes in the subsurface. In particular it offers the potential for achieving inversion results with increased fidelity through the inclusion of complementary information from multiple time-steps. This inclusion of complementary information can reduce the need for spatial smoothing, without adding inversion artifacts to the resulting images. Commonly used time-lapse inversion methods include the ratio method, cascaded time-lapse inversion, difference inversion and differencing independent inversions. We introduce two additional methods in which both time-lapse data sets are inverted simultaneously. In the first, called temporally constrained time-lapse inversion, inversion of both datasets is done under a single optimization procedure and constraints are added to the regularization to ensure that the changes from one time to another are smooth. In the second method, called simultaneous time-lapse inversion, the inversions at time 1 and time 2 are performed simultaneously and constraints of smoothness and closeness to a reference model are applied to the difference image produced at each iteration, and subsequently, the constraints are updated at each iteration. Through both a numerical and a field example we compare the results of common time-lapse inversion methods as well as the introduced approaches. We found that of the commonly used time-lapse inversion methods the difference inversion method produced the best resolution of time-lapse changes and was the most robust in the presence of noise. However, we found that the alternative approach of simultaneous time-lapse inversion produced the best reconstruction of modeled EC changes in the numerical example and easily interpretable high resolution difference images in the field example. Moreover, there was less tailoring of regularization parameters with our simultaneous time-lapse approach, suggesting that it will lend itself well to an automated
The continuation inverse problem revisited
Huestis, Stephen P.
1998-06-01
The non-uniqueness of the continuation of a finite collection of harmonic potential field data to a level surface in the source-free region forces its treatment as an inverse problem. A formalism is proposed for the construction of continuation functions which are extremal by various measures. The problem is cast in such a form that the inverse problem solution is the potential function on the lowest horizontal surface above all sources, serving as the boundary function for the Dirichlet problem in the upper half-plane. The desired continuation, at the higher level of interest, must then be in the range of the upward continuation operator acting on this boundary function, rather than being allowed the full freedom of itself being part of a Dirichlet problem boundary function. Extremal solutions minimize non-linear functionals of the continuation function, which are re-expressed as different functionals of the boundary function. A crux of the method is that there is no essential distinction between the upward and downward continuation inverse problems to levels above or below data locations. Casting the optimization as a Lagrange multiplier problem leads to an integral equation for the boundary function, which is readily solved in the Fourier domain for a certain class of functionals. The desired extremal continuation is then given by upward continuation. It is found that for some functionals, application of the Lagrange multiplier theorem requires a further restriction on the set of allowable boundary functions: bandlimitedness is a natural choice for the continuation problem. With this imposition, the theory is developed in detail for semi-norm functionals penalizing departure from a constant potential, in the 2-norm and Sobelev norm senses, and illustrated by application for a small synthetic Deep Tow magnetic field data set.
High resolution 3D nonlinear integrated inversion
Institute of Scientific and Technical Information of China (English)
Li Yong; Wang Xuben; Li Zhirong; Li Qiong; Li Zhengwen
2009-01-01
The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.
Spray formation: an inverse cascade
Ling, Yue; Tryggvason, Gretar; zaleski, Stephane
2015-01-01
We present a study of droplet formation in a gas-liquid mixing layer using direct numerical simulation. It is seen that two mechanisms compete to generate the droplets: fingering at the tip of the waves and hole formation in the thin liquid sheet. The three dimensional liquid structures are much shorter than the longitudinal wavelength of the instability at the first instant of their formation. As time evolves, the structures evolves to larger and larger scales, in a way similar to the inverse cascade of length scales in droplet impact and impact crown formation.
Inverse strategies for molecular design
International Nuclear Information System (INIS)
An 'inverse' molecular design strategy is described to assist in the development of new molecules with optimized properties. This approach is based on a molecular orbital view and can be used to tailor ground state or excited state properties subject to particular constrains. In this scheme, wave functions are sought that optimize a chemical or electronic property, and then a Hamiltonian is constructed that generates these optimized wave functions. Analysis of the chemical properties in the optimized systems may suggest new synthetic targets. Examples are presented that optimize the transition dipole moment in some simple structures. 15 refs., 6 figs
Inverse Problems in Structural Mechanics
Li, Jing
2005-01-01
This dissertation deals with the solution of three inverse problems in structural mechanics. The first one is load updating for finite element models (FEMs). A least squares fitting is used to identify the load parameters. The basic studies are made for geometrically linear and nonlinear FEMs of beams or frames by using a four-noded curved beam element, which, for a given precision, may significantly solve the ill-posed problem by reducing the overall number of degrees of freedom (DOF) of t...
High dimensional linear inverse modelling
Cooper, Fenwick C
2015-01-01
We introduce and demonstrate two linear inverse modelling methods for systems of stochastic ODE's with accuracy that is independent of the dimensionality (number of elements) of the state vector representing the system in question. Truncation of the state space is not required. Instead we rely on the principle that perturbations decay with distance or the fact that for many systems, the state of each data point is only determined at an instant by itself and its neighbours. We further show that all necessary calculations, as well as numerical integration of the resulting linear stochastic system, require computational time and memory proportional to the dimensionality of the state vector.
MIT inverse Compton source concept
Graves, William S.; Brown, W.; Kaertner, Franz X.; Moncton, David E.
2009-01-01
A compact X-ray source based on inverse Compton scattering of a high-power laser on a high-brightness linac beam is described. The facility can operate in two modes: at high (MHz) repetition rate with flux and brilliance similar to that of a beamline at a large 2nd generation synchrotron, but with short ∼1 ps pulses, or as a 10 Hz high flux-per-pulse single-shot machine. It has a small footprint and low cost appropriate for university or industry laboratories. The key enabling technologies ar...
The global atmospheric electrical circuit and climate
Harrison, R G
2004-01-01
Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultrafine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution ca...
Gaisser, Thomas K
2016-01-01
In view of the observation by IceCube of high-energy astrophysical neutrinos, it is important to quantify the uncertainty in the background of atmospheric neutrinos. There are two sources of uncertainty, the imperfect knowledge of the spectrum and composition of the primary cosmic rays that produce the neutrinos and the limited understanding of hadron production, including charm, at high energy. This paper is an overview of both aspects.
Towards robust regional estimates of CO_2 sources and sinks using atmospheric transport models
Gurney, Kevin Robert; Randerson, James
2002-01-01
Information about regional carbon sources and sinks can be derived from variations in observed atmospheric CO_2 concentrations via inverse modelling with atmospheric tracer transport models. A consensus has not yet been reached regarding the size and distribution of regional carbon fluxes obtained using this approach, partly owing to the use of several different atmospheric transport models. Here we report estimates of surface–atmosphere CO_2 fluxes from an intercomparison of atmospheric CO_2...
Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models
Randerson, JT; Gurney, KR; Law, RM; Denning, AS; Rayner, PJ; Baker, D.; Bousquet, P.; Bruhwiler, L.; Chen, YH; Ciais, P.; Fan, S.; Fung, IY; Gloor, M.; Heimann, M.; Higuchi, K
2002-01-01
Information about regional carbon sources and sinks can be derived from variations in observed atmospheric CO2 concentrations via inverse modelling with atmospheric tracer transport models. A consensus has not yet been reached regarding the size and distribution of regional carbon fluxes obtained using this approach, partly owing to the use of several different atmospheric transport models(1-9). Here we report estimates of surface- atmosphere CO2 fluxes from an intercomparison of atmospheric ...
[Atmospheric Influences Analysis on the Satellite Passive Microwave Remote Sensing].
Qiu, Yu-bao; Shi, Li-juan; Shi, Jian-cheng; Zhao, Shao-jie
2016-02-01
Passive microwave remote sensing offers its all-weather work capabilities, but atmospheric influences on satellite microwave brightness temperature were different under different atmospheric conditions and environments. In order to clarify atmospheric influences on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), atmospheric radiation were simulated based on AMSR-E configuration under clear sky and cloudy conditions, by using radiative transfer model and atmospheric conditions data. Results showed that atmospheric water vapor was the major factor for atmospheric radiation under clear sky condition. Atmospheric transmittances were almost above 0.98 at AMSR-E's low frequencies (vapor needed to be corrected when using microwave high-frequency channels to inverse land surface parameters in clear sky condition. But under cloud cover or cloudy conditions, cloud liquid water was the key factor to cause atmospheric radiation. When sky was covered by typical stratus cloud, atmospheric transmittances at 10.7, 18.7 and 36.5 GHz were 0.942, 0.828 and 0.605 respectively. Comparing with the clear sky condition, the down-welling atmospheric radiation caused by cloud liquid water increased up to 75.365 K at 36.5 GHz. It showed that the atmospheric correction under different clouds covered condition was the primary work to improve the accuracy of land surface parameters inversion of passive microwave remote sensing. The results also provided the basis for microwave atmospheric correction algorithm development. Finally, the atmospheric sounding data was utilized to calculate the atmospheric transmittance of Hailaer Region, Inner Mongolia province, in July 2013. The results indicated that atmospheric transmittances were close to 1 at C-band and X-band. 89 GHz was greatly influenced by water vapor and its atmospheric transmittance was not more than 0.7. Atmospheric transmittances in Hailaer Region had a relatively stable value in summer, but had about 0
LHC Report: 2 inverse femtobarns!
Mike Lamont for the LHC Team
2011-01-01
The LHC is enjoying a confluence of twos. This morning (Friday 5 August) we passed 2 inverse femtobarns delivered in 2011; the peak luminosity is now just over 2 x1033 cm-2s-1; and recently fill 2000 was in for nearly 22 hours and delivered around 90 inverse picobarns, almost twice 2010's total. In order to increase the luminosity we can increase of number of bunches, increase the number of particles per bunch, or decrease the transverse beam size at the interaction point. The beam size can be tackled in two ways: either reduce the size of the injected bunches or squeeze harder with the quadrupole magnets situated on either side of the experiments. Having increased the number of bunches to 1380, the maximum possible with a 50 ns bunch spacing, a one day meeting in Crozet decided to explore the other possibilities. The size of the beams coming from the injectors has been reduced to the minimum possible. This has brought an increase in the peak luminosity of about 50% and the 2 x 1033 cm...
MOSES Inversions using Multiresolution SMART
Rust, Thomas; Fox, Lewis; Kankelborg, Charles; Courrier, Hans; Plovanic, Jacob
2014-06-01
We present improvements to the SMART inversion algorithm for the MOSES imaging spectrograph. MOSES, the Multi-Order Solar EUV Spectrograph, is a slitless extreme ultraviolet spectrograph designed to measure cotemporal narrowband spectra over a wide field of view via tomographic inversion of images taken at three orders of a concave diffraction grating. SMART, the Smooth Multiplicative Algebraic Reconstruction Technique, relies on a global chi squared goodness of fit criterion, which enables overfit and underfit regions to "balance out" when judging fit quality. "Good" reconstructions show poor fits at some positions and length scales. Here we take a multiresolution approach to SMART, applying corrections to the reconstruction at positions and scales where correction is warranted based on the noise. The result is improved fit residuals that more closely resemble the expected noise in the images. Within the multiresolution framework it is also easy to include a regularized deconvolution of the instrument point spread functions, which we do. Different point spread functions among MOSES spectral orders results in spurious doppler shifts in the reconstructions, most notable near bright compact emission. We estimate the point spread funtions from the data. Deconvolution is done using the Richardson-Lucy method, which is algorithmically similar to SMART. Regularization results from only correcting the reconstruction at positions and scales where correction is warranted based on the noise. We expect the point spread function deconvolution to increase signal to noise and reduce systematic error in MOSES reconstructions.
Instrument developments for inverse photoemission
International Nuclear Information System (INIS)
Experimental developments principally concerning electron sources for inverse photoemission are presented. The specifications of the electron beam are derived from experiment requirements, taking into account the limitations encountered (space charge divergence). For a wave vector resolution of 0.2 A-1, the maximum current is 25 microA at 20 eV. The design of a gun providing such a beam in the range 5 to 50 eV is presented. Angle-resolved inverse photoemission experiments show angular effects at 30 eV. For an energy of 10 eV, angular effects should be stronger, but the low efficiency of the spectrometer in this range makes the experiments difficult. The total energy resolution of 0.3 eV is the result mainly of electron energy spread, as expected. The electron sources are based on field effect electron emission from a cathode consisting of a large number of microtips. The emission arises from a few atomic cells for each tip. The ultimate theoretical energy spread is 0.1 eV. This value is not attained because of an interface resistance problem. A partial solution of this problem allows measurement of an energy spread of 0.9 eV for a current of 100 microA emitted at 60 eV. These cathodes have a further advantage in that emission can occur at a low temperature
The seismic reflection inverse problem
International Nuclear Information System (INIS)
The seismic reflection method seeks to extract maps of the Earth's sedimentary crust from transient near-surface recording of echoes, stimulated by explosions or other controlled sound sources positioned near the surface. Reasonably accurate models of seismic energy propagation take the form of hyperbolic systems of partial differential equations, in which the coefficients represent the spatial distribution of various mechanical characteristics of rock (density, stiffness, etc). Thus the fundamental problem of reflection seismology is an inverse problem in partial differential equations: to find the coefficients (or at least some of their properties) of a linear hyperbolic system, given the values of a family of solutions in some part of their domains. The exploration geophysics community has developed various methods for estimating the Earth's structure from seismic data and is also well aware of the inverse point of view. This article reviews mathematical developments in this subject over the last 25 years, to show how the mathematics has both illuminated innovations of practitioners and led to new directions in practice. Two themes naturally emerge: the importance of single scattering dominance and compensation for spectral incompleteness by spatial redundancy. (topical review)
Inverse problems in systems biology
International Nuclear Information System (INIS)
Systems biology is a new discipline built upon the premise that an understanding of how cells and organisms carry out their functions cannot be gained by looking at cellular components in isolation. Instead, consideration of the interplay between the parts of systems is indispensable for analyzing, modeling, and predicting systems' behavior. Studying biological processes under this premise, systems biology combines experimental techniques and computational methods in order to construct predictive models. Both in building and utilizing models of biological systems, inverse problems arise at several occasions, for example, (i) when experimental time series and steady state data are used to construct biochemical reaction networks, (ii) when model parameters are identified that capture underlying mechanisms or (iii) when desired qualitative behavior such as bistability or limit cycle oscillations is engineered by proper choices of parameter combinations. In this paper we review principles of the modeling process in systems biology and illustrate the ill-posedness and regularization of parameter identification problems in that context. Furthermore, we discuss the methodology of qualitative inverse problems and demonstrate how sparsity enforcing regularization allows the determination of key reaction mechanisms underlying the qualitative behavior. (topical review)
Spectral Inversion of Multi-Line Full-Disk Observations of Quiet Sun Magnetic Fields
Balthasar, H
2012-01-01
Spectral inversion codes are powerful tools to analyze spectropolarimetric observations, and they provide important diagnostics of solar magnetic fields. Inversion codes differ by numerical procedures, approximations of the atmospheric model, and description of radiative transfer. Stokes Inversion based on Response functions (SIR) is an implementation widely used by the solar physics community. It allows to work with different atmospheric components, where gradients of different physical parameters are possible, e.g., magnetic field strength and velocities. The spectropolarimetric full-disk observations were carried out with the Stokesmeter of the Solar Telescope for Operative Predictions (STOP) at the Sayan Observatory on 3 February 2009, when neither an active region nor any other extended flux concentration was present on the Sun. In this study of quiet Sun magnetic fields, we apply the SIR code simultaneously to 15 spectral lines. A tendency is found that weaker magnetic field strengths occur closer to th...
Chahine, M. T.
1977-01-01
A mapping transformation is derived for the inverse solution of nonlinear and linear integral equations of the types encountered in remote sounding studies. The method is applied to the solution of specific problems for the determination of the thermal and composition structure of planetary atmospheres from a knowledge of their upwelling radiance.
Analytic model approach to the inversion of scattering data. [to obtain ozone profile
Green, A. E. S.; Klenk, K. F.
1977-01-01
An analytic model approach is applied to several simple atmospheric inversion problems. This method gives a sharp determination of aerosol size distribution parameters. It is shown that this analytic approach, together with ground level point sampling data measurements, can be used to infer information on the tropospheric ozone profile.
Solution for Ill-Posed Inverse Kinematics of Robot Arm by Network Inversion
Directory of Open Access Journals (Sweden)
Takehiko Ogawa
2010-01-01
Full Text Available In the context of controlling a robot arm with multiple joints, the method of estimating the joint angles from the given end-effector coordinates is called inverse kinematics, which is a type of inverse problems. Network inversion has been proposed as a method for solving inverse problems by using a multilayer neural network. In this paper, network inversion is introduced as a method to solve the inverse kinematics problem of a robot arm with multiple joints, where the joint angles are estimated from the given end-effector coordinates. In general, inverse problems are affected by ill-posedness, which implies that the existence, uniqueness, and stability of their solutions are not guaranteed. In this paper, we show the effectiveness of applying network inversion with regularization, by which ill-posedness can be reduced, to the ill-posed inverse kinematics of an actual robot arm with multiple joints.
Direct inversion of shallow-water bathymetry from EO-1 hyperspectral remote sensing data
Institute of Scientific and Technical Information of China (English)
Zhishen Liu; Yan Zhou
2011-01-01
@@ Using the US National Aeronautics and space Administration (NASA) Earth Observing-1 Mission (EO-1)hyperion hyperspectral remote sensing data, we study the shallow-water bathymetry inversion in Smith Island Bay.The fast line-of-sight atmospheric analysis of spectral hypercubes module is applied for atmospheric correction, and principal component analysis method combined with scatter diagram and maximum likelihood classification is used for seabed classification.The diffuse attenuation coefficient Kd is derived using quasi-analytical algorithm (QAA), which performs well in optically deep water.Kd obtained from QAA requires correction, particularly those derived in some coastal areas with optically shallow water and calculated by direct inversion based on radiative transfer theory to obtain the bathymetry.The direct inversion method derives the water depth quickly, and matches the results from optimized algorithm.%Using the US National Aeronautics and space Administration (NASA) Earth Observing-1 Mission (EO-1) hyperion hyperspectral remote sensing data, we study the shallow-water bathymetry inversion in Smith Island Bay.The fast line-of-sight atmospheric analysis of spectral hypercubes module is applied for atmospheric correction, and principal component analysis method combined with scatter diagram and maximum likelihood classification is used for seabed classification.The diffuse attenuation coefficient Kd is derived using quasi-analytical algorithm (QAA), which performs well in optically deep water Kd obtained from QAA requires correction, particularly those derived in some coastal areas with optically shallow water and calculated by direct inversion based on radiative transfer theory to obtain the bathymetry.The direct inversion method derives the water depth quickly, and matches the results from optimized algorithm.
Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets
Energy Technology Data Exchange (ETDEWEB)
Davis, K J; Richardson, S J; Miles, N L
2007-03-07
Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2-3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute
Optimization and inverse problems in electromagnetism
Wiak, Sławomir
2003-01-01
From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...
Statistical Inversion of Seismic Noise Inversion statistique du bruit sismique
Directory of Open Access Journals (Sweden)
Adler P. M.
2006-11-01
Full Text Available A systematic investigation of wave propagation in random media is presented. Spectral analysis, inversion of codas and attenuation of the direct wave front are studied for synthetic data obtained in isotropic or anisotropic, 2D or 3D media. A coda inversion process is developed and checked on two sets of real data. In both cases, it is possible to compare the correlation lengths obtained by inversion to characteristic lengths measured on seismic logs, for the full scale seismic survey, or on a thin section, for the laboratory experiment. These two experiments prove the feasibility and the efficiency of the statistical inversion of codas. Correct characteristic lengths can be obtained which cannot be determined by another method. Le problème de la géophysique est la recherche d'informations concernant le sous-sol, dans des signaux sismiques enregistrés en surface ou dans des puits. Ces informations sont habituellement recherchées sous forme déterministe, c'est-à-dire sous la forme de la donnée en chaque point d'une valeur du paramètre étudié. Notre point de vue est différent puisque notre objectif est de déduire certaines propriétés statistiques du milieu, supposé hétérogène, à partir des sismogrammes enregistrés après propagation. Il apparaît alors deux moyens de remplir l'objectif fixé. Le premier est l'analyse spectrale des codas ; cette analyse permet de déterminer les tailles moyennes des hétérogénéités du sous-sol. La deuxième possibilité est l'étude de l'atténuation du front direct de l'onde, qui conduit aussi à la connaissance des longueurs caractéristiques du sous-sol ; contrairement à la première méthode, elle ne semble pas pouvoir être transposée efficacement à des cas réels. Dans la première partie, on teste numériquement la proportionnalité entre le facteur de rétrodiffraction, relié aux propriétés statistiques du milieu, et le spectre des codas. Les distributions de vitesse, à valeur
Inverse Magnetic/Shear Catalysis
McInnes, Brett
2015-01-01
It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce ``inverse magnetic catalysis'', signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magne...
Inverse diffusion theory of photoacoustics
International Nuclear Information System (INIS)
This paper analyzes the reconstruction of diffusion and absorption parameters in an elliptic equation from knowledge of internal data. In the application of photoacoustics, the internal data are the amount of thermal energy deposited by high frequency radiation propagating inside a domain of interest. These data are obtained by solving an inverse wave equation, which is well studied in the literature. We show that knowledge of two internal data based on well-chosen boundary conditions uniquely determines two constitutive parameters in diffusion and Schrödinger equations. Stability of the reconstruction is guaranteed under additional geometric constraints of strict convexity. No geometric constraints are necessary when 2n internal data for well-chosen boundary conditions are available, where n is spatial dimension. The set of well-chosen boundary conditions is characterized in terms of appropriate complex geometrical optics solutions
Bayesian multitask inverse reinforcement learning
Dimitrakakis, Christos
2011-01-01
We generalise the problem of inverse reinforcement learning to multiple tasks, from a set of demonstrations. Each demonstration may represent one expert trying to solve a different task. Alternatively, one may see each demonstration as given by a different expert trying to solve the same task. Our main technical contribution is to solve the problem by formalising it as statistical preference elicitation, via a number of structured priors, whose form captures our biases about the relatedness of different tasks or expert policies. We show that our methodology allows us not only to learn to efficiently from multiple experts but to also effectively differentiate between the goals of each. Possible applications include analysing the intrinsic motivations of subjects in behavioural experiments and imitation learning from multiple teachers.
Inverse approach to design magnets
International Nuclear Information System (INIS)
An inverse approach is always better to design an optimised magnet, where the field profile is known, rather than tuning the geometry of the magnet till the desired profile is achieved. We have developed an optimizer based on standard multi dimensional Newton-Raphson technique. The optimum geometry of a magnet is obtained by a combination of analytical and numerical methods. This code is versatile and can be used to design various magnets used in different applications. Here we present two different cases to show the efficiency of the code. First, we present the design of a solenoid magnet for a.c. susceptibility set up. Second, we describe the design of two pairs of Helmholtz coils for ion beam deflection. (author)
An inverse method was developed to integrate satellite observations of atmospheric pollutant column concentrations and direct sensitivities predicted by a regional air quality model in order to discern biases in the emissions of the pollutant precursors.
Seasonal variation of the mesospheric inversion layer and thunderstorms
International Nuclear Information System (INIS)
Complete text of publication follows. Temperature and ozone volume mixing ratio profiles obtained from the Halogen Occultation Experiment (HALOE) aboard the Upper Atmospheric Research Satellite (UARS) over India and over the open ocean to the south during the period 1991-2001 are analyzed to study the characteristic features of the Mesospheric Inversion Layer (MIL) at 70 to 85 km altitude and its relation with the ozone mixing ratio at this altitude. We have also analyzed both the number of lightning flashes measured by the Optical Transient Detector (OTD) onboard the MicroLab-1 satellite for the period April 1995 - March 2000 and ground-based thunderstorm data collected from 78 widespread Indian observatories for the same period to show that the MIL amplitude and thunderstorm activity are correlated. All the data sets examined exhibit a semiannual variation. The seasonal variation of MIL amplitude and the frequency of occurrence of the temperature inversion indicate a fairly good correlation with the seasonal variation of thunderstorms and the average ozone volume mixing ratio across the inversion layer. The observed correlation between local thunderstorm activity, MIL amplitude and mesospheric ozone volume mixing ratio are explained by the generation, upward propagation and mesospheric absorption of gravity waves produced by thunderstorms.
Graph inverse semigroups: their characterization and completion
David G Jones; Lawson, Mark V
2011-01-01
Graph inverse semigroups generalize the polycyclic inverse monoids and play an important role in the theory of C*-algebras. This paper has two main goals: first, to provide an abstract characterization of graph inverse semigroups; and second, to show how they may be completed, under suitable conditions, to form what we call the Cuntz-Krieger semigroup of the graph. This semigroup is the ample semigroup of a topological groupoid associated with the graph, and the semigroup analogue of the Leav...
Lectures on the inverse scattering method
International Nuclear Information System (INIS)
In a series of six lectures an elementary introduction to the theory of inverse scattering is given. The first four lectures contain a detailed theory of solitons in the framework of the KdV equation, together with the inverse scattering theory of the one-dimensional Schroedinger equation. In the fifth lecture the dressing method is described, while the sixth lecture gives a brief review of the equations soluble by the inverse scattering method. (author)
STRUCTURES OF CIRCULANT INVERSE M-MATRICES
Institute of Scientific and Technical Information of China (English)
Yurui Lin; Linzhang Lu
2007-01-01
In this paper,we present a useful result on the structures of circulant inverse Mis not a positive matrix and not equal to c0I,then A is an inverse M-matrix if and only if there exists a positive integer k,which is a proper factor of n,such that cjk＞0 for The result is then extended to the so-called generalized circulant inverse M-matrices.
Forward model nonlinearity versus inverse model nonlinearity
Mehl, S.
2007-01-01
The issue of concern is the impact of forward model nonlinearity on the nonlinearity of the inverse model. The question posed is, "Does increased nonlinearity in the head solution (forward model) always result in increased nonlinearity in the inverse solution (estimation of hydraulic conductivity)?" It is shown that the two nonlinearities are separate, and it is not universally true that increased forward model nonlinearity increases inverse model nonlinearity. ?? 2007 National Ground Water Association.
Supersymmetry and the Moebius inversion function
International Nuclear Information System (INIS)
We show that the Moebius inversion function of number theory can be interpreted as the operator (-1)F in quantum field theory. Consequently, we are able to provide physical interpretations for various properties of the Moebius inversion function. These include a physical understanding of the Moebius Inversion Formula and of a result that is equivalent to the prime number theorem. Supersymmetry and the Witten index play a central role in these constructions. (orig.)
Interactive inverse kinematics for human motion estimation
DEFF Research Database (Denmark)
Engell-Nørregård, Morten Pol; Hauberg, Søren; Lapuyade, Jerome; Erleben, Kenny; Pedersen, Kim Steenstrup
We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for monocular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints and does not suffer from shaking artifacts. The presented motion...... estimation system uses a single camera to estimate the motion of a human. The results show that inverse kinematics can significantly speed up the estimation process, while retaining a quality comparable to a full pose motion estimation system. Our novelty lies primarily in use of inverse kinematics to...
Signature Inversion in Odd-odd Nuclei
Institute of Scientific and Technical Information of China (English)
LIU Min-liang; ZHANG Yu-hu; ZHOU Xiao-hong; GUO Ying-xiang; LEI Xiang-guo; GUO Wen-tao
2009-01-01
Signature inversion in odd-odd nuclei is investigated by using a proton and a neutron coupling to the coherent state of the core.Two parameters are employed in the Hamiltonian to set the energy scales of rotation,neutron-proton coupling and their competition.Typical level staggering is extracted from the calculated level energies.The calculation can approximately reproduce experimental signature inversion.Signature inversion is attributed to the rotational motion and neutronproton residual interaction having reversed signature splitting rules.It is found signature inversion can appear at axially symmetric shape and high-K band.
Perspective: Inverse methods for material design
Jain, Avni; Bollinger, Jonathan A.; Truskett, Thomas M.
2014-01-01
In this Perspective, we highlight several recent studies that illustrate how inverse strategies using appropriate physical models and computational methods can address complex materials design questions.
Inverse Kinematics of a Serial Robot
Directory of Open Access Journals (Sweden)
Amici Cinzia
2016-01-01
Full Text Available This work describes a technique to treat the inverse kinematics of a serial manipulator. The inverse kinematics is obtained through the numerical inversion of the Jacobian matrix, that represents the equation of motion of the manipulator. The inversion is affected by numerical errors and, in different conditions, due to the numerical nature of the solver, it does not converge to a reasonable solution. Thus a soft computing approach is adopted to mix different traditional methods to obtain an increment of algorithmic convergence.
Adaptation through chromosomal inversions in Anopheles
Directory of Open Access Journals (Sweden)
Diego eAyala
2014-05-01
Full Text Available Chromosomal inversions have been repeatedly involved in local adaptation in a large number of animals and plants. The ecological and behavioral plasticity of Anopheles species - human malaria vectors - is mirrored by high amounts of polymorphic inversions. The adaptive significance of chromosomal inversions has been consistently attested by strong and significant correlations between their frequencies and a number of phenotypic traits. Here, we provide an extensive literature review of the different adaptive traits associated with chromosomal inversions in the genus Anopheles. Traits having important consequences for the success of present and future vector control measures, such as insecticide resistance and behavioral changes, are discussed.
Analysis of nonlinear channel friction inverse problem
Institute of Scientific and Technical Information of China (English)
CHENG Weiping; LIU Guohua
2007-01-01
Based on the Backus-Gilbert inverse theory, the singular value decomposition (SVD) for general inverse matrices and the optimization algorithm are used to solve the channel friction inverse problem. The resolution and covari- ance friction inverse model in matrix form is developed to examine the reliability of solutions. Theoretical analyses demonstrate that the convergence rate of the general Newton optimization algorithm is in the second-order. The Wiggins method is also incorporated into the algorithm. Using the method, noise can be suppressed effectively, and the results are close to accurate solutions with proper control parameters. Also, the numerical stability can be improved.
Chromatid Painting for Chromosomal Inversion Detection Project
National Aeronautics and Space Administration — We propose the continued development of a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and...
The structure of (L)*-inverse semigroups
Institute of Scientific and Technical Information of China (English)
REN Xueming; SHUM Karping
2006-01-01
The concepts of (L)*-inverse semigroups and left wreath products of semigroups are introduced. It is shown that the (L)*-inverse semigroup can be described as the left wreath product of a type A semigroup Γ and a left regular band B together with a mapping which maps the semigroup Γ into the endomorphism semigroup End(B). This result generalizes the structure theorem of Yamada for the left inverse semigroups in the class of regular semigroups.We shall also provide a constructed example for the (L)*-inverse semigroups by using the left wreath products.
Annual Patterns of Atmospheric Pollutions and Episodes over Cairo Egypt
Y. Aboel Fetouh; H. El Askary; El Raey, M.; Allali, M; Sprigg, W. A.; M. Kafatos
2013-01-01
The Nile Delta major cities, particularly Cairo, experienced stagnant air pollution episodes, known as Black Cloud, every year over the past decade during autumn. Low-elevated thermal inversion layers play a crucial role in intensifying pollution impacts. Carbon monoxide, ozone, atmospheric temperature, water vapor, and methane measurements from the tropospheric emission spectrometer (TES) on board the Aura have been used to assess the dominant component below the inversion layer. In this stu...
DETECTION OF THERMAL EMISSION OF XO-2b: EVIDENCE FOR A WEAK TEMPERATURE INVERSION
International Nuclear Information System (INIS)
We estimate flux ratios of the extrasolar planet XO-2b to its host star XO-2 at 3.6, 4.5, 5.8, and 8.0 μm with Infrared Array Camera on the Spitzer Space Telescope to be 0.00081 ± 0.00017, 0.00098 ± 0.00020, 0.00167 ± 0.00036, and 0.00133 ± 0.00049, respectively. The fluxes provide tentative evidence for a weak temperature inversion in the upper atmosphere, the precise nature of which would need to be confirmed by longer wavelength observations. XO-2b substellar flux of 0.76 x 109 erg cm-2 s-1 lies in the predicted transition region between atmospheres with and without upper atmospheric temperature inversion.
Laterally constrained inversion for CSAMT data interpretation
Wang, Ruo; Yin, Changchun; Wang, Miaoyue; Di, Qingyun
2015-10-01
Laterally constrained inversion (LCI) has been successfully applied to the inversion of dc resistivity, TEM and airborne EM data. However, it hasn't been yet applied to the interpretation of controlled-source audio-frequency magnetotelluric (CSAMT) data. In this paper, we apply the LCI method for CSAMT data inversion by preconditioning the Jacobian matrix. We apply a weighting matrix to Jacobian to balance the sensitivity of model parameters, so that the resolution with respect to different model parameters becomes more uniform. Numerical experiments confirm that this can improve the convergence of the inversion. We first invert a synthetic dataset with and without noise to investigate the effect of LCI applications to CSAMT data, for the noise free data, the results show that the LCI method can recover the true model better compared to the traditional single-station inversion; and for the noisy data, the true model is recovered even with a noise level of 8%, indicating that LCI inversions are to some extent noise insensitive. Then, we re-invert two CSAMT datasets collected respectively in a watershed and a coal mine area in Northern China and compare our results with those from previous inversions. The comparison with the previous inversion in a coal mine shows that LCI method delivers smoother layer interfaces that well correlate to seismic data, while comparison with a global searching algorithm of simulated annealing (SA) in a watershed shows that though both methods deliver very similar good results, however, LCI algorithm presented in this paper runs much faster. The inversion results for the coal mine CSAMT survey show that a conductive water-bearing zone that was not revealed by the previous inversions has been identified by the LCI. This further demonstrates that the method presented in this paper works for CSAMT data inversion.
Nielsen, O. F.; Ploug, C.; Mendoza, J. A.; Martínez, K.
2009-05-01
The need for increaseding accuracy and reduced ambiguities in the inversion results has resulted in focus on the development of more advanced inversion methods of geophysical data. Over the past few years more advanced inversion techniques have been developed to improve the results. Real 3D-inversion is time consuming and therefore often not the best solution in a cost-efficient perspective. This has motivated the development of 3D constrained inversions, where 1D-models are constrained in 3D, also known as a Spatial Constrained Inversion (SCI). Moreover, inversion of several different data types in one inversion has been developed, known as Mutually Constrained Inversion (MCI). In this paper a presentation of a Spatial Mutually Constrained Inversion method (SMCI) is given. This method allows 1D-inversion applied to different geophysical datasets and geological information constrained in 3D. Application of two or more types of geophysical methods in the inversion has proved to reduce the equivalence problem and to increase the resolution in the inversion results. The use of geological information from borehole data or digital geological models can be integrated in the inversion. In the SMCI, a 1D inversion code is used to model soundings that are constrained in three dimensions according to their relative position in space. This solution enhances the accuracy of the inversion and produces distinct layers thicknesses and resistivities. It is very efficient in the mapping of a layered geology but still also capable of mapping layer discontinuities that are, in many cases, related to fracturing and faulting or due to valley fills. Geological information may be included in the inversion directly or used only to form a starting model for the individual soundings in the inversion. In order to show the effectiveness of the method, examples are presented from both synthetic data and real data. The examples include DC-soundings as well as land-based and airborne TEM
A Construction of Weakly Inverse Semigroups
Institute of Scientific and Technical Information of China (English)
Bing Jun YU; Yan LI
2009-01-01
Let S° be an inverse semigroup with semilattice biordered set E° of idempotents and E a weakly inverse biordered set with a subsemilattice Ep = { e ∈ E |(V) f ∈ E, S(f , e)(C) w(e) } isomorphic to E° by θ:Ep→E°. In this paper, it is proved that if(V)f, g∈E, f ←→ ,g(→) f°θ (ζ)s° g°θand there exists a mapping φ from Ep into the symmetric weakly inverse semigroup (ζξ)(E ∪S°) satisfying six appropriate conditions, then a weakly inverse semigroup ∑ can be constructed in (ζξ)(S°), called the weakly inverse hull of a weakly inverse system (S°, E, θ, φ) with I(∑) ≌ S°, E(∑) (≌) E. Conversely,every weakly inverse semigroup can be constructed in this way. Furthermore, a sufficient and necessary condition for two weakly inverse hulls to be isomorphic is also given.
An inversion algorithm for general tridiagonal matrix
Institute of Scientific and Technical Information of China (English)
Rui-sheng RAN; Ting-zhu HUANG; Xing-ping LIU; Tong-xiang GU
2009-01-01
An algorithm for the inverse of a general tridiagonal matrix is presented. For a tridiagonal matrix having the Doolittle factorization, an inversion algorithm is established.The algorithm is then generalized to deal with a general tridiagonal matrix without any restriction. Comparison with other methods is provided, indicating low computational complexity of the proposed algorithm, and its applicability to general tridiagonal matrices.
Third Harmonic Imaging using a Pulse Inversion
DEFF Research Database (Denmark)
Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt
The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...
Approximation of the Inverse -Frame Operator
Indian Academy of Sciences (India)
M R Abdollahpour; A Najati
2011-05-01
In this paper, we introduce the concept of (strong) projection method for -frames which works for all conditional -Riesz frames. We also derive a method for approximation of the inverse -frame operator which is efficient for all -frames. We show how the inverse of -frame operator can be approximated as close as we like using finite-dimensional linear algebra.
Inversion, error analysis, and validation of GPS/MET occultation data
Energy Technology Data Exchange (ETDEWEB)
Steiner, A.K.; Kirchengast, G. [Graz Univ. (Austria). Inst. fuer Meteorologie und Geophysik; Ladreiter, H.P.
1999-01-01
The global positioning system meteorology (GPS/MET) experiment was the first practical demonstration of global navigation satellite system (GNSS)-based active limb sounding employing the radio occultation technique. This method measures, as principal observable and with millimetric accuracy, the excess phase path (relative to propagation in vacuum) of GNSS-transmitted radio waves caused by refraction during passage through the Earth`s neutral atmosphere and ionosphere in limb geometry. It shows great potential utility for weather and climate system studies in providing an unique combination of global coverage, high vertical resolution and accuracy, long-term stability, and all-weather capability. We first describe our GPS/MET data processing scheme from excess phases via bending angles to the neutral atmospheric parameters refractivity, density, pressure and temperature. Special emphasis is given to ionospheric correction methodology and the inversion of bending angles to refractivities, where we introduce a matrix inversion technique (instead of the usual integral inversion). The matrix technique is shown to lead to identical results as integral inversion but is more directly extendable to inversion by optimal estimation. The quality of GPS/MET-derived profiles is analyzed with an error estimation analysis employing a Monte Carlo technique. We consider statistical errors together with systematic errors due to upper-boundary initialization of the retrieval by a priori bending angles. Perfect initialization and properly smoothed statistical errors allow for better than 1 K temperature retrieval accuracy up to the stratopause. 28 refs.
On the general inversion problem
International Nuclear Information System (INIS)
We consider the problem of direct and inverse scattering for the Schroedinger operator Hυ=-Δ+υ(x) in odd space dimensions with a short range potential. It will be shown that the wave operators are built up from a family of operators Aθ, θelement ofSn-1, which satisfy the equation HυAθ=AθH0. The corresponding operator kernels are supported in the set where ≥0, and they can be described in detail. By introducing polar coordinates for y-x one finds also that these kernels have several properties in common with their one-dimensional analogues. The potential can be easily computed from a special trace of Aθ*Aθ, and this operator in turn is given from a factorization of the scattering matrix into upper and lower triangular parts with respect to the direction θ. Finally we give some remarks on the so called miracle, which was introduced by R.G. Newton. (orig.)
Inverse magnetic/shear catalysis
McInnes, Brett
2016-05-01
It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce "inverse magnetic catalysis", signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magnetic field at low values of the baryonic chemical potential, but that it can actually decrease that effect at high chemical potentials.
Inversion based on computational simulations
International Nuclear Information System (INIS)
A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal
MIT inverse Compton source concept
Energy Technology Data Exchange (ETDEWEB)
Graves, W.S. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)], E-mail: wsgraves@MIT.EDU; Brown, W. [MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420 (United States); Kaertner, F.X.; Moncton, D.E. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)
2009-09-01
A compact X-ray source based on inverse Compton scattering of a high-power laser on a high-brightness linac beam is described. The facility can operate in two modes: at high (MHz) repetition rate with flux and brilliance similar to that of a beamline at a large 2nd generation synchrotron, but with short {approx}1 ps pulses, or as a 10 Hz high flux-per-pulse single-shot machine. It has a small footprint and low cost appropriate for university or industry laboratories. The key enabling technologies are a high average power laser and a superconducting accelerator. The cryo-cooled Yb:YAG laser amplifier generates {approx}1 kW average power at 1 {mu}m wavelength that pumps a coherent cavity up to 1 MW stored power. The high-brightness electron beam is produced by a superconducting RF photoinjector and linac operating in CW mode with up to 1 mA current. The photocathode laser produces electron pulses at either 100 MHz with 10 pc per bunch, or at 10 Hz with 1 nC per bunch in the two operating modes. The design of the facility is presented, including optimization of the laser and electron beams, major technical choices, and the resulting X-ray performance with a focus on the 100 MHz mode.
MIT inverse Compton source concept
International Nuclear Information System (INIS)
A compact X-ray source based on inverse Compton scattering of a high-power laser on a high-brightness linac beam is described. The facility can operate in two modes: at high (MHz) repetition rate with flux and brilliance similar to that of a beamline at a large 2nd generation synchrotron, but with short ∼1 ps pulses, or as a 10 Hz high flux-per-pulse single-shot machine. It has a small footprint and low cost appropriate for university or industry laboratories. The key enabling technologies are a high average power laser and a superconducting accelerator. The cryo-cooled Yb:YAG laser amplifier generates ∼1 kW average power at 1 μm wavelength that pumps a coherent cavity up to 1 MW stored power. The high-brightness electron beam is produced by a superconducting RF photoinjector and linac operating in CW mode with up to 1 mA current. The photocathode laser produces electron pulses at either 100 MHz with 10 pc per bunch, or at 10 Hz with 1 nC per bunch in the two operating modes. The design of the facility is presented, including optimization of the laser and electron beams, major technical choices, and the resulting X-ray performance with a focus on the 100 MHz mode.
Fast wavelet based sparse approximate inverse preconditioner
Energy Technology Data Exchange (ETDEWEB)
Wan, W.L. [Univ. of California, Los Angeles, CA (United States)
1996-12-31
Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.
Forward modeling. Route to electromagnetic inversion
Energy Technology Data Exchange (ETDEWEB)
Groom, R.; Walker, P. [PetRos EiKon Incorporated, Ontario (Canada)
1996-05-01
Inversion of electromagnetic data is a topical subject in the literature, and much time has been devoted to understanding the convergence properties of various inverse methods. The relative lack of success of electromagnetic inversion techniques is partly attributable to the difficulties in the kernel forward modeling software. These difficulties come in two broad classes: (1) Completeness and robustness, and (2) convergence, execution time and model simplicity. If such problems exist in the forward modeling kernel, it was demonstrated that inversion can fail to generate reasonable results. It was suggested that classical inversion techniques, which are based on minimizing a norm of the error between data and the simulated data, will only be successful when these difficulties in forward modeling kernels are properly dealt with. 4 refs., 5 figs.
Inverse m-matrices and ultrametric matrices
Dellacherie, Claude; San Martin, Jaime
2014-01-01
The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph.
An Introduction to Inverse Problems with Applications
Moura Neto, Francisco Duarte
2013-01-01
Computational engineering/science uses a blend of applications, mathematical models and computations. Mathematical models require accurate approximations of their parameters, which are often viewed as solutions to inverse problems. Thus, the study of inverse problems is an integral part of computational engineering/science. This book presents several aspects of inverse problems along with needed prerequisite topics in numerical analysis and matrix algebra. If the reader has previously studied these prerequisites, then one can rapidly move to the inverse problems in chapters 4-8 on image restoration, thermal radiation, thermal characterization and heat transfer. “This text does provide a comprehensive introduction to inverse problems and fills a void in the literature”. Robert E White, Professor of Mathematics, North Carolina State University
Phase inversion emulsification: Current understanding and applications.
Perazzo, A; Preziosi, V; Guido, S
2015-08-01
This review is addressed to the phase inversion process, which is not only a common, low-energy route to make stable emulsions for a variety of industrial products spanning from food to pharmaceuticals, but can also be an undesired effect in some applications, such as crude oil transportation in pipelines. Two main ways to induce phase inversion are described in the literature, i.e., phase inversion composition (PIC or catastrophic) and phase inversion temperature (PIT or transitional). In the former, starting from one phase (oil or water) with surfactants, the other phase is more or less gradually added until it reverts to the continuous phase. In PIT, phase inversion is driven by a temperature change without varying system composition. Given its industrial relevance and scientific challenge, phase inversion has been the subject of a number of papers in the literature, including extensive reviews. Due to the variety of applications and the complexity of the problem, most of the publications have been focused either on the phase behavior or the interfacial properties or the mixing process of the two phases. Although all these aspects are quite important in studying phase inversion and much progress has been done on this topic, a comprehensive picture is still lacking. In particular, the general mechanisms governing the inversion phenomenon have not been completely elucidated and quantitative predictions of the phase inversion point are limited to specific systems and experimental conditions. Here, we review the different approaches on phase inversion and highlight some related applications, including future and emerging perspectives. PMID:25632889
Simulation of atmospheric turbulence layers with phase screens by JAVA
Zhang, Xiaofang; Chen, Wenqin; Yu, Xin; Yan, Jixiang
2008-03-01
In multiconjugate Adaptive Optics (MCAO), the phase screens are used to simulate atmospheric turbulence layers to study the optimal turbulence delamination and the determination of layer boundary position. In this paper, the method of power spectrum inversion and sub-harmonic compensation were used to simulate atmospheric turbulence layers and results can be shown by grey map. The simulation results showed that, with the increase of turbulence layers, the RMS of adaptive system decreased, but the amplitude diminished. So the atmospheric turbulence can be split into 2-3 layers and be modeled by phase screens. Otherwise, a small simulation atmospheric turbulence delamination system was realized by JAVA.
Atmospheric composition and structure of HD209458b
Désert, J -M; Etangs, A Lecavelier des; Sing, D; Ehrenreich, D; Hébrard, G; Ferlet, R
2008-01-01
Transiting planets like HD209458b offer a unique opportunity to scrutinize their atmospheric composition and structure. Transit spectroscopy probes the transition region between the day and night sides, called limb. We present a re-analysis of existing archived HST/STIS transmission spectra of HD209458b's atmosphere. From these observations we: Identify H2 Rayleigh scattering, derive the absolute Sodium abundance and quantify its depletion in the upper atmosphere, extract a stratospheric T-P profile with a temperature inversion and explain broad band absorptions with the presence of TiO and VO molecules in the atmosphere of this planet.
Using CO2 : CO correlations to improve inverse analyses of carbon fluxes
Palmer, Paul I.; Suntharalingam, Parvadha; Jones, Dylan B. A.; Jacob, Daniel J.; Streets, David G.; Fu, Qingyan; Vay, Stephanie A.; Sachse, Glen W.
2006-01-01
Observed correlations between atmospheric concentrations of CO2 and CO represent potentially powerful information for improving CO2 surface flux estimates through coupled CO2-CO inverse analyses. We explore the value of these correlations in improving estimates of regional CO2 fluxes in east Asia by using aircraft observations of CO2 and CO from the TRACE-P campaign over the NW Pacific in March 2001. Our inverse model uses regional CO2 and CO surface fluxes as the state vector, separating bio...
Locatelli, R.; Bousquet, P.; Chevallier, F.; Fortems-Cheney, A.; Szopa, S.; Saunois, M.; Agusti-Panareda, A.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M. P.; Gloor, E.; Houweling, S.; Kawa, S. R.; Krol, M.; Patra, P. K.; Prinn, R. G.; Rigby, M.; Saito, R.; Wilson, C.
2013-10-01
A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr-1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr-1 in North America to 7 Tg yr-1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of
Directory of Open Access Journals (Sweden)
R. Locatelli
2013-10-01
Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively. At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly
Inverse cascades of angular momentum
International Nuclear Information System (INIS)
Most theoretical and computational studies of turbulence in Navier-Stokes fluids and/or guiding-centre plasmas have been carried out in the presence of spatially periodic boundary conditions. In view of the frequently reproduced result that two-dimensional and/or MHD decaying turbulence leads to structures comparable in length scae to a box dimension, it is natural to ask if periodic boundary conditions are an adequate representation of any physical situation. Here, we study, computationally, the decay of two-dimensional turbulence in a Navier-Stokes fluid or guiding-centre plasma in the presence of circular no-slip rigid walls. The method is wholly spectral, and relies on a Galerkin approximation by a set of functions that obey two boundary conditions at the wall radius (analogues of the Chandrasekhar-Reid functions). It is possible to explore Reynolds numbers up to the order of 1250, based on an RMS velocity and a box radius. It is found that decaying turbulence is altered significantly by the no-slip boundaries. First, strong boundary layers serve as sources of vorticity and enstrophy and enhance the early-time energy decay rate, for a given Reynolds number, well above the periodic boundary condition values. More importantly, angular momentum turns out to be an even more slowly decaying ideal invariant than energy, and to a considerable extent governs the dynamics of the decay. Angular momentum must be taken into account, for example, in order to achieve quantitative agreement with the prediction of maximum entropy, or 'most probable', states. These are predictions of conditions that are established after several eddy turnover times but before the energy has decayed away. Angular momentum will cascade to lower azimuthal mode numbers, even if absent there initially, and the angular momentum modal spectrum is eventually dominated by the lowest mode available. When no initial angular momentum is present, no behaviour that suggests the likelihood of inverse cascades
Support minimized inversion of acoustic and elastic wave scattering
International Nuclear Information System (INIS)
This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion
Regularizing priors for linear inverse problems
Florens, Jean-Pierre; De Simoni, Anna
2010-01-01
We consider statistical linear inverse problems in Hilbert spaces of the type ˆ Y = Kx + U where we want to estimate the function x from indirect noisy functional observations ˆY . In several applications the operator K has an inverse that is not continuous on the whole space of reference; this phenomenon is known as ill-posedness of the inverse problem. We use a Bayesian approach and a conjugate-Gaussian model. For a very general specification of the probability model the posterior distribut...
3rd Annual Workshop on Inverse Problem
2015-01-01
This proceeding volume is based on papers presented on the Third Annual Workshop on Inverse Problems which was organized by the Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, and took place in May 2013 in Stockholm. The purpose of this workshop was to present new analytical developments and numerical techniques for solution of inverse problems for a wide range of applications in acoustics, electromagnetics, optical fibers, medical imaging, geophysics, etc. The contributions in this volume reflect these themes and will be beneficial to researchers who are working in the area of applied inverse problems.
Parallel Algorithm in Surface Wave Waveform Inversion
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In Surface wave waveform inversion, we want to reconstruct 3Dshear wav e velocity structure, which calculation beyond the capability of the powerful pr esent day personal computer or even workstation. So we designed a high parallele d algorithm and carried out the inversion on Parallel computer based on the part itioned waveform inversion (PWI). It partitions the large scale optimization pro blem into a number of independent small scale problems and reduces the computati onal effort by several orders of magnitude. We adopted surface waveform inversio n with a equal block(2°×2°) discretization.
Inverse problems in the Bayesian framework
International Nuclear Information System (INIS)
The history of Bayesian methods dates back to the original works of Reverend Thomas Bayes and Pierre-Simon Laplace: the former laid down some of the basic principles on inverse probability in his classic article ‘An essay towards solving a problem in the doctrine of chances’ that was read posthumously in the Royal Society in 1763. Laplace, on the other hand, in his ‘Memoirs on inverse probability’ of 1774 developed the idea of updating beliefs and wrote down the celebrated Bayes’ formula in the form we know today. Although not identified yet as a framework for investigating inverse problems, Laplace used the formalism very much in the spirit it is used today in the context of inverse problems, e.g., in his study of the distribution of comets. With the evolution of computational tools, Bayesian methods have become increasingly popular in all fields of human knowledge in which conclusions need to be drawn based on incomplete and noisy data. Needless to say, inverse problems, almost by definition, fall into this category. Systematic work for developing a Bayesian inverse problem framework can arguably be traced back to the 1980s, (the original first edition being published by Elsevier in 1987), although articles on Bayesian methodology applied to inverse problems, in particular in geophysics, had appeared much earlier. Today, as testified by the articles in this special issue, the Bayesian methodology as a framework for considering inverse problems has gained a lot of popularity, and it has integrated very successfully with many traditional inverse problems ideas and techniques, providing novel ways to interpret and implement traditional procedures in numerical analysis, computational statistics, signal analysis and data assimilation. The range of applications where the Bayesian framework has been fundamental goes from geophysics, engineering and imaging to astronomy, life sciences and economy, and continues to grow. There is no question that Bayesian
Inverse Raman effect: applications and detection techniques
International Nuclear Information System (INIS)
The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented
Inversion symmetry protected topological insulators and superconductors
Lee, Dung-Hai; Lu, Yuan-Ming
2015-03-01
Three dimensional topological insulator represents a class of novel quantum phases hosting robust gapless boundary excitations, which is protected by global symmetries such as time reversal, charge conservation and spin rotational symmetry. In this work we systematically study another class of topological phases of weakly interacting electrons protected by spatial inversion symmetry, which generally don't support stable gapless boundary states. We classify these inversion-symmetric topological insulators and superconductors in the framework of K-theory, and construct their lattice models. We also discuss quantized response functions of these inversion-protected topological phases, which serve as their experimental signatures.
New recursive algorithm for matrix inversion
Institute of Scientific and Technical Information of China (English)
Cao Jianshu; Wang Xuegang
2008-01-01
To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms Ⅰ and Ⅱ, respectively)are presented. Algorithm Ⅰ is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm Ⅱ, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm Ⅰ. The implementation, for algorithm Ⅱ or Ⅰ, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid.
BOOK REVIEW: Inverse Problems. Activities for Undergraduates
Yamamoto, Masahiro
2003-06-01
This book is a valuable introduction to inverse problems. In particular, from the educational point of view, the author addresses the questions of what constitutes an inverse problem and how and why we should study them. Such an approach has been eagerly awaited for a long time. Professor Groetsch, of the University of Cincinnati, is a world-renowned specialist in inverse problems, in particular the theory of regularization. Moreover, he has made a remarkable contribution to educational activities in the field of inverse problems, which was the subject of his previous book (Groetsch C W 1993 Inverse Problems in the Mathematical Sciences (Braunschweig: Vieweg)). For this reason, he is one of the most qualified to write an introductory book on inverse problems. Without question, inverse problems are important, necessary and appear in various aspects. So it is crucial to introduce students to exercises in inverse problems. However, there are not many introductory books which are directly accessible by students in the first two undergraduate years. As a consequence, students often encounter diverse concrete inverse problems before becoming aware of their general principles. The main purpose of this book is to present activities to allow first-year undergraduates to learn inverse theory. To my knowledge, this book is a rare attempt to do this and, in my opinion, a great success. The author emphasizes that it is very important to teach inverse theory in the early years. He writes; `If students consider only the direct problem, they are not looking at the problem from all sides .... The habit of always looking at problems from the direct point of view is intellectually limiting ...' (page 21). The book is very carefully organized so that teachers will be able to use it as a textbook. After an introduction in chapter 1, sucessive chapters deal with inverse problems in precalculus, calculus, differential equations and linear algebra. In order to let one gain some insight
Complex source rate estimation for atmospheric transport and dispersion models
International Nuclear Information System (INIS)
The accuracy associated with assessing the environmental consequences of an accidental atmospheric release of radioactivity is highly dependent on our knowledge of the source release rate which is generally poorly known. This paper reports on a technique that integrates the radiological measurements with atmospheric dispersion modeling for more accurate source term estimation. We construct a minimum least squares methodology for solving the inverse problem with no a priori information about the source rate
Zinc oxide inverse opal enzymatic biosensor
You, Xueqiu; Pikul, James H.; King, William P.; Pak, James J.
2013-06-01
We report ZnO inverse opal- and nanowire (NW)-based enzymatic glucose biosensors with extended linear detection ranges. The ZnO inverse opal sensors have 0.01-18 mM linear detection range, which is 2.5 times greater than that of ZnO NW sensors and 1.5 times greater than that of other reported ZnO sensors. This larger range is because of reduced glucose diffusivity through the inverse opal geometry. The ZnO inverse opal sensors have an average sensitivity of 22.5 μA/(mM cm2), which diminished by 10% after 35 days, are more stable than ZnO NW sensors whose sensitivity decreased by 10% after 7 days.
Inversion of hysteresis and creep operators
Energy Technology Data Exchange (ETDEWEB)
Krejci, Pavel, E-mail: krejci@math.cas.cz [Institute of Mathematics, Academy of Sciences of the Czech Republic, Zitna 25, CZ-11567 Praha 1 (Czech Republic); Al Janaideh, Mohammad, E-mail: aljanaideh@gmail.com [Department of Mechatronics Engineering, The University of Jordan, Amman (Jordan); Deasy, Fergal, E-mail: deasy@math.cas.cz [Institute of Mathematics, Academy of Sciences of the Czech Republic, Zitna 25, CZ-11567 Praha 1 (Czech Republic)
2012-05-01
The explicit inversion formula for rate dependent Prandtl-Ishlinskii operators is extended to cases without the threshold dilation condition. This solves a problem in hysteresis and creep modeling of magnetostrictive behavior.
The Transmuted Generalized Inverse Weibull Distribution
Directory of Open Access Journals (Sweden)
Faton Merovci
2014-05-01
Full Text Available A generalization of the generalized inverse Weibull distribution the so-called transmuted generalized inverse Weibull distribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM in order to generate a flexible family of probability distributions taking the generalized inverseWeibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expressions for the moments, quantiles, and moment generating function of the new distribution are derived. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the flexibility of the transmuted version versus the generalized inverse Weibull distribution.
Inverse Doppler Effects in Broadband Acoustic Metamaterials.
Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R
2016-01-01
The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317
Inverse agonism and its therapeutic significance
Directory of Open Access Journals (Sweden)
Gurudas Khilnani
2011-01-01
Full Text Available A large number of G-protein-coupled receptors (GPCRs show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity or prevent the effect of an agonist (antagonist with zero intrinsic activity. Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity. Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H 1 and H 2 antihistaminics (antagonists have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D 2 receptors antagonist, antihypertensive (AT 1 receptor antagonists, antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103, a highly selective 5-HT
A fluorophosphate-based inverse Keggin structure
Energy Technology Data Exchange (ETDEWEB)
Fielden, John; Quasdorf, Kyle; Cronin, Leroy; Kogerler, Paul
2012-07-17
An unusual PFO(3)(2-)-templated "inverse Keggin" polyanion, [Mo(12)O(46)(PF)(4)](4-), has been isolated from the degradation reaction of an {Mo(132)}-type Keplerate to [PMo(12)O(40)](3-) by [Cu(MeCN)(4)](PF(6)) in acetonitrile. (31)P-NMR studies suggest a structure-directing role for [Cu(MeCN)(4)](+) in the formation of the highly unusual all-inorganic inverse Keggin structure.
On some nonlinear inverse problems in elasticity
Andrieux S.; Bui H.D.
2011-01-01
In this paper, we make a review of some inverse problems in elasticity, in statics and dynamics, in acoustics, thermoelasticity and viscoelasticity. Crack inverse problems have been solved in closed form, by considering a nonlinear variational equation provided by the reciprocity gap functional. This equation involves the unknown geometry of the crack and the boundary data. It results from the symmetry lost between current fields and adjoint fields which is related to their support. The...
Chris Lorenz's idea of conceptual inversion
Domanska, Ewa
2013-01-01
The text deals with Chris Lorenz’s idea of conceptual inversion, understood as an epistemological blockade that stands as a barrier to the development of a proper theory of humanities and social sciences. According to Lorenz, the methodological and theoretical views of scientific programmes embody negations (i.e. inversions) of the views being criticized by them. Because of this process of “turning upside down”, many of the conceptual problems connected with the criticized positions survive. ...
Notions of M\\"obius inversion
Leinster, Tom
2012-01-01
M\\"obius inversion, originally a tool in number theory, was generalized to posets for use in group theory and combinatorics. It was later generalized to categories in two different ways, both of which are useful. We provide a unifying abstract framework. This allows us to compare and contrast the two theories of M\\"obius inversion for categories, and advance each of them. Among several side benefits is an improved understanding of the following fact: the Euler characteristic of the classifyin...
Leinster, Tom
2012-01-01
Möbius inversion, originally a tool in number theory, was generalized to posets for use in group theory and combinatorics. It was later generalized to categories in two different ways, both of which are useful. We provide a unifying abstract framework. This allows us to compare and contrast the two theories of Möbius inversion for categories, and advance each of them. Among several side benefits is an improved understanding of the following fact: the Euler characteristic ...
An Inversion Recovery NMR Kinetics Experiment
Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping
2011-01-01
A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a conveni...
Handcrafted Inversions Made Operational on Operational Semantics
Monin, Jean-François; Shi, Xiaomu
2013-01-01
When reasoning on formulas involving large-size inductively defined relations, such as the semantics of a real programming language, many steps require the inversion of a hypothesis. The built-in "inversion" tactic of Coq can then be used, but it suffers from severe controllability, maintenance and efficiency issues, which makes it unusable in practice in large applications. To circumvent this issue, we propose a proof technique based on the combination of an antidiagonal argument and the imp...
SVD Analysis of Full Wave Inversion
F Watson and WRB Lionheart
2014-01-01
Full-wave inversion (FWI) is an imaging approach in which we find thequantitative subsurface parameters (such as the dielectric permittivity) whichwould best fit the recorded GPR data. This optimisation problem isnonlinear and ill-posed, and there have been numerous successes inapplying FWI to GPR data. The dominant propertiesof the FWI inversion process can be observed in the Jacobian matrix ofpartial derivatives of the forward map for each acquisition system. Here, weuse singular value d...
Linear inverse problems the maximum entropy connection
Gzyl, Henryk
2011-01-01
This book describes a useful tool for solving linear inverse problems subject to convex constraints. The method of maximum entropy in the mean automatically takes care of the constraints. It consists of a technique for transforming a large dimensional inverse problem into a small dimensional non-linear variational problem. A variety of mathematical aspects of the maximum entropy method are explored as well. Supplementary materials are not included with eBook edition (CD-ROM)
Evidence against a strong thermal inversion in HD 209458 b from high-dispersion spectroscopy
Schwarz, Henriette; de Kok, Remco; Birkby, Jayne; Snellen, Ignas
2015-01-01
Broadband secondary-eclipse measurements of hot Jupiters have indicated the existence of atmospheric thermal inversions, but their presence is difficult to determine from broadband measurements because of degeneracies between molecular abundances and temperature structure. We apply high-resolution (R = 100 000) infrared spectroscopy to probe the temperature-pressure profile of HD 209458 b. This bright, transiting hot-Jupiter has long been considered the gold standard for a hot Jupiter with an inversion layer, but this has been challenged in recent publications. We observed the thermal dayside emission of HD 209458 b with CRIRES / VLT during three nights, targeting the carbon monoxide band at 2.3 microns. Thermal inversions give rise to emission features, which means that detecting emission lines in the planetary spectrum, as opposed to absorption lines, would be direct evidence of a region in which the temperature increases with altitude. We do not detect any significant absorption or emission of CO in the da...
An application of sparse inversion on the calculation of the inverse data space of geophysical data
Saragiotis, Christos
2011-07-01
Multiple reflections as observed in seismic reflection measurements often hide arrivals from the deeper target reflectors and need to be removed. The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function and by constraining the 1 norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal. © 2011 IEEE.
Inverse feasibility problems of the inverse maximum ﬂow problems
Indian Academy of Sciences (India)
Adrian Deaconu; Eleonor Ciurea
2013-04-01
A linear time method to decide if any inverse maximum ﬂow (denoted General Inverse Maximum Flow problems (IMFG)) problem has solution is deduced. If IMFG does not have solution, methods to transform IMFG into a feasible problem are presented. The methods consist of modifying as little as possible the restrictions to the variation of the bounds of the ﬂow. New inverse combinatorial optimization problems are introduced and solved.
Application of the least-squares inversion method: Fourier series versus waveform inversion
Min, Dong-Joo; Shin, Jungkyun; Shin, Changsoo
2015-11-01
We describe an implicit link between waveform inversion and Fourier series based on inversion methods such as gradient, Gauss-Newton, and full Newton methods. Fourier series have been widely used as a basic concept in studies on seismic data interpretation, and their coefficients are obtained in the classical Fourier analysis. We show that Fourier coefficients can also be obtained by inversion algorithms, and compare the method to seismic waveform inversion algorithms. In that case, Fourier coefficients correspond to model parameters (velocities, density or elastic constants), whereas cosine and sine functions correspond to components of the Jacobian matrix, that is, partial derivative wavefields in seismic inversion. In the classical Fourier analysis, optimal coefficients are determined by the sensitivity of a given function to sine and cosine functions. In the inversion method for Fourier series, Fourier coefficients are obtained by measuring the sensitivity of residuals between given functions and test functions (defined as the sum of weighted cosine and sine functions) to cosine and sine functions. The orthogonal property of cosine and sine functions makes the full or approximate Hessian matrix become a diagonal matrix in the inversion for Fourier series. In seismic waveform inversion, the Hessian matrix may or may not be a diagonal matrix, because partial derivative wavefields correlate with each other to some extent, making them semi-orthogonal. At the high-frequency limits, however, the Hessian matrix can be approximated by either a diagonal matrix or a diagonally-dominant matrix. Since we usually deal with relatively low frequencies in seismic waveform inversion, it is not diagonally dominant and thus it is prohibitively expensive to compute the full or approximate Hessian matrix. By interpreting Fourier series with the inversion algorithms, we note that the Fourier series can be computed at an iteration step using any inversion algorithms such as the
Cheng, Jin; Hon, Yiu-Chung; Seo, Jin Keun; Yamamoto, Masahiro
2005-01-01
The Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches was held at Fudan University, Shanghai from 16-21 June 2004. The first conference in this series was held at the City University of Hong Kong in January 2002 and it was agreed to hold the conference once every two years in a Pan-Pacific Asian country. The next conference is scheduled to be held at Hokkaido University, Sapporo, Japan in July 2006. The purpose of this series of biennial conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries. In recent decades, interest in inverse problems has been flourishing all over the globe because of both the theoretical interest and practical requirements. In particular, in Asian countries, one is witnessing remarkable new trends of research in inverse problems as well as the participation of many young talents. Considering these trends, the second conference was organized with the chairperson Professor Li Tat-tsien (Fudan University), in order to provide forums for developing research cooperation and to promote activities in the field of inverse problems. Because solutions to inverse problems are needed in various applied fields, we entertained a total of 92 participants at the second conference and arranged various talks which ranged from mathematical analyses to solutions of concrete inverse problems in the real world. This volume contains 18 selected papers, all of which have undergone peer review. The 18 papers are classified as follows: Surveys: four papers give reviews of specific inverse problems. Theoretical aspects: six papers investigate the uniqueness, stability, and reconstruction schemes. Numerical methods: four papers devise new numerical methods and their applications to inverse problems. Solutions to applied inverse problems: four papers discuss concrete inverse problems such as scattering problems and inverse problems in
Wang, Yufeng; Cao, Xiaoming; He, Tingyao; Gao, Fei; Hua, Dengxin; Zhao, Meina
2015-12-01
The vibration-rotational Raman lidar system built in Xi'an, China (34.233°N, 108.911°E) was used to simultaneously detect atmospheric temperature, water vapor, and aerosols under different weather conditions. Temperature measurement examples showed good agreement with radiosonde data in terms of the lapse rates and heights of the inversion layer under the lower stratosphere. The statistical temperature error due to the signal-to-noise ratio is less than 1 K up to a height of 15 km, and is estimated to be less than 3 K below a height of 22 km. High-quality temperature data were collected from 70 nighttime observations from October 2013 to May 2014, and were used to analyze the temperature inversion characteristics at Xi'an, which is a typical city in the northwest of China. The tropopause height over the Xi'an area was almost 17-18 km, and the inversion layer often formed above the cloud layer. In the winter at night, inversions within the boundary layer can easily form with a high occurrence of ∼60% based on 47 nights from 01 November 2013 to 21 January 2014. Continuous observation of atmospheric temperature, water vapor (relative humidity), and aerosols was carried out during one night, and the relevant changes were analyzed in the boundary layer via the joint observation of atmospheric visibility, PM2.5 and PM10 from a ground visibility meter and from a monitoring site, which revealed that the temperature inversion layer has a great influence on the formation of fog and haze during the winter night and early morning. PMID:26836664
Manning, A. J.; O'Doherty, S.; Jones, A. R.; Simmonds, P. G.; Derwent, R. G.
2011-01-01
Methane (CH4) and nitrous oxide (N2O) have strong radiative properties in the Earth's atmosphere and both are regulated through the United Nations Framework Convention on Climate Change. Through this convention the United Kingdom is obliged to report an inventory of annual emission estimates from 1990. This paper describes a methodology that estimates emissions of CH4 and N2O completely independent of the inventory values. Emissions have been estimated for each year 1990-2007 for the United Kingdom and for NW Europe. The methodology combines high-frequency observations from Mace Head, a monitoring site on the west coast of Ireland, with an atmospheric dispersion model and an inversion system. The sensitivities of the inversion method to the modeling assumptions are reported. The 20 year Northern Hemisphere midlatitude baseline mixing ratios, growth rates, and seasonal cycles of both gases are also presented. The results indicate reasonable agreement between the inventory and inversion results for the United Kingdom for N2O over the entire period. For CH4 the agreement is poor in the 1990s but good in the 2000s. The UK CH4 inventory reported reduction from 1990-1992 to 2005-2007 (over 50%) is dominated by changes to landfill and coal mine emissions and is more than double the corresponding drop in the inversion estimated emissions (24%). The inversion results suggest that the United Kingdom has met its Kyoto commitment (-12.5%) but by a smaller margin (-14.3%) than reported (-17.3%). The results for NW Europe with the United Kingdom removed show reasonable agreement in trend, on average the inversion results for N2O are 25% lower and for CH4 21% higher.
Understanding the impact of model errors on the inverse modeling of MOPITT CO observations
Jiang, Zhe
Atmospheric carbon monoxide (CO) is a product of incomplete combustion and a byproduct of the oxidation of hydrocarbons. It plays a key role in controlling the oxidative capacity of the atmosphere since it is the main sink for the hydroxyl radical (OH), the primary tropospheric oxidant. As a result of its lifetime, CO is a useful tracer of long-range transport in models. However, estimates of the regional sources of CO are uncertain. Inverse modeling has become a widely used approach for better quantifying the sources, but a fundamental assumption in these inversions, which is typically not valid, is that the observations and models are unbiased. In this thesis, the GEOS-Chem model and observations of CO from the Measurement Of Pollution In The Troposphere (MOPITT) instrument are employed to study the impact of systematic model errors on inversion analyses of CO. The impact of the treatment of biogenic non-methane volatile organic compounds (NMVOCs), aggregation errors, and discrepancies in the meteorological fields and OH distribution on the CO source estimates are examined. The influence of vertical transport errors on the source estimates is assessed using newly available MOPITT version 5 (V5) retrievals in a comparative inversion analysis employing surface level, profile, and column data. To quantify the potential impact of discrepancies in long-range transport on the source estimates, a high-resolution, regional inversion over North America, with optimized lateral boundary conditions, was conducted and compared with the results of a global inversion. The influence of the spatial-temporal distribution of the observations on the source estimates was also assessed through a comparison of the inversion analyses of MOPITT data and aircraft data from the Intercontinental Transport Experiment -- North America, Phase A (INTEX-A) aircraft campaign. The results presented in the thesis provide a more comprehensive understanding of the potential impact of system model
International Nuclear Information System (INIS)
Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP. (geophysics, astronomy, and astrophysics)
Atmospheric pressure variations and abdominal aortic aneurysm rupture.
LENUS (Irish Health Repository)
Killeen, S D
2012-02-03
BACKGROUND: Ruptured abdominal aortic aneurysm (RAAA) presents with increased frequency in the winter and spring months. Seasonal changes in atmospheric pressure mirrors this pattern. AIM: To establish if there was a seasonal variation in the occurrence of RAAA and to determine if there was any association with atmospheric pressure changes. METHODS: A retrospective cohort-based study was performed. Daily atmospheric pressure readings for the region were obtained. RESULTS: There was a statistically significant monthly variation in RAAA presentation with 107 cases (52.5%) occurring from November to March. The monthly number of RAAA and the mean atmospheric pressure in the previous month were inversely related (r = -0.752, r (2) = 0.566, P = 0.03), and there was significantly greater daily atmospheric pressure variability on days when patients with RAAA were admitted. CONCLUSION: These findings suggest a relationship between atmospheric pressure and RAAA.
Dolman, A.J.; Shvidenko, A.; Schepaschenko, D.; Ciais, P.; Tchebakova, N.; Chen, T.; Molen, van der M.K.; Belelli Marchesini, L.; Maximov, T.C.; Maksyutov, S.; Schulze, E.D.
2012-01-01
We determine the net land to atmosphere flux of carbon in Russia, including Ukraine, Belarus and Kazakhstan, using inventory-based, eddy covariance, and inversion methods. Our high boundary estimate is -342 Tg C yr-1 from the eddy covariance method, and this is close to the upper bounds of the inven
QCD-instantons and conformal inversion symmetry
Energy Technology Data Exchange (ETDEWEB)
Klammer, D.
2006-07-15
Instantons are an essential and non-perturbative part of Quantum Chromodynamics, the theory of strong interactions. One of the most relevant quantities in the instanton calculus is the instanton-size distribution, which can be described on the one hand within the framework of instanton perturbation theory and on the other hand investigated numerically by means of lattice computations. A rapid onset of a drastic discrepancy between these respective results indicates that the underlying physics is not yet well understood. In this work we investigate the appealing possibility of a symmetry under conformal inversion of space-time leading to this deviation. The motivation being that the lattice data seem to be invariant under an inversion of the instanton size. Since the instanton solution of a given size turns into an anti-instanton solution having an inverted size under conformal inversion of space-time, we ask in a first investigation, whether this property is transferred to the quantum level. In order to introduce a new scale, which is indicated by the lattice data and corresponds to the average instanton size as inversion radius, we project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via stereographic projection. The radius of this sphere is associated with the average instanton size. The result for the instanton size-distribution projected onto the sphere agrees surprisingly well with the lattice data at qualitative level. The resulting symmetry under an inversion of the instanton size is almost perfect. (orig.)
Unwrapped phase inversion with an exponential damping
Choi, Yunseok
2015-07-28
Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.
Inverse kinematic-based robot control
Wolovich, W. A.; Flueckiger, K. F.
1987-01-01
A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.
Image Zooming Using Inverse Slantlet Transform
Directory of Open Access Journals (Sweden)
Ahlam Hanoon
2009-01-01
Full Text Available Digital image is widely used in computer applications. This paper introduces a proposed method of image zooming based upon inverse slantlet transform and image scaling. Slantlet transform (SLT is based on the principle of designing different filters for different scales. First we apply SLT on color image, the idea of transform color image into slant, where large coefficients are mainly the signal and smaller one represent the noise. By suitably modifying these coefficients , using scaling up image by box and Bartlett filters so that the image scales up to 2X2 and then inverse slantlet transform from modifying coefficients using to the reconstructed image . From the simulation result, it has been found that the reconstructed image is 2X2 larger than the image that found from the inverse without scaling up the coefficients.Comparison of image zooming using inverses SLT by box and Bartlett filters, found that, because of the linear interpolation done by using Bartlett the image appears to be smoother than the image obtained using a box filter. The performance of these techniques (image zooming using inverse SLT has been evaluated by computer programs with MATLAB 7.04 (R2007a language.
QCD-instantons and conformal inversion symmetry
International Nuclear Information System (INIS)
Instantons are an essential and non-perturbative part of Quantum Chromodynamics, the theory of strong interactions. One of the most relevant quantities in the instanton calculus is the instanton-size distribution, which can be described on the one hand within the framework of instanton perturbation theory and on the other hand investigated numerically by means of lattice computations. A rapid onset of a drastic discrepancy between these respective results indicates that the underlying physics is not yet well understood. In this work we investigate the appealing possibility of a symmetry under conformal inversion of space-time leading to this deviation. The motivation being that the lattice data seem to be invariant under an inversion of the instanton size. Since the instanton solution of a given size turns into an anti-instanton solution having an inverted size under conformal inversion of space-time, we ask in a first investigation, whether this property is transferred to the quantum level. In order to introduce a new scale, which is indicated by the lattice data and corresponds to the average instanton size as inversion radius, we project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via stereographic projection. The radius of this sphere is associated with the average instanton size. The result for the instanton size-distribution projected onto the sphere agrees surprisingly well with the lattice data at qualitative level. The resulting symmetry under an inversion of the instanton size is almost perfect. (orig.)
Inverse problems in color device characterization
Bala, Raja
2003-06-01
Color device characterization involves deriving a mathematical description of the device response to a known input. This is known as the forward characterization transform. In the final application, this transform must be inverted to generate a mapping that determines the device input required for a desired response. This paper focuses on the inverse characterization transform for hardcopy devices. This can be discussed for two cases: (1) Devices employing 3 channels A colorimetrically unique inverse mapping exists provided the input signal is within the achievable domain of the device. When the forward transform is described by an analytic model, the inverse can be obtained by search-based techniques. When the forward transform is obtained empirically, the inverse transform is estimated by 3-D fitting or interpolation methods. (2) Devices employing > 3 channels. The inverse mapping is not colorimetrically unique, and therefore ill-posed. Additional constraints must be incorporated to ensure uniqueness. As an example, the case of CMYK printer characterization will be discussed. Constraints via undercolor removal and gray component replacement will be presented. Other methods that explicitly constrain CMYK combinations based on criteria such moire minimization will also be described. For both cases, the problem of out-of-domain mapping and noise considerations will be discussed.
Improved SOLA Inversions of MDI Data
Larsen, R. M.; Christensen-Dalsgaard, J.; Kosovichev, A. G.; Schou, J.
We present a new version of 2d-SOLA, where the target functions have been modified to match the behavior of the mode kernels near the rotation axis and to minimize near-surface contributions. Inversion of artificial data show that these modifications significantly improve the effective resolution near the pole, which allows us to assess the reliability of the high-latitude features seen by other inversion methods. Most importantly, our new inversions seem to confirm the detection of a submerged polar jet previously seen in the 2d-RLS inversions reported by Schou et al. 1998. A test of the robustness of the improved method is carried out by inverting artificial data from the MDI Hare and Hounds exercise. We analyze the averaging kernels and error propagation of the method, and also describe the error-correlation between different points in the solution, the latter being a potential source of spurious features in the solutions as pointed out by Howe and Thompson, 1996. So far, helioseismic datasets given in the form of a-coefficients have been inverted under the assumption that the errors in different a-coefficients are uncorrelated. The MDI peak-bagging procedure, however, does produce estimates of the error-correlation between a-coefficients within the same multiplet. Here we investigate the effect of including this knowledge in the inversions.
The ray-tracing mapping operator in an asymmetric atmosphere
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In a spherically symmetric atmosphere, the refractive index profile is retrieved from bending angle measurements through Abel integral transform. As horizontal refractivity inhomogeneity becomes significant in the moist low atmosphere, the error in refractivity profile obtained from Abel inversion reaches about 10%. One way to avoid this error is to directly assimilate bending angle profile into numerical weather models. This paper discusses the 2D ray-tracing mapping operator for bending angle in an asymmetric atmosphere. Through simulating computations, the retrieval error of the refractivity in horizontal inhomogeneity is assessed. The step length of 4 rank Runge-Kutta method is also tested.
Alexe, M.; Bergamaschi, P.; Segers, A.; Detmers, R.; Butz, A.; Hasekamp, O.; Guerlet, S.; Parker, R.; Boesch, H.; Frankenberg, C.; Scheepmaker, R. A.; Dlugokencky, E.; Sweeney, C.; Wofsy, S. C.; Kort, E. A.
2014-05-01
Beginning in 2009 new space-borne observations of dry-air column-averaged mole fractions of atmospheric methane (XCH4) became available from the Thermal And Near infrared Sensor for carbon Observations-Fourier Transform Spectrometer (TANSO-FTS) instrument onboard the Greenhouse Gases Observing SATellite (GOSAT). Until April 2012 concurrent CH4 measurements were provided by the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) instrument onboard ENVISAT. The GOSAT and SCIAMACHY XCH4 retrievals can be compared during their circa 32 month period of overlap. We estimate monthly average CH4 emissions between January 2010 and December 2011, using the TM5-4DVAR inverse modeling system. Additionally, high-accuracy measurements from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) global air sampling network are used, providing strong constraints of the remote surface atmosphere. We discuss five inversion scenarios that make use of different GOSAT and SCIAMACHY XCH4 retrieval products, including two sets of GOSAT proxy retrievals processed independently by the Netherlands Institute for Space Research (SRON)/Karlsruhe Institute of Technology (KIT), and the University of Leicester (UL), and the RemoTeC "Full-Physics" (FP) XCH4 retrievals available from SRON/KIT. 2 year average emission maps show a~good overall agreement among all GOSAT-based inversions, and compared to the SCIAMACHY-based inversion, with consistent flux adjustment patterns, particularly across Equatorial Africa and North America. The inversions are validated against independent shipboard and aircraft observations, and XCH4 measurements available from the Total Carbon Column Observing Network (TCCON). All GOSAT and SCIAMACHY inversions show very similar validation performance.
Nucleation of atmospheric particles
Curtius J
2009-01-01
Two types of particles exist in the atmosphere, primary and secondary particles. While primary particles such as soot, mineral dust, sea salt particles or pollen are introduced directly as particles into the atmosphere, secondary particles are formed in the atmosphere by condensation of gases. The formation of such new aerosol particles takes place frequently and at a broad variety of atmospheric conditions and geographic locations. A considerable fraction of the atmospheric particles is form...
A regional high-resolution carbon flux inversion of North America for 2004
Schuh, A. E.; Denning, A. S.; Corbin, K. D.; Baker, I. T.; Uliasz, M.; Parazoo, N.; Andrews, A. E.; Worthy, D. E. J.
2010-05-01
Resolving the discrepancies between NEE estimates based upon (1) ground studies and (2) atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous global inversions including the Transcom suite of inversions have utilized inversion regions formed by collapsing biome-similar grid cells into larger aggregated regions. An extreme example of this might be where corrections to NEE imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO2 mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to Gross Primary Productivity (GPP) and Ecosystem Respiration (ER) is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the Parameterized Chemical Transport Model (PCTM) models is used to forge a connection between upwind biosphere fluxes and downwind observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a mean estimate 0.57 Pg/yr sink in North America
FAST INVERSION OF SOLAR Ca II SPECTRA
Energy Technology Data Exchange (ETDEWEB)
Beck, C. [National Solar Observatory (NSO), 3010 Coronal Loop, Sunspot, NM 88349 (United States); Choudhary, D. P. [Department of Physics and Astronomy, California State University, Northridge (CSUN), CA 91330-8268 (United States); Rezaei, R. [Kiepenheuer-Institut für Sonnenphysik (KIS), Schöneckstr. 6, D-79104 Freiburg (Germany); Louis, R. E., E-mail: cbeck@nso.edu [Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)
2015-01-10
We present a fast (<<1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log τ ∼ –3 and increases to values of 2.5 and 4 at log τ = –6 in the quiet Sun and the umbra, respectively.
Inversion for seismic anisotropy using genetic algorithms
Energy Technology Data Exchange (ETDEWEB)
Horne, S. (British Geological Survey, Edinburgh (United Kingdom) Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics); MacBeth, C. (Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics)
1994-11-01
A general inversion scheme based on a genetic algorithm is developed to invert seismic observations for anisotropic parameters. The technique is applied to the inversion of shear-wave observations from two azimuthal VSP data sets from the Conoco test site in Oklahoma. Horizontal polarizations and time-delays are inverted for hexagonal and orthorhombic symmetries. The model solutions are consistent with previous studies using trial and error matching of full waveform synthetics. The shear-wave splitting observations suggest the presence of a shear-wave line singularity and are consistent with a dipping fracture system which is known to exist at the test site. Application of the inversion scheme prior to full waveform modeling demonstrates that a considerable saving in time is possible while retaining the same degree of accuracy.
Probabilistic inversion for chicken processing lines
Energy Technology Data Exchange (ETDEWEB)
Cooke, Roger M. [Department of Mathematics, Delft University of Technology, Delft (Netherlands)]. E-mail: r.m.cooke@ewi.tudelft.nl; Nauta, Maarten [Microbiological Laboratory for Health Protection RIVM, Bilthoven (Netherlands); Havelaar, Arie H. [Microbiological Laboratory for Health Protection RIVM, Bilthoven (Netherlands); Fels, Ine van der [Microbiological Laboratory for Health Protection RIVM, Bilthoven (Netherlands)
2006-10-15
We discuss an application of probabilistic inversion techniques to a model of campylobacter transmission in chicken processing lines. Such techniques are indicated when we wish to quantify a model which is new and perhaps unfamiliar to the expert community. In this case there are no measurements for estimating model parameters, and experts are typically unable to give a considered judgment. In such cases, experts are asked to quantify their uncertainty regarding variables which can be predicted by the model. The experts' distributions (after combination) are then pulled back onto the parameter space of the model, a process termed 'probabilistic inversion'. This study illustrates two such techniques, iterative proportional fitting (IPF) and PARmeter fitting for uncertain models (PARFUM). In addition, we illustrate how expert judgement on predicted observable quantities in combination with probabilistic inversion may be used for model validation and/or model criticism.
Tabu optimization for matched field inversion
Michalopoulou, Zoi-Heleni; Ghosh-Dastidar, Urmi
2002-11-01
Matched field processing is a powerful tool for source localization and geoacoustic inversion. Because of significant environmental and geometry uncertainties, however, matched field processing usually involves multiparameter searches. To facilitate these searches, global optimization techniques such as genetic algorithms and simulated annealing have been successfully employed. In this work, a different approach, tabu, is implemented for optimization in matched field inversion. Tabu is a technique relying on the use of memory; it searches for the global maximum of the objective function through a navigation process that avoids already revisited models, also making use of aspiration criteria and diversification for faster convergence. The tabu performance in localization and geoacoustic inversion is demonstrated through experimentation with both synthetic and real (SWellEX 96) data. The approach is shown to provide reliable estimates in an efficient manner. [Work supported by ONR.
Inverse Folding of RNA Pseudoknot Structures
Gao, James Z M; Reidys, Christian M
2010-01-01
Background: RNA exhibits a variety of structural configurations. Here we consider a structure to be tantamount to the noncrossing Watson-Crick and \\pairGU-base pairings (secondary structure) and additional cross-serial base pairs. These interactions are called pseudoknots and are observed across the whole spectrum of RNA functionalities. In the context of studying natural RNA structures, searching for new ribozymes and designing artificial RNA, it is of interest to find RNA sequences folding into a specific structure and to analyze their induced neutral networks. Since the established inverse folding algorithms, {\\tt RNAinverse}, {\\tt RNA-SSD} as well as {\\tt INFO-RNA} are limited to RNA secondary structures, we present in this paper the inverse folding algorithm {\\tt Inv} which can deal with 3-noncrossing, canonical pseudoknot structures. Results: In this paper we present the inverse folding algorithm {\\tt Inv}. We give a detailed analysis of {\\tt Inv}, including pseudocodes. We show that {\\tt Inv} allows to...
Inverse Scattering Approach to Improving Pattern Recognition
Energy Technology Data Exchange (ETDEWEB)
Chapline, G; Fu, C
2005-02-15
The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the ''wake-sleep'' algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.
Optimization and Inverse Design of Pump Impeller
International Nuclear Information System (INIS)
As for pump impellers, the meridional flow channel and blade-to-blade flow channel, which are relatively independent of each other but greatly affect performance, are designed in parallel. And the optimization design is used for the former and the inverse design is used for the latter. To verify this new design method, a mixed-flow impeller was made. Next, we use Tani's inverse design method for the blade loading of inverse design. It is useful enough to change a deceleration rate freely and greatly. And it can integrally express the rear blade loading of various methods by NACA, Zangeneh and Stratford. We controlled the deceleration rate by shape parameter m, and its value became almost same with Tani's recommended value of the laminar airfoil.
Inverse osmotic process for radioactive laundry waste
International Nuclear Information System (INIS)
Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount. (Furukawa, Y.)
Geometric theory of inversion and seismic imaging
Lau, August
2015-01-01
The goal of inversion is to estimate the model which generates the data of observations with a specific modeling equation. One general approach to inversion is to use optimization methods which are algebraic in nature to define an objective function. This is the case for objective functions like minimizing RMS of amplitude, residual traveltime error in tomography, cross correlation and sometimes mixing different norms (e.g. L1 of model + L2 of RMS error). Algebraic objective function assumes that the optimal solution will come up with the correct geometry. It is sometimes difficult to understand how one number (error of the fit) could miraculously come up with the detail geometry of the earth model. If one models the earth as binary rock parameters (only two values for velocity variation), one could see that the geometry of the rugose boundaries of the geobodies might not be solvable by inversion using algebraic objective function.
Optimization and Inverse Design of Pump Impeller
Miyauchi, S.; Zhu, B.; Luo, X.; Piao, B.; Matsumoto, H.; Sano, M.; Kassai, N.
2012-11-01
As for pump impellers, the meridional flow channel and blade-to-blade flow channel, which are relatively independent of each other but greatly affect performance, are designed in parallel. And the optimization design is used for the former and the inverse design is used for the latter. To verify this new design method, a mixed-flow impeller was made. Next, we use Tani's inverse design method for the blade loading of inverse design. It is useful enough to change a deceleration rate freely and greatly. And it can integrally express the rear blade loading of various methods by NACA, Zangeneh and Stratford. We controlled the deceleration rate by shape parameter m, and its value became almost same with Tani's recommended value of the laminar airfoil.
A Study of the Relationship between Air Pollutants and Inversion in the ABL over the City of Lanzhou
Institute of Scientific and Technical Information of China (English)
ZHANG Qiang; LI Hongyu
2011-01-01
By analyzing the pollutant concentrations over the urban area and over the rural area of the city of Lanzhou, Gansu Province, China, the relationships between the daytime inversion intensity and the pollutant concentration in the atmospheric boundary layer (ABL) are studied with the consideration of wind speed and direction, potential temperature, specific humidity profiles, pollutant concentration in the ABL, the surface temperature, and global radiation on the ground. It was shown that the daytime inversion is a key factor in controlling air pollution concentration. A clear and positive feedback process between the daytime inversion intensity and the air pollutants over the city was found through the analysis of influences of climatic and environmental factors. The mechanisms by which the terrain and air pollutants affect the formation of the daytime inversion are discussed. The solar radiation as the essential energy source to maintain the inversion is analyzed, as are various out-forcing factors affecting the inversion and air pollutants. At last, aphysical frame of relationships of air pollution with daytime inversion and the local and out-forcing factors over Lanzhou is built.
Ensemble Kalman methods for inverse problems
International Nuclear Information System (INIS)
The ensemble Kalman filter (EnKF) was introduced by Evensen in 1994 (Evensen 1994 J. Geophys. Res. 99 10143–62) as a novel method for data assimilation: state estimation for noisily observed time-dependent problems. Since that time it has had enormous impact in many application domains because of its robustness and ease of implementation, and numerical evidence of its accuracy. In this paper we propose the application of an iterative ensemble Kalman method for the solution of a wide class of inverse problems. In this context we show that the estimate of the unknown function that we obtain with the ensemble Kalman method lies in a subspace A spanned by the initial ensemble. Hence the resulting error may be bounded above by the error found from the best approximation in this subspace. We provide numerical experiments which compare the error incurred by the ensemble Kalman method for inverse problems with the error of the best approximation in A, and with variants on traditional least-squares approaches, restricted to the subspace A. In so doing we demonstrate that the ensemble Kalman method for inverse problems provides a derivative-free optimization method with comparable accuracy to that achieved by traditional least-squares approaches. Furthermore, we also demonstrate that the accuracy is of the same order of magnitude as that achieved by the best approximation. Three examples are used to demonstrate these assertions: inversion of a compact linear operator; inversion of piezometric head to determine hydraulic conductivity in a Darcy model of groundwater flow; and inversion of Eulerian velocity measurements at positive times to determine the initial condition in an incompressible fluid. (paper)
Trimming and procrastination as inversion techniques
Backus, George E.
1996-12-01
By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.
Dispersion analysis with inverse dielectric function modelling.
Mayerhöfer, Thomas G; Ivanovski, Vladimir; Popp, Jürgen
2016-11-01
We investigate how dispersion analysis can profit from the use of a Lorentz-type description of the inverse dielectric function. In particular at higher angles of incidence, reflectance spectra using p-polarized light are dominated by bands from modes that have their transition moments perpendicular to the surface. Accordingly, the spectra increasingly resemble inverse dielectric functions. A corresponding description can therefore eliminate the complex dependencies of the dispersion parameters, allow their determination and facilitate a more accurate description of the optical properties of single crystals. PMID:27294550
Inverse problem for axial-deformed potentials
International Nuclear Information System (INIS)
In the literature about Inverse Problems there are no tractable methods for construction of nonspherical potentials from the asymptotic wave function. This problem turned out to be solved in special cases. The methods of reconstruction from scattering data are given for the class of potentials admitting the separation of variables in spheroidal coordinates. This is the first case when the agorithms of the inverse problem solution for spherically-nonsymmetrical local potentials can practically be realised. The modifications of the formalisms of Regge-Newton-Sabatier and finite-difference approximation of Hooshyar-Rasavy are considered
APPROXIMATE AMENABILITY OF CERTAIN INVERSE SEMIGROUP ALGEBRAS
Institute of Scientific and Technical Information of China (English)
Mehdi ROSTAMI; Abdolrasoul POURABBAS; Morteza ESSMAILI
2013-01-01
In this article,the approximate amenability of semigroup algebra e1(S) is investigated,where S is a uniformly locally finite inverse semigroup.Indeed,we show that for a uniformly locally finite inverse semigroup S,the notions of amenability,approximate amenability and bounded approximate amenability of e1 (S) are equivalent.We use this to give a direct proof of the approximate amenability of e1(S) for a Brandt semigroup S.Moreover,we characterize the approximate amenability of e1(S),where S is a uniformly locally finite band semigroup.
Inverse scattering of dispersive stratified structures
Skaar, Johannes
2012-01-01
We consider the inverse scattering problem of retrieving the structural parameters of a stratified medium consisting of dispersive materials, given knowledge of the complex reflection coefficient in a finite frequency range. It is shown that the inverse scattering problem does not have a unique solution in general. When the dispersion is sufficiently small, such that the time-domain Fresnel reflections have durations less than the round-trip time in the layers, the solution is unique and can be found by layer peeling. Numerical examples with dispersive and lossy media are given, demonstrating the usefulness of the method for e.g. THz technology.
Ill-posed inverse problems in economics
Horowitz, Joel
2013-01-01
A parameter of an econometric model is identified if there is a one-to-one or many-to-one mapping from the population distribution of the available data to the parameter. Often, this mapping is obtained by inverting a mapping from the parameter to the population distribution. If the inverse mapping is discontinuous, then estimation of the parameter usually presents an ill-posed inverse problem. Such problems arise in many settings in economics and other fields in which the parameter of intere...
Direct and inverse scattering for viscoelastic media
International Nuclear Information System (INIS)
A time domain approach to direct and inverse scattering problems for one-dimensional viscoelastic media is presented. Such media can be characterized as having a constitutive relation between stress and strain which involves the past history of the strain through a memory function, the relaxation modulus. In the approach in this article, the relaxation modulus of a material is shown to be related to the reflection properties of the material. This relation provides a constructive algorithm for direct and inverse scattering problems. A numerical implementation of this algorithm is tested on several problems involving realistic relaxation moduli
Optimal Transport for Seismic Full Waveform Inversion
Engquist, Bjorn; Yang, Yunan
2016-01-01
Full waveform inversion is a successful procedure for determining properties of the earth from surface measurements in seismology. This inverse problem is solved by a PDE constrained optimization where unknown coefficients in a computed wavefield are adjusted to minimize the mismatch with the measured data. We propose using the Wasserstein metric, which is related to optimal transport, for measuring this mismatch. Several advantageous properties are proved with regards to convexity of the objective function and robustness with respect to noise. The Wasserstein metric is computed by solving a Monge-Ampere equation. We describe an algorithm for computing its Frechet gradient for use in the optimization. Numerical examples are given.
Inverse splicing of a group II intron.
Jarrell, K A
1993-01-01
I describe the self-splicing of an RNA that consists of exon sequences flanked by group II intron sequences. I find that this RNA undergoes accurate splicing in vitro, yielding an excised exon circle. This splicing reaction involves the joining of the 5' splice site at the end of an exon to the 3' splice site at the beginning of the same exon; thus, I term it inverse splicing. Inverse splicing provides a potential mechanism for exon scrambling, for exon deletion in alternative splicing pathwa...
Inverse and Ill-posed Problems Theory and Applications
Kabanikhin, S I
2011-01-01
The text demonstrates the methods for proving the existence (if et all) and finding of inverse and ill-posed problems solutions in linear algebra, integral and operator equations, integral geometry, spectral inverse problems, and inverse scattering problems. It is given comprehensive background material for linear ill-posed problems and for coefficient inverse problems for hyperbolic, parabolic, and elliptic equations. A lot of examples for inverse problems from physics, geophysics, biology, medicine, and other areas of application of mathematics are included.
A modified Moebius inverse formula and its applications in physics
International Nuclear Information System (INIS)
A new theorem of inverse formula is introduced for a kind of infinite series. Thus some new results for important inverse problems in physics are presented in this paper. These are the inverse problems for obtaining the phonon density of states, the inverse blackbody radiation problem for remote sensing, and the solution for inverse Ewald summation. Of more importance, it shows the possibility of the application of number theory to physical problems. (author). 12 refs
Inversion improves the recognition of facial expression in thatcherized images
Psalta, Lilia; Andrews, Timothy J.
2014-01-01
The Thatcher illusion provides a compelling example of the face inversion effect. However, the marked effect of inversion in the Thatcher illusion contrasts to other studies that report only a small effect of inversion on the recognition of facial expressions. To address this discrepancy, we compared the effects of inversion and thatcherization on the recognition of facial expressions. We found that inversion of normal faces caused only a small reduction in the recognition of facial expressio...
Application of homotopy parameter inversion method in Miyun Reservoir
Institute of Scientific and Technical Information of China (English)
LI Xin; LI Yong; CHEN Duowei
2009-01-01
The large-scale convergence of homotopy parametric inversion method on the water quality model parameters calculated was used, with application in parametric inversion calculation of total phosphorus of Beijing Miyun Reservoir. Through calculated and compared the error of sedimentation rate by homotopy parametric inversion method and genetic inversion calculation method, the results indicate that homotopy parametric inversion method has good stability, calculating speed, and even if the initial selection away from the objective function, the solution still has a good convergence.
Inversion, error analysis, and validation of GPS/MET occultation data
Directory of Open Access Journals (Sweden)
A. K. Steiner
Full Text Available The global positioning system meteorology (GPS/MET experiment was the first practical demonstration of global navigation satellite system (GNSS-based active limb sounding employing the radio occultation technique. This method measures, as principal observable and with millimetric accuracy, the excess phase path (relative to propagation in vacuum of GNSS-transmitted radio waves caused by refraction during passage through the Earth's neutral atmosphere and ionosphere in limb geometry. It shows great potential utility for weather and climate system studies in providing an unique combination of global coverage, high vertical resolution and accuracy, long-term stability, and all-weather capability. We first describe our GPS/MET data processing scheme from excess phases via bending angles to the neutral atmospheric parameters refractivity, density, pressure and temperature. Special emphasis is given to ionospheric correction methodology and the inversion of bending angles to refractivities, where we introduce a matrix inversion technique (instead of the usual integral inversion. The matrix technique is shown to lead to identical results as integral inversion but is more directly extendable to inversion by optimal estimation. The quality of GPS/MET-derived profiles is analyzed with an error estimation analysis employing a Monte Carlo technique. We consider statistical errors together with systematic errors due to upper-boundary initialization of the retrieval by a priori bending angles. Perfect initialization and properly smoothed statistical errors allow for better than 1 K temperature retrieval accuracy up to the stratopause. No initialization and statistical errors yield better than 1 K accuracy up to 30 km but less than 3 K accuracy above 40 km. Given imperfect initialization, biases >2 K propagate down to below 30 km height in unfavorable realistic cases. Furthermore, results of a statistical validation of GPS/MET profiles through comparison
Atmospheric composition change: Ecosystems–Atmosphere interactions
DEFF Research Database (Denmark)
Fowler, D.; Pilegaard, Kim; Sutton, M.A.;
2009-01-01
Ecosystems and the atmosphere: This review describes the state of understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere. The gases covered include NO, NO2, HONO, HNO3, NH3, SO2, DMS, Biogenic VOC, O3, CH4, N2O and particles...
Directory of Open Access Journals (Sweden)
Y. Heng
2015-10-01
Full Text Available An inverse transport modeling approach based on the concepts of sequential importance resampling and parallel computing is presented to reconstruct altitude-resolved time series of volcanic emissions, which often can not be obtained directly with current measurement techniques. A new inverse modeling and simulation system, which implements the inversion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC is developed to provide reliable transport simulations of volcanic sulfur dioxide (SO2. In the inverse modeling system MPTRAC is used to perform two types of simulations, i. e., large-scale ensemble simulations for the reconstruction of volcanic emissions and final transport simulations. The transport simulations are based on wind fields of the ERA-Interim meteorological reanalysis of the European Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent SO2 emission time series is also based on Atmospheric Infrared Sounder (AIRS satellite observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011, with complex emission patterns, is considered for method validation. Meteosat Visible and InfraRed Imager (MVIRI near-real-time imagery data are used to validate the temporal development of the reconstructed emissions. Furthermore, the altitude distributions of the emission time series are compared with top and bottom altitude measurements of aerosol layers obtained by the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS satellite instruments. The final transport simulations provide detailed spatial and temporal information on the SO2 distributions of the Nabro eruption. The SO2 column densities from the simulations are in good qualitative agreement with the AIRS observations. Our new inverse modeling and simulation system is expected to become a useful tool to also study
Incremental Condition estimation with Inverse Triangular Factors
Czech Academy of Sciences Publication Activity Database
Duintjer Tebbens, Jurjen
Novi Sad: Faculty of Science, University of Novi Sad, 2010. s. 74-74. [ALA 2010. Applied Linear Algebra. 24.05.2010-28.05.2010, Novi Sad] Institutional research plan: CEZ:AV0Z10300504 Keywords : condition estimation * inverse Choleski decomposition * incremental norm estimation Subject RIV: BA - General Mathematics
Magnetotelluric data inversion with seismic data constraint
Institute of Scientific and Technical Information of China (English)
SONG Wei-qi; SUN Shan
2005-01-01
In the paper we present a new method to invert the interior structure in the basement or ancient hidden hill by using magnetotelluric (MT) data with seismic data constraint. We first obtain the thickness and resistivity of each layer above the basement or buried hill by the inversion of seismic and log data and create a geoelectrical model for the layers above the basement or hidden hill. Then with the reference to the inversion of 1D MT data, a geoelectrical model for the layers below the basement or hidden hill is created. On the basis of the above initial model, we present an effective and practical forward method, i.e., a model-matched approach to conduct forward inversion arithmetic. Finally, by the method of conjugate gradient iteration, a forward and backward iterative calculation is made. Taking No. 618 profile of Shengli Oil Field as an example, we have found out that the tectonic information that is unreflective in the seismic data below the basement is better reflected in the inversion result.
Nonlinear approximation with dictionaries,.. II: Inverse estimates
DEFF Research Database (Denmark)
Gribonval, Rémi; Nielsen, Morten
In this paper we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for separated decomposable dictionaries in Hilbert spaces, which generalize the notion of joint block-diagonal mutually...
Nonlinear approximation with dictionaries. II. Inverse Estimates
DEFF Research Database (Denmark)
Gribonval, Rémi; Nielsen, Morten
2006-01-01
In this paper, which is the sequel to [16], we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for blockwise incoherent dictionaries in Hilbert spaces, which generalize the notion of joint block...
Frame approximation of pseudo-inverse operators
DEFF Research Database (Denmark)
Christensen, Ole
2001-01-01
Let T denote an operator on a Hilbert space (H, [.,.]), and let {f(i)}(i=1)(infinity) be a frame for the orthogonal complement of the kernel NT. We construct a sequence of operators {Phi (n)} of the form Phi (n) (.) = Sigma (n)(i=1) [., g(t)(n)]f(i) which converges to the psuedo-inverse T+ of T...
Learning from Data as an Inverse Problem
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra
Centre de Recerca Matematica: Barcelona, 2004. s. 19-20. [MFLT 2004. 18.06.2004-23.06.2004, Barcelona] Institutional research plan: CEZ:AV0Z1030915 Keywords : learning from data * regularization * inverse problems * kernel methods Subject RIV: BA - General Mathematics
Neural Network Learning as an Inverse Problem
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra
2005-01-01
Roč. 13, č. 5 (2005), s. 551-559. ISSN 1367-0751 R&D Projects: GA AV ČR 1ET100300517 Institutional research plan: CEZ:AV0Z10300504 Keywords : learning from data * generalization * empirical error functional * inverse problem * evaluation operator * kernel methods Subject RIV: BA - General Mathematics Impact factor: 0.382, year: 2005
Laplace's 1774 Memoir on Inverse Probability
Stigler, Stephen M.
1986-01-01
Laplace's first major article on mathematical statistics was published in 1774. It is arguably the most influential article in this field to appear before 1800, being the first widely read presentation of inverse probability and its application to both binomial and location parameter estimation. After a brief introduction, and English translation of this epochal memoir is given.
Direct and inverse problems of infrared tomography
DEFF Research Database (Denmark)
Sizikov, Valery S.; Evseev, Vadim; Fateev, Alexander;
2016-01-01
The problems of infrared tomography-direct (the modeling of measured functions) and inverse (the reconstruction of gaseous medium parameters)-are considered with a laboratory burner flame as an example of an application. The two measurement modes are used: active (ON) with an external IR source and...
Parallel Seismic Inversion for Shared Memory Systems
Hysing, Andreas Dreyer
2010-01-01
In this thesis will explore how a scientific application forseismic inversion can take advantage of multi-core programming on x86 architecture. The thesis will focus on most effective domain divisions, communication patterns and multithreaded scalability. Performance comparison withthe original codes will be included, as well as an evaluation of thedevelopment effort required for implementing such techniques.
Adaptive regularization of earthquake slip distribution inversion
Wang, Chisheng; Ding, Xiaoli; Li, Qingquan; Shan, Xinjian; Zhu, Jiasong; Guo, Bo; Liu, Peng
2016-04-01
Regularization is a routine approach used in earthquake slip distribution inversion to avoid numerically abnormal solutions. To date, most slip inversion studies have imposed uniform regularization on all the fault patches. However, adaptive regularization, where each retrieved parameter is regularized differently, has exhibited better performances in other research fields such as image restoration. In this paper, we implement an investigation into adaptive regularization for earthquake slip distribution inversion. It is found that adaptive regularization can achieve a significantly smaller mean square error (MSE) than uniform regularization, if it is set properly. We propose an adaptive regularization method based on weighted total least squares (WTLS). This approach assumes that errors exist in both the regularization matrix and observation, and an iterative algorithm is used to solve the solution. A weight coefficient is used to balance the regularization matrix residual and the observation residual. An experiment using four slip patterns was carried out to validate the proposed method. The results show that the proposed regularization method can derive a smaller MSE than uniform regularization and resolution-based adaptive regularization, and the improvement in MSE is more significant for slip patterns with low-resolution slip patches. In this paper, we apply the proposed regularization method to study the slip distribution of the 2011 Mw 9.0 Tohoku earthquake. The retrieved slip distribution is less smooth and more detailed than the one retrieved with the uniform regularization method, and is closer to the existing slip model from joint inversion of the geodetic and seismic data.
The inverse problem of bioelectricity: an evaluation
Oosterom, A. van
2012-01-01
This invited paper presents a personal view on the current status of the solution to the inverse problem of bioelectricity. Its focus lies on applications in the field of electrocardiography. The topic discussed is also relevant in other medical domains, such as electroencephalography, electroneurog
Inverse Time-Dependent Quantum Mechanics
Lemm, J C
2000-01-01
Using a new Bayesian method for solving inverse quantum problems, potentialsof quantum systems are reconstructed from coordinate measurements innon-stationary states. The approach is based on two basic inputs: 1. alikelihood model, providing the probabilistic description of the measurementprocess as given by the axioms of quantum mechanics, and 2. additional "apriori" information implemented in form of stochastic processes overpotentials.
An Inversion Recovery NMR Kinetics Experiment
Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping
2011-01-01
A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…
Identification of Selective ERRγ Inverse Agonists
Directory of Open Access Journals (Sweden)
Jina Kim
2016-01-01
Full Text Available GSK5182 (4 is currently one of the lead compounds for the development of estrogen-related receptor gamma (ERRγ inverse agonists. Here, we report the design, synthesis, pharmacological and in vitro absorption, distribution, metabolism, excretion, toxicity (ADMET properties of a series of compounds related to 4. Starting from 4, a series of analogs were structurally modified and their ERRγ inverse agonist activity was measured. A key pharmacophore feature of this novel class of ligands is the introduction of a heterocyclic group for A-ring substitution in the core scaffold. Among the tested compounds, several of them are potent ERRγ inverse agonists as determined by binding and functional assays. The most promising compound, 15g, had excellent binding selectivity over related subtypes (IC50 = 0.44, >10, >10, and 10 μM at the ERRγ, ERRα, ERRβ, and ERα subtypes, respectively. Compound 15g also resulted in 95% transcriptional repression at a concentration of 10 μM, while still maintaining an acceptable in vitro ADMET profile. This novel class of ERRγ inverse agonists shows promise in the development of drugs targeting ERRγ-related diseases.
Inverse scattering problem in relativistic quasiclassical approximation
International Nuclear Information System (INIS)
Inverse scattering problem is solved on the basis of quasipotential approach in quantum field theory within the framework of relativistic quasiclassical approximation. Formulas of quasipotential restoration by phase shifts are derived. Cases of non-relativistic and ultra-relativistic approximations are investigated
Inverse problem in neutron transport and radiation
International Nuclear Information System (INIS)
In this work the LTSN method is applied to solve a inverse problem which consists on the determination of the incident angular fluxes at the boundary from the known values of the scalar flux at interior points. Numerical simulations are presented. (author)
Using GPU Programming for Inverse Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
David Gerts; N. Fredette; H. Wimberly
2010-07-01
The Idaho National Laboratory (INL) has developed a detector that relies heavily on computationally expensive inverse spectroscopy algorithms to determine probabilistic three dimensional mappings of the source and its intensity. This inverse spectroscopy algorithm applies to material accountability due to the potential to determine where nuclear sources are present as a function of time and space. And yet because the novel algorithm can become prohibitively expensive on a standard desktop PC, the INL has incorporated new hardware from the commercial graphics community. General programming for graphics processing units (GPUs) is not a new concept. However, the application of GPUs to evidence theory-based inverse spectroscopy is both novel and particularly apropos. Improvements while using a (slightly upgraded) standard PC are approximately three orders of magnitude, making a ten hour computation in less than four seconds. This significantly changes the concept of prohibitively expensive calculations and makes application to materials accountability possible in near real time. Indeed, the sensor collection time is now expected to dominate the time required to determine the source and its intensity, instead of the inverse spectroscopy method.
Modeling and Inversion of Scattered Surface waves
Riyanti, C.D.
2005-01-01
In this thesis, we present a modeling method based on a domain-type integral representation for waves propagating along the surface of the Earth which have been scattered in the vicinity of the source or the receivers. Using this model as starting point, we formulate an inversion scheme to estimat
Inverse photoemission in strongly correlated electron systems
Eder, R; Ohta, Y.
1996-01-01
Based on exact results for small clusters of t-J models, we point out the existence of several distinct channels in the inverse photoemission (IPSE) spectrum. Holelike quasiparticles can either be annihilated completely or leave behind a variable number of spin excitations, which formed the dressing
Inverse acoustic problem of N homogeneous scatterers
DEFF Research Database (Denmark)
Berntsen, Svend
The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields at a...
Realistic Semiconductor Heterostructures design using Inverse Scattering
Perotti, Luca; Bessis, Daniel
2003-01-01
We discuss the construction of optimized electronic filters using inverse scattering methods. We study a wide range of densities and temperatures, room temperature included. Discretization methods of the potential (including the self-consistent potential of the conduction electrons) are worked out that retain all its properties.
Inverse scattering problem in turbulent magnetic fluctuations
Treumann, R A; Narita, Y
2016-01-01
We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gel$'$fand-Levitan-Marchenko equation of quantum mechanical scattering theory.
A Theory of Truncated Inverse Sampling
Chen, Xinjia
2008-01-01
In this paper, we have established a new framework of truncated inverse sampling for estimating mean values of non-negative random variables such as binomial, Poisson, hyper-geometrical, and bounded variables. We have derived explicit formulas and computational methods for designing sampling schemes to ensure prescribed levels of precision and confidence for point estimators. Moreover, we have developed interval estimation methods.
Acoustic tomography in the atmospheric surface layer
Directory of Open Access Journals (Sweden)
A. Ziemann
Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.
Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.
Tectonic forward modelling of positive inversion structures
Energy Technology Data Exchange (ETDEWEB)
Brandes, C. [Leibniz Univ. Hannover (Germany). Inst. fuer Geologie; Schmidt, C. [Landesamt fuer Bergbau, Energie und Geologie (LBEG), Hannover (Germany)
2013-08-01
Positive tectonic inversion structures are common features that were recognized in many deformed sedimentary basins (Lowell, 1995). They are characterized by a two phase fault evolution, where initial normal faulting was followed by reverse faulting along the same fault, accompanied by the development of hanging wall deformation. Analysing the evolution of such inversion structures is important for understanding the tectonics of sedimentary basins and the formation of hydrocarbon traps. We used a 2D tectonic forward modelling approach to simulate the stepwise structural evolution of inversion structures in cross-section. The modelling was performed with the software FaultFold Forward v. 6, which is based on trishear kinematics (Zehnder and Allmendinger, 2000). Key aspect of the study was to derive the controlling factors for the geometry of inversion structures. The simulation results show, that the trishear approach is able to reproduce the geometry of tectonic inversion structures in a realistic way. This implies that inversion structures are simply fault-related folds that initiated as extensional fault-propagation folds, which were subsequently transformed into compressional fault-propagation folds when the stress field changed. The hanging wall deformation is a consequence of the decrease in slip towards the tip line of the fault. Trishear angle and propagation-to-slip ratio are the key controlling factors for the geometry of the fault-related deformation. We tested trishear angles in the range of 30 - 60 and propagation-to-slip ratios between 1 and 2 in increments of 0.1. Small trishear angles and low propagation-to-slip ratios produced tight folds, whereas large trishear angles and high propagation-to-slip ratios led to more open folds with concentric shapes. This has a direct effect on the size and geometry of potential hydrocarbon traps. The 2D simulations can be extended to a pseudo 3D approach, where a set of parallel cross-sections is used to describe
Uncertainty estimations for seismic source inversions
Duputel, Zacharie; Rivera, Luis; Fukahata, Yukitoshi; Kanamori, Hiroo
2012-08-01
Source inversion is a widely used practice in seismology. Magnitudes, moment tensors, slip distributions are now routinely calculated and disseminated whenever an earthquake occurs. The accuracy of such models depends on many aspects like the event magnitude, the data coverage and the data quality (instrument response, isolation, timing, etc.). Here, like in any observational problem, the error estimation should be part of the solution. It is however very rare to find a source inversion algorithm which includes realistic error analyses, and the solutions are often given without any estimates of uncertainties. Our goal here is to stress the importance of such estimation and to explore different techniques aimed at achieving such analyses. In this perspective, we use the W phase source inversion algorithm recently developed to provide fast CMT estimations for large earthquakes. We focus in particular on the linear-inverse problem of estimating the moment tensor components at a given source location. We assume that the initial probability densities can be modelled by Gaussian distributions. Formally, we can separate two sources of error which generally contribute to the model parameter uncertainties. The first source of uncertainty is the error introduced by the more or less imperfect data. This is carried by the covariance matrix for the data (Cd). The second source of uncertainty, often overlooked, is associated with modelling error or mismodelling. This is represented by the covariance matrix on the theory, CT. Among the different sources of mismodelling, we focus here on the modelling error associated with the mislocation of the centroid position. Both Cd and CT describe probability densities in the data space and it is well known that it is in fact CD=Cd+CT that should be included into the error propagation process. In source inversion problems, like in many other fields of geophysics, the data covariance (CD) is often considered as diagonal or even proportional
Frnakenstein: multiple target inverse RNA folding
Directory of Open Access Journals (Sweden)
Lyngsø Rune B
2012-10-01
Full Text Available Abstract Background RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. Results In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Conclusions Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more
Observations, Thermochemical Calculations, and Modeling of Exoplanetary Atmospheres
Blecic, Jasmina
2016-01-01
This dissertation as a whole aims to provide means to better understand hot-Jupiter planets through observing, performing thermochemical calculations, and modeling their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations and targets with high signal-to-noise ratios, as their deep eclipses allow us to detect signatures of spectral features and assess planetary atmospheric structure and composition with greater certainty. Chapter 1 gives a short introduction. Chapter 2 presents the Spitzer secondary-eclipse analysis and atmospheric characterization of WASP-14b. WASP-14b is a highly irradiated, transiting hot Jupiter. By applying a Bayesian approach in the atmospheric analysis, we found an absence of thermal inversion contrary to theoretical predictions. Chapter 3 describes the infrared observations of WASP-43b Spitzer secondary eclipses, data analysis, and atmospheric characterization. WASP-43b is one of the closest-orbiting hot Jupiters, orbiting one of the coolest stars with a hot Ju...
Atmospheric studies with SODAR at Kalpakkam
International Nuclear Information System (INIS)
A doppler SODAR for measurement of wind characteristics at different heights has been installed at HASL, IGCAR, Kalpakkam and is in operation since January 1990. The technical specifications and the basic aspects of SODAR, siting considerations and installation details are given. The report also discusses some observations regarding the site selection, installation and operation of SODARs. The basic theory of SODARs, some aspects of turbulence and dispersion in atmosphere and the various stability classification schemes are outlined. Some details regarding land/sea-breeze circulations and inversions are also given. (author). 6 refs., 10 figs., 8 annextures
Atmospheric diffusion of radioactive substances. Report 2
International Nuclear Information System (INIS)
This part of the survey deals with the air path, i.e. the emission to the atmosphere, diffusion and immission. For the model calculations it includes in particular the variation of wind direction with height, weather situations with little exchange and inversion weather situations, a roundup of diffusion parameters elaborated in the FRG (e.g. roughness of the ground), initial dilutions, environmental impacts of radionuclides in the surface air, as well as the most recent calculation fundamentals for handling the environmental impacts of γ-submersion (γ-dose from the waste air plume). (DG)
Inverse vs. forward breast IMRT planning
International Nuclear Information System (INIS)
Breast intensity-modulated radiation therapy (IMRT) improves dose distribution homogeneity within the whole breast. Previous publications report the use of inverse or forward dose optimization algorithms. Because the inverse technique is not widely available in commercial treatment planning systems, it is important to compare the 2 algorithms. The goal of this work is to compare them on a prospective cohort of 30 patients. Dose distributions were evaluated on differential dose-volume histograms using the volumes receiving more than 105% (V105) and 110% (V110) of the prescribed dose, and on the maximum dose (Dmax) or hot spot and the sagittal dose gradient (SDG) being the gradient between the dose on inframammary crease and the dose prescribed. The data were analyzed using Wilcoxon signed rank test. The inverse planning significantly improves the V105 (mean value 9.7% vs. 14.5%, p = 0.002), and the V110 (mean value 1.4% vs. 3.2%, p = 0.006). However, the SDG is not statistically significantly different for either algorithm. Looking at the potential impact on skin acute reaction, although there is a significant reduction of V110 using an inverse algorithm, it is unlikely this 1.6% volume reduction will present a significant clinical advantage over a forward algorithm. Both algorithms are equivalent in removing the hot spots on the inframammary fold, where acute skin reactions occur more frequently using a conventional wedge technique. Based on these results, we recommend that both forward and inverse algorithms should be considered for breast IMRT planning
Estimating uncertainties in complex joint inverse problems
Afonso, Juan Carlos
2016-04-01
Sources of uncertainty affecting geophysical inversions can be classified either as reflective (i.e. the practitioner is aware of her/his ignorance) or non-reflective (i.e. the practitioner does not know that she/he does not know!). Although we should be always conscious of the latter, the former are the ones that, in principle, can be estimated either empirically (by making measurements or collecting data) or subjectively (based on the experience of the researchers). For complex parameter estimation problems in geophysics, subjective estimation of uncertainty is the most common type. In this context, probabilistic (aka Bayesian) methods are commonly claimed to offer a natural and realistic platform from which to estimate model uncertainties. This is because in the Bayesian approach, errors (whatever their nature) can be naturally included as part of the global statistical model, the solution of which represents the actual solution to the inverse problem. However, although we agree that probabilistic inversion methods are the most powerful tool for uncertainty estimation, the common claim that they produce "realistic" or "representative" uncertainties is not always justified. Typically, ALL UNCERTAINTY ESTIMATES ARE MODEL DEPENDENT, and therefore, besides a thorough characterization of experimental uncertainties, particular care must be paid to the uncertainty arising from model errors and input uncertainties. We recall here two quotes by G. Box and M. Gunzburger, respectively, of special significance for inversion practitioners and for this session: "…all models are wrong, but some are useful" and "computational results are believed by no one, except the person who wrote the code". In this presentation I will discuss and present examples of some problems associated with the estimation and quantification of uncertainties in complex multi-observable probabilistic inversions, and how to address them. Although the emphasis will be on sources of uncertainty related
Statistics in Atmospheric Science
Solow, Andrew R.
2003-01-01
This paper reviews the use of statistical methods in atmospheric science. The applications covered include the development, assessment and use of numerical physical models of the atmosphere and more empirical analysis unconnected to physical models.
Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...
Planetary Atmospheric Electricity
Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M
2008-01-01
This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...
2016-06-01
Billions of years ago, high atmospheric greenhouse gas concentrations were vital to life's tenuous foothold on Earth. Despite new constraints, the composition and evolution of Earth's early atmosphere remains hazy.
Gaisser, Thomas K
2014-01-01
This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric $\
Mirador - Atmospheric Composition
National Aeronautics and Space Administration — Earth Science data access made simple. Atmospheric Composition is focused on the composition of Earth's atmosphere in relation to climate prediction, solar effects,...
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.
2008-01-01
The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated indicating a high vertical structure of atmosphere is retrieved.
Age-dependent forest carbon sink: Estimation via inverse modeling
Zhou, Tao; Shi, Peijun; Jia, Gensuo; Dai, Yongjiu; Zhao, Xiang; Shangguan, Wei; Du, Ling; Wu, Hao; Luo, Yiqi
2015-12-01
Forests have been recognized to sequester a substantial amount of carbon (C) from the atmosphere. However, considerable uncertainty remains regarding the magnitude and time course of the C sink. Revealing the intrinsic relationship between forest age and C sink is crucial for reducing uncertainties in prediction of forest C sink potential. In this study, we developed a stepwise data assimilation approach to combine a process-based Terrestrial ECOsystem Regional model, observations from multiple sources, and stochastic sampling to inversely estimate carbon cycle parameters including carbon sink at different forest ages for evergreen needle-leaved forests in China. The new approach is effective to estimate age-dependent parameter of maximal light-use efficiency (R2 = 0.99) and, accordingly, can quantify a relationship between forest age and the vegetation and soil C sinks. The estimated ecosystem C sink increases rapidly with age, peaks at 0.451 kg C m-2 yr-1 at age 22 years (ranging from 0.421 to 0.465 kg C m-2 yr-1), and gradually decreases thereafter. The dynamic patterns of C sinks in vegetation and soil are significantly different. C sink in vegetation first increases rapidly with age and then decreases. C sink in soil, however, increases continuously with age; it acts as a C source when the age is less than 20 years, after which it acts as a sink. For the evergreen needle-leaved forest, the highest C sink efficiency (i.e., C sink per unit net primary productivity) is approximately 60%, with age between 11 and 43 years. Overall, the inverse estimation of carbon cycle parameters can make reasonable estimates of age-dependent C sequestration in forests.
An equivalence between inverse sumset theorems and inverse conjectures for the U^3 norm
Green, Ben
2009-01-01
We establish a correspondence between inverse sumset theorems (which can be viewed as classifications of approximate (abelian) groups) and inverse theorems for the Gowers norms (which can be viewed as classifications of approximate polynomials). In particular, we show that the inverse sumset theorems of Freiman type are equivalent to the known inverse results for the Gowers U^3 norms, and moreover that the conjectured polynomial strengthening of the former is also equivalent to the polynomial strengthening of the latter. We establish this equivalence in two model settings, namely that of the finite field vector spaces F_2^n, and of the cyclic groups Z/NZ. In both cases the argument involves clarifying the structure of certain types of approximate homomorphism.
SISYPHUS: A high performance seismic inversion factory
Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas
2016-04-01
In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with
On MSDT inversion with multi-angle remote sensing data
Institute of Scientific and Technical Information of China (English)
2007-01-01
With the wavelet transform, image of multi-angle remote sensing is decomposed into multi-resolution. With data of each resolution, we try target-based multi-stages inversion, taking the inversion result of coarse resolution as the prior information of the next inversion. The result gets finer and finer until the resolution of satellite observation. In this way, the target-based multi-stages inversion can be used in remote sensing inversion of large-scaled coverage. With MISR data, we inverse structure parameters of vegetation in semiarid grassland of the Inner Mongolia Autonomous Region. The result proves that this way is efficient.
GENERATING FRACTAL PATTERNS BY USING p-CIRCLE INVERSION
Ramírez, José L.; Rubiano, Gustavo N.; Zlobec, Borut Jurčič
2015-10-01
In this paper, we introduce the p-circle inversion which generalizes the classical inversion with respect to a circle (p = 2) and the taxicab inversion (p = 1). We study some basic properties and we also show the inversive images of some basic curves. We apply this new transformation to well-known fractals such as Sierpinski triangle, Koch curve, dragon curve, Fibonacci fractal, among others. Then we obtain new fractal patterns. Moreover, we generalize the method called circle inversion fractal be means of the p-circle inversion.
Joint Inversion of Direct Current Resistivity and Seismic Refraction Data
International Nuclear Information System (INIS)
In this study, I assumed the underground consist of horizontal layers. I developed one-dimensional (1D) Direct Current Resistivity (DCR) and seismic refraction inversion code using MATLAB package and attempt to find velocity, resistivity and depth of the layers. The code uses damped least square technique. The code can do inversion on DCR and seismic data either individually or jointly. I tested the joint inversion code on synthetic data. Eventually, I saw that the result of joint inversion is better than the result of individual inversions. The joint inversion found depth of models of each layer and, in addition, velocity and resistivity closer to real values
DEFF Research Database (Denmark)
Liebst, Lasse Suonperä
2012-01-01
understanding of atmospheres as aesthetically ‘radiating’ from the surfaces of space, thinks physiognomically, the article argues for a spatial morphological perspective on atmospheres. Thus, post-phenomeno¬logically, it is argued that the atmospheric given is given by the density of pedestrians, which are...
Energy Technology Data Exchange (ETDEWEB)
Agullo, Y.
2005-09-15
This thesis present the extension of mono-component seismic pre-stack data stratigraphical inversion method to multicomponent data, with the objective of improving the determination of reservoir elastic parameters. In addiction to the PP pressure waves, the PS converted waves proved their interest for imaging under gas clouds; and their potential is highly significant for the characterization of lithologies, fluids, fractures... Nevertheless the simultaneous use ol PP and PS data remains problematic because of their different the time scales. To jointly use the information contained in PP and PS data, we propose a method in three steps first, mono-component stratigraphic inversions of PP then PS data; second, estimation of the PP to PS time conversion law; third, multicomponent stratigraphic inversion. For the second point, the estimation of the PP to PS conversion law is based on minimizing the difference between the S impedances obtained from PP and PS mono-component stratigraphic inversion. The pre-stack mono-component stratigraphic inversions was adapted to the case of multicomponent data by leaving each type of data in its own time scale in order to avoid the distortion of the seismic wavelet. The results obtained on a realistic synthetic PP-PS case show on one hand that determining PP to PS conversion law (from the mono-component inversion results) is feasible, and on the other hand that the joint inversion of PP and PS data with this conversion law improves the results compared to the mono-component inversion ones. Although this is presented within the framework of the PP and PS multi-component data, the developed methodology adapts directly to PP and SS data for example. (author)
International Nuclear Information System (INIS)
Eleven cases of retrobulbar neuritis were evaluated with MRI using short inversion time inversion recovery (STIR) sequences, which demonstrated the edematous and demyelinated lesions as hyperintense areas. Five of 6 cases in the acute phase showed hyperintense areas in the affected optic nerves. Three cases of multiple sclerosis in remission still demonstrated the hyperintense areas. MRI using STIR sequences provides very useful images for the diagnosis, pathogenesis, and evaluation of retrobulbar neuritis therapy. (author)
Using boundary layer equilibrium to reduce uncertainties in transport models and CO2 flux inversions
Directory of Open Access Journals (Sweden)
S. C. Biraud
2011-04-01
Full Text Available This paper reexamines evidence for previously hypothesized errors in atmospheric transport models and CO2 flux inversions by evaluating the diagnostics used to infer vertical mixing rates from observations. Several conventional mixing diagnostics are compared to analyzed mixing using data from the US Southern Great Plains Atmospheric Radiation Measurement Climate Research Facility, the CarbonTracker data assimilation system based on Transport Model version 5 (TM5, and atmospheric reanalyses. The results demonstrate that previous diagnostics based on boundary layer depth and vertical concentration gradients are unreliable indicators of vertical mixing. Vertical mixing rates are anti-correlated with boundary layer depth at some sites, diminishing in summer when the boundary layer is deepest. Vertical CO2 gradients between the boundary layer and free-troposphere are strongly affected by seasonal surface fluxes and therefore do not accurately reflect vertical mixing rates. The finite timescale over which vertical tracer gradients relax toward equilibrium is proposed as an improved mixing diagnostic, which can be applied to observations and model simulations of CO2 or other conserved boundary layer tracers with surface sources and sinks. This diagnostic does not require dynamical variables from the transport models, and is independent of possible systematic biases in prior- and post-inversion seasonal surface fluxes. Results indicate that observations frequently cited as evidence for systematic biases in atmospheric transport models are insufficient to prove that such biases exist. Some previously hypothesized transport model biases, if found and corrected, could cause inverse estimates to further diverge from land-based estimates.
A Bayesian method for microseismic source inversion
Pugh, D. J.; White, R. S.; Christie, P. A. F.
2016-08-01
Earthquake source inversion is highly dependent on location determination and velocity models. Uncertainties in both the model parameters and the observations need to be rigorously incorporated into an inversion approach. Here, we show a probabilistic Bayesian method that allows formal inclusion of the uncertainties in the moment tensor inversion. This method allows the combination of different sets of far-field observations, such as P-wave and S-wave polarities and amplitude ratios, into one inversion. Additional observations can be included by deriving a suitable likelihood function from the uncertainties. This inversion produces samples from the source posterior probability distribution, including a best-fitting solution for the source mechanism and associated probability. The inversion can be constrained to the double-couple space or allowed to explore the gamut of moment tensor solutions, allowing volumetric and other non-double-couple components. The posterior probability of the double-couple and full moment tensor source models can be evaluated from the Bayesian evidence, using samples from the likelihood distributions for the two source models, producing an estimate of whether or not a source is double-couple. Such an approach is ideally suited to microseismic studies where there are many sources of uncertainty and it is often difficult to produce reliability estimates of the source mechanism, although this can be true of many other cases. Using full-waveform synthetic seismograms, we also show the effects of noise, location, network distribution and velocity model uncertainty on the source probability density function. The noise has the largest effect on the results, especially as it can affect other parts of the event processing. This uncertainty can lead to erroneous non-double-couple source probability distributions, even when no other uncertainties exist. Although including amplitude ratios can improve the constraint on the source probability
Gravity inversion in spherical coordinates using tesseroids
Uieda, Leonardo; Barbosa, Valeria C. F.
2014-05-01
Satellite observations of the gravity field have provided geophysicists with exceptionally dense and uniform coverage of data over vast areas. This enables regional or global scale high resolution geophysical investigations. Techniques like forward modeling and inversion of gravity anomalies are routinely used to investigate large geologic structures, such as large igneous provinces, suture zones, intracratonic basins, and the Moho. Accurately modeling such large structures requires taking the sphericity of the Earth into account. A reasonable approximation is to assume a spherical Earth and use spherical coordinates. In recent years, efforts have been made to advance forward modeling in spherical coordinates using tesseroids, particularly with respect to speed and accuracy. Conversely, traditional space domain inverse modeling methods have not yet been adapted to use spherical coordinates and tesseroids. In the literature there are a range of inversion methods that have been developed for Cartesian coordinates and right rectangular prisms. These include methods for estimating the relief of an interface, like the Moho or the basement of a sedimentary basin. Another category includes methods to estimate the density distribution in a medium. The latter apply many algorithms to solve the inverse problem, ranging from analytic solutions to random search methods as well as systematic search methods. We present an adaptation for tesseroids of the systematic search method of "planting anomalous densities". This method can be used to estimate the geometry of geologic structures. As prior information, it requires knowledge of the approximate densities and positions of the structures. The main advantage of this method is its computational efficiency, requiring little computer memory and processing time. We demonstrate the shortcomings and capabilities of this approach using applications to synthetic and field data. Performing the inversion of gravity and gravity gradient
Bayesian-inversion adjusted methane fluxes in Colombia and Panama
Guerrero, O. J.; Jimenez, R.; Lin, J. C.; Diskin, G. S.; Sachse, G. W.; Kort, E. A.; Kaplan, J. O.
2011-12-01
Methane is the second most important long lived greenhouse gas (GHG) in the Earth's atmosphere accounting for ~20% of the positive radiative forcing. The first step towards developing GHG mitigation strategies is to obtain sufficiently accurate and detailed source and sinks estimations. While ~2/3 of the global methane emissions are anthropogenic, the wetlands are the single largest source. Therefore, in many cases, wetland emissions must be included in inverse modeling calculations aimed at validating anthropogenic emission inventories from ambient air concentration measurements. High accuracy and precision methane measurements carried out in 2007 during NASA's TC4 mission revealed elevated enhancements over Colombia and Panama (up to ~500 ppbv CH4 over Uraba, Colombia). Aiming at identifying the origin of these enhancements and at validating the anthropogenic emission inventory, we used STILT to estimate methane mixing ratios based on surface fluxes at regional level over four regions of both Colombia and Panama. STILT was applied along with assimilated (GDAS and ECMWF) meteorological fields and a priori methane inventories for anthropogenic (EDGAR) and wetland emissions (Kaplan's and Matthews and Fung's). The modeled mixing ratios were compared to the TC4 mission measurements. A Bayesian inversion analysis allowed us to scale prior fluxes taking into account the uncertainty on modeled mixing ratios due to transport errors, which were calculated by comparison with meteorological observations. We obtained flux scaling factors for the whole domain of study and for each one of the four regions. Overall, the Bayesian inversion indicates that the prior anthropogenic inventory is reasonably accurate and the a priori wetland methane fluxes are overestimated almost by a factor 2. Although the posterior enhancements show a better agreement with measurements, the discrepancies cannot be reduced for 4 regions simultaneously, which points to the calculated meteorological
Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada
Chan, E.; Chan, D.; Ishizawa, M.; Vogel, F.; Brioude, J.; Delcloo, A.; Wu, Y.; Jin, B.
2015-08-01
Inversion models can use atmospheric concentration measurements to estimate surface fluxes. This study is an evaluation of the errors in a regional flux inversion model for different provinces of Canada, Alberta (AB), Saskatchewan (SK) and Ontario (ON). Using CarbonTracker model results as the target, the synthetic data experiment analyses examined the impacts of the errors from the Bayesian optimisation method, prior flux distribution and the atmospheric transport model, as well as their interactions. The scaling factors for different sub-regions were estimated by the Markov chain Monte Carlo (MCMC) simulation and cost function minimization (CFM) methods. The CFM method results are sensitive to the relative size of the assumed model-observation mismatch and prior flux error variances. Experiment results show that the estimation error increases with the number of sub-regions using the CFM method. For the region definitions that lead to realistic flux estimates, the numbers of sub-regions for the western region of AB/SK combined and the eastern region of ON are 11 and 4 respectively. The corresponding annual flux estimation errors for the western and eastern regions using the MCMC (CFM) method are -7 and -3 % (0 and 8 %) respectively, when there is only prior flux error. The estimation errors increase to 36 and 94 % (40 and 232 %) resulting from transport model error alone. When prior and transport model errors co-exist in the inversions, the estimation errors become 5 and 85 % (29 and 201 %). This result indicates that estimation errors are dominated by the transport model error and can in fact cancel each other and propagate to the flux estimates non-linearly. In addition, it is possible for the posterior flux estimates having larger differences than the prior compared to the target fluxes, and the posterior uncertainty estimates could be unrealistically small that do not cover the target. The systematic evaluation of the different components of the inversion
Temperature inversions in the vicinity of Oak Ridge, Tennessee, as characterized by tethersonde data
Energy Technology Data Exchange (ETDEWEB)
Blasing, T.J.; Wang, J.C.; Lombardi, D.A.
1998-01-01
Accidental releases of hazardous materials to the atmosphere may result from fires that create a buoyant plume which may rise several hundred meters above the ground. For such buoyant release cases, estimates of ground-level concentrations may be as much as a factor of 100 lower than similar, nonbuoyant releases. For the Oak Ridge Reservation, safety analyses often examine buoyant release accident scenarios and resulting downwind, ground-level consequence estimates. For these analyses, careful consideration of buoyant plume rise is important. Plume rise can be limited by a stable vertical atmospheric temperature profile, commonly called an inversion, where the air temperature increases with height. There is a concern that inversions may interact with the complex terrain on the Oak Ridge Reservation, particularly at the Y-12 Plant, which is located in a relatively shallow but narrow valley, to trap the plume and increase ground-level consequences. The purpose of this paper is to review the available meteorological data that provide information on inversions in the Oak Ridge area.
Temperature inversions in the vicinity of Oak Ridge, Tennessee, as characterized by tethersonde data
International Nuclear Information System (INIS)
Accidental releases of hazardous materials to the atmosphere may result from fires that create a buoyant plume which may rise several hundred meters above the ground. For such buoyant release cases, estimates of ground-level concentrations may be as much as a factor of 100 lower than similar, nonbuoyant releases. For the Oak Ridge Reservation, safety analyses often examine buoyant release accident scenarios and resulting downwind, ground-level consequence estimates. For these analyses, careful consideration of buoyant plume rise is important. Plume rise can be limited by a stable vertical atmospheric temperature profile, commonly called an inversion, where the air temperature increases with height. There is a concern that inversions may interact with the complex terrain on the Oak Ridge Reservation, particularly at the Y-12 Plant, which is located in a relatively shallow but narrow valley, to trap the plume and increase ground-level consequences. The purpose of this paper is to review the available meteorological data that provide information on inversions in the Oak Ridge area
Wang, J. S.; Kawa, S. R.; Baker, D. F.; Collatz, G. J.; Ott, L. E.
2015-12-01
About one-half of the global CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two sinks, and their location and year-to-year variability are, however, not well understood. We use two different approaches, batch Bayesian synthesis inversion and variational data assimilation, to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. One of our objectives is to assess different sources of uncertainties in inferred fluxes, including uncertainties in prior flux estimates and observations, and differences in inversion techniques. For prior constraints, we utilize fluxes and uncertainties from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations and interannually varying meteorology. We also use measurement-based ocean flux estimates and two sets of fixed fossil CO2 emissions. Here, our inversions incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, filtered and bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals for the batch inversion and at 3° x 3.75° weekly for the variational system. Relationships between fluxes and atmospheric concentrations are derived consistently for the two inversion systems using the PCTM atmospheric transport model driven by meteorology from the MERRA reanalysis. We compare the posterior fluxes and uncertainties derived using different data sets and the two inversion approaches, and evaluate the posterior atmospheric concentrations against independent data including aircraft measurements. The optimized fluxes generally resemble those from other studies. For example, the results indicate that the terrestrial biosphere is a net CO2 sink, and a GOSAT-only inversion suggests a
Alexe, M.; Bergamaschi, P.; Segers, A.; Detmers, R.; Butz, A.; Hasekamp, O.; Guerlet, S.; Parker, R.; Boesch, H.; Frankenberg, C.; Scheepmaker, R. A.; Dlugokencky, E.; Sweeney, C.; Wofsy, S. C.; Kort, E. A.
2015-01-01
At the beginning of 2009 new space-borne observations of dry-air column-averaged mole fractions of atmospheric methane (XCH4) became available from the Thermal And Near infrared Sensor for carbon Observations-Fourier Transform Spectrometer (TANSO-FTS) instrument on board the Greenhouse Gases Observing SATellite (GOSAT). Until April 2012 concurrent {methane (CH4) retrievals} were provided by the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) instrument on board the ENVironmental SATellite (ENVISAT). The GOSAT and SCIAMACHY XCH4 retrievals can be compared during the period of overlap. We estimate monthly average CH4 emissions between January 2010 and December 2011, using the TM5-4DVAR inverse modelling system. In addition to satellite data, high-accuracy measurements from the Cooperative Air Sampling Network of the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) are used, providing strong constraints on the remote surface atmosphere. We discuss five inversion scenarios that make use of different GOSAT and SCIAMACHY XCH4 retrieval products, including two sets of GOSAT proxy retrievals processed independently by the Netherlands Institute for Space Research (SRON)/Karlsruhe Institute of Technology (KIT), and the University of Leicester (UL), and the RemoTeC "Full-Physics" (FP) XCH4 retrievals available from SRON/KIT. The GOSAT-based inversions show significant reductions in the root mean square (rms) difference between retrieved and modelled XCH4, and require much smaller bias corrections compared to the inversion using SCIAMACHY retrievals, reflecting the higher precision and relative accuracy of the GOSAT XCH4. Despite the large differences between the GOSAT and SCIAMACHY retrievals, 2-year average emission maps show overall good agreement among all satellite-based inversions, with consistent flux adjustment patterns, particularly across equatorial Africa and North America. Over North
Hartley, Dana; Prinn, Ronald
1993-01-01
The paper investigates the feasibility of using an inverse method based on a linear Kalman filter in a three-dimensional atmospheric transport model, for the determination of regional surface fluxes with rapid convergence, using data from a finite number of observation sites. It was found that the inverse method used was capable to accurately determine regional surface fluxes using the present ALE/GALE sites, and to converge to the correct solution within a year or two, using initial conditions very different from the final solution.
Three-dimensional conjugate gradients inversion of magnetotelluric impedance tensor
International Nuclear Information System (INIS)
Complete text of publication follows. We have developed a three-dimensional conjugate gradients inversion algorithm of magnetotelluric (MT) impedance tensor. This inversion algorithm can be used to invert 3D MT area data and 2D MT profile data. The importance of including the on-diagonal impedance tensor terms, Zxx and Zyy, in 3D inversion is considered in the synthetic example. The results from the 3D inversion of synthetic 3D area data indicate that the results using all impedance tensor elements, Zxx, Zxy, Zyx and Zyy, in the inversion are better than those without using on-diagonal elements. Therefore, 3D inversion should include all tensor elements if possible. The results from the 3D inversion of synthetic 2D profile data show that reasonable images for structures beneath and near a single MT profile can be obtained if all tensor elements are used in the inversion of the profile data. Currently, most of MT data are still collected on 2D profiles. This inversion algorithm of impedance tensor can promote the practical application of 3D MT inversion. We also use this inversion algorithm to invert the real data in the kayabe area in Japan. From the trial inversion with the synthetic and real data, the validity and practicability of this inversion algorithm is verified.
Nonisothermal Pluto atmosphere models
International Nuclear Information System (INIS)
The present thermal profile calculation for a Pluto atmosphere model characterized by a high number fraction of CH4 molecules encompasses atmospheric heating by solar UV flux absorption and conductive transport cooling to the surface of Pluto. The stellar occultation curve predicted for an atmosphere of several-microbar surface pressures (which entail the existence of a substantial temperature gradient close to the surface) agrees with observations and implies that the normal and tangential optical depth of the atmosphere is almost negligible. The minimum period for atmospheric methane depletion is calculated to be 30 years. 29 refs
Energy Technology Data Exchange (ETDEWEB)
Shaby, Benjamin A.; Field, Christopher B. [Carnegie Institution of Washington, Stanford, CA (United States). Dept. of Global Ecology
2006-09-15
In this study we perform an atmospheric inversion based on a shrinkage estimator. This method is used to estimate surface fluxes of CO{sub 2}, first partitioned according to constituent geographic regions, and then according to constituent processes that are responsible for the total flux. Our approach differs from previous approaches in two important ways. The first is that the technique of linear Bayesian inversion is recast as a regression problem. Seen as such, standard regression tools are employed to analyse and reduce errors in the resultant estimates. A shrinkage estimator, which combines standard ridge regression with the linear 'Bayesian inversion' model, is introduced. This method introduces additional bias into the model with the aim of reducing variance such that errors are decreased overall. Compared with standard linear Bayesian inversion, the ridge technique seems to reduce both flux estimation errors and prediction errors. The second divergence from previous studies is that instead of dividing the world into geographically distinct regions and estimating the CO{sub 2} flux in each region, the flux space is divided conceptually into processes that contribute to the total global flux. Formulating the problem in this manner adds to the interpretability of the resultant estimates and attempts to shed light on the problem of attributing sources and sinks to their underlying mechanisms.
A Note on Locally Inverse Semigroup Algebras
Directory of Open Access Journals (Sweden)
Xiaojiang Guo
2008-03-01
Full Text Available Let R be a commutative ring and S a finite locally inverse semigroup. It is proved that the semigroup algebra R[S] is isomorphic to the direct product of Munn algebras Ã¢Â„Â³(R[GJ],mJ,nJ;PJ with JÃ¢ÂˆÂˆS/Ã°ÂÂ’Â¥, where mJ is the number of Ã¢Â„Â›-classes in J, nJ the number of Ã¢Â„Â’-classes in J, and GJ a maximum subgroup of J. As applications, we obtain the sufficient and necessary conditions for the semigroup algebra of a finite locally inverse semigroup to be semisimple.
Approximate inverse preconditioners for general sparse matrices
Energy Technology Data Exchange (ETDEWEB)
Chow, E.; Saad, Y. [Univ. of Minnesota, Minneapolis, MN (United States)
1994-12-31
Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.
Supersymmetry and the LHC Inverse Problem
Arkani-Hamed, N; Thaler, J; Wang, L T; Arkani-Hamed, Nima; Kane, Gordon L.; Thaler, Jesse; Wang, Lian-Tao
2006-01-01
Given experimental evidence at the LHC for physics beyond the standard model, how can we determine the nature of the underlying theory? We initiate an approach to studying the "inverse map" from the space of LHC signatures to the parameter space of theoretical models within the context of low-energy supersymmetry, using 1808 LHC observables including essentially all those suggested in the literature and a 15 dimensional parametrization of the supersymmetric standard model. We show that the inverse map of a point in signature space consists of a number of isolated islands in parameter space, indicating the existence of "degeneracies"--qualitatively different models with the same LHC signatures. The degeneracies have simple physical characterizations, largely reflecting discrete ambiguities in electroweak-ino spectrum, accompanied by small adjustments for the remaining soft parameters. The number of degeneracies falls in the range 1
Parametric optimization of inverse trapezoid oleophobic surfaces
DEFF Research Database (Denmark)
Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin
2012-01-01
In this paper, we introduce a comprehensive and versatile approach to the parametric shape optimization of oleophobic surfaces. We evaluate the performance of inverse trapezoid microstructures in terms of three objective parameters: apparent contact angle, maximum sustainable hydrostatic pressure...... aspect ratio. The inclusion of mechanical robustness in combination with conventional performance characteristics favors solutions relevant for practical applications, as mechanical stability is a critical issue not often addressed in idealized models........K. Analytical Modeling and Thermodynamic Analysis of Robust Superhydrophobic Surfaces with Inverse-Trapezoidal Microstructures. Langmuir2010, 26, 17389-17397). We find that each of these parameters, if considered alone, would give trivial optima, while their interplay provides a well-defined optimal shape and...
Moebius inverse problem for distorted black holes
International Nuclear Information System (INIS)
Hawking ''thermal'' radiation could be a means to detect black holes of micron sizes, which may be hovering through the universe. We consider these micro-black holes to be distorted by the presence of some distribution of matter representing a convolution factor for their Hawking radiation. One may hope to determine from their Hawking signals the temperature distribution of their material shells by the inverse black body problem. In 1990, Nan-xian Chen has used a so-called modified Moebius transform to solve the inverse black body problem. We discuss and apply this technique to Hawking radiation. Some comments on supersymmetric applications of Moebius function and transform are also added. (author). 22 refs
Voxel inversion of airborne EM data
DEFF Research Database (Denmark)
Fiandaca, Gianluca G.; Auken, Esben; Christiansen, Anders Vest C A.V.C.;
2013-01-01
jointly inverting airborne and ground-based geophysical data. Furthermore, geological and groundwater models most often refer to a regular voxel grid not correlated to the geophysical model space, and incorporating the geophysical data into the geological/hydrological modelling grids is problematic. We...... of prior information. Inversion of geophysical data usually refers to a model space being linked to the actual observation points. For airborne surveys the spatial discretization of the model space reflects the flight lines. Often airborne surveys are carried out in areas where other ground......-based geophysical data are available. The model space of geophysical inversions is usually referred to the positions of the measurements, and ground-based model positions do not generally coincide with the airborne model positions. Consequently, a model space based on the measuring points is not well suited for...
Space-time inversion and its consequences
Chelnokov, M.
2016-07-01
The article discusses some new aspects of both the inversion of space and the inversion of time. It is shown that behind the mirror is not symmetric to in front of the mirror. It, in its turn, leads to nonconservation of spatial parity. The same situation takes place in the combined CP-parity. Further, the article shows that from the point of view of different reference systems of the Universe (from the point of view of different galaxies or accumulation of galaxies) time flows not just differently, and, in some cases, in the opposite directions. It leads to major changes in the picture of the Universe. In particular, the concept of the age of the Universe loses its meaning, serious doubts about the idea of the Big Bang and so on.
Inverse scattering and the UPSILON family
International Nuclear Information System (INIS)
A quarkonium potential is constructed with the help of masses and leptonic widths of the UPSILON(1S-4S) levels using the inverse scattering formalism. This potential agrees at all interquark separations beyond 0.06 f with one constructed earlier from psi and psi', providing further evidence for flavor independence of the Q anti Q interaction. Comparison with other a priori potentials suggests that tests for a short-range Coulomb interaction (as predicted by QCD) will have to rely primarily on more precise values for GAMMA(UPSILON → e+e-), on measurement of the 2S-2P spacing (predicted to be about 120 MeV for a short-range Coulomb-like interaction or in the inverse scattering formalism but about 150 MeV for an effective power-law potential), and on the discovery of heavier quarks
Sparse Matrix Inversion with Scaled Lasso
Sun, Tingni
2012-01-01
We propose a new method of learning a sparse nonnegative-definite target matrix. Our primary example of the target matrix is the inverse of a population covariance matrix or correlation matrix. The algorithm first estimates each column of the matrix by scaled Lasso, a joint estimation of regression coefficients and noise level, and then adjusts the matrix estimator to be symmetric. The procedure is efficient in the sense that the penalty level of the scaled Lasso for each column is completely determined by the data via convex minimization, without using cross-validation. We prove that this method guarantees the fastest proven rate of convergence in the spectrum norm under conditions of weaker form than those in the existing analyses of other $\\ell_1$ algorithms, and has faster guaranteed rate of convergence when the ratio of the $\\ell_1$ and spectrum norms of the target inverse matrix diverges to infinity. A simulation study also demonstrates the competitive performance of the proposed estimator.
Optoacoustic inversion via Volterra kernel reconstruction
Melchert, O; Roth, B
2016-01-01
In this letter we address the numeric inversion of optoacoustic signals to initial stress profiles. Therefore we put under scrutiny the optoacoustic kernel reconstruction problem in the paraxial approximation of the underlying wave-equation. We apply a Fourier-series expansion of the optoacoustic Volterra kernel and obtain the respective expansion coefficients for a given "apparative" setup by performing a gauge procedure using synthetic input data. The resulting effective kernel is subsequently used to solve the optoacoustic source reconstruction problem for general signals. We verify the validity of the proposed inversion protocol for synthetic signals and explore the feasibility of our approach to also account for the diffraction transformation of signals beyond the paraxial approximation.
Population inversion in monolayer and bilayer graphene
International Nuclear Information System (INIS)
The recent demonstration of saturable absorption and negative optical conductivity in the Terahertz range in graphene has opened up new opportunities for optoelectronic applications based on this and other low dimensional materials. Recently, population inversion across the Dirac point has been observed directly by time- and angle-resolved photoemission spectroscopy (tr-ARPES), revealing a relaxation time of only ∼130 femtoseconds. This severely limits the applicability of single layer graphene to, for example, Terahertz light amplification. Here we use tr-ARPES to demonstrate long-lived population inversion in bilayer graphene. The effect is attributed to the small band gap found in this compound. We propose a microscopic model for these observations and speculate that an enhancement of both the pump photon energy and the pump fluence may further increase this lifetime. (paper)
Aquifer Structure Identification Using Stochastic Inversion
Energy Technology Data Exchange (ETDEWEB)
Harp, Dylan R [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Wolfsberg, Andrew V [Los Alamos National Laboratory; Vrugt, Jasper A [Los Alamos National Laboratory
2008-01-01
This study presents a stochastic inverse method for aquifer structure identification using sparse geophysical and hydraulic response data. The method is based on updating structure parameters from a transition probability model to iteratively modify the aquifer structure and parameter zonation. The method is extended to the adaptive parameterization of facies hydraulic parameters by including these parameters as optimization variables. The stochastic nature of the statistical structure parameters leads to nonconvex objective functions. A multi-method genetically adaptive evolutionary approach (AMALGAM-SO) was selected to perform the inversion given its search capabilities. Results are obtained as a probabilistic assessment of facies distribution based on indicator cokriging simulation of the optimized structural parameters. The method is illustrated by estimating the structure and facies hydraulic parameters of a synthetic example with a transient hydraulic response.
3D Gravity Inversion using Tikhonov Regularization
Directory of Open Access Journals (Sweden)
Toushmalani Reza
2015-08-01
Full Text Available Subsalt exploration for oil and gas is attractive in regions where 3D seismic depth-migration to recover the geometry of a salt base is difficult. Additional information to reduce the ambiguity in seismic images would be beneficial. Gravity data often serve these purposes in the petroleum industry. In this paper, the authors present an algorithm for a gravity inversion based on Tikhonov regularization and an automatically regularized solution process. They examined the 3D Euler deconvolution to extract the best anomaly source depth as a priori information to invert the gravity data and provided a synthetic example. Finally, they applied the gravity inversion to recently obtained gravity data from the Bandar Charak (Hormozgan, Iran to identify its subsurface density structure. Their model showed the 3D shape of salt dome in this region
Analog fault diagnosis by inverse problem technique
Ahmed, Rania F.
2011-12-01
A novel algorithm for detecting soft faults in linear analog circuits based on the inverse problem concept is proposed. The proposed approach utilizes optimization techniques with the aid of sensitivity analysis. The main contribution of this work is to apply the inverse problem technique to estimate the actual parameter values of the tested circuit and so, to detect and diagnose single fault in analog circuits. The validation of the algorithm is illustrated through applying it to Sallen-Key second order band pass filter and the results show that the detecting percentage efficiency was 100% and also, the maximum error percentage of estimating the parameter values is 0.7%. This technique can be applied to any other linear circuit and it also can be extended to be applied to non-linear circuits. © 2011 IEEE.
Multinomial Inverse Regression for Text Analysis
Taddy, Matt
2010-01-01
Text data, including speeches, stories, and other document forms, are often connected to sentiment variables that are of interest for research in marketing, economics, and elsewhere. It is also very high dimensional and difficult to incorporate into statistical analyses. This article introduces a straightforward framework of sentiment-preserving dimension reduction for text data. Multinomial inverse regression is introduced as a general tool for simplifying predictor sets that can be represen...
Regularizing Priors for Linear Inverse Problems
Jean-Pierre Florens; Anna Simoni
2013-01-01
This paper proposes a new Bayesian approach for estimating, nonparametrically, functional parameters in econometric models that are characterized as the solution of a linear inverse problem. By using a Gaussian process prior distribution we propose the posterior mean as an estimator and prove frequentist consistency of the posterior distribution. The latter provides the frequentist validation of our Bayesian procedure. We show that the minimax rate of contraction of the posterior distribution...
Voltammetry: mathematical modelling and Inverse Problem
Koshev, N A; Kuzina, V V
2016-01-01
We propose the fast semi-analytical method of modelling the polarization curves in the voltammetric experiment. The method is based on usage of the special func- tions and shows a big calculation speed and a high accuracy and stability. Low computational needs of the proposed algorithm allow us to state the set of Inverse Problems of voltammetry for the reconstruction of metal ions concentrations or the other parameters of the electrolyte under investigation.
Inverse Reinforcement Learning in Relational Domains
Munzer, Thibaut; Piot, Bilal; Geist, Matthieu; Pietquin, Olivier; Lopes, Manuel
2015-01-01
In this work, we introduce the first approach to the Inverse Reinforcement Learning (IRL) problem in relational domains. IRL has been used to recover a more compact representation of the expert policy leading to better generalization performances among different contexts. On the other hand, rela-tional learning allows representing problems with a varying number of objects (potentially infinite), thus provides more generalizable representations of problems and skills. We show how these differe...
Direct and inverse cascades in the geodynamo
Czech Academy of Sciences Publication Activity Database
Reshetnyak, M.; Hejda, Pavel
2008-01-01
Roč. 15, č. 6 (2008), s. 873-880. ISSN 1023-5809 R&D Projects: GA AV ČR IAA300120704 Institutional research plan: CEZ:AV0Z30120515 Keywords : geodynamo * forward and inverse cascades * magnetic field Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.022, year: 2008 www.nonlin-processes-geophys.net/15/873/2008/
On the inverse problem of fractal compression
Hartenstein, Hannes; Ruhl, Matthias; Saupe, Dietmar; Vrscay, Edward R.
2001-01-01
The inverse problem of fractal compression amounts to determining a contractive operator such that the corresponding fixed point approximates a given target function. The standard method based on the collage coding strategy is known to represent a suboptimal method. Why does one not search for optimal fractal codes? We will prove that optimal fractal coding, when considered as a discrete optimization problem, constitutes an NP-hard problem, i.e., it cannot be solved in a practical amount of t...
3D Inverse problem: Seawater intrusions
Steklova, K.; Haber, E.
2013-12-01
Modeling of seawater intrusions (SWI) is challenging as it involves solving the governing equations for variable density flow, multiple time scales and varying boundary conditions. Due to the nonlinearity of the equations and the large aquifer domains, 3D computations are a costly process, particularly when solving the inverse SWI problem. In addition the heads and concentration measurements are difficult to obtain due to mixing, saline wedge location is sensitive to aquifer topography, and there is general uncertainty in initial and boundary conditions and parameters. Some of these complications can be overcome by using indirect geophysical data next to standard groundwater measurements, however, the inverse problem is usually simplified, e.g. by zonation for the parameters based on geological information, steady state substitution of the unknown initial conditions, decoupling the equations or reducing the amount of unknown parameters by covariance analysis. In our work we present a discretization of the flow and solute mass balance equations for variable groundwater (GW) flow. A finite difference scheme is to solve pressure equation and a Semi - Lagrangian method for solute transport equation. In this way we are able to choose an arbitrarily large time step without losing stability up to an accuracy requirement coming from the coupled character of the variable density flow equations. We derive analytical sensitivities of the GW model for parameters related to the porous media properties and also the initial solute distribution. Analytically derived sensitivities reduce the computational cost of inverse problem, but also give insight for maximizing information in collected data. If the geophysical data are available it also enables simultaneous calibration in a coupled hydrogeophysical framework. The 3D inverse problem was tested on artificial time dependent data for pressure and solute content coming from a GW forward model and/or geophysical forward model. Two
Full-waveform inversion: Filling the gaps
Beydoun, Wafik B.
2015-09-01
After receiving an outstanding response to its inaugural workshop in 2013, SEG once again achieved great success with its 2015 SEG Middle East Workshop, “Full-waveform inversion: Filling the gaps,” which took place 30 March–1 April 2015 in Abu Dhabi, UAE. The workshop was organized by SEG, and its partner sponsors were Saudi Aramco (gold sponsor), ExxonMobil, and CGG. Read More: http://library.seg.org/doi/10.1190/tle34091106.1
Sparse Reconstruction techniques for Tomographic SAR Inversion
Zhu, Xiao Xiang; Bamler, Richard
2013-01-01
Tomographic SAR inversion is essentially a spectral analysis problem. The resolution in the elevation direction depends on the spread of orbit tracks. Since the orbits of modern meter-resolution space-borne SAR systems, such as TerraSAR-X, are tightly controlled, the tomographic elevation resolution is at least an order of magnitude lower than in range and azimuth. Hence, super-resolution reconstruction algorithms are desired. Considering the sparsity of the signal in elevation, here the theo...
Inversion Copulas from Nonlinear State Space Models
Smith, Michael Stanley; Maneesoonthorn, Worapree
2016-01-01
While copulas constructed from inverting latent elliptical, or skew-elliptical, distributions are popular, they can be inadequate models of serial dependence in time series. As an alternative, we propose an approach to construct copulas from the inversion of latent nonlinear state space models. This allows for new time series copula models that have the same serial dependence structure as a state space model, yet have an arbitrary marginal distribution - something that is difficult to achieve...
INVERSE SCATTERING PROBLEMS BY SINGULAR SOURCE METHODS
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The inverse scattering problems are to detect the property of obstacles from the measurements outside the obstacles. One of important research areas in this topic is the recovery of boundary property for impenetrable obstacles. In this paper, we would like to give a brief review about the recently developed singular source methods. There are three different methods in this category, namely, linear sampling method, pointsource method and probe method. We also present some recent new results about the probe method.
Inversion identities for inhomogeneous face models
Energy Technology Data Exchange (ETDEWEB)
Frahm, Holger; Karaiskos, Nikos
2014-10-15
We derive exact inversion identities satisfied by the transfer matrix of inhomogeneous interaction-round-a-face (IRF) models with arbitrary boundary conditions using the underlying integrable structure and crossing properties of the local Boltzmann weights. For the critical restricted solid-on-solid (RSOS) models these identities together with some information on the analytical properties of the transfer matrix determine the spectrum completely and allow to derive the Bethe equations for both periodic and general open boundary conditions.
Inversion identities for inhomogeneous face models
Frahm, Holger; Karaiskos, Nikos
2014-10-01
We derive exact inversion identities satisfied by the transfer matrix of inhomogeneous interaction-round-a-face (IRF) models with arbitrary boundary conditions using the underlying integrable structure and crossing properties of the local Boltzmann weights. For the critical restricted solid-on-solid (RSOS) models these identities together with some information on the analytical properties of the transfer matrix determine the spectrum completely and allow to derive the Bethe equations for both periodic and general open boundary conditions.
Inverse Modeling of Cloud – Aerosol Interactions
Partridge, Daniel
2011-01-01
The role of aerosols and clouds is one of the largest sources of uncertainty in understanding climate change. The primary scientific goal of this thesis is to improve the understanding of cloud-aerosol interactions by applying inverse modeling using Markov Chain Monte Carlo (MCMC) simulation. Through a set of synthetic tests using a pseudo-adiabatic cloud parcel model, it is shown that a self adaptive MCMC algorithm can efficiently find the correct optimal values of meteorological and aerosol...
Classical geometry Euclidean, transformational, inversive, and projective
Leonard, I E; Liu, A C F; Tokarsky, G W
2014-01-01
Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which p
Sucrose Inversion An Experiment on Heterogeneous Catalysis
Adélio Mendes; Magalhães, Fernão D.; Luis M. Madeira
2003-01-01
llustration of heterogeneous catalysis concepts in laboratory courses is not usually simple or economical. For our undergraduate senior lab course we have developed an environmentally friendly experiment dealing with several aspects of heterogeneous catalysis, having in mind the use of readily available and relatively inexpensive equipment, and chemicals on a compact setup, which students can safely operate. The experiment deals with the acid-catalyzed sucrose inversion, performed in packed b...
Hard photon production by inverse Compton scattering
International Nuclear Information System (INIS)
The controlled production of hard photons (X and γ-rays) is of relevance in many medical, industrial and science applications. In this work an alternative method for producing both X and γ-rays via Inverse Compton Scattering with both electron and proton beams is discussed. We present results for the cross section for this process with non static electron and protons. The results are evaluated for a particular energy interval, and an experimental design is proposed.
InAR:Inverse Augmented Reality
Hu, Hao; Cui, Hainan
2015-01-01
Augmented reality is the art to seamlessly fuse virtual objects into real ones. In this short note, we address the opposite problem, the inverse augmented reality, that is, given a perfectly augmented reality scene where human is unable to distinguish real objects from virtual ones, how the machine could help do the job. We show by structure from motion (SFM), a simple 3D reconstruction technique from images in computer vision, the real and virtual objects can be easily separated in the recon...
Differential equations inverse and direct problems
Favini, Angelo
2006-01-01
DEGENERATE FIRST ORDER IDENTIFICATION PROBLEMS IN BANACH SPACES A NONISOTHERMAL DYNAMICAL GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY. EXISTENCE AND UNIQUENESS THEOREMSSOME GLOBAL IN TIME RESULTS FOR INTEGRODIFFERENTIAL PARABOLIC INVERSE PROBLEMSFOURTH ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONSTUDY OF ELLIPTIC DIFFERENTIAL EQUATIONS IN UMD SPACESDEGENERATE INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE EXPONENTIAL ATTRACTORS FOR SEMICONDUCTOR EQUATIONSCONVERGENCE TO STATIONARY STATES OF SOLUTIONS TO THE SEMILINEAR EQUATION OF VISCOELASTICITY ASYMPTOTIC BEHA
Efficient Numerical Inversion for Financial Simulations
Derflinger, Gerhard; Hörmann, Wolfgang; Leydold, Josef; Sak, Halis
2009-01-01
Generating samples from generalized hyperbolic distributions and non-central chi-square distributions by inversion has become an important task for the simulation of recent models in finance in the framework of (quasi-) Monte Carlo. However, their distribution functions are quite expensive to evaluate and thus numerical methods like root finding algorithms are extremely slow. In this paper we demonstrate how our new method based on Newton interpolation and Gauss-Lobatto quadrature can be util...
Inverse problems for stochastic transport equations
International Nuclear Information System (INIS)
Inverse problems for stochastic linear transport equations driven by a temporal or spatial white noise are discussed. We analyse stochastic linear transport equations which depend on an unknown potential and have either additive noise or multiplicative noise. We show that one can approximate the potential with arbitrary small error when the solution of the stochastic linear transport equation is observed over time at some fixed point in the state space. (paper)
Inverse amplitude method and Adler zeros
Gómez Nicola, Ángel; Peláez Sagredo, José Ramón; Rios, G.
2008-01-01
The inverse amplitude method is a powerful unitarization technique to enlarge the energy applicability region of effective Lagrangians. It has been widely used to describe resonances in hadronic physics, combined with chiral perturbation theory, as well as in the strongly interacting symmetry breaking sector. In this work we show how it can be slightly modified to also account for the subthreshold region, incorporating correctly the Adler zeros required by chiral symmetry and eliminating spur...
Approximate Inverse Preconditioners with Adaptive Dropping
Czech Academy of Sciences Publication Activity Database
Kopal, J.; Rozložník, Miroslav; Tůma, Miroslav
2015-01-01
Roč. 84, June (2015), s. 13-20. ISSN 0965-9978 R&D Projects: GA ČR(CZ) GAP108/11/0853; GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : approximate inverse * Gram-Schmidt orthogonalization * incomplete decomposition * preconditioned conjugate gradient method * algebraic preconditioning * pivoting Subject RIV: BA - General Mathematics Impact factor: 1.402, year: 2014
Inverse Limits of Uniform Covering Maps
LaBuz, Brendon
2008-01-01
In ``Rips complexes and covers in the uniform category'' the authors define, following James, covering maps of uniform spaces and introduce the concept of generalized uniform covering maps. Conditions for the existence of universal uniform covering maps and generalized uniform covering maps are given. This paper notes that the universal generalized uniform covering map is uniformly equivalent to the inverse limit of uniform covering maps and is therefore approximated by uniform covering maps....
Inversion identities for inhomogeneous face models
International Nuclear Information System (INIS)
We derive exact inversion identities satisfied by the transfer matrix of inhomogeneous interaction-round-a-face (IRF) models with arbitrary boundary conditions using the underlying integrable structure and crossing properties of the local Boltzmann weights. For the critical restricted solid-on-solid (RSOS) models these identities together with some information on the analytical properties of the transfer matrix determine the spectrum completely and allow to derive the Bethe equations for both periodic and general open boundary conditions
Magnetic Resonance Elastography: Inversions in Bounded Media
Kolipaka, Arunark; McGee, Kiaran P.; Manduca, Armando; Romano, Anthony J; Glaser, Kevin J.; Araoz, Philip A; Ehman, Richard L.
2009-01-01
Magnetic resonance elastography (MRE) is a noninvasive imaging technique capable of quantifying and spatially resolving the shear stiffness of soft tissues by visualization of synchronized mechanical wave displacement fields. However, MRE inversions generally assume that the measured tissue motion consists primarily of shear waves propagating in a uniform, infinite medium. This assumption is not valid in organs such as the heart, eye, bladder, skin, fascia, bone and spinal cord in which the s...
Services innovation: assimilation, differentiation, inversion and integration
Gallouj, FaÏz
2002-01-01
This chapter aims to provide a review of the literature on innovation in services and to focus on the analytical strategies carried out in order to fill in the innovation gap in the service economy (i.e. the difference between what the traditional innovation indicators are capable of capturing, and the reality of innovation activities undertaken in a given economy). Four analytical perspectives are distinguished in this chapter, which are labeled: assimilation, differentiation, inversion and ...
Inverse modeling of emissions in high resolution
Czech Academy of Sciences Publication Activity Database
Resler, Jaroslav; Eben, Kryštof; Juruš, Pavel; Belda, Michal
Environment Canada, 2010. [IWAQFR 2010. International Workshop on Air Quality Forecasting Research. 16.11.2010-18.11.2010, Quebec] R&D Projects: GA MŽP SP/1A4/107/07 Grant ostatní: COST (XE) ES0602 Institutional research plan: CEZ:AV0Z10300504 Keywords : inverse modeling * emission * 4DVar * EMEP Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.iwaqfr-2010.ca/presentation_EN.html
The inverse maximum dynamic flow problem
Institute of Scientific and Technical Information of China (English)
BAGHERIAN; Mehri
2010-01-01
We consider the inverse maximum dynamic flow (IMDF) problem.IMDF problem can be described as: how to change the capacity vector of a dynamic network as little as possible so that a given feasible dynamic flow becomes a maximum dynamic flow.After discussing some characteristics of this problem,it is converted to a constrained minimum dynamic cut problem.Then an efficient algorithm which uses two maximum dynamic flow algorithms is proposed to solve the problem.
Inverse dynamo problem in a cylinder
Czech Academy of Sciences Publication Activity Database
Šimkanin, Ján; Tilgner, A.
2008-01-01
Roč. 102, č. 2 (2008), s. 205-215. ISSN 0309-1929 R&D Projects: GA AV ČR IAA300120704; GA ČR GP205/04/P182 Grant ostatní: INTAS Foundation(CH) 03-51-5807 Institutional research plan: CEZ:AV0Z30120515 Keywords : inverse dynamo problem * invisible dynamo * kinematic dynamo * helical flows * Ponomarenko dynamo Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.560, year: 2008
Global optimization in inverse problem of scatterometry
Afraites, Lekbir; Hazart, Jérôme; Schiavone, Patrick
2009-01-01
International audience In the current work, we consider the inverse problem in scatterometry which consists in determining the feature shape from an experimental ellipsometric signature. The reformulation of the given nonlinear identification problem was considered as a parametric optimization problem using the Least Square criterion. In this work, a design procedure for global robust optimization is developed using Kriging and global optimization approaches. Robustness is determined by Kr...
Inverse sequential simulation: Performance and implementation details
Xu, Teng; Gómez-Hernández, J. Jaime
2015-12-01
For good groundwater flow and solute transport numerical modeling, it is important to characterize the formation properties. In this paper, we analyze the performance and important implementation details of a new approach for stochastic inverse modeling called inverse sequential simulation (iSS). This approach is capable of characterizing conductivity fields with heterogeneity patterns difficult to capture by standard multiGaussian-based inverse approaches. The method is based on the multivariate sequential simulation principle, but the covariances and cross-covariances used to compute the local conditional probability distributions are computed by simple co-kriging which are derived from an ensemble of conductivity and piezometric head fields, in a similar manner as the experimental covariances are computed in an ensemble Kalman filtering. A sensitivity analysis is performed on a synthetic aquifer regarding the number of members of the ensemble of realizations, the number of conditioning data, the number of piezometers at which piezometric heads are observed, and the number of nodes retained within the search neighborhood at the moment of computing the local conditional probabilities. The results show the importance of having a sufficiently large number of all of the mentioned parameters for the algorithm to characterize properly hydraulic conductivity fields with clear non-multiGaussian features.
Multiple scattering processes: inverse and direct
International Nuclear Information System (INIS)
The purpose of the work is to formulate inverse problems in radiative transfer, to introduce the functions b and h as parameters of internal intensity in homogeneous slabs, and to derive initial value problems to replace the more traditional boundary value problems and integral equations of multiple scattering with high computational efficiency. The discussion covers multiple scattering processes in a one-dimensional medium; isotropic scattering in homogeneous slabs illuminated by parallel rays of radiation; the theory of functions b and h in homogeneous slabs illuminated by isotropic sources of radiation either at the top or at the bottom; inverse and direct problems of multiple scattering in slabs including internal sources; multiple scattering in inhomogeneous media, with particular reference to inverse problems for estimation of layers and total thickness of inhomogeneous slabs and to multiple scattering problems with Lambert's law and specular reflectors underlying slabs; and anisotropic scattering with reduction of the number of relevant arguments through axially symmetric fields and expansion in Legendre functions. Gaussian quadrature data for a seven point formula, a FORTRAN program for computing the functions b and h, and tables of these functions supplement the text
Computationally efficient Bayesian inference for inverse problems.
Energy Technology Data Exchange (ETDEWEB)
Marzouk, Youssef M.; Najm, Habib N.; Rahn, Larry A.
2007-10-01
Bayesian statistics provides a foundation for inference from noisy and incomplete data, a natural mechanism for regularization in the form of prior information, and a quantitative assessment of uncertainty in the inferred results. Inverse problems - representing indirect estimation of model parameters, inputs, or structural components - can be fruitfully cast in this framework. Complex and computationally intensive forward models arising in physical applications, however, can render a Bayesian approach prohibitive. This difficulty is compounded by high-dimensional model spaces, as when the unknown is a spatiotemporal field. We present new algorithmic developments for Bayesian inference in this context, showing strong connections with the forward propagation of uncertainty. In particular, we introduce a stochastic spectral formulation that dramatically accelerates the Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We also explore dimensionality reduction for the inference of spatiotemporal fields, using truncated spectral representations of Gaussian process priors. These new approaches are demonstrated on scalar transport problems arising in contaminant source inversion and in the inference of inhomogeneous material or transport properties. We also present a Bayesian framework for parameter estimation in stochastic models, where intrinsic stochasticity may be intermingled with observational noise. Evaluation of a likelihood function may not be analytically tractable in these cases, and thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on the product space of the observations and the parameters, are introduced.
Optimal Inverse Littlewood-Offord theorems
Nguyen, Hoi
2010-01-01
Let eta_i be iid Bernoulli random variables, taking values -1,1 with probability 1/2. Given a multiset V of n integers v_1,..., v_n, we define the concentration probability as rho(V) := sup_{x} Pr(v_1 eta_1+...+ v_n eta_n=x). A classical result of Littlewood-Offord and Erdos from the 1940s asserts that if the v_i are non-zero, then rho(V) is O(n^{-1/2}). Since then, many researchers obtained improved bounds by assuming various extra restrictions on V. About 5 years ago, motivated by problems concerning random matrices, Tao and Vu introduced the Inverse Littlewood-Offord problem. In the inverse problem, one would like to give a characterization of the set V, given that rho(V) is relatively large. In this paper, we introduce a new method to attack the inverse problem. As an application, we strengthen a previous result of Tao and Vu, obtaining an optimal characterization for V. This immediately implies several classical theorems, such as those of Sarkozy-Szemeredi and Halasz. The method also applies in the conti...
Inverse problems biomechanical imaging (Conference Presentation)
Oberai, Assad A.
2016-03-01
It is now well recognized that a host of imaging modalities (a list that includes Ultrasound, MRI, Optical Coherence Tomography, and optical microscopy) can be used to "watch" tissue as it deforms in response to an internal or external excitation. The result is a detailed map of the deformation field in the interior of the tissue. This deformation field can be used in conjunction with a material mechanical response to determine the spatial distribution of material properties of the tissue by solving an inverse problem. Images of material properties thus obtained can be used to quantify the health of the tissue. Recently, they have been used to detect, diagnose and monitor cancerous lesions, detect vulnerable plaque in arteries, diagnose liver cirrhosis, and possibly detect the onset of Alzheimer's disease. In this talk I will describe the mathematical and computational aspects of solving this class of inverse problems, and their applications in biology and medicine. In particular, I will discuss the well-posedness of these problems and quantify the amount of displacement data necessary to obtain a unique property distribution. I will describe an efficient algorithm for solving the resulting inverse problem. I will also describe some recent developments based on Bayesian inference in estimating the variance in the estimates of material properties. I will conclude with the applications of these techniques in diagnosing breast cancer and in characterizing the mechanical properties of cells with sub-cellular resolution.
Inverse modeling of aquifers in fault zones
International Nuclear Information System (INIS)
An inverse modeling scheme is presented which allows the estimation of model parameters of saturated groundwater flow from measurements made on the system response as well as from prior information on the parameters. An indirect approach to the inverse problem is applied determining the hydro- and hydrogeological parameters of a numerical model by repeated solution of the transient flow equation. This so-called direct problem is solved numerically by the Finite Element Method. The three-dimensional model is especially designed for dealing with fractured media so that elements of lower dimension than the overall model can be included in order to model fault zones. Spatially distributed parameters are considered alternatively by conventional zonation or pointwise definition in connection with a kriging interpolation technique. The inverse problem is formulated in the statistical framework of the maximum-likelihood estimation method which enables one to account for errors of the measurements and for errors of model output. The resulting objective function is minimized by alternative mathematical optimization algorithms where a sequential combination of a gradient method and a Gauss-Newton method has been found to perform best in many cases. With respect to the computational efficiency of the nonlinear optimization problem, the exact gradient (of the numerical problem) as well as the Jacobian matrix, i.e. the partial derivatives of the performance measures, are computed by the adjoint-state method or by direct derivation of the FE-equations, respectively. (author) figs., tabs., refs
Reconstructive inverse dynamics in feedwater control
International Nuclear Information System (INIS)
The history of nuclear reactor operations during the last two decades has indicated the need to use advanced control, monitoring, and diagnostics techniques to achieve major improvements in power plant performance. In this paper, the authors present an application of reconstructive inverse dynamics (RID) to the feedwater-train control system for a typical pressurized water reactor (PWR). Existing controllers used in power plants, such as proportional-integral-derivative (PID) controllers, are designed using linear techniques. Although PIDs have proven simple and reliable in reactor operations, their limitation is related to the degree of linearity of the system dynamics. When the system undergoes a state-transition caused by a significant nonlinearity, the linear controller gains may not provide adequate compensation on the system dynamics, regardless of how sophisticated the control designs are. This fact is the main motivation behind searching for an appropriate nonlinear control law. The RID is a version of the inverse-dynamics method currently used in robotics. The power of RID lies in its unique control law for any system with plant nonlinearities. The control law includes inverse dynamics and state reconstruction to follow a demanded trajectory. The RID structure is best understood with a coupled system dynamics
Generalized multi-point inverse airfoil design
Selig, Michael S.; Maughmer, Mark D.
1991-01-01
In a rather general sense, inverse airfoil design can be taken to mean the problem of specifying a desired set of airfoil characteristics, such as the airfoil maximum thickness ratio, pitching moment, part of the velocity distribution or boundary-layer development, etc., then from this information determine the corresponding airfoil shape. This paper presents a method which approaches the design problem from this perspective. In particular, the airfoil is divided into segments along which, together with the design conditions, either the velocity distribution or boundary-layer development may be prescribed. In addition to these local desired distributions, single parameters like the airfoil thickness can be specified. The problem of finding the airfoil shape is determined by coupling an incompressible, inviscid, inverse airfoil design method with a direct integral boundary-layer analysis method and solving the resulting nonlinear equations via a multidimensional Newton iteration technique. The approach is fast and easily allows for interactive design. It is also flexible and could be adapted to solving compressible, inverse airfoil design problems.
Magnetic Resonance Elastography: Inversions in Bounded Media
Kolipaka, Arunark; McGee, Kiaran P.; Manduca, Armando; Romano, Anthony J.; Glaser, Kevin J.; Araoz, Philip A.; Ehman, Richard L.
2009-01-01
Magnetic resonance elastography (MRE) is a noninvasive imaging technique capable of quantifying and spatially resolving the shear stiffness of soft tissues by visualization of synchronized mechanical wave displacement fields. However, MRE inversions generally assume that the measured tissue motion consists primarily of shear waves propagating in a uniform, infinite medium. This assumption is not valid in organs such as the heart, eye, bladder, skin, fascia, bone and spinal cord in which the shear wavelength approaches the geometric dimensions of the object. The aim of this study was to develop and test mathematical inversion algorithms capable of resolving shear stiffness from displacement maps of flexural waves propagating in bounded media such as beams, plates and spherical shells using geometry-specific equations of motion. MRE and finite element modeling (FEM) of beam, plate, and spherical shell phantoms of various geometries were performed. Mechanical testing of the phantoms agreed with the stiffness values obtained from FEM and MRE data and a linear correlation of r2 ≥ 0.99 was observed between the stiffness values obtained using MRE and FEM data. In conclusion, we have demonstrated new inversion methods for calculating shear stiffness that may be more appropriate for waves propagating in bounded media. PMID:19780146
An inverse approach for elucidating dendritic function
Directory of Open Access Journals (Sweden)
Benjamin Torben-Nielsen
2010-09-01
Full Text Available We outline an inverse approach for investigating dendritic function-structure relationships by optimizing dendritic trees for a-priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a `hypothesis generator' in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a `function confirmation' by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions.
Geomechanical paleostress inversion using fracture data
Maerten, Laurent; Maerten, Frantz; Lejri, Mostfa; Gillespie, Paul
2016-08-01
We describe a fast geomechanically-based paleostress inversion technique that uses observed fracture data to constrain stress through multiple simulations. The method assumes that the local stress field around individual fractures is heterogeneous and derives the far field tectonic stress, that we also call the far field boundary conditions. We show how such far field tectonic stress can be recovered through a mechanical stress inversion technique using local observations of natural fractures (i.e. mechanical type, orientation and location). We test the paleostress inversion against outcrop analogues of fractured carbonates from both Nash Point, U.K., where there are well exposed faults and joints and the Matelles, France, where there are well exposed faults, veins and stylolites. We demonstrate through these case studies how the method can be efficiently applied to natural examples and we highlight its advantages and limitations. We discuss how such method could be applied to subsurface problems and how it can provide complementary constraints to drive discrete fracture models for better fractured reservoir characterization and modelling.
An overview of joint inversion in earthquake source imaging
Koketsu, Kazuki
2016-06-01
We reviewed joint inversion studies of the rupture processes of significant earthquakes, using the definition of a joint inversion in earthquake source imaging as a source inversion of multiple kinds of datasets (waveform, geodetic, or tsunami). Yoshida and Koketsu (Geophys J Int 103:355-362, 1990), and Wald and Heaton (Bull Seismol Soc Am 84:668-691, 1994) independently initiated joint inversion methods, finding that joint inversion provides more reliable rupture process models than single-dataset inversion, leading to an increase of joint inversion studies. A list of these studies was made using the finite-source rupture model database (Mai and Thingbaijam in Seismol Res Lett 85:1348-1357, 2014). Outstanding issues regarding joint inversion were also discussed.
Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems
Energy Technology Data Exchange (ETDEWEB)
Benzi, M. [Universita di Bologna (Italy); Tuma, M. [Inst. of Computer Sciences, Prague (Czech Republic)
1996-12-31
A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.
Inverse Dynamics of Flexible Manipulators - A DAE Approach
Moberg, Stig; Hanssen, Sven
2008-01-01
The inverse dynamics for a flexible manipulator can be formulated as a differential-algebraic equation (DAE). The the inverse dynamics is, e.g., used for feedforward control. This work investigates different methods for analyzing and solving these equations.
INVERSE ELECTRON TRANSFER IN PEROXYOXALATE CHEMIEXCITATION USING EASILY REDUCIBLE ACTIVATORS
Bartoloni, Fernando Heering; Monteiro Leite Ciscato, Luiz Francisco; Augusto, Felipe Alberto; Baader, Wilhelm Josef
2010-01-01
INVERSE ELECTRON TRANSFER IN PEROXYOXALATE CHEMIEXCITATION USING EASILY REDUCIBLE ACTIVATORS. Chemiluminescence properties of the peroxyoxalate reaction in the presence of activators bearing electron withdrawing substituents were studied, to evaluate the possible occurrence of an inverse electron tr
International Nuclear Information System (INIS)
In the present work, results of investigations into the thermal structure of the atmospheric boundary layer from the data of acoustic sounding are given. Acoustic sounding was performed by the Zvuk-3 sodar in the suburbs of Tomsk in different seasons of 2005-2007. The stratification type (class of atmospheric stability), mixing layer height, and temperature inversion layers together with their thickness and heights of their upper and lower boundaries were determined. Their statistical characteristics were also calculated. The characteristics of temperature stratification were in good agreement with the previously obtained data. Thus, in winter the number of surface inversions was maximal. In our case, in December of 2005-2007, the surface inversions were observed in more than 50% of cases. The height of the lower boundary of elevated inversions was in the altitude range 50-100 m, the upper boundary of the elevated inversion was in the altitude range 140-200 m. The average thickness of elevated inversions in December was about 90 m. In summer, inversions were observed mainly at night, because unstable stratification prevailed in the afternoon. The average height of the lower boundary of the elevated inversion in June was 70 m, and that of the upper boundary was 230 m. The ABL structure characteristics obtained with the acoustic radar can be used to predict climatic prerequisites for atmospheric pollution events
Postpartum Prolapsed Leiomyoma with Uterine Inversion Managed by Vaginal Hysterectomy
Pieh-Holder, Kelly L.; Heidi Bell; Tana Hall; DeVente, James E.
2014-01-01
Background. Uterine inversion is a rare, but life threatening, obstetrical emergency which occurs when the uterine fundus collapses into the endometrial cavity. Various conservative and surgical therapies have been outlined in the literature for the management of uterine inversions. Case. We present a case of a chronic, recurrent uterine inversion, which was diagnosed following spontaneous vaginal delivery and recurred seven weeks later. The uterine inversion was likely due to a leiomyoma. Th...
Inverse Regression for the Wiener Class of Systems
Lyzell, Christian; Enqvist, Martin
2011-01-01
The concept of inverse regression has turned out to be quite useful for dimension reduction in regression analysis problems. Using methods like sliced inverse regression (SIR) and directional regression (DR), some high-dimensional nonlinear regression problems can be turned into more tractable low-dimensional problems. Here, the usefulness of inverse regression for identification of nonlinear dynamical systems will be discussed. In particular, it will be shown that the inverse regression meth...
Review of ankle inversion sprain simulators in the biomechanics laboratory
Sophia Chui-Wai Ha; Daniel Tik-Pui Fong; Kai-Ming Chan
2015-01-01
Ankle inversion ligamentous sprain is one of the most common sports injuries. The most direct way is to investigate real injury incidents, but it is unethical and impossible to replicate on test participants. Simulators including tilt platforms, trapdoors, and fulcrum devices were designed to mimic ankle inversion movements in laboratories. Inversion angle was the only element considered in early designs; however, an ankle sprain is composed of inversion and plantarflexion in clinical observa...
Inverse problems in classical and quantum physics
International Nuclear Information System (INIS)
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A
Inverse problems in classical and quantum physics
Energy Technology Data Exchange (ETDEWEB)
Almasy, A.A.
2007-06-29
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A
Solving and analyzing PD0L inverse process
Institute of Scientific and Technical Information of China (English)
樊勇兵; 陈刚; 董光昌
2001-01-01
The importance of L inverse process is emphasized and an algorithm is given to realize PD0L inverse process. On the basis of algorithm analysis, this note discusses the possibility of applying L inverse process to data compression and the difficulties in doing that.
Mechanism and Modeling for Polymerization of Acrylamide in Inverse Microemulsions
Institute of Scientific and Technical Information of China (English)
LiXiao; ZhangWeiying; YuanHuigen
2004-01-01
After discussion on the mechanism of polymer particle nucleation and growth in inverse microemulsion polymerization, a schematic physical model for polymerization of acrylamide in inverse microemulsions was presented. Furthermore, several key problems in mathematically modeling of inverse microemulsion polymerization were pointed out.
Le Moigne, Frédéric A. C.; Henson, Stephanie A.; Cavan, Emma; Georges, Clément; Pabortsava, Katsiaryna; Achterberg, Eric P.; Ceballos-Romero, Elena; Zubkov, Mike; Sanders, Richard J.
2016-05-01
The ocean contributes to regulating atmospheric CO2 levels, partly via variability in the fraction of primary production (PP) which is exported out of the surface layer (i.e., the e ratio). Southern Ocean studies have found that contrary to global-scale analyses, an inverse relationship exists between e ratio and PP. This relationship remains unexplained, with potential hypotheses being (i) large export of dissolved organic carbon (DOC) in high PP areas, (ii) strong surface microbial recycling in high PP regions, and/or (iii) grazing-mediated export that varies inversely with PP. We find that the export of DOC has a limited influence in setting the negative e ratio/PP relationship. However, we observed that at sites with low PP and high e ratios, zooplankton-mediated export is large and surface microbial abundance low suggesting that both are important drivers of the magnitude of the e ratio in the Southern Ocean.
Brown, Margaret
1993-01-01
An inversion algorithm, constructed to deduce the emissions of a source gas required to produce a specified surface concentration, is applied to the observed surface concentrations of CFC 11, methylchloroform, and methane, using a two-dimensional chemical transport model. The information utilized for this deduction process is limited to the measured atmospheric concentration of the source gas, including the associated standard deviations of these measurements. In this way the amount of objective information available in these measurements is assessed. The algorithm is shown to be capable of producing a latitudinal emissions distribution as well as the error bounds on the deduced emission distribution. The 'ill posed' nature of this inverse problem is discussed as well as the implications this has on the spatial and temporal resolution at which emissions can be resolved. Finally, a methane emission distribution is deduced which has the expected seasonal variations and consistent with results from other, more subjective, deduction studies.
Directory of Open Access Journals (Sweden)
A. Solomon
2011-05-01
Full Text Available Observations suggest that processes maintaining subtropical and Arctic stratocumulus differ, due to the different environments in which they occur. For example, specific humidity inversions (specific humidity increasing with height are frequently observed to occur coincident with temperature inversions in the Arctic, while they do not occur in the subtropics. In this study we use nested LES simulations of decoupled Arctic Mixed-Phase Stratocumulus (AMPS clouds observed during the DOE Atmospheric Radiation Measurement Program's Indirect and SemiDirect Aerosol Campaign (ISDAC to analyze budgets of water components, potential temperature, and turbulent kinetic energy. These analyses quantify the processes that maintain decoupled AMPS, including the role of the humidity inversions. The results show the maintenance of liquid clouds in both the shallow upper entrainment zone (temperature and humidity inversion due to a down gradient transport of water vapor by turbulent fluxes into the cloud layer and direct condensation by radiative cooling, and in the updrafts of the mixed-layer eddies below cloud top due to buoyant destabilization. These processes cause at least 20 % of the cloud liquid water to extend into the inversion. The redistribution of water vapor from the top of the humidity inversion to the base of the humidity inversion maintains the cloud layer while the mixed layer-entrainment zone system is continually losing total water. In this decoupled system, the humidity inversion is the only source of water vapor for the cloud system since water vapor from the surface layer is not efficiently transported into the mixed layer. Sedimentation of ice is the dominant sink of moisture from the mixed layer.
Selvam, A M
2011-01-01
Atmospheric flows exhibit self-similar fractal space-time fluctuations on all space-time scales in association with inverse power law distribution for power spectra of meteorological parameters such as wind, temperature, etc., and thus implies long-range correlations, identified as self-organized criticality generic to dynamical systems in nature. A general systems theory developed by the author visualizes the fractal fluctuations to result from the coexistence of eddy fluctuations in an eddy continuum, the larger scale eddies being the integrated mean of enclosed smaller scale eddies. The model predicts that the probability distributions of component eddy amplitudes and the corresponding variances (power spectra) are quantified by the same universal inverse power law distribution incorporating the golden mean. Atmospheric particulates are held in suspension by the vertical velocity distribution spectrum. The atmospheric particulate size spectrum is derived in terms of the model predicted universal inverse po...
Pluto's atmosphere near perihelion
International Nuclear Information System (INIS)
A recent stellar occultation has confirmed predictions that Pluto has an atmosphere which is sufficiently thick to uniformly envelope the planet and to extend far above the surface. Pluto's atmosphere consists of methane and perhaps other volatile gases at temperatures below their freezing points; it should regulate the surface temperature of its volatile ices to a globally uniform value. As Pluto approaches and passes through perihelion, a seasonal maximum in the atmospheric bulk and a corresponding minimum in the exposed volatile ice abundance is expected to occur. The lag in maximum atmospheric bulk relative to perihelion will be diagnostic of the surface thermal properties. An estimate of Pluto's atmospheric bulk may result if a global darkening (resulting from the disappearance of the seasonally deposited frosts) occurs before the time of maximum atmospheric bulk. The ice deposited shortly after perihelion may be diagnostic of the composition of Pluto's volatile reservoir
Measurement of the Atmospheric $\
Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose1, D; Boser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Velez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glusenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Gora, D; Grant, D; Gross, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klas, J; Klein, S R; Kohne, J -H; Kohnen, G; Kolanoski, H; Kopke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meszaros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Perez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Radel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schoneberg, S; Schonherr, L; Schonwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stoss, A; Strahler, E A; Strom, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge1, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M
2012-01-01
We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by neutral current interactions of atmospheric neutrinos of all flavors. Using data recorded during the first year of operation of IceCube's DeepCore low energy extension, a sample of 1029 events is observed in 281 days of data. The number of observed cascades is $N_{\\rm cascade} = 496 \\pm 66 (stat.) \\pm 88(syst.)$ and the rest of the sample consists of residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is determined in the energy range between approximately 80 GeV and 6 TeV and is consistent with models of atmospheric neutrinos.
Atmospheric Circulation of Exoplanets
Showman, Adam P; Menou, Kristen
2009-01-01
We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric d...
Fair weather atmospheric electricity
International Nuclear Information System (INIS)
Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.
Photochemistry in planetary atmospheres
Levine, J. S.; Graedel, T. E.
1981-01-01
Widely varying paths of evolutionary history, atmospheric processes, solar fluxes, and temperatures have produced vastly different planetary atmospheres. The similarities and differences between the earth atmosphere and those of the terrestrial planets (Venus and Mars) and of the Jovian planets are discussed in detail; consideration is also given to the photochemistry of Saturn, Uranus, Pluto, Neptune, Titan, and Triton. Changes in the earth's ancient atmosphere are described, and problems of interest in the earth's present troposphere are discussed, including the down wind effect, plume interactions, aerosol nucleation and growth, acid rain, and the fate of terpenes. Temperature fluctuations in the four principal layers of the earth's atmosphere, predicted decreases in the ozone concentration as a function of time, and spectra of particles in the earth's upper atmosphere are also presented. Finally, the vertical structure of the Venus cloud system and the thermal structure of the Jovian planets are shown graphically.
Impact of modelled particle characteristics on emissions inferred by inversion of tracer transport
Directory of Open Access Journals (Sweden)
S. M. Burrows
2013-02-01
Full Text Available Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO_{2}. We consider the application of similar techniques to source estimation for atmospheric aerosols, using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC.
Source estimation via Monte Carlo Markov Chain is applied to a suite of sensitivity simulations and the global mean emissions are estimated. We present an analysis of the uncertainties in the global mean emissions, and a partitioning of the uncertainties that are attributable to particle size, activity as cloud condensation nuclei (CCN, the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error.
Uncertainty due to CCN activity or to a 1 μm error in particle size is typically between 10% and 40% of the uncertainty due to observation uncertainty, as measured by the 5%-ile to 95%-ile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mixed-phase clouds is as high as 10% to 20% of that attributable to observation uncertainty. Taken together, the four model parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the observations. This was a surprisingly large contribution from model uncertainty in light of the substantial observation uncertainty, which ranges from 81% to 870% of the mean for each of ten ecosystems for this case study. The effects of these and other model parameters in contributing to the uncertainties in the transport of atmospheric aerosol particles should be treated explicitly and
Retrieving Atmospheric Precipitable Water Vapor Using Artificial Neural Network Approach
Directory of Open Access Journals (Sweden)
Wang Xin
2013-07-01
Full Text Available Discussing of water vapor and its variation is the important issue for synoptic meteorology and meteorology. In physical Atmospheric, the moisture content of the earth atmosphere is one of the most important parameters, it is hard to represent water vapor because of its space-time variation. High-spectral resolution Atmospheric Infrared Sounder (AIRS data can be used to retrieve the small scale vertical structure of air temperature, which provided a more accurate and good initial field for the numerical forecasting and the large-scale weather analysis. This paper proposes an artificial neural network to retrieve the clear sky atmospheric radiation data from AIRS and comparing with the AIRS Level-2 standard product, and gain a good inversion results.
An Atmospheric Science Observing System Simulation Experiment (OSSE) Environment
Lee, Meemong; Weidner, Richard; Qu, Zheng; Bowman, Kevin; Eldering, Annmarie
2010-01-01
An atmospheric sounding mission starts with a wide range of concept designs involving measurement technologies, observing platforms, and observation scenarios. Observing system simulation experiment (OSSE) is a technical approach to evaluate the relative merits of mission and instrument concepts. At Jet Propulsion Laboratory (JPL), the OSSE team has developed an OSSE environment that allows atmospheric scientists to systematically explore a wide range of mission and instrument concepts and formulate a science traceability matrix with a quantitative science impact analysis. The OSSE environment virtually creates a multi-platform atmospheric sounding testbed (MAST) by integrating atmospheric phenomena models, forward modeling methods, and inverse modeling methods. The MAST performs OSSEs in four loosely coupled processes, observation scenario exploration, measurement quality exploration, measurement quality evaluation, and science impact analysis.
Levitating atmospheres of Eddington-luminosity neutron stars
Wielgus, Maciek; Sądowski, Aleksander; Kluźniak, Włodek; Abramowicz, Marek; Narayan, Ramesh
2016-06-01
We construct models of static, spherically symmetric shells supported by the radiation flux of a luminous neutron star in the Schwarzschild metric. The atmospheres are disconnected from the star and levitate above its surface. Gas pressure and density inversion appear in the inner region of these atmospheres, which is a purely relativistic phenomenon. We account for the scattering opacity dependence on temperature green by using the Klein-Nishina formula. The relativistic M1 closure scheme for the radiation tensor provides a general relativity-consistent treatment of the photon flux and radiation tensor anisotropy. In this way, we are able to address atmospheres of both large and moderate/low optical depths with the same set of equations. We discuss properties of the levitating atmospheres and find that they may indeed be optically thick, with the distance between star surface and the photosphere expanding as luminosity increases. These results may be relevant for the photosphereric radius expansion X-ray bursts.
Levitating atmospheres of Eddington-luminosity neutron stars
Wielgus, Maciek; Kluzniak, Wlodek; Abramowicz, Marek; Narayan, Ramesh
2015-01-01
We construct models of static, spherically symmetric shells supported by the radiation flux of a luminous neutron star in the Schwarzschild metric. The atmospheres are disconnected from the star and levitate above its surface. Gas pressure and density inversion appear in the inner region of these atmospheres, which is a purely relativistic phenomenon. We account for the scattering opacity dependence on temperature and utilize the relativistic M1 closure scheme for the radiation tensor, hence allowing for a fully GR-consistent treatment of the photon flux and radiation tensor anisotropy. In this way we are able to address atmospheres of both large and moderate/low optical depths with the same set of equations. We discuss properties of the levitating atmospheres and find that they may indeed be optically thick, with the distance between star surface and the photosphere expanding as luminosity increases. These results may be relevant for the photosphereric radius expansion X-ray bursts.
Review of ankle inversion sprain simulators in the biomechanics laboratory
Directory of Open Access Journals (Sweden)
Sophia Chui-Wai Ha
2015-10-01
Full Text Available Ankle inversion ligamentous sprain is one of the most common sports injuries. The most direct way is to investigate real injury incidents, but it is unethical and impossible to replicate on test participants. Simulators including tilt platforms, trapdoors, and fulcrum devices were designed to mimic ankle inversion movements in laboratories. Inversion angle was the only element considered in early designs; however, an ankle sprain is composed of inversion and plantarflexion in clinical observations. Inversion velocity is another parameter that increased the reality of simulation. This review summarised the simulators, and aimed to compare and contrast their features and settings.
International Nuclear Information System (INIS)
This paper presents a new hybrid filtered backprojection (FBP) algorithm for fan-beam and cone-beam scan. The hybrid reconstruction kernel is the sum of the ramp and Hilbert filters. We modify the redundancy weighting function to reduce the inverse square distance weighting in the backprojection to inverse distance weight. The modified weight also eliminates the derivative associated with the Hilbert filter kernel. Thus, the proposed reconstruction algorithm has the advantages of the inverse distance weight in the backprojection. We evaluate the performance of the new algorithm in terms of the magnitude level and uniformity in noise for the fan-beam geometry. The computer simulations show that the spatial resolution is nearly identical to the standard fan-beam ramp filtered algorithm while the noise is spatially uniform and the noise variance is reduced. (orig.)
DEFF Research Database (Denmark)
Højlund, Marie; Kinch, Sofie
2012-01-01
This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful......, in order to encompass dynamic atmospheres as intertwined, constantly shifting negotiations between the rhythms of the environment and of the body. The contribution of this paper is to unravel these negotiations of diverse rhythms, in order to approach dynamic atmospheres from an operational...
Atmospheric Measurements Laboratory (AML)
Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...
Regional-scale geostatistical inverse modeling of North American CO2 fluxes: a synthetic data study
Directory of Open Access Journals (Sweden)
A. M. Michalak
2010-07-01
Full Text Available A series of synthetic data experiments is performed to investigate the ability of a regional atmospheric inversion to estimate grid-scale CO2 fluxes during the growing season over North America. The inversions are performed within a geostatistical framework without the use of any prior flux estimates or auxiliary variables, in order to focus on the atmospheric constraint provided by the nine towers collecting continuous, calibrated CO2 measurements in 2004. Using synthetic measurements and their associated concentration footprints, flux and model-data mismatch covariance parameters are first optimized, and then fluxes and their uncertainties are estimated at three different temporal resolutions. These temporal resolutions, which include a four-day average, a four-day-average diurnal cycle with 3-hourly increments, and 3-hourly fluxes, are chosen to help assess the impact of temporal aggregation errors on the estimated fluxes and covariance parameters. Estimating fluxes at a temporal resolution that can adjust the diurnal variability is found to be critical both for recovering covariance parameters directly from the atmospheric data, and for inferring accurate ecoregion-scale fluxes. Accounting for both spatial and temporal a priori covariance in the flux distribution is also found to be necessary for recovering accurate a posteriori uncertainty bounds on the estimated fluxes. Overall, the results suggest that even a fairly sparse network of 9 towers collecting continuous CO2 measurements across the continent, used with no auxiliary information or prior estimates of the flux distribution in time or space, can be used to infer relatively accurate monthly ecoregion scale CO2 surface fluxes over North America within estimated uncertainty bounds. Simulated random transport error is shown to decrease the quality of flux estimates in under-constrained areas at the ecoregion scale, although the uncertainty bounds remain realistic. While these synthetic
Inverse transport modeling of volcanic sulfur dioxide emissions using large-scale simulations
Heng, Yi; Hoffmann, Lars; Griessbach, Sabine; Rößler, Thomas; Stein, Olaf
2016-05-01
An inverse transport modeling approach based on the concepts of sequential importance resampling and parallel computing is presented to reconstruct altitude-resolved time series of volcanic emissions, which often cannot be obtained directly with current measurement techniques. A new inverse modeling and simulation system, which implements the inversion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) is developed to provide reliable transport simulations of volcanic sulfur dioxide (SO2). In the inverse modeling system MPTRAC is used to perform two types of simulations, i.e., unit simulations for the reconstruction of volcanic emissions and final forward simulations. Both types of transport simulations are based on wind fields of the ERA-Interim meteorological reanalysis of the European Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent SO2 emission time series is also based on Atmospheric InfraRed Sounder (AIRS) satellite observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011, with complex emission patterns, is considered for method validation. Meteosat Visible and InfraRed Imager (MVIRI) near-real-time imagery data are used to validate the temporal development of the reconstructed emissions. Furthermore, the altitude distributions of the emission time series are compared with top and bottom altitude measurements of aerosol layers obtained by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite instruments. The final forward simulations provide detailed spatial and temporal information on the SO2 distributions of the Nabro eruption. By using the critical success index (CSI), the simulation results are evaluated with the AIRS observations. Compared to the results with an assumption of a constant flux of SO2 emissions, our inversion approach leads to an improvement
Strange Horizons: Teaching Usual and Unusual Atmospheric Effects using APOD
Wilson, Teresa
2015-01-01
Unusual Sun and moonsets are not only photogenic -- they are educational. Images appearing on the Astronomy Picture of the Day (APOD) that demonstrate dramatic examples of the green flash, the Moon illusion, Fata Morgana, and the Etruscan vase effect are discussed in terms of how they demonstrate atmospheric refraction, chromatic aberration, and temperature inversions. A lesson plan is given for undergraduate classrooms as well as estimates of how each effect might alter the perceived time of a common sunset.
On the potential of GHG emissions estimation by multi-species inverse modeling
Gerbig, Christoph; Boschetti, Fabio; Filges, Annette; Marshall, Julia; Koch, Frank-Thomas; Janssens-Maenhout, Greet; Nedelec, Philippe; Thouret, Valerie; Karstens, Ute
2016-04-01
Reducing anthropogenic emissions of greenhouse gases is one of the most important elements in mitigating climate change. However, as emission reporting is often incomplete or incorrect, there is a need to independently monitor the emissions. Despite this, in the case of CO2 one typically assumes that emissions from fossil fuel burning are well known, and only natural fluxes are constrained by atmospheric measurements via inverse modelling. On the other hand, species such as CO2, CH4, and CO often have common emission patterns, and thus share part of the uncertainties, both related to the prior knowledge of emissions, and to model-data mismatch error. We implemented the Lagrangian transport model STILT driven by ECMWF analysis and short-term forecast meteorological fields together with emission sector and fuel-type specific emissions of CO2, CH4 and CO from EDGARv4.3 at a spatial resolution of 0.1 x 0.1 deg., providing an atmospheric fingerprint of anthropogenic emissions for multiple trace gases. We combine the regional STILT simulations with lateral boundary conditions for CO2 and CO from MACC forecasts and CH4 from TM3 simulations. Here we apply this framework to airborne in-situ measurements made in the context of IAGOS (In-service Aircraft for a Global Observing System) and in the context of a HALO mission conducted for testing the active remote sensing system CHARM-F during April/May 2015 over central Europe. Simulated tracer distributions are compared to observed profiles of CO2, CH4, and CO, and the potential for a multi-species inversion using synergies between different tracers is assessed with respect to the uncertainty reduction in retrieved emission fluxes. Implications for inversions solving for anthropogenic emissions using atmospheric observations from ICOS (Integrated Carbon Observing System) are discussed.
Inverse modeling in fractured ground water carriers
International Nuclear Information System (INIS)
An inverse modeling scheme is presented which allows the estimation of model parameters of saturated groundwater flow from measurements made on the system response as well as from prior information on the parameters. An indirect approach to the inverse problem is applied determining the hydro- and hydrogeological parameters of a numerical model by repeated solution of the transient flow equation. This so-called direct problem is solved numerically by the Finite Element Method. The three-dimensional model is especially designed for dealing with fractured media so that elements of lower dimension than the overall model can be included in order to model fault zones. Spatially distributed parameters are considered alternatively by conventional zonation or pointwise definition in connection with a kriging interpolation technique. The inverse problem is formulated in the statistical framework of the maximum-likelihood estimation method which enables one to account for errors of the measurements and for errors of model output. The resulting objective function is minimized by alternative mathematical optimization algorithms where a sequential combination of a gradient method and a Gauss-Newton method has been found to perform best in many cases. With respect to the computational efficiency of the nonlinear optimization problem, the exact gradient (of the numerical problem) as well as the Jacobian matrix, i.e. the partial derivatives of the performance measures, are computed by the adjoint-state method or by direct derivation of the FE-equations, respectively. In addition to potential head measurements which are conventionally used to calibrate flow models, flow rates measured at model boundaries can be considered. (author) figs., tabs., 134 refs
Postpartum Prolapsed Leiomyoma with Uterine Inversion Managed by Vaginal Hysterectomy
Directory of Open Access Journals (Sweden)
Kelly L. Pieh-Holder
2014-01-01
Full Text Available Background. Uterine inversion is a rare, but life threatening, obstetrical emergency which occurs when the uterine fundus collapses into the endometrial cavity. Various conservative and surgical therapies have been outlined in the literature for the management of uterine inversions. Case. We present a case of a chronic, recurrent uterine inversion, which was diagnosed following spontaneous vaginal delivery and recurred seven weeks later. The uterine inversion was likely due to a leiomyoma. This late-presenting, chronic, recurring uterine inversion was treated with a vaginal hysterectomy. Conclusion. Uterine inversions can occur in both acute and chronic phases. Persistent vaginal bleeding with the appearance of a prolapsing fibroid should prompt further investigation for uterine inversion and may require surgical therapy. A vaginal hysterectomy may be an appropriate management option in select populations and may be considered in women who do not desire to maintain reproductive function.
A NEW INVERSION METHOD OF TIME-LAPSE SEISMIC
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Time-Lapse Seismic improves oil recovery ratio by dynamic reservoir monitoring. Because of the large number of seismic explorations in the process of time-lapse seismic inversion, traditional methods need plenty of inversion calculations which cost high computational works. The method is therefore inefficient. In this paper, in order to reduce the repeating computations in traditional, a new time-lapse seismic inversion method is put forward. Firstly a homotopy-regularization method is proposed for the first time inversion. Secondly, with the first time inversion results as the initial value of following model, a model of the second time inversion is rebuilt by analyzing the characters of time-lapse seismic and localized inversion method is designed by using the model. Finally, through simulation, the comparison between traditional method and the new scheme is given. Our simulation results show that the new scheme could save the algorithm computations greatly.
Fast Parallel Computation Of Manipulator Inverse Dynamics
Fijany, Amir; Bejczy, Antal K.
1991-01-01
Method for fast parallel computation of inverse dynamics problem, essential for real-time dynamic control and simulation of robot manipulators, undergoing development. Enables exploitation of high degree of parallelism and, achievement of significant computational efficiency, while minimizing various communication and synchronization overheads as well as complexity of required computer architecture. Universal real-time robotic controller and simulator (URRCS) consists of internal host processor and several SIMD processors with ring topology. Architecture modular and expandable: more SIMD processors added to match size of problem. Operate asynchronously and in MIMD fashion.
Dyck tilings, linear extensions, descents, and inversions
Kim, Jang Soo; Panova, Greta; Wilson, David B
2012-01-01
Dyck tilings were introduced by Kenyon and Wilson in their study of double-dimer pairings. They are certain kinds of tilings of skew Young diagrams with ribbon tiles shaped like Dyck paths. We give two bijections between "cover-inclusive" Dyck tilings and linear extensions of tree posets. The first bijection maps the statistic (area + tiles)/2 to inversions of the linear extension, and the second bijection maps the "discrepancy" between the upper and lower boundary of the tiling to descents of the linear extension.
An inverse scattering formalism for STU supergravity
International Nuclear Information System (INIS)
STU supergravity becomes an integrable system for solutions that effectively only depend on two variables. This class of solutions includes the Kerr solution and its charged generalizations that have been studied in the literature. We here present an inverse scattering method that allows to systematically construct solutions of this integrable system. The method is similar to the one of Belinski and Zakharov for pure gravity but uses a different linear system due to Breitenlohner and Maison and here requires some technical modifications. We illustrate this method by constructing a four-charge rotating solution from flat space. A generalization to other set-ups is also discussed
Inverse Problems in Learning from Data
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra
Košice: Prírodovedecká fakulta, Univerzita P. J. Šafárika, 2006 - (Vojtáš, P.), s. 3-8 ISBN 80-969184-4-3. [ITAT 2006. Workshop on Theory and Practice of Information Theory. Bystrá dolina (SK), 26.09.2006-01.10.2006] R&D Projects: GA AV ČR 1ET100300517 Institutional research plan: CEZ:AV0Z10300504 Keywords : learning from data * inverse problems * regularization Subject RIV: IN - Informatics, Computer Science