An inversion method for cometary atmospheres
Hubert, B.; Opitom, C.; Hutsemékers, D.; Jehin, E.; Munhoven, G.; Manfroid, J.; Bisikalo, D. V.; Shematovich, V. I.
2016-10-01
Remote observation of cometary atmospheres produces a measurement of the cometary emissions integrated along the line of sight. This integration is the so-called Abel transform of the local emission rate. The observation is generally interpreted under the hypothesis of spherical symmetry of the coma. Under that hypothesis, the Abel transform can be inverted. We derive a numerical inversion method adapted to cometary atmospheres using both analytical results and least squares fitting techniques. This method, derived under the usual hypothesis of spherical symmetry, allows us to retrieve the radial distribution of the emission rate of any unabsorbed emission, which is the fundamental, physically meaningful quantity governing the observation. A Tikhonov regularization technique is also applied to reduce the possibly deleterious effects of the noise present in the observation and to warrant that the problem remains well posed. Standard error propagation techniques are included in order to estimate the uncertainties affecting the retrieved emission rate. Several theoretical tests of the inversion techniques are carried out to show its validity and robustness. In particular, we show that the Abel inversion of real data is only weakly sensitive to an offset applied to the input flux, which implies that the method, applied to the study of a cometary atmosphere, is only weakly dependent on uncertainties on the sky background which has to be subtracted from the raw observations of the coma. We apply the method to observations of three different comets observed using the TRAPPIST telescope: 103P/ Hartley 2, F6/ Lemmon and A1/ Siding Spring. We show that the method retrieves realistic emission rates, and that characteristic lengths and production rates can be derived from the emission rate for both CN and C2 molecules. We show that the retrieved characteristic lengths can differ from those obtained from a direct least squares fitting over the observed flux of radiation, and
An improved Kalman Smoother for atmospheric inversions
Directory of Open Access Journals (Sweden)
L. M. P. Bruhwiler
2005-01-01
Full Text Available We explore the use of a fixed-lag Kalman smoother for sequential estimation of atmospheric carbon dioxide fluxes. This technique takes advantage of the fact that most of the information about the spatial distribution of sources and sinks is observable within a few months to half of a year of emission. After this period, the spatial structure of sources is diluted by transport and cannot significantly constrain flux estimates. We therefore describe an estimation technique that steps through the observations sequentially, using only the subset of observations and modeled transport fields that most strongly constrain the fluxes at a particular time step. Estimates of each set of fluxes are sequentially updated multiple times, using measurements taken at different times, and the estimates and their uncertainties are shown to quickly converge. Final flux estimates are incorporated into the background state of CO2 and transported forward in time, and the final flux uncertainties and covariances are taken into account when estimating the covariances of the fluxes still being estimated. The computational demands of this technique are greatly reduced in comparison to the standard Bayesian synthesis technique where all observations are used at once with transport fields spanning the entire period of the observations. It therefore becomes possible to solve larger inverse problems with more observations and for fluxes discretized at finer spatial scales. We also discuss the differences between running the inversion simultaneously with the transport model and running it entirely off-line with pre-calculated transport fields. We find that the latter can be done with minimal error if time series of transport fields of adequate length are pre-calculated.
An improved Kalman Smoother for atmospheric inversions
Directory of Open Access Journals (Sweden)
L. M. P. Bruhwiler
2005-03-01
Full Text Available We explore the use of a fixed-lag Kalman smoother for sequential estimation of atmospheric carbon dioxide fluxes. This technique takes advantage of the fact that most of the information about the spatial distribution of sources and sinks is observable within a 5 few months to half of a year of emission. After this period, the spatial structure of sources is diluted by transport and cannot significantly constrain flux estimates. We therefore describe an estimation technique that steps through the observations sequentially, using only the subset of observations and modeled transport fields that most strongly constrain the fluxes at a particular time step. Estimates of each set of fluxes 10 are sequentially updated multiple times, using measurements taken at different times, and the estimates and their uncertainties are shown to quickly converge. Final flux estimates are incorporated into the background state of CO_{2} and transported forward in time, and the final flux uncertainties and covariances are taken into account when estimating the covariances of the fluxes still being estimated. The computational demands 15 of this technique are greatly reduced in comparison to the standard Bayesian synthesis technique where all observations are used at once with transport fields spanning the entire period of the observations. It therefore becomes possible to solve larger inverse problems with more observations and for fluxes discretized at finer spatial scales. We also discuss the differences between running the inversion simultaneously with the 20 transport model and running it entirely off-line with pre-calculated transport fields. We find that the latter can be done with minimal error if time series of transport fields of adequate length are pre-calculated.
Abel inversion method for cometary atmospheres.
Hubert, Benoit; Opitom, Cyrielle; Hutsemekers, Damien; Jehin, Emmanuel; Munhoven, Guy; Manfroid, Jean; Bisikalo, Dmitry V.; Shematovich, Valery I.
2016-04-01
Remote observation of cometary atmospheres produces a measurement of the cometary emissions integrated along the line of sight joining the observing instrument and the gas of the coma. This integration is the so-called Abel transform of the local emission rate. We develop a method specifically adapted to the inversion of the Abel transform of cometary emissions, that retrieves the radial profile of the emission rate of any unabsorbed emission, under the hypothesis of spherical symmetry of the coma. The method uses weighted least squares fitting and analytical results. A Tikhonov regularization technique is applied to reduce the possible effects of noise and ill-conditioning, and standard error propagation techniques are implemented. Several theoretical tests of the inversion techniques are carried out to show its validity and robustness, and show that the method is only weakly dependent on any constant offset added to the data, which reduces the dependence of the retrieved emission rate on the background subtraction. We apply the method to observations of three different comets observed using the TRAPPIST instrument: 103P/ Hartley 2, F6/ Lemmon and A1/ Siding spring. We show that the method retrieves realistic emission rates, and that characteristic lengths and production rates can be derived from the emission rate for both CN and C2 molecules. We show that the emission rate derived from the observed flux of CN emission at 387 nm and from the C2 emission at 514.1 nm of comet Siding Spring both present an easily-identifiable shoulder that corresponds to the separation between pre- and post-outburst gas. As a general result, we show that diagnosing properties and features of the coma using the emission rate is easier than directly using the observed flux. We also determine the parameters of a Haser model fitting the inverted data and fitting the line-of-sight integrated observation, for which we provide the exact analytical expression of the line-of-sight integration
Technical Note: Methods for interval constrained atmospheric inversion of methane
Directory of Open Access Journals (Sweden)
J. Tang
2010-08-01
Full Text Available Three interval constrained methods, including the interval constrained Kalman smoother, the interval constrained maximum likelihood ensemble smoother and the interval constrained ensemble Kalman smoother are developed to conduct inversions of atmospheric trace gas methane (CH_{4}. The negative values of fluxes in an unconstrained inversion are avoided in the constrained inversion. In a multi-year inversion experiment using pseudo observations derived from a forward transport simulation with known fluxes, the interval constrained fixed-lag Kalman smoother presents the best results, followed by the interval constrained fixed-lag ensemble Kalman smoother and the interval constrained maximum likelihood ensemble Kalman smoother. Consistent uncertainties are obtained for the posterior fluxes with these three methods. This study provides alternatives of the variable transform method to deal with interval constraints in atmospheric inversions.
Inversion of physical parameters in solar atmospheric seismology
Arregui, Inigo
2012-01-01
Magnetohydrodynamic (MHD) wave activity is ubiquitous in the solar atmosphere. MHD seismology aims to determine difficult to measure physical parameters in solar atmospheric magnetic and plasma structures by a combination of observed and theoretical properties of MHD waves and oscillations. This technique, similar to seismology or helio-seismology, demands the solution of two problems. The direct problem involves the computation of wave properties of given theoretical models. The inverse problem implies the calculation of unknown physical parameters, by means of a comparison of observed and theoretical wave properties. Solar atmospheric seismology has been successfully applied to different structures such as coronal loops, prominence fine structures, spicules, or jets. However, it is still in its infancy. Far more is there to come. We present an overview of recent results, with particular emphasis in the inversion procedure.
Objectified quantification of uncertainties in Bayesian atmospheric inversions
Directory of Open Access Journals (Sweden)
A. Berchet
2014-07-01
Full Text Available Classical Bayesian atmospheric inversions process atmospheric observations and prior emissions, the two being connected by an observation operator picturing mainly the atmospheric transport. These inversions rely on prescribed errors in the observations, the prior emissions and the observation operator. At the meso-scale, inversion results are very sensitive to the prescribed error distributions, which are not accurately known. The classical Bayesian framework experiences difficulties in quantifying the impact of mis-specified error distributions on the optimized fluxes. In order to cope with this issue, we rely on recent research results and enhance the classical Bayesian inversion framework through a marginalization on all the plausible errors that can be prescribed in the system. The marginalization consists in computing inversions for all possible error distributions weighted by the probability of occurence of the error distributions. The posterior distribution of the fluxes calculated by the marginalization is complicated and not explicitly describable. We then carry out a Monte-Carlo sampling relying on an approximation of the probability of occurence of the error distributions. This approximation is deduced from the well-tested algorithm of the Maximum of Likelihood. Thus, the marginalized inversion relies on an automatic objectified diagnosis of the error statistics, without any prior knowledge about the matrices. It robustly includes the uncertainties on the error distributions, contrary to what is classically done with frozen expert-knowledge error statistics. Some expert knowledge is still used in the method for the choice of emission aggregation pattern and sampling protocol in order to reduce the computation costs of the method. The relevance and the robustness of the method is tested on a case study: the inversion of methane surface fluxes at the meso-scale with real observation sites in Eurasia. Observing System Simulation
Inversion for atmosphere duct parameters using real radar sea clutter
Sheng, Zheng; Fang, Han-Xian
2012-02-01
This paper addresses the problem of estimating the lower atmospheric refractivity (M profile) under nonstandard propagation conditions frequently encountered in low altitude maritime radar applications. The vertical structure of the refractive environment is modeled using five parameters and the horizontal structure is modeled using five parameters. The refractivity model is implemented with and without a priori constraint on the duct strength as might be derived from soundings or numerical weather-prediction models. An electromagnetic propagation model maps the refractivity structure into a replica field. Replica fields are compared with the observed clutter using a squared-error objective function. A global search for the 10 environmental parameters is performed using genetic algorithms. The inversion algorithm is implemented on the basis of S-band radar sea-clutter data from Wallops Island, Virginia (SPANDAR). Reference data are from range-dependent refractivity profiles obtained with a helicopter. The inversion is assessed (i) by comparing the propagation predicted from the radar-inferred refractivity profiles with that from the helicopter profiles, (ii) by comparing the refractivity parameters from the helicopter soundings with those estimated. This technique could provide near-real-time estimation of ducting effects.
Inversion for atmosphere duct parameters using real radar sea clutter
Institute of Scientific and Technical Information of China (English)
Sheng Zheng; Fang Han-Xian
2012-01-01
This paper addresses the problem of estimating the lower atmospheric refractivity (M profile) under nonstandard propagation conditions frequently encountered in low altitude maritime radar applications.The vertical structure of the refractive environment is modeled using five parameters and the horizontal structure is modeled using five parameters.The refractivity model is implemented with and without a priori constraint on the duct strength as might be derived from soundings or numerical weather-prediction models.An electromagnetic propagation model maps the refractivity structure into a replica field.Replica fields are compared with the observed clutter using a squared-error objective function.A global search for the 10 environmental parameters is performed using genetic algorithms.The inversion algorithm is implemented on the basis of S-band radar sea-clutter data from Wallops Island,Virginia (SPANDAR).Reference data are from range-dependent refractivity profiles obtained with a helicopter. The inversion is assessed (i) by comparing the propagation predicted from the radar-inferred refractivity profiles with that from the helicopter profiles,(ii) by comparing the refractivity parameters from the helicopter soundings with those estimated.This technique could provide near-real-time estimation of ducting effects.
Forward and Inverse Modeling of Brown Dwarf Atmospheres
Fortney, Jonathan
Ultracool dwarfs (UCDs), here defined as the L, T, and Y spectral classes, consist of the lowest mass stars and the substellar brown dwarfs. Over 1200 are currently known, from effective temperatures of 2400 K down to "room temperature" objects of 300 K. Observations of UCDs show tremendous diversity in their spectral characteristics. However, factors such as metallicity, non-solar C/O ratios, surface gravity, vertical mixing efficiency, cloud levels, and cloud thickness remain largely unexplored within atmosphere models. This leads to a very limited understanding of the physical and chemical causes of brown dwarf diversity. One of the main motivations of this proposal is to greatly expand the kinds of modeling efforts that we envision for UCD science to obtain fundamentally new insights from the spectra of several hundred objects. First, we will expand our self-consistent grids of combined atmosphere and evolution models. With this traditional approach we can test the sensitivity of synthetic spectra of changes in parameters like surface gravity, cloud thickness, partial cloudiness, cloud particle size, and vertical mixing efficiency. Second, we will use powerful retrieval techniques to invert the model-to-data comparison problem. These Bayesian techniques allow the inference of P-T profile structure and molecular abundances, directly from the data. The first target populations are benchmark brown dwarfs, which have a well-studied main sequence companion, and where metallicity, age, and even mass can be independently constrained. The second is the 500+ UCDs across all spectral types that have NIR spectra already in hand in the SpeX spectral library. The third population is brown dwarfs that are variable in emission. This work is directly relevant to the NASA Astrophysics Theory (ATP) program. The proposed falls within the ATP scope of "Stellar Astrophysics and Exoplanets," which specifically includes brown dwarfs. The current proposal both facilitates "the
Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions
Directory of Open Access Journals (Sweden)
S. M. Miller
2013-09-01
Full Text Available Many inverse problems in the atmospheric sciences involve parameters with known physical constraints. Examples include non-negativity (e.g., emissions of some urban air pollutants or upward limits implied by reaction or solubility constants. However, probabilistic inverse modeling approaches based on Gaussian assumptions cannot incorporate such bounds and thus often produce unrealistic results. The atmospheric literature lacks consensus on the best means to overcome this problem, and existing atmospheric studies rely on a limited number of the possible methods with little examination of the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems and is also the first application of Markov chain Monte Carlo (MCMC to estimation of atmospheric trace gas fluxes. The approaches discussed here are broadly applicable. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two MCMC methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing alternative for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.
Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5
Bergamaschi, P.; Krol, M.C.; Dentener, F.; Vermeulen, A.; Meinhardt, F.; Graul, R.; Ramonet, M.; Peters, W.; Dlugokencky, E.J.
2005-01-01
A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1° × 1° resolution that is two-way nested into the global model domain (with resolution of
Nested atmospheric inversion for the terrestrial carbon sources and sinks in China
Jiang, F.; Wang, H.W.; Chen, J.M.; Zhou, L.X.; Ju, W.M.; Peters, W.
2013-01-01
In this study, we establish a~nested atmospheric inversion system with a focus on China using the Bayes theory. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and a Hong Kong
Directory of Open Access Journals (Sweden)
C. Mukherjee
2011-01-01
Full Text Available Inverse modeling applications in atmospheric chemistry are increasingly addressing the challenging statistical issues of data synthesis by adopting refined statistical analysis methods. This paper advances this line of research by addressing several central questions in inverse modeling, focusing specifically on Bayesian statistical computation. Motivated by problems of refining bottom-up estimates of source/sink fluxes of trace gas and aerosols based on increasingly high-resolution satellite retrievals of atmospheric chemical concentrations, we address head-on the need for integrating formal spatial statistical methods of residual error structure in global scale inversion models. We do this using analytically and computationally tractable spatial statistical models, know as conditional autoregressive spatial models, as components of a global inversion framework. We develop Markov chain Monte Carlo methods to explore and fit these spatial structures in an overall statistical framework that simultaneously estimates source fluxes. Additional aspects of the study extend the statistical framework to utilize priors in a more physically realistic manner, and to formally address and deal with missing data in satellite retrievals. We demonstrate the analysis in the context of inferring carbon monoxide (CO sources constrained by satellite retrievals of column CO from the Measurement of Pollution in the Troposphere (MOPITT instrument on the TERRA satellite, paying special attention to evaluating performance of the inverse approach using various statistical diagnostic metrics. This is developed using synthetic data generated to resemble MOPITT data to define a~proof-of-concept and model assessment, and then in analysis of real MOPITT data.
New analysis indicates no thermal inversion in the atmosphere of HD 209458b
Energy Technology Data Exchange (ETDEWEB)
Diamond-Lowe, Hannah; Stevenson, Kevin B.; Bean, Jacob L. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Line, Michael R.; Fortney, Jonathan J., E-mail: hdiamondlowe@uchicago.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States)
2014-11-20
An important focus of exoplanet research is the determination of the atmospheric temperature structure of strongly irradiated gas giant planets, or hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal inversions, but this assertion does not take into account recently obtained data or newer data reduction techniques. We reexamine this claim by investigating all publicly available Spitzer Space Telescope secondary-eclipse photometric data of HD 209458b and performing a self-consistent analysis. We employ data reduction techniques that minimize stellar centroid variations, apply sophisticated models to known Spitzer systematics, and account for time-correlated noise in the data. We derive new secondary-eclipse depths of 0.119% ± 0.007%, 0.123% ± 0.006%, 0.134% ± 0.035%, and 0.215% ± 0.008% in the 3.6, 4.5, 5.8, and 8.0 μm bandpasses, respectively. We feed these results into a Bayesian atmospheric retrieval analysis and determine that it is unnecessary to invoke a thermal inversion to explain our secondary-eclipse depths. The data are well fitted by a temperature model that decreases monotonically between pressure levels of 1 and 0.01 bars. We conclude that there is no evidence for a thermal inversion in the atmosphere of HD 209458b.
Inverse problems using artificial neural networks in long range atmospheric dispersion
Energy Technology Data Exchange (ETDEWEB)
Sharma, P.K.; Gera, B.; Ghosh, A.K. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Reactor Safety Div.
2011-05-15
Scalar dispersion in the atmosphere is an important area wherein different approaches are followed in development of good analytical models. The analyses based on Computational Fluid Dynamics (CFD) codes offer an opportunity of model development based on first principles of physics and hence such models have an edge over the existing models. Both forward and backward calculation methods are being developed for atmospheric dispersion around NPPs at BARC. Forward modeling methods, which describe the atmospheric transport from sources to receptors, use forward-running transport and dispersion models or computational fluid dynamics models which are run many times, and the resulting dispersion field is compared to observations from multiple sensors. Backward or inverse modeling methods use only one model run in the reverse direction from the receptors to estimate the upwind sources. Inverse modeling methods include adjoint and tangent linear models, Kalman filters, and variational data assimilation, and neural network. The present paper is aimed at developing a new approach where the identified specific signatures at receptor points form the basis for source estimation or inversions. This approach is expected to reduce the large transient data sets to reduced and meaningful data sets. In fact this reduces the inherently transient data set into a time independent mean data set. Forward computations were carried out with CFD code for various cases to generate a large set of data to train the Artificial Neural Network (ANN). Specific signature analysis was carried out to find the parameters of interest for ANN training like peak concentration, time to reach peak concentration and time to fall. The ANN was trained with data and source strength and locations were predicted from ANN. The inverse problem was performed using the ANN approach in long range atmospheric dispersion. An illustration of application of CFD code for atmospheric dispersion studies for a hypothetical
Variational approach to direct and inverse problems of atmospheric pollution studies
Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey
2016-04-01
We present the development of a variational approach for solving interrelated problems of atmospheric hydrodynamics and chemistry concerning air pollution transport and transformations. The proposed approach allows us to carry out complex studies of different-scale physical and chemical processes using the methods of direct and inverse modeling [1-3]. We formulate the problems of risk/vulnerability and uncertainty assessment, sensitivity studies, variational data assimilation procedures [4], etc. A computational technology of constructing consistent mathematical models and methods of their numerical implementation is based on the variational principle in the weak constraint formulation specifically designed to account for uncertainties in models and observations. Algorithms for direct and inverse modeling are designed with the use of global and local adjoint problems. Implementing the idea of adjoint integrating factors provides unconditionally monotone and stable discrete-analytic approximations for convection-diffusion-reaction problems [5,6]. The general framework is applied to the direct and inverse problems for the models of transport and transformation of pollutants in Siberian and Arctic regions. The work has been partially supported by the RFBR grant 14-01-00125 and RAS Presidium Program I.33P. References: 1. V. Penenko, A.Baklanov, E. Tsvetova and A. Mahura . Direct and inverse problems in a variational concept of environmental modeling //Pure and Applied Geoph.(2012) v.169: 447-465. 2. V. V. Penenko, E. A. Tsvetova, and A. V. Penenko Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 3, p. 311-319, DOI: 10.1134/S0001433815030093. 3. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Methods based on the joint use of models and observational data in the framework of variational approach to forecasting weather and atmospheric composition
Energy Technology Data Exchange (ETDEWEB)
Broquet, G.; Chevallier, F.; Breon, F.M.; Yver, C.; Ciais, P.; Ramonet, M.; Schmidt, M. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette (France); Alemanno, M. [Servizio Meteorologico dell' Aeronautica Militare Italiana, Centro Aeronautica Militare di Montagna, Monte Cimone/Sestola (Italy); Apadula, F. [Research on Energy Systems, RSE, Environment and Sustainable Development Department, Milano (Italy); Hammer, S. [Universitaet Heidelberg, Institut fuer Umweltphysik, Heidelberg (Germany); Haszpra, L. [Hungarian Meteorological Service, Budapest (Hungary); Meinhardt, F. [Federal Environmental Agency, Kirchzarten (Germany); Necki, J. [AGH University of Science and Technology, Krakow (Poland); Piacentino, S. [ENEA, Laboratory for Earth Observations and Analyses, Palermo (Italy); Thompson, R.L. [Max Planck Institute for Biogeochemistry, Jena (Germany); Vermeulen, A.T. [Energy research Centre of the Netherlands ECN, EEE-EA, Petten (Netherlands)
2013-07-01
The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5{sup 0} resolution are applied for the western European domain where {approx}50 eddy covariance sites are operated. These inversions are conducted for the period 2002-2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38 %. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than
The use of forest stand age information in an atmospheric CO2 inversion applied to North America
Deng, F.; Chen, J.M.; Pan, Y.; Peters, W.; Birdsey, R.; McCullough, K.; Xiao, J.
2013-01-01
Atmospheric inversions have become an important tool in quantifying carbon dioxide (CO2) sinks and sources at a variety of spatiotemporal scales, but associated large uncertainties restrain the inversion research community from reaching agreement on many important subjects. We enhanced an atmospheri
Atmospheric inversion for cost effective quantification of city CO2 emissions
Wu, L.; Broquet, G.; Ciais, P.; Bellassen, V.; Vogel, F.; Chevallier, F.; Xueref-Remy, I.; Wang, Y.
2015-11-01
Cities, currently covering only a very small portion (market- or policy-based mitigation actions. Here we propose a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. We examine the cost-effectiveness and the performance of such a tool. The instruments presently used to measure CO2 concentrations at research stations are expensive. However, cheaper sensors are currently developed and should be useable for the monitoring of CO2 emissions from a megacity in the near-term. Our assessment of the inversion method is thus based on the use of several types of hypothetical networks, with a range of numbers of sensors sampling at 25 m a.g.l. The study case for this assessment is the monitoring of the emissions of the Paris metropolitan area (~ 12 million inhabitants and 11.4 Tg C emitted in 2010) during the month of January 2011. The performance of the inversion is evaluated in terms of uncertainties in the estimates of total and sectoral CO2 emissions. These uncertainties are compared to a notional ambitious target to diagnose annual total city emissions with an uncertainty of 5 % (2-sigma). We find that, with 10 stations only, which is the typical size of current pilot networks that are deployed in some cities, the uncertainty for the 1-month total city CO2 emissions is significantly reduced by the inversion by ~ 42 % but still corresponds to an annual uncertainty that is two times larger than the target of 5 %. By extending the network from 10 to 70 stations, the inversion can meet this requirement. As for major sectoral CO2 emissions, the uncertainties in the inverted emissions using 70 stations are reduced significantly over that obtained using 10 stations by 32 % for commercial and residential buildings, by 33 % for
A statistical approach for isolating fossil fuel emissions in atmospheric inverse problems
Yadav, Vineet; Michalak, Anna M.; Ray, Jaideep; Shiga, Yoichi P.
2016-10-01
Independent verification and quantification of fossil fuel (FF) emissions constitutes a considerable scientific challenge. By coupling atmospheric observations of CO2 with models of atmospheric transport, inverse models offer the possibility of overcoming this challenge. However, disaggregating the biospheric and FF flux components of terrestrial fluxes from CO2 concentration measurements has proven to be difficult, due to observational and modeling limitations. In this study, we propose a statistical inverse modeling scheme for disaggregating winter time fluxes on the basis of their unique error covariances and covariates, where these covariances and covariates are representative of the underlying processes affecting FF and biospheric fluxes. The application of the method is demonstrated with one synthetic and two real data prototypical inversions by using in situ CO2 measurements over North America. Inversions are performed only for the month of January, as predominance of biospheric CO2 signal relative to FF CO2 signal and observational limitations preclude disaggregation of the fluxes in other months. The quality of disaggregation is assessed primarily through examination of a posteriori covariance between disaggregated FF and biospheric fluxes at regional scales. Findings indicate that the proposed method is able to robustly disaggregate fluxes regionally at monthly temporal resolution with a posteriori cross covariance lower than 0.15 µmol m-2 s-1 between FF and biospheric fluxes. Error covariance models and covariates based on temporally varying FF inventory data provide a more robust disaggregation over static proxies (e.g., nightlight intensity and population density). However, the synthetic data case study shows that disaggregation is possible even in absence of detailed temporally varying FF inventory data.
Inverse diffraction for the Atmospheric Imaging Assembly in the Solar Dynamics Observatory
Torre, Gabriele; Benvenuto, Federico; Massone, Anna Maria; Piana, Michele
2015-01-01
The Atmospheric Imaging Assembly in the Solar Dynamics Observatory provides full Sun images every 1 seconds in each of 7 Extreme Ultraviolet passbands. However, for a significant amount of these images, saturation affects their most intense core, preventing scientists from a full exploitation of their physical meaning. In this paper we describe a mathematical and automatic procedure for the recovery of information in the primary saturation region based on a correlation/inversion analysis of the diffraction pattern associated to the telescope observations. Further, we suggest an interpolation-based method for determining the image background that allows the recovery of information also in the region of secondary saturation (blooming).
A New Concept for Atmospheric Reentry Optimal Guidance: An Inverse Problem Inspired Approach
Directory of Open Access Journals (Sweden)
Davood Abbasi
2013-01-01
Full Text Available This paper presents a new concept for atmospheric reentry online optimal guidance and control using a method called MARE G&C that exploits the different time scale featured by reentry dynamics. The new technique reaches a quasi-analytical solution and simplified computations, even considering both lift-to-drag ratio and aerodynamic roll as control variables; in addition, the paper offers a solution for the challenging path constraints issue, getting inspiration from the inverse problem methodology. The final resulting algorithm seems suitable for onboard predictive guidance, a new need for future space missions.
Two-dimensional modeling of thermal inversion layers in the middle atmosphere of Mars
Theodore, B.; Chassefiere, E.
1993-01-01
There is some evidence that the thermal structure of the martian middle atmosphere may be altered in a significant way by the general circulation motions. Indeed, while it is well known that the circulation in the meridional plane is responsible for the reversal of the latitudinal thermal gradient at the solstice through the adiabatic heating due to sinking motions above the winter pole, here we want to emphasize that a likely by-product effect could be the formation of warm layers, mainly located in the winter hemisphere, and exhibiting an inversion of the vertical thermal gradient.
Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling
Henne, Stephan; Brunner, Dominik; Oney, Brian; Leuenberger, Markus; Eugster, Werner; Bamberger, Ines; Meinhardt, Frank; Steinbacher, Martin; Emmenegger, Lukas
2016-03-01
Atmospheric inverse modelling has the potential to provide observation-based estimates of greenhouse gas emissions at the country scale, thereby allowing for an independent validation of national emission inventories. Here, we present a regional-scale inverse modelling study to quantify the emissions of methane (CH4) from Switzerland, making use of the newly established CarboCount-CH measurement network and a high-resolution Lagrangian transport model. In our reference inversion, prior emissions were taken from the "bottom-up" Swiss Greenhouse Gas Inventory (SGHGI) as published by the Swiss Federal Office for the Environment in 2014 for the year 2012. Overall we estimate national CH4 emissions to be 196 ± 18 Gg yr-1 for the year 2013 (1σ uncertainty). This result is in close agreement with the recently revised SGHGI estimate of 206 ± 33 Gg yr-1 as reported in 2015 for the year 2012. Results from sensitivity inversions using alternative prior emissions, uncertainty covariance settings, large-scale background mole fractions, two different inverse algorithms (Bayesian and extended Kalman filter), and two different transport models confirm the robustness and independent character of our estimate. According to the latest SGHGI estimate the main CH4 source categories in Switzerland are agriculture (78 %), waste handling (15 %) and natural gas distribution and combustion (6 %). The spatial distribution and seasonal variability of our posterior emissions suggest an overestimation of agricultural CH4 emissions by 10 to 20 % in the most recent SGHGI, which is likely due to an overestimation of emissions from manure handling. Urban areas do not appear as emission hotspots in our posterior results, suggesting that leakages from natural gas distribution are only a minor source of CH4 in Switzerland. This is consistent with rather low emissions of 8.4 Gg yr-1 reported by the SGHGI but inconsistent with the much higher value of 32 Gg yr-1 implied by the EDGARv4.2 inventory for
Hirao, S; Hayashi, R; Moriizumi, J; Yamazawa, H; Tohjima, Y; Mukai, H
2015-11-01
In this study, the (222)Rn flux density distribution at surface was estimated in East Asia with the Bayesian synthesis inversion using measurement data and a long-range atmospheric (222)Rn transport model. Surface atmospheric (222)Rn concentrations measured at Hateruma Island in January 2008 were used. The estimated (222)Rn flux densities were generally higher than the prior ones. The area-weighted mean (222)Rn flux density for East Asia in January 2008 was estimated to be 44.0 mBq m(-2) s(-1). The use of the estimated (222)Rn flux density improved the discrepancy of the model-calculated concentrations with the measurements at Hateruma Island.
Multi-year Estimates of Methane Fluxes in Alaska from an Atmospheric Inverse Model
Miller, S. M.; Commane, R.; Chang, R. Y. W.; Miller, C. E.; Michalak, A. M.; Dinardo, S. J.; Dlugokencky, E. J.; Hartery, S.; Karion, A.; Lindaas, J.; Sweeney, C.; Wofsy, S. C.
2015-12-01
We estimate methane fluxes across Alaska over a multi-year period using observations from a three-year aircraft campaign, the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Existing estimates of methane from Alaska and other Arctic regions disagree in both magnitude and distribution, and before the CARVE campaign, atmospheric observations in the region were sparse. We combine these observations with an atmospheric particle trajectory model and a geostatistical inversion to estimate surface fluxes at the model grid scale. We first use this framework to estimate the spatial distribution of methane fluxes across the state. We find the largest fluxes in the south-east and North Slope regions of Alaska. This distribution is consistent with several estimates of wetland extent but contrasts with the distribution in most existing flux models. These flux models concentrate methane in warmer or more southerly regions of Alaska compared to the estimate presented here. This result suggests a discrepancy in how existing bottom-up models translate wetland area into methane fluxes across the state. We next use the inversion framework to explore inter-annual variability in regional-scale methane fluxes for 2012-2014. We examine the extent to which this variability correlates with weather or other environmental conditions. These results indicate the possible sensitivity of wetland fluxes to near-term variability in climate.
Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5
Directory of Open Access Journals (Sweden)
P. Bergamaschi
2005-01-01
Full Text Available A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1° × 1° resolution that is two-way nested into the global model domain (with resolution of 6° × 4°. This approach ensures consistent boundary conditions for the zoom domain and thus European top-down estimates consistent with global CH4 observations. The TM5 model, driven by ECMWF analyses, simulates synoptic scale events at most European and global sites fairly well, and the use of high-frequency observations allows exploiting the information content of individual synoptic events. A detailed source attribution is presented for a comprehensive set of 56 monitoring sites, assigning the atmospheric signal to the emissions of individual European countries and larger global regions. The available observational data put significant constraints on emissions from different regions. Within Europe, in particular several Western European countries are well constrained. The inversion results suggest up to 50-90% higher anthropogenic CH4 emissions in 2001 for Germany, France and UK compared to reported UNFCCC values (EEA, 2003. A recent revision of the German inventory, however, resulted in an increase of reported CH4 emissions by 68.5% (EEA, 2004, being now in very good agreement with our top-down estimate. The top-down estimate for Finland is distinctly smaller than the a priori estimate, suggesting much smaller CH4 emissions from Finnish wetlands than derived from the bottom-up inventory. The EU-15 totals are relatively close to UNFCCC values (within 4-30% and appear very robust for different inversion scenarios.
Patra, P. K.; Mikaloff Fletcher, S. E.; Ishijima, K.; Maksyutov, S.; Nakazawa, T.
2006-07-01
We use a time-dependent inverse (TDI) model to estimate regional sources and sinks of atmospheric CO2 from 64 and then 22 regions based on atmospheric CO2 observations at 87 stations. The air-sea fluxes from the 64-region atmospheric-CO2 inversion are compared with fluxes from an analogous ocean inversion that uses ocean interior observations of dissolved inorganic carbon (DIC) and other tracers and an ocean general circulation model (OGCM). We find that, unlike previous atmospheric inversions, our flux estimates in the southern hemisphere are generally in good agreement with the results from the ocean inversion, which gives us added confidence in our flux estimates. In addition, a forward tracer transport model (TTM) is used to simulate the observed CO2 concentrations using (1) estimates of fossil fuel emissions and a priori estimates of the terrestrial and oceanic fluxes of CO2, and (2) two sets of TDI model corrected fluxes. The TTM simulations of TDI model corrected fluxes show improvements in fitting the observed interannual variability in growth rates and seasonal cycles in atmospheric CO2. Our analysis suggests that the use of interannually varying (IAV) meteorology and a larger observational network have helped to capture the regional representation and interannual variabilities in CO2 fluxes realistically.
SPECTROSCOPIC EVIDENCE FOR A TEMPERATURE INVERSION IN THE DAYSIDE ATMOSPHERE OF HOT JUPITER WASP-33b
Energy Technology Data Exchange (ETDEWEB)
Haynes, Korey; Mandell, Avi M. [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Madhusudhan, Nikku [Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Knutson, Heather, E-mail: khaynes0112@gmail.com [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)
2015-06-20
We present observations of two occultations of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is the most highly irradiated hot Jupiter discovered to date, and the only exoplanet known to orbit a δ-Scuti star. We observed in spatial scan mode to decrease instrument systematic effects in the data, and removed fluctuations in the data due to stellar pulsations. The rms for our final, binned spectrum is 1.05 times the photon noise. We compare our final spectrum, along with previously published photometric data, to atmospheric models of WASP-33b spanning a wide range in temperature profiles and chemical compositions. We find that the data require models with an oxygen-rich chemical composition and a temperature profile that increases at high altitude. We find that our measured spectrum displays an excess in the measured flux toward short wavelengths that is best explained as emission from TiO. If confirmed by additional measurements at shorter wavelengths, this planet would become the first hot Jupiter with a thermal inversion that can be definitively attributed to the presence of TiO in its dayside atmosphere.
Mao, Min-Juan; Zhang, Yin-Chao; Fang, Hai-Tao; Qi, Fu-Di; Shao, Shi-Sheng; Hu, Huan-Ling; Zhou, Jun
2008-04-01
Without the hypothesis of atmospheric parameters and auxiliary equipment, it is proven the slope method is capable of deriving extinction coefficients profiles and atmosphere optical depth through the analysis of the atmospheric environment detecting airborne lidar (AEDAL) data collected during November 7 to 11, 2005. The spatial and temporal variations of the planet boundary layer (PBL), aerosol optical depth (AOD) of the PBL and aerosol distribution along flight lines are exhibited from the AEDAL inversion results. Firstly, the sinking of aerosol was found in Yellow Sea area, moreover, the PBL altitude also dropped while the multi-layer aerosol presented after a cold front passage; secondly, the AOD of the PBL is the highest over Qingdao city, the lowest over foothill area and in between them over sea area, Meanwhile, it is relatively stable over sea area but slightly increases nearby upslope. The AOD values of the PBL were determined to be 0.15-0.35 in clear day and 0.3-0.45 in foggy day over the area from Qingdao to Bohai, but they are higher and reach around 0.55 in Yellow Sea area. It is evidenced that the aerosol in the PBL mainly comes from city and also is contributed by salt sea over Qingdao area, and ridge and surface wind play an important role in the aerosol transport while the monsoon affects the aerosol distribution.
Fang, X.; Thompson, R.; Saito, T.; Yokouchi, Y.; Li, S.; Kim, J.; Kim, K.; Park, S.; Graziosi, F.; Stohl, A.
2013-12-01
With a global warming potential of around 22800 over a 100-year time horizon, sulfur hexafluoride (SF6) is one of the greenhouse gases regulated under the Kyoto Protocol. Global SF6 emissions have been increasing since circa the year 2000. The reason for this increase has been inferred to be due to rapidly increasing emissions in developing countries that are not obligated to report their annual emissions to the United Nations Framework Convention on Climate Change, notably China. In this study, SF6 emissions during the period 2006-2012 for China and other East Asian countries were determined using in-situ atmospheric measurements and inverse modeling. We performed various inversion sensitivity tests, which show the largest uncertainties in the a posteriori Chinese emissions are associated with the a priori emissions used and their uncertainty, the station network, as well as the meteorological input data. The overall relative uncertainty of the a posteriori emissions in China is estimated to be 17% in 2008. Based on sensitivity tests, we employed the optimal parameters in our inversion setup and performed yearly inversions for the study period. Inversion results show that the total a posteriori SF6 emissions from China increased from 1420 × 245 Mg/yr in 2006 to 2741 × 472 Mg/yr in 2009 and stabilized thereafter. The rapid increase in emissions reflected a fast increase in SF6 consumption in China, a result also found in bottom-up estimates. The a posteriori emission map shows high emissions concentrated in populated parts of China. During the period 2006-2012, emissions in northwestern and northern China peaked around the year 2009, while emissions in eastern, central and northeastern China grew gradually during almost the whole period. Fluctuating emissions are observed for southwestern China. These regional differences should be caused by changes of provincial SF6 usage and by shifts of usage among different sectors. Fig. 1. Footprint emission sensitivity
Directory of Open Access Journals (Sweden)
M. Martinez-Camara
2014-05-01
Full Text Available Emissions of harmful substances into the atmosphere are a serious environmental concern. In order to understand and predict their effects, it is necessary to estimate the exact quantity and timing of the emissions, from sensor measurements taken at different locations. There exists a number of methods for solving this problem. However, these existing methods assume Gaussian additive errors, making them extremely sensitive to outlier measurements. We first show that the errors in real-world measurement datasets come from a heavy-tailed distribution, i.e., include outliers. Hence, we propose to robustify the existing inverse methods by adding a blind outlier detection algorithm. The improved performance of our method is demonstrated on a real dataset and compared to previously proposed methods. For the blind outlier detection, we first use an existing algorithm, RANSAC, and then propose a modification called TRANSAC, which provides a further performance improvement.
Directory of Open Access Journals (Sweden)
J. Ray
2014-08-01
Full Text Available We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP, to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP to impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO2 (ffCO2 emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.
Directory of Open Access Journals (Sweden)
M. Heimann
2003-05-01
Full Text Available Based on about 20 years of NOAA/CMDL's atmospheric CO2 concentration data and a global atmospheric tracer transport model, we estimate interannual variations and spatial patterns of surface CO2 fluxes in the period 01/1982–12/2000, by using a time-dependent Bayesian inversion technique. To increase the reliability of the estimated temporal features, particular care is exerted towards the selection of data records that are homogeneous in time. Fluxes are estimated on a grid-scale resolution (~8° latitude×10° longitude, constrained by a-priori spatial correlations, and then integrated over different sets of regions. The transport model is driven by interannually varying re-analysed meteorological fields. We make consistent use of unsmoothed measurements. In agreement with previous studies, land fluxes are estimated to be the main driver of interannual variations in the global CO2 fluxes, with the pace predominantly being set by the El Niño/La Niña contrast. An exception is a 2–3 year period of increased sink of atmospheric carbon after Mt. Pinatubo's volcanic eruption in 1991. The largest differences in fluxes between El Niño and La Niña are found in the tropical land regions, the main share being due to the Amazon basin. The flux variations for the Post-Pinatubo period, the 1997/1998 El Niño, and the 1999 La Niña events are exploited to investigate relations between CO2 fluxes and climate forcing. A rough comparison points to anomalies in precipitation as a prominent climate factor for short-term variability of tropical land fluxes, both through their role on NPP and through promoting fire in case of droughts. Some large flux anomalies seem to be directly related to large biomass burning events recorded by satellite observation. Global ocean carbon uptake shows a trend similar to the one expected if ocean uptake scales proportional to the anthropogenic atmospheric perturbation. In contrast to temporal variations, the longterm spatial
Alden, Caroline B; Miller, John B; Gatti, Luciana V; Gloor, Manuel M; Guan, Kaiyu; Michalak, Anna M; van der Laan-Luijkx, Ingrid T; Touma, Danielle; Andrews, Arlyn; Basso, Luana S; Correia, Caio S C; Domingues, Lucas G; Joiner, Joanna; Krol, Maarten C; Lyapustin, Alexei I; Peters, Wouter; Shiga, Yoichi P; Thoning, Kirk; van der Velde, Ivar R; van Leeuwen, Thijs T; Yadav, Vineet; Diffenbaugh, Noah S
2016-10-01
Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1-8 × 10(6) km(2) ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub
On the statistical optimality of CO2 atmospheric inversions assimilating CO2 column retrievals
Directory of Open Access Journals (Sweden)
F. Chevallier
2015-04-01
Full Text Available The extending archive of the Greenhouse Gases Observing SATellite (GOSAT measurements (now covering about six years allows increasingly robust statistics to be computed, that document the performance of the corresponding retrievals of the column-average dry air-mole fraction of CO2 (XCO2. Here, we compare a model simulation constrained by surface air-sample measurements with one of the GOSAT retrieval products (NASA's ACOS. The retrieval-minus-model differences result from various error sources, both in the retrievals and in the simulation: we discuss the plausibility of the origin of the major patterns. We find systematic retrieval errors over the dark surfaces of high-latitude lands and over African savannahs. More importantly, we also find a systematic over-fit of the GOSAT radiances by the retrievals over land for the high-gain detector mode, which is the usual observation mode. The over-fit is partially compensated by the retrieval bias-correction. These issues are likely common to other retrieval products and may explain some of the surprising and inconsistent CO2 atmospheric inversion results obtained with the existing GOSAT retrieval products. We suggest that reducing the observation weight in the retrieval schemes (for instance so that retrieval increments to the retrieval prior values are halved for the studied retrieval product would significantly improve the retrieval quality and reduce the need for (or at least reduce the complexity of ad-hoc retrieval bias correction. More generally, we demonstrate that atmospheric inversions cannot be rigorously optimal when assimilating XCO2 retrievals, even with averaging kernels.
Schuh, A. E.; Denning, A. S.; Corbin, K. D.; Uliasz, M.; Zupanski, D.; Parazoo, N. C.
2007-12-01
Estimation of regional carbon fluxes from sparse atmospheric data by transport inversion is complicated by high- frequency variations in surface fluxes in both space and time. We assume that a forward coupled model of the vegetated land surface and atmosphere adequately captures most of the high-frequency variations (SiB-RAMS) as a `preprocessor` of input data from remote sensing and large-scale weather. We then use continuous CO2 observations and backward-in-time Lagrangian particle modeling to estimate persistent multiplicative biases in photosynthesis and ecosystem respiration, constraining the temporal pattern of these fluxes with the forward model. With a sparse network of continuous observing sites in North America, the inverse problem is still badly underconstrained for flux biases on the model grid scale. Previous studies have reduced the dimensionality of this problem by using large `regions` such as biomes or ecoregions, or by seeking a smooth solution in space. This could introduce substantial bias in the solution because the actual flux biases are likely to be quite heterogeneous. We have evaluated the degree to which carbon flux over large regions (500 to 1500 km) can be recovered when the true spatial pattern is not smooth. We performed ensembles of inversions for a 4-month case study in May- August, 2004 over North America with synthetic mid-day CO2 observations from a network of 8 towers. A smooth regional field of model biases was superposed with ensembles of various degrees of grid-scale `noise,` and these were then used to create synthetic concentration data. The pseudodata were then inverted to estimate gridded values of the biases, which were then combined with time-varying model fluxes to create regional maps of sources and sinks. We found that the degree to which corrections in regional fluxes are possible will depend on the relative amount of variance in the regional vs grid scales, but that the system is quite successful in estimating
A new method for the inversion of atmospheric parameters of A/Am stars
Gebran, M.; Farah, W.; Paletou, F.; Monier, R.; Watson, V.
2016-05-01
Context. We present an automated procedure that simultaneously derives the effective temperature Teff, surface gravity log g, metallicity [Fe/H], and equatorial projected rotational velocity vsini for "normal" A and Am stars. The procedure is based on the principal component analysis (PCA) inversion method, which we published in a recent paper . Aims: A sample of 322 high-resolution spectra of F0-B9 stars, retrieved from the Polarbase, SOPHIE, and ELODIE databases, were used to test this technique with real data. We selected the spectral region from 4400-5000 Å as it contains many metallic lines and the Balmer Hβ line. Methods: Using three data sets at resolving powers of R = 42 000, 65 000 and 76 000, about ~6.6 × 106 synthetic spectra were calculated to build a large learning database. The online power iteration algorithm was applied to these learning data sets to estimate the principal components (PC). The projection of spectra onto the few PCs offered an efficient comparison metric in a low-dimensional space. The spectra of the well-known A0- and A1-type stars, Vega and Sirius A, were used as control spectra in the three databases. Spectra of other well-known A-type stars were also employed to characterize the accuracy of the inversion technique. Results: We inverted all of the observational spectra and derived the atmospheric parameters. After removal of a few outliers, the PCA-inversion method appeared to be very efficient in determining Teff, [Fe/H], and vsini for A/Am stars. The derived parameters agree very well with previous determinations. Using a statistical approach, deviations of around 150 K, 0.35 dex, 0.15 dex, and 2 km s-1 were found for Teff, log g, [Fe/H], and vsini with respect to literature values for A-type stars. Conclusions: The PCA inversion proves to be a very fast, practical, and reliable tool for estimating stellar parameters of FGK and A stars and for deriving effective temperatures of M stars. Based on data retrieved from the
Fluxes of atmospheric methane using novel instruments, field measurements, and inverse modeling
Santoni, Gregory Winn
The atmospheric concentration of methane (CH4) -- the most significant non-CO2 anthropogenic long-lived greenhouse gas -- stabilized between 1999 and 2006 and then began to rise again. Explanations for this behavior differ but studies agree that more measurements and better modeling are needed to reliably explain the model-data discrepancies and predict future change. This dissertation focuses on measurements of CH4 and inverse modeling of atmospheric CH4 fluxes using field measurements at a variety of spatial scales. We first present a new fast-response instrument to measure the isotopic composition of CH4 in ambient air. The instrument was used to characterize mass fluxes and isofluxes (a isotopically-weighted mass flux) from a well-studied research fen in New Hampshire. Eddycovariance and automatic chamber techniques produced consistent estimates of both the CH4 fluxes and their isotopic composition at sub-hourly resolution. We then characterize fluxes of CH4 from aircraft engines using measurements made with the same instrument during the Alternative Aviation Fuel Experiment (AAFEX), a study that aimed to determine the atmospheric impacts of alternative fuel use in the growing aviation industry. Emissions of CO2, CH4, and N2O from different synthetic fuels were statistically indistinguishable from those of the widely used JP-8 jet fuel. We then present airborne observations of the long-lived greenhouse gas suite -- CO2, CH4, N2O, and CO -- during two aircraft campaigns, HIPPO and CalNex, made using a similar instrument built specifically for the NCAR HIAPER GV aircraft. These measurements are compared to data from other onboard sensors and show excellent agreement. We discuss the details of the end-to-end calibration procedures and the data quality-assurance and qualitycontrol (QA/QC). Lastly, we quantify a top-down estimate of California's CH4 emission inventory using the CalNex CH4 observations. Observed CH4 enhancements above background concentrations are
Directory of Open Access Journals (Sweden)
A. Devasthale
2011-09-01
Full Text Available An accurate characterization of the vertical structure of the Arctic atmosphere is useful in climate change and attribution studies as well as for the climate modelling community to improve projections of future climate over this highly sensitive region. Here, we investigate one of the dominant features of the vertical structure of the Arctic atmosphere, i.e. water-vapour inversions, using eight years of Atmospheric Infrared Sounder data (2002–2010 and radiosounding profiles released from the two Arctic locations (North Slope of Alaska at Barrow and during SHEBA. We quantify the characteristics of clear-sky water vapour inversions in terms of their frequency of occurrence, strength and height covering the entire Arctic for the first time.
We found that the frequency of occurrence of water-vapour inversions is highest during winter and lowest during summer. The inversion strength is, however, higher during summer. The observed peaks in the median inversion-layer heights are higher during the winter half of the year, at around 850 hPa over most of the Arctic Ocean, Siberia and the Canadian Archipelago, while being around 925 hPa during most of the summer half of the year over the Arctic Ocean. The radiosounding profiles agree with the frequency, location and strength of water-vapour inversions in the Pacific sector of the Arctic. In addition, the radiosoundings indicate that multiple inversions are the norm with relatively few cases without inversions. The amount of precipitable water within the water-vapour inversion structures is estimated and we find a distinct, two-mode contribution to the total column precipitable water. These results suggest that water-vapour inversions are a significant source to the column thermodynamics, especially during the colder winter and spring seasons. We argue that these inversions are a robust metric to test the reproducibility of thermodynamics within climate models. An accurate statistical
Directory of Open Access Journals (Sweden)
A. Devasthale
2011-05-01
Full Text Available An accurate characterization of the vertical structure of the Arctic atmosphere is useful in climate change and attribution studies as well as for the climate modelling community to improve projections of future climate over this highly sensitive region. Here, we investigate one of the dominant features of the vertical structure of the Arctic atmosphere, i.e. water-vapour inversions, using eight years of Atmospheric Infrared Sounder data (2002–2010 and radiosounding profiles released from the two Arctic locations (North Slope of Alaska at Barrow and during SHEBA. We quantify the characteristics of clear-sky water vapour inversions in terms of their frequency of occurrence, strength and height covering the entire Arctic for the first time.
We found that the frequency of occurrence of water-vapour inversions is highest during winter and lowest during summer. The inversion strength is, however, higher during summer. The observed peaks in the median inversion-layer heights are higher during the winter half of the year, at around 850 hPa over most of the Arctic Ocean, Siberia and the Canadian Archipelago, while being around 925 hPa during most of the summer half of the year over the Arctic Ocean. The radiosounding profiles agree with the frequency, location and strength of water-vapour inversions in the Pacific sector of the Arctic. In addition, the radiosoundings indicate that multiple inversions are the norm with relatively few cases without inversions. The amount of precipitable water within the water-vapour inversion structures is estimated and we find a distinct, two-mode contribution to the total column precipitable water. These results suggest that water-vapour inversions are a significant source to the column thermodynamics, especially during the colder winter and spring seasons. We argue that these inversions are a robust metric to test the reproducibility of thermodynamics within climate models. An accurate statistical
Directory of Open Access Journals (Sweden)
J. F. Meirink
2008-06-01
Full Text Available A four-dimensional variational (4D-var data assimilation system for inverse modelling of atmospheric methane emissions is presented. The system is based on the TM5 atmospheric transport model. It can be used for assimilating large volumes of measurements, in particular satellite observations and quasi-continuous in-situ observations, and at the same time it enables the optimization of a large number of model parameters, specifically grid-scale emission rates. Furthermore, the variational method allows to estimate uncertainties in posterior emissions. Here, the system is applied to optimize monthly methane emissions over a 1-year time window on the basis of surface observations from the NOAA-ESRL network. The results are rigorously compared with an analogous inversion by Bergamaschi et al. (2007, which was based on the traditional synthesis approach. The posterior emissions as well as their uncertainties obtained in both inversions show a high degree of consistency. At the same time we illustrate the advantage of 4D-Var in reducing aggregation errors by optimizing emissions at the grid scale of the transport model. The full potential of the assimilation system is exploited in Meirink et al. (2008, who use satellite observations of column-averaged methane mixing ratios to optimize emissions at high spatial resolution, taking advantage of the zooming capability of the TM5 model.
On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia
Directory of Open Access Journals (Sweden)
L. Molina
2015-07-01
Full Text Available The exchanges of carbon, water and energy between the atmosphere and the Amazon basin have global implications for the current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate (MACC service is used to study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia during the period 2002–2010. The system assimilated surface measurements of atmospheric CO2 mole fractions made at more than 100 sites over the globe into an atmospheric transport model. The present study adds measurements from four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE optimized by the inversion are compared to an independent estimate of NEE upscaled from eddy-covariance flux measurements in Amazonia. They are also qualitatively evaluated against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We attempt at assessing the impact on NEE of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons and the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE are also investigated. While the inversion supports the assumption of strong spatial heterogeneity of these variations, the results reveal critical limitations of the coarse-resolution transport model, the surface observation network in South America during the recent years and the present knowledge of modelling uncertainties in South America that prevent our inversion from capturing the seasonal patterns of fluxes across Amazonia. However, some patterns from the inversion seem consistent with the anomaly of moisture conditions in 2009.
On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia
Directory of Open Access Journals (Sweden)
L. Molina
2015-01-01
Full Text Available The exchanges of carbon, water, and energy between the atmosphere and the Amazon Basin have global implications for current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate service (MACC was used to further study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia. The system assimilated surface measurements of atmospheric CO2 mole fractions made over more than 100 sites over the globe into an atmospheric transport model. This study added four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE optimized by the inversion were compared to independent estimates of NEE upscaled from eddy-covariance flux measurements in Amazonia, and against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We focused on the impact of the interannual variation of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons, and of the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE were also investigated. While the inversion supported the assumption of strong spatial heterogeneity of these variations, the results revealed critical limitations that prevent global inversion frameworks from capturing the data-driven seasonal patterns of fluxes across Amazonia. In particular, it highlighted issues due to the configuration of the observation network in South America and the lack of continuity of the measurements. However, some robust patterns from the inversion seemed consistent with the abnormal moisture conditions in 2009.
Nested atmospheric inversion for the terrestrial carbon sources and sinks in China
Directory of Open Access Journals (Sweden)
F. Jiang
2013-08-01
Full Text Available In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO. The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002–2008 are −3.20 ± 0.63 and −0.28 ± 0.18 PgC yr−1, respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs and from the import of wood and food, we further estimate that China's land sink is about −0.31 PgC yr−1.
Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.
2014-12-01
In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.
Directory of Open Access Journals (Sweden)
M. Fischer
2011-07-01
Full Text Available Robust estimates of regional-scale terrestrial CO2 exchange are needed to support carbon management policies and to improve the predictive ability of models representing carbon-climate feedbacks. Large discrepancies remain, however, both among and between CO2 flux estimates from atmospheric inverse models and terrestrial biosphere models. Improved atmospheric inverse models that provide robust estimates at sufficiently fine spatial scales could prove especially useful for monitoring efforts, while also serving as a validation tool for process-based assumptions in terrestrial biosphere models. A growing network of continental sites collecting continuous CO2 measurements provides the information needed to drive such models. This study presents results from a regional geostatistical inversion over North America for 2004, taking advantage of continuous data from the nine sites operational in that year, as well as available flask and aircraft observations. The approach does not require explicit prior flux estimates, resolves fluxes at finer spatiotemporal scales than previous North American inversion studies, and uses a Lagrangian transport model coupled with high-resolution winds (i.e. WRF-STILT to resolve near-field influences around measurement locations. The estimated fluxes are used in an inter-comparison with other inversion studies and a suite of terrestrial biosphere model estimates collected through the North American Carbon Program Regional and Continental Interim Synthesis. Differences among inversions are found to be smallest in areas of the continent best-constrained by the atmospheric data, pointing to the value of an expanded measurement network. Aggregation errors in previous coarser-scale inversion studies are likely to explain a portion of the remaining spread. The spatial patterns from a geostatistical inversion that includes auxiliary environmental variables from the North American Regional Reanalysis were similar to those from
Assessment of Tikhonov-type regularization methods for solving atmospheric inverse problems
Xu, Jian; Schreier, Franz; Doicu, Adrian; Trautmann, Thomas
2016-11-01
Inverse problems occurring in atmospheric science aim to estimate state parameters (e.g. temperature or constituent concentration) from observations. To cope with nonlinear ill-posed problems, both direct and iterative Tikhonov-type regularization methods can be used. The major challenge in the framework of direct Tikhonov regularization (TR) concerns the choice of the regularization parameter λ, while iterative regularization methods require an appropriate stopping rule and a flexible λ-sequence. In the framework of TR, a suitable value of the regularization parameter can be generally determined based on a priori, a posteriori, and error-free selection rules. In this study, five practical regularization parameter selection methods, i.e. the expected error estimation (EEE), the discrepancy principle (DP), the generalized cross-validation (GCV), the maximum likelihood estimation (MLE), and the L-curve (LC), have been assessed. As a representative of iterative methods, the iteratively regularized Gauss-Newton (IRGN) algorithm has been compared with TR. This algorithm uses a monotonically decreasing λ-sequence and DP as an a posteriori stopping criterion. Practical implementations pertaining to retrievals of vertically distributed temperature and trace gas profiles from synthetic microwave emission measurements and from real far infrared data, respectively, have been conducted. Our numerical analysis demonstrates that none of the parameter selection methods dedicated to TR appear to be perfect and each has its own advantages and disadvantages. Alternatively, IRGN is capable of producing plausible retrieval results, allowing a more efficient manner for estimating λ.
Lauvaux, Thomas; Miles, Natasha L.; Deng, Aijun; Richardson, Scott J.; Cambaliza, Maria O.; Davis, Kenneth J.; Gaudet, Brian; Gurney, Kevin R.; Huang, Jianhua; O'Keefe, Darragh; Song, Yang; Karion, Anna; Oda, Tomohiro; Patarasuk, Risa; Razlivanov, Igor; Sarmiento, Daniel; Shepson, Paul; Sweeney, Colm; Turnbull, Jocelyn; Wu, Kai
2016-05-01
Based on a uniquely dense network of surface towers measuring continuously the atmospheric concentrations of greenhouse gases (GHGs), we developed the first comprehensive monitoring systems of CO2 emissions at high resolution over the city of Indianapolis. The urban inversion evaluated over the 2012-2013 dormant season showed a statistically significant increase of about 20% (from 4.5 to 5.7 MtC ± 0.23 MtC) compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product. Spatial structures in prior emission errors, mostly undetermined, appeared to affect the spatial pattern in the inverse solution and the total carbon budget over the entire area by up to 15%, while the inverse solution remains fairly insensitive to the CO2 boundary inflow and to the different prior emissions (i.e., ODIAC). Preceding the surface emission optimization, we improved the atmospheric simulations using a meteorological data assimilation system also informing our Bayesian inversion system through updated observations error variances. Finally, we estimated the uncertainties associated with undetermined parameters using an ensemble of inversions. The total CO2 emissions based on the ensemble mean and quartiles (5.26-5.91 MtC) were statistically different compared to the prior total emissions (4.1 to 4.5 MtC). Considering the relatively small sensitivity to the different parameters, we conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emission error structures are required to determine the spatial structures of urban emissions at high resolution.
Evangeliou, Nikolaos; Thompson, Rona; Stohl, Andreas; Shevchenko, Vladimir P.
2016-04-01
Black carbon (BC) is the main light absorbing aerosol species and it has important impacts on air quality, weather and climate. The major source of BC is incomplete combustion of fossil fuels and the burning of biomass or bio-fuels (soot). Therefore, to understand to what extent BC affects climate change and pollutant dynamics, accurate knowledge of the emissions, distribution and variation of BC is required. Most commonly, BC emission inventory datasets are built by "bottom up" approaches based on activity data and emissions factors, but these methods are considered to have large uncertainty (Cao et al, 2006). In this study, we have used a Bayesian Inversion to estimate spatially resolved BC emissions. Emissions are estimated monthly for 2014 and over the domain from 180°W to 180°E and 50°N to 90°N. Atmospheric transport is modeled using the Lagrangian Particle Dispersion Model, FLEXPART (Stohl et al., 1998; 2005), and the inversion framework, FLEXINVERT, developed by Thompson and Stohl, (2014). The study domain is of particular interest concerning the identification and estimation of BC sources. In contrast to Europe and North America, where BC sources are comparatively well documented as a result of intense monitoring, only one station recording BC concentrations exists in the whole of Siberia. In addition, emissions from gas flaring by the oil industry have been geographically misplaced in most emission inventories and may be an important source of BC at high latitudes since a significant proportion of the total gas flared occurs at these high latitudes (Stohl et al., 2013). Our results show large differences with the existing BC inventories, whereas the estimated fluxes improve modeled BC concentrations with respect to observations. References Cao, G. et al. Atmos. Environ., 40, 6516-6527, 2006. Stohl, A. et al. Atmos. Environ., 32(24), 4245-4264, 1998. Stohl, A. et al. Atmos. Chem. Phys., 5(9), 2461-2474, 2005. Stohl, A. et al. Atmos. Chem. Phys., 13
Boukabara, S. A.; Garrett, K.
2014-12-01
A one-dimensional variational retrieval system has been developed, capable of producing temperature and water vapor profiles in clear, cloudy and precipitating conditions. The algorithm, known as the Microwave Integrated Retrieval System (MiRS), is currently running operationally at the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS), and is applied to a variety of data from the AMSU-A/MHS sensors on board the NOAA-18, NOAA-19, and MetOp-A/B polar satellite platforms, as well as SSMI/S on board both DMSP F-16 and F18, and from the NPP ATMS sensor. MiRS inverts microwave brightness temperatures into atmospheric temperature and water vapor profiles, along with hydrometeors and surface parameters, simultaneously. This atmosphere/surface coupled inversion allows for more accurate retrievals in the lower tropospheric layers by accounting for the surface emissivity impact on the measurements. It also allows the inversion of the soundings in all-weather conditions thanks to the incorporation of the hydrometeors parameters in the inverted state vector as well as to the inclusion of the emissivity in the same state vector, which is accounted for dynamically for the highly variable surface conditions found under precipitating atmospheres. The inversion is constrained in precipitating conditions by the inclusion of covariances for hydrometeors, to take advantage of the natural correlations that exist between temperature and water vapor with liquid and ice cloud along with rain water. In this study, we present a full assessment of temperature and water vapor retrieval performances in all-weather conditions and over all surface types (ocean, sea-ice, land, and snow) using matchups with radiosonde as well as Numerical Weather Prediction and other satellite retrieval algorithms as references. An emphasis is placed on retrievals in cloudy and precipitating atmospheres, including extreme weather events
A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b.
Madhusudhan, Nikku; Harrington, Joseph; Stevenson, Kevin B; Nymeyer, Sarah; Campo, Christopher J; Wheatley, Peter J; Deming, Drake; Blecic, Jasmina; Hardy, Ryan A; Lust, Nate B; Anderson, David R; Collier-Cameron, Andrew; Britt, Christopher B T; Bowman, William C; Hebb, Leslie; Hellier, Coel; Maxted, Pierre F L; Pollacco, Don; West, Richard G
2011-01-01
The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior, as opposed to the silicate-dominated composition found on Earth; the atmosphere can also differ from those in the Solar System. The solar C/O is 0.54 (ref. 3). Here we report an analysis of dayside multi-wavelength photometry of the transiting hot-Jupiter WASP-12b (ref. 6) that reveals C/O ≥ 1 in its atmosphere. The atmosphere is abundant in CO. It is depleted in water vapour and enhanced in methane, each by more than two orders of magnitude compared to a solar-abundance chemical-equilibrium model at the expected temperatures. We also find that the extremely irradiated atmosphere (T > 2,500 K) of WASP-12b lacks a prominent thermal inversion (or stratosphere) and has very efficient day-night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.
Energy Technology Data Exchange (ETDEWEB)
Butler, M.P.; Davis, K.J. (Dept. of Meteorology, Pennsylvania State Univ., University Park, PA 16802 (United States)); Denning, A.S. (Dept. of Atmospheric Science, Colorado State Univ., Fort Collins, CO (United States)); Kawa, S.R. (NASA Goddard Space Flight Center, Greenbelt, MD (United States))
2010-11-15
We evaluate North American carbon fluxes using a monthly global Bayesian synthesis inversion that includes well-calibrated carbon dioxide concentrations measured at continental flux towers. We employ the NASA Parametrized Chemistry Tracer Model (PCTM) for atmospheric transport and a TransCom-style inversion with subcontinental resolution. We subsample carbon dioxide time series at four North American flux tower sites for mid-day hours to ensure sampling of a deep, well-mixed atmospheric boundary layer. The addition of these flux tower sites to a global network reduces North America mean annual flux uncertainty for 2001-2003 by 20% to 0.4 Pg C/yr compared to a network without the tower sites. North American flux is estimated to be a net sink of 1.2 +- 0.4 Pg C/yr which is within the uncertainty bounds of the result without the towers. Uncertainty reduction is found to be local to the regions within North America where the flux towers are located, and including the towers reduces covariances between regions within North America. Mid-day carbon dioxide observations from flux towers provide a viable means of increasing continental observation density and reducing the uncertainty of regional carbon flux estimates in atmospheric inversions.
Institute of Scientific and Technical Information of China (English)
XING; Hongyan; ZHANG; Qiang; JI; Xinyuan; XU; wei
2015-01-01
This article proposes the hybrid method to inverse the equivalent electric charge of thunder cloud based on the data of multi-station atmospheric electric field. Firstly,the method combines the genetic algorithm( GA) and New ton method through the mosaic hybrid structure. In addition,the thunder cloud equivalent charge is inversed based on the forw ard modeling results by giving the parameters of the thunder cloud charge structure. Then an ideal model is built to examine the performance compared to the nonlinear least squares method. Finally,a typical thunderstorms process in Nanjing is analyzed by Genetic-New ton algorithm with the help of weather radar. The results show the proposed method has the strong global searching capability so that the problem of initial value selection can be solved effectively,as well as gets the better inversion results. Furthermore,the mosaic hybrid structure can absorb the advantages of tw o algorithms better,and the inversion position is consistent with the strongest radar echo.The inversion results find the upper negative charge is small and can be ignored,w hich means the triple-polarity charge structure is relatively scientific,w hich could give some references to the research like lightning forecasting,location tracking.
Energy Technology Data Exchange (ETDEWEB)
Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque, NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin 15, Ireland
2013-04-01
The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.
Directory of Open Access Journals (Sweden)
R. Locatelli
2014-07-01
Full Text Available Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterisations recently implemented in the Atmospheric Global Climate Model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL, and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of greenhouse gas emissions using such an updated model. Comparison of a one-dimensional version of LMDz with large eddy simulations shows that the thermal scheme simulates shallow convective tracer transport in the PBL over land very efficiently, and much better than previous versions of the model. This result is confirmed in three dimensional simulations, by a much improved reproduction of the Radon-222 diurnal cycle. However, the enhanced dynamics of tracer concentrations induces a stronger sensitivity of the new LMDz configuration to external meteorological forcings. At larger scales, the inter-hemispheric exchange is slightly slower when using the new version of the model, bringing them closer to observations. The increase in the vertical resolution (from 19 to 39 layers significantly improves the representation of stratosphere/troposphere exchange. Furthermore, changes in atmospheric thermodynamic variables, such as temperature, due to changes in the PBL mixing, significantly modify chemical reaction rates and the equilibrium value of reactive trace gases. One implication of LMDz model developments for future inversions of greenhouse gas emissions is the ability of the updated system to assimilate a larger
Madhusudhan, Nikku; Harrington, Joseph; Nymeyer, Sarah; Campo, Christopher J.; Wheatley, Peter J.; Deming, Drake; Blecie, Jasmina; Hardy, Ryan A.; Lust, Nate B.; Anderson, David R.; Collier-Cameron, Andrew; Britt, Christopher B. T.; Bowman, William C.; Hebb, Leslie; Hellier, Coel; Maxted, Pierre F. L.; Pollacco, Don; West, Richard G.
2010-01-01
The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior as opposed to the silicate-dominated composition as found on Earth; the solar C/O is 0.54. Theory, shows that high C/O leads to a diversity of carbon-rich planets that can have very different interiors and atmospheres from those in the solar system. Here we report the detection of C/O greater than or equal to 1 in a planetary atmosphere. The transiting hot Jupiter WASP-12b has a dayside atmosphere depleted in water vapour and enhanced in methane by over two orders of magnitude compared to a solar-abundance chemical equilibrium model at the expected temperatures. The observed concentrations of the prominent molecules CO, CH4, and H2O are consistent with theoretical expectations for an atmosphere with the observed C/O = 1. The C/O ratios are not known for giant planets in the solar system, although they are expected to equal the solar value. If high C/O ratios are common, then extrasolar planets are likely very different in interior composition, and formed very differently, from expectations based on solar composition, potentially explaining the large diversity in observed radii. We also find that the extremely irradiated atmosphere (greater than 2500 K) of WASP-12b lacks a prominent thermal inversion, or a stratosphere, and has very efficient day-night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.
Staufer, Johannes; Broquet, Grégoire; Bréon, François-Marie; Puygrenier, Vincent; Chevallier, Frédéric; Xueref-Rémy, Irène; Dieudonné, Elsa; Lopez, Morgan; Schmidt, Martina; Ramonet, Michel; Perrussel, Olivier; Lac, Christine; Wu, Lin; Ciais, Philippe
2016-11-01
The ability of a Bayesian atmospheric inversion to quantify the Paris region's fossil fuel CO2 emissions on a monthly basis, based on a network of three surface stations operated for 1 year as part of the CO2-MEGAPARIS experiment (August 2010-July 2011), is analysed. Differences in hourly CO2 atmospheric mole fractions between the near-ground monitoring sites (CO2 gradients), located at the north-eastern and south-western edges of the urban area, are used to estimate the 6 h mean fossil fuel CO2 emission. The inversion relies on the CHIMERE transport model run at 2 km × 2 km horizontal resolution, on the spatial distribution of fossil fuel CO2 emissions in 2008 from a local inventory established at 1 km × 1 km horizontal resolution by the AIRPARIF air quality agency, and on the spatial distribution of the biogenic CO2 fluxes from the C-TESSEL land surface model. It corrects a prior estimate of the 6 h mean budgets of the fossil fuel CO2 emissions given by the AIRPARIF 2008 inventory. We found that a stringent selection of CO2 gradients is necessary for reliable inversion results, due to large modelling uncertainties. In particular, the most robust data selection analysed in this study uses only mid-afternoon gradients if wind speeds are larger than 3 m s-1 and if the modelled wind at the upwind site is within ±15° of the transect between downwind and upwind sites. This stringent data selection removes 92 % of the hourly observations. Even though this leaves few remaining data to constrain the emissions, the inversion system diagnoses that their assimilation significantly reduces the uncertainty in monthly emissions: by 9 % in November 2010 to 50 % in October 2010. The inverted monthly mean emissions correlate well with independent monthly mean air temperature. Furthermore, the inverted annual mean emission is consistent with the independent revision of the AIRPARIF inventory for the year 2010, which better corresponds to the measurement period than the 2008
Directory of Open Access Journals (Sweden)
J. Ray
2014-09-01
Full Text Available The characterization of fossil-fuel CO2 (ffCO2 emissions is paramount to carbon cycle studies, but the use of atmospheric inverse modeling approaches for this purpose has been limited by the highly heterogeneous and non-Gaussian spatiotemporal variability of emissions. Here we explore the feasibility of capturing this variability using a low-dimensional parameterization that can be implemented within the context of atmospheric CO2 inverse problems aimed at constraining regional-scale emissions. We construct a multiresolution (i.e., wavelet-based spatial parameterization for ffCO2 emissions using the Vulcan inventory, and examine whether such a~parameterization can capture a realistic representation of the expected spatial variability of actual emissions. We then explore whether sub-selecting wavelets using two easily available proxies of human activity (images of lights at night and maps of built-up areas yields a low-dimensional alternative. We finally implement this low-dimensional parameterization within an idealized inversion, where a sparse reconstruction algorithm, an extension of stagewise orthogonal matching pursuit (StOMP, is used to identify the wavelet coefficients. We find that (i the spatial variability of fossil-fuel emission can indeed be represented using a low-dimensional wavelet-based parameterization, (ii that images of lights at night can be used as a proxy for sub-selecting wavelets for such analysis, and (iii that implementing this parameterization within the described inversion framework makes it possible to quantify fossil-fuel emissions at regional scales if fossil-fuel-only CO2 observations are available.
Directory of Open Access Journals (Sweden)
J. Ray
2014-02-01
Full Text Available The characterization of fossil-fuel CO2 (ffCO2 emissions is paramount to carbon cycle studies, but the use of atmospheric inverse modeling approaches for this purpose has been limited by the highly heterogeneous and non-Gaussian spatiotemporal variability of emissions. Here we explore the feasibility of capturing this variability using a low-dimensional parameterization that can be implemented within the context of atmospheric CO2 inverse problems aimed at constraining regional-scale emissions. We construct a multiresolution (i.e., wavelet-based spatial parameterization for ffCO2 emissions using the Vulcan inventory, and examine whether such a parameterization can capture a realistic representation of the expected spatial variability of actual emissions. We then explore whether sub-selecting wavelets using two easily available proxies of human activity (images of lights at night and maps of built-up areas yields a low-dimensional alternative. We finally implement this low-dimensional parameterization within an inversion, where a sparse reconstruction algorithm, an extension of Stagewise Orthogonal Matching Pursuit (StOMP, is used to identify the wavelet coefficients. We find that (i the spatial variability of fossil fuel emission can indeed be represented using a low-dimensional wavelet-based parameterization, (ii that images of lights at night can be used as a proxy for sub-selecting wavelets for such analysis, and (iii that implementing this parameterization within the described inversion framework makes it possible to quantify fossil fuel emissions at regional scales under some simplifying conditions.
Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions
Directory of Open Access Journals (Sweden)
S. M. Miller
2014-02-01
the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two Markov chain Monte Carlo (MCMC methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing option for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.
DEFF Research Database (Denmark)
Pedersen, Jesper Grønnegaard; Gryning, Sven-Erik; Kelly, Mark C.
2014-01-01
A range of large-eddy simulations, with differing free atmosphere stratification and zero or slightly positive surface heat flux, is investigated to improve understanding of the neutral and near-neutral, inversion-capped, horizontally homogeneous, barotropic atmospheric boundary layer with emphasis...... on the upper region. We find that an adjustment time of at least 16 h is needed for the simulated flow to reach a quasi-steady state. The boundary layer continues to grow, but at a slow rate that changes little after 8 h of simulation time. A common feature of the neutral simulations is the development...... of a super-geostrophic jet near the top of the boundary layer. The analytical wind-shear models included do not account for such a jet, and the best agreement with simulated wind shear is seen in cases with weak stratification above the boundary layer. Increasing the surface heat flux decreases the magnitude...
Sensitivity of earthquake source inversions to atmospheric noise and corrections of InSAR data
Scott, Chelsea Phipps; Lohman, Rowena Benfer
2016-05-01
Tropospheric phase delays pose a major challenge to InSAR (interferometric synthetic aperture radar)-based studies of tectonic deformation. One approach to the mitigation of effects from tropospheric noise is the application of elevation-dependent corrections based on empirical fits between elevation and interferometric phase. We quantify the effects of corrections with a range of complexity on inferred earthquake source parameters using synthetic interferograms with known atmospheric characteristics. We infer statistical properties of the stratified component of the atmosphere using pressure, temperature, and water vapor data from the North America Regional Reanalysis model over our region of interest in the Basin and Range province of the western United States. The statistics of the simulated atmospheric turbulence are estimated from InSAR and Global Positioning System data. We demonstrate potentially significant improvements in the precision of earthquake magnitude, depth, and dip estimates for several synthetic earthquake focal mechanisms following a correction for spatially variable atmospheric characteristics, relative to cases where the correction is based on a uniform delay versus elevation relationship or where no correction is applied. We apply our approach to the 1992 M5.6 Little Skull Mountain, Nevada, earthquake and demonstrate that the earthquake source parameter error bounds decrease in size after applying the atmospheric corrections. Our approach for evaluating the impact of atmospheric noise on inferred fault parameters is easily adaptable to other regions and source mechanisms.
Schuh, A. E.; Kawa, S. R.; Denning, A. S.; Baker, D. F.; Ramanathan, A. K.
2014-12-01
It was initially hoped that the proposed Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) NASA mission could rectify diurnal fluxes through it's ability to measure during both days and nights. However, initial simulation results (Kawa et al 2010) showed limited skill at identifying diurnal differences in fluxes. We investigate the possibility of (1) supplementing ASCENDS with well chosen in-situ surface sites and/or (2) adding distinct column measurements for the PBL and free troposphere into the inversion framework to determine the impact on recovering net ecosystem exchange (NEE), as well as distinct gross primary production (GPP) and respiration fluxes. In particular, we run forward simulations and inversions with distinct respiration and GPP fluxes calculated from the SiB model (Baker et al 2008) and test the ability of an EnKF based inversion framework to recover a hypothetical tropical CO2 fertilization effect resulting in enhanced GPP. Baker, I. T.; Prihodko, L.; Denning, A. S.; Goulden, M.; Miller, S. & da Rocha, H. R. (2008), 'Seasonal drought stress in the Amazon: Reconciling 3 models and observations', Journal of Geophysical Research 113. Kawa, S. R.; MAO, J.; ABSHIRE, J. B.; J., C. G.; SUN, X. & WEAVER, C. J. (2010), 'Simulation studies for a space-based CO2 lidar mission.', Tellus B 62, 759-769.
Cheung, Mark C M; Schrijver, C J; Testa, P; Chen, F; Peter, H; Malanushenko, A
2015-01-01
We present a new method for performing differential emission measure (DEM) inversions on narrow-band EUV images from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The method yields positive definite DEM solutions by solving a linear program. This method has been validated against a diverse set of thermal models of varying complexity and realism. These include (1) idealized gaussian DEM distributions, (2) 3D models of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a non-linear force-free field, and (3) thermodynamic models from a fully-compressible, 3D MHD simulation of AR corona formation following magnetic flux emergence. We then present results from the application of the method to AIA observations of Active Region 11158, comparing the region's thermal structure on two successive solar rotations. Additionally, we show how the DEM inversion method can be adapted to simultaneously invert AIA and XRT data, and how supplementing AIA data with the latt...
Osibanjo, Olabosipo O.
The objectives of this work are to calculate surface fluxes for rolling terrain using observational data collected during one week in September 2014 from a monitoring site in Echo, Oregon and to investigate the log law in the ABL. The site is located in the Columbia Basin with rolling terrain, irrigated farmland, and over 100 wind turbines. The 10 m tower was placed in a small valley depression to isolate nighttime temperature inversions. This thesis presents observations of momentum, sensible heat, moisture, and CO2 fluxes from data collected at a sampling frequency of 10Hz at four heights. Results show a strong correlation between temperature inversions and CO 2 flux. The log layer could not be achieved as the value of the estimated von Karman constant (˜0.62) is not close to that of the accepted value of 0.41. The impact of the irrigated farmland near the measurement site was observed in the latent heat flux, where the advection of moisture was evident in the tower moisture gradient. A strong relationship was also observed between fluxes of sensible heat, latent heat, CO2, and atmospheric stability. The average nighttime CO2 concentration observed was ˜407 ppm, and daytime ˜388 ppm compared to the 2013 global average CO2 concentration of 395 ppm. The maximum CO2 concentration (˜485 ppm) was observed on the strongest temperature inversion night. There are few uncertainties in the measurements. The manufacturer for the eddy covariance instruments (EC 150) quotes uncertainty of +/- 0.1°C for temperature between -0°C-40°C. Error bars were generated on the estimated surface sensible heat flux using the standard deviation and mean values. Under the most stable atmospheric conditions, uncertainty (assumed to be the variability in the flux estimates) was close to the minimum (˜+/- 5 W m-2). (Abstract shortened by ProQuest.).
Liuzzi, G.; Masiello, G.; Serio, C.; Venafra, S.; Camy-Peyret, C.
2016-10-01
Spectra observed by the Infrared Atmospheric Sounder Interferometer (IASI) have been used to assess both retrievals and the spectral quality and consistency of current forward models and spectroscopic databases for atmospheric gas line and continuum absorption. The analysis has been performed with thousands of observed spectra over sea surface in the Pacific Ocean close to the Mauna Loa (Hawaii) validation station. A simultaneous retrieval for surface temperature, atmospheric temperature, H2O, HDO, O3 profiles and gas average column abundance of CO2, CO, CH4, SO2, N2O, HNO3, NH3, OCS and CF4 has been performed and compared to in situ observations. The retrieval system considers the full IASI spectrum (all 8461 spectral channels on the range 645-2760 cm-1). We have found that the average column amount of atmospheric greenhouse gases can be retrieved with a precision better than 1% in most cases. The analysis of spectral residuals shows that, after inversion, they are generally reduced to within the IASI radiometric noise. However, larger residuals still appear for many of the most abundant gases, namely H2O, CH4 and CO2. The H2O ν2 spectral region is in general warmer (higher radiance) than observations. The CO2ν2 and N2O/CO2ν3 spectral regions now show a consistent behavior for channels, which are probing the troposphere. Updates in CH4 spectroscopy do not seem to improve the residuals. The effect of isotopic fractionation of HDO is evident in the 2500-2760 cm-1 region and in the atmospheric window around 1200 cm-1.
Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data
Deschamps, P.-Y.; Frouin, R.
1997-01-01
The investigation focuses on two key issues in satellite ocean color remote sensing, namely the presence of whitecaps on the sea surface and the validity of the aerosol models selected for the atmospheric correction of SeaWiFS data. Experiments were designed and conducted at the Scripps Institution of Oceanography to measure the optical properties of whitecaps and to study the aerosol optical properties in a typical mid-latitude coastal environment. CIMEL Electronique sunphotometers, now integrated in the AERONET network, were also deployed permanently in Bermuda and in Lanai, calibration/validation sites for SeaWiFS and MODIS. Original results were obtained on the spectral reflectance of whitecaps and on the choice of aerosol models for atmospheric correction schemes and the type of measurements that should be made to verify those schemes. Bio-optical algorithms to remotely sense primary productivity from space were also evaluated, as well as current algorithms to estimate PAR at the earth's surface.
Directory of Open Access Journals (Sweden)
D. Fussen
2015-04-01
Full Text Available In this paper, we show how the usual change of tangent altitude associated with atmospheric refraction is inseparably connected to a variation of the observed apparent intensity, for extended and pointlike sources. We demonstrate, in the regime of weak refraction angles, that atmospheric optical dilution and image deformation are strictly concomitant. The approach leads to the integration of a simple differential equation related to the observed transmittance in the absence of other absorbing molecules along the optical path. We successfully applied the proposed method to the measurements performed by two past occultation experiments: GOMOS for stellar and ORA for solar occultations. The developed algorithm (named ARID will be applied to the imaging of solar occultations in a forthcoming pico-satellite mission.
Garbarino, Sara; Massone, Anna Maria; Sannino, Alessia; Boselli, Antonella; Wang, Xuan; Spinelli, Nicola; Piana, Michele
2016-01-01
We consider the problem of retrieving the aerosol extinction coefficient from Raman lidar measurements. This is an ill--posed inverse problem that needs regularization, and we propose to use the Expectation--Maximization (EM) algorithm to provide stable solutions. Indeed, EM is an iterative algorithm that imposes a positivity constraint on the solution, and provides regularization if iterations are stopped early enough. We describe the algorithm and propose a stopping criterion inspired by a statistical principle. We then discuss its properties concerning the spatial resolution. Finally, we validate the proposed approach by using both synthetic data and experimental measurements; we compare the reconstructions obtained by EM with those obtained by the Tikhonov method, by the Levenberg-Marquardt method, as well as those obtained by combining data smoothing and numerical derivation.
Garbarino, Sara; Sorrentino, Alberto; Massone, Anna Maria; Sannino, Alessia; Boselli, Antonella; Wang, Xuan; Spinelli, Nicola; Piana, Michele
2016-09-19
We consider the problem of retrieving the aerosol extinction coefficient from Raman lidar measurements. This is an ill-posed inverse problem that needs regularization, and we propose to use the Expectation-Maximization (EM) algorithm to provide stable solutions. Indeed, EM is an iterative algorithm that imposes a positivity constraint on the solution, and provides regularization if iterations are stopped early enough. We describe the algorithm and propose a stopping criterion inspired by a statistical principle. We then discuss its properties concerning the spatial resolution. Finally, we validate the proposed approach by using both synthetic data and experimental measurements; we compare the reconstructions obtained by EM with those obtained by the Tikhonov method, by the Levenberg-Marquardt method, as well as those obtained by combining data smoothing and numerical derivation.
Goeckede, M.; Michalak, A. M.; Vickers, D.; Turner, D.; Law, B.
2009-04-01
The study presented is embedded within the NACP (North American Carbon Program) West Coast project ORCA2, which aims at determining the regional carbon balance of the US states Oregon, California and Washington. Our work specifically focuses on the effect of disturbance history and climate variability, aiming at improving our understanding of e.g. drought stress and stand age on carbon sources and sinks in complex terrain with fine-scale variability in land cover types. The ORCA2 atmospheric inverse modeling approach has been set up to capture flux variability on the regional scale at high temporal and spatial resolution. Atmospheric transport is simulated coupling the mesoscale model WRF (Weather Research and Forecast) with the STILT (Stochastic Time Inverted Lagrangian Transport) footprint model. This setup allows identifying sources and sinks that influence atmospheric observations with highly resolved mass transport fields and realistic turbulent mixing. Terrestrial biosphere carbon fluxes are simulated at spatial resolutions of up to 1km and subdaily timesteps, considering effects of ecoregion, land cover type and disturbance regime on the carbon budgets. Our approach assimilates high-precision atmospheric CO2 concentration measurements and eddy-covariance data from several sites throughout the model domain, as well as high-resolution remote sensing products (e.g. LandSat, MODIS) and interpolated surface meteorology (DayMet, SOGS, PRISM). We present top-down modeling results that have been optimized using Bayesian inversion, reflecting the information on regional scale carbon processes provided by the network of high-precision CO2 observations. We address the level of detail (e.g. spatial and temporal resolution) that can be resolved by top-down modeling on the regional scale, given the uncertainties introduced by various sources for model-data mismatch. Our results demonstrate the importance of accurate modeling of carbon-water coupling, with the
Atmospheric inversion of SO2 and primary aerosol emissions for the year 2010
Directory of Open Access Journals (Sweden)
N. Huneeus
2013-07-01
Full Text Available Natural and anthropogenic emissions of primary aerosols and sulphur dioxide (SO2 are estimated for the year 2010 by assimilating daily total and fine mode aerosol optical depth (AOD at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS satellite instrument into a global aerosol model of intermediate complexity. The system adjusts monthly emission fluxes over a set of predefined regions tiling the globe. The resulting aerosol emissions improve the model performance, as measured from usual skill scores, both against the assimilated observations and a set of independent ground-based measurements. The estimated emission fluxes are 67 Tg S yr−1 for SO2, 12 Tg yr−1 for black carbon (BC, 87 Tg yr−1 for particulate organic matter (POM, 17 000 Tg yr−1 for sea salt (SS, estimated at 80 % relative humidity and 1206 Tg yr−1 for desert dust (DD. They represent a difference of +53, +73, +72, +1 and −8%, respectively, with respect to the first guess (FG values. Constant errors throughout the regions and the year were assigned to the a priori emissions. The analysis errors are reduced with respect to the a priori ones for all species and throughout the year, they vary between 3 and 18% for SO2, 1 and 130% for biomass burning, 21 and 90 % for fossil fuel, 1 and 200% for DD and 1 and 5% for SS. The maximum errors on the global-yearly scale for the estimated fluxes (considering temporal error dependence are 3% for SO2, 14% for BC, 11% for POM, 14% for DD and 2% for SS. These values represent a decrease as compared to the global-yearly errors from the FG of 7% for SO2, 40% for BC, 55% for POM, 81% for DD and 300% for SS. The largest error reduction, both monthly and yearly, is observed for SS and the smallest one for SO2. The sensitivity and robustness of the inversion system to the choice of the first guess emission inventory is investigated by using different combinations of inventories for industrial, fossil fuel and biomass burning
Infrared radiation and inversion population of CO2 laser levels in Venusian and Martian atmospheres
Gordiyets, B. F.; Panchenko, V. Y.
1983-01-01
Formation mechanisms of nonequilibrium 10 micron CO2 molecule radiation and the possible existence of a natural laser effect in the upper atmospheres of Venus and Mars are theoretically studied. An analysis is made of the excitation process of CO2 molecule vibrational-band levels (with natural isotropic content) induced by direct solar radiation in bands 10.6, 9.4, 4.3, 2.7 and 2.0 microns. The model of partial vibrational-band temperatures was used in the case. The problem of IR radiation transfer in vibrational-rotational bands was solved in the radiation escape approximation.
A new method for the inversion of atmospheric parameters of A/Am stars
Gebran, M; Paletou, F; Monier, R; Watson, V
2016-01-01
We present an automated procedure that derives simultaneously the effective temperature $T_{eff}$, the surface gravity logg, the metallicity [Fe/H], and the equatorial projected rotational velocity vsini for "normal" A and Am stars. The procedure is based on the principal component analysis inversion method of Paletou et al. (2015a). A sample of 322 high resolution spectra of F0-B9 stars, retrieved from the Polarbase, SOPHIE, and ELODIE databases, were used to test this technique with real data. We have selected the spectral region from 4400-5000\\AA\\ as it contains many metallic lines and the Balmer H$\\beta$ line. Using 3 datasets at resolving powers of R=42000, 65000 and 76000, about 6.6x$10^6$ synthetic spectra were calculated to build a large learning database. The Online Power Iteration algorithm was applied to these learning datasets to estimate the principal components (PC). The projection of spectra onto the few PCs offered an efficient comparison metric in a low dimensional space. The spectra of the w...
Wu, Xueran; Jacob, Birgit
2015-01-01
The controllability of advection-diffusion systems, subject to uncertain initial values and emission rates, is estimated, given sparse and error affected observations of prognostic state variables. In predictive geophysical model systems, like atmospheric chemistry simulations, different parameter families influence the temporal evolution of the system.This renders initial-value-only optimisation by traditional data assimilation methods as insufficient. In this paper, a quantitative assessment method on validation of measurement configurations to optimize initial values and emission rates, and how to balance them, is introduced. In this theoretical approach, Kalman filter and smoother and their ensemble based versions are combined with a singular value decomposition, to evaluate the potential improvement associated with specific observational network configurations. Further, with the same singular vector analysis for the efficiency of observations, their sensitivity to model control can be identified by deter...
Pisso, Ignacio; Patra, Prabir; Breivik, Knut
2015-04-01
Lagrangian transport models based on times series of Eulerian fields provide a computationally affordable way of achieving very high resolution for limited areas and time periods. This makes them especially suitable for the analysis of point-wise measurements of atmospheric tracers. We present an application illustrated with examples of greenhouse gases from anthropogenic emissions in urban areas and biogenic emissions in Japan and of pollutants in the Arctic. We asses the algorithmic complexity of the numerical implementation as well as the use of non-procedural techniques such as Object-Oriented programming. We discuss aspects related to the quantification of uncertainty from prior information in the presence of model error and limited number of observations. The case of non-linear constraints is explored using direct numerical optimisation methods.
Directory of Open Access Journals (Sweden)
X. Xiao
2010-05-01
Full Text Available Carbon tetrachloride (CCl_{4} has substantial stratospheric ozone depletion potential and its consumption is controlled under the Montreal Protocol and its amendments. We implement a Kalman filter using atmospheric CC1_{4} measurements and a 3-dimensional chemical transport model to estimate the interannual regional industrial emissions and seasonal global oceanic uptake of CCl_{4} for the period of 1996–2004. The Model of Atmospheric Transport and Chemistry (MATCH, driven by offline National Center for Environmental Prediction (NCEP reanalysis meteorological fields, is used to simulate CCl_{4} mole fractions and calculate their sensitivities to regional sources and sinks using a finite difference approach. High frequency observations from the Advanced Global Atmospheric Gases Experiment (AGAGE and NOAA Earth System Research Laboratory (ESRL and low frequency flask observations are together used to constrain the source and sink magnitudes, estimated as factors that multiply the a priori fluxes. Although industry data imply that the global industrial emissions were substantially declining with large interannual variations, the optimized results show only small interannual variations and a small decreasing trend. The global surface CCl_{4} mole fractions were declining in this period because the CCl_{4} oceanic and stratospheric sinks exceeded the industrial emissions. Compared to the a priori values, the inversion results indicate substantial increases in industrial emissions originating from the South Asian/Indian and Southeast Asian regions, and significant decreases in emissions from the European and North American regions.
Fung, Jonathan Winston
Carbon dioxide is taken up by crops during production and released back to the atmosphere at different geographical locations through respiration of consumed crop commodities. In this study, spatially distributed county-level US cropland net primary productivity, harvested biomass, changes in soil carbon, and human and livestock consumption data were integrated into the prior terrestrial biosphere flux generated by the Boreal Ecosystem Productivity Simulator (BEPS). A global time-dependent Bayesian synthesis inversion with a nested focus on North America was carried out based on CO2 observations at 210 stations. Overall, the inverted annual North American CO2 sink weakened by 6.5% over the period from 2002 to 2007 compared to simulations disregarding US crop statistical data. The US Midwest is found to be the major sink of 0.36±0.13 PgC yr-1 whereas the large sink in the US Southeast forests weakened to 0.16±0.12 PgC yr-1 partly due to local CO2 sources from crop consumption.
Bousserez, Nicolas
2016-01-01
This paper provides a detailed theoretical analysis of methods to approximate the solutions of high-dimensional (>10^6) linear Bayesian problems. An optimal low-rank projection that maximizes the information content of the Bayesian inversion is proposed and efficiently constructed using a scalable randomized SVD algorithm. Useful optimality results are established for the associated posterior error covariance matrix and posterior mean approximations, which are further investigated in a numerical experiment consisting of a large-scale atmospheric tracer transport source-inversion problem. This method proves to be a robust and efficient approach to dimension reduction, as well as a natural framework to analyze the information content of the inversion. Possible extensions of this approach to the non-linear framework in the context of operational numerical weather forecast data assimilation systems based on the incremental 4D-Var technique are also discussed, and a detailed implementation of a new Randomized Incr...
Energy Technology Data Exchange (ETDEWEB)
Carouge, C
2006-04-15
Since the end of the 1980's, measurements of atmospheric carbon dioxide have been used to estimate global and regional fluxes of CO{sub 2}. This is possible because CO{sub 2} concentration variation is directly linked to flux variation by atmospheric transport. We can find the spatial and temporal distribution of fluxes from concentration measurements by 'inverting' the atmospheric transport. Until recently, most CO{sub 2} inversions have used monthly mean CO{sub 2} atmospheric concentration measurements to infer monthly fluxes. Considering the sparseness of the global CO{sub 2} measurement network, fluxes were a priori aggregated on sub-continental regions and distributed on a fixed spatial pattern within these regions. Only one flux coefficient per month for each region was optimized. With this strong constraint, estimated fluxes can be biased by non-perfect distribution of fluxes within each region (aggregation error). Therefore, flux estimation at model resolution is being developed where the hard constraint of a fixed distribution within a region is replaced by a soft constraint of covariances between flux uncertainties. The use of continuous observations from an increasing number of measurement sites offers a new challenge for inverse modelers. We investigate the use of daily averaged observations to infer daily CO{sub 2} fluxes at model resolution over Europe. We have developed a global synthesis Bayesian inversion to invert daily fluxes at model resolution (50 x 50 km over Europe) from daily averaged CO{sub 2} concentrations. We have obtained estimated fluxes for the year 2001 over Europe using the 10 European continuous sites from the AEROCARB network. The global atmospheric model LMDZt is used with a nested grid over Europe. It is necessary to add a priori spatial and temporal correlations between flux errors to constrain the Bayesian inversion. We present the impact on estimated fluxes of three different spatial correlations based on
Karakostas, F. G.; Rakoto, V.; Lognonne, P. H.
2015-12-01
Meteor impacts are a very important seismic source for planetary seismology, since their locations and, in some cases, their occurence times can be accurately known from orbiters, tracking or optical observations. Their importance becomes greater in the case of a seismic experiment with one seismometer, as the SEIS (Seismic Experiment of Interior Structure) of the future Martian mission "InSight", as the known location allows a direct inversion of differential travel times and wave forms in terms of structure. Meteor impacts generate body and surface seismic waves when they reach the surface of a planet. But when they explode into the atmosphere, due to ablation, they generate shock waves, which are converted into linear, seismic waves in the solid part and acoustic waves in the atmosphere. This effect can be modeled when the amplitude of Rayleigh and other Spheroidal normal modes is made with the atmospheric/ground coupling effects. In this study, meteor impacts are modeled as seismic sources in a comparative analysis for the cases of Earth and Mars. Using the computed seismograms, calculated by the summation of the normal modes of the full planet (e.g. with atmosphere) the properties of the seismic source can be obtained. Its duration is typically associated to the radiation duration of shock waves until they reach the linear regime of propagation. These transition times are comparatively analyzed, for providing constraints on the seismic source duration on Earth and Mars. In the case of Earth, we test our approach with the Chelyabinsk superbolide. The computed seismograms are used in order to perform the inversion of the source, by comparison with the data of the Global Seismographic Network. The results are interpreted and compared with other observations. In the case of Mars, equivalent sources are similarly modeled in different atmospheric, impact size and lithospheric conditions.
Directory of Open Access Journals (Sweden)
Z. Tan
2015-11-01
Full Text Available Understanding methane emissions from the Arctic, a fast warming carbon reservoir, is important for projecting changes in the global methane cycle under future climate scenarios. Here we optimize Arctic methane emissions with a nested-grid high-resolution inverse model by assimilating both high-precision surface measurements and column-average SCIAMACHY satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes are integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated by six different biogeochemical models. We find that, the global methane emissions during July 2004–June 2005 ranged from 496.4 to 511.5 Tg yr−1, with wetland methane emissions ranging from 130.0 to 203.3 Tg yr−1. The Arctic methane emissions during July 2004–June 2005 were in the range of 14.6–30.4 Tg yr−1, with wetland and lake emissions ranging from 8.8 to 20.4 Tg yr−1 and from 5.4 to 7.9 Tg yr−1 respectively. Canadian and Siberian lakes contributed most of the estimated lake emissions. Due to insufficient measurements in the region, Arctic methane emissions are less constrained in northern Russia than in Alaska, northern Canada and Scandinavia. Comparison of different inversions indicates that the distribution of global and Arctic methane emissions is sensitive to prior wetland emissions. Evaluation with independent datasets shows that the global and Arctic inversions improve estimates of methane mixing ratios in boundary layer and free troposphere. The high-resolution inversions provide more details about the spatial distribution of methane emissions in the Arctic.
Welp, Lisa R.; Patra, Prabir K.; Rödenbeck, Christian; Nemani, Rama; Bi, Jian; Piper, Stephen C.; Keeling, Ralph F.
2016-07-01
Warmer temperatures and elevated atmospheric CO2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changes are unclear. Here, we examine CO2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60° N excluding Europe (10° W-63° E), neither inversion finds a significant long-term trend in annual CO2 balance. The boreal zone, the latitude region from approximately 50-60° N, again excluding Europe, showed a trend of 8-11 Tg C yr-2 over the common period of validity from 1986 to 2006, resulting in an annual CO2 sink in 2006 that was 170-230 Tg C yr-1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO2 uptake, consistent with strong greening trends, is offset by increased fall CO2 release, resulting in a net neutral
Hänel, G
1994-10-20
Complete sets of optical parameters of dry particles sampled on a Nuclepore filter are derived through interpretation of photometric data with an improved inversion technique. The parameters are the volume-extinction and absorption coefficients, the single-scattering albedo, the asymmetry parameter of the volume scattering function, the apparent complex refractive index, and the apparent soot content. They may serve as input data for solar radiation-budget considerations. Results from preliminary measurements taken in Central Europe and Italy show an extreme variability of the optical parameters. Both large regional and temporal variabilities have been observed caused by the fluctuating midlatitude weather systems and human activities.
Rodriguez, S.; Maltagliati, L.; Appéré, T.; Vincendon, M.; Douté, S.; Le Mouelic, S.; Rannou, P.; Sotin, C.; Barnes, J. W.; Coustenis, A.; Brown, R. H.
2014-12-01
A radiative transfer solver (i.e. SHDOM) is the most powerful tool to extract simultaneous information of the atmosphere and the surface of Titan from the hyperspectral data of the VIMS imaging spectrometer onboard Cassini. However, the sheer amount of data (~40000 VIMS cubes containing several millions of spectra since the beginning of the mission) makes this approach too demanding in computational time. In our analysis we use a radiative transfer model to create look-up tables for different values of the model's parameters (geometry of the observation, surface albedo, aerosols opacity). We employ up-to-date information on gaseous spectral coefficients, aerosols' optical properties and Titan's climatology. These look-up tables, appropriately interpolated, are then used to minimize the observations and create simultaneous maps of surface albedo at the wavelengths of Titan's spectral windows and of aerosols opacity. This approach allows the gain of a factor of several thousands in computational time and thus, for the first time, a truly massive treatment of VIMS data. This capacity of processing full mapping quickly will consent to monitor closely the global and local seasonal evolution of the atmosphere and the surface. We will present the results of our method applied to some cases of interest. We will analyze several hyperspectral images of the Huygens landing site and show the comparison of our results with observations of other Cassini instruments. We will also investigate regions that have been observed multiple times at different Cassini flybys with different observational conditions, as the T13/T17 mosaic of the Atzlan area. The perspectives for atmospheric and surface seasonal monitoring will be highlighted.
Haynes, Korey; Madhusudhan, Nikku; Deming, Drake; Knutson, Heather
2015-01-01
We present observations of two occultations of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the HST, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is the most highly irradiated hot Jupiter discovered to date, and the only exoplanet known to orbit a delta-Scuti star. We observed in spatial scan mode to decrease instrument systematic effects in the data, and removed fluctuations in the data due to stellar pulsations. The RMS for our final, binned spectrum is approximately 1.05 times the photon noise. We compare our final spectrum, along with previously published photometric data, to atmospheric models of WASP-33b spanning a wide range in temperature profiles and chemical compositions. We find that the data require models with an oxygen-rich chemical composition and a temperature profile that increases at high altitude. We also find that our spectrum displays an excess in the measured flux towards short wavelengths that is best...
Basu, Sourish; Bharat Miller, John; Lehman, Scott
2016-05-01
National annual total CO2 emissions from combustion of fossil fuels are likely known to within 5-10 % for most developed countries. However, uncertainties are inevitably larger (by unknown amounts) for emission estimates at regional and monthly scales, or for developing countries. Given recent international efforts to establish emission reduction targets, independent determination and verification of regional and national scale fossil fuel CO2 emissions are likely to become increasingly important. Here, we take advantage of the fact that precise measurements of 14C in CO2 provide a largely unbiased tracer for recently added fossil-fuel-derived CO2 in the atmosphere and present an atmospheric inversion technique to jointly assimilate observations of CO2 and 14CO2 in order to simultaneously estimate fossil fuel emissions and biospheric exchange fluxes of CO2. Using this method in a set of Observation System Simulation Experiments (OSSEs), we show that given the coverage of 14CO2 measurements available in 2010 (969 over North America, 1063 globally), we can recover the US national total fossil fuel emission to better than 1 % for the year and to within 5 % for most months. Increasing the number of 14CO2 observations to ˜ 5000 per year over North America, as recently recommended by the National Academy of Science (NAS) (Pacala et al., 2010), we recover monthly emissions to within 5 % for all months for the US as a whole and also for smaller, highly emissive regions over which the specified data coverage is relatively dense, such as for the New England states or the NY-NJ-PA tri-state area. This result suggests that, given continued improvement in state-of-the art transport models, a measurement program similar in scale to that recommended by the NAS can provide for independent verification of bottom-up inventories of fossil fuel CO2 at the regional and national scale. In addition, we show that the dual tracer inversion framework can detect and minimize biases in
Maltagliati, Luca; Rodriguez, Sébastien; Appéré, Thomas; Vincendon, Mathieu; Douté, Sylvain; LeMouelic, Stéphane; Rannou, Pascal; Sotin, Christophe; Barnes, Jason W.; Coustenis, Athena; Brown, Robert H.
2014-11-01
Since the beginning of the Cassini mission, the imaging spectrometer VIMS has acquired ~40000 hyperspectral images of Titan containing several millions of spectra. Such a huge amount of data cannot be analyzed with a radiative transfer solver like SHDOM because of computational limits. Nevertheless, such a solver is the most suited tool to extract simultaneous information of the atmosphere and the surface of Titan from VIMS datacubes. We have developed a method of analyzing VIMS data that consents to use the power of a RT model without the inconvenience of long computational times, by the creation of look-up tables for different values of the RT model's parameters (geometry of the observation, surface albedo, aerosols opacity). We employ up-to-date information on gaseous spectral coefficients, aerosols’ optical properties and Titan’s climatology. These look-up tables, appropriately interpolated, are then used to minimize the observations and create simultaneous maps of aerosols opacity and of surface albedo (at the wavelengths of Titan’s spectral windows). This method lowers the computational time by a factor of several thousands and thus, for the first time, a truly massive treatment of VIMS data. In this paper we present the results of our method applied to the area of the Huygens landing site and their comparison with the results of other Cassini instruments. We also show the retrieved maps of a region observed multiple times at different Cassini flybys with different observational conditions, as the T13/T17 mosaic of the Atzlan area. The perspectives for atmospheric and surface seasonal monitoring are highlighted.
Galanti, Eli; Kaspi, Yohai
2017-04-01
Observations of the flow on Jupiter exists essentially only for the cloud-level, which is dominated by strong east-west jet-streams. These have been suggested to result from dynamics in a superficial thin weather-layer, or alternatively be a manifestation of deep interior cylindrical flows. However, it is possible that the observed wind is indeed superficial, yet there exists a completely decoupled deep flow. To date, all models linking the wind, via the induced density anomalies, to the gravity field, to be measured by Juno, consider only flow that is a projection of the observed cloud-level wind. Here we explore the possibility of complex wind dynamics that include both the shallow weather-layer wind, and a deep flow that is decoupled from the flow above it. The upper flow is based on the observed cloud-level flow and is set to decay with depth. The deep flow is constructed to produce cylindrical structures with variable width and magnitude, thus allowing for a wide range of possible scenarios for the unknown deep flow. The combined flow is then related to the density anomalies and gravitational moments via a dynamical model. An adjoint inverse model is used for optimizing the parameters controlling the setup of the deep and surface-bound flows, so that these flows can be reconstructed given a gravity field. We show that the model can be used for examination of various scenarios, including cases in which the deep flow is dominating over the surface wind, and discuss the uncertainties associated with the model solution. The flexibility of the adjoint method allows for a wide range of dynamical setups, so that when new observations and physical understanding will arise, these constraints could be easily implemented and used to better decipher Jupiter flow dynamics.
Giemsa, Esther; Jacobeit, Jucundus; Ries, Ludwig; Frank, Gabriele; Hachinger, Stephan; Meyer-Arnek, Julian
2016-04-01
In order to estimate the influence of Central European CO2 emissions, a new method to retrieve background concentrations based on statistics of radon-222 and backward trajectories is developed and applied to the CO2 observations at the alpine high-altitude research station Schneefernerhaus (2670 m a.s.l.). The reliable identification of baseline conditions is important for perceiving changes in time as well as in the sources and sinks of greenhouse gases and thereby assessing the efficiency of existing mitigation strategies. In the particular case of Central Europe, the analysis of background concentrations could add further insights on the question why background CO2 concentrations increased in the last few decades, despite a significant decrease in the reported emissions. Ongoing effort to define the baseline conditions has led to a variety of data selection techniques. In this diversity of data filtering concepts, a relatively recent data selection method effectively appropriates observations of radon-222 to reliably and unambiguously identify baseline air masses. Owing to its relatively constant emission rate from the ice-free land surface and its half-life of 3.8 days that is solely achieved through radioactive decay, the tropospheric background concentration of the inert radioactive gas is low and temporal variations caused by changes in atmospheric transport are precisely detectable. For defining the baseline air masses reaching the high alpine research station Schneefernerhaus, an objective analysis approach is applied to the two-hourly radon records. The CO2 values of days by the radon method associated with prevailing atmospheric background conditions result in the CO2 concentrations representing the least land influenced air masses. Additionally, three-dimensional back-trajectories were retrieved using the Lagrangian Particle Dispersion Model (LPDM) FLEXPART driven by analysis fields of the Global Forecast System (GFS) produced by the National Centers
Energy Technology Data Exchange (ETDEWEB)
Pison, I.
2005-12-15
Atmospheric pollution at a regional scale is the result of various interacting processes: emissions, chemistry, transport, mixing and deposition of gaseous species. The forecast of air quality is then performed by models, in which the emissions are taken into account through inventories. The simulated pollutant concentrations depend highly on the emissions that are used. Now inventories that represent them have large uncertainties. Since it would be difficult today to improve their building methodologies, there remains the possibility of adding information to existing inventories. The optimization of emissions uses the information that is available in measurements to get the inventory that minimizes the difference between simulated and measured concentrations. A method for the inversion of anthropogenic emissions at a regional scale, using network measurements and based on the CHIMERE model and its adjoint, was developed and validated. A kriging technique allows us to optimize the use of the information available in the concentration space. Repeated kriging-optimization cycles increase the quality of the results. A dynamical spatial aggregation technique makes it possible to further reduce the size of the problem. The NO{sub x} emissions from the inventory elaborated by AIRPARIF for the Paris area were inverted during the summers of 1998 and 1999, the events of the ESQUIF campaign being studied in detail. The optimization reduces large differences between simulated and measured concentrations. Generally, however, the confidence level of the results decreases with the density of the measurement network. Therefore, the results with the higher confidence level correspond to the most intense emission fluxes of the Paris area. On the whole domain, the corrections to the average emitted mass and to the matching time profiles are consistent with the estimate of 15% obtained during the ESQUIF campaign. (author)
Rao, P.; Lauvaux, T.; Oda, T.; Tang, J.; Gurney, K. R.; Eldering, A.; Miller, C. E.; Duren, R. M.
2015-12-01
Urban fossil fuel CO2 (FFCO2) emissions play a significant role in the global C cycle and climate change. To better understand and monitor urban FFCO2 emissions, we need timely estimates at fine spatial resolution. However, currently available global estimates have coarse resolution of 10km or more except for some US cities which have finer FFCO2 estimates at ~250m (Hestia Project; Gurney et al. 2012). We construct an urban sectoral emission model for the U.S. based on multiple cities and spatially disaggregate each sector to arrive at finely resolved emissions data products. We then calibrate our results with other datasets to confirm whether this approach can be applicable in any global urban domain. We acquire 2012 annual emissions estimates from EPA's national emissions inventory for the Los Angeles megacity and Indianapolis and apply our U.S. urban sectoral emission model to derive sectoral estimates. We then spatially distribute these sectoral emissions based on activity and other proxy data. We combine remote sensing and open source data such as national land cover data, population density, impervious surface, and road maps to develop intensity metrics of energy use within each sector. These intensity metrics are then used to spatially allocate emissions within each sector. We incorporate global powerplant emissions data to complete our emissions datasets. We validate our urban FFCO2 emissions datasets, both at sectoral and city scales, against Hestia results for two cities and, in case of Indianapolis, compare to results from inverse modeling of atmospheric CO2 concentrations. This study will guide the next phase of research by developing the methodology to determine the spatial variation of FFCO2 emissions in select cities around the world.
Institute of Scientific and Technical Information of China (English)
胡永红; 贾根锁
2013-01-01
It is promising way to analyze large scale surface energy balance from two source model, which widely used to map local evapotranspiration pattern, detect regional drought and climate change study. Based on thermal infrared remote sensing image and field meteorological parameters, the Atmosphere-land Exchange Inversion Model (ALEXI) can examine land surface process in continental scale, further the hourly datasets from geostationary platform make possible integrate field measurements and model results. However,such great capacities of ALEXI model have weakness in its validation results that involved in the inappropriate spatial scale between satellite images and field measurements,even Large Aperture Scintillometer (LAS) measurements can't meet the heterogeneous area comparison requirements in 6 km×6 km area. In this study,we assumed that the surface energy balance algorithm for land model (SEBAL) from high resolution image could catch more reasonable regional surface energy balance pattern, which was verified by many studies in local scale. The land surface balance results from SEBAL model based on Landsat images were considered as the data source for ALEXI model (MTSAT satellite platform) validation in the same period. The study showed that ALEXI model and SEBAL model can get a more consistent surface energy exchange patterns,and statistical analysis of the ALXEI model also provided well distribution among different land cover. Combined with geostationary satellite data, ALEXI model can be a promising method for monitoring land-atmospheric interaction. In addition,this study was executed in small watershed over northern China,and the quantitative validation of ALEXI model also need further work to improve the model accuracy in more heterogeneous study area.%基于静止卫星数据开发的陆气相互作用模型(ALEXI模型)为地表能量平衡过程分析提供了大尺度空间拓展,为认识大尺度的陆气相互作用提供了新途径,已被应用于
Energy Technology Data Exchange (ETDEWEB)
Hayes, D. J.; Turner, D. P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, L.; deJong, B.; McConkey, Brian; Birdsey, Richard A.; Kurz, Werner; Jacobson, Andy; Huntzinger, Deborah N.; Pan, Y.; Post, W. M.; Cook, R. B.
2012-04-02
While fossil fuel emissions are calculated with relatively high precision, understanding the fate of those emissions with respect to sequestration in terrestrial ecosystems requires data and methods that can reduce uncertainties in the diagnosis of land-based CO2 sinks. The wide range in the land surface flux estimates is related to a number of factors, but most generally because of the different methodologies used to develop estimates of carbon stocks and flux, and the uncertainties inherent in each approach. The alternative approaches to estimating continental scale carbon fluxes that we explored here can be broadly classified as applying a top-down or bottom-up perspective. Top-down approaches calculate land-atmosphere carbon fluxes based on atmospheric budgets and inverse modeling. Bottom-up approaches rely primarily on measurements of carbon stock changes (the inventory approach) or on spatially distributed simulations of carbon stocks and/or fluxes using process-based modeling (the forward modelapproach).
Ingram, WT
2012-01-01
Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen
Directory of Open Access Journals (Sweden)
J. Haase
Full Text Available Radio occultation measurements made with a receiver inside the Earth’s atmosphere can be inverted, assuming local spherical symmetry, with an Abel transform to provide an estimate of the atmospheric refractive index profile. The measurement geometry is closely related to problems encountered when inverting seismic time-travel data and solar occultation measurements, where the Abel solution is well known. The method requires measuring both rays that originate from above and below the local horizon of the receiver. The Abel transform operates on a profile of "partial bending angles" found by subtracting the positive elevation measurement from the negative elevation value with the same impact parameter. In principle, the refractive index profile can be derived from measurements with a single frequency GPS receiver because the ionospheric bending is removed when the partial bending angle is evaluated.Key words. Atmospheric composition and structure (pressure, density and temperature – Radio science (remote sensing
Integrative inversion of land surface component temperature
Institute of Scientific and Technical Information of China (English)
FAN Wenjie; XU Xiru
2005-01-01
In this paper, the row winter wheat was selected as the example to study the component temperature inversion method of land surface target in detail. The result showed that the structural pattern of row crop can affect the inversion precision of component temperature evidently. Choosing appropriate structural pattern of row crop can improve the inversion precision significantly. The iterative method combining inverse matrix was a stable method that was fit for inversing component temperature of land surface target. The result of simulation and field experiment showed that the integrative method could remarkably improve the inversion accuracy of the lighted soil surface temperature and the top layer canopy temperature, and enhance inversion stability of components temperature. Just two parameters were sufficient for accurate atmospheric correction of multi-angle and multi-spectral thermal infrared data: atmospheric transmittance and the atmospheric upwelling radiance. If the atmospheric parameters and component temperature can be inversed synchronously, the really and truly accurate atmospheric correction can be achieved. The validation using ATSRII data showed that the method was useful.
Energy Technology Data Exchange (ETDEWEB)
Hayes, Daniel J [ORNL; Turner, David P [Oregon State University, Corvallis; Stinson, Graham [Pacific Forestry Centre, Canadian Forest Service; Mcguire, David [University of Alaska; Wei, Yaxing [ORNL; West, Tristram O. [Joint Global Change Research Institute, PNNL; Heath, Linda S. [USDA Forest Service; De Jong, Bernardus [ECOSUR; McConkey, Brian G. [Agriculture and Agri-Food Canada; Birdsey, Richard A. [U.S. Department of Agriculture Forest Service; Kurz, Werner [Canadian Forest Service; Jacobson, Andrew [NOAA ESRL and CIRES; Huntzinger, Deborah [University of Michigan; Pan, Yude [U.S. Department of Agriculture Forest Service; Post, Wilfred M [ORNL; Cook, Robert B [ORNL
2012-01-01
We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000 2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a 327 252 TgC yr1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (248 TgC yr1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (297 TgC yr1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated tobe a small net source (+18 TgC yr1) due to land use change between 1993 and 2002. We compare these inventorybased estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is 511 TgC yr1 and 931 TgC yr1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional 239 TgC yr1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.
Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.
2012-01-01
We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.
Inversion of GPS meteorology data
Directory of Open Access Journals (Sweden)
K. Hocke
Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically
Topological inverse semigroups
Institute of Scientific and Technical Information of China (English)
ZHU Yongwen
2004-01-01
That the projective limit of any projective system of compact inverse semigroups is also a compact inverse semigroup,the injective limit of any injective system of inverse semigroups is also an inverse semigroup, and that a compact inverse semigroup is topologically isomorphic to a strict projective limit of compact metric inverse semigroups are proved. It is also demonstrated that Horn (S,T) is a topological inverse semigroup provided that S or T is a topological inverse semigroup with some other conditions. Being proved by means of the combination of topological semigroup theory with inverse semigroup theory,all these results generalize the corresponding ones related to topological semigroups or topological groups.
Locally Inverse Semigroups with Inverse Transversals
Institute of Scientific and Technical Information of China (English)
SHAO Yong; ZHAO Xian Zhong
2009-01-01
Let S be a locally inverse semigroup with an inverse transversal S°. In this paper, we construct an amenable partial order on S by an R-cone. Conversely, every amenable partial order on S can be constructed in this way. We give some properties of a locally inverse semigroup with a Clifford transversal. In particular, if S is a locally inverse semigroup with a Clifford transversal, then there is an order-preserving bijection from the set of all amenable partial orders on S to the set of all R-cones of S.
Locative Inversion in Cantonese.
Mok, Sui-Sang
This study investigates the phenomenon of "Locative Inversion" in Cantonese. The term "Locative Inversion" indicates that the locative phrase (LP) syntactic process in Cantonese and the appears at the sentence-initial position and its logical subject occurs postverbally. It is demonstrated that this Locative Inversion is a…
Inverse anticipating chaos synchronization.
Shahverdiev, E M; Sivaprakasam, S; Shore, K A
2002-07-01
We derive conditions for achieving inverse anticipating synchronization where a driven time-delay chaotic system synchronizes to the inverse future state of the driver. The significance of inverse anticipating chaos in delineating synchronization regimes in time-delay systems is elucidated. The concept is extended to cascaded time-delay systems.
Institute of Scientific and Technical Information of China (English)
金慧华; 白征东; 樊月波
2009-01-01
The mountain-based GPS occultation has been developed on the base of space-based GPS. This paper is aimed at utilizing Doppler theory to establish the GPS occultation inversing troposphere refractive module, and to deduce the corresponding error influence formula. Finally, it gives an experiment example of atmospheric refractive index inversion.%山基GPS掩星是空基GPS和地基GPS结合的产物,山基GPS掩星观测数据相位值进行地球曲率改正后,利用多普勒原理推导了GPS掩星反演对流层折射率模型,并推导了相应的误差影响公式,最后给出了一个大气折射率反演实例.
Direct Waveform Inversion by Iterative Inverse Propagation
Schlottmann, R B
2009-01-01
Seismic waves are the most sensitive probe of the Earth's interior we have. With the dense data sets available in exploration, images of subsurface structures can be obtained through processes such as migration. Unfortunately, relating these surface recordings to actual Earth properties is non-trivial. Tomographic techniques use only a small amount of the information contained in the full seismogram and result in relatively low resolution images. Other methods use a larger amount of the seismogram but are based on either linearization of the problem, an expensive statistical search over a limited range of models, or both. We present the development of a new approach to full waveform inversion, i.e., inversion which uses the complete seismogram. This new method, which falls under the general category of inverse scattering, is based on a highly non-linear Fredholm integral equation relating the Earth structure to itself and to the recorded seismograms. An iterative solution to this equation is proposed. The res...
Inverse Kinematics using Quaternions
DEFF Research Database (Denmark)
Henriksen, Knud; Erleben, Kenny; Engell-Nørregård, Morten
In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection....... suite, developed in this project and in [4]. Source code developed for this project includes the CCD method , improvements on the BFGS method and Jacobian inverse originally developed in [4]....
Inverse periodic shadowing properties
Osipov, Alexey V
2011-01-01
We consider inverse periodic shadowing properties of discrete dynamical systems generated by diffeomorphisms of closed smooth manifolds. We show that the $C^1$-interior of the set of all diffeomorphisms having so-called inverse periodic shadowing property coincides with the set of $\\Omega$-stable diffeomorphisms. The equivalence of Lipschitz inverse periodic shadowing property and hyperbolicity of the closure of all periodic points is proved. Besides, we prove that the set of all diffeomorphisms that have Lipschitz inverse periodic shadowing property and whose periodic points are dense in the nonwandering set coincides with the set of Axiom A diffeomorphisms.
Gladwell, Graham ML
2011-01-01
The papers in this volume present an overview of the general aspects and practical applications of dynamic inverse methods, through the interaction of several topics, ranging from classical and advanced inverse problems in vibration, isospectral systems, dynamic methods for structural identification, active vibration control and damage detection, imaging shear stiffness in biological tissues, wave propagation, to computational and experimental aspects relevant for engineering problems.
Analysis of Temperature Distributions in Nighttime Inversions
Telyak, Oksana; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei
2015-04-01
Adequate prediction of temperature inversion in the atmospheric boundary layer is one of prerequisites for successful forecasting of meteorological parameters and severe weather events. Examples include surface air temperature and precipitation forecasting as well as prediction of fog, frosts and smog with hazardous levels of atmospheric pollution. At the same time, reliable forecasting of temperature inversions remains an unsolved problem. For prediction of nighttime inversions over some specific territory, it is important to study characteristic features of local circulation cells formation and to properly take local factors into account to develop custom modeling techniques for operational use. The present study aims to investigate and analyze vertical temperature distributions in tropospheric inversions (isotherms) over the territory of Belarus. We study several specific cases of formation, evolution and decay of deep nighttime temperature inversions in Belarus by means of mesoscale numerical simulations with WRF model, considering basic mechanisms of isothermal and inverse temperature layers formation in the troposphere and impact of these layers on local circulation cells. Our primary goal is to assess the feasibility of advance prediction of inversions formation with WRF. Modeling results reveal that all cases under consideration have characteristic features of radiative inversions (e.g., their formation times, development phases, inversion intensities, etc). Regions of "blocking" layers formation are extensive and often spread over the entire territory of Belarus. Inversions decay starts from the lowermost (near surface) layer (altitudes of 5 to 50 m). In all cases, one can observe formation of temperature gradients that substantially differ from the basic inversion gradient, i.e. the layer splits into smaller layers, each having a different temperature stratification (isothermal, adiabatic, etc). As opposed to various empirical techniques as well as
0-Semidistributive Inverse Semigroups
Institute of Scientific and Technical Information of China (English)
田振际
2004-01-01
@@ For an inverse semigroup S, the set L(S) of all inverse subsemigroups (including the empty set) of S forms a lattice with respect to intersection denoted as usual by ∩ and union, where the union is the inverse subsemigroup generated by inverse subsemigroups A, B of S. The set LF(S) of all full inverse subsemigroups of S forms a complete sublattice of L(S), with Es as zero element (Es is the set of all idempotent of S)(see [3,5,6]). Note, that if S a group, then LF(S)=L(S), its lattice of all subgroups of S. If S = G0 is a group with adjoined zero, then clearly LF(S) ≌ L(G).
Inverse Symmetric Inflationary Attractors
Odintsov, S D
2016-01-01
We present a class of inflationary potentials which are invariant under a special symmetry, which depends on the parameters of the models. As we show, in certain limiting cases, the inverse symmetric potentials are qualitatively similar to the $\\alpha$-attractors models, since the resulting observational indices are identical. However, there are some quantitative differences which we discuss in some detail. As we show, some inverse symmetric models always yield results compatible with observations, but this strongly depends on the asymptotic form of the potential at large $e$-folding numbers. In fact when the limiting functional form is identical to the one corresponding to the $\\alpha$-attractors models, the compatibility with the observations is guaranteed. Also we find the relation of the inverse symmetric models with the Starobinsky model and we highlight the differences. In addition, an alternative inverse symmetric model is studied and as we show, not all the inverse symmetric models are viable. Moreove...
Inversive meadows and divisive meadows
J.A. Bergstra; C.A. Middelburg
2009-01-01
An inversive meadow is a commutative ring with identity and a total multiplicative inverse operation whose value at 0 is 0. Previously, inversive meadows were shortly called meadows. In this paper, we introduce divisive meadows, which are inversive meadows with the multiplicative inverse operation r
Inversion of Stokes Profiles with Systematic Effects
Ramos, A Asensio; Gonzalez, M J Martinez; Yabar, A Pastor
2016-01-01
Quantitative thermodynamical, dynamical and magnetic properties of the solar and stellar plasmas are obtained by interpreting their emergent non-polarized and polarized spectrum. This inference requires the selection of a set of spectral lines particularly sensitive to the physical conditions in the plasma and a suitable parametric model of the solar/stellar atmosphere. Nonlinear inversion codes are then used to fit the model to the observations. However, the presence of systematic effects like nearby or blended spectral lines, telluric absorption or incorrect correction of the continuum, among others, can strongly affect the results. We present an extension to current inversion codes that can deal with these effects in a transparent way. The resulting algorithm is very simple and can be applied to any existing inversion code with the addition of a few lines of code as an extra step in each iteration.
On Generalized Inverse Transversals
Institute of Scientific and Technical Information of China (English)
Rong Hua ZHANG; Shou Feng WANG
2008-01-01
Let S be a regular semigroup,S° an inverse subsemigroup of S.S° is called a generalized inverse transversal of S,if V(x) ∩N S°≠φ.In this paper,some properties of this kind of semigroups are discussed.In particular,a construction theorem is obtained which contains some recent results in the literature as its special cases.
The inverse electroencephalography pipeline
Weinstein, David Michael
The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.
Generalized emissivity inverse problem.
Ming, DengMing; Wen, Tao; Dai, XianXi; Dai, JiXin; Evenson, William E
2002-04-01
Inverse problems have recently drawn considerable attention from the physics community due to of potential widespread applications [K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed. (Springer Verlag, Berlin, 1989)]. An inverse emissivity problem that determines the emissivity g(nu) from measurements of only the total radiated power J(T) has recently been studied [Tao Wen, DengMing Ming, Xianxi Dai, Jixin Dai, and William E. Evenson, Phys. Rev. E 63, 045601(R) (2001)]. In this paper, a new type of generalized emissivity and transmissivity inverse (GETI) problem is proposed. The present problem differs from our previous work on inverse problems by allowing the unknown (emissivity) function g(nu) to be temperature dependent as well as frequency dependent. Based on published experimental information, we have developed an exact solution formula for this GETI problem. A universal function set suggested for numerical calculation is shown to be robust, making this inversion method practical and convenient for realistic calculations.
MODEL SELECTION FOR SPECTROPOLARIMETRIC INVERSIONS
Energy Technology Data Exchange (ETDEWEB)
Asensio Ramos, A.; Manso Sainz, R.; Martinez Gonzalez, M. J.; Socas-Navarro, H. [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain); Viticchie, B. [ESA/ESTEC RSSD, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Orozco Suarez, D., E-mail: aasensio@iac.es [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)
2012-04-01
Inferring magnetic and thermodynamic information from spectropolarimetric observations relies on the assumption of a parameterized model atmosphere whose parameters are tuned by comparison with observations. Often, the choice of the underlying atmospheric model is based on subjective reasons. In other cases, complex models are chosen based on objective reasons (for instance, the necessity to explain asymmetries in the Stokes profiles) but it is not clear what degree of complexity is needed. The lack of an objective way of comparing models has, sometimes, led to opposing views of the solar magnetism because the inferred physical scenarios are essentially different. We present the first quantitative model comparison based on the computation of the Bayesian evidence ratios for spectropolarimetric observations. Our results show that there is not a single model appropriate for all profiles simultaneously. Data with moderate signal-to-noise ratios (S/Ns) favor models without gradients along the line of sight. If the observations show clear circular and linear polarization signals above the noise level, models with gradients along the line are preferred. As a general rule, observations with large S/Ns favor more complex models. We demonstrate that the evidence ratios correlate well with simple proxies. Therefore, we propose to calculate these proxies when carrying out standard least-squares inversions to allow for model comparison in the future.
Inversive meadows and divisive meadows
J.A. Bergstra; C.A. Middelburg
2011-01-01
Inversive meadows are commutative rings with a multiplicative identity element and a total multiplicative inverse operation satisfying 0−1=0. Divisive meadows are inversive meadows with the multiplicative inverse operation replaced by a division operation. We give finite equational specifications of
Sharp spatially constrained inversion
DEFF Research Database (Denmark)
Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.;
2013-01-01
We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted...... by using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes......, the results are compatible with the data and, at the same time, favor sharp transitions. The focusing strategy can also be used to constrain the 1D solutions laterally, guaranteeing that lateral sharp transitions are retrieved without losing resolution. By means of real and synthetic datasets, sharp...
DEFF Research Database (Denmark)
Mosegaard, Klaus
2012-01-01
For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our......-heuristics are inefficient for large-scale, non-linear inverse problems, and that the 'no-free-lunch' theorem holds. We discuss typical objections to the relevance of this theorem. A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than...
Inversion of the radiative transfer equation for polarized light
Iniesta, Jose Carlos del Toro
2016-01-01
Since the early 1970s, inversion techniques have become the most useful tool for inferring the magnetic, dynamic, and thermodynamic properties of the solar atmosphere. The intrinsic model dependence makes it necessary to formulate specific means that include the physics in a properly quantitative way. The core of this physics lies in the radiative transfer equation (RTE), where the properties of the atmosphere are assumed to be known while the unknowns are the four Stokes profiles. The solution of the (differential) RTE is known as the direct or forward problem. From an observational point of view, the problem is rather the opposite: the data are made up of the observed Stokes profiles and the unknowns are the solar physical quantities. Inverting the RTE is therefore mandatory. Indeed, the formal solution of this equation can be considered an integral equation. The solution of such an integral equation is called the inverse problem. Inversion techniques are automated codes aimed at solving the inverse problem...
Broekhuis, H.
2005-01-01
This article aims at reformulating in more current terms Hoekstra and Mulder’s (1990) analysis of the Locative Inversion (LI) construction. The new proposal is crucially based on the assumption that Small Clause (SC) predicates agree with their external argument in phi-features, which may be morphol
Calculation of the inverse data space via sparse inversion
Saragiotis, Christos
2011-01-01
The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function by constraining the $ell_1$ norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal.
Bayesian seismic AVO inversion
Energy Technology Data Exchange (ETDEWEB)
Buland, Arild
2002-07-01
A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S
Energy Technology Data Exchange (ETDEWEB)
Shin, Chang Soo; Park, Keun Pil [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); Suh, Jung Hee; Hyun, Byung Koo; Shin, Sung Ryul [Seoul National University, Seoul (Korea, Republic of)
1995-12-01
The seismic reflection exploration technique which is one of the geophysical methods for oil exploration became effectively to image the subsurface structure with rapid development of computer. However, the imagining of subsurface based on the conventional data processing is almost impossible to obtain the information on physical properties of the subsurface such as velocity and density. Since seismic data are implicitly function of velocities of subsurface, it is necessary to develop the inversion method that can delineate the velocity structure using seismic topography and waveform inversion. As a tool to perform seismic inversion, seismic forward modeling program using ray tracing should be developed. In this study, we have developed the algorithm that calculate the travel time of the complex geologic structure using shooting ray tracing by subdividing the geologic model into blocky structure having the constant velocity. With the travel time calculation, the partial derivatives of travel time can be calculated efficiently without difficulties. Since the current ray tracing technique has a limitation to calculate the travel times for extremely complex geologic model, our aim in the future is to develop the powerful ray tracer using the finite element technique. After applying the pseudo waveform inversion to the seismic data of Korea offshore, we can obtain the subsurface velocity model and use the result in bring up the quality of the seismic data processing. If conventional seismic data processing and seismic interpretation are linked with this inversion technique, the high quality of seismic data processing can be expected to image the structure of the subsurface. Future research area is to develop the powerful ray tracer of ray tracing which can calculate the travel times for the extremely complex geologic model. (author). 39 refs., 32 figs., 2 tabs.
Characteristics of Arctic low-tropospheric humidity inversions based on radio soundings
Directory of Open Access Journals (Sweden)
T. Nygård
2013-08-01
Full Text Available Humidity inversions have a high potential importance in the Arctic climate system, especially for cloud formation and maintenance, in wide spatial and temporal scales. Here we investigate the climatology and characteristics of humidity inversions in the Arctic, including their spatial and temporal variability, sensitivity to the methodology applied and differences from the Antarctic humidity inversions. The study is based on data of the Integrated Global Radiosonde Archive (IGRA from 36 Arctic stations between the years 2000–2009. The results indicate that humidity inversions are nearly all the time present on multiple levels in the Arctic atmosphere. Almost half (48% of the humidity inversions were found at least partly within the same vertical layer with temperature inversions, whereas the existence of the other half may, at least partly, be linked to uneven vertical distribution of horizontal moisture transport. A high atmospheric surface pressure was found to increase the humidity inversion occurrence, whereas relationships between humidity inversion properties and cloud cover were generally relatively weak, although for some inversion properties systematic. The statistics of Arctic humidity inversion properties, especially inversion strength, depth and base height, proved to be very sensitive to the instruments and methodology applied. For example, the median strength of the strongest inversion in a profile was twice as large as the median of all Arctic inversions. The most striking difference between the Arctic and Antarctic humidity inversions was the much larger range of the seasonal cycle of inversion properties in the Arctic. Our results offer a baseline for validation of weather prediction and climate models and also encourage for further studies on humidity inversions due to the vital, but so far poorly understood, role of humidity inversions in Arctic cloud processes.
Martinez-Camara, Marta; Dokmanic, Ivan; Ranieri, Juri; Scheibler, Robin; Vetterli, Martin; STOHL Andreas
2013-01-01
Knowing what amount of radioactive material was released from Fukushima in March 2011 and at what time instants is crucial to assess the risk, the pollution, and to understand the scope of the consequences. Moreover, it could be used in forward simulations to obtain accurate maps of deposition. But these data are often not publicly available. We propose to estimate the emission waveforms by solving an inverse problem. Previous approaches have relied on a detailed expert guess of how the relea...
Inverse Degree and Connectivity
Institute of Scientific and Technical Information of China (English)
MA Xiao-ling; TIAN Ying-zhi
2013-01-01
Let G be a connected graph with vertex set V(G),order n =丨V(G)丨,minimum degree δ(G) and connectivity κ(G).The graph G is called maximally connected if κ(G) =δ(G).Define the inverse degree of G with no isolated vertices as R(G) =Σv∈V(G)1/d(v),where d(v) denotes the degree of the vertex v.We show that G is maximally connected if R(G) ＜ 1 + 2/δ + n-2δ+1/(n-1)(n-3).
Inversion assuming weak scattering
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus
2013-01-01
The study of weak scattering from inhomogeneous media or interface roughness has long been of interest in sonar applications. In an acoustic backscattering model of a stationary field of volume inhomogeneities, a stochastic description of the field is more useful than a deterministic description...... due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...
Inverse modeling of European CH4 emissions 2001–2006
Bergamaschi, P.; Krol, M.C.; Meirink, J.F.; Dentener, F.; Segers, A.; Aardenne, van J.A.; Monni, S.; Vermeulen, A.T.
2010-01-01
European CH4 emissions are estimated for the period 2001–2006 using a fourdimensional variational (4DVAR) inverse modeling system, based on the atmospheric zoom model TM5. Continuous observations are used from various European monitoring stations, complemented by European and global flask samples fr
Inversion of Zeeman polarization for solar magnetic field diagnostics
Derouich, M
2016-01-01
The topic of magnetic field diagnostics with the Zeeman effect is currently vividly discussed. There are some testable inversion codes available to the spectropolarimetry community and their application allowed for a better understanding of the magnetism of the solar atmosphere. In this context, we propose an inversion technique associated with a new numerical code. The inversion procedure is promising and particularly successful for interpreting the Stokes profiles in quick and sufficiently precise way. In our inversion, we fit a part of each Stokes profile around a target wavelength, and then determine the magnetic field as a function of the wavelength which is equivalent to get the magnetic field as a function of the height of line formation. To test the performance of the new numerical code, we employed "hare and hound" approach by comparing an exact solution (called input) with the solution obtained by the code (called output). The precision of the code is also checked by comparing our results to the one...
Ahriche, Amine; Nasri, Salah
2016-01-01
We present a minimal model that simultaneously accounts for neutrino masses and the origin of dark matter (DM) and where the electroweak phase transition is strong enough to allow for electroweak baryogenesis. The Standard Model is enlarged with a Majorana fermion, three generations of chiral fermion pairs, and a single complex scalar that plays a central role in DM production and phenomenology, neutrino masses, and the strength of the phase transition. All the new fields are singlets under the SM gauge group. Neutrino masses are generated via a new variant of radiative inverse seesaw where the required small mass term is generated via loops involving DM and no large hierarchy is assumed among the mass scales. The model offers all the advantage of low-scale neutrino mass models as well as a viable dark matter candidate that is testable with direct detection experiments.
DEFF Research Database (Denmark)
Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr
2015-01-01
The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...... localities of tensions between matter and the immaterial, the practical and the ideal, and subject and object. In the colloquial language there can, moreover, often seem to be something authentic or genuine about atmosphere, juxtaposing it to staging, which is implied to be something simulated or artificial....... This introduction seeks to outline how a number of scholars have addressed the relationship between staged atmospheres and experience, and thus highlight both the philosophical, social and political aspects of atmospheres...
Approximation Theorems of Moore-Penrose Inverse by Outer Inverses
Institute of Scientific and Technical Information of China (English)
Qianglian Huang; Zheng Fang
2006-01-01
Let X and Y be Hilbert spaces and T a bounded linear operator from X into Y with a separable range. In this note, we prove, without assuming the closeness of the range of T, that the Moore-Penrose inverse T+ of T can be approximated by its bounded outer inverses T#n with finite ranks.
Seager, S
2010-01-01
At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...
Inversion exercises inspired by mechanics
Groetsch, C. W.
2016-02-01
An elementary calculus transform, inspired by the centroid and gyration radius, is introduced as a prelude to the study of more advanced transforms. Analysis of the transform, including its inversion, makes use of several key concepts from basic calculus and exercises in the application and inversion of the transform provide practice in the use of technology in calculus.
Takaaki Kajita
1994-01-01
Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses...
DEFF Research Database (Denmark)
Kinch, Sofie
2011-01-01
This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...... experience in space, presented as middle ground experience. In the field of HCI, middle ground experiences complete the unarticulated spectrum between designing for foreground of attention or background awareness. When “Articulating Atmospheres through Middle Ground Experiences in Interaction Design...
Inverse problem in hydrogeology
Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.
2005-03-01
The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. L'état du problème inverse des eaux souterraines est synthétisé. L'accent est placé sur la caractérisation de l'aquifère, où les modélisateurs doivent jouer avec l'incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d'échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d'état (charges hydrauliques, concentrations) des propriétés de l'aquifère. A cause de ces difficultés, le calibrage ne peut êtreséparé du processus de modélisation, comme c'est le
Zhang, D. L.
2013-01-01
To increase the illumination of the subsurface and to eliminate the dependency of FWI on the source wavelet, we propose multiples waveform inversion (MWI) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. These virtual sources are used to numerically generate downgoing wavefields that are correlated with the backprojected surface-related multiples to give the migration image. Since the recorded data are treated as the virtual sources, knowledge of the source wavelet is not required, and the subsurface illumination is greatly enhanced because the entire free surface acts as an extended source compared to the radiation pattern of a traditional point source. Numerical tests on the Marmousi2 model show that the convergence rate and the spatial resolution of MWI is, respectively, faster and more accurate then FWI. The potential pitfall with this method is that the multiples undergo more than one roundtrip to the surface, which increases attenuation and reduces spatial resolution. This can lead to less resolved tomograms compared to conventional FWI. The possible solution is to combine both FWI and MWI in inverting for the subsurface velocity distribution.
Directory of Open Access Journals (Sweden)
Takaaki Kajita
2012-01-01
Full Text Available Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.
Chalmers, J Alan
1957-01-01
Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d
Multiscale Modelling and Inverse Problems
Nolen, J; Stuart, A M
2010-01-01
The need to blend observational data and mathematical models arises in many applications and leads naturally to inverse problems. Parameters appearing in the model, such as constitutive tensors, initial conditions, boundary conditions, and forcing can be estimated on the basis of observed data. The resulting inverse problems are often ill-posed and some form of regularization is required. These notes discuss parameter estimation in situations where the unknown parameters vary across multiple scales. We illustrate the main ideas using a simple model for groundwater flow. We will highlight various approaches to regularization for inverse problems, including Tikhonov and Bayesian methods. We illustrate three ideas that arise when considering inverse problems in the multiscale context. The first idea is that the choice of space or set in which to seek the solution to the inverse problem is intimately related to whether a homogenized or full multiscale solution is required. This is a choice of regularization. The ...
Directory of Open Access Journals (Sweden)
Calvez V.
2010-12-01
Full Text Available We consider the radiative transfer equation (RTE with reflection in a three-dimensional domain, infinite in two dimensions, and prove an existence result. Then, we study the inverse problem of retrieving the optical parameters from boundary measurements, with help of existing results by Choulli and Stefanov. This theoretical analysis is the framework of an attempt to model the color of the skin. For this purpose, a code has been developed to solve the RTE and to study the sensitivity of the measurements made by biophysicists with respect to the physiological parameters responsible for the optical properties of this complex, multi-layered material. On étudie l’équation du transfert radiatif (ETR dans un domaine tridimensionnel infini dans deux directions, et on prouve un résultat d’existence. On s’intéresse ensuite à la reconstruction des paramètres optiques à partir de mesures faites au bord, en s’appuyant sur des résultats de Choulli et Stefanov. Cette analyse sert de cadre théorique à un travail de modélisation de la couleur de la peau. Dans cette perspective, un code à été développé pour résoudre l’ETR et étudier la sensibilité des mesures effectuées par les biophysiciens par rapport aux paramètres physiologiques tenus pour responsables des propriétés optiques de ce complexe matériau multicouche.
Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling
Deng, F.; Chen, J.; Peters, W.; Krol, M.
2008-01-01
Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continent
Multidimensional NMR Inversion without Kronecker Products: Multilinear Inversion
Medellín, David; Torres-Verdín, Carlos
2016-01-01
Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required...
Inverse Doppler Effects in Flute
Zhao, Xiao P; Liu, Song; Shen, Fang L; Li, Lin L; Luo, Chun R
2015-01-01
Here we report the observation of the inverse Doppler effects in a flute. It is experimentally verified that, when there is a relative movement between the source and the observer, the inverse Doppler effect could be detected for all seven pitches of a musical scale produced by a flute. Higher tone is associated with a greater shift in frequency. The effect of the inverse frequency shift may provide new insights into why the flute, with its euphonious tone, has been popular for thousands of years in Asia and Europe.
Givental graphs and inversion symmetry
Dunin-Barkowski, P; Spitz, L
2012-01-01
Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in terms of Feynman graphs and then we obtain an interpretation of the inversion symmetry in terms of the action of the Givental group. We also consider the implication of this interpretation of the inversion symmetry for the Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.
Atmospheric echo sounding. Citations from the NTIS data base
Hundemann, A. S.
1980-09-01
s pertaining to equipment, design, and use of acoustic sounders are presented. Use of the sounders to sense the atmosphere for weather changes, temperature inversions, aircraft wakes, ionospheric properties, and other characteristics is discussed.
Technical note: an interannual inversion method forcontinuous CO2 data
Directory of Open Access Journals (Sweden)
R. M. Law
2004-01-01
Full Text Available A sequential synthesis inversion method is described to estimate CO2 sources from continuous atmospheric data. The sequential method makes the problem computationally feasible. The method is assessed using four-hourly synthetic concentration data generated from known sources. Multi-year mean sources and seasonal cycles are estimated with comparable quality as those from a traditional inversion of monthly mean data. Interannual variations in the estimated sources are closer to those of the known sources using the four-hourly data rather than monthly data. The computational cost of the basis function simulations can be reduced by generating responses that are only six months long. This does not significantly degrade the inversion results compared to using responses that are 12 months in length.
DEFF Research Database (Denmark)
Wieczorek, Izabela
2016-01-01
experience and, consequently, to the conceptual and methodological shifts in the production of space, and hence in the way we think about materiality. In this context, architectural space is understood as a contingent construction – a space of engagement that appears to us as a result of continuous...... characteristics of atmosphere as a spatial phenomenon, the aim of this text is to illustrate these associations and draw out design protocols, focusing on ways in which atmosphere can be conditioned architecturally. In other words, the objective is to trace the conceptual contours of ‘atmospheric materiality’....
Testing earthquake source inversion methodologies
Page, Morgan T.
2011-01-01
Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.
Parameter estimation and inverse problems
Aster, Richard C; Thurber, Clifford H
2005-01-01
Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...
Statistical perspectives on inverse problems
DEFF Research Database (Denmark)
Andersen, Kim Emil
of the interior of an object from electrical boundary measurements. One part of this thesis concerns statistical approaches for solving, possibly non-linear, inverse problems. Thus inverse problems are recasted in a form suitable for statistical inference. In particular, a Bayesian approach for regularisation...... is obtained by assuming that the a priori beliefs about the solution before having observed any data can be described by a prior distribution. The solution to the statistical inverse problem is then given by the posterior distribution obtained by Bayes' formula. Hence the solution of an ill-posed inverse...... problem is given in terms of probability distributions. Posterior inference is obtained by Markov chain Monte Carlo methods and new, powerful simulation techniques based on e.g. coupled Markov chains and simulated tempering is developed to improve the computational efficiency of the overall simulation...
Inversion-symmetric topological insulators
Hughes, Taylor L.; Prodan, Emil; Bernevig, B. Andrei
2011-06-01
We analyze translationally invariant insulators with inversion symmetry that fall outside the current established classification of topological insulators. These insulators exhibit no edge or surface modes in the energy spectrum and hence they are not edge metals when the Fermi level is in the bulk gap. However, they do exhibit protected modes in the entanglement spectrum localized on the cut between two entangled regions. Their entanglement entropy cannot be made to vanish adiabatically, and hence the insulators can be called topological. There is a direct connection between the inversion eigenvalues of the Hamiltonian band structure and the midgap states in the entanglement spectrum. The classification of protected entanglement levels is given by an integer N, which is the difference between the negative inversion eigenvalues at inversion symmetric points in the Brillouin zone, taken in sets of 2. When the Hamiltonian describes a Chern insulator or a nontrivial time-reversal invariant topological insulator, the entirety of the entanglement spectrum exhibits spectral flow. If the Chern number is zero for the former, or time reversal is broken in the latter, the entanglement spectrum does not have spectral flow, but, depending on the inversion eigenvalues, can still exhibit protected midgap bands similar to impurity bands in normal semiconductors. Although spectral flow is broken (implying the absence of real edge or surface modes in the original Hamiltonian), the midgap entanglement bands cannot be adiabatically removed, and the insulator is “topological.” We analyze the linear response of these insulators and provide proofs and examples of when the inversion eigenvalues determine a nontrivial charge polarization, a quantum Hall effect, an anisotropic three-dimensional (3D) quantum Hall effect, or a magnetoelectric polarization. In one dimension, we establish a link between the product of the inversion eigenvalues of all occupied bands at all inversion
The mesospheric inversion layer and sprites
Fadnavis, S; Singh, R P
2009-01-01
The vertical structure of temperature observed by SABER (Sounding of Atmosphere using Broadband Emission Radiometry) aboard TIMED (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics) and sprites observations made during the Eurosprite 2003 to 2007 observational campaign were analyzed. Sprite observations were made at two locations in France, namely Puy de Dome in the French Massif Central and at the Pic du Midi in the French Pyrenees. It is observed that the vertical structure of temperature shows evidence for a Mesospheric Inversion Layer (MIL) on those days on which sprites were observed. A few events are also reported in which sprites were not recorded, although there is evidence of a MIL in the vertical structure of the temperature. It is proposed that breaking gravity waves produced by convective thunderstorms facilitate the production of (a) sprites by modulating the neutral air-density and (b) MILs via the deposition of energy. The same proposition has been used to explain observations of lig...
Thermal measurements and inverse techniques
Orlande, Helcio RB; Maillet, Denis; Cotta, Renato M
2011-01-01
With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phe
-Colour Self-Inverse Compositions
Indian Academy of Sciences (India)
Geetika Narang; A K Agarwal
2006-08-01
MacMahon’s definition of self-inverse composition is extended to -colour self-inverse composition. This introduces four new sequences which satisfy the same recurrence relation with different initial conditions like the famous Fibonacci and Lucas sequences. For these new sequences explicit formulas, recurrence relations, generating functions and a summation formula are obtained. Two new binomial identities with combinatorial meaning are also given.
Constrained Inversion of Enceladus Interaction Observations
Herbert, Floyd; Khurana, K. K.
2007-10-01
Many detailed and sophisticated ab initio calculations of the electrodynamic interaction of Enceladus' plume with Saturn's corotating magnetospheric plasma flow have been computed. So far, however, all such calculations have been forward models, that assume the properties of the plume and compute perturbations to the magnetic (and in some cases, flow velocity) field. As a complement to the forward calculations, work reported here explores the inverse approach, of using simplified physical models of the interaction for computationally inverting the observed magnetic field perturbations of the interaction, in order to determine the cross-B-field conductivity distribution near Enceladus, and from that, the neutral gas distribution. Direct inversion of magnetic field observations to current systems is, of course, impossible, but adding the additional constraint of the interaction physics greatly reduces the non-uniqueness of the computed result. This approach was successfully used by Herbert (JGR 90:8241, 1985) to constrain the atmospheric distribution on Io and the Io torus mass density at the time of the Voyager encounter. Work so far has derived the expected result that there is a cone-shaped region of enhanced cross-field conductivity south of Enceladus, through which currents are driven by the motional electric field. That is, near Enceladus' south pole the cross-field currents are localized, but more widely spread at greater distance. This cross-field conductivity is presumably both pickup and collisional (Pedersen and Hall). Due to enforcement of current conservation, Alfven-wing-like currents north of the main part of the interaction region seem to close partly around Enceladus (assumed insulating) and also to continue northward with attenuated intensity, as though there were a tenuous global exosphere on Enceladus providing additional cross-field conductivity. FH thanks the NASA Outer Planets Research, Planetary Atmospheres, and Geospace Science Programs for
Surface layer temperature inversion in the Bay of Bengal
Thadathil, Pankajakshan; Gopalakrishna, V. V.; Muraleedharan, P. M.; Reddy, G. V.; Araligidad, Nilesh; Shenoy, Shrikant
2002-10-01
Surface layer temperature inversion occurring in the Bay of Bengal has been addressed. Hydrographic data archived in the Indian Oceanographic Data Center are used to understand various aspects of the temperature inversion of surface layer in the Bay of Bengal, such as occurrence time, characteristics, stability, inter-annual variability and generating mechanisms. Spatially organized temperature inversion occurs in the coastal waters of the western and northeastern Bay during winter (November-February). Although the inversion in the northeastern Bay is sustained until February (with remnants seen even in March), in the western Bay it becomes less organized in January and almost disappears by February. Inversion is confined to the fresh water induced seasonal halocline of the surface layer. Inversions of large temperature difference (of the order of 1.6-2.4°C) and thin layer thickness (10-20 m) are located adjacent to major fresh water inputs from the Ganges, Brahmaputra, Irrawaddy, Krishna and Godavari rivers. The inversion is stable with a mean stability of 3600×10 -8 m -1. Inter-annual variability of the inversion is significantly high and it is caused by the inter-annual variability of fresh water flux and surface cooling in the northern Bay. Fresh water flux leads the occurrence process in association with surface heat flux and advection. The leading role of fresh water flux is understood from the observation that the two occurrence regions of inversion (the western and northeastern Bay) have proximity to the two low salinity (with values about 28-29‰) zones. In the western Bay, the East India Coastal Current brings less saline and cold water from the head of the Bay to the south-west Bay, where it advects over warm, saline water, promoting temperature inversion in this region in association with the surface heat loss. For inversion occurring in the northeastern Bay (where the surface water gains heat from atmosphere), surface advection of the less saline
DEFF Research Database (Denmark)
Wieczorek, Izabela
2015-01-01
, the conceptual foundations and protocols for the production of atmosphere in architecture might be found beneath the surface of contemporary debates. In this context, the notion of atmospheric dispositif – illustrated through an oeuvre of the German architect Werner Ruhnau and its theoretical and historical...... as a spatial phenomenon, exploring a multiplicity of conditions that constitute their resonant origins – i.e. the production sites from and within they have emerged. The intention is also to argue that despite the fact that atmosphere as an aesthetic category has crystallised over the last few decades...... contextualisation – provides a platform for revealing productive entanglements between heterogeneous elements, disciplines and processes. It also allows rendering atmosphere as a site of co-production open to contingencies and affective interplay on multiples levels: at the moment of its conceptualisation...
Daniels, G. E.
1973-01-01
The earth's atmosphere is made up of a number of gases in different relative amounts. Near sea level and up to about 90 km, the amount of these atmospheric gases in clean, relatively dry air is practically constant. Four of these gases, nitrogen, oxygen, argon, and carbon dioxide, make up 99.99 percent by volume of the atmosphere. Two gases, ozone and water vapor, change in relative amounts, but the total amount of these two is very small compared to the amount of the other gases. The atmospheric composition shown in a table can be considered valid up to 90 km geometric altitude. Above 90 km, mainly because of molecular dissociation and diffusive separation, the composition changes.
Chromatid Painting for Chromosomal Inversion Detection Project
National Aeronautics and Space Administration — We propose a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and inversions) have profound genetic...
Fazliev, A.
2009-04-01
An idea to develop procedure knowledge domain model in a form of task net in information system has been proposed. Tasks solutions are interpreted as data. Solution properties are regarded as metadata. Water spectroscopy is a knowledge domain in which a good approximation for task net would be a pair of chains of direct and inverse tasks. In such an approximation data schemes are the basis of knowledge domain conceptualization. Data scheme represents the next level of water spectroscopy representation granulation. The work describes metadata and data schemes for eight tasks of molecular spectroscopy. The importance of results of water spectroscopy is great. Precise and valid information on water is necessary in many applied knowledge domains such as atmospheric optics, astronomy, atmospheric radiation and so on. The report describes metadata and data layer in W@DIS information system oriented on information representation. An important feature of the ICS is its spectral data validity check realized in the explicit form. The main sets of molecules spectral characteristics available to consumers have been formed in the last forty years. These are such data banks as HITRAN1, GEISA2 and others. Data on spectral line parameters and interfaces for their operation appeared for the first time in the Internet in "Atmospheric gases spectroscopy"3 information system. In the above works this data representation in a form of files and interfaces for their operation hasn't solve the main problem (in our opinion) of spectral data in the information systems. This is the problem of creation of accessible applications developed to check the validity of data gathered in an information system. One of the components necessary for automatic data validity check is the presence of computer processable initial results of measurements and calculations. Bibliographic references that can simplify the solution of this task are present in the explicit form in data files presented by Hitran and
Multidimensional NMR inversion without Kronecker products: Multilinear inversion
Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos
2016-08-01
Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.
Massey, Harrie; Potter, A. E.
1961-01-01
The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.
Iribarne, J V
1973-01-01
The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...
Subadditive functions and their (pseudo-)inverses
DEFF Research Database (Denmark)
Østerdal, Lars Peter
2006-01-01
The paper considers non-negative increasing functions on intervals with left endpoint closed at zero and investigates the duality between subadditivity and superadditivity via the inverse function and pseudo-inverses......The paper considers non-negative increasing functions on intervals with left endpoint closed at zero and investigates the duality between subadditivity and superadditivity via the inverse function and pseudo-inverses...
Neural-estimator for the surface emission rate of atmospheric gases
Paes, F F
2009-01-01
The emission rate of minority atmospheric gases is inferred by a new approach based on neural networks. The neural network applied is the multi-layer perceptron with backpropagation algorithm for learning. The identification of these surface fluxes is an inverse problem. A comparison between the new neural-inversion and regularized inverse solution id performed. The results obtained from the neural networks are significantly better. In addition, the inversion with the neural netwroks is fster than regularized approaches, after training.
Optimization and geophysical inverse problems
Energy Technology Data Exchange (ETDEWEB)
Barhen, J.; Berryman, J.G.; Borcea, L.; Dennis, J.; de Groot-Hedlin, C.; Gilbert, F.; Gill, P.; Heinkenschloss, M.; Johnson, L.; McEvilly, T.; More, J.; Newman, G.; Oldenburg, D.; Parker, P.; Porto, B.; Sen, M.; Torczon, V.; Vasco, D.; Woodward, N.B.
2000-10-01
A fundamental part of geophysics is to make inferences about the interior of the earth on the basis of data collected at or near the surface of the earth. In almost all cases these measured data are only indirectly related to the properties of the earth that are of interest, so an inverse problem must be solved in order to obtain estimates of the physical properties within the earth. In February of 1999 the U.S. Department of Energy sponsored a workshop that was intended to examine the methods currently being used to solve geophysical inverse problems and to consider what new approaches should be explored in the future. The interdisciplinary area between inverse problems in geophysics and optimization methods in mathematics was specifically targeted as one where an interchange of ideas was likely to be fruitful. Thus about half of the participants were actively involved in solving geophysical inverse problems and about half were actively involved in research on general optimization methods. This report presents some of the topics that were explored at the workshop and the conclusions that were reached. In general, the objective of a geophysical inverse problem is to find an earth model, described by a set of physical parameters, that is consistent with the observational data. It is usually assumed that the forward problem, that of calculating simulated data for an earth model, is well enough understood so that reasonably accurate synthetic data can be generated for an arbitrary model. The inverse problem is then posed as an optimization problem, where the function to be optimized is variously called the objective function, misfit function, or fitness function. The objective function is typically some measure of the difference between observational data and synthetic data calculated for a trial model. However, because of incomplete and inaccurate data, the objective function often incorporates some additional form of regularization, such as a measure of smoothness
Exploring the Hamiltonian inversion landscape.
Donovan, Ashley; Rabitz, Herschel
2014-08-07
The identification of quantum system Hamiltonians through the use of experimental data remains an important research goal. Seeking a Hamiltonian that is consistent with experimental measurements constitutes an excursion over a Hamiltonian inversion landscape, which is the quality of reproducing the data as a function of the Hamiltonian parameters. Recent theoretical work showed that with sufficient experimental data there should be local convexity about the true Hamiltonian on the landscape. The present paper builds on this result and performs simulations to test whether such convexity is observed. A gradient-based Hamiltonian search algorithm is incorporated into an inversion routine as a means to explore the local inversion landscape. The simulations consider idealized noise-free as well as noise-ridden experimental data. The results suggest that a sizable convex domain exists about the true Hamiltonian, even with a modest amount of experimental data and in the presence of a reasonable level of noise.
Inverse methods for radiation transport
Bledsoe, Keith C.
Implicit optimization methods for solving the inverse transport problems of interface location identification, source isotope weight fraction identification, shield material identification, and material mass density identification are explored. Among these optimization methods are the Schwinger inverse method, Levenberg-Marquardt method, and evolutionary algorithms. Inverse problems are studied in one-dimensional spherical and two-dimensional cylindrical geometries. The scalar fluxes of unscattered gamma-ray lines, leakages of neutron-induced gamma-ray lines, and/or neutron multiplication in the system are assumed to be measured. Each optimization method is studied on numerical test problems in which the measured data is simulated using the same deterministic transport code used in the optimization process (assuming perfectly consistent measurements) and using a Monte Carlo code (assuming less-consistent, more realistic measurements). The Schwinger inverse method and Levenberg-Marquardt methods are found to be successful for problems with relatively few (i.e. 4 or fewer) unknown parameters, with the former being the best for unknown isotope problems and the latter being more adept at interface location, unknown material mass density, and mixed parameter problems. A study of a variety of evolutionary algorithms indicates that the differential evolution method is the best for inverse transport problems, and outperforms the Levenberg-Marquardt method on problems with large numbers of unknowns. An algorithm created by combining different variants of the differential evolution method is shown to be highly successful on spherical problems with unscattered gamma-ray lines, while a basic differential evolution approach is more useful for problems with scattering and in cylindrical geometries. A hybrid differential evolution/Levenberg-Marquardt algorithm also was found to show promise for fast and robust solution of inverse problems.
Darwin's "strange inversion of reasoning".
Dennett, Daniel
2009-06-16
Darwin's theory of evolution by natural selection unifies the world of physics with the world of meaning and purpose by proposing a deeply counterintuitive "inversion of reasoning" (according to a 19th century critic): "to make a perfect and beautiful machine, it is not requisite to know how to make it" [MacKenzie RB (1868) (Nisbet & Co., London)]. Turing proposed a similar inversion: to be a perfect and beautiful computing machine, it is not requisite to know what arithmetic is. Together, these ideas help to explain how we human intelligences came to be able to discern the reasons for all of the adaptations of life, including our own.
-Dimensional Fractional Lagrange's Inversion Theorem
Directory of Open Access Journals (Sweden)
F. A. Abd El-Salam
2013-01-01
Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.
Thermoelectric properties of inverse opals
Mahan, G. D.; Poilvert, N.; Crespi, V. H.
2016-02-01
Rayleigh's method [Philos. Mag. Ser. 5 34, 481 (1892)] is used to solve for the classical thermoelectric equations in inverse opals. His theory predicts that in an inverse opal, with periodic holes, the Seebeck coefficient and the figure of merit are identical to that of the bulk material. We also provide a major revision to Rayleigh's method, in using the electrochemical potential as an important variable, instead of the electrostatic potential. We also show that in some cases, the thermal boundary resistance is important in the effective thermal conductivity.
Population inversion by chirped pulses
Energy Technology Data Exchange (ETDEWEB)
Lu Tianshi [Department of Mathematics and Statistics, Wichita State University, Wichita, Kansas 67260-0033 (United States)
2011-09-15
In this paper, we analyze the condition for complete population inversion by a chirped pulse over a finite duration. The nonadiabatic transition probability is mapped in the two-dimensional parameter space of coupling strength and detuning amplitude. Asymptotic forms of the probability are derived by the interference of nonadiabatic transitions for sinusoidal and triangular pulses. The qualitative difference between the maps for the two types of pulses is accounted for. The map is used for the design of stable inversion pulses under specific accuracy thresholds.
An analysis on the inversion of polynomials
M. F. González-Cardel; R. Díaz-Uribe
2006-01-01
In this work the application and the intervals of validity of an inverse polynomial, according to the method proposed by Arfken [1] for the inversion of series, is analyzed. It is shown that, for the inverse polynomial there exists a restricted domain whose longitude depends on the magnitude of the acceptable error when the inverse polynomial is used to approximate the inverse function of the original polynomial. A method for calculating the error of the approximation and its use in determini...
Nauenberg, Michael
2016-01-01
Calculations of atmospheric refraction are generally based on a simplified model of atmospheric density in the troposphere which assumes that the temperature decreases at a constant lapse rate from sea level up to a height equal to eleven km, and that afterwards it remains constant. In this model, the temperature divided by the lapse rate determines the length scale in the calculations for altitudes less than this height. But daily balloon measurements across the U.S.A. reveal that in some cases the air temperature actually increases from sea level up to a height of about one km, and only after reaching a plateau, it decreases at an approximately constant lapse rate. Moreover, in three examples considered here, the temperature does not remain constant at eleven km , but continues to decreases to a minimum at about sixteen kilometers , and then increases at higher altitudes at a lower rate. Calculations of atmospheric refraction based on this atmospheric data is compared with the results of simplified models.
Lü, Li-hui; Liu, Wen-qing; Zhang, Tian-shu; Lu, Yi-huai; Dong, Yun-sheng; Chen, Zhen-yi; Fan, Guang-qiang; Qi, Shao-shuai
2015-07-01
Atmospheric aerosols have important impacts on human health, the environment and the climate system. Micro Pulse Lidar (MPL) is a new effective tool for detecting atmosphere aerosol horizontal distribution. And the extinction coefficient inversion and error analysis are important aspects of data processing. In order to detect the horizontal distribution of atmospheric aerosol near the ground, slope and Fernald algorithms were both used to invert horizontal MPL data and then the results were compared. The error analysis showed that the error of the slope algorithm and Fernald algorithm were mainly from theoretical model and some assumptions respectively. Though there still some problems exist in those two horizontal extinction coefficient inversions, they can present the spatial and temporal distribution of aerosol particles accurately, and the correlations with the forward-scattering visibility sensor are both high with the value of 95%. Furthermore relatively speaking, Fernald algorithm is more suitable for the inversion of horizontal extinction coefficient.
Inversion of the perturbation series
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima, Colima (Mexico); Fernandez, Francisco M [INIFTA (Conicet, UNLP), Division Quimica Teorica, Diag 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)
2008-01-18
We investigate the inversion of the perturbation series and its resummation, and prove that it is related to a recently developed parametric perturbation theory. Results for some illustrative examples show that in some cases series reversion may improve the accuracy of the results.
Inverse Expander Mixing for Hypergraphs
Cohen, Emma; Mubayi, Dhruv; Ralli, Peter; Tetali, Prasad
2014-01-01
We formulate and prove inverse mixing lemmas in the settings of simplicial complexes and k-uniform hypergraphs. In the hypergraph setting, we extend results of Bilu and Linial for graphs. In the simplicial complex setting, our results answer a question of Parzanchevski et al.
Wave-equation dispersion inversion
Li, Jing
2016-12-08
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Inverse carbon dioxide flux estimates for the Netherlands
Meesters, A. G. C. A.; Tolk, L. F.; Peters, W.; Hutjes, R. W. A.; Vellinga, O. S.; Elbers, J. A.; Vermeulen, A. T.; van der Laan, S.; Neubert, R. E. M.; Meijer, H. A. J.; Dolman, A. J.
2012-10-01
CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from concentration measurements at four towers, using an inverse model. The results are compared to direct CO2flux measurements by aircraft, for 6 flight tracks over the Netherlands, flown multiple times in each season. We applied the Regional Atmospheric Mesoscale Modeling system (RAMS) coupled to a simple carbon flux scheme (including fossil fuel), which was run at 10 km resolution, and inverted with an Ensemble Kalman Filter. The domain had 6 eco-regions, and inversions were performed for the four seasons separately. Inversion methods with pixel-dependent and -independent parameters for each eco-region were compared. The two inversion methods, in general, yield comparable flux averages for each eco-region and season, whereas the difference from the prior flux may be large. Posterior fluxes co-sampled along the aircraft flight tracks are usually much closer to the observations than the priors, with a comparable performance for both inversion methods, and with best performance for summer and autumn. The inversions showed more negative CO2 fluxes than the priors, though the latter are obtained from a biosphere model optimized using the Fluxnet database, containing observations from more than 200 locations worldwide. The two different crop ecotypes showed very different CO2uptakes, which was unknown from the priors. The annual-average uptake is practically zero for the grassland class and for one of the cropland classes, whereas the other cropland class had a large net uptake, possibly because of the abundance of maize there.
Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling
Deng, F.; Chen, J.; Peters, W.; Krol, M.
2008-12-01
Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).
Gaisser, Thomas K
2016-01-01
In view of the observation by IceCube of high-energy astrophysical neutrinos, it is important to quantify the uncertainty in the background of atmospheric neutrinos. There are two sources of uncertainty, the imperfect knowledge of the spectrum and composition of the primary cosmic rays that produce the neutrinos and the limited understanding of hadron production, including charm, at high energy. This paper is an overview of both aspects.
The global atmospheric electrical circuit and climate
Harrison, R G
2004-01-01
Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultrafine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution ca...
Ultrahigh-intensity inverse bremsstrahlung
Kostyukov, I. Yu.; Rax, J.-M.
1999-01-01
We study inverse bremsstrahlung in the ultrahigh intensity relativistic regime. The fully relativistic ultrahigh intensity absorption (emission) coefficient is derived for an arbitrary scattering potential and small-angle scattering. We find that in the Coulomb field case this absorption (emission) coefficient can be calculated as a function of the quiver energy, drift momentum, and impact parameter in two complementary regimes: (i) for remote collisions when the impact parameter is larger than the amplitude of the quiver motion, and (ii) for instantaneous collisions when the scattering time is shorter than the period of the wave. Both circular and linear polarizations are considered, and this study reveals that in this relativistic regime inverse bremsstrahlung absorption can be viewed as a harmonic Compton resonance heating of the laser-driven electron by the virtual photon of the ion Coulomb field. The relativistic modification of Marcuse's effect [Bell Syst. Tech. J. 41, 1557 (1962)] are also discussed, and relations with previous nonrelativistic results are elucidated.
Broadband synthetic aperture geoacoustic inversion.
Tan, Bien Aik; Gerstoft, Peter; Yardim, Caglar; Hodgkiss, William S
2013-07-01
A typical geoacoustic inversion procedure involves powerful source transmissions received on a large-aperture receiver array. A more practical approach is to use a single moving source and/or receiver in a low signal to noise ratio (SNR) setting. This paper uses single-receiver, broadband, frequency coherent matched-field inversion and exploits coherently repeated transmissions to improve estimation of the geoacoustic parameters. The long observation time creates a synthetic aperture due to relative source-receiver motion. This approach is illustrated by studying the transmission of multiple linear frequency modulated (LFM) pulses which results in a multi-tonal comb spectrum that is Doppler sensitive. To correlate well with the measured field across a receiver trajectory and to incorporate transmission from a source trajectory, waveguide Doppler and normal mode theory is applied. The method is demonstrated with low SNR, 100-900 Hz LFM pulse data from the Shallow Water 2006 experiment.
Inverse imbalance reconstruction in rotordynamics
Energy Technology Data Exchange (ETDEWEB)
Ramlau, R. [Austrian Academy of Sciences, Linz (Austria). Johann Radon Inst. for Computational and Applied Mathematics; Dicken, V. [MeVis GmbH, Bremen (Germany); Maass, P. [Bremen Univ. (Germany). Zentrum fuer Technomathematik; Streller, C. [Rolls-Royce Germany GmbH, Dahlewitz (Germany); Rienaecker, A. [MTU Aero Engines GmbH, Muenchen (Germany)
2006-05-15
The goal of this work is to establish and compare algorithms for inverse imbalance reconstruction in aircraft turbines. Such algorithms are based on a validated whole engine model of a turbo engine under consideration. Base on the model, the impact of an imbalance distribution on the vibration behaviour of the turbine can be described as a matrix-vector multiplication Af = g, where f is the imbalance distribution and g the vibration response. It turns out that the matrix A is very ill-conditioned. As the measured data is highly affected with noise, we have to use regularization methods in order to stabilize the inversion. Our main interest was in the use of nonlinear regularization methods, in particular nonlinear filtered singular value decomposition and conjugate gradient regularization. (orig.)
Sex Inversion Operations in China
Institute of Scientific and Technical Information of China (English)
1994-01-01
IN July 1992, Dr. Xia Zhaoji, 58, and his assistants surprised the world by successfully completing the world’s first operation to partially replant human internal reproductive organs. BBC broadcast this 8-minute news story ten days later, followed by AP, Reuters and AFP, as well as some other domestic and international media. What is a sex inversion operation? Why should people change their sex? And how is it
Action understanding as inverse planning
Baker, Christopher Lawrence; Saxe, Rebecca R.; Joshua B Tenenbaum
2009-01-01
Humans are adept at inferring the mental states underlying other agents’ actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents’ behavior based on the principle of rationality: the expectation that agents will plan approximately rationally to achieve their goals, given their beliefs about the world. ...
Gershanov, V. Yu.; Garmashov, S. I.
2015-01-01
We prove the existence of an effect inverse to the Gibbs-Thomson effect for mass transfer in systems consisting of a solid phase and the solution of the solid phase material in a certain solvent. The effect involves a change in the shape of the interface due to a variation of the equilibrium concentrations under it, which is induced by external conditions, and exists in the presence of a negative feedback for mass transfer associated with capillary effects.
DEFF Research Database (Denmark)
Højlund, Marie; Kinch, Sofie
2014-01-01
. As a response to this situation, our design artefact, the interactive furniture Kidkit, invites children to become accustomed to the alarming sounds sampled from the ward while they are waiting in the waiting room. Our design acknowledges how atmospheres emerge as temporal negotiations between the rhythms......, a familiar relationship with the alarming sounds in the ward, enabling her to focus later more on the visit with the relative. The article discusses the proposed design strategy behind this solution and the potentiality for its use in hospital environments in general....
SIAM conference on inverse problems: Geophysical applications. Final technical report
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-31
This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.
Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks
Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.
2008-05-01
The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p
Directory of Open Access Journals (Sweden)
R. Locatelli
2013-04-01
Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on the methane emissions estimated by an atmospheric inversion system. Synthetic methane observations, given by 10 different model outputs from the international TransCom-CH4 model exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the PYVAR-LMDZ-SACS inverse system to produce 10 different methane emission estimates at the global scale for the year 2005. The same set-up has been used to produce the synthetic observations and to compute flux estimates by inverse modelling, which means that only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg CH4 per year at the global scale, representing 5% of the total methane emissions. At continental and yearly scales, transport model errors have bigger impacts depending on the region, ranging from 36 Tg CH4 in north America to 7 Tg CH4 in Boreal Eurasian (from 23% to 48%. At the model gridbox scale, the spread of inverse estimates can even reach 150% of the prior flux. Thus, transport model errors contribute to significant uncertainties on the methane estimates by inverse modelling, especially when small spatial scales are invoked. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher resolution models. The analysis of methane estimated fluxes in these different configurations questions the consistency of transport model errors in current inverse systems. For future methane inversions, an improvement in the modelling of the atmospheric transport would make the estimations more accurate. Likewise, errors of the observation covariance matrix should be more consistently prescribed in future inversions in order to limit the impact of transport model errors on estimated methane
Generalized Inverses of Matrices over Rings
Institute of Scientific and Technical Information of China (English)
韩瑞珠; 陈建龙
1992-01-01
Let R be a ring,*be an involutory function of the set of all finite matrices over R. In this pa-per,necessary and sufficient conditions are given for a matrix to have a (1,3)-inverse,(1,4)-inverse,or Morre-Penrose inverse,relative to *.Some results about generalized inverses of matrices over division rings are generalized and improved.
Recombination rate predicts inversion size in Diptera.
Cáceres, M; Barbadilla, A; Ruiz, A
1999-09-01
Most species of the Drosophila genus and other Diptera are polymorphic for paracentric inversions. A common observation is that successful inversions are of intermediate size. We test here the hypothesis that the selected property is the recombination length of inversions, not their physical length. If so, physical length of successful inversions should be negatively correlated with recombination rate across species. This prediction was tested by a comprehensive statistical analysis of inversion size and recombination map length in 12 Diptera species for which appropriate data are available. We found that (1) there is a wide variation in recombination map length among species; (2) physical length of successful inversions varies greatly among species and is inversely correlated with the species recombination map length; and (3) neither the among-species variation in inversion length nor the correlation are observed in unsuccessful inversions. The clear differences between successful and unsuccessful inversions point to natural selection as the most likely explanation for our results. Presumably the selective advantage of an inversion increases with its length, but so does its detrimental effect on fertility due to double crossovers. Our analysis provides the strongest and most extensive evidence in favor of the notion that the adaptive value of inversions stems from their effect on recombination.
-Colour even Self-Inverse Compositions
Indian Academy of Sciences (India)
Yu-hong Guo
2010-02-01
An -colour even self-inverse composition is defined as an -colour self-inverse composition with even parts. In this paper, we get generating functions, explicit formulas and recurrence formulas for -colour even self-inverse compositions. One new binomial identity is also obtained.
Inverse Computation and the Universal Resolving Algorithm
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
We survey fundamental concepts for inverse programming and thenpresent the Uni v ersal Resolving Algorithm, an algorithm for inverse computation in a first-orde r , functional programming language. We discuss the key concepts of the algorithm, including a three-step approach based on the notion of a perfect process tree, and demonstrate our implementation with several examples of inverse computation.
Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets
Energy Technology Data Exchange (ETDEWEB)
Davis, K J; Richardson, S J; Miles, N L
2007-03-07
Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2-3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute
Direct inversion of circulation and mixing from tracer measurements - Part 1: Method
von Clarmann, Thomas; Grabowski, Udo
2016-11-01
From a series of zonal mean global stratospheric tracer measurements sampled in altitude vs. latitude, circulation and mixing patterns are inferred by the inverse solution of the continuity equation. As a first step, the continuity equation is written as a tendency equation, which is numerically integrated over time to predict a later atmospheric state, i.e., mixing ratio and air density. The integration is formally performed by the multiplication of the initially measured atmospheric state vector by a linear prediction operator. Further, the derivative of the predicted atmospheric state with respect to the wind vector components and mixing coefficients is used to find the most likely wind vector components and mixing coefficients which minimize the residual between the predicted atmospheric state and the later measurement of the atmospheric state. Unless multiple tracers are used, this inversion problem is under-determined, and dispersive behavior of the prediction further destabilizes the inversion. Both these problems are addressed by regularization. For this purpose, a first-order smoothness constraint has been chosen. The usefulness of this method is demonstrated by application to various tracer measurements recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). This method aims at a diagnosis of the Brewer-Dobson circulation without involving the concept of the mean age of stratospheric air, and related problems like the stratospheric tape recorder, or intrusions of mesospheric air into the stratosphere.
Reverse Universal Resolving Algorithm and inverse driving
DEFF Research Database (Denmark)
Pécseli, Thomas
2012-01-01
Inverse interpretation is a semantics based, non-standard interpretation of programs. Given a program and a value, an inverse interpreter finds all or one of the inputs, that would yield the given value as output with normal forward evaluation. The Reverse Universal Resolving Algorithm is a new...... variant of the Universal Resolving Algorithm for inverse interpretation. The new variant outperforms the original algorithm in several cases, e.g., when unpacking a list using inverse interpretation of a pack program. It uses inverse driving as its main technique, which has not been described in detail...
High resolution 3D nonlinear integrated inversion
Institute of Scientific and Technical Information of China (English)
Li Yong; Wang Xuben; Li Zhirong; Li Qiong; Li Zhengwen
2009-01-01
The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.
Spray formation: an inverse cascade
Ling, Yue; Tryggvason, Gretar; zaleski, Stephane
2015-01-01
We present a study of droplet formation in a gas-liquid mixing layer using direct numerical simulation. It is seen that two mechanisms compete to generate the droplets: fingering at the tip of the waves and hole formation in the thin liquid sheet. The three dimensional liquid structures are much shorter than the longitudinal wavelength of the instability at the first instant of their formation. As time evolves, the structures evolves to larger and larger scales, in a way similar to the inverse cascade of length scales in droplet impact and impact crown formation.
Inverse Star, Borders, and Palstars
Rampersad, Narad; Shallit, Jeffrey; Wang, Ming-Wei
2010-01-01
A language L is closed if L = L*. We consider an operation on closed languages, L-*, that is an inverse to Kleene closure. It is known that if L is closed and regular, then L-* is also regular. We show that the analogous result fails to hold for the context-free languages. Along the way we find a new relationship between the unbordered words and the prime palstars of Knuth, Morris, and Pratt. We use this relationship to enumerate the prime palstars, and we prove that neither the language of a...
The Inverse of Banded Matrices
2013-01-01
of Br,n. For these sequences to be well-defined, we assume that none of the denominators kis are zero (which is equivalent to the below-defined U...numbers of summed or subtracted terms in computing the inverse of a term of an upper (lower) triangular matrix are the generalized order-k Fibonacci ... Fibonacci numbers are the usual Fibonacci numbers, that is, f 2m = Fm (mth Fibonacci number). When also k = 3, c1 = c2 = c3 = 1, then the generalized order-3
Seismic Waveform Inversion Using the Finite-Difference Contrast Source Inversion Method
Bo Han; Qinglong He; Yong Chen; Yixin Dou
2014-01-01
This paper extends the finite-difference contrast source inversion method to reconstruct the mass density for two-dimensional elastic wave inversion in the framework of the full-waveform inversion. The contrast source inversion method is a nonlinear iterative method that alternatively reconstructs contrast sources and contrast function. One of the most outstanding advantages of this inversion method is the highly computational efficiency, since it does not need to simulate a fu...
Prinn, Ronald G.
2001-01-01
For interpreting observational data, and in particular for use in inverse methods, accurate and realistic chemical transport models are essential. Toward this end we have, in recent years, helped develop and utilize a number of three-dimensional models including the Model for Atmospheric Transport and Chemistry (MATCH).
Locatelli, R.; Bousquet, P.; Chevallier, F.; Fortems-Cheney, A.; Szopa, S.; Saunois, M.; Agusti-Panareda, A.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M.P.; Gloor, E.; Houweling, S.; Kawa, S.R.; Krol, M.C.; Patra, P.K.; Prinn, R.G.; Rigby, M.; Saito, R.; Wilson, C.
2013-01-01
A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, ar
Spectral Inversion of Multi-Line Full-Disk Observations of Quiet Sun Magnetic Fields
Balthasar, H
2012-01-01
Spectral inversion codes are powerful tools to analyze spectropolarimetric observations, and they provide important diagnostics of solar magnetic fields. Inversion codes differ by numerical procedures, approximations of the atmospheric model, and description of radiative transfer. Stokes Inversion based on Response functions (SIR) is an implementation widely used by the solar physics community. It allows to work with different atmospheric components, where gradients of different physical parameters are possible, e.g., magnetic field strength and velocities. The spectropolarimetric full-disk observations were carried out with the Stokesmeter of the Solar Telescope for Operative Predictions (STOP) at the Sayan Observatory on 3 February 2009, when neither an active region nor any other extended flux concentration was present on the Sun. In this study of quiet Sun magnetic fields, we apply the SIR code simultaneously to 15 spectral lines. A tendency is found that weaker magnetic field strengths occur closer to th...
LHC Report: 2 inverse femtobarns!
Mike Lamont for the LHC Team
2011-01-01
The LHC is enjoying a confluence of twos. This morning (Friday 5 August) we passed 2 inverse femtobarns delivered in 2011; the peak luminosity is now just over 2 x1033 cm-2s-1; and recently fill 2000 was in for nearly 22 hours and delivered around 90 inverse picobarns, almost twice 2010's total. In order to increase the luminosity we can increase of number of bunches, increase the number of particles per bunch, or decrease the transverse beam size at the interaction point. The beam size can be tackled in two ways: either reduce the size of the injected bunches or squeeze harder with the quadrupole magnets situated on either side of the experiments. Having increased the number of bunches to 1380, the maximum possible with a 50 ns bunch spacing, a one day meeting in Crozet decided to explore the other possibilities. The size of the beams coming from the injectors has been reduced to the minimum possible. This has brought an increase in the peak luminosity of about 50% and the 2 x 1033 cm...
Inverse problems and inverse scattering of plane waves
Ghosh Roy, Dilip N
2001-01-01
The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.
An inverse method was developed to integrate satellite observations of atmospheric pollutant column concentrations and direct sensitivities predicted by a regional air quality model in order to discern biases in the emissions of the pollutant precursors.
Constrained and joint inversion on unstructured meshes
Doetsch, J.; Jordi, C.; Rieckh, V.; Guenther, T.; Schmelzbach, C.
2015-12-01
Unstructured meshes allow for inclusion of arbitrary surface topography, complex acquisition geometry and undulating geological interfaces in the inversion of geophysical data. This flexibility opens new opportunities for coupling different geophysical and hydrological data sets in constrained and joint inversions. For example, incorporating geological interfaces that have been derived from high-resolution geophysical data (e.g., ground penetrating radar) can add geological constraints to inversions of electrical resistivity data. These constraints can be critical for a hydrogeological interpretation of the inversion results. For time-lapse inversions of geophysical data, constraints can be derived from hydrological point measurements in boreholes, but it is difficult to include these hard constraints in the inversion of electrical resistivity monitoring data. Especially mesh density and the regularization footprint around the hydrological point measurements are important for an improved inversion compared to the unconstrained case. With the help of synthetic and field examples, we analyze how regularization and coupling operators should be chosen for time-lapse inversions constrained by point measurements and for joint inversions of geophysical data in order to take full advantage of the flexibility of unstructured meshes. For the case of constraining to point measurements, it is important to choose a regularization operator that extends beyond the neighboring cells and the uncertainty in the point measurements needs to be accounted for. For joint inversion, the choice of the regularization depends on the expected subsurface heterogeneity and the cell size of the parameter mesh.
Solution for Ill-Posed Inverse Kinematics of Robot Arm by Network Inversion
Directory of Open Access Journals (Sweden)
Takehiko Ogawa
2010-01-01
Full Text Available In the context of controlling a robot arm with multiple joints, the method of estimating the joint angles from the given end-effector coordinates is called inverse kinematics, which is a type of inverse problems. Network inversion has been proposed as a method for solving inverse problems by using a multilayer neural network. In this paper, network inversion is introduced as a method to solve the inverse kinematics problem of a robot arm with multiple joints, where the joint angles are estimated from the given end-effector coordinates. In general, inverse problems are affected by ill-posedness, which implies that the existence, uniqueness, and stability of their solutions are not guaranteed. In this paper, we show the effectiveness of applying network inversion with regularization, by which ill-posedness can be reduced, to the ill-posed inverse kinematics of an actual robot arm with multiple joints.
Simulation of atmospheric turbulence layers with phase screens by JAVA
Zhang, Xiaofang; Chen, Wenqin; Yu, Xin; Yan, Jixiang
2008-03-01
In multiconjugate Adaptive Optics (MCAO), the phase screens are used to simulate atmospheric turbulence layers to study the optimal turbulence delamination and the determination of layer boundary position. In this paper, the method of power spectrum inversion and sub-harmonic compensation were used to simulate atmospheric turbulence layers and results can be shown by grey map. The simulation results showed that, with the increase of turbulence layers, the RMS of adaptive system decreased, but the amplitude diminished. So the atmospheric turbulence can be split into 2-3 layers and be modeled by phase screens. Otherwise, a small simulation atmospheric turbulence delamination system was realized by JAVA.
Wake Vortex Inverse Model User's Guide
Lai, David; Delisi, Donald
2008-01-01
NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input
A new MHD-assisted Stokes inversion technique
Riethmüller, T L; Barthol, P; Gandorfer, A; Gizon, L; Hirzberger, J; van Noort, M; Rodríguez, J Blanco; Iniesta, J C Del Toro; Suárez, D Orozco; Schmidt, W; Pillet, V Martínez; Knölker, M
2016-01-01
We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a SUNRISE/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that match the observed profiles best. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat t...
Optimization and inverse problems in electromagnetism
Wiak, Sławomir
2003-01-01
From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...
Statistical Inversion of Seismic Noise Inversion statistique du bruit sismique
Directory of Open Access Journals (Sweden)
Adler P. M.
2006-11-01
Full Text Available A systematic investigation of wave propagation in random media is presented. Spectral analysis, inversion of codas and attenuation of the direct wave front are studied for synthetic data obtained in isotropic or anisotropic, 2D or 3D media. A coda inversion process is developed and checked on two sets of real data. In both cases, it is possible to compare the correlation lengths obtained by inversion to characteristic lengths measured on seismic logs, for the full scale seismic survey, or on a thin section, for the laboratory experiment. These two experiments prove the feasibility and the efficiency of the statistical inversion of codas. Correct characteristic lengths can be obtained which cannot be determined by another method. Le problème de la géophysique est la recherche d'informations concernant le sous-sol, dans des signaux sismiques enregistrés en surface ou dans des puits. Ces informations sont habituellement recherchées sous forme déterministe, c'est-à-dire sous la forme de la donnée en chaque point d'une valeur du paramètre étudié. Notre point de vue est différent puisque notre objectif est de déduire certaines propriétés statistiques du milieu, supposé hétérogène, à partir des sismogrammes enregistrés après propagation. Il apparaît alors deux moyens de remplir l'objectif fixé. Le premier est l'analyse spectrale des codas ; cette analyse permet de déterminer les tailles moyennes des hétérogénéités du sous-sol. La deuxième possibilité est l'étude de l'atténuation du front direct de l'onde, qui conduit aussi à la connaissance des longueurs caractéristiques du sous-sol ; contrairement à la première méthode, elle ne semble pas pouvoir être transposée efficacement à des cas réels. Dans la première partie, on teste numériquement la proportionnalité entre le facteur de rétrodiffraction, relié aux propriétés statistiques du milieu, et le spectre des codas. Les distributions de vitesse, à valeur
Bayesian multitask inverse reinforcement learning
Dimitrakakis, Christos
2011-01-01
We generalise the problem of inverse reinforcement learning to multiple tasks, from a set of demonstrations. Each demonstration may represent one expert trying to solve a different task. Alternatively, one may see each demonstration as given by a different expert trying to solve the same task. Our main technical contribution is to solve the problem by formalising it as statistical preference elicitation, via a number of structured priors, whose form captures our biases about the relatedness of different tasks or expert policies. We show that our methodology allows us not only to learn to efficiently from multiple experts but to also effectively differentiate between the goals of each. Possible applications include analysing the intrinsic motivations of subjects in behavioural experiments and imitation learning from multiple teachers.
Inverse Diffusion Theory of Photoacoustics
Bal, Guillaume
2009-01-01
This paper analyzes the reconstruction of diffusion and absorption parameters in an elliptic equation from knowledge of internal data. In the application of photo-acoustics, the internal data are the amount of thermal energy deposited by high frequency radiation propagating inside a domain of interest. These data are obtained by solving an inverse wave equation, which is well-studied in the literature. We show that knowledge of two internal data based on well-chosen boundary conditions uniquely determines two constitutive parameters in diffusion and Schroedinger equations. Stability of the reconstruction is guaranteed under additional geometric constraints of strict convexity. No geometric constraints are necessary when $2n$ internal data for well-chosen boundary conditions are available, where $n$ is spatial dimension. The set of well-chosen boundary conditions is characterized in terms of appropriate complex geometrical optics (CGO) solutions.
Inverse Transport Theory of Photoacoustics
Bal, Guillaume; Jugnon, Vincent
2009-01-01
We consider the reconstruction of optical parameters in a domain of interest from photoacoustic data. Photoacoustic tomography (PAT) radiates high frequency electromagnetic waves into the domain and measures acoustic signals emitted by the resulting thermal expansion. Acoustic signals are then used to construct the deposited thermal energy map. The latter depends on the constitutive optical parameters in a nontrivial manner. In this paper, we develop and use an inverse transport theory with internal measurements to extract information on the optical coefficients from knowledge of the deposited thermal energy map. We consider the multi-measurement setting in which many electromagnetic radiation patterns are used to probe the domain of interest. By developing an expansion of the measurement operator into singular components, we show that the spatial variations of the intrinsic attenuation and the scattering coefficients may be reconstructed. We also reconstruct coefficients describing anisotropic scattering of ...
Inverse Magnetic/Shear Catalysis
McInnes, Brett
2015-01-01
It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce ``inverse magnetic catalysis'', signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magne...
Novel FIR Inversion with Only FIRS
Chalmers, G
2005-01-01
The inversion of an FIR data sampling is usually stated to be possible with the use of a potentially unstable IIR, and in particular circumstances. It is possible to accomplish the same inversion with the doubling of an FIR sampling and with only FIRs for the sampling and the inversion. This note presents the configuration, which appently is not in the literature, for perfect signal reconstruction.
The structure of (L)*-inverse semigroups
Institute of Scientific and Technical Information of China (English)
REN Xueming; SHUM Karping
2006-01-01
The concepts of (L)*-inverse semigroups and left wreath products of semigroups are introduced. It is shown that the (L)*-inverse semigroup can be described as the left wreath product of a type A semigroup Γ and a left regular band B together with a mapping which maps the semigroup Γ into the endomorphism semigroup End(B). This result generalizes the structure theorem of Yamada for the left inverse semigroups in the class of regular semigroups.We shall also provide a constructed example for the (L)*-inverse semigroups by using the left wreath products.
Analysis of nonlinear channel friction inverse problem
Institute of Scientific and Technical Information of China (English)
CHENG Weiping; LIU Guohua
2007-01-01
Based on the Backus-Gilbert inverse theory, the singular value decomposition (SVD) for general inverse matrices and the optimization algorithm are used to solve the channel friction inverse problem. The resolution and covari- ance friction inverse model in matrix form is developed to examine the reliability of solutions. Theoretical analyses demonstrate that the convergence rate of the general Newton optimization algorithm is in the second-order. The Wiggins method is also incorporated into the algorithm. Using the method, noise can be suppressed effectively, and the results are close to accurate solutions with proper control parameters. Also, the numerical stability can be improved.
Bayesian approach to inverse statistical mechanics.
Habeck, Michael
2014-05-01
Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.
Chromatid Painting for Chromosomal Inversion Detection Project
National Aeronautics and Space Administration — We propose the continued development of a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and...
Inverse method for estimating respiration rates from decay time series
Directory of Open Access Journals (Sweden)
D. C. Forney
2012-03-01
Full Text Available Long-term organic matter decomposition experiments typically measure the mass lost from decaying organic matter as a function of time. These experiments can provide information about the dynamics of carbon dioxide input to the atmosphere and controls on natural respiration processes. Decay slows down with time, suggesting that organic matter is composed of components (pools with varied lability. Yet it is unclear how the appropriate rates, sizes, and number of pools vary with organic matter type, climate, and ecosystem. To better understand these relations, it is necessary to properly extract the decay rates from decomposition data. Here we present a regularized inverse method to identify an optimally-fitting distribution of decay rates associated with a decay time series. We motivate our study by first evaluating a standard, direct inversion of the data. The direct inversion identifies a discrete distribution of decay rates, where mass is concentrated in just a small number of discrete pools. It is consistent with identifying the best fitting "multi-pool" model, without prior assumption of the number of pools. However we find these multi-pool solutions are not robust to noise and are over-parametrized. We therefore introduce a method of regularized inversion, which identifies the solution which best fits the data but not the noise. This method shows that the data are described by a continuous distribution of rates which we find is well approximated by a lognormal distribution, and consistent with the idea that decomposition results from a continuum of processes at different rates. The ubiquity of the lognormal distribution suggest that decay may be simply described by just two parameters; a mean and a variance of log rates. We conclude by describing a procedure that estimates these two lognormal parameters from decay data. Matlab codes for all numerical methods and procedures are provided.
Inverse method for estimating respiration rates from decay time series
Directory of Open Access Journals (Sweden)
D. C. Forney
2012-09-01
Full Text Available Long-term organic matter decomposition experiments typically measure the mass lost from decaying organic matter as a function of time. These experiments can provide information about the dynamics of carbon dioxide input to the atmosphere and controls on natural respiration processes. Decay slows down with time, suggesting that organic matter is composed of components (pools with varied lability. Yet it is unclear how the appropriate rates, sizes, and number of pools vary with organic matter type, climate, and ecosystem. To better understand these relations, it is necessary to properly extract the decay rates from decomposition data. Here we present a regularized inverse method to identify an optimally-fitting distribution of decay rates associated with a decay time series. We motivate our study by first evaluating a standard, direct inversion of the data. The direct inversion identifies a discrete distribution of decay rates, where mass is concentrated in just a small number of discrete pools. It is consistent with identifying the best fitting "multi-pool" model, without prior assumption of the number of pools. However we find these multi-pool solutions are not robust to noise and are over-parametrized. We therefore introduce a method of regularized inversion, which identifies the solution which best fits the data but not the noise. This method shows that the data are described by a continuous distribution of rates, which we find is well approximated by a lognormal distribution, and consistent with the idea that decomposition results from a continuum of processes at different rates. The ubiquity of the lognormal distribution suggest that decay may be simply described by just two parameters: a mean and a variance of log rates. We conclude by describing a procedure that estimates these two lognormal parameters from decay data. Matlab codes for all numerical methods and procedures are provided.
Description and evaluation of REFIST v1.0: a regional greenhouse gas flux inversion system in Canada
2016-01-01
A regional greenhouse gas flux inversion system (REFIST v1.0) is described. This paper provides a comprehensive evaluation of REFIST for three provinces in Canada that include Alberta (AB), Saskatchewan (SK) and Ontario (ON). Using year 2009 fossil fuel CO2 CarbonTracker model results as the target, the synthetic data experiment analyses examined the impacts of the errors from the Bayesian optimisation method, inversion time span, prior flux distribution, region definition and the atmospheric...
Regularization for Atmospheric Temperature Retrieval Problems
Velez-Reyes, Miguel; Galarza-Galarza, Ruben
1997-01-01
Passive remote sensing of the atmosphere is used to determine the atmospheric state. A radiometer measures microwave emissions from earth's atmosphere and surface. The radiance measured by the radiometer is proportional to the brightness temperature. This brightness temperature can be used to estimate atmospheric parameters such as temperature and water vapor content. These quantities are of primary importance for different applications in meteorology, oceanography, and geophysical sciences. Depending on the range in the electromagnetic spectrum being measured by the radiometer and the atmospheric quantities to be estimated, the retrieval or inverse problem of determining atmospheric parameters from brightness temperature might be linear or nonlinear. In most applications, the retrieval problem requires the inversion of a Fredholm integral equation of the first kind making this an ill-posed problem. The numerical solution of the retrieval problem requires the transformation of the continuous problem into a discrete problem. The ill-posedness of the continuous problem translates into ill-conditioning or ill-posedness of the discrete problem. Regularization methods are used to convert the ill-posed problem into a well-posed one. In this paper, we present some results of our work in applying different regularization techniques to atmospheric temperature retrievals using brightness temperatures measured with the SSM/T-1 sensor. Simulation results are presented which show the potential of these techniques to improve temperature retrievals. In particular, no statistical assumptions are needed and the algorithms were capable of correctly estimating the temperature profile corner at the tropopause independent of the initial guess.
A search for inversion layers in hot Jupiters with high-resolution spectroscopy
Hood, Callie; Birkby, Jayne; Lopez-Morales, Mercedes
2017-01-01
At present, the existence of thermal inversion layers in hot Jupiter atmospheres is uncertain due to conflicting results on their detection. However, understanding the thermal structure of exoplanet atmospheres is crucial to measuring their chemical compositions because the two quantities are highly interdependent. Here, we present high-resolution infrared spectroscopy of a hot Jupiter taken at 3.5 μm with CRIRES (R~100,000) on the Very Large Telescope. We directly detect the spectrum of the planet by tracing the radial-velocity shift of water features in its atmosphere during approximately one tenth of its orbit. We removed telluric contamination effects and the lines of the host star from our observed combined light spectra using singular value decomposition, then cross-correlated these processed spectra with a grid of high spectral resolution molecular templates containing features from water, methane, and carbon dioxide. The templates included atmospheric profiles with and without thermal inversion i.e. emission and absorption lines, respectively. We find evidence of water emission features in the planet’s dayside spectrum at a signal-to-noise of 4.7, indicative of a thermal inversion in the planet's atmosphere within the pressures ranges probed by our observations. The direct detection of emission lines at high spectral resolution in the planet spectrum make it one of the most unambiguous detections of a thermal inversion layer in an exoplanet atmosphere to date. However, we are carrying out further data analysis to ensure the robustness of the signal. Future observations of other molecules that could cause inversion layers, e.g. titanium oxide, would provide strong additional evidence of the inversion and help further our understanding of the behavior of highly irradiated giant planet atmospheres.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the
Inversion, error analysis, and validation of GPS/MET occultation data
Energy Technology Data Exchange (ETDEWEB)
Steiner, A.K.; Kirchengast, G. [Graz Univ. (Austria). Inst. fuer Meteorologie und Geophysik; Ladreiter, H.P.
1999-01-01
The global positioning system meteorology (GPS/MET) experiment was the first practical demonstration of global navigation satellite system (GNSS)-based active limb sounding employing the radio occultation technique. This method measures, as principal observable and with millimetric accuracy, the excess phase path (relative to propagation in vacuum) of GNSS-transmitted radio waves caused by refraction during passage through the Earth`s neutral atmosphere and ionosphere in limb geometry. It shows great potential utility for weather and climate system studies in providing an unique combination of global coverage, high vertical resolution and accuracy, long-term stability, and all-weather capability. We first describe our GPS/MET data processing scheme from excess phases via bending angles to the neutral atmospheric parameters refractivity, density, pressure and temperature. Special emphasis is given to ionospheric correction methodology and the inversion of bending angles to refractivities, where we introduce a matrix inversion technique (instead of the usual integral inversion). The matrix technique is shown to lead to identical results as integral inversion but is more directly extendable to inversion by optimal estimation. The quality of GPS/MET-derived profiles is analyzed with an error estimation analysis employing a Monte Carlo technique. We consider statistical errors together with systematic errors due to upper-boundary initialization of the retrieval by a priori bending angles. Perfect initialization and properly smoothed statistical errors allow for better than 1 K temperature retrieval accuracy up to the stratopause. 28 refs.
Atmosphere: Power, Critique, Politics
DEFF Research Database (Denmark)
Albertsen, Niels
2016-01-01
This paper hans three interrelated parts. First, atmosphere is approached through the concept of power. Atmospheres 'grip' us directly or mediate power indirectly by manipulating moods and evoking emotions. How does atmosphere relate to different conceptions of power? Second, atmospheric powers m...... be critiqued. Which conception of critique can be involved? Third, critiquing atmospheric powers can generate political conflict. How does atmospheric disputes relate to conceptions of politics and the political?...
The structure of *-inverse semigroups
Institute of Scientific and Technical Information of China (English)
REN; Xueming
2006-01-01
[1]Hall T E.Orthodox semigroups.Pacific J Math,1971,39:677-686[2]Howie J M.An Introduction to Semigroup Theory.Now York:Academic Press,1976[3]Fountain J B.Abundant semigroups.Proc Lond Math Soc,1982,44 (3):103-129[4]El-Qallali A,Fountain J B.Idempotent-connected abundant semigroups.Proc Roy Soc Edinburgh,1981,Sec.A:79-90[5]El-Qallali A,Fountain J B.Quasi-adequate semigroups.Proc Roy Soc Edinburgh,1981,Sec.A:91-99[6]Fountain J B.Adequate semigroups.Proc Edinburgh Math Soc,1979,22:113-125[7]Guo X J.Abundant C-lpp proper semigroups.Southeast Asian Bull Math,2000,24 (1):41-50[8]Guo X J,Shum K P,Guo Y Q.Perfect rpp semigroups.Communications in Algebra,2001,29(6):2447-2459[9]Ren X M,Shum K P.Structure theorems for right pp-semigroups with left central idempotents.Discussions Math General Algebra and Applications,2000,20:63-75[10]Ren X M,Shum K P.The structure of superabundant semigroups.Sci China Ser A-Math,2004,47(5):756-771[11]Shum K P,Ren X M.Abundant semigroups with left central idempotents.Pure Math Appl,1999,10(1):109-113[12]Armstrong S.The structure of type A semigroups.Semigroup Forum,1984,29:319-336[13]Lawson M V.The structure of type A semigroups.Quart J Math Oxford,1986,37(2):279-298[14]Bailes G L.Right inverse semigroups.J Algebra,1973,26:492-507[15]Venkatesan P S.Right (left) inverse semigroups.J Algebra,1974,31:209-217[16]Yamada M.Orthodox semigroups whose idempotents satisfy a certain identity.Semigroup Forum,1973,6:113-128[17]Preston G B.Semiproducts of semigroups.Proc Roy Soc Edinburgh,1986,102A:91-102[18]Preston G B:Products of semigroups.In:Shum K P,Yuen P C,eds.Proc.of the conference"Ordered structures and algebra of computer languages",1991 (Hong Kong).Singapore:World Scientific Inc,1993.161-169[19]Lawson M V.The natural partial order on an abundant semigroup.Proc Edinburgh Math Soc,1987,30:169-186[20]El-Qallali A.(L)*-unipotent semigroups.J Pure and Applied Algebra,1989,62:19-23
Complex source rate estimation for atmospheric transport and dispersion models
Energy Technology Data Exchange (ETDEWEB)
Edwards, L.L.
1993-09-13
The accuracy associated with assessing the environmental consequences of an accidental atmospheric release of radioactivity is highly dependent on our knowledge of the source release rate which is generally poorly known. This paper reports on a technique that integrates the radiological measurements with atmospheric dispersion modeling for more accurate source term estimation. We construct a minimum least squares methodology for solving the inverse problem with no a priori information about the source rate.
Normal Orthodox Semigroups with Inverse Transversals
Institute of Scientific and Technical Information of China (English)
ZHUFeng-lin
2003-01-01
A normal orthodox semigroup is an orthodox semigroup whose idempotent elements form a normal band.We deal with congruces on a normal orthodox semigroup with an iverse transversal .A structure theorem for such semigroup is obtained.Munn(1966)gave a fundamental inverse semigroup Following Munn's idea ,we give a fundamental normal orthodox semigroup with an inverse transversal.
An inversion algorithm for general tridiagonal matrix
Institute of Scientific and Technical Information of China (English)
Rui-sheng RAN; Ting-zhu HUANG; Xing-ping LIU; Tong-xiang GU
2009-01-01
An algorithm for the inverse of a general tridiagonal matrix is presented. For a tridiagonal matrix having the Doolittle factorization, an inversion algorithm is established.The algorithm is then generalized to deal with a general tridiagonal matrix without any restriction. Comparison with other methods is provided, indicating low computational complexity of the proposed algorithm, and its applicability to general tridiagonal matrices.
Treatment of inverse psoriasis with efalizumab.
George, Dornechia; Rosen, Ted
2009-01-01
Various topical and systemic treatments have shown efficacy in plaque and palmoplantar psoriasis; however, studies regarding efficacy in inverse psoriasis are few. The authors present a case of a patient with severe inverse psoriasis who was successfully treated with efalizumab, resulting in complete and sustained remission during prolonged maintenance therapy.
Approximation of the Inverse -Frame Operator
Indian Academy of Sciences (India)
M R Abdollahpour; A Najati
2011-05-01
In this paper, we introduce the concept of (strong) projection method for -frames which works for all conditional -Riesz frames. We also derive a method for approximation of the inverse -frame operator which is efficient for all -frames. We show how the inverse of -frame operator can be approximated as close as we like using finite-dimensional linear algebra.
Resolution analysis in full waveform inversion
Fichtner, A.; Trampert, J.
2011-01-01
We propose a new method for the quantitative resolution analysis in full seismic waveform inversion that overcomes the limitations of classical synthetic inversions while being computationally more efficient and applicable to any misfit measure. The method rests on (1) the local quadratic approximat
Non-Linear Logging Parameters Inversion
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The non-linear logging parameters inversion is based on the field theory, information optimization and predication theory. It uses seismic charaoters,geological model and logging data as a restriction to inverse 2D, 3D logging parameters data volume. Using this method,
A Construction of Weakly Inverse Semigroups
Institute of Scientific and Technical Information of China (English)
Bing Jun YU; Yan LI
2009-01-01
Let S° be an inverse semigroup with semilattice biordered set E° of idempotents and E a weakly inverse biordered set with a subsemilattice Ep = { e ∈ E |(V) f ∈ E, S(f , e)(C) w(e) } isomorphic to E° by θ:Ep→E°. In this paper, it is proved that if(V)f, g∈E, f ←→ ,g(→) f°θ (ζ)s° g°θand there exists a mapping φ from Ep into the symmetric weakly inverse semigroup (ζξ)(E ∪S°) satisfying six appropriate conditions, then a weakly inverse semigroup ∑ can be constructed in (ζξ)(S°), called the weakly inverse hull of a weakly inverse system (S°, E, θ, φ) with I(∑) ≌ S°, E(∑) (≌) E. Conversely,every weakly inverse semigroup can be constructed in this way. Furthermore, a sufficient and necessary condition for two weakly inverse hulls to be isomorphic is also given.
Inversion in Mathematical Thinking and Learning
Greer, Brian
2012-01-01
Inversion is a fundamental relational building block both within mathematics as the study of structures and within people's physical and social experience, linked to many other key elements such as equilibrium, invariance, reversal, compensation, symmetry, and balance. Within purely formal arithmetic, the inverse relationships between addition and…
Inversion and approximation of Laplace transforms
Lear, W. M.
1980-01-01
A method of inverting Laplace transforms by using a set of orthonormal functions is reported. As a byproduct of the inversion, approximation of complicated Laplace transforms by a transform with a series of simple poles along the left half plane real axis is shown. The inversion and approximation process is simple enough to be put on a programmable hand calculator.
Third Harmonic Imaging using a Pulse Inversion
DEFF Research Database (Denmark)
Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt
2011-01-01
The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...
Metaheuristic optimization of acoustic inverse problems.
van Leijen, A.V.; Rothkrantz, L.; Groen, F.
2011-01-01
Swift solving of geoacoustic inverse problems strongly depends on the application of a global optimization scheme. Given a particular inverse problem, this work aims to answer the questions how to select an appropriate metaheuristic search strategy, and how to configure it for optimal performance. F
Inverse magnetic/shear catalysis
Directory of Open Access Journals (Sweden)
Brett McInnes
2016-05-01
Full Text Available It is well known that very large magnetic fields are generated when the Quark–Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce “inverse magnetic catalysis”, signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magnetic field at low values of the baryonic chemical potential, but that it can actually decrease that effect at high chemical potentials.
Inverse problem in Parker's dynamo
Reshetnyak, M Yu
2015-01-01
The inverse solution of the 1D Parker dynamo equations is considered. The method is based on minimization of the cost-function, which characterize deviation of the model solution properties from the desired ones. The output is the latitude distribution of the magnetic field generation sources: the $\\alpha$- and $\\omega$-effects. Minimization is made using the Monte-Carlo method. The details of the method, as well as some applications, which can be interesting for the broad dynamo community, are considered: conditions when the invisible for the observer at the surface of the planet toroidal part of the magnetic field is much larger than the poloidal counterpart. It is shown that at some particular distributions of $\\alpha$ and $\\omega$ the well-known thesis that sign of the dynamo-number defines equatorial symmetry of the magnetic field to the equator plane, is violated. It is also demonstrated in what circumstances magnetic field in the both hemispheres have different properties, and simple physical explanati...
Inverse magnetic/shear catalysis
Energy Technology Data Exchange (ETDEWEB)
McInnes, Brett, E-mail: matmcinn@nus.edu.sg
2016-05-15
It is well known that very large magnetic fields are generated when the Quark–Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce “inverse magnetic catalysis”, signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magnetic field at low values of the baryonic chemical potential, but that it can actually decrease that effect at high chemical potentials.
Inversion based on computational simulations
Energy Technology Data Exchange (ETDEWEB)
Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.
1998-09-01
A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal.
Recurrent Neural Network for Computing Outer Inverse.
Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin
2016-05-01
Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.
Forward modeling. Route to electromagnetic inversion
Energy Technology Data Exchange (ETDEWEB)
Groom, R.; Walker, P. [PetRos EiKon Incorporated, Ontario (Canada)
1996-05-01
Inversion of electromagnetic data is a topical subject in the literature, and much time has been devoted to understanding the convergence properties of various inverse methods. The relative lack of success of electromagnetic inversion techniques is partly attributable to the difficulties in the kernel forward modeling software. These difficulties come in two broad classes: (1) Completeness and robustness, and (2) convergence, execution time and model simplicity. If such problems exist in the forward modeling kernel, it was demonstrated that inversion can fail to generate reasonable results. It was suggested that classical inversion techniques, which are based on minimizing a norm of the error between data and the simulated data, will only be successful when these difficulties in forward modeling kernels are properly dealt with. 4 refs., 5 figs.
Inverse scattering: applications to nuclear physics
Mackintosh, Raymond S
2012-01-01
In what follows we first set the context for inverse scattering in nuclear physics with a brief account of inverse problems in general. We then turn to inverse scattering which involves the S-matrix, which connects the interaction potential between two scattering particles with the measured scattering cross section. The term `inverse' is a reference to the fact that instead of determining the scattering S-matrix from the interaction potential between the scattering particles, we do the inverse. That is to say, we calculate the interaction potential from the S-matrix. This review explains how this can now be done reliably, but the emphasis will be upon reasons why one should wish to do this, with an account of some of the ways this can lead to understanding concerning nuclear interactions.
Fast wavelet based sparse approximate inverse preconditioner
Energy Technology Data Exchange (ETDEWEB)
Wan, W.L. [Univ. of California, Los Angeles, CA (United States)
1996-12-31
Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.
Inverse m-matrices and ultrametric matrices
Dellacherie, Claude; San Martin, Jaime
2014-01-01
The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph.
Directory of Open Access Journals (Sweden)
R. Locatelli
2013-10-01
Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively. At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly
Inácio, Celso dos Santos Laurinda
2011-01-01
The Multi-Point Stochastic Inversion (MPSI) is a method based on both deterministic inversion and stochastic inversion. The deterministic inversion is used prior to the stochastic inversion and it is more general and works well for thick layers while the stochastic inversion works well for thin layers. Because of its combination, the MPSI method is one of suitable methods for reservoir characterization. Apart from being used for post-stack seismic acoustic impedance (AI) inversion, the MPSI m...
Identification of polymorphic inversions from genotypes
Directory of Open Access Journals (Sweden)
Cáceres Alejandro
2012-02-01
Full Text Available Abstract Background Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies. Results We present a novel method to both identify polymorphic inversions from genome-wide genotype data and classify individuals as containing a normal or inverted allele. Our method, a generalization of a published method for haplotype data 1, utilizes linkage between groups of SNPs to partition a set of individuals into normal and inverted subpopulations. We employ a sliding window scan to identify regions likely to have an inversion, and accumulation of evidence from neighboring SNPs is used to accurately determine the inversion status of each subject. Further, our approach detects inversions directly from genotype data, thus increasing its usability to current genome-wide association studies (GWAS. Conclusions We demonstrate the accuracy of our method to detect inversions and classify individuals on principled-simulated genotypes, produced by the evolution of an inversion event within a coalescent model 2. We applied our method to real genotype data from HapMap Phase III to characterize the inversion status of two known inversions within the regions 17q21 and 8p23 across 1184 individuals. Finally, we scan the full genomes of the European Origin (CEU and Yoruba (YRI HapMap samples. We find population-based evidence for 9 out of 15 well-established autosomic inversions, and for 52 regions
Atmospheric pressure variations and abdominal aortic aneurysm rupture.
LENUS (Irish Health Repository)
Killeen, S D
2012-02-03
BACKGROUND: Ruptured abdominal aortic aneurysm (RAAA) presents with increased frequency in the winter and spring months. Seasonal changes in atmospheric pressure mirrors this pattern. AIM: To establish if there was a seasonal variation in the occurrence of RAAA and to determine if there was any association with atmospheric pressure changes. METHODS: A retrospective cohort-based study was performed. Daily atmospheric pressure readings for the region were obtained. RESULTS: There was a statistically significant monthly variation in RAAA presentation with 107 cases (52.5%) occurring from November to March. The monthly number of RAAA and the mean atmospheric pressure in the previous month were inversely related (r = -0.752, r (2) = 0.566, P = 0.03), and there was significantly greater daily atmospheric pressure variability on days when patients with RAAA were admitted. CONCLUSION: These findings suggest a relationship between atmospheric pressure and RAAA.
Improved Green's function parabolic equation method for atmospheric sound propagation
Salomons, E.M.
1998-01-01
The numerical implementation of the Green's function parabolic equation (GFPE) method for atmospheric sound propagation is discussed. Four types of numerical errors are distinguished: (i) errors in the forward Fourier transform; (ii) errors in the inverse Fourier transform; (iii) errors in the refra
Locatelli, Robin; Bousquet, Philippe; Chevallier, Frédéric
2013-04-01
Since the nineties, inverse modelling by assimilating atmospheric measurements into a chemical transport model (CTM) has been used to derive sources and sinks of atmospheric trace gases. More recently, the high global warming potential of methane (CH4) and unexplained variations of its atmospheric mixing ratio caught the attention of several research groups. Indeed, the diversity and the variability of methane sources induce high uncertainty on the present and the future evolution of CH4 budget. With the increase of available measurement data to constrain inversions (satellite data, high frequency surface and tall tower observations, FTIR spectrometry,...), the main limiting factor is about to become the representation of atmospheric transport in CTMs. Indeed, errors in transport modelling directly converts into flux changes when assuming perfect transport in atmospheric inversions. Hence, we propose an inter-model comparison in order to quantify the impact of transport and modelling errors on the CH4 fluxes estimated into a variational inversion framework. Several inversion experiments are conducted using the same set-up (prior emissions, measurement and prior errors, OH field, initial conditions) of the variational system PYVAR, developed at LSCE (Laboratoire des Sciences du Climat et de l'Environnement, France). Nine different models (ACTM, IFS, IMPACT, IMPACT1x1, MOZART, PCTM, TM5, TM51x1 and TOMCAT) used in TRANSCOM-CH4 experiment (Patra el al, 2011) provide synthetic measurements data at up to 280 surface sites to constrain the inversions performed using the PYVAR system. Only the CTM (and the meteorological drivers which drive them) used to create the pseudo-observations vary among inversions. Consequently, the comparisons of the nine inverted methane fluxes obtained for 2005 give a good order of magnitude of the impact of transport and modelling errors on the estimated fluxes with current and future networks. It is shown that transport and modelling errors
Sparse CSEM inversion driven by seismic coherence
Guo, Zhenwei; Dong, Hefeng; Kristensen, Åge
2016-12-01
Marine controlled source electromagnetic (CSEM) data inversion for hydrocarbon exploration is often challenging due to high computational cost, physical memory requirement and low resolution of the obtained resistivity map. This paper aims to enhance both the speed and resolution of CSEM inversion by introducing structural geological information in the inversion algorithm. A coarse mesh is generated for Occam’s inversion, where the parameters are fewer than in the fine regular mesh. This sparse mesh is defined as a coherence-based irregular (IC) sparse mesh, which is based on vertices extracted from available geological information. Inversion results on synthetic data illustrate that the IC sparse mesh has a smaller inversion computational cost compared to the regular dense (RD) mesh. It also has a higher resolution than with a regular sparse (RS) mesh for the same number of estimated parameters. In order to study how the IC sparse mesh reduces the computational time, four different meshes are generated for Occam’s inversion. As a result, an IC sparse mesh can reduce the computational cost while it keeps the resolution as good as a fine regular mesh. The IC sparse mesh reduces the computational cost of the matrix operation for model updates. When the number of estimated parameters reduces to a limited value, the computational cost is independent of the number of parameters. For a testing model with two resistive layers, the inversion result using an IC sparse mesh has higher resolution in both horizontal and vertical directions. Overall, the model representing significant geological information in the IC mesh can improve the resolution of the resistivity models obtained from inversion of CSEM data.
New recursive algorithm for matrix inversion
Institute of Scientific and Technical Information of China (English)
Cao Jianshu; Wang Xuegang
2008-01-01
To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms Ⅰ and Ⅱ, respectively)are presented. Algorithm Ⅰ is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm Ⅱ, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm Ⅰ. The implementation, for algorithm Ⅱ or Ⅰ, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid.
Nonlinear system compound inverse control method
Institute of Scientific and Technical Information of China (English)
Yan ZHANG; Zengqiang CHEN; Peng YANG; Zhuzhi YUAN
2005-01-01
A compound neural network is utilized to identify the dynamic nonlinear system.This network is composed of two parts: one is a linear neural network,and the other is a recurrent neural network.Based on the inverse theory a compound inverse control method is proposed.The controller has also two parts:a linear controller and a nonlinear neural network controller.The stability condition of the closed-loop neural network-based compound inverse control system is demonstrated based on the Lyapunov theory.Simulation studies have shown that this scheme is simple and has good control accuracy and robustness.
3rd Annual Workshop on Inverse Problem
2015-01-01
This proceeding volume is based on papers presented on the Third Annual Workshop on Inverse Problems which was organized by the Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, and took place in May 2013 in Stockholm. The purpose of this workshop was to present new analytical developments and numerical techniques for solution of inverse problems for a wide range of applications in acoustics, electromagnetics, optical fibers, medical imaging, geophysics, etc. The contributions in this volume reflect these themes and will be beneficial to researchers who are working in the area of applied inverse problems.
Voxel inversion of airborne EM data
DEFF Research Database (Denmark)
Fiandaca, Gianluca G.; Auken, Esben; Christiansen, Anders Vest C A.V.C.;
2013-01-01
We present a geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which allows for straightforward integration of different data types in joint inversion, for informing geological/hydrogeological models directly and for easier incorporation...... for jointly inverting airborne and ground-based geophysical data. Furthermore, geological and groundwater models most often refer to a regular voxel grid not correlated to the geophysical model space, and incorporating the geophysical data into the geological/hydrological modelling grids is problematic. We...... present a voxel grid inversion routine that overcomes these problems and we discuss in detail the algorithm implementation....
Parallel Algorithm in Surface Wave Waveform Inversion
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In Surface wave waveform inversion, we want to reconstruct 3Dshear wav e velocity structure, which calculation beyond the capability of the powerful pr esent day personal computer or even workstation. So we designed a high parallele d algorithm and carried out the inversion on Parallel computer based on the part itioned waveform inversion (PWI). It partitions the large scale optimization pro blem into a number of independent small scale problems and reduces the computati onal effort by several orders of magnitude. We adopted surface waveform inversio n with a equal block(2°×2°) discretization.
Graph inverse semigroups: their characterization and completion
Jones, David G
2011-01-01
Graph inverse semigroups generalize the polycyclic inverse monoids and play an important role in the theory of C*-algebras. This paper has two main goals: first, to provide an abstract characterization of graph inverse semigroups; and second, to show how they may be completed, under suitable conditions, to form what we call the Cuntz-Krieger semigroup of the graph. This semigroup is the ample semigroup of a topological groupoid associated with the graph, and the semigroup analogue of the Leavitt path algebra of the graph.
BOOK REVIEW: Inverse Problems. Activities for Undergraduates
Yamamoto, Masahiro
2003-06-01
This book is a valuable introduction to inverse problems. In particular, from the educational point of view, the author addresses the questions of what constitutes an inverse problem and how and why we should study them. Such an approach has been eagerly awaited for a long time. Professor Groetsch, of the University of Cincinnati, is a world-renowned specialist in inverse problems, in particular the theory of regularization. Moreover, he has made a remarkable contribution to educational activities in the field of inverse problems, which was the subject of his previous book (Groetsch C W 1993 Inverse Problems in the Mathematical Sciences (Braunschweig: Vieweg)). For this reason, he is one of the most qualified to write an introductory book on inverse problems. Without question, inverse problems are important, necessary and appear in various aspects. So it is crucial to introduce students to exercises in inverse problems. However, there are not many introductory books which are directly accessible by students in the first two undergraduate years. As a consequence, students often encounter diverse concrete inverse problems before becoming aware of their general principles. The main purpose of this book is to present activities to allow first-year undergraduates to learn inverse theory. To my knowledge, this book is a rare attempt to do this and, in my opinion, a great success. The author emphasizes that it is very important to teach inverse theory in the early years. He writes; `If students consider only the direct problem, they are not looking at the problem from all sides .... The habit of always looking at problems from the direct point of view is intellectually limiting ...' (page 21). The book is very carefully organized so that teachers will be able to use it as a textbook. After an introduction in chapter 1, sucessive chapters deal with inverse problems in precalculus, calculus, differential equations and linear algebra. In order to let one gain some insight
Exact results in modeling planetary atmospheres-III
Energy Technology Data Exchange (ETDEWEB)
Pelkowski, J. [Institut fuer Atmosphaere und Umwelt, J.W. Goethe Universitaet Frankfurt, Campus Riedberg, Altenhoferallee 1, D-60438 Frankfurt a.M. (Germany)], E-mail: Pelkowski@meteor.uni-frankfurt.de; Chevallier, L. [Observatoire de Paris-Meudon, Laboratoire LUTH, 5 Place Jules Janssen, 92195 Meudon cedex (France); Rutily, B. [Universite de Lyon, F-69003 Lyon (France); Universite Lyon 1, Observatoire de Lyon, 9 avenue Charles Andre, F-69230 Saint-Genis-Laval (France); CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon (France); Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Titaud, O. [Centro de Modelamiento Matematico, UMI 2807 CNRS-UChile, Blanco Encalada 2120 - 7 Piso, Casilla 170 - Correo 3, Santiago (Chile)
2008-01-15
We apply the semi-gray model of our previous paper to the particular case of the Earth's atmosphere, in order to illustrate quantitatively the inverse problem associated with the direct problem we dealt with before. From given climatological values of the atmosphere's spherical albedo and transmittance for visible radiation, the single-scattering albedo and the optical thickness in the visible are inferred, while the infrared optical thickness is deduced for given global average surface temperature. Eventually, temperature distributions in terms of the infrared optical depth will be shown for a terrestrial atmosphere assumed to be semi-gray and, locally, in radiative and thermodynamic equilibrium.
The ray-tracing mapping operator in an asymmetric atmosphere
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In a spherically symmetric atmosphere, the refractive index profile is retrieved from bending angle measurements through Abel integral transform. As horizontal refractivity inhomogeneity becomes significant in the moist low atmosphere, the error in refractivity profile obtained from Abel inversion reaches about 10%. One way to avoid this error is to directly assimilate bending angle profile into numerical weather models. This paper discusses the 2D ray-tracing mapping operator for bending angle in an asymmetric atmosphere. Through simulating computations, the retrieval error of the refractivity in horizontal inhomogeneity is assessed. The step length of 4 rank Runge-Kutta method is also tested.
Evidence against a strong thermal inversion in HD 209458 b from high-dispersion spectroscopy
Schwarz, Henriette; de Kok, Remco; Birkby, Jayne; Snellen, Ignas
2015-01-01
Broadband secondary-eclipse measurements of hot Jupiters have indicated the existence of atmospheric thermal inversions, but their presence is difficult to determine from broadband measurements because of degeneracies between molecular abundances and temperature structure. We apply high-resolution (R = 100 000) infrared spectroscopy to probe the temperature-pressure profile of HD 209458 b. This bright, transiting hot-Jupiter has long been considered the gold standard for a hot Jupiter with an inversion layer, but this has been challenged in recent publications. We observed the thermal dayside emission of HD 209458 b with CRIRES / VLT during three nights, targeting the carbon monoxide band at 2.3 microns. Thermal inversions give rise to emission features, which means that detecting emission lines in the planetary spectrum, as opposed to absorption lines, would be direct evidence of a region in which the temperature increases with altitude. We do not detect any significant absorption or emission of CO in the da...
Inverse Doppler Effects in Broadband Acoustic Metamaterials
Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.
2016-08-01
The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.
Nonlinear Least Squares for Inverse Problems
Chavent, Guy
2009-01-01
Presents an introduction into the least squares resolution of nonlinear inverse problems. This title intends to develop a geometrical theory to analyze nonlinear least square (NLS) problems with respect to their quadratic wellposedness, that is, both wellposedness and optimizability
An Inverse Problem Statistical Methodology Summary
2008-01-12
R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002. [36] D. D. Wackerly, W. Mendenhall III, and R. L. Scheaffer , Mathematical Statistics with Applications, Duxbury Thompson Learning, USA, 2002. 56
Inverse Bremsstrahlung in Shocked Astrophysical Plasmas
Baring, M G; Ellison, D C; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.
1999-01-01
There has recently been interest in the role of inverse bremsstrahlung, the emission of photons by fast suprathermal ions in collisions with ambient electrons possessing relatively low velocities, in tenuous plasmas in various astrophysical contexts. This follows a long hiatus in the application of suprathermal ion bremsstrahlung to astrophysical models since the early 1970s. The potential importance of inverse bremsstrahlung relative to normal bremsstrahlung, i.e. where ions are at rest, hinges upon the underlying velocity distributions of the interacting species. In this paper, we identify the conditions under which the inverse bremsstrahlung emissivity is significant relative to that for normal bremsstrahlung in shocked astrophysical plasmas. We determine that, since both observational and theoretical evidence favors electron temperatures almost comparable to, and certainly not very deficient relative to proton temperatures in shocked plasmas, these environments generally render inverse bremsstrahlung at b...
Inverse Doppler Effects in Broadband Acoustic Metamaterials.
Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R
2016-08-31
The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.
Acoustic Impedance Inversion VIa Wavelet Transform COnstraints
Institute of Scientific and Technical Information of China (English)
HuiyanZHANG; BainianLU; 等
1998-01-01
As is well known,the acoustic impedance inversion problem is,in general.an underdetermined inverse problem and some constraints about the model have to be incorporated in the inversion scheme,In this article,we assume that a prioir scale information about the model is available to constrain the inversion.We then explore another approach by means of the wavelet transform.WT,where we are specifically concerned with the selection and application of a priori scale information in the wavelet domain to reconstruct the acoustic impedance model.A simple example is explored,which show that the WT approach improves results in comparison with the conventional approach.
Interactive inverse kinematics for human motion estimation
DEFF Research Database (Denmark)
Engell-Nørregård, Morten Pol; Hauberg, Søren; Lapuyade, Jerome
2009-01-01
We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for monocular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints and does not suffer from shaking artifacts. The presented motion...... estimation system uses a single camera to estimate the motion of a human. The results show that inverse kinematics can significantly speed up the estimation process, while retaining a quality comparable to a full pose motion estimation system. Our novelty lies primarily in use of inverse kinematics...... to significantly speed up the particle filtering. It should be stressed that the observation part of the system has not been our focus, and as such is described only from a sense of completeness. With our approach it is possible to construct a robust and computationally efficient system for human motion estimation....
Inversion of hysteresis and creep operators
Krejčí, Pavel; Al Janaideh, Mohammad; Deasy, Fergal
2012-05-01
The explicit inversion formula for rate dependent Prandtl-Ishlinskii operators is extended to cases without the threshold dilation condition. This solves a problem in hysteresis and creep modeling of magnetostrictive behavior.
Inverse agonism and its therapeutic significance
Directory of Open Access Journals (Sweden)
Gurudas Khilnani
2011-01-01
Full Text Available A large number of G-protein-coupled receptors (GPCRs show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity or prevent the effect of an agonist (antagonist with zero intrinsic activity. Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity. Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H 1 and H 2 antihistaminics (antagonists have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D 2 receptors antagonist, antihypertensive (AT 1 receptor antagonists, antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103, a highly selective 5-HT
Basement structures over Rio Grande Rise from gravity inversion
Constantino, Renata Regina; Hackspacher, Peter Christian; de Souza, Iata Anderson; Lima Costa, Iago Sousa
2017-04-01
The basement depth in the Rio Grande Rise (RGR), South Atlantic, is estimated from combining gravity data obtained from satellite altimetry, marine surveys, bathymetry, sediment thickness and crustal thickness information. We formulate a crustal model of the region by inverse gravity modeling. The effect of the sediment layer is evaluated using the global sediment thickness model of National Oceanic and Atmospheric Administration (NOAA) and fitting the sediment compaction model to observed density values from Deep Sea Drilling Project (DSDP) reports. The Global Relief Model ETOPO1 and constraining data from seismic interpretation on crustal thickness are integrated in the inversion process. The modeled Moho depth values vary between 6 and 27 km over the area, being thicker under the RGR and also in the direction of São Paulo Plateau. The inversion for the gravity-equivalent basement topography is applied to gravity residual data, which is free from the gravity effect of sediments and from the gravity effect of the estimated Moho interface. We find several short-wavelengths structures not present in the bathymetry data. Our model shows a rift crossing the entire Rio Grande Rise deeper than previously presented in literature, with depths up to 5 km in the East Rio Grande Rise (ERGR) and deeper in the West Rio Grande Rise (WRGR), reaching 6.4 km. An interesting NS structure that goes from 34°S and extends through de São Paulo Ridge may be related to the South Atlantic Opening and could reveal an extinct spreading center.
Study of Inverse Creep In Textile Yarns
Directory of Open Access Journals (Sweden)
P.G. Patil
2009-12-01
Full Text Available Creep has been known and studied for textilematerials for decades. In comparison, a newlyobserved phenomenon of inverse creep seems not tohave received much attention. A new instrument hasbeen fabricated to measure creep and inverse creep intextile materials particularly yarns. Creep and Inversecreep measurements of nylon multifilament yarn,polyester multifilament yarn, cotton and wool yarn atdifferent levels of stress have been studied using thenew instrument and results are reported in the presentpaper.
Bayesian Inversion of Seabed Scattering Data
2014-09-30
Bayesian Inversion of Seabed Scattering Data (Special Research Award in Ocean Acoustics) Gavin A.M.W. Steininger School of Earth & Ocean...project are to carry out joint Bayesian inversion of scattering and reflection data to estimate the in-situ seabed scattering and geoacoustic parameters...valid OMB control number. 1. REPORT DATE 30 SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Bayesian
INVERSE COEFFICIENT PROBLEMS FOR PARABOLIC HEMIVARIATIONAL INEQUALITIES
Institute of Scientific and Technical Information of China (English)
Liu Zhenhai; I.Szántó
2011-01-01
This paper is devoted to the class of inverse problems for a nonlinear parabolic hemivariational inequality.The unknown coefficient of the operator depends on the gradient of the solution and belongs to a set of admissible coefficients.It is proved that the convergence of solutions for the corresponding direct problems continuously depends on the coefficient convergence.Based on this result the existence of a quasisolution of the inverse problem is obtained.
LES INVERSIONS LOCATIVES DANS "LA JALOUSIE"
Fuchs, Catherine; Le Goffic, Pierre
2016-01-01
International audience; Chapter 4 is devoted to a linguistic analysis of the 47 examples of locative inversions which are to be found in Robbe-Grillet's novel La Jalousie. We successively consider the ordering, the internal structure, the lexical characteristics and the determiners of the three main constituents (namely the Location Phrase, the Verbal Phrase and the nominal Subject Phrase). The analysis enlightens the non prototypical way in which the author uses locative inversion structures...
Inverse Distance Weighted Interpolation Involving Position Shading
Li, Zhengquan; WU Yaoxiang
2015-01-01
Considering the shortcomings of inverse distance weighted (IDW) interpolation in practical applications, this study improved the IDW algorithm and put forward a new spatial interpolation method that named as adjusted inverse distance weighted (AIDW). In interpolating process, the AIDW is capable of taking into account the comprehensive influence of distance and position of sample point to interpolation point, by adding a coefficient (K) into the normal IDW formula. The coefficient (K) is used...
Inverse semigroups the theory of partial symmetries
Lawson, Mark V
1998-01-01
Symmetry is one of the most important organising principles in the natural sciences. The mathematical theory of symmetry has long been associated with group theory, but it is a basic premise of this book that there are aspects of symmetry which are more faithfully represented by a generalization of groups called inverse semigroups. The theory of inverse semigroups is described from its origins in the foundations of differential geometry through to its most recent applications in combinatorial group theory, and the theory tilings.
An inverse problem in analytical dynamics
Institute of Scientific and Technical Information of China (English)
Li Guang-Cheng; Mei-Feng-Xiang
2006-01-01
This paper presents an inverse problem in analytical dynamics.The inverse problem is to construct the Lagrangian when the integrals of a system are given.Firstly,the differential equations are obtained by using the time derivative of the integrals.Secondly,the differential equations can be written in the Lagrange equations under certain conditions and the Lagrangian can be obtained.Finally,two examples are given to illustrate the application of the result.
Atmospheric composition change: Ecosystems-Atmosphere interactions
Fowler, D.; Pilegaard, K.; Sutton, M.A.; Ambus, P.; Raivonen, M.; Duyzer, J.; Simpson, D.; Fagerli, H.; Fuzzi, S.; Schjoerring, J.K.; Granier, C.; Neftel, A.; Isaksen, I.S.A.; Laj, P.; Maione, M.; Monks, P.S.; Burkhardt, J.; Daemmgen, U.; Neirynck, J.; Personne, E.; Wichink Kruit, R.J.; Butterbach-Bahl, K.; Flechard, C.; Tuovinen, J.P.; Coyle, M.; Gerosa, G.; Loubet, B.; Altimir, N.; Gruenhage, L.; Ammann, C.; Cieslik, S.; Paoletti, E.; Mikkelsen, T.N.; Ro-Poulsen, H.; Cellier, P.; Cape, J.N.; Horvath, L.; Loreto, F.; Niinemets, U.; Palmer, P.I.; Rinne, J.; Misztal, P.; Nemitz, E.; Nilsson, D.; Pryor, S.; Gallagher, M.W.; Vesala, T.; Skiba, U.; Brueggemann, N.; Zechmeister-Boltenstern, S.; Williams, J.; O'Dowd, C.; Facchini, M.C.; Leeuw, de G.; Flossman, A.; Chaumerliac, N.; Erisman, J.W.
2009-01-01
Ecosystems and the atmosphere: This review describes the state of understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere. The gases covered include NO, NO2, HONO, HNO3, NH3, SO2, DMS, Biogenic VOC, O-3, CH4, N2O and particles i
Milne-Eddington inversions of high resolution observations of the quiet Sun
Suárez, D Orozco; Vögler, A; Iniesta, J C Del Toro
2010-01-01
The physical conditions of the solar photosphere change on very small spatial scales both horizontally and vertically. Such a complexity may pose a serious obstacle to the accurate determination of solar magnetic fields. We examine the applicability of Milne-Eddington (ME) inversions to high spatial resolution observations of the quiet Sun. Our aim is to understand the connection between the ME inferences and the actual stratifications of the atmospheric parameters. We use magnetoconvection simulations of the solar surface to synthesize asymmetric Stokes profiles such as those observed in the quiet Sun. We then invert the profiles with the ME approximation. We perform an empirical analysis of the heights of formation of ME measurements and analyze the uncertainties brought about by the ME approximation. We also investigate the quality of the fits and their relationship with the model stratifications. The atmospheric parameters derived from ME inversions of high-spatial resolution profiles are reasonably accur...
Manning, A. J.; O'Doherty, S.; Jones, A. R.; Simmonds, P. G.; Derwent, R. G.
2011-01-01
Methane (CH4) and nitrous oxide (N2O) have strong radiative properties in the Earth's atmosphere and both are regulated through the United Nations Framework Convention on Climate Change. Through this convention the United Kingdom is obliged to report an inventory of annual emission estimates from 1990. This paper describes a methodology that estimates emissions of CH4 and N2O completely independent of the inventory values. Emissions have been estimated for each year 1990-2007 for the United Kingdom and for NW Europe. The methodology combines high-frequency observations from Mace Head, a monitoring site on the west coast of Ireland, with an atmospheric dispersion model and an inversion system. The sensitivities of the inversion method to the modeling assumptions are reported. The 20 year Northern Hemisphere midlatitude baseline mixing ratios, growth rates, and seasonal cycles of both gases are also presented. The results indicate reasonable agreement between the inventory and inversion results for the United Kingdom for N2O over the entire period. For CH4 the agreement is poor in the 1990s but good in the 2000s. The UK CH4 inventory reported reduction from 1990-1992 to 2005-2007 (over 50%) is dominated by changes to landfill and coal mine emissions and is more than double the corresponding drop in the inversion estimated emissions (24%). The inversion results suggest that the United Kingdom has met its Kyoto commitment (-12.5%) but by a smaller margin (-14.3%) than reported (-17.3%). The results for NW Europe with the United Kingdom removed show reasonable agreement in trend, on average the inversion results for N2O are 25% lower and for CH4 21% higher.
Geoacoustic inversion with ships as sources.
Koch, Robert A; Knobles, David P
2005-02-01
Estimation of geoacoustic parameters using acoustic data from a surface ship was performed for a shallow water region in the Gulf of Mexico. The data were recorded from hydrophones in a bottom mounted, horizontal line array (HLA). The techniques developed to produce the geoacoustic inversion are described, and an efficient method for geoacoustic inversion with broadband beam cross-spectral data is demonstrated. The performance of cost functions that involve coherent or incoherent sums over frequency and one or multiple time segments is discussed. Successful inversions for the first sediment layer sound speed and thickness and some of the parameters for the deeper layers were obtained with the surface ship at nominal ranges of 20, 30, or 50 water depths. The data for these inversions were beam cross-spectra from four subapertures of the HLA spanning a little more than two water depths. The subaperture beams included ten frequencies equally spaced in the 120-200 Hz band. The values of the geoacoustic parameters from the inversions are validated by comparisons with geophysical observations and with the parameter values from previous inversions by other invesigators, and by comparing transmission loss (TL) measured in the experiment with modeled TL based on the inverted geoacoustic parameters.
Inversion of receiver function by wavelet transformation
Institute of Scientific and Technical Information of China (English)
吴庆举; 田小波; 张乃铃; 李桂银; 曾融生
2003-01-01
A new method for receiver function inversion by wavelet transformation is presented in this paper. Receiver func-tion is expanded to different scales with different resolution by wavelet transformation. After an initial model be-ing taken, a generalized least-squares inversion procedure is gradually carried out for receiver function from low tohigh scale, with the inversion result for low order receiver function as the initial model for high order. Aneighborhood containing the global minimum is firstly searched from low scale receiver function, and will gradu-ally focus at the global minimum by introducing high scale information of receiver function. With the gradual ad-dition of high wave-number to smooth background velocity structure, wavelet transformation can keep the inver-sion result converge to the global minimum, reduce to certain extent the dependence of inversion result on theinitial model, overcome the nonuniqueness of generalized least-squares inversion, and obtain reliable crustal andupper mantle velocity with high resolution.
An application of sparse inversion on the calculation of the inverse data space of geophysical data
Saragiotis, Christos
2011-07-01
Multiple reflections as observed in seismic reflection measurements often hide arrivals from the deeper target reflectors and need to be removed. The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function and by constraining the 1 norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal. © 2011 IEEE.
Cheng, Jin; Hon, Yiu-Chung; Seo, Jin Keun; Yamamoto, Masahiro
2005-01-01
The Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches was held at Fudan University, Shanghai from 16-21 June 2004. The first conference in this series was held at the City University of Hong Kong in January 2002 and it was agreed to hold the conference once every two years in a Pan-Pacific Asian country. The next conference is scheduled to be held at Hokkaido University, Sapporo, Japan in July 2006. The purpose of this series of biennial conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries. In recent decades, interest in inverse problems has been flourishing all over the globe because of both the theoretical interest and practical requirements. In particular, in Asian countries, one is witnessing remarkable new trends of research in inverse problems as well as the participation of many young talents. Considering these trends, the second conference was organized with the chairperson Professor Li Tat-tsien (Fudan University), in order to provide forums for developing research cooperation and to promote activities in the field of inverse problems. Because solutions to inverse problems are needed in various applied fields, we entertained a total of 92 participants at the second conference and arranged various talks which ranged from mathematical analyses to solutions of concrete inverse problems in the real world. This volume contains 18 selected papers, all of which have undergone peer review. The 18 papers are classified as follows: Surveys: four papers give reviews of specific inverse problems. Theoretical aspects: six papers investigate the uniqueness, stability, and reconstruction schemes. Numerical methods: four papers devise new numerical methods and their applications to inverse problems. Solutions to applied inverse problems: four papers discuss concrete inverse problems such as scattering problems and inverse problems in
Application of the Backscatter Near-End Solution for the Inversion of Scanning Lidar Data
Kovalev, Vladimir; Wold, Cyle; Petkov, Alexander; Hao, Wei Min
2016-06-01
The significant issue of the classic multiangle data-processing technique is that the upper boundary height, up to which the multiangle data processing technique allows reliable extraction of optical parameters of the searched atmosphere, is always significantly less than the operative range of the scanning lidar. The existing inversion methodology yields poor accuracy when inverting the far-end data points of the signals measured in and close to zenith. In the report, the data processing technique is considered which allows using the zenith-measured signal to increase the maximal heights of profiling of the atmosphere. Simulated and experimental data are presented that illustrate the specifics of such a technique.
Direct and Inverse Cascades in the Acceleration Region of the Fast Solar Wind
van Ballegooijen, A. A.; Asgari-Targhi, M.
2017-01-01
Alfvén waves are believed to play an important role in the heating and acceleration of the fast solar wind emanating from coronal holes. Nonlinear interactions between the dominant {{\\boldsymbol{z}}}+ waves and minority {{\\boldsymbol{z}}}- waves have the potential to transfer wave energy either to smaller perpendicular scales (“direct cascade”) or to larger scales (“inverse cascade”). In this paper we use reduced magnetohydrodynamic (RMHD) simulations to investigate how the cascade rates {ε }+/- depend on perpendicular wavenumber and radial distance from the Sun center. For models with a smooth background atmosphere, we find that an inverse cascade ({ε }+ 0) occurs elsewhere. For a model with density fluctuations, there are multiple regions with an inverse cascade. In both cases, the cascade rate {ε }+ varies significantly with perpendicular wavenumber, indicating that the cacsade is a highly nonlocal process. As a result of the inverse cascades, the energy dissipation rates are much lower than expected from a phenomenological model and are insufficient to maintain the temperature of the background atmosphere. We conclude that RMHD models are unable to reproduce the observed properties of the fast solar wind.
An Efficient Pseudo-Inverse Solution to the Inverse Kinematic Problem for 6-Joint Manipulators
Directory of Open Access Journals (Sweden)
Stefano Chiaverini
1990-10-01
Full Text Available The use of the pseudo-inverse Jacobian matrix makes the solution of the inverse kinematic problem well-defined even at singular configurations of the robot arm, in the neighbourhood of a singularity, however, the computed solution often results in high joint velocities which may not be feasible to the real manipulator. Furthermore, the pseudo-inverse solution is computationally expensive, thus preventing real-time applications.
Inverse feasibility problems of the inverse maximum ﬂow problems
Indian Academy of Sciences (India)
Adrian Deaconu; Eleonor Ciurea
2013-04-01
A linear time method to decide if any inverse maximum ﬂow (denoted General Inverse Maximum Flow problems (IMFG)) problem has solution is deduced. If IMFG does not have solution, methods to transform IMFG into a feasible problem are presented. The methods consist of modifying as little as possible the restrictions to the variation of the bounds of the ﬂow. New inverse combinatorial optimization problems are introduced and solved.
Acoustic tomography in the atmospheric surface layer
Directory of Open Access Journals (Sweden)
A. Ziemann
Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.
Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.
Non-LTE inversions of the Mg II h&k and UV triplet lines
Rodríguez, Jaime de la Cruz; Ramos, Andrés Asensio
2016-01-01
The Mg II h&k lines are powerful diagnostics for studying the solar chromosphere. They have become particularly popular with the launch of the IRIS satellite, and a number of studies that include these lines have lead to great progress in understanding chromospheric heating, in many cases thanks to the support from 3D MHD simulations. In this study we utilize another approach to analyze observations: non-LTE inversions of the Mg II h&k and UV triplet lines including the effects of partial redistribution. Our inversion code attempts to construct a model atmosphere that is compatible with the observed spectra. We have assessed the capabilities and limitations of the inversions using the FALC atmosphere and a snapshot from a 3D radiation-MHD simulation. We find that Mg II h&k allow reconstructing a model atmosphere from the middle photosphere to the transition region. We have also explored the capabilities of a multi-line/multi-atom setup, including the Mg II h&k, the Ca II 854.2 nm and the Fe I ...
Mirador - Atmospheric Composition
National Aeronautics and Space Administration — Earth Science data access made simple. Atmospheric Composition is focused on the composition of Earth's atmosphere in relation to climate prediction, solar effects,...
Planetary Atmospheric Electricity
Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M
2008-01-01
This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...
Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...
Deterministic chaos, fractals and quantumlike mechanics in atmospheric flows
Selvam, A M
1990-01-01
The complex spaciotemporal patterns of atmospheric flows that result from the cooperative existence of fluctuations ranging in size from millimetres to thousands of kilometres are found to exhibit long-range spacial and temporal correlations. These correlations are manifested as the self-similar fractal geometry of the global cloud cover pattern and the inverse power-law form for the atmospheric eddy energy spectrum. Such long-range spaciotemporal correlations are ubiquitous in extended natural dynamical systems and are signatures of deterministic chaos or self-organized criticality. In this paper, a cell dynamical system model for atmospheric flows is developed by consideration of microscopic domain eddy dynamical processes. This nondeterministic model enables formulation of a simple closed set of governing equations for the prediction and description of observed atmospheric flow structure characteristics as follows. The strange-attractor design of the field of deterministic chaos in atmospheric flows consis...
Observations, Thermochemical Calculations, and Modeling of Exoplanetary Atmospheres
Blecic, Jasmina
2016-01-01
This dissertation as a whole aims to provide means to better understand hot-Jupiter planets through observing, performing thermochemical calculations, and modeling their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations and targets with high signal-to-noise ratios, as their deep eclipses allow us to detect signatures of spectral features and assess planetary atmospheric structure and composition with greater certainty. Chapter 1 gives a short introduction. Chapter 2 presents the Spitzer secondary-eclipse analysis and atmospheric characterization of WASP-14b. WASP-14b is a highly irradiated, transiting hot Jupiter. By applying a Bayesian approach in the atmospheric analysis, we found an absence of thermal inversion contrary to theoretical predictions. Chapter 3 describes the infrared observations of WASP-43b Spitzer secondary eclipses, data analysis, and atmospheric characterization. WASP-43b is one of the closest-orbiting hot Jupiters, orbiting one of the coolest stars with a hot Ju...
Successful management of recurrent puerperal uterine inversion
Directory of Open Access Journals (Sweden)
Bindu Nambisan
2016-10-01
Full Text Available The puerperal uterine inversion is a rare and severe complication occurring in the third stage of labour. The exact mechanisms are unclear. However, extrinsic factors such as prolonged labour, umbilical cord traction, oxytocic use etc. have been mentioned. Other intrinsic factors such as primiparity, uterine hypotonia, different placental localizations, fundal location of a myoma or short umbilical cord have also been reported. The diagnosis of uterine inversion is mainly made on the basis of clinical symptoms which include haemorrhage, shock and a strong pelvic pain. The immediate treatment of the uterine inversion is required. A case of 23 years old, second gravida with one previous spontaneous first trimester abortion, who had a full term normal vaginal delivery but while trying to deliver the placenta after confirmation of placental separation clinically, uterine inversion was diagnosed immediately and manual repositioning of uterus was done under general anaesthesia. On the 6 th post natal day, during the routine postnatal rounds, uterus was not palpable per abdomen and a local examination revealed a mass at the introitus. A diagnosis of grade 3 sub-acute inversion was made and she was taken up for exploratory laparotomy. Reinsertion was done according to the Huntington technique by placing clamps on the round ligament, near its insertion on the uterus, and applying traction upwards while the assistant exerted traction on the contra lateral way through the vagina. As persistent atonicity and diffuse oozing was noted multiple Cho sutures were put over the uterus. Patient had an uneventful postnatal period. This is a rare scenario where the same patient had an acute inversion initially followed by sub-acute inversion. [Int J Reprod Contracept Obstet Gynecol 2016; 5(10.000: 3619-3621
Mein, P.; Uitenbroek, H.; Mein, N.; Bommier, V.; Faurobert, M.
2016-06-01
Context. In the case of unresolved solar structures or stray light contamination, inversion techniques using four Stokes parameters of Zeeman profiles cannot disentangle the combined contributions of magnetic and nonmagnetic areas to the observed Stokes I. Aims: In the framework of a two-component model atmosphere with filling factor f, we propose an inversion method restricting input data to Q , U, and V profiles, thus overcoming ambiguities from stray light and spatial mixing. Methods: The V-moments inversion (VMI) method uses shifts SV derived from moments of V-profiles and integrals of Q2, U2, and V2 to determine the strength B and inclination ψ of a magnetic field vector through least-squares polynomial fits and with very few iterations. Moment calculations are optimized to reduce data noise effects. To specify the model atmosphere of the magnetic component, an additional parameter δ, deduced from the shape of V-profiles, is used to interpolate between expansions corresponding to two basic models. Results: We perform inversions of HINODE SOT/SP data for inclination ranges 0 <ψ< 60° and 120 <ψ< 180° for the 630.2 nm Fe i line. A damping coefficient is fitted to take instrumental line broadening into account. We estimate errors from data noise. Magnetic field strengths and inclinations deduced from VMI inversion are compared with results from the inversion codes UNNOFIT and MERLIN. Conclusions: The VMI inversion method is insensitive to the dependence of Stokes I profiles on the thermodynamic structure in nonmagnetic areas. In the range of Bf products larger than 200 G, mean field strengths exceed 1000 G and there is not a very significant departure from the UNNOFIT results because of differences between magnetic and nonmagnetic model atmospheres. Further improvements might include additional parameters deduced from the shape of Stokes V profiles and from large sets of 3D-MHD simulations, especially for unresolved magnetic flux tubes.
Atmospheric and accelerator neutrinos
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Yoichiro [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo Higashi-Mozumi, Kamioka, Hida-City, Gifu 506-1205 (Japan)
2006-05-15
Results from the atmospheric neutrino measurements are presented. Evidence for the {nu}{sub {tau}} appearance in the atmospheric neutrino events was shown by statistical methods. The long baseline oscillation experiment using man-made neutrinos has confirmed the atmospheric neutrino oscillation. The future accelerator experiments are briefly discussed.
Atmospheric refraction : a history
Lehn, WH; van der Werf, S
2005-01-01
We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of un
Inversion concept of the origin of life.
Kompanichenko, V N
2012-06-01
The essence of the inversion concept of the origin of life can be narrowed down to the following theses: 1) thermodynamic inversion is the key transformation of prebiotic microsystems leading to their transition into primary forms of life; 2) this transformation might occur only in the microsystems oscillating around the bifurcation point under far-from-equilibrium conditions. The transformation consists in the inversion of the balance "free energy contribution / entropy contribution", from negative to positive values. At the inversion moment the microsystem radically reorganizes in accordance with the new negentropy (i.e. biological) way of organization. According to this approach, the origin-of-life process on the early Earth took place in the fluctuating hydrothermal medium. The process occurred in two successive stages: a) spontaneous self-assembly of initial three-dimensional prebiotic microsystems composed mainly of hydrocarbons, lipids and simple amino acids, or their precursors, within the temperature interval of 100-300°C (prebiotic stage); b) non-spontaneous synthesis of sugars, ATP and nucleic acids started at the inversion moment under the temperature 70-100°C (biotic stage). Macro- and microfluctuations of thermodynamic and physico-chemical parameters able to sustain this way of chemical conversion have been detected in several contemporary hydrothermal systems. A minimal self-sufficient unit of life on the early Earth was a community of simplest microorganisms (not a separate microorganism).
Multiscattering inversion for low-model wavenumbers
Alkhalifah, Tariq Ali
2016-09-21
A successful full-waveform inversion implementation updates the low-wavenumber model components first for a proper description of the wavefield propagation and slowly adds the high wavenumber potentially scattering parts of the model. The low-wavenumber components can be extracted from the transmission parts of the recorded wavefield emanating directly from the source or the transmission parts from the single- or double-scattered wavefield computed from a predicted scatter field acting as secondary sources.We use a combined inversion of data modeled from the source and those corresponding to single and double scattering to update the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most of the potential model wavenumber information that may be embedded in the data. A scattering-angle filter is used to divide the gradient of the combined inversion, so initially the high-wavenumber (low-scattering-angle) components of the gradient are directed to the perturbation model and the low-wavenumber (highscattering- angle) components are directed to the velocity model. As our background velocity matures, the scatteringangle divide is slowly lowered to allow for more of the higher wavenumbers to contribute the velocity model. Synthetic examples including the Marmousi model are used to demonstrate the additional illumination and improved velocity inversion obtained when including multiscattered energy. © 2016 Society of Exploration Geophysicists.
Speaker independent acoustic-to-articulatory inversion
Ji, An
Acoustic-to-articulatory inversion, the determination of articulatory parameters from acoustic signals, is a difficult but important problem for many speech processing applications, such as automatic speech recognition (ASR) and computer aided pronunciation training (CAPT). In recent years, several approaches have been successfully implemented for speaker dependent models with parallel acoustic and kinematic training data. However, in many practical applications inversion is needed for new speakers for whom no articulatory data is available. In order to address this problem, this dissertation introduces a novel speaker adaptation approach called Parallel Reference Speaker Weighting (PRSW), based on parallel acoustic and articulatory Hidden Markov Models (HMM). This approach uses a robust normalized articulatory space and palate referenced articulatory features combined with speaker-weighted adaptation to form an inversion mapping for new speakers that can accurately estimate articulatory trajectories. The proposed PRSW method is evaluated on the newly collected Marquette electromagnetic articulography -- Mandarin Accented English (EMA-MAE) corpus using 20 native English speakers. Cross-speaker inversion results show that given a good selection of reference speakers with consistent acoustic and articulatory patterns, the PRSW approach gives good speaker independent inversion performance even without kinematic training data.
Unwrapped phase inversion with an exponential damping
Choi, Yun Seok
2015-07-28
Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.
QCD-instantons and conformal inversion symmetry
Energy Technology Data Exchange (ETDEWEB)
Klammer, D.
2006-07-15
Instantons are an essential and non-perturbative part of Quantum Chromodynamics, the theory of strong interactions. One of the most relevant quantities in the instanton calculus is the instanton-size distribution, which can be described on the one hand within the framework of instanton perturbation theory and on the other hand investigated numerically by means of lattice computations. A rapid onset of a drastic discrepancy between these respective results indicates that the underlying physics is not yet well understood. In this work we investigate the appealing possibility of a symmetry under conformal inversion of space-time leading to this deviation. The motivation being that the lattice data seem to be invariant under an inversion of the instanton size. Since the instanton solution of a given size turns into an anti-instanton solution having an inverted size under conformal inversion of space-time, we ask in a first investigation, whether this property is transferred to the quantum level. In order to introduce a new scale, which is indicated by the lattice data and corresponds to the average instanton size as inversion radius, we project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via stereographic projection. The radius of this sphere is associated with the average instanton size. The result for the instanton size-distribution projected onto the sphere agrees surprisingly well with the lattice data at qualitative level. The resulting symmetry under an inversion of the instanton size is almost perfect. (orig.)
Varying prior information in Bayesian inversion
Walker, Matthew; Curtis, Andrew
2014-06-01
Bayes' rule is used to combine likelihood and prior probability distributions. The former represents knowledge derived from new data, the latter represents pre-existing knowledge; the Bayesian combination is the so-called posterior distribution, representing the resultant new state of knowledge. While varying the likelihood due to differing data observations is common, there are also situations where the prior distribution must be changed or replaced repeatedly. For example, in mixture density neural network (MDN) inversion, using current methods the neural network employed for inversion needs to be retrained every time prior information changes. We develop a method of prior replacement to vary the prior without re-training the network. Thus the efficiency of MDN inversions can be increased, typically by orders of magnitude when applied to geophysical problems. We demonstrate this for the inversion of seismic attributes in a synthetic subsurface geological reservoir model. We also present results which suggest that prior replacement can be used to control the statistical properties (such as variance) of the final estimate of the posterior in more general (e.g., Monte Carlo based) inverse problem solutions.
Inverse kinematic-based robot control
Wolovich, W. A.; Flueckiger, K. F.
1987-01-01
A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.
A Study of the Relationship between Air Pollutants and Inversion in the ABL over the City of Lanzhou
Institute of Scientific and Technical Information of China (English)
ZHANG Qiang; LI Hongyu
2011-01-01
By analyzing the pollutant concentrations over the urban area and over the rural area of the city of Lanzhou, Gansu Province, China, the relationships between the daytime inversion intensity and the pollutant concentration in the atmospheric boundary layer (ABL) are studied with the consideration of wind speed and direction, potential temperature, specific humidity profiles, pollutant concentration in the ABL, the surface temperature, and global radiation on the ground. It was shown that the daytime inversion is a key factor in controlling air pollution concentration. A clear and positive feedback process between the daytime inversion intensity and the air pollutants over the city was found through the analysis of influences of climatic and environmental factors. The mechanisms by which the terrain and air pollutants affect the formation of the daytime inversion are discussed. The solar radiation as the essential energy source to maintain the inversion is analyzed, as are various out-forcing factors affecting the inversion and air pollutants. At last, aphysical frame of relationships of air pollution with daytime inversion and the local and out-forcing factors over Lanzhou is built.
A regional high-resolution carbon flux inversion of North America for 2004
Directory of Open Access Journals (Sweden)
A. E. Schuh
2010-05-01
Full Text Available Resolving the discrepancies between NEE estimates based upon (1 ground studies and (2 atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS and an underlying biosphere (SiB3 model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous global inversions including the Transcom suite of inversions have utilized inversion regions formed by collapsing biome-similar grid cells into larger aggregated regions. An extreme example of this might be where corrections to NEE imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO_{2} mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to Gross Primary Productivity (GPP and Ecosystem Respiration (ER is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the Parameterized Chemical Transport Model (PCTM models is used to forge a connection between upwind biosphere fluxes and downwind observed CO_{2} mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO_{2}. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a
Energy Technology Data Exchange (ETDEWEB)
Yao, Jie, E-mail: yjie2@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Lesage, Anne-Cécile; Hussain, Fazle [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Bodmann, Bernhard G. [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States); Kouri, Donald J. [Department of Physics, University of Houston, Houston, Texas 77204 (United States)
2014-12-15
The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptotic form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.
On the Block Independence in G-Inverse and Reflexive Inner Inverse of A Partitioned Matrix
Institute of Scientific and Technical Information of China (English)
Yong Hui LIU; Mu Sheng WEI
2007-01-01
By applying the multiple quotient singular value decomposition QQQQQ-SVD, we study the block independence in g-inverse and reflexive inner inverse of 2×2 partitioned matrices, and prove a conjecture in [YijuWang,SIAM J. Matrix Anal. Appl., 19(2), 407-415(1998)].
Ramig, Keith; Subramaniam, Gopal; Karimi, Sasan; Szalda, David J; Ko, Allen; Lam, Aaron; Li, Jeffrey; Coaderaj, Ani; Cavdar, Leyla; Bogdan, Lukasz; Kwon, Kitae; Greer, Edyta M
2016-04-15
A series of 2,4-disubstituted 1H-1-benzazepines, 2a-d, 4, and 6, were studied, varying both the substituents at C2 and C4 and at the nitrogen atom. The conformational inversion (ring-flip) and nitrogen-atom inversion (N-inversion) energetics were studied by variable-temperature NMR spectroscopy and computations. The steric bulk of the nitrogen-atom substituent was found to affect both the conformation of the azepine ring and the geometry around the nitrogen atom. Also affected were the Gibbs free energy barriers for the ring-flip and the N-inversion. When the nitrogen-atom substituent was alkyl, as in 2a-c, the geometry of the nitrogen atom was nearly planar and the azepine ring was highly puckered; the result was a relatively high-energy barrier to ring-flip and a low barrier to N-inversion. Conversely, when the nitrogen-atom substituent was a hydrogen atom, as in 2d, 4, and 6, the nitrogen atom was significantly pyramidalized and the azepine ring was less puckered; the result here was a relatively high energy barrier to N-inversion and a low barrier to ring-flip. In these N-unsubstituted compounds, it was found computationally that the lowest-energy stereodynamic process was ring-flip coupled with N-inversion, as N-inversion alone had a much higher energy barrier.
CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST
Energy Technology Data Exchange (ETDEWEB)
Greene, Thomas P. [NASA Ames Research Center, Space Science and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States); Line, Michael R.; Montero, Cezar; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lustig-Yaeger, Jacob [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Luther, Kyle, E-mail: tom.greene@nasa.gov [Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720 (United States)
2016-01-20
We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH{sub 4}, CO, CO{sub 2}, H{sub 2}O, NH{sub 3}) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high F{sub p} and high F{sub p}/F{sub *}. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.
Sub-photosphere to Solar Atmosphere Connection
Komm, Rudolf; De Moortel, Ineke; Fan, Yuhong; Ilonidis, Stathis; Steiner, Oskar
2015-12-01
Magnetic fields extend from the solar interior through the atmosphere. The formation and evolution of active regions can be studied by measuring subsurface flows with local helioseismology. The emergence of magnetic flux from the solar convection zone is associated with acoustic perturbation signatures. In near-surface layers, the average dynamics can be determined for emerging regions. MHD simulations of the emergence of a twisted flux tube show how magnetic twist and free energy are transported from the interior into the corona and the dynamic signatures associated with such transport in the photospheric and sub-photospheric layers. The subsurface twisted flux tube does not emerge into the corona as a whole in emerging active regions. Shear flows at the polarity inversion line and coherent vortical motions in the subsurface flux tubes are the major means by which twist is transported into the corona, leading to the formation of sigmoid-shaped coronal magnetic fields capable of driving solar eruptions. The transport of twist can be followed from the interior by using the kinetic helicity of subsurface flows as a proxy of magnetic helicity; this quantity holds great promise for improving the understanding of eruptive phenomena. Waves are not only vital for studying the link between the solar interior and the surface but for linking the photosphere with the corona as well. Acoustic waves that propagate from the surface into the magnetically structured, dynamic atmosphere undergo mode conversion and refraction. These effects enable atmospheric seismology to determine the topography of magnetic canopies in the solar atmosphere. Inclined magnetic fields lower the cut-off frequency so that low frequency waves can leak into the outer atmosphere. Recent high resolution, high cadence observations of waves and oscillations in the solar atmosphere, have lead to a renewed interest in the potential role of waves as a heating mechanism. In light of their potential contribution
Children's Understanding of the Arithmetic Concepts of Inversion and Associativity
Robinson, Katherine M.; Ninowski, Jerilyn E.; Gray, Melissa L.
2006-01-01
Previous studies have shown that even preschoolers can solve inversion problems of the form a + b - b by using the knowledge that addition and subtraction are inverse operations. In this study, a new type of inversion problem of the form d x e [divided by] e was also examined. Grade 6 and 8 students solved inversion problems of both types as well…
Atmospheric Habitable Zones in Y Dwarf Atmospheres
Yates, Jack S.; Palmer, Paul I.; Biller, Beth; Cockell, Charles S.
2017-02-01
We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μm spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 109 cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.
Probabilistic inversion for chicken processing lines
Energy Technology Data Exchange (ETDEWEB)
Cooke, Roger M. [Department of Mathematics, Delft University of Technology, Delft (Netherlands)]. E-mail: r.m.cooke@ewi.tudelft.nl; Nauta, Maarten [Microbiological Laboratory for Health Protection RIVM, Bilthoven (Netherlands); Havelaar, Arie H. [Microbiological Laboratory for Health Protection RIVM, Bilthoven (Netherlands); Fels, Ine van der [Microbiological Laboratory for Health Protection RIVM, Bilthoven (Netherlands)
2006-10-15
We discuss an application of probabilistic inversion techniques to a model of campylobacter transmission in chicken processing lines. Such techniques are indicated when we wish to quantify a model which is new and perhaps unfamiliar to the expert community. In this case there are no measurements for estimating model parameters, and experts are typically unable to give a considered judgment. In such cases, experts are asked to quantify their uncertainty regarding variables which can be predicted by the model. The experts' distributions (after combination) are then pulled back onto the parameter space of the model, a process termed 'probabilistic inversion'. This study illustrates two such techniques, iterative proportional fitting (IPF) and PARmeter fitting for uncertain models (PARFUM). In addition, we illustrate how expert judgement on predicted observable quantities in combination with probabilistic inversion may be used for model validation and/or model criticism.
Psycholinguistic Evidence for Inverse Scope in Korean.
Lee, Sunyoung; O'Grady, William
2016-08-01
We use experimental data to shed light on the ongoing question of whether Korean allows inverse scope interpretation in sentences containing an indefinite subject and a universally quantified direct object (e.g., 'Someone bought each loaf of bread at the bakery'). The results of an off-line acceptability judgment task (n = 38) and an online self-paced reading task (n [Formula: see text] 22) indicate that inverse scope interpretations are in fact permitted in Korean as a secondary option, as is also the case in English. We argue that the dispreference for the inverse scope reading reflects processing considerations related to burden on working memory.
Inverse obstacle scattering for elastic waves
Li, Peijun; Wang, Yuliang; Wang, Zewen; Zhao, Yue
2016-11-01
Consider the scattering of a time-harmonic plane wave by a rigid obstacle which is embedded in an open space filled with a homogeneous and isotropic elastic medium. An exact transparent boundary condition is introduced to reduce the scattering problem into a boundary value problem in a bounded domain. Given the incident field, the direct problem is to determine the displacement of the wave field from the known obstacle; the inverse problem is to determine the obstacle’s surface from the measurement of the displacement on an artificial boundary enclosing the obstacle. In this paper, we consider both the direct and inverse problems. The direct problem is shown to have a unique weak solution by examining its variational formulation. The domain derivative is derived for the displacement with respect to the variation of the surface. A continuation method with respect to the frequency is developed for the inverse problem. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.
Estimating stellar mean density through seismic inversions
Reese, D R; Goupil, M J; Thompson, M J; Deheuvels, S
2012-01-01
Determining the mass of stars is crucial both to improving stellar evolution theory and to characterising exoplanetary systems. Asteroseismology offers a promising way to estimate stellar mean density. When combined with accurate radii determinations, such as is expected from GAIA, this yields accurate stellar masses. The main difficulty is finding the best way to extract the mean density from a set of observed frequencies. We seek to establish a new method for estimating stellar mean density, which combines the simplicity of a scaling law while providing the accuracy of an inversion technique. We provide a framework in which to construct and evaluate kernel-based linear inversions which yield directly the mean density of a star. We then describe three different inversion techniques (SOLA and two scaling laws) and apply them to the sun, several test cases and three stars. The SOLA approach and the scaling law based on the surface correcting technique described by Kjeldsen et al. (2008) yield comparable result...
Preference elicitation and inverse reinforcement learning
Rothkopf, Constantin
2011-01-01
We state the problem of inverse reinforcement learning in terms of preference elicitation, resulting in a principled (Bayesian) statistical formulation. This generalises previous work on Bayesian inverse reinforcement learning and allows us to obtain a posterior distribution on the agent's preferences, policy and optionally, the obtained reward sequence, from observations. We examine the relation of the resulting approach to other statistical methods for inverse reinforcement learning via analysis and experimental results. We show that preferences can be determined accurately, even if the observed agent's policy is sub-optimal with respect to its own preferences. In that case, significantly improved policies with respect to the agent's preferences are obtained, compared to both other methods and to the performance of the demonstrated policy.
Inverse Scattering Approach to Improving Pattern Recognition
Energy Technology Data Exchange (ETDEWEB)
Chapline, G; Fu, C
2005-02-15
The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the ''wake-sleep'' algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.
Error handling strategies in multiphase inverse modeling
Energy Technology Data Exchange (ETDEWEB)
Finsterle, S.; Zhang, Y.
2010-12-01
Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.
Fast inversion of solar Ca II spectra
Beck, C; Rezaei, R; Louis, R E
2014-01-01
We present a fast (<< 1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log tau ~ -3 and increases to values of 2.5 and 4 at log tau = -6 in the quiet Sun and the umbra, respectively.
Inverse Folding of RNA Pseudoknot Structures
Gao, James Z M; Reidys, Christian M
2010-01-01
Background: RNA exhibits a variety of structural configurations. Here we consider a structure to be tantamount to the noncrossing Watson-Crick and \\pairGU-base pairings (secondary structure) and additional cross-serial base pairs. These interactions are called pseudoknots and are observed across the whole spectrum of RNA functionalities. In the context of studying natural RNA structures, searching for new ribozymes and designing artificial RNA, it is of interest to find RNA sequences folding into a specific structure and to analyze their induced neutral networks. Since the established inverse folding algorithms, {\\tt RNAinverse}, {\\tt RNA-SSD} as well as {\\tt INFO-RNA} are limited to RNA secondary structures, we present in this paper the inverse folding algorithm {\\tt Inv} which can deal with 3-noncrossing, canonical pseudoknot structures. Results: In this paper we present the inverse folding algorithm {\\tt Inv}. We give a detailed analysis of {\\tt Inv}, including pseudocodes. We show that {\\tt Inv} allows to...
Inversion, error analysis, and validation of GPS/MET occultation data
Directory of Open Access Journals (Sweden)
A. K. Steiner
Full Text Available The global positioning system meteorology (GPS/MET experiment was the first practical demonstration of global navigation satellite system (GNSS-based active limb sounding employing the radio occultation technique. This method measures, as principal observable and with millimetric accuracy, the excess phase path (relative to propagation in vacuum of GNSS-transmitted radio waves caused by refraction during passage through the Earth's neutral atmosphere and ionosphere in limb geometry. It shows great potential utility for weather and climate system studies in providing an unique combination of global coverage, high vertical resolution and accuracy, long-term stability, and all-weather capability. We first describe our GPS/MET data processing scheme from excess phases via bending angles to the neutral atmospheric parameters refractivity, density, pressure and temperature. Special emphasis is given to ionospheric correction methodology and the inversion of bending angles to refractivities, where we introduce a matrix inversion technique (instead of the usual integral inversion. The matrix technique is shown to lead to identical results as integral inversion but is more directly extendable to inversion by optimal estimation. The quality of GPS/MET-derived profiles is analyzed with an error estimation analysis employing a Monte Carlo technique. We consider statistical errors together with systematic errors due to upper-boundary initialization of the retrieval by a priori bending angles. Perfect initialization and properly smoothed statistical errors allow for better than 1 K temperature retrieval accuracy up to the stratopause. No initialization and statistical errors yield better than 1 K accuracy up to 30 km but less than 3 K accuracy above 40 km. Given imperfect initialization, biases >2 K propagate down to below 30 km height in unfavorable realistic cases. Furthermore, results of a statistical validation of GPS/MET profiles through comparison
Emergent strategies for inverse molecular design
Institute of Scientific and Technical Information of China (English)
BERATAN; David; N.
2009-01-01
Molecular design is essential and ubiquitous in chemistry,physics,biology,and material science.The immense space of available candidate molecules requires novel optimization strategies and algorithms for exploring the space and achieving efficient and effective molecular design.This paper summarizes the current progress toward developing practical theoretical optimization schemes for molecular design.In particular,we emphasize emergent strategies for inverse molecular design.Several representative design examples,based on recently developed strategies,are described to demonstrate the principles of inverse molecular design.
Optimal Transport for Seismic Full Waveform Inversion
Engquist, Bjorn; Yang, Yunan
2016-01-01
Full waveform inversion is a successful procedure for determining properties of the earth from surface measurements in seismology. This inverse problem is solved by a PDE constrained optimization where unknown coefficients in a computed wavefield are adjusted to minimize the mismatch with the measured data. We propose using the Wasserstein metric, which is related to optimal transport, for measuring this mismatch. Several advantageous properties are proved with regards to convexity of the objective function and robustness with respect to noise. The Wasserstein metric is computed by solving a Monge-Ampere equation. We describe an algorithm for computing its Frechet gradient for use in the optimization. Numerical examples are given.
3D geophysical inversion for contact surfaces
Lelièvre, Peter; Farquharson, Colin
2014-05-01
Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure volumetric inversions (performed on meshes of space-filling cells) recover smooth models inconsistent with such interpretations. There are several approaches through which geophysical inversion can help recover models with the desired characteristics. Some authors have developed iterative strategies in which several volumetric inversions are performed with regularization parameters changing to achieve sharper interfaces at automatically determined locations. Another approach is to redesign the regularization to be consistent with the desired model characteristics, e.g. L1-like norms or compactness measures. A few researchers have taken approaches that limit the recovered values to lie within particular ranges, resulting in sharp discontinuities; these include binary inversion, level set methods and clustering strategies. In most of the approaches mentioned above, the model parameterization considers the physical properties in each of the many space-filling cells within the volume of interest. The exception are level set methods, in which a higher dimensional function is parameterized and the contact surface is determined from the zero-level of that function. However, even level-set methods rely on an underlying volumetric mesh. We are researching a fundamentally different type of inversion that parameterizes the Earth in terms of the contact surfaces between rock units. 3D geological Earth models typically comprise wireframe surfaces of tessellated triangles or other polygonal planar facets. This wireframe representation allows for flexible and efficient generation of complicated geological structures. Therefore, a natural approach for representing a geophysical model in an inversion is to parameterize the wireframe contact surfaces as the coordinates of the nodes (facet vertices). The geological and
Inverse potential scattering in duct acoustics.
Forbes, Barbara J; Pike, E Roy; Sharp, David B; Aktosun, Tuncay
2006-01-01
The inverse problem of the noninvasive measurement of the shape of an acoustical duct in which one-dimensional wave propagation can be assumed is examined within the theoretical framework of the governing Klein-Gordon equation. Previous deterministic methods developed over the last 40 years have all required direct measurement of the reflectance or input impedance but now, by application of the methods of inverse quantum scattering to the acoustical system, it is shown that the reflectance can be algorithmically derived from the radiated wave. The potential and area functions of the duct can subsequently be reconstructed. The results are discussed with particular reference to acoustic pulse reflectometry.
Reverberation Inversion Enhancements Using BASE 04 Data
2006-10-01
d’exploitation de modèle de RDDC Atlantique (DMOS) est une évolution de l’ensemble de programmes SWAMI (Initiative de modélisation de sonar actif en eau peu...du signal et la probabilité de détection pour un sonar actif . Un module d’inversion de réverbération, BREVER, est utilisé pour ces travaux. Le...d’inversion permet d’effectuer des études sur l’utilité des techniques de sondage au moyen de capteurs en tant qu’aides aux décisions tactiques
Kelvin transformation and inverse multipoles in electrostatics
Amaral, R L P G; Lemos, N A
2016-01-01
The inversion in the sphere or Kelvin transformation, which exchanges the radial coordinate for its inverse, is used as a guide to relate distinct electrostatic problems with dual features. The exact solution of some nontrivial problems are obtained through the mapping from simple highly symmetric systems. In particular, the concept of multipole expansion is revisited from a point of view opposed to the usual one: the sources are distributed in a region far from the origin while the electrostatic potential is described at points close to it.
Inverse scattering of dispersive stratified structures
Skaar, Johannes
2012-01-01
We consider the inverse scattering problem of retrieving the structural parameters of a stratified medium consisting of dispersive materials, given knowledge of the complex reflection coefficient in a finite frequency range. It is shown that the inverse scattering problem does not have a unique solution in general. When the dispersion is sufficiently small, such that the time-domain Fresnel reflections have durations less than the round-trip time in the layers, the solution is unique and can be found by layer peeling. Numerical examples with dispersive and lossy media are given, demonstrating the usefulness of the method for e.g. THz technology.
Linear inverse problem of the reactor dynamics
Volkov, N. P.
2017-01-01
The aim of this work is the study transient processes in nuclear reactors. The mathematical model of the reactor dynamics excluding reverse thermal coupling is investigated. This model is described by a system of integral-differential equations, consisting of a non-stationary anisotropic multispeed kinetic transport equation and a delayed neutron balance equation. An inverse problem was formulated to determine the stationary part of the function source along with the solution of the direct problem. The author obtained sufficient conditions for the existence and uniqueness of a generalized solution of this inverse problem.
Efficient matrix inversion based on VLIW architecture
Institute of Scientific and Technical Information of China (English)
Li Zhang,Fu Li,; Guangming Shi
2014-01-01
Matrix inversion is a critical part in communication, signal processing and electromagnetic system. A flexible and scal-able very long instruction word (VLIW) processor with clustered architecture is proposed for matrix inversion. A global register file (RF) is used to connect al the clusters. Two nearby clusters share a local register file. The instruction sets are also designed for the VLIW processor. Experimental results show that the proposed VLIW architecture takes only 45 latency to invert a 4 × 4 matrix when running at 150 MHz. The proposed design is roughly five times faster than the DSP solution in processing speed.
Relative risk regression models with inverse polynomials.
Ning, Yang; Woodward, Mark
2013-08-30
The proportional hazards model assumes that the log hazard ratio is a linear function of parameters. In the current paper, we model the log relative risk as an inverse polynomial, which is particularly suitable for modeling bounded and asymmetric functions. The parameters estimated by maximizing the partial likelihood are consistent and asymptotically normal. The advantages of the inverse polynomial model over the ordinary polynomial model and the fractional polynomial model for fitting various asymmetric log relative risk functions are shown by simulation. The utility of the method is further supported by analyzing two real data sets, addressing the specific question of the location of the minimum risk threshold.
Aneesur Rahman Prize: The Inverse Ising Problem
Swendsen, Robert
2014-03-01
Many methods are available for carrying out computer simulations of a model Hamiltonian to obtain thermodynamic information by generating a set of configurations. The inverse problem consists of recreating the parameters of the Hamiltonian, given a set of configurations. The problem arises in a variety of contexts, and there has been much interest recently in the inverse Ising problem, in which the configurations consist of Ising spins. I will discuss an efficient method for solving the problem and what it can tell us about the Sherrington-Kirkpatrick model.
Application of homotopy parameter inversion method in Miyun Reservoir
Institute of Scientific and Technical Information of China (English)
LI Xin; LI Yong; CHEN Duowei
2009-01-01
The large-scale convergence of homotopy parametric inversion method on the water quality model parameters calculated was used, with application in parametric inversion calculation of total phosphorus of Beijing Miyun Reservoir. Through calculated and compared the error of sedimentation rate by homotopy parametric inversion method and genetic inversion calculation method, the results indicate that homotopy parametric inversion method has good stability, calculating speed, and even if the initial selection away from the objective function, the solution still has a good convergence.
Direct Evidence for Inversion Formula in Multifractal Financial Volatility Measure
Institute of Scientific and Technical Information of China (English)
JIANG Zhi-Qiang; ZHOU Wei-Xing
2009-01-01
The inversion formula for conservative multifractal measures was unveiled mathematically a decade ago, which is however not well tested in real complex systems. We propose to verify the inversion formula using high-frequency 1982 to 1999 and its inverse measure of exit time. Both the direct and inverse measures exhibit nice multifractal nature, whose scaling ranges are not irrelevant. Empirical investigation shows that the inversion formula holds in financial markets.
Directory of Open Access Journals (Sweden)
Y. Heng
2015-10-01
Full Text Available An inverse transport modeling approach based on the concepts of sequential importance resampling and parallel computing is presented to reconstruct altitude-resolved time series of volcanic emissions, which often can not be obtained directly with current measurement techniques. A new inverse modeling and simulation system, which implements the inversion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC is developed to provide reliable transport simulations of volcanic sulfur dioxide (SO2. In the inverse modeling system MPTRAC is used to perform two types of simulations, i. e., large-scale ensemble simulations for the reconstruction of volcanic emissions and final transport simulations. The transport simulations are based on wind fields of the ERA-Interim meteorological reanalysis of the European Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent SO2 emission time series is also based on Atmospheric Infrared Sounder (AIRS satellite observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011, with complex emission patterns, is considered for method validation. Meteosat Visible and InfraRed Imager (MVIRI near-real-time imagery data are used to validate the temporal development of the reconstructed emissions. Furthermore, the altitude distributions of the emission time series are compared with top and bottom altitude measurements of aerosol layers obtained by the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS satellite instruments. The final transport simulations provide detailed spatial and temporal information on the SO2 distributions of the Nabro eruption. The SO2 column densities from the simulations are in good qualitative agreement with the AIRS observations. Our new inverse modeling and simulation system is expected to become a useful tool to also study
Antarctic Crustal Thickness from Gravity Inversion
Vaughan, A. P.; Kusznir, N. J.; Ferraccioli, F.; Jordan, T. A.
2013-12-01
Using gravity anomaly inversion, we have produced the first comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/β) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction. The continental lithosphere thinning distribution, used to define the initial thermal model temperature perturbation is derived from the gravity inversion and uses no a priori isochron information; as a consequence the gravity inversion method provides a prediction of ocean-continent transition location, which is independent of ocean isochron information. The gravity anomaly contribution from ice thickness is included in the gravity inversion, as is the contribution from sediments which assumes a compaction controlled sediment density increase with depth. Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the most recent Bedmap2 ice thickness and bedrock topography compilation south of 60 degrees south (Fretwell et al., 2013) and relatively sparse constraints on sediment thickness. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica penetrated by narrow continental rifts that feature relatively thinner crust. The East Antarctic Rift System (EARS) is a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. Intermediate crustal thickness with an inferred linear rift fabric is predicted under Coates Land. An extensive region of either thick oceanic crust or highly thinned continental crust is predicted offshore Oates Land and north Victoria Land, and also off West Antarctica
Inverse scattering problem in turbulent magnetic fluctuations
Treumann, R A; Narita, Y
2016-01-01
We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gel$'$fand-Levitan-Marchenko equation of quantum mechanical scattering theory.
Inverse Perspective Transformation for Video Surveillance
Schouten, Theo E.; Broek, van den Egon L.; Bouman, Charles A.; Miller, Eric L.; Pollak, Ilya
2008-01-01
In this research, we are considering the use of the inverse perspective transformation in video surveillance applications that observe (and possible influence) scenes consisting of moving and stationary objects; e.g., people on a parking area. In previous research, objects were detected on video str
Unstructured discontinuous Galerkin for seismic inversion.
Energy Technology Data Exchange (ETDEWEB)
van Bloemen Waanders, Bart Gustaaf; Ober, Curtis Curry; Collis, Samuel Scott
2010-04-01
This abstract explores the potential advantages of discontinuous Galerkin (DG) methods for the time-domain inversion of media parameters within the earth's interior. In particular, DG methods enable local polynomial refinement to better capture localized geological features within an area of interest while also allowing the use of unstructured meshes that can accurately capture discontinuous material interfaces. This abstract describes our initial findings when using DG methods combined with Runge-Kutta time integration and adjoint-based optimization algorithms for full-waveform inversion. Our initial results suggest that DG methods allow great flexibility in matching the media characteristics (faults, ocean bottom and salt structures) while also providing higher fidelity representations in target regions. Time-domain inversion using discontinuous Galerkin on unstructured meshes and with local polynomial refinement is shown to better capture localized geological features and accurately capture discontinuous-material interfaces. These approaches provide the ability to surgically refine representations in order to improve predicted models for specific geological features. Our future work will entail automated extensions to directly incorporate local refinement and adaptive unstructured meshes within the inversion process.
Inverse Problems in Classical and Quantum Physics
Almasy, Andrea A
2009-01-01
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. In this thesis, als...
Optical tomography: forward and inverse problems
Arridge, Simon
2009-01-01
This paper is a review of recent mathematical and computational advances in optical tomography. We discuss the physical foundations of forward models for light propagation on microscopic, mesoscopic and macroscopic scales. We also consider direct and numerical approaches to the inverse problems that arise at each of these scales. Finally, we outline future directions and open problems in the field.
Rapid probabilistic source inversion using pattern recognition
Käufl, Paul J.
2015-01-01
Numerous problems in the field of seismology require the determination of parameters of a physical model that are compatible with a set of observations and prior assumptions. This type of problem is generally termed inverse problem. While, in many cases, we are able to predict observations, given a
Inverse adverse selection: the market for gems
Dari-Mattiacci, G.; Onderstal, S.; Parisi, F.
2011-01-01
This paper studies markets plagued with asymmetric information on the quality of the goods traded. In Akerlof’s setting, sellers are better informed than buyers. In contrast, we examine cases where buyers are better informed than sellers. This creates an inverse adverse-selection problem: The market
Inverse adverse selection: the market for gems
Dari-Mattiacci, G.; Onderstal, S.; Parisi, F.
2011-01-01
This paper studies markets plagued with asymmetric information on the quality of traded goods. In Akerlof’s setting, sellers are better informed than buyers. In contrast, we examine cases where buyers are better informed than sellers. This creates an inverse adverse selection problem: The market ten
Seismic Waveform Inversion by Stochastic Optimization
Directory of Open Access Journals (Sweden)
Tristan van Leeuwen
2011-01-01
Full Text Available We explore the use of stochastic optimization methods for seismic waveform inversion. The basic principle of such methods is to randomly draw a batch of realizations of a given misfit function and goes back to the 1950s. The ultimate goal of such an approach is to dramatically reduce the computational cost involved in evaluating the misfit. Following earlier work, we introduce the stochasticity in waveform inversion problem in a rigorous way via a technique called randomized trace estimation. We then review theoretical results that underlie recent developments in the use of stochastic methods for waveform inversion. We present numerical experiments to illustrate the behavior of different types of stochastic optimization methods and investigate the sensitivity to the batch size and the noise level in the data. We find that it is possible to reproduce results that are qualitatively similar to the solution of the full problem with modest batch sizes, even on noisy data. Each iteration of the corresponding stochastic methods requires an order of magnitude fewer PDE solves than a comparable deterministic method applied to the full problem, which may lead to an order of magnitude speedup for waveform inversion in practice.
Deep controls on intraplate basin inversion
DEFF Research Database (Denmark)
Nielsen, S.B.; Stephenson, Randell Alexander; Schiffer, Christian
2014-01-01
Basin inversion is an intermediate-scale manifestation of continental intraplate deformation, which produces earthquake activity in the interior of continents. The sedimentary basins of central Europe, inverted in the Late Cretaceous– Paleocene, represent a classic example of this phenomenon. It ...
Air-induced inverse Chladni patterns
Gerner, van Henk Jan; Weele, van der Ko; Hoef, van der Martin A.; Meer, van der Devaraj
2011-01-01
When very light particles are sprinkled on a resonating horizontal plate, inverse Chladni patterns are formed. Instead of going to the nodal lines of the plate, where they would form a standard Chladni pattern, the particles are dragged to the antinodes by the air currents induced by the vibration o
Inversion method for initial tsunami waveform reconstruction
Directory of Open Access Journals (Sweden)
V. V. Voronin
2014-12-01
Full Text Available This paper deals with the application of r-solution method to recover the initial tsunami waveform in a tsunami source area by remote water-level measurements. Wave propagation is considered within the scope of a linear shallow-water theory. An ill-posed inverse problem is regularized by means of least square inversion using a truncated SVD approach. The properties of obtained solution are determined to a large extent by the properties of an inverse operator, which were numerically investigated. The method presented allows one to control instability of the numerical solution and to obtain an acceptable result in spite of ill-posedness of the problem. It is shown that the accuracy of tsunami source reconstruction strongly depends on the signal-to-noise ratio, the azimuthal coverage of recording stations with respect to the source area and bathymetric features along the wave path. The numerical experiments were carried out with synthetic data and various computational domains including a real bathymetry. The method proposed allows us to make a preliminary prediction of the efficiency of the inversion with a given set of the recording stations and to find out the most informative part of the existing observation system. This essential property of the method can prove to be useful in designing a monitoring system for tsunamis.
The inverse problem of bioelectricity: an evaluation
Oosterom, A. van
2012-01-01
This invited paper presents a personal view on the current status of the solution to the inverse problem of bioelectricity. Its focus lies on applications in the field of electrocardiography. The topic discussed is also relevant in other medical domains, such as electroencephalography, electroneurog
Seismic processing in the inverse data space
Berkhout, A.J.
2006-01-01
Until now, seismic processing has been carried out by applying inverse filters in the forward data space. Because the acquired data of a seismic survey is always discrete, seismic measurements in the forward data space can be arranged conveniently in a data matrix (P). Each column in the data matrix
Swarm Level 2 Comprehensive Inversion, 2016 Production
DEFF Research Database (Denmark)
Tøffner-Clausen, Lars; Sabaka, Terence; Olsen, Nils;
In the framework of the ESA Earth Observation Magnetic Mapping Mission Swarm, the Expert Support Laboratories (ESL) provides high quality Level 2 Products describing a.o. the magnetic fields of the Earth. This poster provides details of the Level 2 Products from the Comprehensive Inversion chain ...
The role of nonlinearity in inverse problems
Snieder, Roel
1998-06-01
In many practical inverse problems, one aims to retrieve a model that has infinitely many degrees of freedom from a finite amount of data. It follows from a simple variable count that this cannot be done in a unique way. Therefore, inversion entails more than estimating a model: any inversion is not complete without a description of the class of models that is consistent with the data; this is called the appraisal problem. Nonlinearity makes the appraisal problem particularly difficult. The first reason for this is that nonlinear error propagation is a difficult problem. The second reason is that for some nonlinear problems the model parameters affect the way in which the model is being interrogated by the data. Two examples are given of this, and it is shown how the nonlinearity may make the problem more ill-posed. Finally, three attempts are shown to carry out the model appraisal for nonlinear inverse problems that are based on an analytical approach, a numerical approach and a common sense approach.
Experimental Verification of Acoustic Impedance Inversion
Institute of Scientific and Technical Information of China (English)
郭永刚; 王宁; 林俊轩
2003-01-01
Well controlled model experiments were carried out to verify acoustic impedance inversion scheme, and different methods of extracting impulse responses were investigated by practical data. The acoustic impedance profiles reconstructed from impulse responses are in good agreement with the measured value and theoretical value.
Frame approximation of pseudo-inverse operators
DEFF Research Database (Denmark)
Christensen, Ole
2001-01-01
Let T denote an operator on a Hilbert space (H, [.,.]), and let {f(i)}(i=1)(infinity) be a frame for the orthogonal complement of the kernel NT. We construct a sequence of operators {Phi (n)} of the form Phi (n) (.) = Sigma (n)(i=1) [., g(t)(n)]f(i) which converges to the psuedo-inverse T+ of T i...
Riemann Zeros and the Inverse Phase Problem
Tourigny, David S.
2013-10-01
Finding a universal method of crystal structure solution and proving the Riemann hypothesis are two outstanding challenges in apparently unrelated fields. For centro-symmetric crystals however, a connection arises as the result of a statistical approach to the inverse phase problem. It is shown that parameters of the phase distribution are related to the non-trivial Riemann zeros by a Mellin transform.
Inverse acoustic problem of N homogeneous scatterers
DEFF Research Database (Denmark)
Berntsen, Svend
2002-01-01
The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...
Auditory model inversion and its application
Institute of Scientific and Technical Information of China (English)
ZHAO Heming; WANG Yongqi; CHEN Xueqin
2005-01-01
Auditory model has been applied to several aspects of speech signal processing field, and appears to be effective in performance. This paper presents the inverse transform of each stage of one widely used auditory model. First of all it is necessary to invert correlogram and reconstruct phase information by repetitious iterations in order to get auditory-nerve firing rate. The next step is to obtain the negative parts of the signal via the reverse process of the HWR (Half Wave Rectification). Finally the functions of inner hair cell/synapse model and Gammatone filters have to be inverted. Thus the whole auditory model inversion has been achieved. An application of noisy speech enhancement based on auditory model inversion algorithm is proposed. Many experiments show that this method is effective in reducing noise.Especially when SNR of noisy speech is low it is more effective than other methods. Thus this auditory model inversion method given in this paper is applicable to speech enhancement field.
On the Stewart-Lyth Inverse Problem
Ayón-Beato, E; Mansilla, R; Terrero-Escalante, C A; Ay\\'on-Beato, Eloy; Garc\\'{\\i}a, Alberto; Mansilla, Ricardo
2000-01-01
In this paper the Stewart-Lyth inverse problem is rewritten using the comoving scales as the basic parameter. It is shown that some information on the inflaton potential can be obtained from observations taking into account only the scalar power spectrum.
Numerical pole assignment by eigenvalue Jacobian inversion
Sevaston, George E.
1986-01-01
A numerical procedure for solving the linear pole placement problem is developed which operates by the inversion of an analytically determined eigenvalue Jacobian matrix. Attention is given to convergence characteristics and pathological situations. It is not concluded that the algorithm developed is suitable for computer-aided control system design with particular reference to the scan platform pointing control system for the Galileo spacecraft.
Students' Confusions with Reciprocal and Inverse Functions
Kontorovich, Igor'
2017-01-01
These classroom notes are focused on undergraduate students' understanding of the polysemous symbol of superscript (-1), which can be interpreted as a reciprocal or an inverse function. Examination of 240 scripts in a mid-term test identified that some first-year students struggle with choosing the contextually correct interpretation and there are…
Identification of Selective ERRγ Inverse Agonists
Directory of Open Access Journals (Sweden)
Jina Kim
2016-01-01
Full Text Available GSK5182 (4 is currently one of the lead compounds for the development of estrogen-related receptor gamma (ERRγ inverse agonists. Here, we report the design, synthesis, pharmacological and in vitro absorption, distribution, metabolism, excretion, toxicity (ADMET properties of a series of compounds related to 4. Starting from 4, a series of analogs were structurally modified and their ERRγ inverse agonist activity was measured. A key pharmacophore feature of this novel class of ligands is the introduction of a heterocyclic group for A-ring substitution in the core scaffold. Among the tested compounds, several of them are potent ERRγ inverse agonists as determined by binding and functional assays. The most promising compound, 15g, had excellent binding selectivity over related subtypes (IC50 = 0.44, >10, >10, and 10 μM at the ERRγ, ERRα, ERRβ, and ERα subtypes, respectively. Compound 15g also resulted in 95% transcriptional repression at a concentration of 10 μM, while still maintaining an acceptable in vitro ADMET profile. This novel class of ERRγ inverse agonists shows promise in the development of drugs targeting ERRγ-related diseases.
An "Inverse" Validation of Holland's Theory
Cowger, Ernest, Jr.; Chauvin, Ida; Miller, Mark J.
2009-01-01
This article used an "inverse" approach to assess the validity of Holland's theory; that is, it examined the degree of congruency between participant's least-characteristic Holland types and their least desirable occupational choice. Implications for career counselors are briefly outlined.
Nonlinear approximation with dictionaries. II. Inverse Estimates
DEFF Research Database (Denmark)
Gribonval, Rémi; Nielsen, Morten
2006-01-01
In this paper, which is the sequel to [16], we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for blockwise incoherent dictionaries in Hilbert spaces, which generalize the notion of joint block-diagonal...
Nonlinear approximation with dictionaries,.. II: Inverse estimates
DEFF Research Database (Denmark)
Gribonval, Rémi; Nielsen, Morten
In this paper we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for separated decomposable dictionaries in Hilbert spaces, which generalize the notion of joint block-diagonal mutually...
Atmospheric Habitable Zones in Y Dwarf Atmospheres
Yates, Jack S; Biller, Beth; Cockell, Charles S
2016-01-01
We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. We illustrate this idea using the object WISE J085510.83-0714442.5, which is a cool, free-floating brown dwarf. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Ba...
Measurement of the Atmospheric $\
Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose1, D; Boser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Velez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glusenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Gora, D; Grant, D; Gross, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klas, J; Klein, S R; Kohne, J -H; Kohnen, G; Kolanoski, H; Kopke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meszaros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Perez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Radel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schoneberg, S; Schonherr, L; Schonwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stoss, A; Strahler, E A; Strom, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge1, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M
2012-01-01
We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by neutral current interactions of atmospheric neutrinos of all flavors. Using data recorded during the first year of operation of IceCube's DeepCore low energy extension, a sample of 1029 events is observed in 281 days of data. The number of observed cascades is $N_{\\rm cascade} = 496 \\pm 66 (stat.) \\pm 88(syst.)$ and the rest of the sample consists of residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is determined in the energy range between approximately 80 GeV and 6 TeV and is consistent with models of atmospheric neutrinos.
Atmospheric Circulation of Exoplanets
Showman, Adam P; Menou, Kristen
2009-01-01
We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric d...
Frnakenstein: multiple target inverse RNA folding
Directory of Open Access Journals (Sweden)
Lyngsø Rune B
2012-10-01
Full Text Available Abstract Background RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. Results In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Conclusions Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more
PUBLISHER'S ANNOUNCEMENT: New developments for Inverse Problems
2006-12-01
2006 has proved to be a very successful year for Inverse Problems. After an increase for the fourth successive year, we achieved our highest impact factor to date, 1.541 (Source: 2005 ISI® Journal Citation Report), and the Editorial Board is keen to build on this success by continuing to improve the service we offer to our readers and authors. The Board has observed that Inverse Problems receives very few Letters to the Editor submissions, and that moreover those that we do receive rarely conform to the requirements for Letters to the Editor set out in the journal's editorial policy. The Board has therefore decided to merge the current Letters to the Editor section into our regular Papers section, which will now accommodate all research articles that meet the journal's high quality standards. Any submissions that would previously have been Letters to the Editor are still very welcome as Papers, and can be submitted by e-mail to ip@iop.org or online using our online submissions form at authors.iop.org/submit. Inverse Problems' processing times are already among the fastest in the field—on average, authors receive our decision on their paper in less than three months. Thanks to our easy-to-use online refereeing system, publishing a Paper is now just as fast as publishing a Letter to the Editor, and we are striving to ensure that the journal's high standards are applied consistently to all our Papers, maintaining Inverse Problems' position as the leading journal in the field. Our highly acclaimed Topical Review section will also continue and grow; providing timely insights into the development of all topical fields within Inverse Problems. We have many exciting Topical Reviews currently in preparation for 2007 and will continue to commission articles at the cutting edge of research. We look forward to receiving your contributions and to continuing to provide the best publication service available.
Estimating uncertainties in complex joint inverse problems
Afonso, Juan Carlos
2016-04-01
Sources of uncertainty affecting geophysical inversions can be classified either as reflective (i.e. the practitioner is aware of her/his ignorance) or non-reflective (i.e. the practitioner does not know that she/he does not know!). Although we should be always conscious of the latter, the former are the ones that, in principle, can be estimated either empirically (by making measurements or collecting data) or subjectively (based on the experience of the researchers). For complex parameter estimation problems in geophysics, subjective estimation of uncertainty is the most common type. In this context, probabilistic (aka Bayesian) methods are commonly claimed to offer a natural and realistic platform from which to estimate model uncertainties. This is because in the Bayesian approach, errors (whatever their nature) can be naturally included as part of the global statistical model, the solution of which represents the actual solution to the inverse problem. However, although we agree that probabilistic inversion methods are the most powerful tool for uncertainty estimation, the common claim that they produce "realistic" or "representative" uncertainties is not always justified. Typically, ALL UNCERTAINTY ESTIMATES ARE MODEL DEPENDENT, and therefore, besides a thorough characterization of experimental uncertainties, particular care must be paid to the uncertainty arising from model errors and input uncertainties. We recall here two quotes by G. Box and M. Gunzburger, respectively, of special significance for inversion practitioners and for this session: "…all models are wrong, but some are useful" and "computational results are believed by no one, except the person who wrote the code". In this presentation I will discuss and present examples of some problems associated with the estimation and quantification of uncertainties in complex multi-observable probabilistic inversions, and how to address them. Although the emphasis will be on sources of uncertainty related
Atmospheric Measurements Laboratory (AML)
Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...
Yadav, V.; Shiga, Y. P.; Michalak, A. M.
2012-12-01
The accurate spatio-temporal quantification of fossil fuel emissions is a scientific challenge. Atmospheric inverse models have the capability to overcome this challenge and provide estimates of fossil fuel emissions. Observational and computational limitations limit current analyses to the estimations of a combined "biospheric flux and fossil-fuel emissions" carbon dioxide (CO2) signal, at coarse spatial and temporal resolution. Even in these coarse resolution inverse models, the disaggregation of a strong biospheric signal form a weaker fossil-fuel signal has proven difficult. The use of multiple tracers (delta 14C, CO, CH4, etc.) has provided a potential path forward, but challenges remain. In this study, we attempt to disaggregate biospheric fluxes and fossil-fuel emissions on the basis of error covariance models rather through tracer based CO2 inversions. The goal is to more accurately define the underlying structure of the two processes by using a stationary exponential covariance model for the biospheric fluxes, in conjunction with a semi-stationary covariance model derived from nightlights for fossil fuel emissions. A non-negativity constraint on fossil fuel emissions is imposed using a data transformation approach embedded in an iterative quasi-linear inverse modeling algorithm. The study is performed for January and June 2008, using the ground-based CO2 measurement network over North America. The quality of disaggregation is examined by comparing the inferred spatial distribution of biospheric fluxes and fossil-fuel emissions in a synthetic-data inversion. In addition to disaggregation of fluxes, the ability of the covariance models derived from nightlights to explain the fossil-fuel emissions over North America is also examined. The simple covariance model proposed in this study is found to improve estimation and disaggregation of fossil-fuel emissions from biospheric fluxes in the tracer-based inverse models.
Dubovik, O.
2010-12-01
The ability of aerosol particles to interact strongly with electromagnetic radiation makes aerosol one of most climatically important atmospheric component. Remote sensing using the same ability for characterizing properties of atmospheric aerosol is probably the most adequate observational approach for accessing aerosol effect in climatic studies. Indeed, the satellite remote sensing is unique technique allowing monitoring of time variability of the aerosol at regional and global scales. Compare to in situ and laboratory measurements, remote methods do not use aerosol sampling and allow accessing the properties of unperturbed ambient aerosol in the atmospheres. However, interpretation of the remote sensing observations involves data inversion that, in practice, often appears to be a sophisticated procedure leading to rather ambiguous results. Numerous publications offer a wide diversity of approaches suggesting somewhat different inversion methods. Such uncertainty in methodological guidance leads to excessive dependence of retrieval algorithms on the personalized input and preferences of the developer. This presentation highlights a continues effort on developing a concept clarifying the differences between various methods and outlining unified principles addressing such important aspects of inversion optimization as accounting for errors in the data used, inverting the data with different levels of accuracy, accounting for a priori and ancillary information, estimating retrieval errors, etc. The developed concept uses the principles of statistical estimation and suggests a generalized multi-term Least Square type formulation that complementarily unites advantages of a variety of practical inversion approaches, such as Phillips-Tikhonov-Twomey constrained inversion, Kalman filter, Newton-Gauss and Levenberg-Marquardt iterations, optimal estimation, etc. The concept will be demonstrated by successful implementations in several challenging aerosol remote sensing
The Influence of Atmospheric Scattering and Absorption on Ohmic Dissipation in Hot Jupiters
Heng, Kevin
2012-01-01
Using semi-analytical, one-dimensional models, we elucidate the influence of scattering and absorption on the degree of Ohmic dissipation in hot Jovian atmospheres. With the assumption of Saha equilibrium, the variation in temperature is the main driver of the variations in the electrical conductivity, induced current and Ohmic power dissipated. Atmospheres possessing temperature inversions tend to dissipate most of the Ohmic power superficially, at high altitudes, whereas those without temperature inversions are capable of greater dissipation deeper down. Scattering in the optical range of wavelengths tends to cool the lower atmosphere, thus reducing the degree of dissipation at depth. Purely absorbing cloud decks (in the infrared), of a finite extent in height, allow for localized reductions in dissipation and may reverse a temperature inversion if they are dense and thick enough, thus greatly enhancing the dissipation at depth. If Ohmic dissipation is the mechanism for inflating hot Jupiters, then variatio...
An Atmospheric Science Observing System Simulation Experiment (OSSE) Environment
Lee, Meemong; Weidner, Richard; Qu, Zheng; Bowman, Kevin; Eldering, Annmarie
2010-01-01
An atmospheric sounding mission starts with a wide range of concept designs involving measurement technologies, observing platforms, and observation scenarios. Observing system simulation experiment (OSSE) is a technical approach to evaluate the relative merits of mission and instrument concepts. At Jet Propulsion Laboratory (JPL), the OSSE team has developed an OSSE environment that allows atmospheric scientists to systematically explore a wide range of mission and instrument concepts and formulate a science traceability matrix with a quantitative science impact analysis. The OSSE environment virtually creates a multi-platform atmospheric sounding testbed (MAST) by integrating atmospheric phenomena models, forward modeling methods, and inverse modeling methods. The MAST performs OSSEs in four loosely coupled processes, observation scenario exploration, measurement quality exploration, measurement quality evaluation, and science impact analysis.
Sparse inversion of Stokes profiles. I. Two-dimensional Milne-Eddington inversions
Ramos, A Asensio
2015-01-01
Inversion codes are numerical tools used for the inference of physical properties from the observations. Despite their success, the quality of current spectropolarimetric observations and those expected in the near future presents a challenge to current inversion codes. The pixel-by-pixel strategy of inverting spectropolarimetric data that we currently utilize needs to be surpassed and improved. The inverted physical parameters have to take into account the spatial correlation that is present in the data and that contains valuable physical information. We utilize the concept of sparsity or compressibility to develop an new generation of inversion codes for the Stokes parameters. The inversion code uses numerical optimization techniques based on the idea of proximal algorithms to impose sparsity. In so doing, we allow for the first time to exploit the presence of spatial correlation on the maps of physical parameters. Sparsity also regularizes the solution by reducing the number of unknowns. We compare the res...
AN APPROXIMATION THEOREM OF A M-P INVERSE BY OUTER INVERSES
Institute of Scientific and Technical Information of China (English)
马兆丰; 马吉溥
2004-01-01
Let H1 and H2 be separable Hilbert spaces, and B(H1, H2) all of bounded linear operators from H1 into H2. In this note, we prove the following theorem: for any positive integer N and T ∈ B(H1, H2) with a closed range, there exists an outer inverse T#N with finite rank N such that T+y = lira T#Ny for any y ∈ H2, where T+N →∞denotes the Moore-Penrose inverse of T. Thus computing T+ is reduced to computing outer inverses T#N with finite rank N. Moreover, because of the stability of bounded outer inverse of a T ∈ B(H1,H2), this is very useful.
Wang, James S.; Kawa, S. Randolph; Collatz, G. James; Baker, David F.; Ott, Lesley
2015-01-01
About one-half of the global CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two sinks, and their location and year-to-year variability are, however, not well understood. We use two different approaches, batch Bayesian synthesis inversion and variational data assimilation, to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. One of our objectives is to assess different sources of uncertainties in inferred fluxes, including uncertainties in prior flux estimates and observations, and differences in inversion techniques. For prior constraints, we utilize fluxes and uncertainties from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations and interannually varying meteorology. We also use measurement-based ocean flux estimates and two sets of fixed fossil CO2 emissions. Here, our inversions incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, filtered and bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals for the batch inversion and at 3 x 3.75 weekly for the variational system. Relationships between fluxes and atmospheric concentrations are derived consistently for the two inversion systems using the PCTM atmospheric transport model driven by meteorology from the MERRA reanalysis. We compare the posterior fluxes and uncertainties derived using different data sets and the two inversion approaches, and evaluate the posterior atmospheric concentrations against independent data including aircraft measurements. The optimized fluxes generally resemble those from other studies. For example, the results indicate that the terrestrial biosphere is a net CO2 sink, and a GOSAT-only inversion suggests a shift in
Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada
Directory of Open Access Journals (Sweden)
E. Chan
2015-08-01
Full Text Available Inversion models can use atmospheric concentration measurements to estimate surface fluxes. This study is an evaluation of the errors in a regional flux inversion model for different provinces of Canada, Alberta (AB, Saskatchewan (SK and Ontario (ON. Using CarbonTracker model results as the target, the synthetic data experiment analyses examined the impacts of the errors from the Bayesian optimisation method, prior flux distribution and the atmospheric transport model, as well as their interactions. The scaling factors for different sub-regions were estimated by the Markov chain Monte Carlo (MCMC simulation and cost function minimization (CFM methods. The CFM method results are sensitive to the relative size of the assumed model-observation mismatch and prior flux error variances. Experiment results show that the estimation error increases with the number of sub-regions using the CFM method. For the region definitions that lead to realistic flux estimates, the numbers of sub-regions for the western region of AB/SK combined and the eastern region of ON are 11 and 4 respectively. The corresponding annual flux estimation errors for the western and eastern regions using the MCMC (CFM method are -7 and -3 % (0 and 8 % respectively, when there is only prior flux error. The estimation errors increase to 36 and 94 % (40 and 232 % resulting from transport model error alone. When prior and transport model errors co-exist in the inversions, the estimation errors become 5 and 85 % (29 and 201 %. This result indicates that estimation errors are dominated by the transport model error and can in fact cancel each other and propagate to the flux estimates non-linearly. In addition, it is possible for the posterior flux estimates having larger differences than the prior compared to the target fluxes, and the posterior uncertainty estimates could be unrealistically small that do not cover the target. The systematic evaluation of the different components of the
Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada
Chan, E.; Chan, D.; Ishizawa, M.; Vogel, F.; Brioude, J.; Delcloo, A.; Wu, Y.; Jin, B.
2015-08-01
Inversion models can use atmospheric concentration measurements to estimate surface fluxes. This study is an evaluation of the errors in a regional flux inversion model for different provinces of Canada, Alberta (AB), Saskatchewan (SK) and Ontario (ON). Using CarbonTracker model results as the target, the synthetic data experiment analyses examined the impacts of the errors from the Bayesian optimisation method, prior flux distribution and the atmospheric transport model, as well as their interactions. The scaling factors for different sub-regions were estimated by the Markov chain Monte Carlo (MCMC) simulation and cost function minimization (CFM) methods. The CFM method results are sensitive to the relative size of the assumed model-observation mismatch and prior flux error variances. Experiment results show that the estimation error increases with the number of sub-regions using the CFM method. For the region definitions that lead to realistic flux estimates, the numbers of sub-regions for the western region of AB/SK combined and the eastern region of ON are 11 and 4 respectively. The corresponding annual flux estimation errors for the western and eastern regions using the MCMC (CFM) method are -7 and -3 % (0 and 8 %) respectively, when there is only prior flux error. The estimation errors increase to 36 and 94 % (40 and 232 %) resulting from transport model error alone. When prior and transport model errors co-exist in the inversions, the estimation errors become 5 and 85 % (29 and 201 %). This result indicates that estimation errors are dominated by the transport model error and can in fact cancel each other and propagate to the flux estimates non-linearly. In addition, it is possible for the posterior flux estimates having larger differences than the prior compared to the target fluxes, and the posterior uncertainty estimates could be unrealistically small that do not cover the target. The systematic evaluation of the different components of the inversion
Hybrid inversions of CO2 fluxes at regional scale applied to network design
Kountouris, Panagiotis; Gerbig, Christoph; -Thomas Koch, Frank
2013-04-01
Long term observations of atmospheric greenhouse gas measuring stations, located at representative regions over the continent, improve our understanding of greenhouse gas sources and sinks. These mixing ratio measurements can be linked to surface fluxes by atmospheric transport inversions. Within the upcoming years new stations are to be deployed, which requires decision making tools with respect to the location and the density of the network. We are developing a method to assess potential greenhouse gas observing networks in terms of their ability to recover specific target quantities. As target quantities we use CO2 fluxes aggregated to specific spatial and temporal scales. We introduce a high resolution inverse modeling framework, which attempts to combine advantages from pixel based inversions with those of a carbon cycle data assimilation system (CCDAS). The hybrid inversion system consists of the Lagrangian transport model STILT, the diagnostic biosphere model VPRM and a Bayesian inversion scheme. We aim to retrieve the spatiotemporal distribution of net ecosystem exchange (NEE) at a high spatial resolution (10 km x 10 km) by inverting for spatially and temporally varying scaling factors for gross ecosystem exchange (GEE) and respiration (R) rather than solving for the fluxes themselves. Thus the state space includes parameters for controlling photosynthesis and respiration, but unlike in a CCDAS it allows for spatial and temporal variations, which can be expressed as NEE(x,y,t) = λG(x,y,t) GEE(x,y,t) + λR(x,y,t) R(x,y,t) . We apply spatially and temporally correlated uncertainties by using error covariance matrices with non-zero off-diagonal elements. Synthetic experiments will test our system and select the optimal a priori error covariance by using different spatial and temporal correlation lengths on the error statistics of the a priori covariance and comparing the optimized fluxes against the 'known truth'. As 'known truth' we use independent fluxes
SISYPHUS: A high performance seismic inversion factory
Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas
2016-04-01
In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with
On MSDT inversion with multi-angle remote sensing data
Institute of Scientific and Technical Information of China (English)
2007-01-01
With the wavelet transform, image of multi-angle remote sensing is decomposed into multi-resolution. With data of each resolution, we try target-based multi-stages inversion, taking the inversion result of coarse resolution as the prior information of the next inversion. The result gets finer and finer until the resolution of satellite observation. In this way, the target-based multi-stages inversion can be used in remote sensing inversion of large-scaled coverage. With MISR data, we inverse structure parameters of vegetation in semiarid grassland of the Inner Mongolia Autonomous Region. The result proves that this way is efficient.
Energy Technology Data Exchange (ETDEWEB)
Agullo, Y.
2005-09-15
This thesis present the extension of mono-component seismic pre-stack data stratigraphical inversion method to multicomponent data, with the objective of improving the determination of reservoir elastic parameters. In addiction to the PP pressure waves, the PS converted waves proved their interest for imaging under gas clouds; and their potential is highly significant for the characterization of lithologies, fluids, fractures... Nevertheless the simultaneous use ol PP and PS data remains problematic because of their different the time scales. To jointly use the information contained in PP and PS data, we propose a method in three steps first, mono-component stratigraphic inversions of PP then PS data; second, estimation of the PP to PS time conversion law; third, multicomponent stratigraphic inversion. For the second point, the estimation of the PP to PS conversion law is based on minimizing the difference between the S impedances obtained from PP and PS mono-component stratigraphic inversion. The pre-stack mono-component stratigraphic inversions was adapted to the case of multicomponent data by leaving each type of data in its own time scale in order to avoid the distortion of the seismic wavelet. The results obtained on a realistic synthetic PP-PS case show on one hand that determining PP to PS conversion law (from the mono-component inversion results) is feasible, and on the other hand that the joint inversion of PP and PS data with this conversion law improves the results compared to the mono-component inversion ones. Although this is presented within the framework of the PP and PS multi-component data, the developed methodology adapts directly to PP and SS data for example. (author)
Arnaiz, C; Buffiere, P; Elmaleh, S; Lebrato, J; Moletta, R
2003-11-01
This paper describes the application of the inverse fluidization technology to the anaerobic digestion of dairy wastewater. Two reactors were investigated: the inverse fluidized bed reactor and the inverse turbulent reactor. In these reactors, a granular floating solid is expanded by a down-flow current of effluent or an up-flow current of gas, respectively. The carrier particles (Extendospheres) were chosen for their large specific surface area (20,000 m2m(-3)) and their low energy requirements for fluidization (gas velocity of 1.5 mm s(-1), 5.4 m h(-1)). Organic load was increased stepwise by reducing hydraulic retention time from more than 60 days to 3 days, while maintaining constant the feed COD concentration. Both reactors achieved more than 90% of COD removal, at an organic loading rate of 10-12 kgCOD m(-3) d(-1), respectively. The performances observed were similar or even higher than that of other previously tested fluidized bed technologies treating the same wastewater. It was found that the main advantages of this system are: low energy requirement, because of the low fluidization velocities required; there is no need of a settling device, because solids accumulate at the bottom of the reactor, so they can be easily drawn out and particles with high-biomass content can be easily recovered. Lipid phosphate concentration has been revealed as a good method for biomass estimation in biofilms since it only includes living biomass.
A Bayesian method for microseismic source inversion
Pugh, D. J.; White, R. S.; Christie, P. A. F.
2016-08-01
Earthquake source inversion is highly dependent on location determination and velocity models. Uncertainties in both the model parameters and the observations need to be rigorously incorporated into an inversion approach. Here, we show a probabilistic Bayesian method that allows formal inclusion of the uncertainties in the moment tensor inversion. This method allows the combination of different sets of far-field observations, such as P-wave and S-wave polarities and amplitude ratios, into one inversion. Additional observations can be included by deriving a suitable likelihood function from the uncertainties. This inversion produces samples from the source posterior probability distribution, including a best-fitting solution for the source mechanism and associated probability. The inversion can be constrained to the double-couple space or allowed to explore the gamut of moment tensor solutions, allowing volumetric and other non-double-couple components. The posterior probability of the double-couple and full moment tensor source models can be evaluated from the Bayesian evidence, using samples from the likelihood distributions for the two source models, producing an estimate of whether or not a source is double-couple. Such an approach is ideally suited to microseismic studies where there are many sources of uncertainty and it is often difficult to produce reliability estimates of the source mechanism, although this can be true of many other cases. Using full-waveform synthetic seismograms, we also show the effects of noise, location, network distribution and velocity model uncertainty on the source probability density function. The noise has the largest effect on the results, especially as it can affect other parts of the event processing. This uncertainty can lead to erroneous non-double-couple source probability distributions, even when no other uncertainties exist. Although including amplitude ratios can improve the constraint on the source probability
An inversion strategy for hydraulic tomography: Coupling travel time and amplitude inversion
Brauchler, R.; Cheng, J.-T.; Dietrich, P.; Everett, M.; Johnson, B.; Liedl, R.; Sauter, M.
2007-10-01
SummaryWe present a hydraulic tomographic inversion strategy with an emphasis on the reduction of ambiguity of hydraulic travel time inversion results and the separation of the estimated diffusivity values into hydraulic conductivity and specific storage. Our tomographic inversion strategy is tested by simulated multilevel interference slug tests in which the positions of the sources (injection ports) and the receivers (observation ports) isolated with packers are varied. Simulations include the delaying effect of wellbore storage on travel times which are quantified and shown to be of increasing importance for shorter travel distances. For the reduction of ambiguity of travel time inversion, we use the full travel time data set, as well as smaller data subsets of specified source-receiver angles. The inversion results of data subsets show different resolution characteristics and improve the reliability of the interpretation. The travel time of a pressure pulse is a function of the diffusivity of the medium between the source and receiver. Thus, it is difficult to directly derive values for hydraulic conductivity and specific storage by inverting travel times. In order to overcome this limitation, we exploit the great computational efficiency of hydraulic travel time tomography to define the aquifer structure, which is then input into the underlying groundwater flow model MODFLOW-96. Finally, we perform a model calibration (amplitude inversion) using the automatic parameter estimator PEST, enabling us to separate diffusivity into its two components hydraulic conductivity and specific storage.
Non-local thermodynamic equilibrium inversions from a 3D MHD chromospheric model
Rodríguez, Jaime de la Cruz; Carlsson, Mats; Leenaarts, Jorrit
2012-01-01
The structure of the solar chromosphere is believed to be governed by magnetic fields, even in quiet-Sun regions that have a relatively weak photospheric field. During the past decade inversion methods have emerged as powerful tools for analyzing the chromosphere of active regions. The applicability of inversions to infer the stratification of the physical conditions in a dynamic 3D solar chromosphere has not yet been studied in detail. This study aims to establish the diagnostic capabilities of non-local thermodynamical equilibrium (NLTE) inversion techniques of Stokes profiles induced by the Zeeman effect in the Ca II 8542 line. We computed the Ca II atomic level populations in a snapshot from a 3D radiation-MHD simulation of the quiet solar atmosphere in non-LTE using the 3D radiative transfer code Multi3d. These populations were used to compute synthetic full-Stokes profiles in the Ca II 8542 line using 1.5D radiative transfer and the inversion code Nicole. The profiles were then spectrally degraded to ac...
Control of a high beta maneuvering reentry vehicle using dynamic inversion.
Energy Technology Data Exchange (ETDEWEB)
Watts, Alfred Chapman
2005-05-01
The design of flight control systems for high performance maneuvering reentry vehicles presents a significant challenge to the control systems designer. These vehicles typically have a much higher ballistic coefficient than crewed vehicles like as the Space Shuttle or proposed crew return vehicles such as the X-38. Moreover, the missions of high performance vehicles usually require a steeper reentry flight path angle, followed by a pull-out into level flight. These vehicles then must transit the entire atmosphere and robustly perform the maneuvers required for the mission. The vehicles must also be flown with small static margins in order to perform the required maneuvers, which can result in highly nonlinear aerodynamic characteristics that frequently transition from being aerodynamically stable to unstable as angle of attack increases. The control system design technique of dynamic inversion has been applied successfully to both high performance aircraft and low beta reentry vehicles. The objective of this study was to explore the application of this technique to high performance maneuvering reentry vehicles, including the basic derivation of the dynamic inversion technique, followed by the extension of that technique to the use of tabular trim aerodynamic models in the controller. The dynamic inversion equations are developed for high performance vehicles and augmented to allow the selection of a desired response for the control system. A six degree of freedom simulation is used to evaluate the performance of the dynamic inversion approach, and results for both nominal and off nominal aerodynamic characteristics are presented.
DEFF Research Database (Denmark)
Højlund, Marie; Kinch, Sofie
2012-01-01
This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful...
Proterozoic atmospheric oxygen
DEFF Research Database (Denmark)
Canfield, Donald Eugene
2014-01-01
This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the histor...
Clouds in Planetary Atmospheres
West, R.; Murdin, P.
2000-11-01
What are clouds? The answer to that question is both obvious and subtle. In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice crystals suspended in the air. In the atmospheres of Venus, Mars, Jupiter, Saturn, Saturn's moon Titan, Uranus, Neptune, and possibly Pluto, they are composed of several other substances including sulfuric acid, ammonia, hydroge...
Function representation with circle inversion map systems
Boreland, Bryson; Kunze, Herb
2017-01-01
The fractals literature develops the now well-known concept of local iterated function systems (using affine maps) with grey-level maps (LIFSM) as an approach to function representation in terms of the associated fixed point of the so-called fractal transform. While originally explored as a method to achieve signal (and 2-D image) compression, more recent work has explored various aspects of signal and image processing using this machinery. In this paper, we develop a similar framework for function representation using circle inversion map systems. Given a circle C with centre õ and radius r, inversion with respect to C transforms the point p˜ to the point p˜', such that p˜ and p˜' lie on the same radial half-line from õ and d(õ, p˜)d(õ, p˜') = r2, where d is Euclidean distance. We demonstrate the results with an example.
Optoacoustic inversion via Volterra kernel reconstruction
Melchert, O; Roth, B
2016-01-01
In this letter we address the numeric inversion of optoacoustic signals to initial stress profiles. Therefore we put under scrutiny the optoacoustic kernel reconstruction problem in the paraxial approximation of the underlying wave-equation. We apply a Fourier-series expansion of the optoacoustic Volterra kernel and obtain the respective expansion coefficients for a given "apparative" setup by performing a gauge procedure using synthetic input data. The resulting effective kernel is subsequently used to solve the optoacoustic source reconstruction problem for general signals. We verify the validity of the proposed inversion protocol for synthetic signals and explore the feasibility of our approach to also account for the diffraction transformation of signals beyond the paraxial approximation.
Inverse Vernier effect in coupled lasers
Ge, Li; Türeci, Hakan E.
2015-07-01
In this report we study the Vernier effect in coupled laser systems consisting of two cavities. We show that depending on the nature of their coupling, not only can the "supermodes" formed at overlapping resonances of these two cavities have the lowest thresholds as previously found, leading to lasing at these overlapping resonances and a manifestation of the typical Vernier effect, but also they can have increased thresholds and are hence suppressed, which can be viewed as an inverse Vernier effect. The inverse Vernier effect can also lead to an increased free spectrum range and possibly single-mode lasing, which may explain the experimental findings in several previous studies. We illustrate this effect using two coupled micro-ring cavities and a micro-ring cavity coupled to a slab cavity, and we discuss its relation to the existence of exceptional points in coupled lasers.
Lasing without inversion in circuit quantum electrodynamics.
Marthaler, M; Utsumi, Y; Golubev, D S; Shnirman, A; Schön, Gerd
2011-08-26
We study the photon generation in a transmission line oscillator coupled to a driven qubit in the presence of a dissipative electromagnetic environment. It has been demonstrated previously that a population inversion in the qubit can lead to a lasing state of the oscillator. Here we show that the circuit can also exhibit the effect of "lasing without inversion." It arises since the coupling to the dissipative environment enhances photon emission as compared to absorption, similar to the recoil effect predicted for atomic systems. While the recoil effect is very weak, and so far elusive, the effect described here should be observable with realistic circuits. We analyze the requirements for system parameters and environment.
Darwin's “strange inversion of reasoning”
Dennett, Daniel
2009-01-01
Darwin's theory of evolution by natural selection unifies the world of physics with the world of meaning and purpose by proposing a deeply counterintuitive “inversion of reasoning” (according to a 19th century critic): “to make a perfect and beautiful machine, it is not requisite to know how to make it” [MacKenzie RB (1868) (Nisbet & Co., London)]. Turing proposed a similar inversion: to be a perfect and beautiful computing machine, it is not requisite to know what arithmetic is. Together, these ideas help to explain how we human intelligences came to be able to discern the reasons for all of the adaptations of life, including our own. PMID:19528651
Ionogram inversion for a tilted ionosphere
Energy Technology Data Exchange (ETDEWEB)
Wright, J.W. (British Antartic Survey, Cambridge (England))
1990-12-01
Digital ionosondes such as the Dynasonde disclose that the ionosphere is seldom horizontal even when it is plane stratified to a good approximation. The local magnetic dip does not then determine correctly the radiowave propagation angle for inversion of the ionogram to a plasma density profile. The measured echo direction of arrival can be used together with the known dip for an improved propagation angle. The effects are small for simple one-parameter laminae but become important when differential (ordinary, extraordinary) retardations are used to aid correction for valley and starting ambiguities. The resulting profile describes the plasma distribution along the direction of observation, rather than the vertical; it thus conveys information about horizontal gradients. Observations suggest that advantages in inversion methods may be practicable for application to modern ionosonde recordings, by which local lateral structure can be described in greater detail. 20 refs.
Sparse Matrix Inversion with Scaled Lasso
Sun, Tingni
2012-01-01
We propose a new method of learning a sparse nonnegative-definite target matrix. Our primary example of the target matrix is the inverse of a population covariance matrix or correlation matrix. The algorithm first estimates each column of the matrix by scaled Lasso, a joint estimation of regression coefficients and noise level, and then adjusts the matrix estimator to be symmetric. The procedure is efficient in the sense that the penalty level of the scaled Lasso for each column is completely determined by the data via convex minimization, without using cross-validation. We prove that this method guarantees the fastest proven rate of convergence in the spectrum norm under conditions of weaker form than those in the existing analyses of other $\\ell_1$ algorithms, and has faster guaranteed rate of convergence when the ratio of the $\\ell_1$ and spectrum norms of the target inverse matrix diverges to infinity. A simulation study also demonstrates the competitive performance of the proposed estimator.
Double inverse stochastic resonance with dynamic synapses
Uzuntarla, Muhammet; Torres, Joaquin J.; So, Paul; Ozer, Mahmut; Barreto, Ernest
2017-01-01
We investigate the behavior of a model neuron that receives a biophysically realistic noisy postsynaptic current based on uncorrelated spiking activity from a large number of afferents. We show that, with static synapses, such noise can give rise to inverse stochastic resonance (ISR) as a function of the presynaptic firing rate. We compare this to the case with dynamic synapses that feature short-term synaptic plasticity and show that the interval of presynaptic firing rate over which ISR exists can be extended or diminished. We consider both short-term depression and facilitation. Interestingly, we find that a double inverse stochastic resonance (DISR), with two distinct wells centered at different presynaptic firing rates, can appear.
Inverse Kinematics of Concentric Tube Steerable Needles
Sears, Patrick; Dupont, Pierre E.
2013-01-01
Prior papers have introduced steerable needles composed of precurved concentric tubes. The curvature and extent of these needles can be controlled by the relative rotation and translation of the individual tubes. Under certain assumptions on the geometry and design of these needles, the forward kinematics problem can be solved in closed form by means of algebraic equations. The inverse kinematics problem, however, is not as straightforward owing to the nonlinear map between relative tube displacements and needle tip configuration as well as to the multiplicity of solutions as the number of tubes increases. This paper presents a general approach to solving the inverse kinematics problem using a pseudoinverse solution together with gradients of nullspace potential functions to enforce geometric and mechanical constraints. PMID:23685532
Analog fault diagnosis by inverse problem technique
Ahmed, Rania F.
2011-12-01
A novel algorithm for detecting soft faults in linear analog circuits based on the inverse problem concept is proposed. The proposed approach utilizes optimization techniques with the aid of sensitivity analysis. The main contribution of this work is to apply the inverse problem technique to estimate the actual parameter values of the tested circuit and so, to detect and diagnose single fault in analog circuits. The validation of the algorithm is illustrated through applying it to Sallen-Key second order band pass filter and the results show that the detecting percentage efficiency was 100% and also, the maximum error percentage of estimating the parameter values is 0.7%. This technique can be applied to any other linear circuit and it also can be extended to be applied to non-linear circuits. © 2011 IEEE.
Approximate inverse preconditioners for general sparse matrices
Energy Technology Data Exchange (ETDEWEB)
Chow, E.; Saad, Y. [Univ. of Minnesota, Minneapolis, MN (United States)
1994-12-31
Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.
Numerical linear algebra for reconstruction inverse problems
Nachaoui, Abdeljalil
2004-01-01
Our goal in this paper is to discuss various issues we have encountered in trying to find and implement efficient solvers for a boundary integral equation (BIE) formulation of an iterative method for solving a reconstruction problem. We survey some methods from numerical linear algebra, which are relevant for the solution of this class of inverse problems. We motivate the use of our constructing algorithm, discuss its implementation and mention the use of preconditioned Krylov methods.
Voltammetry: mathematical modelling and Inverse Problem
Koshev, N A; Kuzina, V V
2016-01-01
We propose the fast semi-analytical method of modelling the polarization curves in the voltammetric experiment. The method is based on usage of the special func- tions and shows a big calculation speed and a high accuracy and stability. Low computational needs of the proposed algorithm allow us to state the set of Inverse Problems of voltammetry for the reconstruction of metal ions concentrations or the other parameters of the electrolyte under investigation.
Matched Field Tomographic Inversion for Geoacoustic Properties
2016-06-07
covariance matrix of the sampled models, and adjusts the annealing temperature adaptively to account for parameters with different sensitivities. The method...geoacoustic properties of the ocean bottom, including sound speed profiles, densities , attenuations and sediment layer depths, have a significant effect on...sound propagation in shallow water . The long term goal of this work is to develop a new tomographic inversion method based on matched field processing of
Full-waveform inversion: Filling the gaps
Beydoun, Wafik B.
2015-09-01
After receiving an outstanding response to its inaugural workshop in 2013, SEG once again achieved great success with its 2015 SEG Middle East Workshop, “Full-waveform inversion: Filling the gaps,” which took place 30 March–1 April 2015 in Abu Dhabi, UAE. The workshop was organized by SEG, and its partner sponsors were Saudi Aramco (gold sponsor), ExxonMobil, and CGG. Read More: http://library.seg.org/doi/10.1190/tle34091106.1
The inverse maximum dynamic flow problem
Institute of Scientific and Technical Information of China (English)
BAGHERIAN; Mehri
2010-01-01
We consider the inverse maximum dynamic flow (IMDF) problem.IMDF problem can be described as: how to change the capacity vector of a dynamic network as little as possible so that a given feasible dynamic flow becomes a maximum dynamic flow.After discussing some characteristics of this problem,it is converted to a constrained minimum dynamic cut problem.Then an efficient algorithm which uses two maximum dynamic flow algorithms is proposed to solve the problem.
INVERSE SCATTERING PROBLEMS BY SINGULAR SOURCE METHODS
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The inverse scattering problems are to detect the property of obstacles from the measurements outside the obstacles. One of important research areas in this topic is the recovery of boundary property for impenetrable obstacles. In this paper, we would like to give a brief review about the recently developed singular source methods. There are three different methods in this category, namely, linear sampling method, pointsource method and probe method. We also present some recent new results about the probe method.
Inversion identities for inhomogeneous face models
Frahm, Holger; Karaiskos, Nikos
2014-10-01
We derive exact inversion identities satisfied by the transfer matrix of inhomogeneous interaction-round-a-face (IRF) models with arbitrary boundary conditions using the underlying integrable structure and crossing properties of the local Boltzmann weights. For the critical restricted solid-on-solid (RSOS) models these identities together with some information on the analytical properties of the transfer matrix determine the spectrum completely and allow to derive the Bethe equations for both periodic and general open boundary conditions.
Inversion identities for inhomogeneous face models
Directory of Open Access Journals (Sweden)
Holger Frahm
2014-10-01
Full Text Available We derive exact inversion identities satisfied by the transfer matrix of inhomogeneous interaction-round-a-face (IRF models with arbitrary boundary conditions using the underlying integrable structure and crossing properties of the local Boltzmann weights. For the critical restricted solid-on-solid (RSOS models these identities together with some information on the analytical properties of the transfer matrix determine the spectrum completely and allow to derive the Bethe equations for both periodic and general open boundary conditions.
Inversion identities for inhomogeneous face models
Energy Technology Data Exchange (ETDEWEB)
Frahm, Holger; Karaiskos, Nikos
2014-10-15
We derive exact inversion identities satisfied by the transfer matrix of inhomogeneous interaction-round-a-face (IRF) models with arbitrary boundary conditions using the underlying integrable structure and crossing properties of the local Boltzmann weights. For the critical restricted solid-on-solid (RSOS) models these identities together with some information on the analytical properties of the transfer matrix determine the spectrum completely and allow to derive the Bethe equations for both periodic and general open boundary conditions.
Efficient Numerical Inversion for Financial Simulations
Derflinger, Gerhard; Hörmann, Wolfgang; Leydold, Josef; Sak, Halis
2009-01-01
Generating samples from generalized hyperbolic distributions and non-central chi-square distributions by inversion has become an important task for the simulation of recent models in finance in the framework of (quasi-) Monte Carlo. However, their distribution functions are quite expensive to evaluate and thus numerical methods like root finding algorithms are extremely slow. In this paper we demonstrate how our new method based on Newton interpolation and Gauss-Lobatto quadrature can be util...
Investigating complex networks with inverse models
Wens, Vincent
2014-01-01
Recent advances in neuroscience have motivated the study of network organization in spatially distributed dynamical systems from indirect measurements. However, the associated connectivity estimation, when combined with inverse modeling, is strongly affected by spatial leakage. We formulate this problem in a general framework and develop a new approach to model spatial leakage and limit its effects. It is analytically compared to existing regression-based methods used in electrophysiology, which are shown to yield biased estimates of amplitude and phase couplings.
Monte Carlo Hamiltonian:Inverse Potential
Institute of Scientific and Technical Information of China (English)
LUO Xiang-Qian; CHENG Xiao-Ni; Helmut KR(O)GER
2004-01-01
The Monte Carlo Hamiltonian method developed recently allows to investigate the ground state and low-lying excited states of a quantum system,using Monte Carlo(MC)algorithm with importance sampling.However,conventional MC algorithm has some difficulties when applied to inverse potentials.We propose to use effective potential and extrapolation method to solve the problem.We present examples from the hydrogen system.
InAR:Inverse Augmented Reality
Hu, Hao; Cui, Hainan
2015-01-01
Augmented reality is the art to seamlessly fuse virtual objects into real ones. In this short note, we address the opposite problem, the inverse augmented reality, that is, given a perfectly augmented reality scene where human is unable to distinguish real objects from virtual ones, how the machine could help do the job. We show by structure from motion (SFM), a simple 3D reconstruction technique from images in computer vision, the real and virtual objects can be easily separated in the recon...
Differential equations inverse and direct problems
Favini, Angelo
2006-01-01
DEGENERATE FIRST ORDER IDENTIFICATION PROBLEMS IN BANACH SPACES A NONISOTHERMAL DYNAMICAL GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY. EXISTENCE AND UNIQUENESS THEOREMSSOME GLOBAL IN TIME RESULTS FOR INTEGRODIFFERENTIAL PARABOLIC INVERSE PROBLEMSFOURTH ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONSTUDY OF ELLIPTIC DIFFERENTIAL EQUATIONS IN UMD SPACESDEGENERATE INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE EXPONENTIAL ATTRACTORS FOR SEMICONDUCTOR EQUATIONSCONVERGENCE TO STATIONARY STATES OF SOLUTIONS TO THE SEMILINEAR EQUATION OF VISCOELASTICITY ASYMPTOTIC BEHA
Inverse Scattering in a Multipath Environment
Directory of Open Access Journals (Sweden)
A. Cuccaro
2016-09-01
Full Text Available In this contribution an inverse scattering problem is ad- dressed in a multipath environment. In particular, multipath is created by known ”extra” point-like scatterers (passive elements expressely deployed between the scene under in- vestigation and the source/measurement domains. Through a back-projection imaging scheme, the role of the passive elements on the achievable performance is shown and com- pared to the free-space case.
Classical geometry Euclidean, transformational, inversive, and projective
Leonard, I E; Liu, A C F; Tokarsky, G W
2014-01-01
Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which p
The Stewart-Lyth Inverse Problem
Ayón-Beato, E; Mansilla, R; Terrero-Escalante, C A; Ay\\'on-Beato, Eloy; Garc\\'{\\i}a, Alberto; Mansilla, Ricardo
2000-01-01
In this paper the Stewart-Lyth inverse problem is introduced. It consists of solving two non-linear differential equations for the first slow-roll parameter and finding the inflaton potential. The equations are derived from the Stewart-Lyth equations for the scalar and tensorial perturbations produced during the inflationary period. The geometry of the phase planes transverse to the trajectories is analyzed, and conclusions about the possible behaviour for general solutions are drawn.
Recursive Inversion Of Externally Defined Linear Systems
Bach, Ralph E., Jr.; Baram, Yoram
1992-01-01
Technical memorandum discusses mathematical technique described in "Recursive Inversion by Finite-Impulse-Response Filters" (ARC-12247). Technique is recursive algorithm yielding finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Useful in such diverse applications as medical diagnoses, identification of military targets, geophysical exploration, and nondestructive testing.
Geoacoustic inversion using the vector field
Crocker, Steven E.
The main goal of this project was to study the use of the acoustic vector field, separately or in combination with the scalar field, to estimate the depth dependent geoacoustic properties of the seafloor via non-linear inversion. The study was performed in the context of the Sediment Acoustics Experiment 2004 (SAX04) conducted in the Northern Gulf of Mexico (GOM) where a small number of acoustic vector sensors were deployed in close proximity to the seafloor. A variety of acoustic waveforms were transmitted into the seafloor at normal incidence. The acoustic vector sensors were located both above and beneath the seafloor interface where they measured the acoustic pressure and the acoustic particle acceleration. Motion data provided by the buried vector sensors were affected by a suspension response that was sensitive to the mass properties of the sensor, the sediment density and sediment elasticity (e.g., shear wave speed). The suspension response for the buried vector sensors included a resonance within the analysis band of 0.4 to 2.0 kHz. The suspension resonance represented an unknown complex transfer function between the acoustic vector field in the seabed and data representing that field. Therefore, inverse methods developed for this study were required to 1) estimate dynamic properties of the sensor suspension resonance and 2) account for the associated corruption of vector field data. A method to account for the vector sensor suspense response function was integrated directly into the inversion methods such that vector channel data corruption was reduced and an estimate of the shear wave speed in the sediment was returned. Inversions of real and synthetic data sets indicated that information about sediment shear wave speed was carried by the suspension response of the buried sensors, as opposed to being contained inherently within the acoustic vector field.
An inverse and analytic lens design method
Lu, Yang; Lakshminarayanan, Vasudevan
2016-01-01
Traditional lens design is a numerical and forward process based on ray tracing and aberration theory. This method has limitations because the initial configuration of the lens has to be specified and the aberrations of the lenses have to considered. This paper is an initial attempt to investigate an analytic and inverse lens design method, called Lagrange, to overcome these barriers. Lagrange method tries to build differential equations in terms of the system parameters and the system input ...
Inverse scattering problem for quantum graph vertices
Cheon, Taksu; Turek, Ondrej
2011-01-01
We demonstrate how the inverse scattering problem of a quantum star graph can be solved by means of diagonalization of Hermitian unitary matrix when the vertex coupling is of the scale invariant (or F\\"ul\\H{o}p-Tsutsui) form. This enables the construction of quantum graphs with desired properties in a tailor-made fashion. The procedure is illustrated on the example of quantum vertices with equal transmission probabilities.
Variational Bayesian Approximation methods for inverse problems
Mohammad-Djafari, Ali
2012-09-01
Variational Bayesian Approximation (VBA) methods are recent tools for effective Bayesian computations. In this paper, these tools are used for inverse problems where the prior models include hidden variables and where where the estimation of the hyper parameters has also to be addressed. In particular two specific prior models (Student-t and mixture of Gaussian models) are considered and details of the algorithms are given.
Difference inversion model of wave equation
Institute of Scientific and Technical Information of China (English)
WANG De-ming
2008-01-01
A numerical iterative model was derived from the difference method and a perturbation assumption to calculate the coefficient function of a wave equation.The method Was used to solve the disaccord problem of numerical precision between the direct problem model and inverse problem model,and its serial problems using the old method.Numerical simulation calculation shows that the method is feasible and effective.
Supersymmetric inversion of effective-range expansions
Midya, Bikashkali; Evrard, Jérémie; Abramowicz, Sylvain; Ramirez Suarez, Oscar Leonardo; Sparenberg, Jean-Marc
2015-01-01
A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Thir...
Parametric optimization of inverse trapezoid oleophobic surfaces
DEFF Research Database (Denmark)
Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin
2012-01-01
In this paper, we introduce a comprehensive and versatile approach to the parametric shape optimization of oleophobic surfaces. We evaluate the performance of inverse trapezoid microstructures in terms of three objective parameters: apparent contact angle, maximum sustainable hydrostatic pressure...... ratio. The inclusion of mechanical robustness in combination with conventional performance characteristics favors solutions relevant for practical applications, as mechanical stability is a critical issue not often addressed in idealized models....
INVERSE CENTER LOCATION PROBLEM ON A TREE
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
This paper discusses the inverse center location problem restricted on a tree with different costs and bound constraints.The authors first show that the problem can be formulated as a series of combinatorial linear programs,then an O(|V|2 log |V|)time algorithm to solve the problem is presented.For the equal cost case,the authors further give an O(|V|)time algorithm.
Sequential Geoacoustic Filtering and Geoacoustic Inversion
2015-09-30
typical high-resolution beamformers. We use least squares optimization with an L1-norm regularization term, also known as the least absolute shrinkage...windows actually performs better than conventional beamforming and MVDR/ MUSIC (see Figs. 1-2). Compressive geoacoustic inversion Geoacoustic...histograms based on 100 Monte Carlo simulations, and c)(CS, exhaustive-search, CBF, MVDR, and MUSIC performance versus SNR. The true source positions
Mollière, Paul; Dullemond, Cornelis Petrus; Henning, Thomas; Mordasini, Christoph
2015-01-01
Many parameters constraining the spectral appearance of exoplanets are still poorly understood. We therefore study the properties of irradiated exoplanet atmospheres over a wide parameter range including metallicity, C/O ratio and host spectral type. We calculate a grid of 1-d radiative-convective atmospheres and emission spectra. We perform the calculations with our new Pressure-Temperature Iterator and Spectral Emission Calculator for Planetary Atmospheres (PETIT) code, assuming chemical equilibrium. The atmospheric structures and spectra are made available online. We find that atmospheres of planets with C/O ratios $\\sim$ 1 and $T_{\\rm eff}$ $\\gtrsim$ 1500 K can exhibit inversions due to heating by the alkalis because the main coolants CH$_4$, H$_2$O and HCN are depleted. Therefore, temperature inversions possibly occur without the presence of additional absorbers like TiO and VO. At low temperatures we find that the pressure level of the photosphere strongly influences whether the atmospheric opacity is d...
An overview of joint inversion in earthquake source imaging
Koketsu, Kazuki
2016-10-01
We reviewed joint inversion studies of the rupture processes of significant earthquakes, using the definition of a joint inversion in earthquake source imaging as a source inversion of multiple kinds of datasets (waveform, geodetic, or tsunami). Yoshida and Koketsu (Geophys J Int 103:355-362, 1990), and Wald and Heaton (Bull Seismol Soc Am 84:668-691, 1994) independently initiated joint inversion methods, finding that joint inversion provides more reliable rupture process models than single-dataset inversion, leading to an increase of joint inversion studies. A list of these studies was made using the finite-source rupture model database (Mai and Thingbaijam in Seismol Res Lett 85:1348-1357, 2014). Outstanding issues regarding joint inversion were also discussed.
Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems
Energy Technology Data Exchange (ETDEWEB)
Benzi, M. [Universita di Bologna (Italy); Tuma, M. [Inst. of Computer Sciences, Prague (Czech Republic)
1996-12-31
A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.
INVERSE ELECTRON TRANSFER IN PEROXYOXALATE CHEMIEXCITATION USING EASILY REDUCIBLE ACTIVATORS
Bartoloni, Fernando Heering; Monteiro Leite Ciscato, Luiz Francisco; Augusto, Felipe Alberto; Baader, Wilhelm Josef
2010-01-01
INVERSE ELECTRON TRANSFER IN PEROXYOXALATE CHEMIEXCITATION USING EASILY REDUCIBLE ACTIVATORS. Chemiluminescence properties of the peroxyoxalate reaction in the presence of activators bearing electron withdrawing substituents were studied, to evaluate the possible occurrence of an inverse electron tr
Multi-objective optimization of inverse planning for accurate radiotherapy
Institute of Scientific and Technical Information of China (English)
曹瑞芬; 吴宜灿; 裴曦; 景佳; 李国丽; 程梦云; 李贵; 胡丽琴
2011-01-01
The multi-objective optimization of inverse planning based on the Pareto solution set, according to the multi-objective character of inverse planning in accurate radiotherapy, was studied in this paper. Firstly, the clinical requirements of a treatment pl
Surface layer temperature inversion in the Bay of Bengal
Digital Repository Service at National Institute of Oceanography (India)
Pankajakshan, T.; Gopalakrishna, V.V.; Muraleedharan, P; Reddy, G.V.; Araligidad, N.
Hydrographic and XBT data archived in the Indian Oceanographic Data Centre (IODC) are used to understand the process of temperature inversions occurring in the Bay of Bengal. The following aspects of the inversions are addressed: i) annual...
TOPICAL REVIEW: Inverse problems in elasticity
Bonnet, Marc; Constantinescu, Andrei
2005-04-01
This review is devoted to some inverse problems arising in the context of linear elasticity, namely the identification of distributions of elastic moduli, model parameters or buried objects such as cracks. These inverse problems are considered mainly for three-dimensional elastic media under equilibrium or dynamical conditions, and also for thin elastic plates. The main goal is to overview some recent results, in an effort to bridge the gap between studies of a mathematical nature and problems defined from engineering practice. Accordingly, emphasis is given to formulations and solution techniques which are well suited to general-purpose numerical methods for solving elasticity problems on complex configurations, in particular the finite element method and the boundary element method. An underlying thread of the discussion is the fact that useful tools for the formulation, analysis and solution of inverse problems arising in linear elasticity, namely the reciprocity gap and the error in constitutive equation, stem from variational and virtual work principles, i.e., fundamental principles governing the mechanics of deformable solid continua. In addition, the virtual work principle is shown to be instrumental for establishing computationally efficient formulae for parameter or geometrical sensitivity, based on the adjoint solution method. Sensitivity formulae are presented for various situations, especially in connection with contact mechanics, cavity and crack shape perturbations, thus enriching the already extensive known repertoire of such results. Finally, the concept of topological derivative and its implementation for the identification of cavities or inclusions are expounded.
Solar structure inversion with LOWL data
Basu, Sarbani; Christensen-Dalsgaard, Joergen; Schou, Jesper; Thompson, Michael J.; Tomczyk, Steven
1995-01-01
Inversion results for the radial hydrostatic structure of the Sun, using six months of oscillation data obtained with the LOWL instrument, are presented. Both low and intermediate degree modes are used, thus avoiding the systematic errors that might have occurred in previous inversions by merging more than one data set. Using modes of between 0 deg and 90 deg and frequencies of between 1.5 mHz and 3.5 mHz, the variations with depth of the speed of sound, the density and the pressure were inferred for radii of between 0.05 and 0.85 stellar radius. It was found that in this region, the sound speed was within 0.15% of that of a model constructed using an equation of state that incorporated helium diffusion. The density difference between the Sun and the model was less than 0.8%. Given the small error bars on the inversion results, these differences are considered as being significant.
Inversion of tsunami waveforms and tsunami warning
An, Chao
Ever since the 2004 Indian Ocean tsunami, the technique of inversion of tsunami data and the importance of tsunami warning have drawn the attention of many researchers. However, since tsunamis are rare and extreme events, developed inverse techniques lack validation, and open questions rise when they are applied to a real event. In this study, several of those open questions are investigated, i.e., the wave dispersion, bathymetry grid size and subfault division. First, tsunami records from three large tsunami events -- 2010 Maule, 2011 Tohoku and 2012 Haida Gwaii -- are analyzed to extract the main characteristics of the leading tsunami waves. Using the tool of wavelet transforming, the instant wave period can be obtained and thus the dispersive parameter mu2 can be calculated. mu2 is found to be smaller than 0.02 for all records, indicating that the wave dispersion is minor for the propagation of tsunami leading waves. Second, inversions of tsunami data are carried out for three tsunami events -- 2011 Tohoku, 2012 Haida Gwaii and 2014 Iquique. By varying the subfault size and the bathymetry grid size in the inversions, general rules are established for choosing those two parameters. It is found that the choice of bathymetry grid size depends on various parameters, such as the subfault size and the depth of subfaults. The global bathymetry data GEBCO with spatial resolution of 30 arcsec is generally good if the subfault size is larger than 40 km x 40 km; otherwise, bathymetry data with finer resolution is desirable. Detailed instructions of choosing the bathymetry size can be found in Chapter 2. By contrast, the choice of subfault size has much more freedom; our study shows that the subfault size can be very large without significant influence on the predicted tsunami waves. For earthquakes with magnitude of 8.0 ˜ 9.0, the subfault size can be 60 km ˜ 100 km. In our study, the maximum subfault size results in 9 ˜ 16 subfault patches on the ruptured fault surface
Representations of Inverse Covariances by Differential Operators
Institute of Scientific and Technical Information of China (English)
Qin XU
2005-01-01
In the cost function of three- or four-dimensional variational data assimilation, each term is weighted by the inverse of its associated error covariance matrix and the background error covariance matrix is usually much larger than the other covariance matrices. Although the background error covariances are traditionally normalized and parameterized by simple smooth homogeneous correlation functions, the covariance matrices constructed from these correlation functions are often too large to be inverted or even manipulated. It is thus desirable to find direct representations of the inverses of background errorcorrelations. This problem is studied in this paper. In particular, it is shown that the background term can be written into ∫ dx|Dv(x)|2, that is, a squared L2 norm of a vector differential operator D, called the D-operator, applied to the field of analysis increment v(x). For autoregressive correlation functions, the Doperators are of finite orders. For Gaussian correlation functions, the D-operators are of infinite order. For practical applications, the Gaussian D-operators must be truncated to finite orders. The truncation errors are found to be small even when the Gaussian D-operators are truncated to low orders. With a truncated D-operator, the background term can be easily constructed with neither inversion nor direct calculation of the covariance matrix. D-operators are also derived for non-Gaussian correlations and transformed into non-isotropic forms.
Full waveform inversion for ultrasonic flaw identification
Seidl, Robert; Rank, Ernst
2017-02-01
Ultrasonic Nondestructive Testing is concerned with detecting flaws inside components without causing physical damage. It is possible to detect flaws using ultrasound measurements but usually no additional details about the flaw like position, dimension or orientation are available. The information about these details is hidden in the recorded experimental signals. The idea of full waveform inversion is to adapt the parameters of an initial simulation model of the undamaged specimen by minimizing the discrepancy between these simulated signals and experimentally measured signals of the flawed specimen. Flaws in the structure are characterized by a change or deterioration in the material properties. Commonly, full waveform inversion is mostly applied in seismology on a larger scale to infer mechanical properties of the earth. We propose to use acoustic full waveform inversion for structural parameters to visualize the interior of the component. The method is adapted to US NDT by combining multiple similar experiments on the test component as the typical small amount of sensors is not sufficient for a successful imaging. It is shown that the combination of simulations and multiple experiments can be used to detect flaws and their position, dimension and orientation in emulated simulation cases.
Tsunami waveform inversion by adjoint methods
Pires, Carlos; Miranda, Pedro M. A.
2001-09-01
An adjoint method for tsunami waveform inversion is proposed, as an alternative to the technique based on Green's functions of the linear long wave model. The method has the advantage of being able to use the nonlinear shallow water equations, or other appropriate equation sets, and to optimize an initial state given as a linear or nonlinear function of any set of free parameters. This last facility is used to perform explicit optimization of the focal fault parameters, characterizing the initial sea surface displacement of tsunamigenic earthquakes. The proposed methodology is validated with experiments using synthetic data, showing the possibility of recovering all relevant details of a tsunami source from tide gauge observations, providing that the adjoint method is constrained in an appropriate manner. It is found, as in other methods, that the inversion skill of tsunami sources increases with the azimuthal and temporal coverage of assimilated tide gauge stations; furthermore, it is shown that the eigenvalue analysis of the Hessian matrix of the cost function provides a consistent and useful methodology to choose the subset of independent parameters that can be inverted with a given dataset of observations and to evaluate the error of the inversion process. The method is also applied to real tide gauge series, from the tsunami of the February 28, 1969, Gorringe Bank earthquake, suggesting some reasonable changes to the assumed focal parameters of that event. It is suggested that the method proposed may be able to deal with transient tsunami sources such as those generated by submarine landslides.
Inverse problems biomechanical imaging (Conference Presentation)
Oberai, Assad A.
2016-03-01
It is now well recognized that a host of imaging modalities (a list that includes Ultrasound, MRI, Optical Coherence Tomography, and optical microscopy) can be used to "watch" tissue as it deforms in response to an internal or external excitation. The result is a detailed map of the deformation field in the interior of the tissue. This deformation field can be used in conjunction with a material mechanical response to determine the spatial distribution of material properties of the tissue by solving an inverse problem. Images of material properties thus obtained can be used to quantify the health of the tissue. Recently, they have been used to detect, diagnose and monitor cancerous lesions, detect vulnerable plaque in arteries, diagnose liver cirrhosis, and possibly detect the onset of Alzheimer's disease. In this talk I will describe the mathematical and computational aspects of solving this class of inverse problems, and their applications in biology and medicine. In particular, I will discuss the well-posedness of these problems and quantify the amount of displacement data necessary to obtain a unique property distribution. I will describe an efficient algorithm for solving the resulting inverse problem. I will also describe some recent developments based on Bayesian inference in estimating the variance in the estimates of material properties. I will conclude with the applications of these techniques in diagnosing breast cancer and in characterizing the mechanical properties of cells with sub-cellular resolution.
Compressed word problems for inverse monoids
Lohrey, Markus
2011-01-01
The compressed word problem for a finitely generated monoid M asks whether two given compressed words over the generators of M represent the same element of M. For string compression, straight-line programs, i.e., context-free grammars that generate a single string, are used in this paper. It is shown that the compressed word problem for a free inverse monoid of finite rank at least two is complete for Pi^p_2 (second universal level of the polynomial time hierarchy). Moreover, it is shown that there exists a fixed finite idempotent presentation (i.e., a finite set of relations involving idempotents of a free inverse monoid), for which the corresponding quotient monoid has a PSPACE-complete compressed word problem. It was shown previously that the ordinary uncompressed word problem for such a quotient can be solved in logspace. Finally, a PSPACE-algorithm that checks whether a given element of a free inverse monoid belongs to a given rational subset is presented. This problem is also shown to be PSPACE-complet...
Computationally efficient Bayesian inference for inverse problems.
Energy Technology Data Exchange (ETDEWEB)
Marzouk, Youssef M.; Najm, Habib N.; Rahn, Larry A.
2007-10-01
Bayesian statistics provides a foundation for inference from noisy and incomplete data, a natural mechanism for regularization in the form of prior information, and a quantitative assessment of uncertainty in the inferred results. Inverse problems - representing indirect estimation of model parameters, inputs, or structural components - can be fruitfully cast in this framework. Complex and computationally intensive forward models arising in physical applications, however, can render a Bayesian approach prohibitive. This difficulty is compounded by high-dimensional model spaces, as when the unknown is a spatiotemporal field. We present new algorithmic developments for Bayesian inference in this context, showing strong connections with the forward propagation of uncertainty. In particular, we introduce a stochastic spectral formulation that dramatically accelerates the Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We also explore dimensionality reduction for the inference of spatiotemporal fields, using truncated spectral representations of Gaussian process priors. These new approaches are demonstrated on scalar transport problems arising in contaminant source inversion and in the inference of inhomogeneous material or transport properties. We also present a Bayesian framework for parameter estimation in stochastic models, where intrinsic stochasticity may be intermingled with observational noise. Evaluation of a likelihood function may not be analytically tractable in these cases, and thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on the product space of the observations and the parameters, are introduced.
Validation of Earth Radiation Budget Experiment scanning radiometer data inversion procedures
Manalo, Natividad D.; Smith, G. L.; Green, Richard N.; Avis, Lee M.; Suttles, John T.
1990-01-01
Validation techniques were implemented in the inversion of scanner radiometer data to assess the accuracy of the top of atmosphere radiant fluxes. An evaluation of SW radiant flux standard deviations for the same scene type shows that they contribute about 6.0 W/sq m for viewing zenith angles less than 55 deg and can reach values of up to 17.6 W/sq m for larger zenith angles in the backward scanning position. Three-channel intercomparison results, presented as color graphic displays and histograms, effectively validate the radiance measurements and the spectral factors. Along-track data were used to validate limb-darkening models and showed good agreement with current ERBE models. These validation techniques were found to be very effective in assessing the quality of the radiant fluxes generated by the ERBE inversion algorithm.
Le Moigne, Frédéric A. C.; Henson, Stephanie A.; Cavan, Emma; Georges, Clément; Pabortsava, Katsiaryna; Achterberg, Eric P.; Ceballos-Romero, Elena; Zubkov, Mike; Sanders, Richard J.
2016-05-01
The ocean contributes to regulating atmospheric CO2 levels, partly via variability in the fraction of primary production (PP) which is exported out of the surface layer (i.e., the e ratio). Southern Ocean studies have found that contrary to global-scale analyses, an inverse relationship exists between e ratio and PP. This relationship remains unexplained, with potential hypotheses being (i) large export of dissolved organic carbon (DOC) in high PP areas, (ii) strong surface microbial recycling in high PP regions, and/or (iii) grazing-mediated export that varies inversely with PP. We find that the export of DOC has a limited influence in setting the negative e ratio/PP relationship. However, we observed that at sites with low PP and high e ratios, zooplankton-mediated export is large and surface microbial abundance low suggesting that both are important drivers of the magnitude of the e ratio in the Southern Ocean.
Atmospheric composition change: Ecosystems–Atmosphere interactions
DEFF Research Database (Denmark)
Fowler, D.; Pilegaard, Kim; Sutton, M.A.
2009-01-01
and techniques in micrometeorology. For some of the compounds there have been paradigm shifts in approach and application of both techniques and assessment. These include flux measurements over marine surfaces and urban areas using micrometeorological methods and the up-scaling of flux measurements using...... in the size range 1 nm–10 μm including organic and inorganic chemical species. The main focus of the review is on the exchange between terrestrial ecosystems, both managed and natural and the atmosphere, although some new developments in ocean–atmosphere exchange are included. The material presented is biased...... towards the last decade, but includes earlier work, where more recent developments are limited or absent. New methodologies and instrumentation have enabled, if not driven technical advances in measurement. These developments have advanced the process understanding and upscaling of fluxes, especially...
Alden, C.B.; Miller, J.B.; Gatti, L.V.; Gloor, M.M.; Laan-Luijkx, van der I.T.; Krol, M.C.; Guan, K.; Michalak, A.M.; Touma, T.; Andrew, A.; Basso, L.S.; Correia, C.S.C.; Domingues, L.G.; Joiner, J.; Lyapustin, A.; Peters, W.; Shiga, Y.P.; Thoning, K.; Velde, van der I.R.; Leeuwen van, T.T.; Yadav, V.; Diffenbaugh, N.S.
2016-01-01
Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate–carbon feedbacks. Of particular importance
for the global carbon budget is net biome exchange of CO2 w
Alden, Caroline B.; Miller, John B.; Gatti, Luciana V.; Gloor, Manuel M.; Guan, Kaiyu; Michalak, Anna M.; van der Laan-Luijkx, Ingrid T.; Touma, Danielle; Andrews, Arlyn; Basso, Luana S.; Correia, Caio S. C.; Domingues, Lucas G.; Joiner, Joanna; Krol, Maarten C.; Lyapustin, Alexei I.; Peters, Wouter; Shiga, Yoichi P.; Thoning, Kirk; van der Velde, Ivar R.; van Leeuwen, Thijs T.; Yadav, Vineet; Diffenbaugh, Noah S.
2016-01-01
Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with
The Inverse Method Application for Non-Classical Logics
Pavlov, V.; Paky, V.
2015-01-01
Maslov’s inverse method is an automated theorem proving method: it can be used to develop computer programs that prove theorems automatically (such programs are called theorem provers). The inverse method can be applied to a wide range of logical calculi: propositional logic, ﬁrst-order logic, intuitionistic logic, modal logics etc. We give a brief historical background of the inverse method, then discuss existing modiﬁcations and implementations of the inverse method for non-classical logics...
Directory of Open Access Journals (Sweden)
A. Solomon
2011-05-01
Full Text Available Observations suggest that processes maintaining subtropical and Arctic stratocumulus differ, due to the different environments in which they occur. For example, specific humidity inversions (specific humidity increasing with height are frequently observed to occur coincident with temperature inversions in the Arctic, while they do not occur in the subtropics. In this study we use nested LES simulations of decoupled Arctic Mixed-Phase Stratocumulus (AMPS clouds observed during the DOE Atmospheric Radiation Measurement Program's Indirect and SemiDirect Aerosol Campaign (ISDAC to analyze budgets of water components, potential temperature, and turbulent kinetic energy. These analyses quantify the processes that maintain decoupled AMPS, including the role of the humidity inversions. The results show the maintenance of liquid clouds in both the shallow upper entrainment zone (temperature and humidity inversion due to a down gradient transport of water vapor by turbulent fluxes into the cloud layer and direct condensation by radiative cooling, and in the updrafts of the mixed-layer eddies below cloud top due to buoyant destabilization. These processes cause at least 20 % of the cloud liquid water to extend into the inversion. The redistribution of water vapor from the top of the humidity inversion to the base of the humidity inversion maintains the cloud layer while the mixed layer-entrainment zone system is continually losing total water. In this decoupled system, the humidity inversion is the only source of water vapor for the cloud system since water vapor from the surface layer is not efficiently transported into the mixed layer. Sedimentation of ice is the dominant sink of moisture from the mixed layer.
Glacial atmospheric phosphorus deposition
Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul
2016-04-01
Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).
Inverse problems in classical and quantum physics
Energy Technology Data Exchange (ETDEWEB)
Almasy, A.A.
2007-06-29
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A
Full Waveform Inversion Using Waveform Sensitivity Kernels
Schumacher, Florian; Friederich, Wolfgang
2013-04-01
We present a full waveform inversion concept for applications ranging from seismological to enineering contexts, in which the steps of forward simulation, computation of sensitivity kernels, and the actual inversion are kept separate of each other. We derive waveform sensitivity kernels from Born scattering theory, which for unit material perturbations are identical to the Born integrand for the considered path between source and receiver. The evaluation of such a kernel requires the calculation of Green functions and their strains for single forces at the receiver position, as well as displacement fields and strains originating at the seismic source. We compute these quantities in the frequency domain using the 3D spectral element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework. We developed and implemented the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion) to compute waveform sensitivity kernels from wavefields generated by any of the above methods (support for more methods is planned), where some examples will be shown. As the kernels can be computed independently from any data values, this approach allows to do a sensitivity and resolution analysis first without inverting any data. In the context of active seismic experiments, this property may be used to investigate optimal acquisition geometry and expectable resolution before actually collecting any data, assuming the background model is known sufficiently well. The actual inversion step then, can be repeated at relatively low costs with different (sub)sets of data, adding different smoothing conditions. Using the sensitivity kernels, we expect the waveform inversion to have better convergence properties compared with strategies that use gradients of a misfit function. Also the propagation of the forward wavefield and the backward propagation from the receiver
Inverse scattering problem in turbulent magnetic fluctuations
Treumann, Rudolf A.; Baumjohann, Wolfgang; Narita, Yasuhito
2016-08-01
We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand-Levitan-Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes advantage of a particular
Mechanism and Modeling for Polymerization of Acrylamide in Inverse Microemulsions
Institute of Scientific and Technical Information of China (English)
LiXiao; ZhangWeiying; YuanHuigen
2004-01-01
After discussion on the mechanism of polymer particle nucleation and growth in inverse microemulsion polymerization, a schematic physical model for polymerization of acrylamide in inverse microemulsions was presented. Furthermore, several key problems in mathematically modeling of inverse microemulsion polymerization were pointed out.
Microlocal analysis of a seismic linearized inverse problem
Stolk, C.C.
2001-01-01
The seismic inverse problem is to determine the wavespeed c x in the interior of a medium from measurements at the boundary In this paper we analyze the linearized inverse problem in general acoustic media The problem is to nd a left inverse of the linearized forward map F or equivalently to nd the
Solving and analyzing PD0L inverse process
Institute of Scientific and Technical Information of China (English)
樊勇兵; 陈刚; 董光昌
2001-01-01
The importance of L inverse process is emphasized and an algorithm is given to realize PD0L inverse process. On the basis of algorithm analysis, this note discusses the possibility of applying L inverse process to data compression and the difficulties in doing that.
DEFF Research Database (Denmark)
Wieczorek, Izabela
2014-01-01
. In doing so, analysing the Crystal Palace – recognised as the epitome of controlled immersive experience as well as of atmospheric engineering (Sloterdijk 2008 (2005) – in parallel with other examples and theoretical explorations, will provide a canvas for discerning the means of creation of atmosphere...... Physical Presence in Space.” Oase #91, Building Atmosphere, 21-33 Sloterdijk, Peter. (2005) 2008. “The Crystal Palace.” Translated by Michael Darroch. Public 37: Public?, 12-15. Originally published in Peter Sloterdijk. Im Weltinnenraum des Kapitals: Für eine philoso-phische Theorie der Globalisierung, 265...
Energy Technology Data Exchange (ETDEWEB)
Arnaiz, C.; Buffiere, P.; Elmaleh, S.; Lebrato, J.; Moletta, R.
2003-11-01
This paper describes the application of the inverse fluidization technology to the anaerobic digestion of dairy wastewater. Two reactors were investigated: the inverse fluidized bed reactor and the inverse turbulent reactor. In these reactors, a granular floating solid is expanded by a down-flow current of effluent or an up-flow current of gas, respectively. The carrier particles (Extendospheres) were chosen for their large specific surface area (20,000 m{sup 2} m{sup -3}) and their low energy requirements for fluidization (gas velocity of 1.5 mm s{sup -1}, 5.4 m h{sup -1}). Organic load was increased stepwise by reducing hydraulic retention time from more than 60 days to 3 days, while maintaining constant the feed COD concentration. Both reactors achieved more than 90% of COD removal, at an organic loading rate of 10-12 kg{sub COD} m{sup -3} d{sup -1}, respectively. The performances observed were similar or even higher than that of other previously tested fluidized bed technologies treating the same wastewater. It was found that the main advantages of this system are: low energy requirement, because of the low fluidization velocities required; there is no need of a settling device, because solids accumulate at the bottom of the reactor, so they can be easily drawn out and particles with high-biomass content can be easily recovered. Lipid phosphate concentration has been revealed as a good method for biomass estimation in biofilms since it only includes living biomass. (Author)
Regional-scale geostatistical inverse modeling of North American CO2 fluxes: a synthetic data study
Directory of Open Access Journals (Sweden)
A. M. Michalak
2010-07-01
Full Text Available A series of synthetic data experiments is performed to investigate the ability of a regional atmospheric inversion to estimate grid-scale CO2 fluxes during the growing season over North America. The inversions are performed within a geostatistical framework without the use of any prior flux estimates or auxiliary variables, in order to focus on the atmospheric constraint provided by the nine towers collecting continuous, calibrated CO2 measurements in 2004. Using synthetic measurements and their associated concentration footprints, flux and model-data mismatch covariance parameters are first optimized, and then fluxes and their uncertainties are estimated at three different temporal resolutions. These temporal resolutions, which include a four-day average, a four-day-average diurnal cycle with 3-hourly increments, and 3-hourly fluxes, are chosen to help assess the impact of temporal aggregation errors on the estimated fluxes and covariance parameters. Estimating fluxes at a temporal resolution that can adjust the diurnal variability is found to be critical both for recovering covariance parameters directly from the atmospheric data, and for inferring accurate ecoregion-scale fluxes. Accounting for both spatial and temporal a priori covariance in the flux distribution is also found to be necessary for recovering accurate a posteriori uncertainty bounds on the estimated fluxes. Overall, the results suggest that even a fairly sparse network of 9 towers collecting continuous CO2 measurements across the continent, used with no auxiliary information or prior estimates of the flux distribution in time or space, can be used to infer relatively accurate monthly ecoregion scale CO2 surface fluxes over North America within estimated uncertainty bounds. Simulated random transport error is shown to decrease the quality of flux estimates in under-constrained areas at the ecoregion scale, although the uncertainty bounds remain realistic. While these synthetic
On the potential of GHG emissions estimation by multi-species inverse modeling
Gerbig, Christoph; Boschetti, Fabio; Filges, Annette; Marshall, Julia; Koch, Frank-Thomas; Janssens-Maenhout, Greet; Nedelec, Philippe; Thouret, Valerie; Karstens, Ute
2016-04-01
Reducing anthropogenic emissions of greenhouse gases is one of the most important elements in mitigating climate change. However, as emission reporting is often incomplete or incorrect, there is a need to independently monitor the emissions. Despite this, in the case of CO2 one typically assumes that emissions from fossil fuel burning are well known, and only natural fluxes are constrained by atmospheric measurements via inverse modelling. On the other hand, species such as CO2, CH4, and CO often have common emission patterns, and thus share part of the uncertainties, both related to the prior knowledge of emissions, and to model-data mismatch error. We implemented the Lagrangian transport model STILT driven by ECMWF analysis and short-term forecast meteorological fields together with emission sector and fuel-type specific emissions of CO2, CH4 and CO from EDGARv4.3 at a spatial resolution of 0.1 x 0.1 deg., providing an atmospheric fingerprint of anthropogenic emissions for multiple trace gases. We combine the regional STILT simulations with lateral boundary conditions for CO2 and CO from MACC forecasts and CH4 from TM3 simulations. Here we apply this framework to airborne in-situ measurements made in the context of IAGOS (In-service Aircraft for a Global Observing System) and in the context of a HALO mission conducted for testing the active remote sensing system CHARM-F during April/May 2015 over central Europe. Simulated tracer distributions are compared to observed profiles of CO2, CH4, and CO, and the potential for a multi-species inversion using synergies between different tracers is assessed with respect to the uncertainty reduction in retrieved emission fluxes. Implications for inversions solving for anthropogenic emissions using atmospheric observations from ICOS (Integrated Carbon Observing System) are discussed.
Carbon neutron star atmospheres
Suleimanov, V F; Pavlov, G G; Werner, K
2013-01-01
The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.
Martin, Craig
2015-08-01
The word "atmosphere" was a neologism Willebrord Snellius created for his Latin translation of Simon Stevin's cosmographical writings. Astronomers and mathematical practitioners, such as Snellius and Christoph Scheiner, applying the techniques of Ibn Mu'ādh and Witelo, were the first to use the term in their calculations of the height of vapors that cause twilight. Their understandings of the atmosphere diverged from Aristotelian divisions of the aerial region. From the early years of the seventeenth century, the term was often associated with atomism or corpuscular matter theory. The concept of the atmosphere changed dramatically with the advent of pneumatic experiments in the middle of the seventeenth century. Pierre Gassendi, Walter Charleton, and Robert Boyle transformed the atmosphere of the mathematicians giving it the characteristics of weight, specific gravity, and fluidity, while disputes about its extent and border remained unresolved.
Inverse transport modeling of volcanic sulfur dioxide emissions using large-scale simulations
Heng, Yi; Hoffmann, Lars; Griessbach, Sabine; Rößler, Thomas; Stein, Olaf
2016-05-01
An inverse transport modeling approach based on the concepts of sequential importance resampling and parallel computing is presented to reconstruct altitude-resolved time series of volcanic emissions, which often cannot be obtained directly with current measurement techniques. A new inverse modeling and simulation system, which implements the inversion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) is developed to provide reliable transport simulations of volcanic sulfur dioxide (SO2). In the inverse modeling system MPTRAC is used to perform two types of simulations, i.e., unit simulations for the reconstruction of volcanic emissions and final forward simulations. Both types of transport simulations are based on wind fields of the ERA-Interim meteorological reanalysis of the European Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent SO2 emission time series is also based on Atmospheric InfraRed Sounder (AIRS) satellite observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011, with complex emission patterns, is considered for method validation. Meteosat Visible and InfraRed Imager (MVIRI) near-real-time imagery data are used to validate the temporal development of the reconstructed emissions. Furthermore, the altitude distributions of the emission time series are compared with top and bottom altitude measurements of aerosol layers obtained by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite instruments. The final forward simulations provide detailed spatial and temporal information on the SO2 distributions of the Nabro eruption. By using the critical success index (CSI), the simulation results are evaluated with the AIRS observations. Compared to the results with an assumption of a constant flux of SO2 emissions, our inversion approach leads to an improvement
Constraining CO emission estimates using atmospheric observations
Hooghiemstra, P. B.
2012-06-01
We apply a four-dimensional variational (4D-Var) data assimilation system to optimize carbon monoxide (CO) emissions and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. In the first study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-Var system. Uncertainty reduction up to 60% in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, since the observations only constrain total CO emissions, the 4D-Var system has difficulties separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10%. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes. In the second study, we compare two global inversions to estimate carbon monoxide (CO) emissions for 2004. Either surface flask observations from NOAA or CO total columns from the MOPITT instrument are assimilated in a 4D-Var framework. In the Southern Hemisphere (SH) three important findings are reported. First, due to their different vertical sensitivity, the stations-only inversion increases SH biomass burning emissions by 108 Tg CO/yr more than the MOPITT-only inversion. Conversely, the MOPITT-only inversion results in SH natural emissions
Atmospheric muons: experimental aspects
Cecchini, S.; Spurio, M.
2012-01-01
We present a review of atmospheric muon flux and energy spectrum measurements over almost six decades of muon momentum. Sea-level and underground/water/ice experiments are considered. Possible sources of systematic errors in the measurements are examinated. The characteristics of underground/water muons (muons in bundle, lateral distribution, energy spectrum) are discussed. The connection between the atmospheric muon and neutrino measurements are also reported.
Atmospheric muons: experimental aspects
Directory of Open Access Journals (Sweden)
S. Cecchini
2012-11-01
Full Text Available We present a review of atmospheric muon flux and energy spectrum measurements over almost six decades of muon momentum. Sea level and underground/water/ice experiments are considered. Possible sources of systematic errors in the measurements are examined. The characteristics of underground/water muons (muons in bundle, lateral distribution, energy spectrum are discussed. The connection between the atmospheric muon and neutrino measurements are also reported.
Piver, W T
1991-01-01
Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...
Causative Mechanisms of Tropical (10°N-15°N) Mesospheric Inversion Layers
Ramesh, Karanam; Sundararajan, Sridharan; Vijaya Bhaskara Rao, S.
2016-07-01
The inversion of temperature gradient from negative to positive superimposed upon the characteristically decreasing mesospheric thermal structure is known as Mesospheric Inversion Layer (MIL). Gravity wave breaking, planetary wave critical level interaction and the chemical heating have been suggested as potential causative mechanisms for the occurrence of the MILs. Although the morphological characteristics of MIL have been studied in detail at different sites using various instrumental techniques, their causative mechanisms are still unknown. In the present study, nearly all these major causative mechanisms have been addressed through a few case studies observed from Rayleigh lidar and TIMED-SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics - Sounding of Atmosphere by Broadband Emission Radiometry) nightly temperatures over a tropical site, Gadanki (13.5°N,79.2°E). A few large MILs are observed above ˜80 km with amplitude and thickness of ˜50 K and ˜5 km respectively in 2007 and 2011 which are found to be predominantly due to gravity wave breaking and large chemical heating rate (˜15 K/day) by the exothermic reaction, H+O _{3}->OH+O _{2} respectively. It is also found that the SABER shows larger ozone (O _{3}) mixing ratios at the inversion heights (˜80-85 km) during the MIL events in 2011. In another special case study, a triple layered MIL event with three inversion layers at ˜70 km (˜11 K), 80 km (˜44 K), 90 km (˜109 K) has been observed in September 2011 over Gadanki region. It is found that these three inversion layers are respectively due to planetary wave breaking, gravity wave tidal interaction and chemical heating by the reaction, O+O+M->O _{2}+M.
Review of ankle inversion sprain simulators in the biomechanics laboratory
Directory of Open Access Journals (Sweden)
Sophia Chui-Wai Ha
2015-10-01
Full Text Available Ankle inversion ligamentous sprain is one of the most common sports injuries. The most direct way is to investigate real injury incidents, but it is unethical and impossible to replicate on test participants. Simulators including tilt platforms, trapdoors, and fulcrum devices were designed to mimic ankle inversion movements in laboratories. Inversion angle was the only element considered in early designs; however, an ankle sprain is composed of inversion and plantarflexion in clinical observations. Inversion velocity is another parameter that increased the reality of simulation. This review summarised the simulators, and aimed to compare and contrast their features and settings.
Application of Coherence Inversion Method to Shallow Reflection
Institute of Scientific and Technical Information of China (English)
吴建成; 曹德欣; 田宗勇
2001-01-01
Because of the disturbance of some regular waves, the deformity of reflective wave occurs, making the coherence inversion method unreliable. By using the event time from multi-fold reflective stack the range of model parameters obtained by coherence inversion is limited in coherence inversion. Then by adjusting the initial values of the model parameters to make the waveform from the coherence inversion method be consistent with that from the original reflective gathers, the result of the inversion becomes more reliable. The application of this method in processing the reflective gathers in Songzikou by the Jingjiang River of Hubei demonstrates the efficiency of the method.
Minimal inversion, command matching and disturbance decoupling in multivariable systems
Seraji, H.
1989-01-01
The present treatment of the related problems of minimal inversion and perfect output control in linear multivariable systems uses a simple analytical expression for the inverse of a square multivariate system's transfer-function matrix to construct a minimal-order inverse of the system. Because the poles of the minimal-order inverse are the transmission zeros of the system, necessary and sufficient conditions for the inverse system's stability are simply stated in terms of the zero polynomial of the original system. A necessary and sufficient condition for the existence of the required controllers is that the plant zero polynomial be neither identical to zero nor unstable.
Atmospheric Refraction Predictions Based on Actual Atmospheric Pressure and Temperature Data
Nauenberg, Michael
2017-04-01
Calculations of atmospheric refraction are generally based on a simplified model of atmospheric density in the troposphere that assumes the temperature decreases at a constant lapse rate L from sea level up to a height {h}t≈ 11 {km}, and that afterward it remains constant. In this model, the ratio T o /L, where T o is the temperature at the observer’s location, determines the length scale in the calculations for altitudes h≤slant {h}t. But daily balloon measurements across the USA show that in some cases there is an inversion so that the air temperature actually increases from sea level up to a height {h}p≈ 1 {km}, and only after reaching a plateau with temperature {T}o\\prime at this height, it decreases at an approximately constant lapse rate. Hence, in such cases the relevant length scale for atmospheric refraction calculations in the range {h}p≤slant hatmospheric refraction based on this actual atmospheric data are compared with the results of current simplified models.
North American acetone sources determined from tall tower measurements and inverse modeling
Hu,L; D. B. Millet; Kim, S Y; K. C. Wells; Griffis, T. J.; E. V. Fischer; Helmig, D.; J. Hueber; A. J. Curtis
2013-01-01
We apply a full year of continuous atmospheric acetone measurements from the University of Minnesota tall tower Trace Gas Observatory (KCMP tall tower; 244 m a.g.l.), with a 0.5° × 0.667° GEOS-Chem nested grid simulation to develop quantitative new constraints on seasonal acetone sources over North America. Biogenic acetone emissions in the model are computed based on the MEGANv2.1 inventory. An inverse analysis of the tall tower observations implies a 37% underestimate of e...
Assessment of thermal structure of boundary layer atmosphere of Western Siberia
Akhmetshina, Anna
2013-01-01
The assessment of frequency of temperature inversions makes it possible to investigate the probability of coincidence of unfavorable conditions of atmospheric stratification and the results of the intensive business activity. This paper is devoted to the study of thermal structure of the atmosphere boundary layer of Western Siberian territory in the period from 1990 to 2010 by using reanalysis of NCEP/NCAR data. The data of reanalysis is the only available information for similar research. Ba...